8. SITES 629 AND 630: LITTLE BAHAMA BANK¹

Shipboard Scientific Party²

HOLE 629A

Date occupied: 19 February 1985, 2030 EST

Date departed: 20 February 1985, 0600 EST

Time on hole: 9.5 hr

Position: 27°24.39'N, 78°22.10'W

Water depth (sea level; corrected m, echo-sounding): 553

Water depth (rig floor; corrected m, echo-sounding): 563

Bottom felt (m, drill pipe): 563

Total depth (m): 579.5

Penetration (m): 16.5

Number of cores: 3

Total length of cored section (m): 16.5

Total core recovered (m): 6.2

Core recovery (%): 37.6

Oldest sediment cored:

Depth sub-bottom (m): 16.5 Nature: sandy carbonate ooze, lime sand, and rubble Age: late Pleistocene (NN21) Measured velocity (km/s): approximately 1.5

¹ Austin, J. A., Jr., Schlager, W., Palmer, A. A., et al., 1986. Proc., Init. Repts. (Pt. A), ODP, 101.

² James A. Austin Jr. (Co-Chief Scientist), Institute for Geophysics, University of Texas at Austin, Austin, TX 78751; Wolfgang Schlager (Co-Chief Scientist), Rosenstiel School of Marine and Atmospheric Sciences, Miami, FL 33149 (current address: Vrije Universiteit, Instituut v. Aardwetenschappen, Postbus 7161, 1007 MC Amsterdam, Netherlands); Amanda A. Palmer, Staff Scientist, Ocean Drilling Program, Texas A&M University, College Station, TX 77843; Paul A. Comet, The University, Newcastle-Upon-Tyne, Newcastle, United Kingdom (current address: Core Labs Singapore, 24A-Lim Teck Boo Rd., Singapore 1953); André Droxler, Rosenstiel School of Marine and Atmospheric Sciences, Miami, FL 33149 (current address: Department of Geology, University of South Carolina, Columbia, SC 29208); Gregor Eberli, Geologisches Institut, ETH-Zentrum, Zürich, Switzerland (current address: Fisher Island Station, University of Miami, Miami, FL 33139); Eric Fourcade, Laboratoire de Stratigraphie, Université Pierre et Marie Curie, 4 Place Jussieu 75230, Paris Cedex 05, France; Raymond Freeman-Lynde, Department of Geology, University of Georgia, Athens, GA 30602; Craig S. Fulthorpe, Department of Geological Sciences, Northwestern University, Evanston, IL 60201; Gill Harwood, Department of Geology, The University, Newcastle-Upon-Tyne, NE1 7RU United Kingdom; Gerhard Kuhn, Geologisches Institut Göttingen, Federal Republic of Germany (current address: Alfred Wegener Institut für Polarforschung, Columbus Center, D-2850 Bremerhaven, West Germany); Dawn Lavoie, NORDA Code 363, Seafloor Geosciences Division, NSTL, MS 39529; Mark Leckie, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (current address: Department of Geology and Geography, University of Massachusetts, Amherst, MA 01003); Allan J. Melillo, Department of Geological Sciences, Rutgers University, New Brunswick, NJ 08903 (current address: Chevron U.S.A., New Orleans, LA 70114); Arthur Moore, Marathon Oil Company, P.O. Box 269, Littleton, CO 80160; Henry T. Mullins, Department of Geology, Syracuse University, Syracuse, NY 13210; Christian Ravenne, Institut Français du Pétrole, B.P. 311, 92506 Rueil Malmaison Cedex, France; William W. Sager, Department of Oceanography, Texas A&M University, College Station, TX 77843; Peter Swart, Fisher Island Station, University of Miami, Miami, FL 33139 (current address: Marine Geology and Geophysics, Rosenstiel School of Marine and Atmospheric Sciences, Miami, FL 33149); Joost W. Verbeek, Dutch Geological Survey, P.O. Box 157, 2000 A.D. Haarlem, Netherlands; David K. Watkins, Department of Geology, University of Nebraska, Lincoln, NE 68588; Colin Williams, Borehole Research Group, Lamont-Doherty Geological Observatory, Palisades, NY 10964.

HOLE 630A

Date occupied: 20 February 1985, 1020 EST

Date departed: 21 February 1985, 1020 EST

Time on hole: 1 day

Position: 27°26.94' N, 78°20.43' W

Water depth (sea level; corrected m, echo-sounding): 807

Water depth (rig floor; corrected m, echo-sounding): 817

Bottom felt (m, drill pipe): 815

Total depth (m): 1065.3

Penetration (m): 250.3

Number of cores: 26

Total length of cored section (m): 250.3

Total core recovered (m): 220.3

Core recovery (%): 88

Oldest sediment cored:

Depth sub-bottom (m): 250.3 Nature: periplatform ooze and chalk with turbidites

Age: late Miocene (N16/17)

Measured velocity (km/s): 1.75, multichannel seismic-reflection profile LBB-18; 1.7, Hamilton Frame on individual samples; 1.8, split cores in liner

HOLE 630B

Date occupied: 21 February 1985, 1020 EST

Date departed: 21 February 1985, 1900 EST

Time on hole: 8.67 hr

Position: 27°26.94' N, 78°20.43' W

Water depth (sea level; corrected m, echo-sounding): 807

Water depth (rig floor; corrected m, echo-sounding): 817

Bottom felt (m, drill pipe): 815

Total depth (m): 895.4

Penetration (m): 80.4

Number of cores: 9

Total length of cored section (m): 80.4

Total core recovered (m): 79.6

Core recovery (%): 99

Oldest sediment cored:

Depth sub-bottom (m): 80.4

Nature: periplatform carbonate ooze

Age: latest Miocene-early Pliocene, NN12/13, N18/19 (extrapolated from Hole 630A)

Measured velocity (km/s): 1.75, multichannel seismic-reflection profile LBB-18; 1.7, Hamilton Frame on individual samples and on split cores in liner

HOLE 630C

Date occupied: 21 February 1985, 1900 EST

Date departed: 21 February 1985, 2300 EST

Time on hole: 4 hr

Position: 27°26.94' N, 78°20.43' W

Water depth (sea level; corrected m, echo-sounding): 807

Water depth (rig floor; corrected m, echo-sounding): 817

Bottom felt (m, drill pipe): 815

Total depth (m): 824.3

Penetration (m): 9.3

Number of cores: 1

Total length of cored section (m): 9.3

Total core recovered (m): 9.3

Core recovery (%): 100

Oldest sediment cored:

Depth sub-bottom (m): 9.3

Nature: periplatform ooze with bank-derived aragonite Age: Pleistocene

- Measured velocity (km/s): 1.65, multichannel seismic-reflection profile; 1.7, Hamilton Frame on individual samples and on split cores in liner
- Principal results: Site 629 on the upper part of the northern slope of Little Bahama Bank was occupied from 19 to 20 February 1985. Hole 629A, drilled at 27°24.39'N, 78°22.10'W, in 553 m water depth, represents an attempt to spud in at a modified BAH-7A. Approximately 16.5 m of sediment was penetrated with the hydraulic-pistoncore/extended-core-barrel (HPC/XCB) technique before hard layers halted further drilling. The material recovered consists of sandy carbonate ooze, lime sand and rubble, and fragments of friable limestone, all of late Quaternary age.

Site 630 was occupied on 20 and 21 February 1985. Three holes were drilled, all of which are located at 27°26.94'N, 78°20.43'W, in 807 m water depth. Hole 630A penetrated 250 m of sediment with HPC/XCB techniques, recovery being 88%. Hole 630B duplicated the top 80.4 m, using the HPC system; recovery was 99%. Hole 630C took a third core of the mud line (9.3 m, 100% recovery).

Site 630 represents the upper end of the slope transect off Little Bahama Bank. It is at the crest of an interfluve where mud accumulates, yet sand and rubble from the platform bypass this zone in turbidity currents that are confined to adjacent gullies.

The stratigraphic section at Site 630 consists of the following: (1) 0-146 m sub-bottom; periplatform carbonate ooze (with abundant bank-derived aragonite), late Miocene to Holocene; and (2) 146–250 m sub-bottom; periplatform ooze and chalk with turbidites, late Miocene.

The record suggests that bypassing of sandy turbidity currents persisted for the last 6 m.y., and ooze accumulated at a rate of 27-62 m/m.y. Before 6 Ma, the site formed part of the turbidite apron at the foot of the gullied slope. Site 630 provides an excellent record of the export of fine sediment by the carbonate platform during the last 10 m.y.

To facilitate high-resolution stratigraphy at this location, drilling at Hole 630B duplicated the Pliocene-Pleistocene section to just below the site of the 3.5-Ma event, the presumed onset of Northern Hemisphere glaciation.

OPERATIONS SUMMARY

The JOIDES Resolution left Site 628 for BAH-7-A, approximately 8 n. mi away, at 1630 hr, 19 February 1985 (Fig. 1, Site 627 chapter, this volume). The ship followed a course of 204° along the trend of site-survey line LBB-18. The speed was less than 4 kt, as the ship's dynamic-positioning thrusters were extended. En route, the decision was made to drill in deeper water than the intersection of LBB-1 and LBB-18, so Site 629 was situated on LBB-03 between LBB-10 and LBB-18 (Fig. 1).

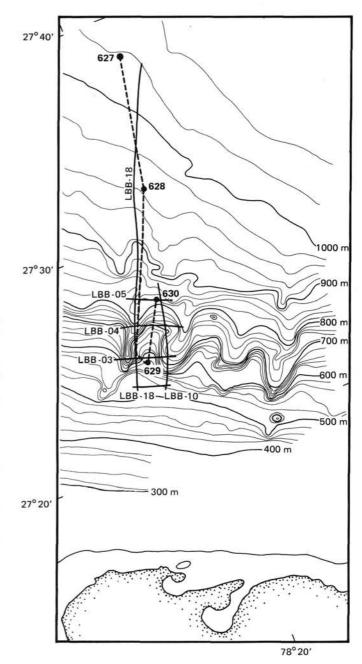


Figure 1. Leg 101 ship track (dashed line), upper slope, northern Little Bahama Bank.

At the crossing of LBB-18 and LBB-03, the ship changed course along LBB-03 until the 3.5/12-kHz systems indicated that the ship was at the crest of an interfluve between gullies, suggested by the compiled bathymetry (Van Buren and Mullins, 1983, modified by the site-survey results; Fig. 1). At 2030 hr, a beacon was lowered on a taut wire, and dynamic positioning began. SATNAV readings, however, suggested that the ship was approximately 150 m west-southwest of the top of the interfluve, so the taut wire was retrieved, an additional positioning maneuver was performed, and the taut wire and beacon redeployed. Site 629 occupies a position of 27°24.335-437'N, 78°22.059-131'W (Fig. 1). Water depth at this location was 545 m (uncorr.), 553 m (corr.).

A first attempt at a mud-line HPC core was unsuccessful at 2300 hr because of a crushed liner and an incomplete piston

stroke, but a second attempt was successful just after 2400 hr, 19 February. The second HPC core also delivered an incomplete stroke, suggesting the presence of coarse-grained bottom sediments, so we decided to switch immediately to XCB techniques in an attempt to spud in. However, the XCB recovered only fragments of friable limestone along with lime sand and rubble, convincing everyone that further operations at this location were impossible.

Permission was received to move several nautical miles downslope along the same topographic high to the intersection of lines LBB-05 and LBB-10 (Fig. 1). The *Resolution* left Site 629 for Site 630 at 0600 hr, 20 February, at approximately 1 kt with thrusters extended, leaving 350 m of drill pipe in the water. The taut wire and beacon were pulled only 20 m above the mud line. Radar bearings from islands on Little Bahama Bank were used along with LORAN C to keep the ship on course during this short transit. The taut wire was lowered again at 0800 hr, but a move approximately 0.3 n. mi to the northeast was necessary 1.5 hr later. Dynamic positioning began at Site 630 at 1020 hr, 20 February. The final Site 630 position was as follows: 27°26.902-977'N, 78°20.382-486'W. Water depth was 797 m (uncorr.) and 807 m (corr.).

The mud-line HPC for Hole 630A was recovered at 1320 hr on 20 February. Over the next 11 hr, 18 HPC cores were recovered to a sub-bottom depth of 172.1 m, recovery being 98.9%. These HPC cores were followed by eight XCB cores to a total sub-bottom depth of 250.3 m. Recovery with the XCB was 64.1%, for a total recovery of 88% in Hole 630A. The decision had been made to double-HPC the upper part of the section at this site, and a mud-line core for Hole 630B was successful at 1150 hr, 21 February. Nine HPC cores were recovered in Hole 630B to a sub-bottom depth of 80.4 m, recovery being 99%, when operations ended. A third mud-line HPC, necessary at this site (Hole 630C) for inorganic-geochemistry sampling of the surface interstitial waters, was recovered successfully at 1942 hr, recovery being 100%. The JOIDES Resolution left Site 630 for BAH-11-A in southeastern Exuma Sound at 2300 hr, 21 Februarv.

The coring summary for Sites 629 and 630 appears in Table 1.

SEDIMENTOLOGY

Introduction

Three holes were drilled at Site 630. Hole 630A penetrated 250.3 m below sea floor (bsf) and recovered 220 m of core (88%). Hole 630B penetrated 80.4 mbsf, recovery being 79.6 m (98%). Hole 630C penetrated 9.3 m sub-bottom and recovered 9.3 m (100%).

Hole 630A consists predominantly of soft and stiff calcareous ooze and minor amounts of chalk and, rarely, limestone. Most smear slides of the ooze contain needles, which are confirmed by x-ray-diffraction (XRD) analysis ("Inorganic Geochemistry" section, this chapter) to be aragonite. This sediment is more properly classified as periplatform ooze. The calcite fraction consists of foraminifers and nannofossils in varying proportions. Layers of unlithified to partly lithified packstone are rarely observed in the upper half of the sequence, whereas in the lower part they are more common. The ooze is white, showing a few subtle color variations (10YR 8/1, 5Y 8/1, 5Y 8/2). Bioturbation appears as mottling of grayish, greenish, or light brownish colors, and pyritic areas as relatively darker areas of light gray (10YR 8/2). The packstone layers typically have a more yellowish (2.5Y 8/2) or gravish (10YR 7/1) tone than does the white ooze background. Because of the homogeneous aspect of the sedimentary sequence, Hole 630A is subdivided into only two units. Unit I comprises the upper 146 m and consists of a pure calcareous ooze almost devoid of packstone layers; Unit II consists of the lower 105 m, where packstone layers alternating with calcareous ooze are numerous (see Fig. 2).

Unit I (0-146 m sub-bottom, Cores 630A-1H through 630A-16H-3)

Unit I consists of at least 90% calcareous ooze at different stages of induration. On average, the top of Unit I (0-75 m subbottom) varies between soft and stiff ooze, whereas the bottom (75-146 m sub-bottom) is almost entirely soft ooze. Packstone layers are rare throughout Unit I, although they occur more commonly at the extreme top (Core 630A-1H) and between 68 and 85 m sub-bottom (Cores 630A-8H and 630A-9H). The layers, typically a few cm to 10 cm thick, can be as thick as 50 cm in a few places. Maximum grain size at the base of layers is medium sand, consisting mainly of planktonic foraminifers. The thickest layers commonly display graded bedding. Accordingly, these packstone layers are interpreted as being turbidites.

Although the calcareous ooze is visually homogeneous throughout Unit I, smear slide estimates (generally three per core) of foraminifers, nannofossils, micrite, and aragonite needles exhibit trends that we used to divide Unit I into three sub-units: a lower subunit, IC (90-146 m sub-bottom), a middle sub-unit, IB (28-90 m sub-bottom), and an upper subunit, IA (0-28 m sub-bottom) (see Fig. 2 and Table 2). Micrite in smear slide estimates includes both fine carbonate grains (a few to 25 μ m) of uncertain origin and fine aragonite needles.

Subunit IC is enriched in foraminifers (30%) and has an intermediate nannofossil content (40%) and a micrite content (15%) with rare aragonite needles. Subunit IB shows a low foraminiferal content (10%), a high nannofossil content (50%), and an intermediate micrite content (25%) with common aragonite needles. Subunit IA displays a low content of both foraminifers (7.5%) and nannofossils (15%), whereas the micrite content is at its maximum (45%) with abundant aragonite needles. The foraminifer content clearly decreases upward, whereas micrite clearly increases upward, as does the proportion of aragonite needles. The nannofossil content shows a minimum in Subunit IA, a maximum in Subunit IB, and an intermediate value in Subunit IC. The upward trend of increasing micrite and aragonite indicates a gradual increase through time of the input and preservation of bank-derived particles. This interpretation is strengthened by the carbonate mineralogy of Unit I. The lower part of Unit I shows no aragonite, the middle part some aragonite (20%-25%), and the upper part the most aragonite (40%-45%) (see Fig. 3 and "Inorganic Geochemistry" section). The step boundaries of the aragonite content match those of the sedimentary sequence defined by smear slide estimates.

Several clay-rich layers are observed in Subunit IA, at 2.5 m sub-bottom and between 17 and 21 m sub-bottom (see Fig. 4). These layers correlate well in Holes 630A, 630B, and 630C. Similar layers have been observed at similar depths in Hole 628A and Holes 627A and 627B.

Unit II (146-250 m sub-bottom; Cores 630A-16H-4 through 630A-26X)

Unit II consists of chalk and ooze (60%) interbedded with unlithified to partly lithified packstone layers (40%). Packstone layers are thicker at the base (as thick as 100–120 cm) than at the top (a few cm to 20 cm) of Unit II, where they are more numerous (e.g., 37 layers in Core 630A-17H and 50 layers in Core 630A-18H). Grain size at the base of the layers ranges from fine to very coarse sand. Fine to medium sands are primarily foraminifers, and coarse sands are aggregates. Only one grainstone layer is reported (top of Core 630A-22X). Sharp bases and graded bedding are common features in these packstone layers, which therefore are interpreted as being turbidites.

