INDEX TO VOLUME 101

This index provides coverage for both the Initial Reports and Scientific Results portions of Volume 101 of the Proceedings of the Ocean Drilling Program. Index entries with the suffix A refer to pages in the Initial Reports, and those with B, to pages in the Scientific Results (this book).

The index is presented in three parts: (1) a Subject Index, (2) a Site Index, and (3) a Paleontological Index. In addition to this printed version, the index is also available in the form of a machine-readable, ASCII-encoded, 9-track magnetic tape, 1600 bpi.

The index was prepared by Wm. J. Richardson Associates, Inc., under subcontract to the Ocean Drilling Program. It follows the concept developed by the Deep Sea Drilling Project at Scripps Institution of Oceanography for a comprehensive, cumulative index of DSDP volumes. Both of these indexes are based on a hierarchy of entries: (1) a main entry, defined as a key word or concept followed by a reference to the page on which that word or concept appears; (2) a subentry, defined as a further elaboration on the main entry followed by a page reference; and (3) a sub-subentry, defined as an even further elaboration on the main entry or subentry followed by a page reference.

The Subject Index follows a standard format. Geographic and individual names are referenced in the index only if they are subjects of discussion. This index often includes broad fossil groups, such as foraminifers and radiolarians, which also appear in the Paleontological Index.

The Site Index is structured to contain entries for the sites discussed in the volume. Site entries are modified by subject subentries.

The Paleontological Index is an index relating to significant findings and/or substantive discussions, not of species names per se. This index covers three varieties of information: (1) broad fossil groups, including individual genera and species that have been erected or emended formally; (2) biostratigraphic zones; and (3) fossils depicted in illustrations.

The indexes cover text figures and tables but not core description forms ("barrel sheets") or core photographs. Also excluded are bibliographic references, names of individuals, and routine front and back matter.

For further information, contact the Chief Production Editor, Ocean Drilling Program, 1000 Discovery Drive, College Station, Texas 77840.
SUBJECT INDEX

