Prell, W.L., Wang, P., Blum, P., Rea, D.K., and Clemens, S.C. (Eds.) Proceedings of the Ocean Drilling Program, Scientific Results Volume 184

5. DATA REPORT: STABLE ISOTOPES FROM SITES 1147 AND 1148¹

Xinrong Cheng,² Quanhong Zhao,² Jiliang Wang,² Zhimin Jian,² Peifen Xia,² Baoqi Huang,² Dianyong Fang,² Jian Xu,² Zhen Zhou,² and Pinxian Wang²

INTRODUCTION

Sites 1147 (18°50.11'N, 116°33.28'E; water depth = 3246 m) and 1148 (18°50.17'N, 116°33.94'E; water depth = 3294 m) are located on the lowermost continental slope off southern China near the continent/ ocean crust boundary of the South China Sea Basin. Site 1147 is located upslope ~0.45 nmi west of Site 1148. Three advanced piston corer holes at Site 1147 and two extended core barrel holes at Site 1148 were cored and combined into a composite (spliced) stratigraphic section, which provided a relatively continuous profile for the lower Oligocene to Holocene (Wang, Prell, Blum, et al., 2000; Jian, et al., 2001) for studying stratigraphy and paleoceanography. A total of 1047 planktonic foraminifers stable isotope measurements were performed on 975 samples covering the upper 409.58 meters composite depth (mcd) at ~42-cm intervals (Tables T1, T2), and a total of 1864 benthic foraminifers measurements were performed on 1650 samples in the upper 837.11 mcd at ~51-cm intervals (Tables T3, T4). We significantly improved the time resolution of the benthic stable isotope record in the upper 476.68 mcd by reducing the average sample spacing to ~29 cm. This translates into an average sampling resolution of ~16 k.y. for the Miocene sequence and ~8 k.y. for the Pliocene-Holocene interval, assuming a change in sedimentation rates from ~ 1.8 to ~ 3.5 cm/k.y., as suggested by shipboard stratigraphy. These data sets provide the basis for upcoming studies to establish an oxygen isotope stratigraphy and examine the Neogene evolution of deep and surface water signatures (temperature, salinity, and nutrients) in the South China Sea.

T1. Planktonic foraminifer oxygen and carbon isotope data, p. 8

T2. Planktonic foraminifer stable isotope data, p. 9.

T3. Benthic foraminifer oxygen and carbon isotope data, p. 10.

T4. Benthic foraminifer stable isotope data, p. 11.

¹Cheng, X., Zhao, Q., Wang, J., Jian, Z., Xia, P., Huang, B., Fang, D., Xu, J., Zhou, Z., and Wang, P., 2004. Data report: Stable Isotopes from Sites 1147 and 1148. *In* Prell, W.L., Wang, P., Blum, P., Rea, D.K., and Clemens, S.C. (Eds.), *Proc. ODP, Sci. Results*, 184, 1–12 [Online]. Available from World Wide Web: <http://www-odp.tamu.edu/ publications/184_SR/VOLUME/ CHAPTERS/223.PDF>. [Cited YYYY-MM-DD]

²Laboratory of Marine Geology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China. Correspondence author: xrchengk@online.sh.cn

Initial receipt: 18 December 2002 Acceptance: 23 October 2003 Web publication: 6 April 2004 Ms 184SR-223

METHODS

Samples were oven-dried at 60°C and washed through a 63-µm sieve. Well-preserved specimens were chosen from the coarse-fraction residues and cleaned with analytical grade ethanol (≥99.7%) in an ultrasonic bath. They were dried again in an oven at 60°C and reacted with orthophosphoric acid in an automatic carbonate device (Kiel III) at 70°C to generate CO_2 . The escaping CO_2 was then transferred to a Finnigan MAT252 mass spectrometer for measurement of stable isotopes at the Laboratory of Marine Geology in Tongji University, People's Republic of China. The epibenthic species Cibicidoides wuellerstorfi was preferred for isotope analysis because various studies have demonstrated that the δ^{13} C value of this species is approximately equal to bottom water $\delta^{13}C$ and is therefore a good proxy for reconstructions of deepwater ventilation (McCorkle and Keigwin, 1994). In intervals where C. wuellerstorfi was absent in the sediments, other benthic foraminifers were analyzed (Table T5) to obtain a complete oxygen isotope record. Globigerinoides ruber was mainly used for the upper 165 mcd, and Globigerinoides sacculifer was used for the lower part. Because of isotopic differences between species, adjustments were made to account for taxon-dependent deviations from seawater isotopic equilibrium using the adjustment factors given in Table T5, according to Shackleton et al. (1995), Shackleton and Hall (1983, 1990), and Z. Jian et al. (2003, unpubl. data). When several measurements were made on different planktonic or benthic foraminifers from the same sample, the adjusted average value was used (Tables T1, T2, T3, T4). Precision was regularly checked with the Chinese national carbonate standard GBW04405. Conversion to the international Peedee belemnite (PDB) scale was performed using NBS19 and NBS18 standards: $\delta^{13}C = 0.57\%$, $\delta^{18}O =$ -8.49‰); the standard deviation was 0.07‰ for δ^{18} O and 0.04‰ for δ^{13} C for measurements carried out during the years 1999–2000.