Core no.			Length cored (m)	Length recovered (m)	Percentage recovered		
Hole 629A							
1	н	20	0001	0-6.9	6.9	2.91	42
2	H	20	0053	6.9-16.5	9.6	1.66	17
3	x	20	0230	6.9-16.5	9.6	1.64	17
Hole 630A							
1	н	20	1320	0-8.6	8.6	8.66	100
2	H	20	1415	8.6-18.2	9.6	10.11	105
3	H	20	1500	18.2-27.8	9.6	9.69	100
4	H	20	1545	27.8-37.4	9.6	9.33	97
5	H	20	1615	37.4-47.0	9.6	9.50	98
6	H	20	1700	47.0-56.9	9.9	9.38	94
7	H	20	1730	56.9-66.3	9.4	9.43	100
8	H	20	1805	66.3-75.9	9.6	9.49	98
9	Ĥ	20	1845	75.9-85.7	9.8	9.45	96
10	H	20	1915	85.7-95.1	9.4	9.55	101
11	H	20	1945	95.1-104.7	9.6	9.82	102
12	Ĥ	20	2015	104.7-114.3	9.6	9.66	100
13	Ĥ	20	2030	114.3-123.9	9.6	9.66	100
14	Ĥ	20	2100	123.9-133.5	9.6	9.80	102
15	Ĥ	20	2130	133.5-143.1	9.6	9.70	101
16	н	20	2200	143.1-152.8	9.7	9.38	96
17	H	20	2315	152.8-162.4	9.6	8.69	90
18	н	20	0030	162.4-172.1	9.7	8.77	90
19	x	21	0212	171.9-183.6	11.7	9.66	82
20	x	21	0305	183.6-193.2	9.6	8.60	89
20	x	21	0303	193.2-202.9	9.0	9.39	96
21	x	21		202.9-212.5		1.22	12
22			0430		9.6		63
	X	21	0510	212.5-221.9	9.4	5.93	
24	X	21	0615	221.9-231.3	9.4	5.32	56
25 26	x	21 21	0715 0850	231.3-240.9 240.9-250.3	9.6 9.4	0.57 9.42	5 100
Hole 630B							
1	н	21	1150	0-3.8	3.8	3.77	99
2	H	21	1345	3.8-13.4	9.6	9.54	99
3	H	21	1430	13.4-22.8	9.4	9.51	101
4	H	21	1515	22.8-32.5	9.7	9.66	99
5	H	21	1600	32.5-41.9	9.4	9.55	101
6	H	21	1630	41.9-51.5	9.6	9.05	94
7	Ĥ	21	1700	51.5-61.2	9.7	9.31	95
8	Ĥ	21	1745	61.7-70.8	9.1	9.11	100
9	н	21	1815	70.8-80.4	9.6	10.04	104
Hole 630C							
1	н	21	1942	0-9.3	9.3	9.31	100

Table 1. Coring summary, Sites 629 and 630.

^a H = hydraulic piston; X = extended core barrel.

Forty percent of the interlayered sediment is a soft or stiff ooze; the other 60% consists of chalk. According to smear slide estimates, this material has a low foraminiferal content (15%), a relatively high micrite content (35%), and fairly abundant aragonite needles when compared with Subunit IC (see Fig. 2). The carbonate mineralogy shows 10%-15% aragonite in Unit II, which fits well (perhaps coincidentally) with the relatively high content of micrite and aragonite needles.

Discussion

Unit I ranges in age from late Miocene to Holocene ("Biostratigraphy" section, this chapter). The upper part of Unit I (Subunit IA) roughly corresponds to early to late Pleistocene and late Pliocene, Subunit IB to early Pliocene, and Subunit IC to very late Miocene and earliest Pliocene. Unit II was deposited only during the late Miocene and is coeval with Subunit IB in Hole 628A. Study of Unit I suggests that bypassing of sandy turbidity currents through the closest gullies has occurred during the last 6 m.y., while ooze accumulated on the interfluve at an average sedimentation rate of 25 m/m.y. Rates of sedimentation were even higher, about 62 m/m.y., during part of the Pliocene. The upper part of Unit I (Subunit IA) seems to correspond to the well-established glacial interval of the late Pliocene and the Pleistocene, a time when bank-derived aragonite seems to have been the largest. This tentative interpretation will have to be confirmed by detailed oxygen isotope stratigraphy and analyses of the clay and feldspar composition.

Unit II can be interpreted as a turbidite apron at the toe of the late Miocene gullied slope. Unit II in Hole 630A seems to correlate well with the turbidite-rich sequence of Subunit IC in Hole 628A. In conclusion, Site 630 provides a detailed record of the evolution of a gullied slope, prograding over its turbidite apron since late Miocene time. This site also gives an excellent

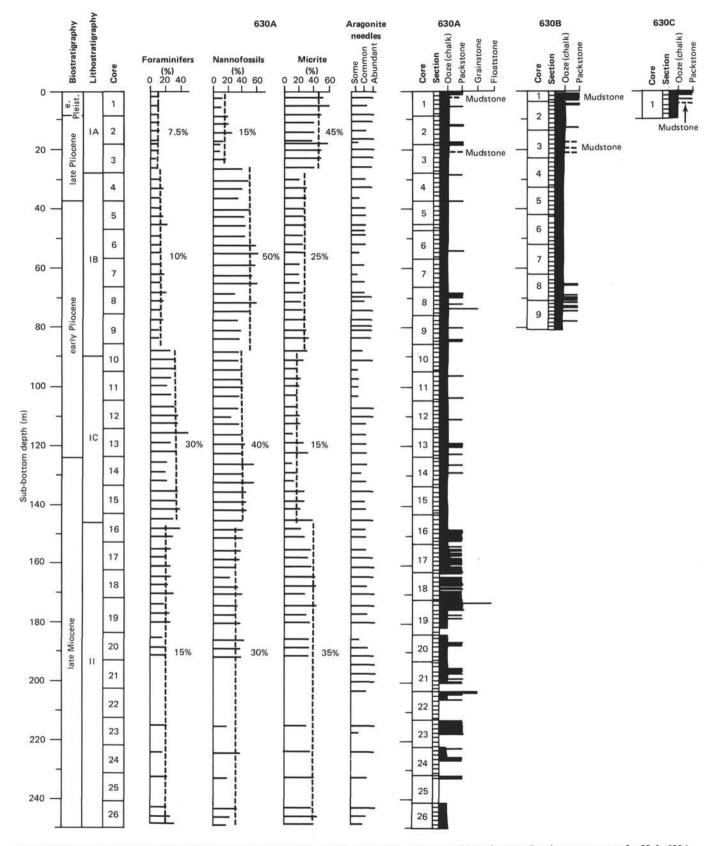


Figure 2. Comparison of sedimentary textures among Holes 630A, 630B, and 630C, and smear slide estimates of major components for Hole 630A.

Lithologic Sub-bottom		Lithology	Total percentage of other constituents				
unit depth (subunit) (m)	depth	Dominant lithology	Occurrence (%)	Foraminifers (%)	Nannofossils (%)	Micrite (%)	Aragonite (%)
I	0-146	Calcareous ooze (periplatform ooze)	90				
		Packstone layers (turbidites)	10	1			
IA	0-28			7.5	15	45	40-50
IB	28-90			10	50	25	20-25
IC	90-146			30	40	15	0
п	146-250	Ooze and chalk (periplatform ooze)	60	15	30	35	10-15
		Packstone layers (turbidites)	40				

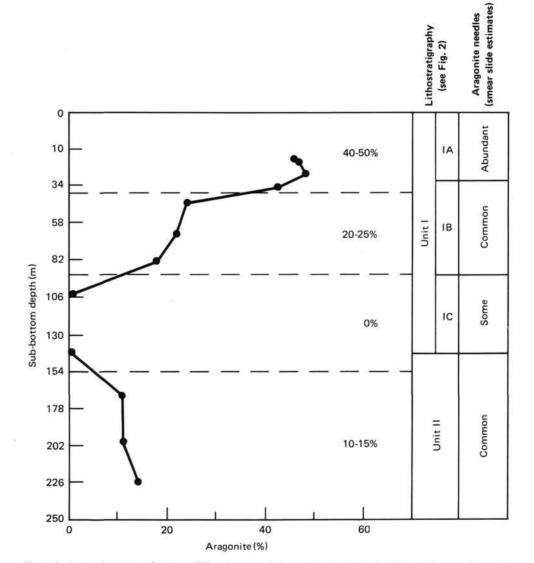


Figure 3. Aragonite content by x-ray diffraction vs. sub-bottom depth for Hole 630A, and comparison of lithostratigraphy with the aragonite-needle content in smear slides.

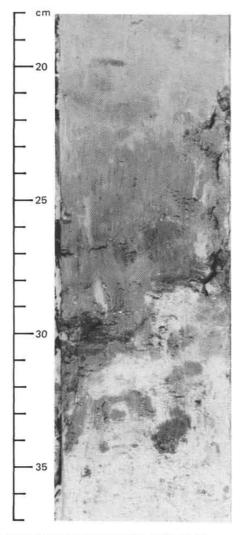


Figure 4. Clay-rich layers in Core 630A-3H-2, 23-29 cm.

record of the export of fine sediment by the Bahamas carbonate platform during the last 10 m.y.

BIOSTRATIGRAPHY

Introduction

Hole 629A was drilled to a total depth of 27.1 m sub-bottom. Three cores containing coarse rubble were obtained (Cores 629A-1H, 629A-2H, and 629A-3X).

A nearly continuous upper Neogene–Quaternary section was recovered at Site 630. Calcareous nannofossils and planktonic foraminifers are generally well to moderately preserved throughout the thick section of periplatform oozes and chalks. Hole 630A was drilled to a sub-bottom depth of 172.1 m (Cores 630A-1H to 630A-18H) with the HPC, then continued to a total depth of 250.3 m (Cores 630A-19X to 630A-25X) with the XCB.

Unless otherwise specified, all samples examined for this report came from core catchers.

Calcareous Nannofossils

Site 629

Cores 629A-1H through 629A-3H contain assemblages from Zone NN21, which is correlated to the late Pleistocene and Holocene. Winnowing of the sediment or washing during core recovery depleted the nannofossil abundance in the sediment.

Site 630

Sections 630A-1H-1 through 630A-1H-2 contain abundant *Emiliania huxleyi*, indicating the top (*E. huxleyi* acme) of Zone NN21. This zone correlates with the late Pleistocene to Holocene. The core catchers from Cores 630A-1H and 630A-2H contain mixed assemblages having both *E. huxleyi* (NN21) and *Pseudoemiliania lacunosa* (NN19 to NN16). This mixing is the result of either downhole contamination or reworking. Only strongly overgrown specimens of *Cyclococcolithina macintyrei* were observed, suggesting that these specimens were reworked. Therefore, the flora probably belongs to the younger part of the NN19, and the sediment is most likely Pleistocene.

Cores 630A-3H and 630A-4H contain assemblages composed of Discoaster pentaradiatus, Discoaster brouweri, and Discoaster surculus, as well as probable Pseudoemiliania lacunosa, all suggesting Zone NN16, which correlates with the earliest part of the late Pliocene. These assemblages continue downward from Core 630A-5H through 630A-8H, adding Reticulofenestra pseudoumbilica and Discoaster asymmetricus in the lower sections. The presence or absence of Amaurolithus tricorniculatus (which differentiates NN14 from NN15) was difficult to ascertain. As a result, this interval is assigned to Zones NN14/15, which correlates with the early Pliocene. The absence of Discoaster asymmetricus and Discoaster quinqueramus in assemblages from Cores 630A-9H through 630A-13H indicates that this interval is from Zones NN12/13 (latest Miocene to early Pliocene). The occurrence of Discoaster quinqueramus in assemblages from Cores 630-14H through 630A-21X indicates Zone NN11, although the assemblage in Core 630A-16H is too poorly preserved to yield a definitive age determination. No stratigraphically important species have been observed in the core catchers below Core 630A-21X because of poor preservation and very low nannofossil concentrations.

Foraminifers

Site 629

Three cores of upper Pleistocene sediments were recovered from Hole 629A. Planktonic foraminifers of the *Globorotalia truncatulinoides* Zone (N23) are abundant. A mixture of shelf and slope taxa characterizes the benthic-foraminiferal assemblages.

Site 630

A late Pleistocene age (Globorotalia truncatulinoides Zone, N23) is assigned to Core 630A-1H on the basis of the occurrence of G. truncatulinoides and the pink variety of Globigerinoides ruber. A hiatus may separate Quaternary from upper Pliocene sediments in Core 630A-2H. The presence of Globorotalia miocenica and the absence of G. truncatulinoides and early Pliocene taxa suggest a late Pliocene age (Globorotalia miocenica and Globorotalia tosaensis Zones; N19 part/N21) for the base of Core 630A-2H (18.2 m sub-bottom). The upper Pliocene Globorotalia miocenica Zone (N19 part) is recognized in Cores 630A-3H and 630A-4H (27.8 and 37.4 m sub-bottom), as indicated by the abundance of G. miocenica and the absence of early Pliocene species. The transition from upper to lower Pliocene occurs in Cores 630A-5H and 630A-6H. Cores 630A-7H through 630A-13H (56.9 to 123.9 m sub-bottom) are early Pliocene in age and are assigned to the Globorotalia margaritae Zone (N18/ N19 part). Diagnostic taxa include G. margaritae, G. plesiotumida, Globigerina nepenthes, and Globoquadrina altispira (s.l.). Globorotalia juanai characterizes the transition from upper Miocene to lowest Pliocene and is present in Cores 630A-18H through 630A-12H.

The late Miocene Neogloboquadrina acostaensis Zone (N16/ N17) is represented in Cores 630A-14H through 630A-26X (123.9–250.3 m sub-bottom). Neogloboquadrina acostaensis is virtually absent in Cores 630A-14H and 630A-15H but increases in abundance downhole. Globorotalia lenguaensis and G. merotumida occur sporadically in Cores 630A-18H through 630A-26X. Other characteristic species of the late Miocene include Globorotalia scitula, G. menardii, Globigerina nepenthes, and Globigerinoides extremus.

Benthic foraminifers indicative of bathyal depths are found throughout the Neogene and Quaternary section of Hole 630A. Displaced neritic taxa occur sporadically in the upper part of the drilled interval but increase appreciably in Cores 630A-17H through 630A-26X. Larger foraminifers represented by badly preserved *Amphistegina* sp. are present in Core 630A-25X, CC.

Summary

Among the three sites of the slope transect north of Little Bahama Bank, Site 630 on the upper slope contains fewer larger foraminifers than do the other, deeper sites. In fact, from the Holocene to the upper Miocene section (250 m), only one sample (630-25X, CC) yields very badly preserved *Amphistegina*. This apparent lack of platform-derived material is even more unusual because turbidites are present throughout the 104 m of upper Miocene sediment.

SEDIMENT-ACCUMULATION RATES

An abbreviated interval of Pleistocene sediments (Cores 630A-2H and 630A-1H) overlies a thick, continuous sequence of upper Miocene-Pliocene strata (Cores 630A-26X through 630A-3H) in Hole 630A (Fig. 5). A hiatus of as much as 1 or 2 m.y. may separate the Neogene and Quaternary, although additional shorebased study is needed for better delineation of the magnitude of this suspected stratigraphic gap. A similar break occurs at Site 628, where at 146 m sub-bottom a facies change from ooze and turbidites below to ooze above occurs. An average sediment-accumulation rate of 27–28 m/m.y. characterizes the entire section drilled in Hole 630A. Rates in the Pliocene ooze section may range as high as 62 m/m.y., and rates in the Miocene turbidite unit are 27 m/m.y. or higher.

INORGANIC GEOCHEMISTRY

Interstitial-Water Studies

Concentrations of calcium and magnesium at Site 630 exhibit trends similar to those seen at Sites 626, 627, and 628 (Tables 3 and 4). Values of Ca gradually increase from their surface-seawater levels, whereas Mg concentrations decrease (see Fig. 6). The most marked change in these two elements occurs between surface seawater and water obtained from the first core. To investigate this gradient further, water samples were taken from every section in Core 630C-1H over the top 9 m. Results of this investigation (see Fig. 7) confirm trends seen in previous holes. However, whereas increases in the Ca concentration were gradual over this depth, investigations of Hole 630C showed that Mg levels exhibited a sharp decrease over a small interval. Either diagenetic processes affecting the Mg concentration of interstitial waters occur rapidly, or surface waters are significantly different in Mg concentration from water immediately above the sediment/seawater interface. In assessing these scenarios, it is useful to normalize the concentration of Ca^{2+} and Mg²⁺ to the Cl⁻ content. These values show that although the Mg/Cl ratio of surface water is similar to the first sediment sample of Hole 630C, the Ca/Cl ratio of pore water is much higher. This difference is probably a result of the low Ca/Cl ratio of surface waters rather than of any differential diagenetic reactions occurring in the sediments that may cause covariant trends.