<table>
<thead>
<tr>
<th>Subject</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abaco event</td>
<td>428B, 429B, 430B, 467B</td>
</tr>
<tr>
<td>Accretion, at Exuma Sound</td>
<td>356A</td>
</tr>
<tr>
<td>Alteration</td>
<td></td>
</tr>
<tr>
<td>See Diagenesis</td>
<td></td>
</tr>
<tr>
<td>Andros Island</td>
<td></td>
</tr>
<tr>
<td>evaporite and dolostone</td>
<td>194B</td>
</tr>
<tr>
<td>shallow-marine environments</td>
<td>426B</td>
</tr>
<tr>
<td>subsidence, 443B</td>
<td></td>
</tr>
<tr>
<td>Antilles Current</td>
<td>334B</td>
</tr>
<tr>
<td>Aragonite</td>
<td></td>
</tr>
<tr>
<td>cycles</td>
<td></td>
</tr>
<tr>
<td>Exuma Sound, 225B</td>
<td></td>
</tr>
<tr>
<td>in intermediate water masses</td>
<td>222B</td>
</tr>
<tr>
<td>Pliocene, 234B-235B</td>
<td></td>
</tr>
<tr>
<td>and pteropod ratios, 234B</td>
<td></td>
</tr>
<tr>
<td>in Quaternary, 233B-234B</td>
<td></td>
</tr>
<tr>
<td>worldwide correlations, 235B</td>
<td></td>
</tr>
<tr>
<td>dissolution</td>
<td></td>
</tr>
<tr>
<td>and carbonate saturation state</td>
<td>221B</td>
</tr>
<tr>
<td>Exuma Sound, 344A, 345A, 352A,</td>
<td></td>
</tr>
<tr>
<td>396A, 400A, 401A, 444A, 448A,</td>
<td></td>
</tr>
<tr>
<td>452A</td>
<td></td>
</tr>
<tr>
<td>causes of fluctuation, 219B</td>
<td></td>
</tr>
<tr>
<td>correlation with oxygen-isotope record, 219B</td>
<td></td>
</tr>
<tr>
<td>oxygen-isotope analyses, 215B, 216B, 237B-244B</td>
<td></td>
</tr>
<tr>
<td>Pliocene, 234B-235B</td>
<td></td>
</tr>
<tr>
<td>Quaternary, 233B-234B</td>
<td></td>
</tr>
<tr>
<td>stratigraphy, 214B-215B</td>
<td></td>
</tr>
<tr>
<td>Little Bahama Bank, 131A, 138A,</td>
<td></td>
</tr>
<tr>
<td>Little Bahama Bank</td>
<td></td>
</tr>
<tr>
<td>Calciturbidites</td>
<td></td>
</tr>
<tr>
<td>in spar cement, 258B</td>
<td></td>
</tr>
<tr>
<td>calciturbidites</td>
<td></td>
</tr>
<tr>
<td>in carbonate saturation state, 221B</td>
<td></td>
</tr>
<tr>
<td>Exuma Sound, 215B, 552A, 400A,</td>
<td></td>
</tr>
<tr>
<td>401A, 444A</td>
<td></td>
</tr>
<tr>
<td>Little Bahama Bank, 131A, 138A,</td>
<td></td>
</tr>
<tr>
<td>Little Bahama Bank, 7A, 8A</td>
<td></td>
</tr>
<tr>
<td>Little Bahama Bank, 7A, 8A, 175B</td>
<td></td>
</tr>
<tr>
<td>Straits of Florida, 8A</td>
<td></td>
</tr>
<tr>
<td>Calcite</td>
<td></td>
</tr>
<tr>
<td>dissolution</td>
<td></td>
</tr>
<tr>
<td>and carbonate saturation state, 221B</td>
<td></td>
</tr>
<tr>
<td>Northeast Providence Channel</td>
<td></td>
</tr>
<tr>
<td>deep-marine diagenesis, 258B-260B</td>
<td></td>
</tr>
<tr>
<td>Oligocene to Miocene, 258B-260B</td>
<td></td>
</tr>
<tr>
<td>oxygen-isotope analyses, 257B, 258B, 259B-260B</td>
<td></td>
</tr>
<tr>
<td>peritidal deposition, 256B-258B</td>
<td></td>
</tr>
<tr>
<td>SEM photomicrographs, 257B, 259B</td>
<td></td>
</tr>
<tr>
<td>shallow-marine diagenesis, 256B-258B</td>
<td></td>
</tr>
<tr>
<td>Brine, hypersaline</td>
<td></td>
</tr>
<tr>
<td>and dolomite, 198B</td>
<td></td>
</tr>
<tr>
<td>Calcareous ooze</td>
<td></td>
</tr>
<tr>
<td>Exuma Sound, 7A</td>
<td></td>
</tr>
<tr>
<td>Little Bahama Bank, 7A</td>
<td></td>
</tr>
<tr>
<td>Calcisphere limestone</td>
<td></td>
</tr>
<tr>
<td>Exuma Sound, 7A, 8A</td>
<td></td>
</tr>
<tr>
<td>Little Bahama Bank, 7A, 8A, 175B</td>
<td></td>
</tr>
<tr>
