PROCEEDINGS
OF THE
OCEAN DRILLING
PROGRAM

VOLUME 101
Part A — INITIAL REPORT

BAHAMAS
Covering Leg 101 of the cruises of the Drilling Vessel JOIDES Resolution,
Miami, Florida, to Miami, Florida, Sites 626-636,
29 January 1985 — 14 March 1985

James A. Austin, Jr., Wolfgang Schlager, Paul A. Comet, André Droxler,
Gregor Eberli, Eric Fourcade, Raymond Freeman-Lynde, Craig S. Fulthorpe,
Gill Harwood, Gerhard Kuhn, Dawn Lavoie, Mark Leckie, Allan J. Melillo,
Arthur Moore, Henry T. Mullins, Christian Ravenne, William W. Sager,
Peter Swart, Joost W. Verbeek, David K. Watkins, and Colin Williams
Participating Scientists

Amanda A. Palmer
Shipboard Science Representative

William D. Rose
Editor

Prepared by the
OCEAN DRILLING PROGRAM
Texas A&M University
In cooperation with the
NATIONAL SCIENCE FOUNDATION
and
JOINT OCEANOGRAPHIC INSTITUTIONS, INC.
This publication was prepared by the Ocean Drilling Program, Texas A&M University, as an account of work performed under the International Ocean Drilling Program, which is managed by Joint Oceanographic Institutions, Inc. under contract with the National Science Foundation. Funding for the program was provided by the following agencies at the time of this cruise:

Department of Energy, Mines and Resources (Canada)
Deutsche Forschungsgemeinschaft (Federal Republic of Germany)
Institut Français de Recherche pour l'Exploitation de la Mer (France)
National Science Foundation (United States)

Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation, the participating agencies, Joint Oceanographic Institutions, Inc., Texas A&M University, or Texas A&M Research Foundation.

It is recommended that reference to the whole or to part of this volume be made in one of the following forms, as appropriate:

Effective Publication Dates of ODP Proceedings
According to the International Code of Zoological Nomenclature, the date of publication of a work and of a contained name or statement affecting nomenclature is the date on which the publication was mailed to subscribers, placed on sale, or when the whole edition is distributed free of charge, mailed to institutions and individuals to whom free copies are distributed. The mailing date, not the printed date, is the correct one.

Distribution
Copies of this publication may be obtained from Publications Distribution Center, Ocean Drilling Program, 1000 Discovery Drive, College Station, Texas 77840. Orders for copies will require advance payment. See current ODP publication list for price and availability of this publication.

Printed December 1986

ISSN 0884-5883

The paper used in this publication meets the minimum requirements of American National Standard for Information Sciences—Permanence of Paper for Printed Library Materials, ANSI Z39.48-1984
Foreword
By National Science Foundation

The scientists of the Ocean Drilling Program (ODP) have embarked on what could prove to be one of the most important earth science initiatives of the decade—an initiative rivaling in scope and impact the exploration of the frontiers of outer space. The program explores our planet's last frontier—the Earth's structure and history as it is revealed beneath the oceans. The scope of the program's scientific goals excites the imagination, challenges the intellect, and enhances the spirit of cooperation among peoples in countries around the world.

Between 1872 and 1876, HMS Challenger undertook the world's first major oceanographic expedition. That expedition greatly expanded man's knowledge of the world's oceans and revolutionized our ideas about planet Earth. From 1968 to 1983, another ship named Challenger logged more than 375,000 miles on 96 voyages across every ocean for the Deep Sea Drilling Project (DSDP), operated by Scripps Institution of Oceanography. Among the project's many remarkable discoveries were the confirmation of seafloor spreading and the establishment of the relative youth of the seafloor, thus verifying the dynamic and changing nature of the Earth's crust.