Sites 627, 628, and 630: Summary

As discussed in the preceding section, interstitial waters from Sites 627, 628, and 630 exhibited similar Ca and Mg gradient trends. However, the magnitude of these gradients shows a constant change from the deeper site, Hole 627A, to the shallower site, Hole 630A (see Tables 5 and 6). The percentage of change in these gradients is much larger than the relative difference in water depth between the three sites (see "Operations Summary," this chapter, and Site 627 chapter, this volume). For example, the gradient in Hole 627A over the top 250 m is 5.1×10^{-2} mmol/L/m, compared with a gradient in Hole 630A over the same interval of 2.6×10^{-2} mmol/L/m (the normalization to Cl⁻ does not significantly change these gradients). The Ca gradient cannot be explained by pressure alone but must result from diffusion of pore waters depleted in Mg and enriched in Ca from an underlying unit. The large difference in Ca gradients is therefore probably not a result of variations in sedimentation rates between the sites (see "Sedimentology" section, this chapter, and Site 627 chapter, this volume), because Ca concentrations reported at DSDP sites containing large amounts of carbonate (such as Site 245; Gieskes et al., 1981) show concentrations typically of 30 mmol/L adjacent to oceanic basalts. In Hole 627A, however, Ca concentrations of 35 mmol/L were reported within the Cenomanian marl section, which is at least 1 km above basement. This suggests that the Cenomanian interval, which is rich in igneous and terrigenous materials, may influence the Ca rise and Mg depletion in the overlying sediments. Using the difference in gradients between Sites 627 and 630 and assuming that the Cenomanian is indeed the source of Ca, we can estimate that approximately 600 m of sediments lies above the Cenomanian at Hole 630. This is the approximate thickness of sediments estimated from seismic profiles (see "Seismic Stratigraphy" section, this chapter).

A further important observation made at the three sites off Little Bahama Bank, as well as at Site 626, is the apparent absence of significant amounts of sulfate depletion in the interstitial pore waters (Figs. 8 and 9). This lack of depletion may be a result of the low initial amounts of organic matter, the low sedimentation rates, and/or an external source of sulfate ions.

X-Ray Studies

Sediments from Site 630 can be divided into two units, according to changes in the percentage of aragonite and calcite (see Figs. 10-12). The uppermost unit, corresponding to the Pleistocene and the lower to the upper(?) Pliocene section, is characterized by amounts of aragonite greater than 40%. Beneath this interval, aragonite content falls to levels of between 0% and 20%. Dolomite forms a small but persistent proportion of the sediments throughout Hole 630A, yet shows no consistent pattern with depth or age (see Tables 7–9).

High-Mg calcite was detected only in the top 5 m of the section (Table 9). Its disappearance may be attributed to either a change of sedimentation patterns or a removal through diagenetic processes.

Summary of X-Ray Data: Sites 627, 628, and 630

In all three sites across the Little Bahama Bank transect, consistent changes were visible in the proportions of aragonite, calcite, dolomite, and quartz (see Fig. 13). The first change correlatable between the three sites occurs in the Pleistocene section, the uppermost part of which is typified by low aragonite concentrations. Proportions of aragonite increase downhole and reach a maximum at the Pliocene–Pleistocene boundary. The Pliocene is characterized by a sudden reduction in the amount of aragonite from approximately 70% to between 0% and 20% toward

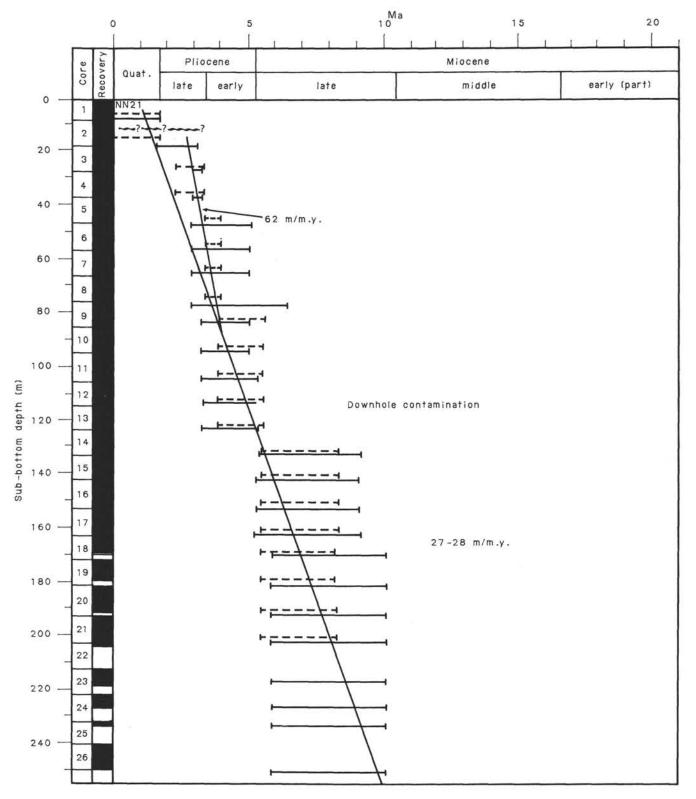


Figure 5. Sediment-accumulation rates, Site 630.

the start of the Miocene section. The third unit, present in all three holes, extends downward through the Miocene to the upper(?) Oligocene and also contains aragonite but in reduced and somewhat variable amounts (see Fig. 13). Absent at Site 630, the Oligocene in Holes 627 and 628 consists predominantly of low-Mg calcite and a small amount of quartz. The cause of the decline in aragonite content near the surface at these three sites is unknown; perhaps because of the proximity to the surface, it is not primarily diagenetic. In the Pliocene-Pleistocene, the changes in mineralogy are consistent with a reduction in the transport of platform sediment and a general trend from distal to oceanic slope facies. The appearance of

Table 3. Analyses of interstitial waters from Hole 630A.

Sub-bottom depth (m)	pН	Alkalinity (meq/kg)	Salinity (‰)	Chlorinity (‰)	Ca (mmol/L)	Mg (mmol/L)	SO ₄ (mmol/L)
Surface seawater	8.21	2.41	36.2	21.05	10.43	58.00	29.48
7.4	7.65	3.00	35.0	20.81	11.44	52.87	25.05
16.0	7.67	2.89	35.2	20.28	12.03	52.45	28.95
25.6	7.72	3.09	35.1	19.27	11.78	52.65	29.08
35.2	7.80	3.29	35.0	20.18	11.57	54.39	28.54
44.8	7.63	3.08	35.1	20.56	12.25	53.12	28.81
64.3	7.55	2.99	35.7	20.07	12.52	52.82	28.78
83.3	7.35	3.41	35.9	20.84	14.30	50.71	27.38
112.1	7.47	3.80	36.2	20.63	14.97	49.81	26.93
140.9	7.36	4.05	37.0	21.16	14.64	48.96	27.49
169.8	7.43	4.22	37.5	21.82	16.58	50.55	29.08
200.6	7.51	4.69	37.8	21.58	16.20	50.93	25.68
224.8	7.52	5.07	39.6	21.33	17.07	51.36	27.31

Table 4. Analyses of interstitial waters from Hole 630C.

ub-bottom depth (m)	pH	Alkalinity (meq/kg)	Salinity (‰)	Chlorinity (‰)	Ca (mmol/L)	Mg (mmol/L)	SO ₄ (mmol/L)
1.45	7.75	3.03	34.8	19.72	10.74	53.92	28.49
2.95	7.70	2.87	34.8	19.34	10.85	53.72	34.17
4.45	7.62	2.78	34.8	20.00	10.78	53.85	23.24
5.95	7.62	2.89	35.0	20.72	10.97	52.51	31.72
7.45	7.65	3.08	35.0	20.14	11.42	51.94	32.00
8.95	7.61	2.85	35.2	20.49	11.50	52.69	32.93

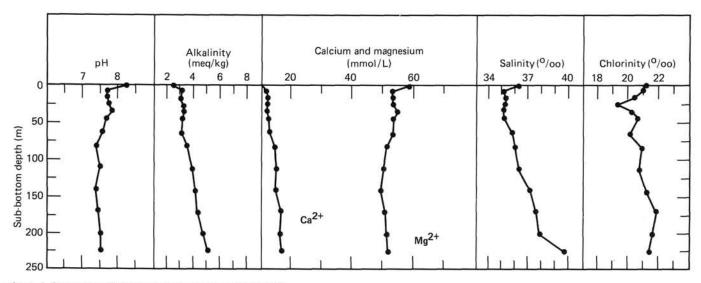


Figure 6. Summary of interstitial-water analyses, Hole 630A.

quartz in the lower Oligocene sediments could indicate the influence of deep oceanic currents in this area at that time.

The dolomite, typically moderately calcian $(45-47 \text{ mol}\% \text{MgCO}_3)$, found in these sediments may be either detrital or diagenetic and occurs only within the Quaternary and Tertiary of Holes 627 and 628 to the Pleistocene and late Pliocene. In contrast, dolomite is ubiquitously distributed within Hole 630. Dolomite is also present in Albian rocks recovered from Hole 627B, although these rocks are clearly of a different origin than those of the Pliocene–Pleistocene occurrences.

Carbonate-Bomb Data

The percentage of carbonate was generally significantly lower at Site 630 than at either Site 627 or 628 (Fig. 14 and Table 10). Although this may be a result of the proximal nature of the site, it should also be recognized that extremely rough surface conditions prevailed during drilling, making accurate weighing impossible. Results are therefore subject to confirmation by further shore-based studies.

ORGANIC GEOCHEMISTRY

Twenty-three rock samples were taken from Hole 630A for Rock-Eval analysis (see Figs. 15–18). The lithology consists essentially of periplatform carbonate ooze (late Miocene to Holocene).

The organic material, as in most of the Neogene-Holocene sites investigated on Leg 101, consists of low amounts of detri-

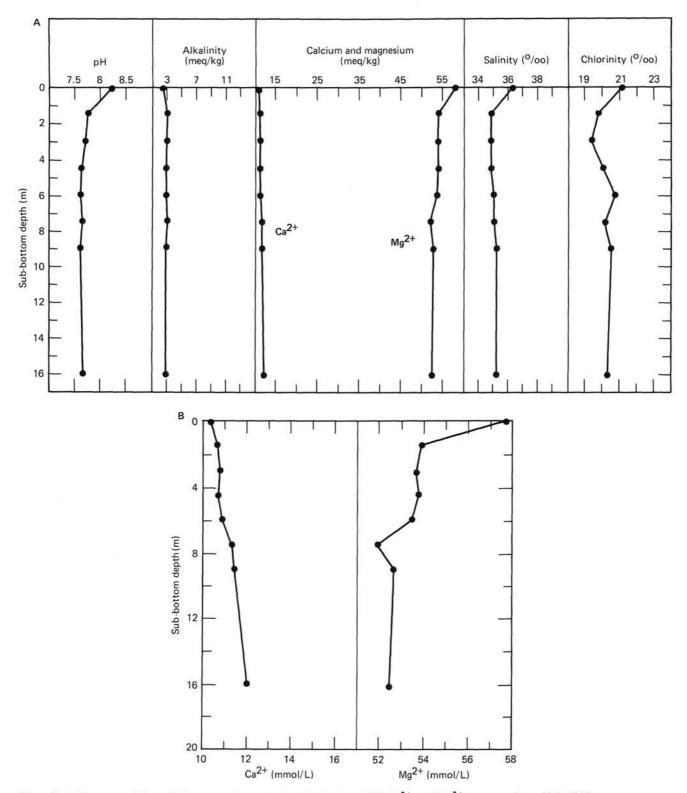


Figure 7. A. Summary of interstitial-water analyses, Hole 630C. B. Interstitial Ca²⁺ and Mg²⁺ concentrations, Hole 630C.

tal, oxidized, terrestrial organic matter (see Fig. 16). T_{max} investigations showed a great mixture of material of differing maturities and probably different provenances (see Fig. 17).

An increased lipid component was somewhat indicated in the kerogen of the lower part of Unit II (late Miocene ooze and turbidites, see "Sedimentology" section, this chapter; Fig. 18).

PALEOMAGNETISM

Hole 630A yielded an expanded Pliocene and upper Miocene sedimentary section that may be useful for magnetostratigraphic studies and their correlation with other contemporary phenomena. However, the material recovered from Hole 630A was Table 5. Summary of calcium gradients, Sites 627, 628, and 630.^a

Site	10-m sub-bottom depth	250-m sub-bottom depth
627	7.5	5.1×10^{-3}
628	14.0	3.2×10^{-3}
630	13.5	2.6×10^{-3}

^a Units expressed in mmol L⁻¹ m⁻¹.

Table 6. Summary of magnesium gradients, Sites 627, 628, and 630.^a

Site	10-m sub-bottom depth	250-m sub-bottom depth			
627	- 53	$^{b}-2 \times 10^{-2}$			
628	-73	-3×10^{-2}			
630	- 69	-1×10^{-2}			
^a Unit	s expressed	in mmol L ⁻			
b Data	averaged o	ver entire core			

depth.

primarily calcareous ooze, which seemed unlikely to contain a magnetization of sufficient strength to be detectable by the shipboard Molspin spinner magnetometer. Consequently, only seven 7-cm³ oriented samples were taken from two cores to aid in determining whether or not further sampling was warranted. A detailed paleomagnetic analysis of these cores was deferred until a later date contingent on the results of these sample analyses and on the usefulness of paleomagnetic data from the same types of sediments in other holes from Leg 101.

Because the magnetic-susceptibility measurements in Hole 628A suggested that very little magnetic material would be in the sediments at Site 630, the number of measurements taken from Hole 630A cores was reduced. Only Sections 2, 4, and 6 of each core were measured. As in Hole 628A, the susceptibility shows virtually no variation from a value of approximately -0.4×10^{-6} G/Oe. However, unlike those for the previous holes, the susceptibility vs. depth plot shows few large amplitude spikes (Fig. 19). This is undoubtedly the effect of the exclusion of the data from the first section of each core that commonly appears to be contaminated with metallic flakes.

PHYSICAL PROPERTIES

Physical-property measurements were made on sediment recovered from Site 630A (see Table 11) as described in the "Introduction and Explanatory Notes" (this volume).

Compressional Wave Velocity

Compressional wave velocities measured on samples removed from the core liner average 1700 m/s and show little variation with increasing depth (Fig. 20).

Compressional wave velocities measured on sediment in the core liner (three measurements each on Sections 2, 4, and 6 of each core) show two zones of constant velocity. From 0 to 150 m sub-bottom, values average 1700 m/s. Between 150 and 200 m sub-bottom, velocities average 1800 m/s.

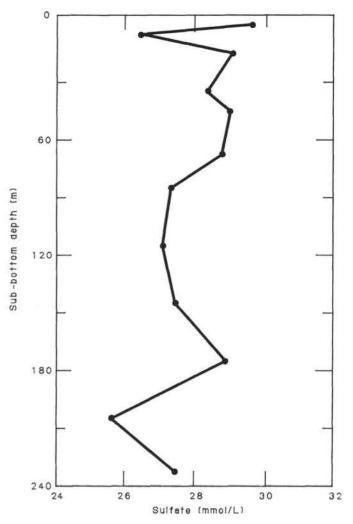


Figure 8. Interstitial-sulfate concentrations, Hole 630A.

Wet-Bulk Density, Porosity, and Water Content

Density values increase steadily with increasing depth from 1.6 g/cm^3 at 1.5 m sub-bottom to 1.9 g/cm^3 at 250 m sub-bottom. There is very little variation around the mean (Fig. 20).

Porosity values decrease with depth from 60% at 1.5 m subbottom to 50% at 250 m sub-bottom. The two low values of 40% at 85 m and 40% at 220 m are single samples.

Water content decreases regularly with depth from 53% at 1.5 m sub-bottom to 35% at 250 m sub-bottom. The decrease in water content correlates with the decrease in porosity and increase in density.

Thermal Conductivity

Conductivity increases regularly and slowly with increasing depth from 2.7×10^{-3} cal $\times {}^{\circ}C^{-1} \times cm^{-1} \times s^{-1}$ at 1 m subbottom to 3×10^{-3} cal $\times {}^{\circ}C^{-1} \times cm^{-1} \times s^{-1}$ at 250 m subbottom. Values vary little except in the deepest parts of the hole (more than 240 m sub-bottom) where measurements were made on core catchers.

Shear Strength

Shear strength increases slowly and regularly with increasing depth from 4 kPa at 1.5 m sub-bottom to 7 kPa at 250 m sub-bottom.

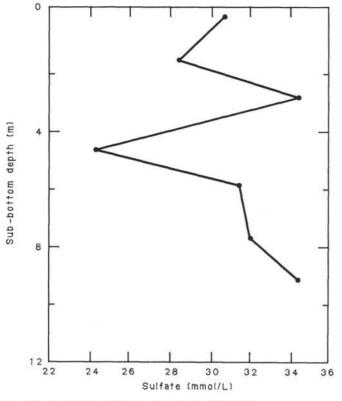


Figure 9. Interstitial-sulfate concentrations, Hole 630C.

Discussion

Physical-property parameters reflect general trends with depth, as would be expected of a homogeneous lithologic section having increasing overburden pressure. Only compressional wave velocity measurements made within the core liner show a change in overall trend. At 148 m sub-bottom, higher velocity averages (1800 m/s) correlate with an increase in induration of the background sedimentation and an increase in number of turbidite layers.

SEISMIC STRATIGRAPHY

Introduction

Site 630 completely sampled the top 200-300 m of the upper part of an accretionary carbonate slope. Because this site is located on an interfluve between gullies (see "Operations Summary," this chapter), regional seismic stratigraphic correlations could be made with confidence only along the trend of the interfluve (i.e., upslope/downslope) or laterally within it (i.e., along the slope contours). Despite this complexity, we propose that a sequence boundary sampled at the bottom of Site 630 immediately overlies the B/C sequence boundary at Site 628 approximately five n. mi downslope.