<td>Straits of Florida, 8A</td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td></td>
</tr>
<tr>
<td>gradients, as stratigraphic tools, 378B-379B</td>
<td></td>
</tr>
<tr>
<td>Cenomanian, 278A</td>
<td></td>
</tr>
<tr>
<td>Northeast Providence Channel, 354A</td>
<td></td>
</tr>
<tr>
<td>Strats of Florida, 64A-65A, 66A</td>
<td></td>
</tr>
<tr>
<td>Carbon, organic</td>
<td></td>
</tr>
<tr>
<td>Northeast Providence Channel, 381B-383B</td>
<td></td>
</tr>
<tr>
<td>Carbon dioxide</td>
<td></td>
</tr>
<tr>
<td>Exuma Sound, 398A, 406A, 455A</td>
<td></td>
</tr>
<tr>
<td>raising alkalinity, 444A, 446A</td>
<td></td>
</tr>
<tr>
<td>Carbonate</td>
<td></td>
</tr>
<tr>
<td>Devonian megabreccia (Alberta), 189B</td>
<td></td>
</tr>
<tr>
<td>diagenesis, 370B-378B</td>
<td></td>
</tr>
<tr>
<td>in Bahamas area, 363B</td>
<td></td>
</tr>
<tr>
<td>celestite precipitation, 375B</td>
<td></td>
</tr>
<tr>
<td>dolomitization, 375B-378B and isotope ratios, 299B</td>
<td></td>
</tr>
<tr>
<td>model for, 300B</td>
<td></td>
</tr>
<tr>
<td>and porosity, 443B</td>
<td></td>
</tr>
<tr>
<td>recrystallization estimates, 371B-374B, 375B</td>
<td></td>
</tr>
<tr>
<td>estimating original isotopic composition, 247B</td>
<td></td>
</tr>
<tr>
<td>Exuma Sound</td>
<td></td>
</tr>
<tr>
<td>deep-water, content, 292B, 297B</td>
<td></td>
</tr>
<tr>
<td>deep-water, geochemistry, 292B-294B</td>
<td></td>
</tr>
<tr>
<td>deep-water, lithology, 281B, 292B, 295B</td>
<td></td>
</tr>
<tr>
<td>deep-water, microscopic characteristics, 294B, 298B</td>
<td></td>
</tr>
<tr>
<td>deep-water, mineralogy, 292B, 297B</td>
<td></td>
</tr>
<tr>
<td>deep-water, oxygen-isotope analyses, 298B-300B</td>
<td></td>
</tr>
<tr>
<td>Holocene-Pleistocene, 224B-226B, 227B</td>
<td></td>
</tr>
<tr>
<td>mineral suite, 225B</td>
<td></td>
</tr>
<tr>
<td>mineralogy, 237B-244B, 366B, 371B</td>
<td></td>
</tr>
<tr>
<td>Pleistocene, 226B, 228B</td>
<td></td>
</tr>
<tr>
<td>Pliocene, 226B-227B, 229B</td>
<td></td>
</tr>
<tr>
<td>geochronal logging of, 450B</td>
<td></td>
</tr>
<tr>
<td>gravity flows, 170B-191B</td>
<td></td>
</tr>
<tr>
<td>and biostatigraphy, 180B, 181B, 184B</td>
<td></td>
</tr>
<tr>
<td>Blake-Bahama Basin, 188B</td>
<td></td>
</tr>
<tr>
<td>clast origin, 187B</td>
<td></td>
</tr>
<tr>
<td>clast-bearing sediment, 179B, 180B</td>
<td></td>
</tr>
<tr>
<td>clast-free sediment, 180B-181B, 185B, 186B</td>
<td></td>
</tr>
<tr>
<td>composite flows, 186B-187B</td>
<td></td>
</tr>
<tr>
<td>flow mechanisms, 183B-184B, 186B</td>
<td></td>
</tr>
<tr>
<td>Little Bahama Basin, 187B-188B</td>
<td></td>
</tr>
<tr>
<td>sea-level variations, 188B-189B</td>
<td></td>
</tr>
<tr>
<td>subdivisions, 183B</td>
<td></td>
</tr>
<tr>
<td>Unit II subdivisions, 186B</td>
<td></td>
</tr>
<tr>
<td>unstable, 190B</td>
<td></td>
</tr>
<tr>
<td>West Florida Margin, 188B, 189B</td>
<td></td>
</tr>
<tr>
<td>Little Bahama Bank</td>
<td></td>
</tr>
<tr>
<td>deep-water, content, 288B-289B, 291B, 292B</td>
<td></td>
</tr>
<tr>
<td>deep-water, geochemistry, 289B, 291B</td>
<td></td>
</tr>
<tr>
<td>deep-water, lithology, 281B, 287B</td>
<td></td>
</tr>
<tr>
<td>deep-water, microscopic characteristics, 289B, 291B, 293B, 294B</td>
<td></td>
</tr>
<tr>
<td>deep-water, mineralogy, 288B-289B</td>
<td></td>
</tr>
</tbody>
</table>