RESULTS

The chronological framework of the upper 837.11-m composite section (~32.7 Ma to present) at Sites 1147 and 1148 is based on biostratigraphy and magnetostratigraphy (Wang, Prell, Blum, et al., 2000; Z. Jian et al., unpubl. data). The isotope records below 476.68 mcd (~26.5–32.7 Ma) cannot be used as a paleoclimatic indicator because all the calcareous microfossils were heavily mineralized (Zhao et al., 2001a) as a result of diagenesis. However, oxygen and carbon isotope measurements from the upper 476.68 mcd (Fig. F1) are considered to reflect paleoceanographic changes in the northern South China Sea since ~ 26.5 Ma (Fig. F2). The oxygen isotope record of benthic foraminifers can be divided into three major intervals: 0–3.2, 3.2–13.6, and 13.6–26.5 Ma (Fig. F2). Its steplike variation indicates a general cooling trend for the past 26.5 m.y., which is most obvious since 3.2 Ma (Figs. F2, F3). The steplike cooling may be equivalent to major ice sheet expansions, as mentioned by Lear et al. (2000). Both benthic and planktonic δ^{13} C display a generally decreasing trend (Zhao et al., 2001b) with obvious increases in δ^{13} C at 24.4–22.7 and 17.9–16.0 Ma, the latter case marking the "Monterey carbon positive excursion." The planktonic foraminifer δ^{18} O record significantly differs from the benthic record, possibly indicating regional changes in sea-surface temperature and/or salinity during the Neogene.

T5. Adjustment factors for oxygen and carbon isotopes, p. 12.

ACKNOWLEDGMENTS

This research used samples and data provided by the Ocean Drilling Program (ODP). ODP is sponsored by the U.S. National Science Foundation (NSF) and participating countries under management of Joint Oceanographic Institutions (JOI), Inc. We are grateful to ODP Leg 184 Shipboard Scientific Party for devoting the time to coring the sediment section at Site 1147 and 1148. We thank Mr. Fang Dingyuan for a great deal of help in stable isotope measurement; Profs. Jean-Claude Duplessy, Warren Prell, Tadamichi Oba, Pieter Grootes, and Dr. Helmut Erlenkeuser for suggestions and guidance in stable isotope measurement; and Prof. Ralf Tiedemann and an anonymous reviewer for helpful comments on the manuscript. Funding for this research was provided by the National Natural Science Foundation of China (grant no. 49999560) and the National Key Basic Research Special Foundation Project of China (G2000078502).

REFERENCES

- Jian, Z., Cheng, X., Zhao, Q., Wang, J., and Wang, P., 2001. Oxygen isotope stratigraphy and events in the northern South China Sea during the last 6 million years. *Sci. China, Ser. D: Earth Sci.*, 44:952–960.
- Jian, Z., Zhao, Q., Cheng, X., Wang, J., Wang, P., and Su, X., 2003. Pliocene–Pleistocene stable isotope and paleoceanographic changes in the northern South China Sea. *Palaeogeogr., Palaeoclimatol., Palaeoecol.*, 193:425–442.
- Lear, C.H., Elderfield, H., and Wilson, P.A., 2000. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. *Science*, 287:269–272.
- McCorkle, D.C., and Keigwin, L.D., 1994. Depth profiles of δ^{13} C in bottom water and core top *C. wuellerstorfi* on the Ontong Java Plateau and Emperor Seamounts. *Paleoceanography*, 9:197–208.
- Shackleton, N.J., and Hall, M.A., 1983. Stable isotope record of Hole 504 sediments: high-resolution record of the Pleistocene. *In* Cann, J.R., Langseth, M.G., Honnorez, J., Von Herzen, R.P., White, S.M., et al., *Init. Repts. DSDP*, 69: Washington (U.S. Govt. Printing Office), 431–441.

———, 1990. Pliocene oxygen isotope stratigraphy of Hole 709C. *In* Duncan, R.A., Backman, J., Peterson, L.C., et al., *Proc. ODP, Sci. Results*, 115: College Station, TX (Ocean Drilling Program), 529–538.

- Shackleton, N.J., Hall, M.A., and Pate, D., 1995. Pliocene stable isotope stratigraphy of Site 846. *In Pisias, N.G., Mayer, L.A., Janecek, T.R., Palmer-Julson, A., and van Andel, T.H. (Eds.), Proc. ODP, Sci. Results,* 138: College Station, TX (Ocean Drilling Program), 337–355.
- Wang, P., Prell, W.L., Blum, P., et al., 2000. *Proc. ODP, Init. Repts.*, 184 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station TX 77845-9547, USA.
- Zhao, Q., Jian, Z., Wang, J., Cheng, X., Huang, B., Xu, J., Zhou, Z., Fang, D., and Wang, P., 2001a. Neogene oxygen isotopic stratigraphy, ODP Site 1148, northern South China Sea. *Sci. China, Ser. D.: Earth Sci*, 44:934–942.
- Zhao, Q., Wang, P., Cheng, X., Wang, J., Huang, B., Xu, J., Zhou, Z., and Jian, Z., 2001b. A record of Miocene carbon excursions in the South China Sea. *Sci. China, Ser. D.: Earth Sci*, 44:943–951.

Figure F1. Stable isotope record from ODP Sites 1147 and 1148 vs. meters composite depth (mcd). PDB = Peedee belemnite scale. **A.** Planktonic δ^{18} O and δ^{13} C. **B.** Benthic δ^{18} O and δ^{13} C.

Figure F2. Stable isotope record from ODP Sites 1147 and 1148 vs. age. PDB = Peedee belemnite scale. A. Planktonic δ^{18} O and δ^{13} C. B. Benthic δ^{18} O and δ^{13} C.

Figure F3. Stable isotope record during the last 5 m.y. at ODP Sites 1147 and 1148. PDB = Peedee belemnite scale. A. Planktonic δ^{18} O and δ^{13} C. **B.** Benthic δ^{18} O and δ^{13} C.