Seismic Correlations: Hole 630A

Site 630 lies just west of the intersection of site-survey lines LBB-05 and LBB-10 (Fig. 1, this chapter). Two sequence boundaries are recognized in the upper 300 m of section at this intersection. The upper surface is discernible only on LBB-10, occurring at 0.06 s sub-bottom (Fig. 21). At an interval velocity of 1.75 km/s, equal to that used for upper sequences on LBB-18 at Sites 627 and 628, the converted depth is 52 m. Neither a lithologic boundary nor a biostratigraphic hiatus exists within this depth range in Hole 630A. However, this seismic boundary ap-

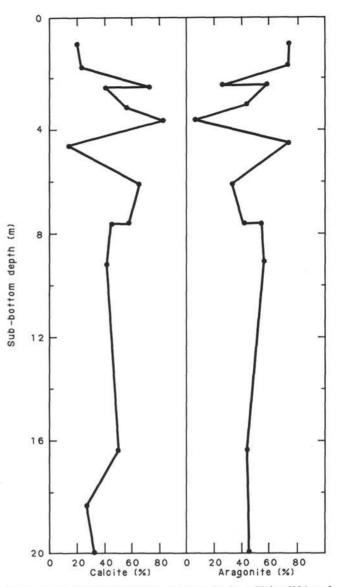


Figure 10. Percentages of calcite and aragonite from Holes 630A and 630C as measured by x-ray diffraction for the top 20 m.

pears to intersect the seafloor downslope of LBB-05 (Fig. 21), suggesting that its sub-bottom depth may decrease rapidly with increasing water depth. Hole 630A is slightly downslope of the line intersection (see "Operations Summary," this chapter). Perhaps this upper sequence boundary was produced by the same erosional episode that caused an abbreviation of the Quaternary sequence between Cores 630A-1H and 630A-2H (see "Biostratigraphy" section, this chapter).

The deeper sequence boundary visible on LBB-10 is a prominent impedance contrast and apparent unconformity, which occurs at 0.28 s sub-bottom and 0.26 s sub-bottom on LBB-05, in both cases at the base of an acoustically transparent interval (Figs. 21 and 22). If a compressional wave velocity of 1.75 k/s is used to convert the entire overlying section from traveltime to depth, the sequence boundary occurs at 228–245 m sub-bottom, within a zone of poor recovery in Hole 630A (Cores 630A-22X through 630A-26X, 202.9–240.9 m sub-bottom). If this poor recovery is caused by either lithologic or diagenetic changes, then a possible correlation with those changes and the acoustic horizon is suggested.

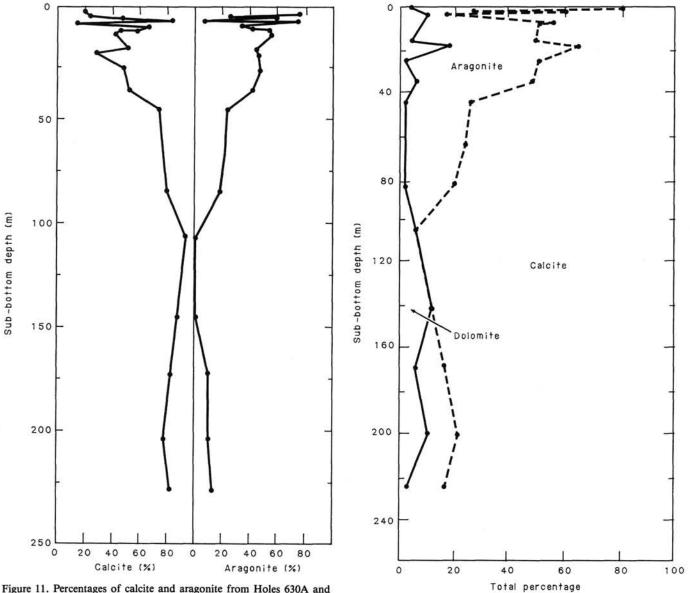


Figure 11. Percentages of calcite and aragonite from Holes 630A and 630C as measured by x-ray diffraction.

Figure 12. X-ray data, Site 630.

Table 7. X-ray analyses of samples from Hole 630A.

Sub-bottom depth (m)	Calcite (%)	Aragonite (%)	Dolomite (%)	Quartz (%)	Other minerals present
0.7	21	76	4	0	Mixed-layer illite-montmorillonite
2.2	77	27	0	0	
2.22	41	59	0	0	Mixed-layer illite-montmorillonite
3.5	83	7	10	0	Mixed-layer illite-montmorillonite
7.4	45	55	0	0	Mixed-layer illite-montmorillonite
8.1	50	50	0	0	
16.0	51	45	4	0	
18.2	28	46	18	0	Plagioclase
25.6	48	48	2	0	
35.2	52	42	6	0	Palygorskite
44.8	74	24	2	0	
64.3	77	22	2	0	Mixed-layer illite-montmorillonite
83.3	80	18	2	0	
105.1	94	0	6	0	
140.9	88	0	12	0	
169.8	83	11	6	0	Sepiolite
200.6	78	11	11	0	
224.8	83	14	3	0	

Table 8. X-ray analyses of san	nples from	Hole 630B.
--------------------------------	------------	------------

Sub-bottom depth (m)	Calcite (%)	Aragonite (%)	Dolomite (%)	Quartz (%)
3.04	64	36	0	0
3.34	47	51	2	0

Possible Tie with Site 628

Because Site 630 was located on LBB-10, possible correlations downslope with Site 628 involve tying LBB-10 to LBB-18 along LBB-05 (Fig. 1, this chapter). In an attempt to do this, the A/B and B/C sequence boundaries were first carried on LBB-18 from Site 628 approximately 9 km upslope to LBB-05 (Fig. 23). Only the B/C boundary, correlated with a late middle-early late Miocene hiatus in Hole 628A, could be carried for the entire distance. At the LBB-05/LBB-18 intersection, the B/C boundary occurs at 0.305-0.325 s, suggesting a depth range of 267-284 m sub-bottom, again according to a conversion velocity of 1.75 k/s.

Along LBB-05 between LBB-18 and LBB-10, the B/C boundary exhibits as much as 0.06 s of relief (Fig. 22). At Site 630, the B/C boundary occurs at a depth of 0.315 s, or 276 m sub-bottom. This is approximately 26 m below the total depth drilled in Hole 630A, which translates to approximately 1 m.y. of section using the 27-28 m/m.y. sedimentation rate derived for the lower part of Hole 630A (see "Sediment-Accumulation Rate" section, this chapter). Core 630A-26X, the deepest core of Hole 630A, is dated as earliest late to late Miocene, which is consistent with the late middle-early late Miocene age postulated for the B/C boundary at Site 628. Although the B/C sequence boundary was not actually sampled at Site 630, a tie between Sites 628 and 630 using the B/C boundary as a marker seems reasonable at this time.

SUMMARY AND CONCLUSIONS

Site 630 is at the upslope end of the three-site slope transect north of Little Bahama Bank. Hole 630A penetrated 250 m of sediment with HPC/XCB coring. Hole 630B duplicated the top 80 m of Hole 630A with the HPC. Finally, Hole 630C recovered a mud-line core.

The stratigraphic section at Site 630 consists of the following units ("Sedimentology" and "Biostratigraphy" sections, this chapter, and Fig. 24): (1) periplatform ooze (nannofossil-foraminifer ooze plus bank-derived aragonite) with some chalk, steplike decrease of aragonite from 40% to 50% at the top to below XRD detection limits near 100 m, late Miocene to Holocene, 146 m; and (2) periplatform ooze and chalk with 40% turbidites of mainly bank-derived skeletal material, late Miocene, 104 m.

Unlike Sites 627 and 628, which are on the rise at the foot of the Little Bahama Bank platform, Site 630 lies on the slope (s.s.) at an angle of 2° to 3°. Present-day slope topography shows widely spaced gullies that are interpreted as being the erosional pathways of turbidity currents (Mullins et al., 1984). Quaternary sediment cover on this gullied slope consists mainly of periplatform ooze. The coarser debris shed by the platform bypasses the slope in turbidity currents, forming an apron of turbidites and debris sheets on the rise (Mullins et al., 1984). An undisturbed section of upper Miocene-Holocene periplatform ooze at Site 630 indicates that bypassing has persisted for the last 6 m.y. Before 6 Ma, the site formed part of the turbidite apron on the rise. This succession is consistent with the progradation of the platform flank inferred from the lithologic and seismic facies at Sites 627 and 628 (see Site 627 and 628 chapters, this volume).

Despite bypassing by sandy turbidity currents, sedimentation rates in the periplatform ooze are high, somewhere between 27 and 62 m/m.y. (see "Sediment-Accumulation Rate" section, this chapter). Rates in the underlying turbidite facies are not well constrained. Biostratigraphic studies indicate, however, that they are at least as high as in the overlying unit of periplatform ooze.

Superimposed on the changes of depositional facies is a diagenetic trend that converts periplatform ooze rich in bank-derived aragonite into chalk ("Inorganic Geochemistry" section, this chapter). Major factors in this process seem to be dissolution of aragonite and upward migration of calcium-rich pore waters from the Cretaceous.

The correlation of borehole and seismic stratigraphy is more ambiguous at Site 630 than at the preceding sites ("Physical Properties" and "Seismic Stratigraphy" sections, this chapter). A seismic unconformity on LBB-10 corresponds to an early Pleistocene hiatus probably between Cores 630A-1H and 630A-2H. Another seismic unconformity at the top of an interval of highamplitude reflections at 0.28 s correlates either with a bundle of turbidites having a top at 203 m sub-bottom or with an increase in lithification, i.e., a diagenetic boundary, below 200 m subbottom that is represented by a zone of poor recovery in Hole 630A.

REFERENCES

- Gieskes, J. M., 1981. Deep-sea drilling interstitial water studies: Implications for chemical alteration of the oceanic crust, Layers 1 and 2. SEPM Spec. Publ., 32:149-167.
- Mullins, H. T., Heath, K. C., Van Buren, H. M., and Newton, C. R., 1984. Anatomy of a modern open-ocean carbonate slope: northern Little Bahama Bank. Sedimentology, 31:141-168.
- Van Buren, H. M., and Mullins, H. T., 1983. Seismic stratigraphy and geologic development of an open-ocean carbonate slope: The northern margin of Little Bahama Bank. *In Sheridan*, R. E., Gradstein, F. M., et al., *Init. Repts. DSDP*, 76: Washington (U.S. Govt. Printing Office), 749–762.

Table 9. X-ray analyses of samples from Hole 630C.

Sub-bottom depth (m)	Calcite (%)	Aragonite (%)	Dolomite (%)	Quartz (%)	Comments
1.45	23	75	3	0	Illite-montmorillonite present; high-Mg calcite, 16%; low-Mg calcite, 7%
2.95	56	44	0	0	Illite-montmorillonite present
4.45	21	75	4	0	Illite-montmorillonite present; high-Mg calcite, 7%; low- Mg calcite, 14%
5.95	66	34	0	0	
7.45	58	42	0	0	
8.95	42	57	1	0	

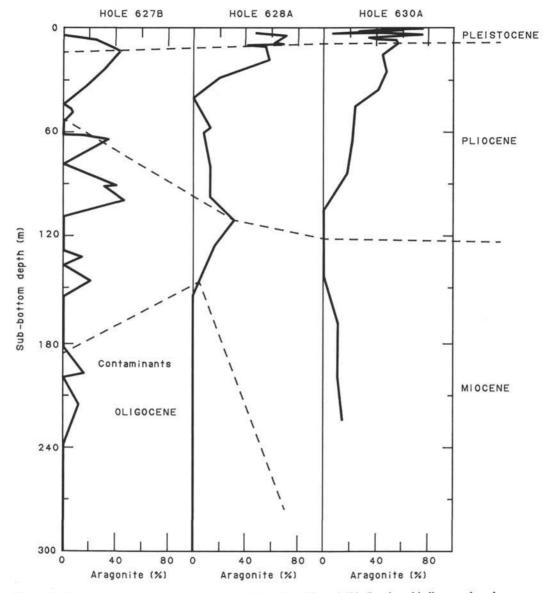


Figure 13. Summary of percentages of aragonite at Sites 627, 628, and 630. Stratigraphic lines are based on ages reported in the "Biostratigraphy" section (this chapter).

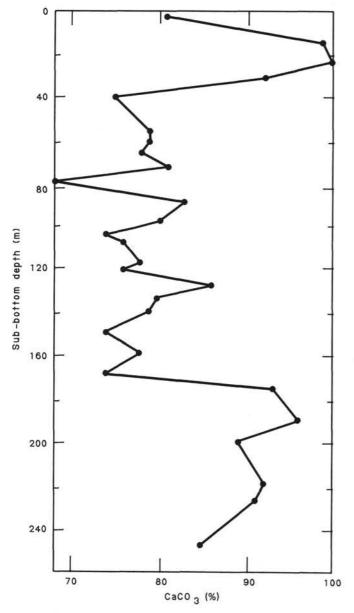


Table 10. Carbonate-bomb data, Site 630.

Sub-bottom depth (m)	CaCO ₃ conten (%)
2.2	81
13.8	99
23.4	100
30.0	92
39.6	75
55.2	79
59.1	79
65.1	78
71.5	81
78.1	68
87.9	83
97.3	80
100.3	77
103.3	74
106.9	76
116.5	78
119.5	76
126.1	86
132.1	80
138.7	79
148.3	74
158.0	78
167.6	74
174.1	93
188.8	96
198.4	89
217.7	92
225.6	91
246.1	85

Figure 14. Carbonate-bomb data, Site 630.

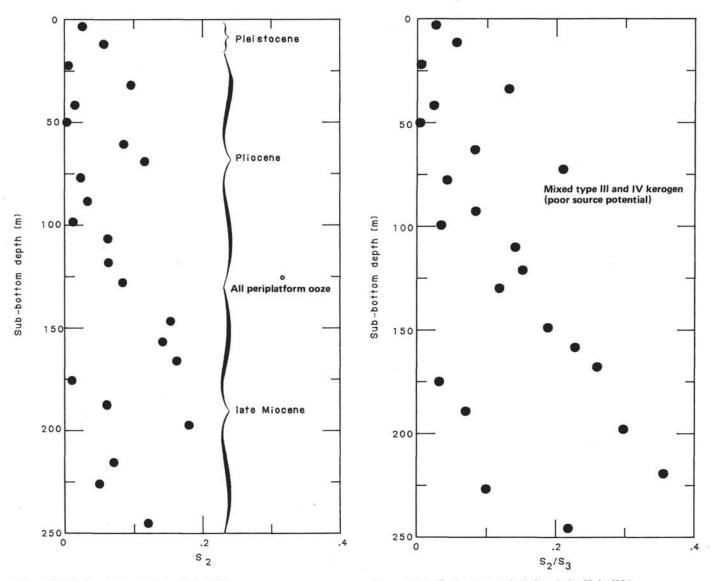
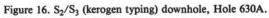



Figure 15. S₂ downhole variation, Hole 630A.

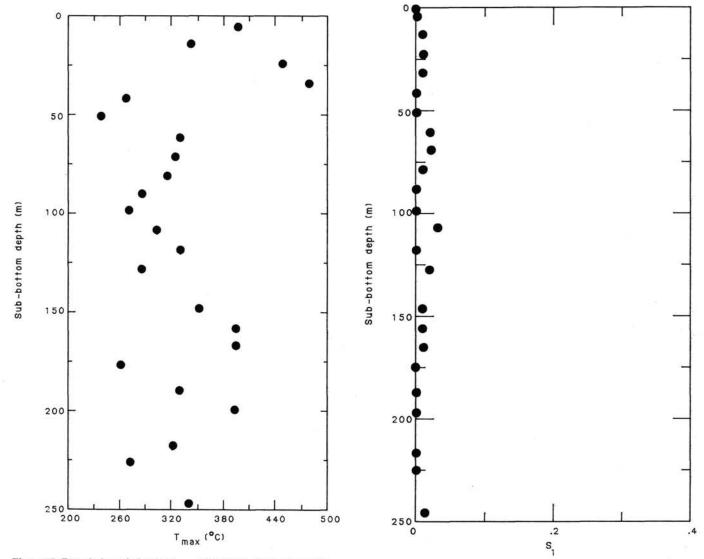


Figure 17. Downhole variation in T_{max} , Hole 630A. Note random T_{max} values, indicating mixed detrital sources.

Figure 18. S_1 content (bitumen) downhole, Hole 630A, showing negligible bitumen content.

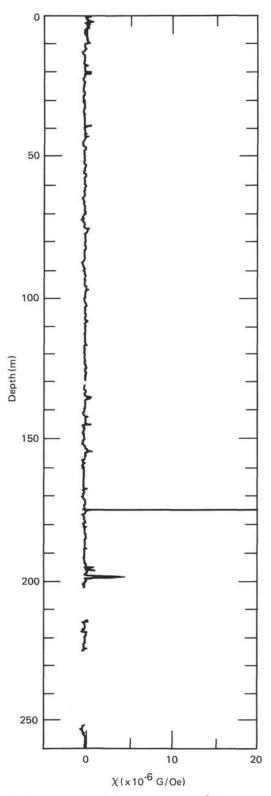


Figure 19. Magnetic-susceptibility values ($\times 10^{-6}$ G/Oe) plotted vs. sub-bottom depth in Hole 630A. Spikes related to rust contamination have been mostly eliminated by excluding Section 1 of each core from measurement.

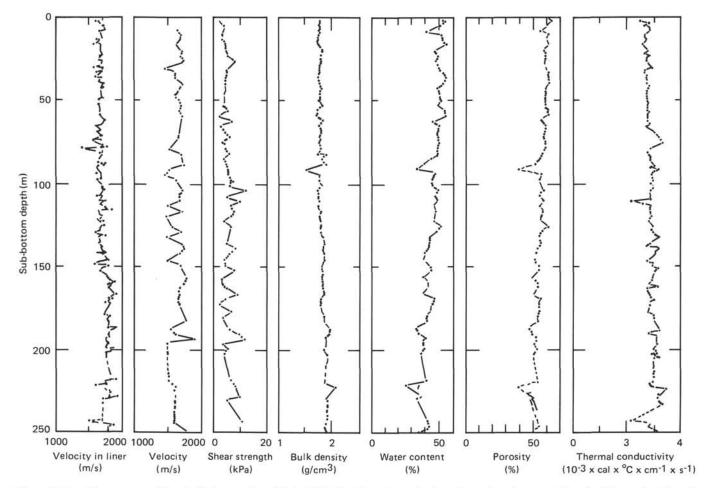


Figure 20. Graphic summary of the physical properties of Hole 630A. Density, water content, and porosity values were determined by gravimetric and volumetric techniques.