483
292B, 364B, 365B, 366B
deep-water, oxygen-isotope analyses, 299B-300B
megabank drowning, 193B
shallow-to-deep-water change, 125A
low-magnesium calcite in, 172B
Northeast Providence Channel
carbonate-isotope analyses, 245B-252B
deep-water, content, 285B, 286B, 287B
deep-water, geochemistry, 285B, 286B, 287B
deep-water, lithology, 281B, 282B
deep-water, microscopic characteristics, 285B, 288B
deep-water, mineralogy, 285B, 286B
deep-water, oxygen-isotope analyses, 299B-300B
mineralogy, 370B, 373B, 379B
organic-isotope analyses, 245B-252B
periplatform, 279B
rapid diagenesis, 280B, 295B, 299B
vs. pelagic, 300B
recrystallization estimates, 371B-374B
shallow-bank cements, 255B
Straits of Florida, 80A
deep-water, content, 281B-282B, 283B
deep-water, geochemistry, 282B, 283B
deep-water, lithology, 281B, 282B
deep-water, mineralogy, 281B-282B, 283B, 370B, 374B, 379B
deep-water, recrystallization, 282B, 284B
pelagic-hemipelagic, 50A, 51A, 52A
See also specific carbonates
See also Clasts, carbonate
Carbonate lysocline
Bahamas area, 280B
Carbonate platforms
sea level highstands and, 188B
sediment transport, 203B
See also Periplatform oozes
Carbonate slopes
Abaco event, 217B, 469B
development, 469B
Exuma Sound
development, 341A-342A
progradation, 442A
sedimentation patterns, 468B
Geochemistry, 468B-469B
geothermal properties of sediments in, 315B-325B
consolidation characteristics, 315B-317B, 318B, 319B, 320B
shear strength, 317B-319B, 321B, 322B-325B
stratigraphy, 315B, 316B, 317B
highstand shedding, 218B, 457B, 467B, 468B, 470B
Little Bahama Bank
ancient channel and levee system, 264B-265B, 268B, 289B, 273B-274B
ancient surficial slumps, 266B, 270B-272B, 273B
detachment surfaces, 265B-267B, 270B-271B, 273B, 274B
development, 112A
divisions, 112A
erosion surface, 266B, 269B-272B
present-day slope configurations, 263B-264B, 265B, 275B
sedimentologic constraints, 272B, 275B
shallow, 460B-462B, 467B
syndepositional gravity movement, 219A
modern vs. ancient, 273B, 457B
and platform drowning, 463B, 465B-466B
platform to basin transitions, 457B
progradation, 480B
response to postulated global cycles, 112A
sediment record, 467B-468B, 471B
Cay Sal, 426B
subidence curves, 428B
Celestite
Exuma Sound, 392A, 394A
precipitation, 375B
Cementation
and current strength, 183B
deep-marine spars, 247B-248B
isotope values, 250B-251B
Cements
Straits of Florida, 60A
Cements, spar
dep-marine, 250B-251B, 257B
distinguishing meteoric-c cane from deep-marine, 239B
Chalk
Exuma Sound, 7A, 8A, 395A
indicating gully floor, 345A-346A
thickness, 390A
Little Bahama Bank, 7A, 8A, 112A-112A, 124A, 175B
natural remanent magnetization, 135A
magnetic properties, 328B-329B, 331B, 332B
Northwest Providence Channel, 489A, 490A
composition of, 490A
Straits of Florida, 8A
See also Carbonate
Chalk-ooze sequences
Little Bahama Bank, 123A, 217A, 219A
Chert
Exuma Sound, 7A, 8A
Little Bahama Bank, 7A, 8A, 113A, 175B
Northwest Providence Channel, 491A-492A, 493A
Straits of Florida, 8A, 60A, 174B
Clasts, carbonate
in gravity flows, 179B, 180B-181B, 182B
origin, 182B-183B
petrography, 181B
Straits of Florida, 57A, 59A
Clay minerals
diagenesis in carbonate-rich sediments, 171B-177B
Clays
Little Bahama Bank, 215A, 218A, 277A
mineralogy, 173B-174B
illite, 176B
polygorskite, 174B
smectite, 173B, 176B, 177B
smectite crystallinity, 174B
Clinoptilolite
origin
Straits of Florida, 173B
Columbus Basin turbidites, 266B
Compressional wave velocity
Exuma Sound, 353A, 357A, 404A, 409A, 410A-411A, 450A
Little Bahama Bank, 137A, 226A-227A, 282A
Northeast Providence Channel, 535A, 542A
Northwest Providence Channel, 499A
Consolidation
indicators of over- and underconsolidation, 316B
Contaminants
magnetic-susceptibility measurements, 39A-43A
Convection systems, geothermal
platform margins, 198B
Convergence
and Caribbean area earthquakes, 469B
Creep lobes
Little Bahama Bank, 274B
propagation of, 276B
Debris flows
Blake-Bahama Basin
Miocene, 188B
Exuma Sound, 7A, 8A, 391A
Little Bahama Bank, 7A, 8A, 117A, 120A, 175B
comparisons, 221A
indicative of stratigraphic break, 130A
mud-supported, 211B
Northeast Providence Channel, 528A-529A
Miocene, 76A
Deep-water channels
structure and evolution, 439B-451B
density, 448B-450B
lithology, 447B-448B, 449B
log-derived subsidence, 440B-447B
velocity, 448B-450B
Density/orosity relationships
from logs, 449B
Deposition, episodic
Straits of Florida, 75A
Diagenesis
and burial rates, 300B
pelagic vs. periplatform carbonates, 363B
of perireef carbonates
Northwest Providence Channel, 255B-260B
of strongly magnetic carbonate oozes, 333B-333B
Diagenesis, shallow-burial carbonates
Bahamas area, 279B-301B
periplatform, 295B, 299B-300B
Diamagnetism, 39A
Straits of Florida, 68A-69A
Dolomite
in Bahamas area
sources of, 375B-378B
deep-burial diagenesis, 197B
dolomite, 197B
Exuma Sound, 7A, 8A, 215B, 216B, 217B, 225B, 448A
and calcium concentrations, 368B
formation, 463B-469B
Exuma Sound, 218B-219B
clothed appearance, 190B
fine crystals, 200B
origins, 289B
size trends, 194B
magnesium contents, 376B
Northwest Providence Channel, 535A, 536A
SUBJECT INDEX