Table T1. Planktonic foraminifer oxygen and carbon isotope data,Sites 1147 and 1148.

Core, section, interval (cm)	Depth (mbsf)	Depth (mcd)	Species	δ ¹³ C (‰) (raw)	δ ¹⁸ O (‰) (raw)	δ ¹³ C (‰) (adjust)	δ ¹⁸ O (‰) (adjust)
184-11474-							
3H-2, 10–12	16.51	18.26	G. ruber	0.581	-0.682	0.581	-0.682
3H-2, 90–92	17.31	19.06	G. ruber	0.767	-1.612	0.767	-1.612
3H-3, 10–12	18.01	19.76	G. ruber	0.276	-1.180	0.276	-1.180
3H-3, 90–92	18.81	20.56	G. ruber	0.610	-0.587	0.610	-0.587
3H-4, 10–12	19.51	21.26	G. ruber	0.611	-1.303	0.611	-1.303
3H-4, 90–92	20.31	22.06	G. ruber	0.917	-1.595	0.917	-1.595
3H-5, 10–12	21.01	22.76	G. ruber	0.594	-2.307	0.594	-2.307
3H-5, 90–92	21.81	23.56	G. ruber	0.804	-2.104	0.804	-2.104
3H-6, 10–12	22.51	24.26	G. ruber	0.803	-2.013	0.803	-2.013
3H-6, 90–92	23.31	25.06	G. ruber	0.565	-1.177	0.565	-1.177
184-1147B-							
1H-1, 90–92	0.91	0.91	G. ruber	0.508	-1.731	0.508	-1.731
1H-1, 90–92	0.91	0.91	G. sacculifer	1.159	-2.007	0.809	-2.327
1H-2, 10–12	1.61	1.61	G. ruber	0.755	-0.892	0.755	-0.892
1H-2, 10–12	1.61	1.61	G. sacculifer	1.129	-0.398	0.779	-0.718
1H-2, 90–92	2.41	2.41	G. ruber	0.927	-1.033	0.927	-1.033
1H-2, 90–92	2.41	2.41	G. sacculifer	1.197	-0.571	0.847	-0.891
1H-3, 10–12	3.11	3.11	G. ruber	0.833	-0.988	0.833	-0.988
1H-3, 90–92	3.91	3.91	G. ruber	0.899	-1.311	0.899	-1.311
1H-4, 10–12	4.61	4.61	G. ruber	1.234	-1.707	1.234	-1.707
1H-4, 90–92	5.41	5.41	G. ruber	1.103	-1.632	1.103	-1.632
1H-5, 10–12	6.11	6.11	G. ruber	1.228	-1.553	1.228	-1.553
1H-5, 90–92	6.91	6.91	G. ruber	1.296	-1.495	1.296	-1.495
1H-6, 10–12	7.61	7.61	G. ruber	1.137	-1.665	1.137	-1.665
1H-6, 90–92	8.41	8.41	G. ruber	0.624	-2.093	0.624	-2.093
1H-6, 90–92	8.41	8.41	G. sacculifer	1.600	-1.001	1.250	-1.321
2H-2, 90–92	11.91	12.41	G. ruber	1.048	-1.915	1.048	-1.915
2H-3, 10–12	12.61	13.11	G. ruber	0.676	-2.029	0.676	-2.029
2H-3, 90–92	13.41	13.91	G. ruber	0.649	-1.557	0.649	-1.557
2H-4, 10–12	14.11	14.61	G. ruber	1.159	-1.780	1.159	-1.780
2H-4, 90–92	14.91	15.41	G. ruber	0.527	-2.317	0.527	-2.317
2H-5, 10–12	15.61	16.11	G. ruber	0.239	-1.785	0.239	-1.785
2H-5, 90–92	16.41	16.91	G. ruber	0.223	-1.434	0.223	-1.434
2H-6, 10–12	17.11	17.61	G. ruber	0.168	-1.040	0.168	-1.040
2H-6, 90–92	17.91	18.41	G. ruber	0.801	-0.894	0.801	-0.894
4H-1, 10–12	28.61	30.31	G. ruber	0.275	-1.875	0.275	-1.875
4H-1, 90–92	29.41	31.11	G. ruber	0.425	-1.170	0.425	-1.170
4H-2, 10–12	30.11	31.81	G. ruber	0.293	-0.921	0.293	-0.921
4H-2, 90–92	30.91	32.61	G. ruber	0.258	-1.581	0.258	-1.581
4H-3, 10–12	31.61	33.31	G. ruber	0.391	-1.940	0.391	-1.940
4H-3, 90–92	32.41	34.11	G. ruber	0.734	-1.823	0.734	-1.823
4H-4, 10–12	33.11	34.81	G. ruber	0.709	-1.918	0.709	-1.918
4H-4, 90–92	33.91	35.61	G. ruber	0.739	-2.088	0.739	-2.088
4H-5, 10–12	34.61	36.31	G. ruber	0.474	-2.093	0.474	-2.093
4H-5, 90–92	35.41	37.11	G. ruber	0.285	-1.701	0.285	-1.701
5H-2, 90–92	40.41	42.31	G. ruber	0.070	-0.965	0.070	-0.965
5H-3, 10–12	41.11	43.01	G. ruber	0.400	-0.591	0.400	-0.591
5H-3, 90–92	41.91	43.81	G. ruber	0.543	-1.718	0.543	-1.718
5H-4, 10–12	42.61	44.51	G. ruber	0.477	-1.033	0.477	-1.033
5H-4, 90–92	43.41	45.31	G. ruber	0.451	-1.342	0.451	-1.342
5H-5, 10–12	44.11	46.01	G. ruber	0.310	-1.421	0.310	-1.421
5H-5, 10–12	44.11	46.01	G. ruber	0.491	-1.611	0.491	-1.611
5H-6, 10–12	45.61	47.51	G. ruber	0.738	-1.545	0.738	-1.545
5H-6, 90–92	46.41	48.31	G. ruber	-0.145	-2.560	-0.145	-2.560
184-1147C-							
2H-3, 10–12	5.71	6.31	G. ruber	1.101	-1.457	1.101	-1.457
2H-3, 90–92	6.51	7.11	G. ruber	0.952	-1.059	0.952	-1.059
2H-4, 10–12	7.21	7.81	G. ruber	0.976	-1.703	0.976	-1.703
2H-4, 90–92	8.01	8.61	G. ruber	0.947	-1.773	0.947	-1.773
2H-5, 10–12	8.71	9.31	G. ruber	0.483	-1.631	0.483	-1.631