Today, the Ocean Drilling Program, which began in 1983, brings new resources to bear on scientific ocean drilling. A new drillship is in operation—the JOIDES Resolution—one of the world's most modern and best equipped drillships with enhanced capability for drilling and coring in polar areas and rough weather, expanded laboratory space, facilities for more scientists, and a major drill-hole logging program. The name of the ship was derived from the international scientific partnership that directs the program—the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES)—and from the flagship of Captain Cook's second voyage to the Pacific Ocean in the late 18th century. Texas A&M University is responsible for science operations in the new program, and Lamont-Doherty Geological Observatory is responsible for the logging program.

The Ocean Drilling Program truly has international participation. In 1975, the International Phase of Ocean Drilling began with member nations—the U.S.A., U.S.S.R., the Federal Republic of Germany, Japan, the United Kingdom, and France—all providing funds and scientific guidance for the project. Today, ODP partners include the U.S.A., Canada, France, the Federal Republic of Germany, Japan, the United Kingdom, and the European Science Foundation, which represents Sweden, Finland, Norway, Iceland, Denmark, Belgium, the Netherlands, Spain, Switzerland, Italy, Greece, and Turkey. The National Science Foundation, with funds contributed by the United States and international partners, supports the scientific operations and planning for the ODP through a contract with Joint Oceanographic Institutions, Inc. (JOI).

The information gained by the program leads to a better understanding of the Earth and its dynamic processes. Drilled sediment cores and logs reveal clues to past climatic history and tie into parallel studies of paleoclimates from glacial ice cores drilled on the continents. Understanding these sediment cores will enable scientists to complete the map of major geologically active regions of the Earth, and to identify processes that lead to dynamic change such as earthquakes, volcanic eruptions, and mountain and continental growth. We are far from being able to predict such changes accurately now; but with the new tools and understanding, the accuracy of such predictions can be improved. This better understanding of the Earth's system(s) will allow us to identify regions of potential mineral and energy resource development, an issue of worldwide human interest. The Ocean Drilling Program is not in itself aimed at finding resources, but the knowledge of the Earth's processes that is gained through such a basic research program will inevitably provide pieces of information required for such resource discovery and exploitation.

With the publication of these first two Initial Reports (Part A) volumes of the Ocean Drilling Program Proceedings, the program can be said to be fully under way in its aim to further the understanding of the Earth's dynamic systems. People of our planet will benefit directly and indirectly from this research in both their daily living and work activities. This multinational endeavor will perhaps foster other cooperative efforts in science or among societies. The Ocean Drilling Program has distinguished ancestors in the original Resolution and Challenger expeditions and the Deep Sea Drilling Project. The National Science Foundation is proud to be playing a leading role in this program, and we are looking forward to significant and innovative science for many years to come.

Erich Bloch
Director
National Science Foundation
Washington, D.C.
Foreword

By Joint Oceanographic Institutions Inc.

These volumes present the first set of results from the Ocean Drilling Program (ODP), where scientists use a specially equipped ocean drilling ship to sample and measure the properties of the submerged part of the Earth's crust. These data are then synthesized with other information to yield new insights into earth processes.

These results address the scientific goals of the program, which include providing a global description of geological and geophysical structures and materials, studying in detail areas of major geophysical activity such as mid-ocean ridges and the associated hydrothermal circulations, and studying passive and active continental margins. In addition, the ODP data support the study of sea-level and ocean-circulation changes, the effects of the Earth's orbital variations on climate, and the study of processes and mechanisms of evolution from the biological records in the cores which are recovered from drilling.

The Ocean Drilling Program is a partnership of scientists and governments. Overall scientific policy and management guidance is provided by Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES), which consists of committees and panels made up of representatives of the participating institutions and other scientific and engineering experts. The JOIDES Executive Committee (EXCOM) provides general oversight; the JOIDES Planning Committee (PCOM) is the focal point for all scientific planning for the ODP and is key to the scientific success of the program.