salinity, 66A
X-ray data, 66A, 67A, 68A
Kerogen
compositions
pyrolysis-gas chromatography
estimates, 384B-385B
Exuma Sound, 349A, 354A, 398A, 401A, 403A
geochemical differences
causes of, 386B
Little Bahama Bank, 131A, 144A, 145A, 152A,
Cenomanian, 131A
marine, degradation of, 386B
Northeast Providence Channel
carbon-isotope analysis, 383B-384B, 385B
elemental compositions, 383B, 384B, 385B
Key Largo well (Sinclair), 440B
Lagoonal lithofacies
contacts with peritidal lithofacies,
1960-1970B
Little Bahama Bank
petrography, 194B-195B, 196A, 199B, 200B
upward-shoaling sequences,
1960-1970B, 200B
Limestone
dark, in Bahamas area, 381B
and bottom-water conditions, 386B
Exuma Sound, 392A, 393A, 394A
texture, 392A
Little Bahama Bank, 122A, 142A-143A, 152A, 218A
lagoonal lithofacies, 194B-195B
moldic porosity, 124A
peritidal lithofacies, 195B-196B
magnetic properties, 329B, 333B
Northeast Providence Channel, 485A,
528A, 529A
textural classification of, 17A
See also Calcareous limestone
Limestone, shallow-marine
Exuma Sound, 7A, 8A
Little Bahama Bank, 7A, 8A, 175B
Northwest Providence Channel, 251B
Straits of Florida, 8A, 50A, 51A, 52A
Limestone, siliceous
Exuma Sound, 7A, 8A
Little Bahama Bank, 7A, 8A, 175B, 220A
Straits of Florida, 8A
Little Bahama Bank
aragonite and magnesian calcite increase,
126A
bathymetry, 393B-394B
bottom currents, 273B-274B
carbonate content and mineralogy,
288B-289B
carbonate platform
top, 465B
carbonate slopes