Sample (level in cm)	Sub-bottom depth (m)	Velocity (m/s)	Velocity in liner (m/s)	Wet-bulk density (g/cm ³)	Dry water content (%)	Porosity (%)	Thermal conductivity $(10^{-3} \times cal \times °C^{-1} \times cm^{-1} \times s^{-1})$	Shear strength (kPa)
1-1, 20			1695					
1-2, 75	2.2			1.76	54.87	62.62	2.511	1.93
1-2, 100			1603					
1-3, 75	3.7		1712				2.794	
1-4, 20 1-4, 70	5.2	1681	1713 1696	1.76	50.48	59.10	2.647	3.62
1-4, 100			1714		20.10	57.10	2.017	5.02
1-5, 75	6.7		102223				2.853	
1-6, 20 1-6, 70	8.2	1655	1728 1659	1.89	40.98	54.78	2.853	9.40
2-2, 20	0.2	1055	1668	1.07	40.96	34.70	2.035	9.40
2-2, 70	10.3	1696		1.78	51.77	60.91	2.655	2.94
2-3, 75	11.8		1601				2.666	
2-4, 20 2-4, 70	13.3	1669	1691 1614	1.74	53.35	60.41		3.51
2-4, 100	1015	1005	1649			00.11	2.703	2.2.2
2-5, 75	14.8						2.682	
2-6, 20 2-6, 70	16.3	1635	1611 1582	1.75	54.59	61.72	2.534	4.42
2-6, 100	10.5	1055	1677	1.75	54.55	01.72	2.554	4.42
3-2, 70	20.3	1722	1679	1.82	46.49	57.75		4.76
3-2, 100	21.0		1678				2.751	
3-3, 75 3-4, 20	21.8		1687				2.682	
3-4, 70	23.3	1697	1667	1.79	48.72	58.88	2.866	5.44
3-4, 100	menoner		1679				0/132670	
3-5, 75 3-6, 20	24.8		1626				2.692	
3-6, 70	26.3	1732	1636 1649	1.80	48.28	58.55	2.686	7.70
3-6, 100	12000000		1687					0.000
4-2, 20			1656		** **		a	
4-2, 70 4-2, 100	30.3	1449	1579 1709	1.76	50.08	58.81	2.888	4.76
4-3, 75	31.8		1703				2.643	
4-4, 20			1690					
4-4, 70	33.3	1622	1623	1.76	53.23	61.01	2.669	4.87
4-4, 100 4-5, 75	34.8		1668				2.697	
4-6, 70	36.3	1625	1595	1.74	54.5	61.32	2.693	4.30
4-6, 100			1679					
5-2, 20 5-2, 70	39.7	1715	1635 1724	1 77	52.82	61.30	2.704	4.08
5-2, 100	39.1	1/15	1707	1.77	52.82	01.50	2.704	4.00
5-3, 75	41.2						2.795	
5-4, 20	12.7	1690	1714	1.00	40.00	50.05	3 703	2.06
4-4, 70 5-4, 100	42.7	1680	1668 1682	1.80	48.98	59.05	2.783	3.96
5-5, 75	44.2						2.704	
5-6, 20	45.7	1610	1670	1.77	10.00	50.04	2 (00	2.05
5-6, 70 5-6, 100	45.7	1619	1678 1678	1.77	49.98	58.94	2.688	3.85
6-2, 20			1712					
6-2, 70	49.7	1667	1636	1.77	50.92	59.63		3.17
6-2, 100 6-3, 75	51.2		1664				2.759	
6-4, 20	51.2		1656				2.739	
6-4, 70	52.7	1703	1635	1.82	48.56	59.27	2.762	3.62
6-4, 100 6-5, 75	64.2		1635				0.7/2	
6-6, 20	54.2		1654				2.763	
6-6, 70	55.7	1675	1024	1.75	53.7	61.13	2.756	5.44
6-6, 100			1666				0.000	
6-7, 15 7-2, 20	56.6		1647				2.794	
7-2, 70	59.1	1714	1681	1.72	55.13	61.36	2.751	1.93
7-2, 100			1666					
7-3, 75 7-4, 20	60.6		1724				2.759	
7-4, 20	62.1		1736 1746	1.82	45.07	56.34	2.78	6.68
7-4, 100	100000		1721		10101	20121	2170	0.00
7-5, 75	63.6						2.806	
7-6, 20 7-6, 70	65.1		1676	1 77	40 62	58 73	2 602	26
7-6, 100	03.1		1588 1600	1.77	49.63	58.72	2.693	2.6
8-2, 20	102010		1669					
8-2, 70	68.6	1672	1646	1.79	49.37	59.27	2.994	4.19
8-2, 100 8-3, 75	70.1		1626				3.141	
8-4, 20			1701				5.141	
8-4, 70	71.6	1655	1667	1.77	48.81	58.14	3.189	5.66
8-4, 100 8-5, 75	72 1		1681				3 304	
0.2.12	73.1						3.286	

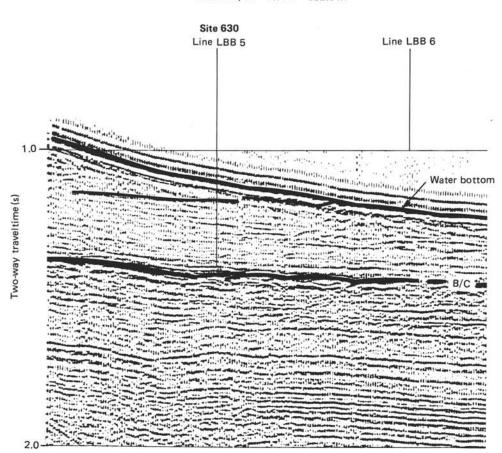

Table 11. Physical properties of sediments, Site 630.

Table 11 (continued).

Sample (level in cm)	Sub-bottom depth (m)	Velocity (m/s)	Velocity in liner (m/s)	Wet-bulk density (g/cm ³)	Dry water content (%)	Porosity (%)	Thermal conductivity $(10^{-3} \times cal \times {}^{\circ}C^{-1} \times cm^{-1} \times s^{-1})$	Shear strength (kPa)
8-6, 20			1636					
8-6, 70	74.6		1673	1.77	50.20	59.08	3.318	3.17
8-6, 100			1562					
9-2, 20 9-2, 70	78.5	1508	1752 1673	1.79	49.02	58.84	2.861	4.30
9-3, 75	80.0	1500	10/5		47.02	50.04	2.749	
9-4, 20			1700	-1-11-10-10-1				
9-4, 70 9-4, 100	81.5	1700	1644	1.74	49.41	57.62	2.803	5.89
9-5, 75	83.0		1655				2.882	
9-6, 20			1697					
8-6, 70	84.5		1683	1.82	43.91	55.37	2.865	2 (2
9-6, 100 10-2, 20			1717 1641					3.62
10-2, 70	87.9		1736	1.90	38.37	52.37	3.003	4.76
10-2, 100	1120117		1642				ana-au	
10-3, 75	89.4		1612				2.867	
10-4, 20 10-4, 70	90.9	1516	1612 1491	1.51	35.37	39.17	3.091	4.98
10-5, 75	92.4	1010		1.21	55151		2.949	
10-6, 20			1645					
10-6, 70 10-6, 100	93.9	1452	1609 1679	1.76	46.48	55.74	2.919	5.10
11-2, 20			1679					
11-2, 70	97.1	1623	1659	1.78	45.23	55.26	2.941	6.23
11-2, 100	122212		1620					
11-3, 75 11-4, 20	98.6		1645				2.856	
11-4, 20	100.1	1612	1643	1.81	44.81	55.95	2.970	5.66
11-5, 75	101.6						2.946	
11-6, 20			1703	12122		121212		
11-6, 70 11-6, 100	103.1	1723	1723 1715	1.74	48.8	57.03	2.875	11.78
12-2, 20			1676					
12-2, 70	106.8	1676	1626	1.75	46.62	55.41	2.870	4.76
12-2, 100	100.0		1699					
12-3, 75 12-4, 20	108.3		1654				2.829	
12-4, 70	109.8	1679	1729	1.78	48.68	58.25	2.117	9.17
12-4, 100			1663					
12-5, 75	111.3		1662				2.581	
12-6, 20 12-6, 70	112.8	1486	1653 1675	1.74	46.01	54.6	2.842	6.34
12-6, 100		1100	1690	1.74	40.01	54.0	2.012	0101
13-2, 20		00000	1833				27272	
13-2, 70 13-2, 100	116.1	1709	1643	1.8	46.44	56.96	2.843	7.53
13-2, 100	117.6		1643				2.842	
13-4, 20			1659				313.77	
13-4, 70	119.1	1466	1661	1.78	46.5	56.27	2.907	6.53
13-4, 100 13-5, 75	120.6		1701				2.859	
13-6, 20	120.0		1659				2.039	
13-6, 70	122.1		1606	1.79	45.99	56.4	2.816	3.77
13-6, 100			1719					
14-2, 20 14-2, 70	125.7	1571	1709 1673	1.8	51.6	61.25	2.934	6.28
14-2, 100			1638		21.0	01.00	W1.7.7.1	0.20
14-3, 75	127.2						2.895	
14-4, 20 14-4, 70	128.7	1704	1645	1 70	47 50	\$7.55	2 020	22.22
14-4, 70	128.7	1704	1657 1597	1.79	47.58	57.55	2.938	32.32
14-5, 75	130.2		1000				3.065	
14-6, 20			1739					
14-6, 70 14-6, 100	131.7	1476	1644 1637	1.84	43.05	55.08	3.210	
15-2, 20			1662					
15-2, 70	135.6		1828	1.86	43.15	55.95	2.850	4.77
15-2, 100		1687	1630					
15-3, 75 15-4, 20	137.1 138.6		1700				2.763	
15-4, 70		1729	1678	1.84	42.06	54.25	3.177	7.79
15-5, 75	140.1						3.053	
15-6, 20	141.7	1470	1738	1.07	20.22	FA 00	2 022	
15-6, 70 15-6, 100	141.6	1678	1606 1723	1.87	39.73	52.99	3.032	5.78
16-2, 20			1759					
16-2, 70	145.4	1504	1735	1.86	39.16	52.17	2.773	3.77
16-2, 100 16-3, 75	146.0		1791				2 090	
16-4, 20	146.9		1575				2.980	
16-4, 70	148.4	1706	1768	1.82	43.42	54.93	2.958	4.02

Table 11 (continued).

Sample (level in cm)	Sub-bottom depth (m)	Velocity (m/s)	Velocity in liner (m/s)	Wet-bulk density (g/cm ³)	Dry water content (%)	Porosity (%)	Thermal conductivity $(10^{-3} \times cal \times {}^{\circ}C^{-1} \times cm^{-1} \times s^{-1})$	Shear strength (kPa)
16-5, 75	149.9						3.135	
16-6, 70	151.4		1683	1.82	43.63	55.24	3.046	7.53
16-6, 100			1652					
17-2, 20	1000	1700	1789	1.02	20.00	60.04	2 000	2 76
17-2, 70 17-2, 100	156.0	1788	1799 1780	1.83	38.00	50.04	2.888	2.76
17-2, 100	156.6		1760				2.944	
17-4, 20	150.0		1874					
17-4, 70	158.0	1746	1833	1.85	41.59	54.29	2.811	3.01
17-4, 100			1788				2.126	
17-5, 75 17-6, 20	159.5		1829				3.136	
17-6, 30	160.5	1668	1029	1.84	41.93	54.26	2.756	4.78
17-6, 46			1803					
18-2, 20			1854					
18-2, 70	164.6	1681	2005	1.87	38.14	51.37	2.867	8.79
18-2, 100 18-3, 75	166.1		1894				2.919	
18-4, 20	166.1		1791				2.313	
18-4, 70	167.6	1653	1834	1.79	46.02	56.31	3.014	4.27
18-4, 100			1841				10/1/17/20	
18-5, 75	169.1						2.848	
18-6, 20	170.6	1669	1743 1820	1.79	45	55.53	2.871	2.51
18-6, 70 18-6, 100	170.6	1009	1820	1.19		22.23	2.071	2.51
19-2, 75	174.1			1.83	43.8	55.50	2.803	6.53
19-3, 75	175.6						3.024	
19-4, 20	177.1		1743	1.07	10.66	62.74	2.004	2.01
19-4, 70 19-4, 100	177.1		1796 1769	1.87	40.66	53.74	2.994	3.01
19-5, 75	179.6		1709				3.097	
19-6, 20			1756				505553 0-4 (2011)	
19-6, 70	181.1	1768	1797	1.86	41.21	53.95	3.214	
19-6, 100			1774					
20-2, 20 20-2, 70	185.8	1548	1873 1908	1.98	32.44	48.19	3.219	5.78
20-2, 100	103.0	1540	1781	1.90	32.44	40.17	5.215	5.70
20-3, 75	187.3						2.798	
20-4, 20			1804					
20-4, 70	188.8	1604	1791	1.95	34.47	49.69	3.107	9.54
20-5, 75 20-6, 20	190.3		1805				3.108	
20-6, 70	191.7	1894	1745	1.89	39.65	53.44	3.013	11.05
21-2, 20			1775	1000254	-5.7.4 (16.1)			
21-2, 70	195.7	1500	1764	1.90	38.06	52.02	3.100	3.01
21-2, 100	107.0		1778				2.998	
21-3, 75 21-4, 20	197.2		1732				2.990	
21-4, 70	198.7	1495	1752	1.88	39.07	52.53	3.078	5.22
21-4, 100			1856					
21-5, 75	200.2		101010				2.911	
21-6, 20 21-6, 70	201.7	1505	1809	1.91	37.18	51.39	3.033	3.77
21-6, 100	201.7	1505	1744 1749	1.91	37.10	51.59	5.055	3.11
22-1, 50	211.8							
23-1, 75	213.3						2.979	
23-2, 20	214.7	1010	1808	1.87	40.96	54.16	2.040	6.00
23-2, 70 23-2, 100	214.7	1512	1896 1743				2.848	6.53
23-2, 100	216.3		1143				2.902	
23-3, 100	218.8	1620		2.06	24.49	40.10	3.464	
24-1, 75	222.6		12220				3.162	
24-2, 20	224.1		1793	1.00	26.04	\$1.02	2.959	9.79
24-2, 70 24-2, 100	224.1		1923 1803	1.90	36.94	51.02	2.939	9.19
24-3, 20			1809					
24-3, 70	225.6		1802	1.93	33.76	48.49	3.260	4.77
24-3, 100			1685				2 207	
24-4, 20 25-1, 15	227.1						3.305 2.147	
26-2, 20	231.5		1706				2.14/	
26-2, 70	243.1	1596	1500	1.89	41.28	55.00	2.961	10.55
26-2, 100			1707					
26-3, 75	244.6		10.47				2.792	
26-4, 20 26-4, 70	246.1		1867	1.86	42.64	55.34	2.89	
26-4, 100	240.1		1813 1766	1.00	44.04	33.34	2.07	
26-5, 75	247.6						3.081	
26-6, 20			1778					
26-6, 70	249.1	1820	1487	1.92	34.29	48.83	3.136	
26-6, 100			1970					

Line LBB-10 Water depth = 1.11 s = 832.5 m

Figure 21. Part of line LBB-10, showing both sequence boundaries sampled at Site 630 (total depth of penetration is shown by a vertical line). The B/C sequence boundary lies slightly deeper than the postulated total depth of this site.

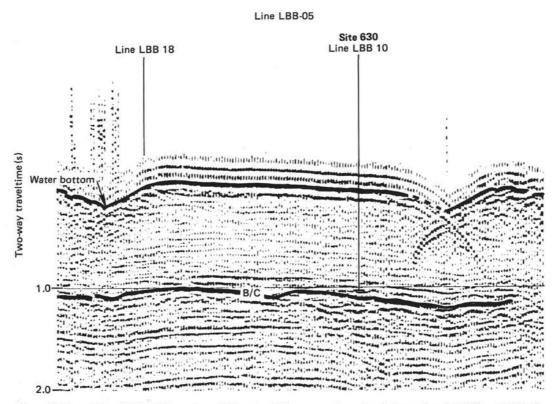


Figure 22. Part of line LBB-05, illustrating relief on the B/C sequence boundary between lines LBB-18 and LBB-10. Note that B/C lies slightly deeper than the total depth at Site 630.

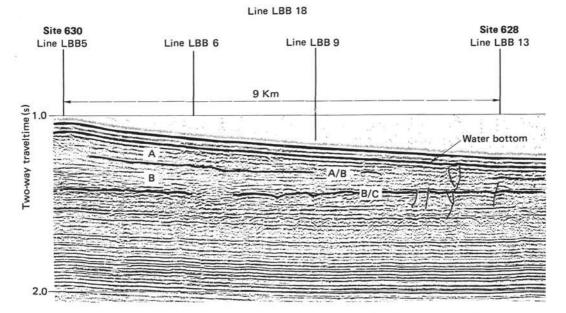


Figure 23. Part of line LBB-18, showing the lateral expression of the A/B and B/C sequence boundaries between Site 628 and survey line LBB-05. Only the B/C boundary can be carried with confidence.