Notes: *G. ruber = Globigerinoides ruber, G. sacculifer = Globigerinoides sacculifer.* * = adjustment factors after Shackleton et al. (1995). Oxygen isotope data are given in reference to Peedee belemnite standard. Only a portion of this table appears here. The complete table is available in ASCII.

 Table T2. Planktonic foraminifer stable isotope data for the spliced section (0–410 mcd).

Depth (mcd)	Age (Ma)	δ ¹³ C (‰) (final)*	δ ¹⁸ O (‰) (final)*	D (r	epth ncd)	Age (Ma)	δ ¹³ C (‰) (final)*	δ ¹⁸ O (‰) (final)*	_	Depth (mcd)	Age (Ma)	δ ¹³ C (‰) (final)*	δ ¹⁸ O (‰) (final)*
0.91	0.010	0.659	-2.029	4	8.51	0.709	0.748	-1.990	_	97.33	1.509	0.518	-1.648
1.61	0.014	0.767	-0.805	4	9.21	0.715	0.512	-1.438		98.03	1.516	0.716	-2.378
2.41	0.019	0.887	-0.962	5	0.01	0.722	0.714	-1.245		98.81	1.524	0.435	-1.782
3.11	0.022	0.833	-0.988	5	0.71	0.731	0.813	-1.495		98.93	1.525	0.239	-1.942
3.91	0.028	0.899	-1.311	5	1.51	0.741	0.373	-1.872		99.63	1.537	0.550	-1.892
4.61	0.032	1.234	-1.707	5	2.06	0.748	0.369	-1.746		100.43	1.554	0.194	-2.246
5.41	0.038	1.103	-1.632	5	2.21	0.750	0.289	-1.566		102.53	1.589	0.665	-2.328
6.11	0.042	1.228	-1.553	5	2.86	0.758	1.023	-2.001		103.33	1.611	0.764	-2.244
6.31	0.043	1.101	-1.457	5	3.01	0.760	0.897	-1.745		103.40	1.613	0.526	-2.322
6.91 7 1 1	0.047	1.296	-1.495	5	5.56	0.767	-0.075	-l./88		104.03	1.625	0.421	-2.661
7.11	0.049	0.952	-1.059	5	5.80	0.798	0.280	-1.219		104.83	1.641	0.125	-1./92
7.01	0.052	0.976	-1.003	5	0.30 8.06	0.802	0.436	-1.110		105.55	1.600	0.302	-1.030
7.01 8.41	0.055	0.970	-1 707	5	8 31	0.819	0.413	-2 354		100.55	1.602	_0.038	-2 136
8.61	0.055	0.947	-1.773	5	9.11	0.837	-0.12	-2.762		107.83	1.702	0.121	-1.364
9.31	0.058	0.483	-1.631	5	9.81	0.865	-0.271	-1.502		108.53	1.720	-0.147	-2.090
10.11	0.061	0.602	-1.570	6	0.61	0.872	0.528	-1.302		109.53	1.750	-0.075	-2.104
11.61	0.080	0.843	-1.170	6	1.01	0.875	0.459	-1.404		110.88	1.765	0.297	-2.160
12.41	0.087	1.048	-1.915	6	1.31	0.877	-0.081	-1.306		111.59	1.777	-0.267	-2.143
13.11	0.092	0.676	-2.029	6	1.81	0.884	0.377	-1.140		112.59	1.802	0.427	-1.184
13.91	0.099	0.649	-1.557	6	2.11	0.888	0.376	-1.180		113.11	1.815	-0.014	-1.975
14.61	0.106	1.159	-1.780	6	2.51	0.894	0.225	-1.623		113.59	1.832	0.570	-1.777
15.41	0.115	0.527	-2.317	6	3.31	0.905	0.299	-1.866		113.91	1.841	0.263	-2.135
16.11	0.122	0.239	-1.785	6	4.01	0.910	-0.039	-1.787		114.29	1.846	-0.1405	-1.806
16.91	0.128	0.223	-1.434	6	4.81	0.918	0.154	-1.760		115.09	1.855	0.562	-1.924
17.61	0.132	0.168	-1.040	6	6.78	0.948	0.534	-2.231		115.79	1.868	0.216	-2.035
18.26	0.135	0.581	-0.682	6	7.01 7.01	0.965	0.069	-1.116		117.20	1.890	-0.027	-2.099
10.41	0.159	0.801	-0.894	0	/.01 0.00	0.974	0.498	-2.136		117.29	1.910	0.424	-2.245
19.00	0.134	0.707	-1.012	6	0.20 9.08	0.985	0.002	-2.280		119.29	1.954	0.131	-2.302
20.56	0.171	0.270	-0.587	6	9.00	1 008	0.703	-1.882		120.31	1.983	0.243	-2.100
21.26	0.183	0.611	-1.303	7	0.58	1.026	0.459	-2.479		121.01	1.999	0.519	-2.246