Leg 101 summary results, 457B-459B,
460B, 462B, 463B
lithology, 287B
logging data, 141A-143A
magnetic anomalies, 394B, 400B
magnetostratigraphy, 330B-332B
mineralogy, 346B-356B
Miocene faulting, 275B
paleomagnetism, 135A-137A
physical properties. See under specific properties
platform facies petrography, 193B-201B
Rock-Eval data, 131A, 135A
sediment color changes, 120A, 121A
sediment isopachs, 396B, 398B-399B
sediment movement, 313B-314B
seismic stratigraphy, 213A-220A,
272A-277A
seismic sequences, 391B, 394B-395B,
398B, 402B, 403B
seismic stratigraphy, 143A-145A,
149A-151A
sequence boundaries, 295A-296A
structure, 396B
turbidite sequences, 203B-212B
Unit I, 116A-121A, 214A-216A, 273A
Unit II, 121A, 122A, 273A-274A
Unit III, 121A-122A
Unit IV, 122A-123A
Unit V, 123A-124A
Unit VI, 124A-125A
Little Isaac 1 well
See also paleogeography, 433B, 435B
Logging
of Leg 101 sites, 21A-22A
Straits of Florida, 7A, 7A4
Long Island (Bahamas), 426B
Magnesian calcite. See Calcite, magnesian Magnesium
Exuma Sound, 294B, 348A, 350A, 351A,
396A, 398A, 399A, 444A, 446A,
447A
Little Bahama Bank, 130A-131A, 136A,
137A, 225A, 278A, 280A, 281A,
289B
Northeast Providence Channel, 534A
Northwest Providence Channel, 498A
Straits of Florida, 64A-65A, 66A, 282B
transport, 376B-377B
Magnetic anomalies
Little Bahama Bank, 394B, 400B
Magnetic reversals
Exuma Sound, 332B-333B
Little Bahama Bank, 332B
on Blake Plateau, 330B-331B
Magnetic susceptibility
Exuma Sound, 457A
measurement procedures, 19A
of metal contaminants, 39A-43A
Exuma Sound, 356A, 403A, 408A
Little Bahama Bank, 135A-136A, 145A
vs. depth, 40A, 42A
See also Paleomagnetism
Magnetite
as carrier of magnetic remanence,
334B-335B
reduction with burial, 337B
Magnetostatigraphy, 329B
Exuma Sound
age vs. depth curve, 226B
Pliocene, 224B
Pliocene to Pleistocene, 332B-333B,
335B
Little Bahama Bank
Cretaceous, 330B, 331B
Oligocene, 330B-332B, 334B
Maldive Islands
aragonite cycles, 22B
periplatform sequences, 235B
Marl
Exuma Sound, 7A, 8A
Little Bahama Bank, 7A, 8A
Straits of Florida, 8A
MCU. See Mid-Cretaceous unconformity
Mega bank hypothesis. See Bahamas,
Straits of Florida,
Methane, at Exuma Sound, 398A, 405A,
455A
Mexico. Gulf of
organic-rich carbonates, 381B, 386B
Micrite
envelopes
source of, 247B
Exuma Sound, 344A, 345A
Little Bahama Bank, 273A, 275A, 276A
Mid-Cretaceous unconformity (MCU), at
Straits of Florida, 52A
Minerals, magnetic
dissolution of, 336B, 338B
See also Magnetite
Natural remnant magnetization. See
Paleomagnetism
Navigation data
Leg 101, 26A-29A
Nicaragua Rise
aragonite cycles, 222B
North American plate
paleomagnetic data, 338B
Northeast Providence Channel
carbonate deposition at, 459B
carbonate platform
top, 465B
carbonate-bomb data, 333A, 357A
deep-marine cements, 255B-261B
drilling goals, 459B
gravity flows
petrography, 245B-252B
hydrocarbon analysis, 381B-382B, 383B
interstitial water chemistry, 371B
erogens
carbon-isotope analysis, 383B-384B
elemental analysis, 383B
laminated zones, 459B
Leg 101 summary results, 459B, 464B,
465B, 466B
mineralogy, 370B
organic carbon contents, 381B
composition, 386B
preservation, 386B-387B
origins, 245B-246B
paleomagnetism, 355A
distribution, 371B
physical properties. See under specific properties
regional reflectors, 450B
sedimentology summary, 526A-530A
seismic stratigraphy, 536A
seisograms, synthetic, 446B-450B
Unit I, 528A-527A
Unit II, 527A-528A
Unit III, 528A-529A
Northwest Providence Channel
carbonate-bomb data, 496A, 499A
gamma spectrometry, 499A-501A,
503A-506A
logging data, 503A
Murray Island
organic-geochemical values, 499A
486
paleomagnetism
497A-498A
physical properties. See under specific properties
sedimentology summary, 487A–493A
seismic stratigraphy
multichannel seismic lines, 484A
Unit I, 487A
Unit II, 488A–490A
Unit III, 489A
Unit IV, 489A–492A