296

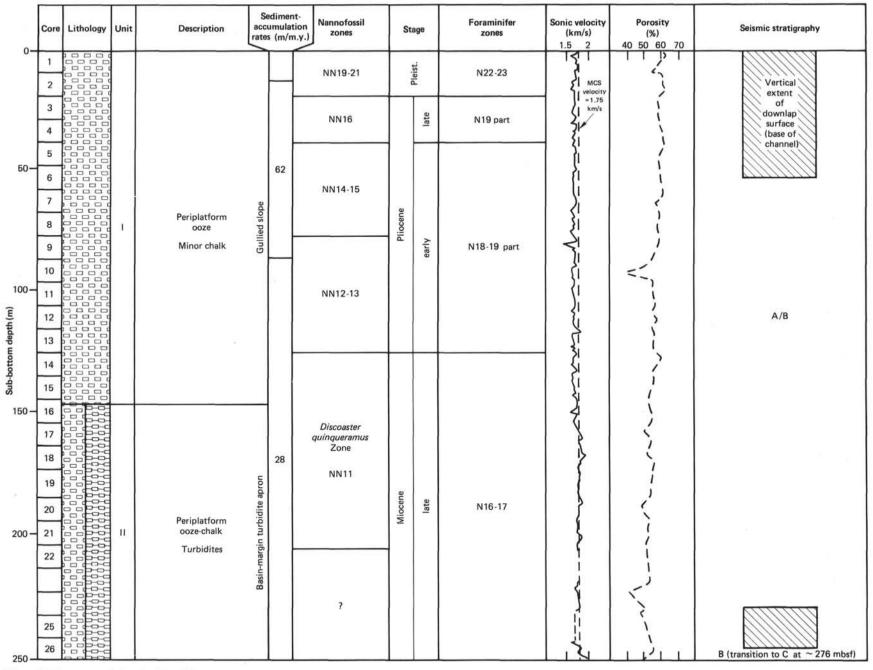
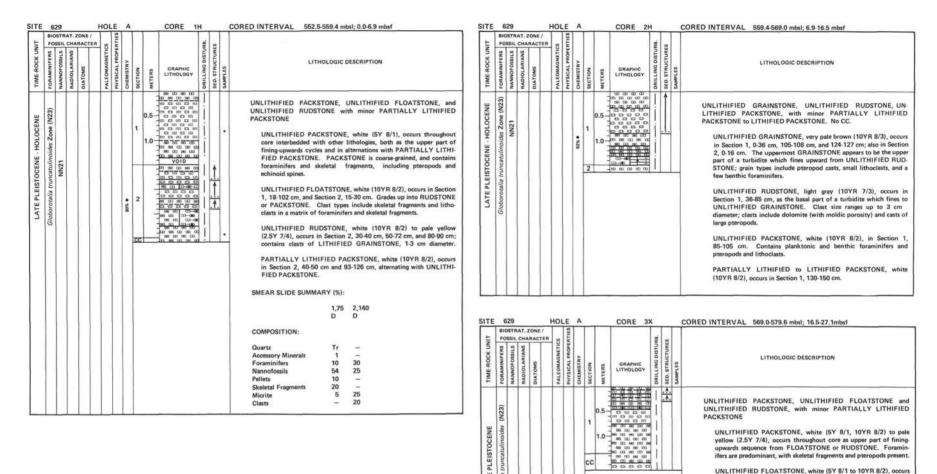
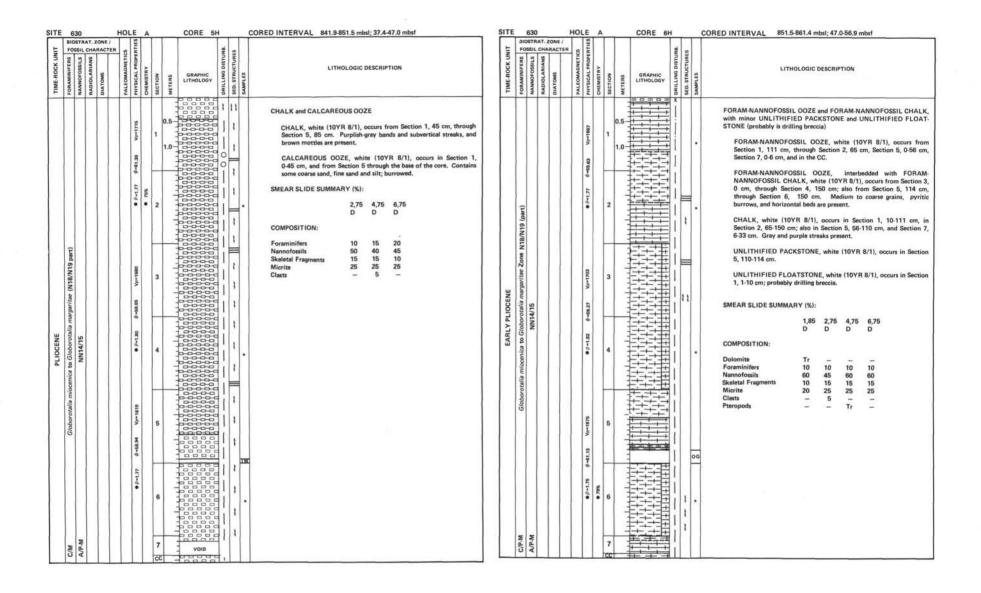
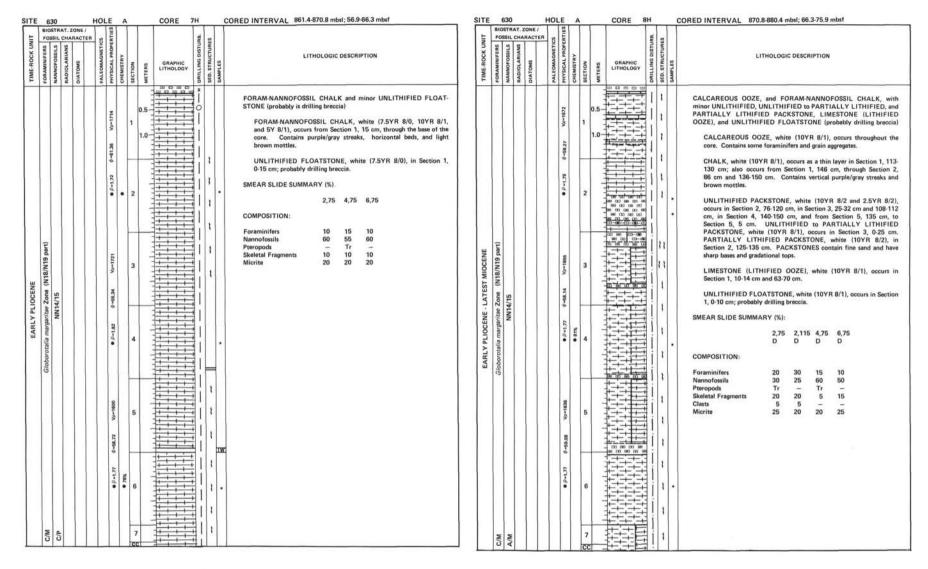



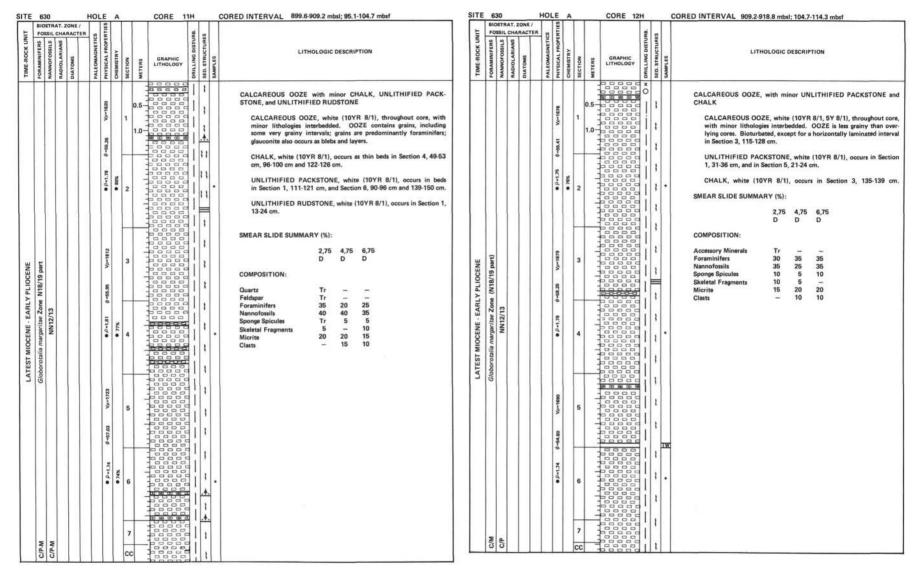
Figure 24. Summary of data for Site 630.

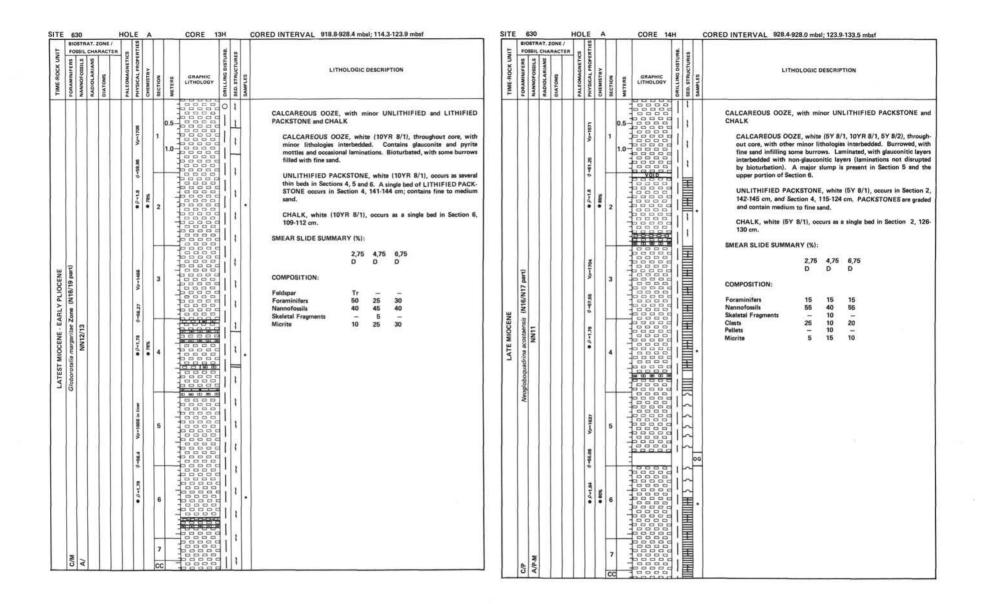
SITES 629 AND 630

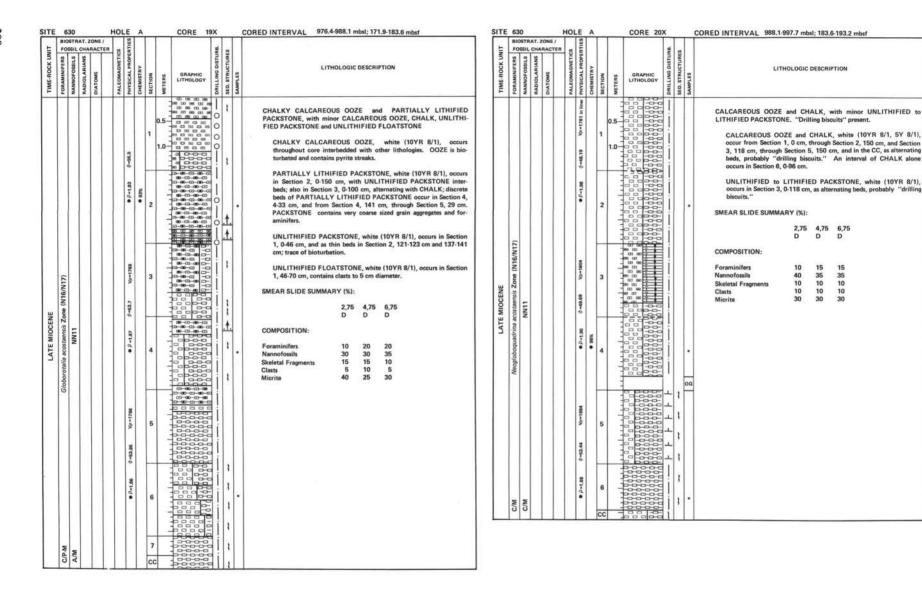

LATE


in Section 1, 8-15 cm and 23-30 cm, as the base of fining-upwards cycles; also occurs from 46 to 75 cm. Skeletal fragments are predominant in matrix, with lithoclasts and pteropods present. UNLITHIFIED RUDSTONE, white (10YR 8/2) mixed with pale yellow (2.5Y 8/4), occurs in CC, 21-32 cm; contains CHALK clasts. PARTIALLY LITHIFIED PACKSTONE, white (10YR 8/2), is

possibly a clast. Occurs in Section 1,42-46 cm.


SITE 630	HOLE A CORE 1H	CORED INTERVAL 804.5-813.1 mbsl; 0-8.6 mbsf	Provide the second data and the	DLE A CORE 2H	CORED INTERVAL 813.1-822.7 mbsl; 8,6-18.2 mbsf
HIME HOCK TARACTER FOR A MANNOLOSITE LA POSSIL CHARACTER FOCK CONTAININE BRAINOLOSITE STATEMENT A MANNOLOSITE STATEMENTA	PALE COMMONETTICS: PALE COMMONETTICS: PALE COMMONETTICS: PALE COMMONETTICS: PALE COMMONETTICS: RECTION MITTINS: PALE COMMONETTICS: REC STITUTION PALE COMMONETTICS: REC STITUTION RECTION PALE COMMONETTICS: REC STITUTION PALE STITUTI	LITHOLOGIC DESCRIPTION	TIME: ROOCK UNIT TIME: ROOCK UNIT FOSSIL CHARACTER RADOLOGI SI IS IS RADOLOGI SI IS IS RADOLOGI SI IS IS RADOLOGI SI IS IS IS IS IS IS IS IS IS IS	PHYSICAL PROPERTIES PHYSICAL PROPERTIES PHYSICAL PROPERTIES SECTION METERS ABOVILING ABOVILING POINTLING SECTIONS	LITHOLOGIC DESCRIPTION
LATE PLEISTOCENE LATE PLEISTOCENE - HOLOCENE C/PM Globorotalia truncatulinoides Zone N/23 C/G NN19 - NN21 E. huxley/i acme Zone NN21		PARTIALLY LITHIFIED PACKSTONE, UNLITHIFIED PACKSTONE, CHALK and CALCAREOUS OOZE, with minor PARTIALLY LITHIFIED PACKSTONE and LITHIFIED PACKSTONE PARTIALLY LITHIFIED PACKSTONE, white (whiter than 10YR 8/1 to 10YR 8/1), occurs in Section 2, 38-73 cm and 77-79 cm; from Section 3, 0 dm, through Section 4, 109 cm; and in Section 5, 0 -150 cm. Contains foraminifers, grain aggregates (< 0.2 cm diameter), clay and nannofossils, slightly burrowed.	PLEISTOCENE C/P Globorotalia miocenica to lower Globorotalia truncatalinoldes (N19 part - N22) F/PM NN19 or NN21		CALCAREOUS OOZE, CHALK, and UNLITHIFIED PACKSTONE and MARLY CALCAREOUS OOZE CALCAREOUS OOZE, white (10YR 8/1), occurs from Section 3, 40 cm, through Section 6, 150 cm; grades toward CHALK in Section 4, 0-150 cm, OOZE in CC is light gray to gray (5Y 7/1 to 5Y 5/1). Contains burrows 1-2 cm diameter; some with dark clayery centers. CHALK, white (10YR 8/1), occurs in Section 2, 16-150 cm. UNLITHIFIED PACKSTONE, white (10YR 8/1), occurs in Section 1, 0-150 cm (with a void from 96-114 cm), and Section 3, 0-40 cm. PACKSTONE is bloturbated; burrows are light gray (2.5Y 7/0). UNLITHIFIED to PARTIALLY LITHIFIED PACKSTONE, white (10YR 8/1 to 5Y 8/1), fine to very fine-grained, contains foramin- ifers. Pyrite occurs in gray streaks and specks, and in burrow fills. MARLY CALCAREOUS OOZE, light gray to gray (5Y 7/1 to 5Y 5/1), occurs in the CC. Small burrows are present (0.2 cm diameter). SMEAR SLIDE SUMMARY (%): 2,75 4,75 6,75 CC,18 D D M M COMPOSITION: Quartz Tr Accessory Minerals: Pyrite 5 Foraminifiers 10 10 10 5 Nannofosils 20 25 13 10 Sponge Spicules 2 - Pyrite 3 Seletal Fragments 20 20 30 20 Clasts 10 5 10 - Micrite 40 40 35 60