The PCOM has a network of panels and working groups which screen drilling proposals, evaluate instrumentation and measurement techniques, and assess geophysical survey data and other safety and siting information. PCOM uses the recommendations of these panels and committees to select drilling targets, to specify the major scientific objectives of each two-month drilling segment or leg, and to provide the science operator with nominations for co-chief scientists. The science operator, Texas A&M University, in turn is responsible for planning the detailed ship's operations, actual drilling schedules, and final scientific rosters, which are developed in close cooperation with PCOM and the cognizant panels.

Many of the scientific goals can be met only with new technology. Thus the program has identified engineering goals, which include the ability to start a hole and to core on bare rock at mid-ocean ridge sites, to drill in high-temperature and corrosive regions typical of hydrothermal areas, and to core in high latitudes with minimum interference from high seas and sea ice. To meet these needs, the program operates a specially equipped drillship, the JOIDES Resolution, which contains laboratories and equipment that are state-of-the-art, and carries a major new logging program.

The ship, registered as SEDCO/BP 471 after her owners and her length in feet (144 meters), is 70 feet (21 meters) wide, and has a displacement of 16,595 long tons. Her derrick towers 200 feet (61 meters) above the waterline, and a computer-controlled dynamic-positioning system stabilizes the ship over a specific location while drilling in water depths up to 27,000 feet (8230 meters). The drilling system collects cores from beneath the seafloor with a derrick and drawworks that can handle 30,000 feet (9144 meters) of drill pipe. More than 12,000 square feet (1115 square meters) of space distributed throughout the ship is devoted to scientific laboratories and equipment. The ship sails with a scientific and technical crew of 50 and a ship's crew of 65.

Logging is a major part of the overall operation. The program provides a full suite of geochemical and geophysical measurements for every hole deeper than 1300 feet (400 meters). For each such hole, there are lowerings of basic oil-industry tools: nuclear, sonic, and electrical. In addition, a borehole televiewer is available for imaging the well-bore wall, a 12-channel logging tool provides accurate velocity and elastic property measurements as well as sonic waveforms for spectral analysis of energy propagation near the well bore, and a vertical seismic profiler records reflectors from below the total depth of the hole.

Texas A&M University serves as science operator for the Ocean Drilling Program. In this capacity, they operate and staff the drillship to collect cores from JOIDES-designated sites from around the world. The science operator also ensures that adequate scientific analyses are performed on the cores by maintaining the shipboard scientific laboratories and by providing logistical and technical support for shipboard scientific teams. Onshore, Texas A&M manages scientific activities after each leg, is curator for the cores, distributes samples, and coordinates the editing and publication of the scientific results. Lamont-Doherty Geological Observatory (LDGO) of Columbia University manages the program's logging operations, which include processing the data and provision of assistance to scientists in data analysis. The ODP Data Bank, a repository for geophysical data, is also managed by LDGO. Core samples from ODP and the previous Deep Sea Drilling Project are stored for future investigation at three sites: ODP Pacific and Indian Ocean cores at Texas A&M University, ODP and DSDP Atlantic and Antarctic cores at Lamont-Doherty Geological Observatory; and DSDP Pacific and Indian Ocean cores at Scripps Institution of Oceanography.

International oversight and coordination are provided by the ODP Council, a governmental consultative body of partner country representatives, chaired by the United States, which periodically reviews the general progress of the program and discusses financial plans and other management issues. Joint
Oceanographic Institutions, Inc., a nonprofit consortium of U.S. oceanographic institutions, serves as the National Science Foundation's prime contractor and manages the ODP. JOI is responsible for seeing that the scientific objectives and plans are translated into scientific operations consistent with JOIDES recommendations and budgetary constraints.

Under the guidance of Texas A&M University, the conversion of the JOIDES Resolution to a scientific drilling ship was completed on schedule, and the new ship sailed on her maiden voyage in January 1985. The ODP is now well under way. As of this writing, the ship has already completed a sweep of the North Atlantic Ocean and the Mediterranean Sea, and is beginning work in the East-Central Pacific off the coast of Peru. Scientific achievements already include new data on early seafloor spreading and how continents separate and their margins evolve. We have new insight into glacial cycles and the fluctuations of currents throughout geological time. Technical achievements include the first bare-rock coring, and logging data more accurate and complete than ever before.