22.06	0.189	0.917	-1.595	7	1.28	1.040	0.789	-2.392		121.81	2.019	0.760	-1.799
22.76	0.194	0.594	-2.307	7	2.08	1.053	1.104	-2.187		122.26	2.027	0.686	-1.931
23.56	0.245	0.804	-2.104	7	2.78	1.070	-0.138	-2.092		123.06	2.051	0.421	-2.433
24.26	0.249	0.803	-2.013	7	3.58	1.081	0.451	-2.032		123.76	2.072	0.070	-1.818
25.06	0.303	0.565	-1.177	7	3.93	1.087	0.512	-1.852		125.26	2.104	0.163	-2.353
26.06	0.319	0.668	-2.209	7	4.73	1.101	0.789	-1.712		126.71	2.141	0.390	-2.242
26.76	0.331	0.511	-1.701	7	5.43	1.115	0.530	-2.198		126.81	2.142	0.097	-2.085
27.56	0.334	0.352	-2.053	7	7.73	1.126	0.908	-1.844		126.96	2.144	0.322	-2.214
28.26	0.338	0.473	-1.716	7	8.43	1.129	0.359	-1.482		127.11	2.146	-0.371	-1.800
29.06	0.341	0.422	-1.898	/	8.88	1.1//	0.541	-2.393		127.26	2.152	0.104	-1.865
29.76	0.362	0.827	-2.036	/	9.23	1.199	0.058	-1.978		127.41	2.162	0.136	-2.088
30.51	0.405	0.275	-1.6/5	/	9.30	1.207	0.366	-1.923		127.40	2.105	0.430	-2.249
30.50	0.414	0.218	-1.714	0	1.88	1.213	0.928	2 010		127.50	2.104	0.178	-2.338
31.11	0.434	0.423	_0.921	8	7 38	1.242	0.449	-2.010		127.01	2.104	0.377	-2.136
32.61	0.456	0.258	-1.581	8	3.18	1.267	0.933	-1.996		128.06	2.175	0.229	-2.906
33.31	0.467	0.391	-1.940	8	3.28	1.268	0.154	-2.104		128.16	2.181	0.576	-2.786
34.11	0.480	0.734	-1.823	8	3.88	1.276	0.406	-2.157		128.21	2.182	0.815	-1.580
34.81	0.502	0.709	-1.918	8	4.08	1.279	0.551	-2.383		128.36	2.186	0.793	-1.796
35.61	0.524	0.739	-2.088	8	4.78	1.286	0.354	-1.599		128.46	2.189	-0.186	-2.748
36.31	0.538	0.474	-2.093	8	5.58	1.304	-0.313	-2.619		128.51	2.190	0.122	-2.695
36.41	0.541	0.709	-1.418	8	6.28	1.316	0.640	-2.459		128.61	2.193	0.809	-2.320
37.11	0.560	0.285	-1.701	8	7.08	1.322	-0.035	-2.108		128.66	2.194	0.796	-2.023
37.21	0.563	0.567	-1.576	8	7.78	1.334	0.933	-2.087		128.79	2.195	0.840	-2.659
39.41	0.587	0.629	-2.469	8	8.58	1.347	0.801	-2.283		128.91	2.197	0.039	-2.857
40.21	0.598	0.739	-2.469	8	9.08	1.351	0.255	-1.867		129.06	2.198	0.245	-2.316
40.91	0.608	0.553	-1.869	8	9.88	1.376	0.082	-2.041		129.21	2.200	0.295	-1.848
41./1	0.618	0.449	-2.030	9	0.58	1.386	0.854	-2.256		129.34	2.202	0.956	-1.944
42.31	0.620	0.070	-0.965	9	1.38	1.404	-0.001	-2.466		129.51	2.204	0.434	-1.9/8
45.01 12 01	0.638	0.400	-0.591	9	∠.U8 ว.00	1.422	0.095	-2.306		129.66	2.205	0.511	-2.258
45.01	0.049	0.343	-1./10	9	∠.00 3.52	1. 4 55 1.440	0.447	-2.10/		130.20	2.210 2.222	-0.122	-2.930
45 21	0.039	0.477 0.451	-1.035 _1 ₹42	9	3.55	1 440	0.093 0 <u>4</u> 00	-2.290		130.41	2.222 2.277	0.450	-2.002
46 01	0.678	0.401	-1.542	9	4.33	1 445	0.477	-2.105 -2.147	_	10.00	2.221	0.107	-2.330
47 51	0.689	0.738	-1.545	9	5.03	1 460	0.145	-2.14/			0 !!		
47.71	0.690	0.981	-2.460	9	5.83	1.469	0.121	-2.054	Γ	NOTES: $* =$	after adju	stment. On	iy a portion
48.31	0.704	-0.145	-2.560	9	6.53	1.484	-0.081	-2.560		of this	table ap	pears here.	Ine com-
										plete ta	able is ava	liable in AS	CII.

9

Table T3. Benthic foraminifer oxygen and carbon isotope data,Sites 1147 and 1148.