SITE 630	RED INTERVAL 822.7-832.3 mbsl; 18.2-27.8 mbsf	SITE 630	HOLE A	CORE 4H	CORED INTERVAL 832.3-841.9 mbsl; 27.8-37.4 mbsf
BIOSTRAT.ZONE / FOSSIL CHARACTE FOSSIL CHARACTE BIOSTRAT.ZONE / FOSSIL CHARACTE BIOSTRAT.ZONE / FOSSIL CHARACTE BIOSTRAT.ZONE / FOSSIL CHARACTE BIOSTRAT.ZONE / FOSSIL CHARACTE	LITHOLOGIC DESCRIPTION	TIME-ROCK UNIT TOWNUTEERS NAMINOFOSTILS RADIOLATIANS OLATOMS	A PROPERTI	METERS ADDIGHTIT ADDIGHTIT ADDIGHTITA ADDIGH	LITHOLOGIC DESCRIPTION
LATE PLIOCENE M Gioborotalia miocenia Zone (M19 part) C/M NN15	CALCAREOUS OOZE and CHALKY CALCAREOUS OOZE, with minor MARLY OOZE, UNLITHIFIED PACKSTONE and PARTIALLY LITHIFIED PACKSTONE CALCAREOUS OOZE, white (5Y 8/1 and 10YR 8/1), from Section 1, 14 cm, through base of the core; mottled and bioturbated. CHALK, white (5Y 8/1), from Section 1, 14 cm, through Section 4, 120 cm, with other minor lithologies interbedded. Bioturbated; contains grain aggregates and foraminifers) and micrite. OOZE, olive gray (5Y 6/2) to light gray (5Y 7/1), occurs in Section 2, 12-30 cm and 79-92 cm. OOZE grades upwards into less muddy intervals. Bioturbation occurred after deposition of the OOZE, because burrows extend through these intervals. UNLITHIFIED PACKSTONE, light gray (5Y 7/2), occurs in Section 1, 0-14 cm; possibly deformed by drilling. SMEAR SLIDE SUMMARY (%): Martz 2 1 Quartz 2 1 1 Olomite 1 1 1 Datortz 2 1 1 Datortz 2 1 1 Outro 1 1 1 1 Datortz 2 1 1 1 Datortz 2 1 1 1 Datortz 2 1 1 1 Datortz 1 1 1 1 Datortz	LATE PLIOCENE Cloborotalia miccenica Zone (N19 part) A/P.M NN16	6017-20 85,1=4 € 5531-20 5521-20-20 5521-20-20-20-20-20-20-20-20-20-20-20-20-20-		CALCAREOUS OOZE and CHALK with minor UNLITHIFIED PAC STONE, LIMESTONE (LITHIFIED OOZE), and UNLITHIFIE FLOATSTONE (probably is drilling breccia) CALCAREOUS OOZE, white (10YR 8/1), occurs in Section 30-85 cm and 100-150 cm; also in Section 3, 0 cm, through Secti 6, 150 cm. Bioturbated, with brownish to gray mottles. Contai some medium to ccarse grains, including foraminifers and gra aggregates. CHALK, white (10YR 8/1), occurs in Section 1, 85-100 cm, and Section 2, 0-150 cm. Bioturbated, contains grain aggregates an foraminifers. LIMESTONE (LITHIFIED OOZE), white (10YR 8/1), occurs ar single layer in Section 1, 25-30 cm. UNLITHIFIED PACKSTONE, white (5Y 8/1), occurs in Section and the CC. Contains coarse grains (up to 0.3 cm diamete including skeletal grains. UNLITHIFIED FLOATSTONE, white (5Y 8/1), probably drilli breccia, in Section 1, 0-25 cm. SMEAR SLIDE SUMMARY (%): 2,75 4,75 6,75 D D D COMPOSITION: Foraminifers 10 15 10 Nannofossils 50 40 35 Skeletal Fragments 15 15 20 Clast 5 - 5 Micrite 20 30 30


	HOLE	A CORE 9H	CORED INTERVAL 880.4-890.2 mbsl; 75.9-85.7 mbsf	SITE	630			HOLE	1	4	CORE 1	OH	_	CORED INTERVAL 890.2-899.6 mbsl; 85.7-95.1 mbsf
LIME CONTRACT STATES AND A CONTRACT STATES AND A CONTRACT AND A CO	PALEOMAGNETICS PHYSICAL PROPERTIES CHEMISTRY	RECTION METERS METERS ADDIGHTI ADDIGUESTURB SED STRUCTURB.	LITHOLOGIC DESCRIPTION	TIME-ROCK UNIT	FOSS	RAT. ZO	CTER	PALEOMAGNETICS	CHEMISTRY	SECTION	S GRAPHIC UITHOLOGY		SED. STRUCTURES	2
LATEST MIOCENE - EARLY PLIOCENE C/M Globorotalia margarite Zone N18/19 part C/P-M NN12/13	6011-0/ 56.09-0 87.1-0 0011-0/ 52.70-0 1/1-0 molinitetation 0.0-126.0-0 1/1-0 0011-0/ 1/2-00-0.00100 0011-0/ 1/0-0000000000000000000000	4 4 4 4 4 4 4	CALCAREOUS OOZE and CHALK, UNLITHIFIED PACKSTONE, and UNLITHIFIED RUDSTONE (probabily drilling breccia) CALCAREOUS OOZE and CHALK, white (10VR 8/1), occurs interbedded throughout core, interbedded with thin UNLITHIFIED PACKSTONE units. OOZE contains pyrite straks and fleck. UNLITHIFIED PACKSTONE, white (10VR 8/1), occurs mostly as thin (2.3 cm thickness) beds, although a thicker graded unit occurs in Section 6, 60-88 cm. UNLITHIFIED RUDSTONE, white (10VR 8/1), occurs in Section 1, 0-10 cm; probably drilling breccia. SMEAR SLIDE SUMMARY (%): 275 4.75 6.75 D D D COMPOSITION: Foraminifers 15 10 10 Nanofossils 35 40 40 Clasts 20 20 15 Micrite 30 30 35	LATEST MIOCENE - EARLY PLIOCENE	alia margaritae Zone			a Garth Andria Waarad adarth dan 11 dan waaraa adarth Maarad	NCD NATIONAL ALLAND NATIONAL AND NATIONAL AN	1				•

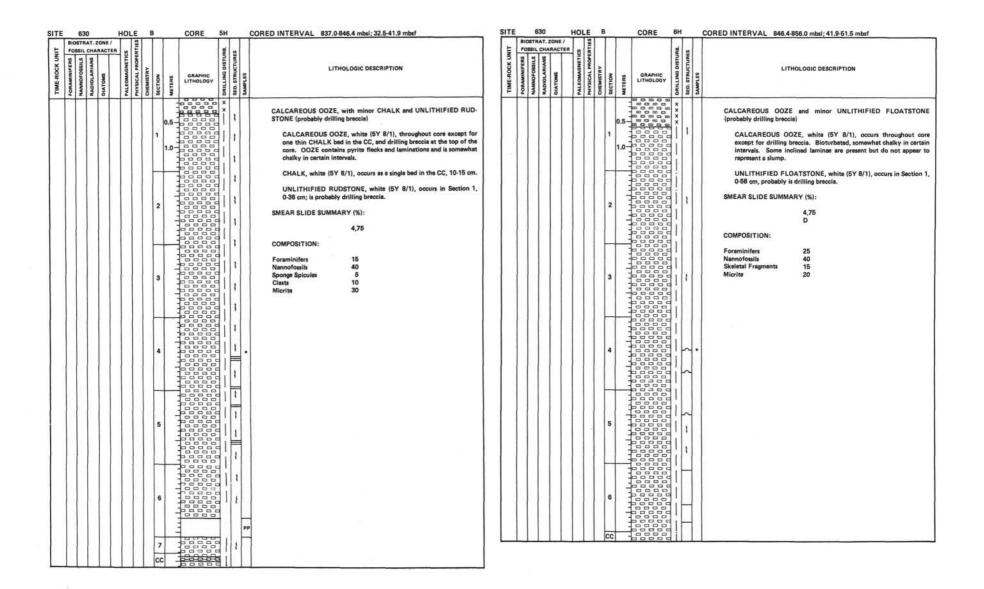
TIME ROCK UNIT PORTURE ROCK UNIT RAMOROFICIAL STORES PARTICIC INTORE PORTURE ROCK UNIT PORTURE ROCK UNIT PORTURE ROCK PARTICIC INTORE ROCKICIAN PARTICIC INTORE ROCKICIAN PARTICIC INTORE ROCKICIAN PARTICIC ROCKICIAN PARTICIC ROCKICIAN PARTICIC ROCKICIAN PARTICIC ROCKICIAN PARTICIC ROCKICIAN PARTICIC ROCKICIAN PARTICIC PARTICIC ROCKICIAN PARTICIC	LITHOLOGIC DESCRIPTION
	1/1
Normalization Normalinteration Normalization Norma	•

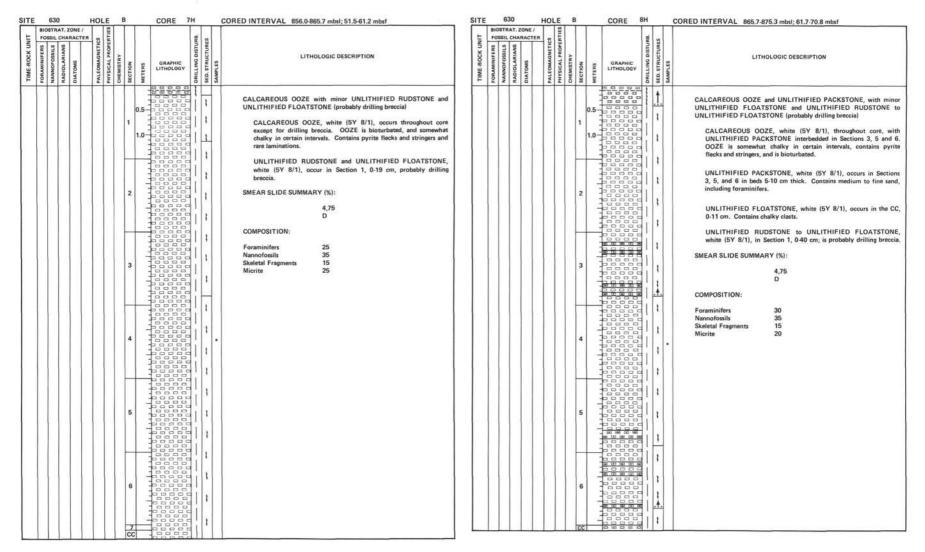
SITE 630	HOLE A CORE 17H	CORED INTERVAL 957.3-966.9 mbsl; 152.8-162.4 mbsf	SITE 630 HOLE A CORE 18H CORED INTERVAL 966.9-976.4 mbsl; 162.4-171.9 mbsf
LIME-HOCK UNIT	In PALLOMAGNETICS PALLOMAGNETICS PALLOMAGNETICS CHEMISTRY RECTON METERS METERS METERS METLING OSTURE PALLING OSTURE	LITHOLOGIC DESCRIPTION	BIOSTRAT. ZORE / FORSIL CHARACTER SUBJECTION FORSIL CHARACTER SUBJECTION SUBJECTION SUBJECTION
LATE MIOCENE Neogloboquadrina acostaeraiz Zone (N16/N17 part) A/P NN11	1 1	CHALK, UNLITHIFIED PACKSTONE, minor CALCAREOUS OOZE and PARTIALLY LITHIFIED PACKSTONE CHALK and UNLITHIFIED PACKSTONE, white (10YR 8/1 and 5Y 8/2), alternate throughout core from Section 1, 90 cm, through the CC, 30 cm. PACKSTONES contain abundant foraminifers, and are graded. CHALKY CALCAREOUS OOZE, white (10YR 8/1), in Section 1, 9:00 cm. Bioturbated; contains a trace of pyrite. PARTIALLY LITHIFIED PACKSTONE, white (2.5Y 8/2), in the CC, 30:50 cm. SMEAR SLIDE SUMMARY (%): 2.75 4.75 6.30 D D D COMPOSITION. Foraminifers 20 15 20 Nannofosili 35 35 25 Skeletal Fragments 10 20 20 Micrite 35 30 35 Dolomite Tr	UNUTHIFED PACKSTONE and CHALK, with minor PARTIALLY UNUTHIFED PACKSTONE UNUTHIFED PACKSTONE and CHALK, with minor PARTIALLY UNUTHIFED PACKSTONE UNUTHIFED PACKSTONE 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1 2 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2

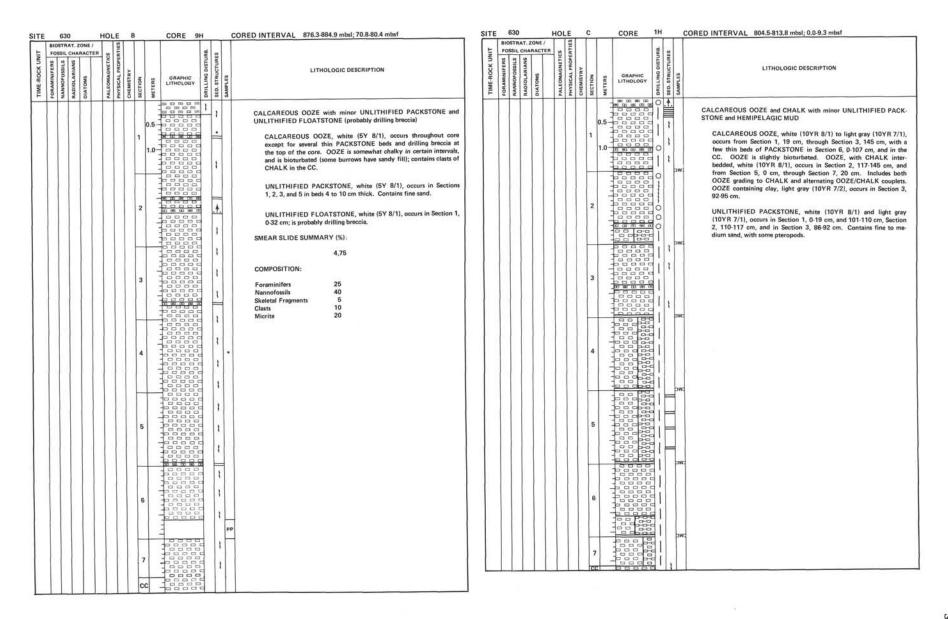
TE 630 HOLE A CO	21X CORED INTERVAL 997.7-1007.4 mbsl; 193.2-202.9 mbsf	SITE 630 HOLE A CORE 22X CORE	D INTERVAL 1007.4-1017.0 mbsl; 202.9-212.5 mbsf
	SED.		LITHOLOGIC DESCRIPTION
2000 (N16/N17)	CHALKY CALCAREOUS OOZE, UNLITHIFIED PACKSTONE an LITHIFIED PACKSTONE. Core material is disturbed by "biscuid deformation." CHALK, white (5Y 8/1), occurs in Section 1, 0-150 cm, Section 2 136-150 cm, from Section 3, 120 cm, through Section 4, 94 cm, an Section 4, 109-150 cm. PARTIALLY LITHIFIED PACKSTONE, white (10YR 8/2), occur in Section 3, 40-120 cm, and Section 4, 94-114 cm; also occur grading to UNLITHIFIED PACKSTONE, white (5Y 8/1), occurs in Section CHALKY CALCAREOUS OOZE, white (5Y 8/1), occurs in Section 2, 0-32 cm and 44-104 cm, and in Section 7, 0-32 cm. UNLITHIFIED PACKSTONE, white (10YR 8/1), occurs in Section 32-44 cm, fines upwards from coarse sand containing foraminifer and grain aggregates. LITHIFIED PACKSTONE, white (10YR 8/1), occurs as a thin be in Section 3, 36-40 cm. SMEAR SLIDE SUMMARY (%): DEC	LATE MIOCENE A.M.G. Veogloboquadrina acceleratis A.M.G. Veogloboqu	UNLITHIFIED GRAINSTONE, PARTIALLY LITHIFIED PAC STONE and UNLITHIFIED PACKSTONE UNLITHIFIED GRAINSTONE, white (2.5Y 8/2), occurs in Sectio 1, 0-62 cm. Contains grain aggregates up to 0.2 cm diameter. PARTIALLY LITHIFIED PACKSTONE to UNLITHIFIED PACI STONE, white (10YR 8/1), in Section 1, 62:100 cm. Contain grain aggregates up to 0.4 cm diameter, foraminifers and drill strin rust flakes; grades to UNLITHIFIED PACKSTONE. UNLITHIFIED PACKSTONE, white (10YR 8/2), occurs in the CI SMEAR SLIDE SUMMARY (%): 1,68 1,80 D D COMPOSITION: Foraminifers 15 20 Nannofossis 15 – Skeletal Fragments 20 38 Clasts 15 40 Micrite 35 – Echinoid Spines – 2 Percopods – Tr
The model of the second	Addition Namofossiis 35 35 45 Addition Skaletal Fragments 15 15 10 Clasts 10 10 10 Addition Micrite 30 30 30 Addition Micrite Micrite 30 30 Addition Micrite Micrite Micrite Micrite Addition		ARTIALLY LITHIFIED PACKSTONE and UNLITHIFIED PACK- TONE, with minor CHALK, CALCAREOUS 002E, LITHIFIED ACKSTONE and UNLITHIFIED RUDSTONE (probably drilling eccia) PARTIALLY LITHIFIED PACKSTONE, white (10YR 8/1, 10YR 8/2, and 2.5YR 8/2), occurs in Section 1, 20-30 cm and 50-150 cm, in Section 3, 0.46 cm and 65-116 cm (pate yellow, 5Y 8/3), and in Section 2, 0-150 cm, grading to UNLITHIFIED PACKSTONE. Contains fine to medium sand, no grading or bioturbation visible. UNLITHIFIED PACKSTONE, white (10YR 8/2), occurs in Section 4 and in the CC. Contains coarse to very coarse sand, mostly grain
		Wattan Wattan Wattan Weightan Weightan Wattan Weightan Wei	aggregates, possible bioturbation. CALCAREOUS OOZE, white (5Y 8/1), in Section 3, 46-65 cm, and Section 3, 115 cm, through Section 4, 10 cm. LITHIFIED PACKSTONE, white (10YR 8/1), in Section 1, 30-35 cm. UNLITHIFIED RUDSTONE, white (10YR 8/1), in Section 1, 0-20 cm; contains rounded clasts up to 3 cm diameter, is probably drilling breccia. MEAR SLIDE SUMMARY (%): 2,82 4,80 D D D DMPOSITION: praminifers 15 10 innofostis 15 25 eletal Fragments 15 10 ats 30 25 crite 25 30