With the publication of these first two Initial Reports (Part A) volumes of the ODP Proceedings, congratulations are due the international community of scientists and engineers and to the science and engineering operations team who have made the successful beginning of the program possible.

D. James Baker
President
Joint Oceanographic Institutions, Inc.
Washington, D.C.
MEMBER ORGANIZATIONS OF THE JOINT OCEANOGRAPHIC INSTITUTIONS FOR DEEP EARTH SAMPLING (JOIDES):¹

University of California at San Diego, Scripps Institution of Oceanography
Columbia University, Lamont-Doherty Geological Observatory
University of Hawaii, Hawaii Institute of Geophysics
University of Miami, Rosenstiel School of Marine and Atmospheric Science
Oregon State University, College of Oceanography
University of Rhode Island, Graduate School of Oceanography
Texas A&M University, Department of Oceanography
University of Texas at Austin, Institute for Geophysics
University of Washington, College of Ocean and Fishery Sciences
Woods Hole Oceanographic Institution
Canada, Department of Energy, Mines and Resources
European Science Foundation Consortium for Ocean Drilling (ECOD), Belgium, Denmark, Finland, Iceland, Italy, Greece, the Netherlands, Norway, Spain, Sweden, Switzerland and Turkey
Federal Republic of Germany, Bundesanstalt fur Geowissenschaften und Rohstoffe
France, Institut Francais de Recherche pour l'Exploitation de la Mer
Japan, University of Tokyo, Ocean Research Institute
United Kingdom, Natural Environment Research Council

¹ Includes member organizations during time of cruise.

OPERATING INSTITUTION
College of Geosciences
Texas A&M University
College Station, Texas
William J. Merrell, Principal Investigator

OCEAN DRILLING PROGRAM
Philip D. Rabinowitz
Director
Louis E. Garrison
Deputy Director
Sylvia DeVoge Herrig
Administrator
Robert R. Kidd, Manager
Science Operations
Archie R. McLerran, Manager
Engineering and Drilling Operations
Russell B. Merrill, Manager
Science Services
Robert E. Olivas, Manager
Technical and Logistics Support

LOGGING OPERATOR
Borehole Research Group
Lamont-Doherty Geological Observatory
Columbia University
Palisades, New York
Roger Anderson, Head
PARTICIPANTS ABOARD JOIDES RESOLUTION FOR LEG 101

James A. Austin, Jr.
Co-Chief Scientist
Institute for Geophysics
University of Texas at Austin
Austin, Texas 78751

Wolfgang Schlager
Co-Chief Scientist
Rosenstiel School of Marine and Atmospheric Sciences
University of Miami
Miami, Florida 33149

Amanda A. Palmer
Sedimentologist/ODP Staff Scientist
Ocean Drilling Program
Texas A&M University
College Station, Texas 77843

Paul A. Comet
Organic Geochemist
Core Labs Singapore
24A - Lim Teck Boo Rd.
Singapore 1953

André Droxtler
Sedimentologist
Rosenstiel School of Marine and Atmospheric Sciences
University of Miami
Miami, Florida 33149

Gregor Eberli
Physical Properties Specialist
Geologisches Institut
ETH-Zentrum
Xonneggstr. 5
8004 Zürich
Switzerland

Eric Fourcade
Paleontologist (foraminifers)
Laboratoire de Stratigraphie
Université Pierre et Marie Curie
4 Place Jussieu 75230
France

Raymond Freeman-Lynde
Sedimentologist
Department of Geology
University of Georgia
Athens, Georgia 30602

Craig S. Fulthorpe
Sedimentologist
Department of Geological Sciences
Northwestern University
Evanston, Illinois 60201

Gill Harwood
Sedimentologist
Department of Geology
The University
Newcastle-Upon-Tyne NE1 7RU
United Kingdom

Gerhard Kuhn
Sedimentologist
Alfred Wegener Institut für Polarforschung
Columbus Center
D-2830 Bremerhaven
Federal Republic of Germany