Core, section, interval (cm)	Depth (mbsf)	Depth (mcd)	Species	δ ¹³ C (‰) (raw)	δ ¹⁸ O (‰) (raw)	δ^{13} C (‰) (adjusted)	δ ¹⁸ O (‰) (adjusted)
184-1147A-							<u> </u>
3H-2, 10–12	16.51	18.26	C. wuellerstorfi	-0.527	3.932	-0.527	4.572
3H-3, 10–12	18.01	19.76	Cibicidoides spp.	-0.779	3.847	-0.779	4.347
3H-3, 90–92	18.81	20.56	Cibicidoides spp.	-0.572	3.900	-0.572	4.400
3H-4, 10–12	19.51	21.26	C. wuellerstorfi	-0.435	3.876	-0.435	4.516
3H-4, 90–92	20.31	22.06	Cibicidoides spp.	-0.493	3.655	-0.493	4.155
3H-5, 10–12	21.01	22.76	C. wuellerstorfi	-0.588	3,340	-0.588	3,980
3H-5, 90–92	21.81	23.56	Cibicidoides spp.	-0.798	3.646	-0.798	4.146
3H-6, 10–12	22.51	24.26	Cibicidoides spp.	-1.141	3,757	-1.141	4.257
3H-6, 90–92	23.31	25.06	Cibicidoides spp.	-0.429	3.425	-0.429	3.925
184-1147B-							
1H-1, 10–12	0.11	0.11	Oridorsalis spp.	-1.059	2.998	-0.059	2.998
1H-1, 90–92	0.91	0.91	Cibicidoides spp.	-0.432	2.981	-0.432	3.481
1H-2, 10–12	1.61	1.61	Cibicidoides spp.	-0.519	4.168	-0.519	4.668
1H-2, 90–92	2.41	2.41	C. wuellerstorfi	-0.213	4.086	-0.213	4.726
1H-3, 10–12	3.11	3.11	Uvigerina sp.	-0.978	4.810	-0.078	4.810
1H-3, 90–92	3.91	3.91	C. wuellerstorfi	-0.185	3.762	-0.185	4.402
1H-4, 90–92	5.41	5.41	C. wuellerstorfi	-0.117	3.655	-0.117	4.295
1H-5, 10–12	6.11	6.11	C. wuellerstorfi	-0.132	3.544	-0.132	4.184
1H-5, 90–92	6.91	6.91	C. wuellerstorfi	-0.212	3.559	-0.212	4.199
1H-6, 10–12	7.61	7.61	C. wuellerstorfi	-0.125	3.646	-0.125	4.286
1H-6, 90–92	8.41	8.41	C. wuellerstorfi	-0.114	3.514	-0.114	4.154
2H-2, 10–12	11.11	11.61	Cibicidoides spp.	-0.348	3.153	-0.348	3.653
2H-2, 90–92	11.91	12.41	C. wuellerstorfi	-0.041	3.244	-0.041	3.884
2H-3, 10–12	12.61	13.11	Uvigerina sp.	-0.849	3.825	0.051	3.825
2H-3, 90–92	13.41	13.91	C. wuellerstorfi	-0.163	3.102	-0.163	3.742
2H-4, 10–12	14.11	14.61	Cibicidoides spp.	-0.349	3.375	-0.349	3.875
2H-5, 10–12	15.61	16.11	Cibicidoides spp.	-1.540	2.908	-1.540	3.408
2H-5, 90–92	16.41	16.91	Cibicidoides spp.	-0.633	3.381	-0.633	3.881
2H-6, 10–12	17.11	17.61	Cibicidoides spp.	-0.680	3.919	-0.680	4.419
2H-6, 90–92	17.91	18.41	Cibicidoides spp.	-0.838	3.930	-0.838	4.430
4H-1, 10–12	28.61	30.31	C. wuellerstorfi	-0.296	2.546	-0.296	3.186
4H-1, 90–92	29.41	31.11	Cibicidoides spp.	-1.015	3.928	-1.015	4.428
4H-2, 10–12	30.11	31.81	C. wuellerstorfi	-0.469	3.677	-0.469	4.317
4H-2, 90–92	30.91	32.61	C. wuellerstorfi	-0.576	3.568	-0.576	4.208
4H-3, 10–12	31.61	33.31	Cibicidoides spp.	-1.129	3.701	-1.129	4.201
4H-3, 90–92	32.41	34.11	Uvigerina sp.	-1.477	4.269	-0.577	4.269
4H-4, 10–12	33.11	34.81	Cibicidoides spp.	-0.546	3.177	-0.546	3.677
4H-4, 90–92	33.91	35.61	C. wuellerstorfi	-0.392	3.355	-0.392	3.995
4H-5, 10–12	34.61	36.31	Cibicidoides spp.	-1.405	3.928	-1.405	4.428
5H-2, 10–12	39.61	41.51	Cibicidoides spp.	-0.169	2.855	-0.169	3.355
5H-2, 90–92	40.41	42.31	C. wuellerstorfi	-0.464	3.719	-0.464	4.359
5H-3, 10–12	41.11	43.01	Cibicidoides spp.	-1.452	4.446	-1.452	4.946
5H-3, 90–92	41.91	43.81	Cibicidoides spp.	-0.873	3.983	-0.873	4.483
5H-4, 10–12	42.61	44.51	Cibicidoides spp.	-1.662	4.295	-1.662	4.795
5H-4, 90–92	43.41	45.31	Cibicidoides spp.	-0.471	3.680	-0.471	4.180
5H-6, 90–92	46.41	48.31	C. wuellerstorfi	-0.248	3.281	-0.248	3.921
184-1147C-							
2H-3, 10–12	5.71	6.31	Cibicidoides spp.	-0.495	3.935	-0.495	4.435
2H-3, 90–92	6.51	7.11	C. wuellerstorfi	-0.254	3.520	-0.254	4.160
2H-4, 10–12	7.21	7.81	C. wuellerstorfi	-0.136	3.520	-0.136	4.160
2H-4, 90–92	8.01	8.61	C. wuellerstorfi	0.087	3.599	0.087	4.239
2H-5, 10–12	8.71	9.31	C. wuellerstorfi	-0.187	3.519	-0.187	4.159
2H-5, 90–92	9.51	10.11	C. wuellerstorfi	-0.518	3.684	-0.518	4.324
2H-6, 10–12	10.21	10.81	C. wuellerstorfi	-0.306	3.659	-0.306	4.299
4H-2, 90–92	24.01	26.06	C. wuellerstorfi	0.002	3.056	0.002	3.696
4H-3, 10–12	24.71	26.76	C. wuellerstorfi	-0.126	2.946	-0.126	3.586
4H-4, 90–92	27.01	29.06	Cibicidoides spp.	-0.582	3.634	-0.582	4.134
4H-5, 10–12	27.71	29.76	C. wuellerstorfi	-0.027	2.978	-0.027	3.618
4H-5, 90–92	28.51	30.56	Cibicidoides spp.	-0.545	3.175	-0.545	3.675
5H-3, 10–12	34.23	36.41	C. wuellerstorfi	-0.234	3.485	-0.234	4.125