Ooze
Little Bahama Bank
comparisons, 221A
un lithified, at Exuma Sound, 344A
See also Periplatform ooze
Ooze, calcareous
Exuma Sound, 8A, 389A
thickness, 390A
Little Bahama Bank, 8A, 121A, 122A,
124A, 175B, 187B, 188B, 273A
Straits of Florida, 8A
Ooze, carbonate
diagenesis and magnetism, 333B–338B
Little Bahama Bank, 236A
diagenic, diagenesis of, 333B–338B
magnetic properties, 328B, 329B, 330B
palaeotemperatures, 338B–341B
Pacific Ocean, equatorial
carbonat cyclus, 233B
Packstones
Exuma Sound, 389A–390A
thickness, 390A
Little Bahama Bank, 120A, 214A–216A,
219A, 220A
comparisons, 221A
See also Turbidites
Paleolatitudes
Bahamas area, 338B–339B
Palm Beach well (Humble), 440B
Northwest Providence Channel channel, 498A
Periplatform ooze
in Bahamas area
lithification, 306B
source of, 306B
Pleistocene, 226B, 228B
Recrystallization
and celestite precipitation, 375B
and connection processes, 377B
estimates of, 371B–374B
Reflector “O,” at Exuma Sound, 407A,
409A, 453A, 464B
Rudists
Northeast Providence Channel
isotope values, 250B–251B
Rudstones
Northeast Providence Channel, 247B
Campanian, 246B–252B
deep-marine, 247B–249B, 250B
shallow-marine, 247B, 248B, 249B,
250B
Straits of Florida, 60A
velocities, 312B
Rust contamination, 41A–42A, 44A, 45A
Exuma Sound, 403A
Salt, at Exuma Sound, 51A
Samana Embayment
chalk, 194B
Sand, calcareous
Exuma Sound, 7A, 8A
Little Bahama Bank, 7A, 8A
Straits of Florida, 8A, 50A, 57A, 174B
Sand, noncalcareous
Straits of Florida, 55A
Sand, glauconitic
magnetic properties, 329B
Schlumberger's Quicklook use at Northwest Providence Channel,
501A–502A
correlation and lithology curves, 507A
Sea level
and carbonate platforms, 188B
correlated with gravity flow events
Strait of Florida, 189B, 190B
fluctuations in, and carbonate mineralogy, 221B
global and Bahamas changes correlated, 468B
Little Bahama Bank changes, 217A, 239A, 274B–275B
and turbidites, 213B
and turbidity currents, 203B
Sediment-accumulation rates
Bahamas area
Neogene, 471B
and stratigraphic succession, 470B
comparison curves, 470B
Exuma Sound, 205B, 206B–207B, 348A,
349A, 396A, 397A, 415A, 444A,
445A
Little Bahama Bank, 130A, 132A–134A,
205B, 206B, 223A, 224A, 278A,
279A
Neogene, 471B
Northwest Providence Channel, 533A,
534A
Northwest Providence Channel, 496A,
497A
Strait of Florida, 64A, 65A
Sediment types, 15A–17A
See also specific types
Sedimentation rates
Tongue of the Ocean and Exuma Sound
compared, 217B–218B
Seismic stratigraphy
Exuma Sound, 354A–355A, 405B–407B,
Straits of Florida
488