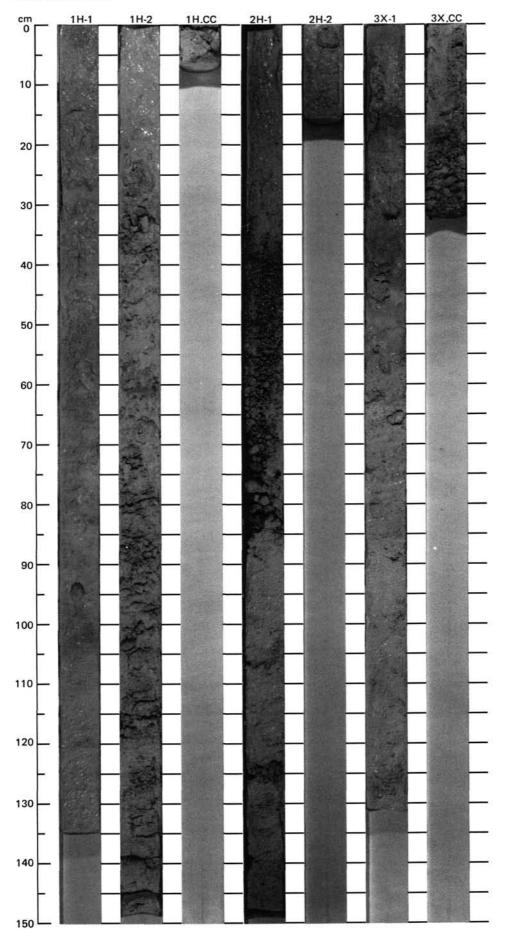
ITE 630 HOLE A CORE 24X	CORED INTERVAL 1026.4-1035.8 mbsl; 221.9-231.3 mbsf	SITE 630 HOLE A CORE 26X CORED INTERVAL 1045.4-1054.8 mbsl; 240.9-250.3 mbsf
BIOLITAT. 2004.01 SUBSTRAT. 2004.01 10017047.2004.01 SUBSTRAT. 2004.01 <t< td=""><td>LITHOLOGIC DESCRIPTION</td><td>IIIOSTRAT.ZONE / IIIOSTRAT.ZONE / IIIOSTRAT.ZO</td></t<>	LITHOLOGIC DESCRIPTION	IIIOSTRAT.ZONE / IIIOSTRAT.ZONE / IIIOSTRAT.ZO
A.M.G // Meogloboquadrina acotesensis Zome (N16/N17) // Meogloboquadrina	CHALK and CALCAREOUS OOZE, with minor LIMESTONE (LITH- IFIED OOZE), PARTIALLY LITHIFIED PACKSTONE and LITHIFIED PACKSTONE. Core material disturbed by biscuit deformation. Strong odor of hydrogen sulfide. CHALK, white (10YR 8/1), in Section 2, 0-150 cm, contains grains and pyrite streaks, possibly bioturbated. Hydrogen sulfide odor is strong. Interbedded with CALCAREOUS OOZE, white (5Y 8/1), in Section 1, 35-46 cm and 51-150 cm, and in Section 3, 0-130 cm and 140-150 cm. OOZE/CHALK alternations may be drilling biscuits. LIMESTONE (LITHIFIED OOZE), white (5Y 8/1), in Section 1, 0-35 cm. PARTIALLY LITHIFIED PACKSTONE, white (5Y 8/1), occurs in Section 3, 130-140 cm, in Section 4, 0-40 cm, and in the CC, 0-39 cm (grading to UNLITHIFIED PACKSTONE). Coarse grained, contains grain aggregates. LITHIFIED PACKSTONE, white (5Y 8/1), occurs in Section 1, 46-51 cm. SMEAR SLIDE SUMMARY (%): 2,75 COMPOSITION: Foraminifers 10 Nanonofositis 35 Skeletal Fragments 10 Clasts 15 Micrite 30	Image: State of the section 1, 59 cm, through section 5, 86 cm. OOZE/CHALK atter anations may be drilling biscuits. CHALK and CALCAREOUS OOZE and LIMESTONE (LITHIFIED, PARTIALLY LITHIFIED PACKSTONE, Core material is disturbes by "biscuit deformation." Image: State of the section 1, 59 cm, through section 5, 86 cm. OOZE/CHALK atter anations may be drilling biscuits. CHALK and CALCAREOUS OOZE, interbedded, various shades of write (25 Y 8/2, 10 YR 8/1) and 10 YR 8/2), occurs for section 1, 59 cm, and in Section 5, 86 cm. OOZE/CHALK atter anations may be drilling biscuits. Image: State of the section 1, 50 cm, through section 5, 86 cm. OOZE/CHALK atter anations may be drilling biscuits. CHALK and CALCAREOUS OOZE, interbedded, various shades of write (25 Y 8/2) to light gray (2.5Y 7/2), occurs in Section 5, 86 -120 cm and in the CC, 7-19 cm. Image: State of the section 5, 86 -120 cm and in the CC, 7-19 cm. CMALK, and in the CC, 7-19 cm. Image: State of the section 5, 86 -120 cm and in the CC, 7-19 cm. CMALK, and in the CC, 7-19 cm. Image: State of the section 5, 86 -120 cm and in the CC, 7-19 cm. CMALK, and in the CC, 7-19 cm. Image: State of the section 7, 6-17 cm, grading to COC of the section 7, 6-17 cm, grading to COC of the section 7, 6-17 cm, grading to COC of the section 1, 50 cm, and in the CC, 20 c25 cm. Image: State of the section 1, 50 cm, the section
TIE 630 HOLE A CORE 25X BIOSTRAT.ZONE / FOSSIL CHARACTER SUBSTRAT.ZONE / FOSSIL CHARACTER SUBSTRAT.ZONE / FOSSIL CHARACTER SUBSTRAT.ZONE / FOSSIL CHARACTER SUBSTRAT.ZONE / FOSSIL CHARACTER SUBSTRAT.ZONE / SUBSTRAT.ZONE / SUBSTRAT.Z	UNLITHIFIED PACKSTONE, LITHIFIED PACKSTONE, LIMESTONE and CHALK UNLITHIFIED PACKSTONE, LITHIFIED PACKSTONE, LIMESTONE and CHALK UNLITHIFIED PACKSTONE, white (2.5Y 8/2), in Section 1, 12-28 cm, and in the CC, 0-18 cm. Contains grain aggregates. LITHIFIED PACKSTONE, white (2.5Y 8/2), occurs in Section 1, 0-12 cm; fragmented by drilling. LIMESTONE, white (10YR 8/1), occurs in the CC, 18-26 cm. CHALK, white (10YR 8/1), in the CC, 26-33 cm.	4/P

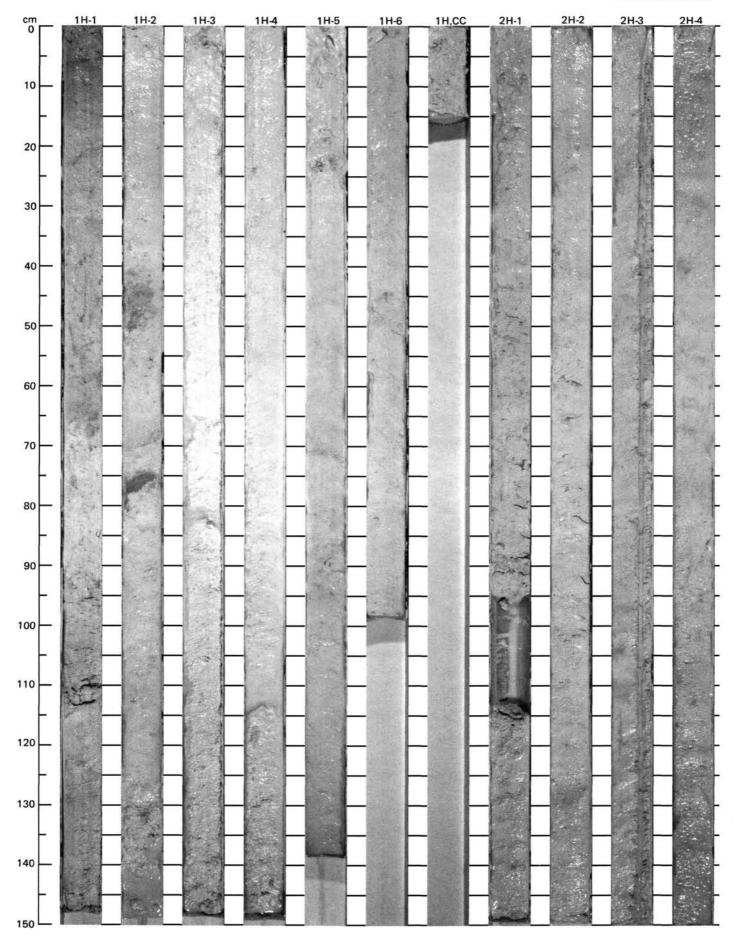
SMEAR SLIDE SUMMARY (%): 1,20 D COMPOSITION: 15 15 25 10 35 Foraminifers Nannofossils **Skeletal Fragments** Clasts Micrite


LATE MIOCENE Neoglaboquadrina acostaensis Zone


A/M-G


TE 630 H BIOSTRAT. ZONE /	OLE E			TT				8105	TRAT	ZONE	7	50		1			
FOSSIL CHARACTER SNUTHER SUBJURIES STISSOLOURUNU SNUTHER SUBJURIES STISSOLOURUNU SNUTHER SUBJURIES STISSOLOURUNU	PALEOMAGNETICS PHYSICAL PROPERTII CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURE.	SED. STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION	TIME-ROCK UNIT	MINIFERS	VOFOSSILS	SWOLVIG		PALEOMAGNETICS PHYSICAL PROPERTII	CHEMISTRY	METERS	GRAPHIC LITHOLOGY	SED. STRUCTURES	LITHOLOGIC DESCRIPTION
		1 0.			11	CALCAREOUS OOZE and UNLITHIFIED PACKSTONE, with minor PARTIALLY LITHIFIED PACKSTONE, CHALK and LIMESTONE (LITHIFIED OOZE) CALCAREOUS OOZE, light gray (2.5Y 7/2) to light brownish gray (2.5Y 6/2) to white (10YR 8/1), occurs throughout core interbedded with other lithologies. CALCAREOUS OOZE and CHALK interbedded, white (10YR 8/2), occurs throughout core interbedded, white (10YR 8/2), occurs in Section 2, 81-106 cm. UNLITHIFIED PACKSTONE, white (10YR 8/1, 10YR 8/2) to gray (10YR 7/2), occurs throughout core interbedded with other lithologies. Some intervals of PACKSTONE, white (10YR 8/1), occurs in Section 2, 120-150 cm. CHALK, white (10YR 8/1), occurs in the CC, 0-16 cm; contains large (up to 0.3 cm diameter) grain aggregates. LIMESTONE (LITHIFIED PACKSTONE, white (10YR 8/1), occurs in Section 3, 37-58 cm, and in the CC, 16-21 cm; contains darker biotrurbated areas. SMEAR SLIDE SUMMARY (%): 1/75 3,45 D 0 D Forominifers 5 10 10 Scensory Minerals 20 10 Forominifers 5 20 Sponge Spicules 5 - Pellets 10 10 Skeletal Fragments 20 15 Micrite 35 40 Preprodods 5 - COMPOSITION: 35 40							1	2			CALCAREOUS OOZE and CHALK, with minor UNLITHIF PACKSTONE and LIMESTONE (LITHIFIED OOZE) CALCAREOUS OOZE, white (10YR 8/1), occurs from Section 0 cm, through the base of the core, with one thin bed each of LI STONE and UNLITHIFIED PACKSTONE. OOZE is slightly a and contains purple-gray streaks, grain aggregates and some h zontal laminations. CHALK, white (10YR 8/1), occurs from Section 1, 0 cm, thro Section 2, 150 cm, with one thin bed of UNLITHIFIED PAC STONE in Section 2. CHALK contains purple-gray streaks. UNLITHIFIED PACKSTONE, white (10YR 8/1), occurs in Sect 2, 55-67 cm, and Section 6, 104-107 cm. Contains very co skeletal debris, including echinoid plates, articulated bivalves (up 0.3-0.5 cm diameter), pteropods and otoliths. LIMESTONE, white (10YR 8/1), occurs in Section 6, 46-50 contains some skeletal molds. SMEAR SLIDE SUMMARY (%): 1,75 5,75 D D COMPOSITION. Foraminifers 20 10 Nannofossils 25 25 Pellets 5 10 Skeletal Fragments 15 20 Clats 5 10 Micrite 30 25


7 CC


BIOSTRAT. ZONE /		ORED INTERVAL 817.9-827.3 mbsl; 13.4-22.8 mbsf	SITE 630 BIOSTRAT. ZONE E FOSSIL CHARACT		B CORE		CORED INTERVAL 827.3-837.0 mbsl; 22.8-32.5 mbsf
FORAMINIFERS FORAMINIFERS ANAMOFOSILLS RADIOLARIANS PALEOMAGNETICS PALEOMAGNETICS PALEOMAGNETICS	CHANSTRY RECTION METERS ADOTOHLIT ADOTOHLIT ADOTOHLING DISTURE SAMPLES SAMPLES	LITHOLOGIC DESCRIPTION	TIME-ROCK UNIT FORAMINIFERS MANNOFOSSILS RADIOLARIANS DIATOMS	PALEOMAGNETICS PHYSICAL PROPER CHEMISTRY	GRAPHIC UDIOLOGY WELEVE	DRILLING DISTURB SED. STRUCTURES	LITHOLOGIC DESCRIPTION
	1 1 1 1 1 1 0.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.1 1 <td>CALCAREOUS OOZE and minor CHALK CALCAREOUS OOZE, white (10YR 8/1, 2.5Y 8/0), occurs through or core with minor lithologies interbedded. OOZE contains small foraminiters and grain aggregates (fine sand size), purple-gray streaks, and burrows up to 2 cm diameter. OOZE in Section 3, 58-70 cm, Section 4, 129-180 cm, and Section 5, 6-71 cm, contains clay. CALCAREOUS OOZE and CHALK, interbedded, white (10YR 8/1), occurs in Section 4, 0-125 cm, and in Section 6, 0 cm, through Section 7, 42 cm. SMEAR SLIDE SUMMARY (%). MEAR SLIDE SUMMARY (%). Tr - OZMPOSITION: Feldgaar - Tr - OZMPOSITION: Privation - Tr - Tr - Privation - Tr - Tr - OZ 25 10 20 Privation - Tr - Tr - Tr - Privation - Tr - Tr Skaletal Fragments 15 20 10 15 Colspan= 10 Not colspan= 20 Accurspan= 20 Accurspan= 20 Accurspan= 20 Accurspan= 20 Accurspan= 20 <t< td=""><td></td><td></td><td>3 4 1000000000000000000000000000000000000</td><td></td><td>CALCAREOUS OOZE and minor UNLITHIFIED FLOATSTO (probably drilling breccia) CALCAREOUS OOZE, white (10YR 8/1, 5Y 8/2), through core except for drilling breccia near top. Bioturbated, conta stringers and flecks of pyrite, and some glauconite. Some intervals OOZE are somewhat chalky. UNLITHIFIED FLOATSTONE, white (10YR 8/1), occurs in Sect 1, 0.45 cm. Contains skeletal fragments and clasts; is proba drilling breccia. SMEAR SLIDE SUMMARY (%): 4,76 COMPOSITION: Foraminifiers 20 Nannofossils 30 Sponge Spicules Tr Clasts 20 Micrite 30</td></t<></td>	CALCAREOUS OOZE and minor CHALK CALCAREOUS OOZE, white (10YR 8/1, 2.5Y 8/0), occurs through or core with minor lithologies interbedded. OOZE contains small foraminiters and grain aggregates (fine sand size), purple-gray streaks, and burrows up to 2 cm diameter. OOZE in Section 3, 58-70 cm, Section 4, 129-180 cm, and Section 5, 6-71 cm, contains clay. CALCAREOUS OOZE and CHALK, interbedded, white (10YR 8/1), occurs in Section 4, 0-125 cm, and in Section 6, 0 cm, through Section 7, 42 cm. SMEAR SLIDE SUMMARY (%). MEAR SLIDE SUMMARY (%). Tr - OZMPOSITION: Feldgaar - Tr - OZMPOSITION: Privation - Tr - Tr - Privation - Tr - Tr - OZ 25 10 20 Privation - Tr - Tr - Tr - Privation - Tr - Tr Skaletal Fragments 15 20 10 15 Colspan= 10 Not colspan= 20 Accurspan= 20 Accurspan= 20 Accurspan= 20 Accurspan= 20 Accurspan= 20 <t< td=""><td></td><td></td><td>3 4 1000000000000000000000000000000000000</td><td></td><td>CALCAREOUS OOZE and minor UNLITHIFIED FLOATSTO (probably drilling breccia) CALCAREOUS OOZE, white (10YR 8/1, 5Y 8/2), through core except for drilling breccia near top. Bioturbated, conta stringers and flecks of pyrite, and some glauconite. Some intervals OOZE are somewhat chalky. UNLITHIFIED FLOATSTONE, white (10YR 8/1), occurs in Sect 1, 0.45 cm. Contains skeletal fragments and clasts; is proba drilling breccia. SMEAR SLIDE SUMMARY (%): 4,76 COMPOSITION: Foraminifiers 20 Nannofossils 30 Sponge Spicules Tr Clasts 20 Micrite 30</td></t<>			3 4 1000000000000000000000000000000000000		CALCAREOUS OOZE and minor UNLITHIFIED FLOATSTO (probably drilling breccia) CALCAREOUS OOZE, white (10YR 8/1, 5Y 8/2), through core except for drilling breccia near top. Bioturbated, conta stringers and flecks of pyrite, and some glauconite. Some intervals OOZE are somewhat chalky. UNLITHIFIED FLOATSTONE, white (10YR 8/1), occurs in Sect 1, 0.45 cm. Contains skeletal fragments and clasts; is proba drilling breccia. SMEAR SLIDE SUMMARY (%): 4,76 COMPOSITION: Foraminifiers 20 Nannofossils 30 Sponge Spicules Tr Clasts 20 Micrite 30