Notes: C. wuellerstorfi = Cibicidoides wuellerstorfi, C. kullenbergi = Cibicidoides kullenbergi. * = adjustment factors after Shackleton et al. (1995). Oxygen isotope data are given in reference to Peedee belemnite standard. Only a portion of this table appears here. The complete table is available in ASCII.

 Table T4. Benthic foraminifer stable isotope data for spliced section (0–837 mcd).

Depth (mcd)	Age (Ma)	δ ¹³ C (‰) (final)*	δ ¹⁸ O (‰) (final)*	Depth (mcd)	Age (Ma)	δ ¹³ C (‰) (final)*	δ ¹⁸ O (‰) (final)*	-	Depth (mcd)	Age (Ma)	δ ¹³ C (‰) (final)*	δ ¹⁸ O (‰) (final)*
0.11	0.006	-0.059	2.998	50.02	0.722	0.055	3.545		101.13	1.569	-0.217	3.854
0.91	0.010	-0.432	3.481	50.71	0.731	-0.128	4.032		101.93	1.572	0.079	4.203
1.61	0.014	-0.519	4.668	51.51	0.741	-0.931	3.876		102.53	1.589	0.066	3.790
2.41	0.019	-0.213	4.720	52.00 52.21	0.748	-1.843	4.274		103.33	1.611	0.190	3.329
3.91	0.022	-0.185	4.402	52.86	0.758	-0.836	3.664		103.40	1.625	-0.019	3.538
5.41	0.038	-0.117	4.295	53.01	0.760	-1.019	4.089		104.20	1.629	0.001	3.581
6.11	0.042	-0.132	4.184	53.56	0.767	-0.453	4.318		104.83	1.641	-0.096	3.599
6.31	0.043	-0.495	4.435	55.86	0.798	-1.633	4.295		105.53	1.660	-0.110	4.197
6.91	0.047	-0.212	4.199	56.56	0.802	-0.543	4.120		106.33	1.682	-0.099	3.766
7.11	0.049	-0.254	4.160	59.11	0.83/	-0.356	3.636		107.83	1.702	-0.458	4.128
7.01	0.052	-0.125	4.260	61 01	0.872	-2.083	4 741		108.55	1.720	-0.155	3.407 3.437
8.41	0.055	-0.114	4.154	61.31	0.877	-1.225	4.606		109.33	1.746	-0.390	3.480
8.61	0.056	0.087	4.239	61.81	0.884	-1.052	4.033		109.38	1.748	-0.517	3.680
9.31	0.058	-0.187	4.159	62.11	0.888	-0.736	4.183		110.08	1.757	-0.057	3.934
10.11	0.061	-0.518	4.324	62.51	0.894	-0.624	4.204		110.88	1.765	0.091	3.359
10.81	0.065	-0.306	4.299	63.31	0.905	-0.522	3.830		111.59	1.777	-0.441	3.564
11.01	0.080	-0.548	3.033	64.01 64.81	0.910	-0.911	3.000 1 317		112.39	1.795	-0.285	4.004
13.11	0.092	0.051	3.825	65.51	0.936	-0.600	3.235		112.79	1.810	-0.262	3 233
13.91	0.099	-0.163	3.742	66.78	0.948	-0.434	3.150		113.59	1.832	-0.092	3.519
14.61	0.106	-0.349	3.875	67.01	0.965	-0.605	3.640		113.91	1.841	-0.561	4.043
16.11	0.122	-1.540	3.408	67.81	0.974	-0.374	3.394		115.09	1.855	-0.274	3.543
16.91	0.128	-0.633	3.881	68.28	0.983	-1.107	3.607		115.79	1.868	-0.123	3.619
17.61	0.132	-0.680	4.419	69.08	0.997	-0.217	3.557		116.59	1.890	0.110	3.348
18.20	0.135	-0.527	4.572	69.78 70.58	1.008	-0.081	4.045		117.29	1.916	-0.563	3.979
19.41	0.139	-0.838	4 347	70.38	1.020	-0.191	4 238		118.09	1.924	-0.114	3.011
20.56	0.177	-0.572	4.400	72.08	1.053	-0.309	3.845		119.51	1.957	-0.201	3.786
21.26	0.183	-0.435	4.516	72.78	1.070	-0.572	3.262		120.21	1.982	0.414	3.210
22.06	0.189	-0.493	4.155	73.58	1.081	-0.360	3.900		121.01	1.999	-0.155	3.821
22.76	0.194	-0.588	3.980	73.93	1.087	-0.385	3.929		122.26	2.027	-0.116	3.347
23.56	0.245	-0.798	4.146	74.73	1.101	-0.147	3.947		123.06	2.051	-0.095	3.614
24.26	0.249	-1.141	4.257	76.23	1.115	-1.031	4.190		123./6	2.0/2	-0.193	3.955