Dawn Lavoie
Physical Properties Specialist
NORDA Code 363
Seafloor Geosciences Division
NSTL, Mississippi 39529

R. Mark Leckie
Paleontologist (foraminifers)
Department of Geology and Geophysics
Woods Hole Oceanographic Institution
Woods Hole, Massachusetts 02543

Allan J. Melillo
Paleontologist (foraminifers)
Department of Geological Sciences
Rutgers University
New Brunswick, New Jersey 08903

Arthur Moore
Geochemist
Marathon Oil Company
P.O. Box 269
Littleton, Colorado 80160

Henry T. Mullins
Sedimentologist
Department of Geology
Heroy Geology Laboratory
Syracuse University
Syracuse, New York 13210

Christian Ravenne
Physical Properties Specialist
Institut Français du Pétrole
Boite Postale 311
92506 Rueil Malmaison Cedex
France

William W. Sager
Paleomagnetist
Department of Oceanography
Texas A&M University
College Station, Texas 77843

Peter Swart
Inorganic Geochemist
University of Miami
Fisher Island Station
Miami, Florida 33149

Joost W. Verbeek
Paleontologist (nannofossils)
Dutch Geological Survey
P.O. Box 157
2000 A.D. Haarlem
Netherlands
David K. Watkins
Paleontologist (nannofossils)
Department of Geology
University of Nebraska
433 Morrill Hall
Lincoln, Nebraska 68588

Colin Williams
Downhole Instrument Specialist
Borehole Research Group
Lamont-Doherty Geological Observatory
Palisades, NY 10964

Captain Gerard Kuster
Master of the Drilling Vessel
Undersea Drilling
707 Texas Avenue South
Suite 103 D
College Station, Texas 77840-1917

Rod McQuaig
Drilling Superintendent
Undersea Drilling
707 Texas Avenue South
Suite 103 D
College Station, Texas 77840-1917

ODP ENGINEERING AND OPERATIONS PERSONNEL
Barry W. Harding
Supervisor of Drilling Operations
Lamar P. Hayes
Operations Superintendent
David P. Huey
Special Tools Engineer

ODP TECHNICAL AND LOGISTICS PERSONNEL
Wendy Autio
Yeoperson
Larry Bernstein
Marine Technician
Daniel Bontempo
System Manager
Randy Current
Electronics Technician
Roy Davis
Photographer
Mark Dobday
Marine Technician
Tamara Frank
Chemistry Technician
Henrike Groschel
Marine Technician
Ted (“Gus”) Gustafson
Laboratory Officer
Dennis Graham
Laboratory Officer
Robert Hayman
Curatorial Representative
Harry (“Skip”) Hutton
Marine Technician
Jessy Jones
Marine Technician
Bradley Julson
Chemistry Technician
William Meyer
System Manager
Dwight Mossman
Electronics Technician
Mark (“Trapper”) Neschleba
Marine Technician
John Weisbruch
Marine Technician

Ocean Drilling Program Publications Staff

Publications Supervisor
William D. Rose

Editors
R. Marie Littleton
William R. Winkler

Chief Production Editor
Raymond F. Silk

Production Editor
Mei-Chun Lee

Senior Photographer
John W. Beck

Photographer
Roy Davis

Manuscript Coordinator
Elsa Kapitan Mazzullo

Hole Summary Coordinator
Patricia M. Wunneburger

Publications Distribution Specialist
Fabiola M. Byrne

Chief Illustrator
Karen O. Benson

Illustrators
Garnet D. Gaither
Aida A. Prazak
Pamela Vesterby
Christine L. Yokley