25.00	0.303	0.002	3.696	77.73	1.126	-0.383	4.126		124.41	2.080	-0.445	4.021 3.807
26.76	0.331	-0.126	3.586	78.08	1.120	-0.043	3.837		125.21	2.103	-0.337	3.680
29.06	0.341	-0.582	4.134	78.88	1.177	-0.062	3.586		125.26	2.104	-0.115	3.606
29.76	0.362	-0.027	3.618	79.23	1.199	-0.355	3.902		126.51	2.136	-0.067	3.535
30.31	0.405	-0.296	3.186	79.58	1.207	-0.417	4.308		126.66	2.140	-0.329	3.304
30.56	0.414	-0.545	3.675	80.38	1.215	-0.584	4.139		126.96	2.144	-0.454	3.414
31.11	0.434	-1.015	4.420	01.00 82.38	1.242	-1.146	3.402		127.11	2.146	-0.408	3.5/1
32.61	0.456	-0.576	4.208	83.28	1.268	-0.173	3.936		127.20	2.132	-0.414	4.101
33.31	0.467	-1.129	4.201	83.88	1.276	-0.238	3.485		127.46	2.163	-0.394	4.133
34.11	0.480	-0.577	4.269	84.08	1.279	0.079	3.517		127.56	2.164	-0.309	3.924
34.81	0.502	-0.546	3.677	84.78	1.286	-0.795	4.355		127.71	2.165	-0.435	3.742
35.61	0.524	-0.392	3.995	85.58	1.304	-0.496	4.029		127.76	2.166	-0.286	4.061
36.31	0.538	-1.405	4.428	86.28	1.316	-0./15	3.698		127.84	2.166	-0.065	3.959
37 21	0.541	-0.234	4.123	87.08 87.58	1.322	-0.341	3.833 4 104		127.91	2.16/	0.005	4.108
37.91	0.565	0.031	4.128	87.78	1.334	-0.517	4.186		128.06	2.175	-0.139	3.898
38.71	0.577	0.207	3.737	88.58	1.347	-0.143	3.588		128.16	2.181	0.022	3.621
39.41	0.587	-1.326	3.763	89.08	1.351	-0.616	3.449		128.21	2.182	-0.283	3.703
40.21	0.598	-0.194	3.808	89.88	1.376	-0.524	3.933		128.31	2.185	0.008	3.690
41.51	0.617	-0.169	3.355	91.38	1.404	0.131	3.521		128.36	2.186	-0.023	3.621
41./1 12.21	0.618	-0.468	3.4/U 1 250	92.08 93.59	1.422	-0.235	3.8/8 3.420		128.46	2.189	-0.252	3.438
43.01	0.620	-0.404 _1 452	4.559 4 946	22.20 94 33	1.440	-0.494	3 334		120.31 128.61	∠.190 2.102	0.004	5.450 3.484
43.81	0.649	-0.873	4.483	95.03	1.460	-0.417	4.029		128.66	2.193	-0.004	3.332
44.51	0.659	-1.662	4.795	96.53	1.484	-0.310	3.158		128.76	2.195	-0.222	3.345
45.31	0.673	-0.471	4.180	97.33	1.509	-0.142	4.185		128.79	2.195	0.045	3.372
47.71	0.690	-0.260	3.980	98.03	1.516	0.376	3.877	-				
48.31	0.704	-0.248	3.921	98.13	1.517	-0.079	3.951	1	Notes: *	= after	adjustme	nt. Only a
48.51	0.709	-1.293	3.933	98.81 08.02	1.524	-0.332	4.001		porti	on of th	s table apr	bears here.
40.32 49 71	0.709	-0.420 -0.519	3.985	20.23 99.63	1.525	-0.123 -0.646	3.040 4.130		The o	complet	e table is a	vailable in
50.01	0.722	-0.442	4.225	100.43	1.554	0.165	3.532		ASCI	I.		

Table T5. Adjustment factors for oxygen and car-
bon isotopes.

Species	$\delta^{13}C$	δ ¹⁸ Ο
Cibicidoides wuellerstorfi	0.00	0.64
Cibicidoides kullenbergi	0.00	0.64
C. wuellerstorfi + C. kullenbergi	0.00	0.64
Uvigerina sp.	0.90	0.00
Cibicidoides spp.	0.00	0.50
Oridorsalis sp.	1.00	0.00
Cibicidoides + Oridorsalis	0.50	0.32
Globigerinoides ruber	0.00	0.00
Globigerinoides sacculifer	-0.35	-0.32

Notes: Benthic foraminifer standards: $\delta^{13}C = C$. wuellerstorfi, $\delta^{18}O = U$. peregrina. Planktonic foraminifer standard: *G. ruber*. Adjustment factors after Shackleton et al. (1995), Shackleton and Hall (1983, 1990), and Z. Jian et al. (2003, unpub. data).