Compositor
Rhoda Segur
TABLE OF CONTENTS

VOLUME 101 — PART A

ACKNOWLEDGMENTS

1

SECTION 1: INTRODUCTION

1. INTRODUCTION AND EXPLANATORY NOTES .. 5
 A. A. Palmer, J. A. Austin, Jr., and W. Schlager

2. UNDERWAY GEOPHYSICS ON LEG 101 .. 25
 C. A. Auroux and Shipboard Scientific Party

3. MAGNETIC FIELD MEASUREMENTS ABOARD THE JOIDES RESOLUTION AND IMPLICATIONS FOR SHIPBOARD PALEOMAGNETIC STUDIES .. 33
 W. W. Sager and H. H. Hutton

4. MAGNETIC-SUSCEPTIBILITY MEASUREMENTS OF METAL CONTAMINANTS IN ODP LEG 101 CORES .. 39
 W. W. Sager

SECTION 2: SITE REPORTS

5. SITE 626: STRAITS OF FLORIDA .. 49
 Shipboard Scientific Party

6. SITE 627: SOUTHERN BLAKE PLATEAU .. 111
 Shipboard Scientific Party

7. SITE 628: LITTLE BAHAMA BANK .. 213
 Shipboard Scientific Party

8. SITES 629 AND 630: LITTLE BAHAMA BANK 271
 Shipboard Scientific Party

9. SITE 631: EXUMA SOUND .. 341
 Shipboard Scientific Party

10. SITE 632: EXUMA SOUND .. 387
 Shipboard Scientific Party

11. SITE 633: EXUMA SOUND .. 439
 Shipboard Scientific Party

12. SITE 634: NORTHWEST PROVIDENCE CHANNEL 483
 Shipboard Scientific Party

13. SITES 635 AND 636: NORTHEAST PROVIDENCE CHANNEL 525
 Shipboard Scientific Party

SECTION 3: INDEX

INDEX ... 559

JOIDES ADVISORY GROUPS ... 563

SAMPLE-DISTRIBUTION POLICY ... 567
ACKNOWLEDGMENTS

The Scientific Party of Leg 101, the inaugural international expedition of the Ocean Drilling Program (ODP), expresses its profound appreciation to Captain Gerard Custer and the crew of the JOIDES Resolution (SEDCO/BP 471) for their diligence and skill in helping us to achieve so many of our scientific objectives. Special thanks go to “Doc” Knotts for making all of those ham radio telephone patches that kept us in touch with families and friends back on terra firma. We also thank the ODP seagoing technical staff for their competence, enthusiasm, and good humor as we all literally and figuratively broke new ground.

We extend our gratitude to the ODP Publications staff at Texas A&M University, in particular to Fabiola Byrne and Elsa Mazzullo, who coordinated our post-cruise meeting with the utmost efficiency, and to Publications Supervisor Bill Rose, Production Editor Ray Silk, and Editor Marie Littleton, whose expertise helped transform our rough-hewn shipboard Hole Summaries into the polished Site Chapters in this volume. Many thanks go also to the art section, which, under the leadership of Karen Benson, produced the (seemingly) endless barrel sheets and turned our original scratchwork into high-quality scientific art; Karen, Henrike Groschel, Bryan Lawrence, Aida Prazak, Judy Schoppe, Rhoda Segur, Nita Simpson, Pamela Vesterby, and Christine Yokley all are commended for their efforts.

We formally acknowledge and thank the government of the Commonwealth of the Bahamas for granting us permission both to conduct geophysical site surveys and to carry out subsequent drilling operations in their territorial waters. Tom Cocke and Bill Erb at the U.S. Department of State were indefatigable in their efforts to secure that permission for us.

Our appreciation goes to the captain and crew of the University of Texas Institute for Geophysics vessel Fred H. Moore for their help in making the seismic surveys of potential drilling sites in the Bahamas a success. We also thank our scientific partners in that site-survey effort: John Ladd of Lamont-Doherty Geological Observatory, Robert Sheridan of the University of Delaware, and John Ewing and Mike Purdy of Woods Hole Oceanographic Institution.

Finally, we thank the JOIDES Planning Committee and associated advisory panels for their support of Leg 101, and the people and governments of the JOIDES member nations for their financial support of and scientific contributions to the Ocean Drilling Program.