Slumps
Sonic velocity
Smectite
Siliciclastic slopes
Shear strength
Seismogram, synthetic
Seismic velocity, at Little Bahama Bank,
SUBJECT INDEX
calcium gradients, as stratigraphic tool,
bottom currents, 480B
Straits of Florida, 70A, 71A
Little Bahama Bank, 139A, 146A-149A,

carbonate diagenesis, 299B
carbonate gravity flows, 197B-191B
carbonate platform top, 465B
carbonate-bomb data, 66A, 68A
clay minerals, terrigenous, 173B
cross-sectional plan, 436B
interstitial water chemistry, 370B-371B
Leg 101 summary results, 457B, 460B
logging data, 440B, 442B
mineralogy, 370B
paleomagnetism, 67A-71A
periplatform sand facies, 182B
physical properties. See under specific
properties
Rock-Eval data, 66A, 69A
sediment isopachs, 405B
sediment thicknesses, 415B
sedimentology summary, 57A-61A
seismic sequences, 391B, 413B, 414B
seismic stratigraphy, 399B-400B, 408B,
409B
multichannel seismic lines, 75A, 115A
seismic-reflection profiling
multichannel-seismic lines, 54A
single-line, 54A, 55A, 56A
sonobuoy measurements, 39B
subsidence, 443B, 450B
logging measurements, 439B, 440B
subsidence rates, 445B
Unit II, 183B-188B
water depths, Cretaceous-Holocene, 428B
Srouplon, 371B
Exuma Sound, 292B-294B, 368B,
371B-374B
Little Bahama Bank, 289B, 371B-374B
Straits of Florida, 282B
Subsidence
backstripping analyses, 440B, 443B
in Bahamas area, 440B
Sulfate
Exuma Sound, 351A, 396A, 399A
Little Bahama Bank, 130A, 136A, 137A,
225A, 226A, 229A, 230A, 231A,
280A, 292A-294A
Straits of Florida, 67A
Thermal conductivity
Exuma Sound, 353A, 358A-359A, 361A,
405A, 409A, 410A-411A, 451A,
458A-460A
Little Bahama Bank, 139A, 146A-149A,
291A, 292A-294A
Northeast Providence Channel, 541A
Northwest Providence Channel, 500A
Straits of Florida, 70A, 71A
See also Carbonate slopes, geotechnical
properties of sediments in
Siliciclastic slopes
department transport, 203B
submarine fans, 264B-265B
Slumping
in carbonate slopes, 273B
identification of, in seismic lines, 266B
Slumps
Exuma Sound, 7A, 8A
Little Bahama Bank, 7A, 8A
Strait of Florida, 8A
Smectite
authigenic, 177B
diagenesis, 174B
origin
Strait of Florida, 173B
Sonic velocity
Little Bahama Bank, 238A
Straits of Florida, 70A, 71A
Strait of Florida
bathymetry, 399B
bottom currents, 408B
calculator gradients, as stratigraphic tool,
379B
carbonate content and mineralogy,
281B-282B
composition, 208B, 209B, 210B-211B
correspondence to sea-level lows, 415A
distribution and sedimentation rates,
215B-216B, 220B
grain-size composition and parameters,
207B
microfossil components, 208B,
210B-211B
Quaternary and Pliocene, 206B
texture, 207B, 208B, 210B
thickness, 440A
frequency, 208B
grain-size composition and parameters,
209B
identifying, 204B
Little Bahama Bank, 117A, 120A, 206B,
217A-218A, 285A
composition, 206B, 208B, 209B,
210B-211B
grain-size composition and parameters,
207B
microfossil components, 208B,
210B-211B
Quaternary and Neogene, 205B-206B
texture, 207B, 208B
Northeast Providence Channel, 208B,
211B, 485A, 531A
composition, 211B
grain-size composition and parameters,
207B
texture, 207B
physical properties, 305B-314B
compared with host sediment, 308B-309B,
312B
lithified, 309B, 312B, 313B
sedimentary column, 306B
unlithified, 308B-309B, 310B-311B,
312B
platform-derived vs. pelagic, 314B
and sea-level fluctuation, 208B, 213B
shear strength, 313B
See also Grainstones; Polkstones
Turbidity currents
activity, and sea-level stands, 203B
on carbonate slopes, 208B
Uranium, at Little Bahama Bank, 141A,
152A
Walkers Cay Fault Zone, 266B, 275B, 394B,
396B, 401B, 402B, 466B
Water content
Exuma Sound, 353A, 358A-359A, 360A,
405A, 409A, 410A-411A, 451A,
458A-461A
Little Bahama Bank, 137A-139A, 150A,
282A, 291A, 292A-294A
Northeast Providence Channel, 536A,
541A, 542A
Northwest Providence Channel, 499A,
500A, 501A
West Florida margin
glacial transport, 234B
Western Boundary Undercurrent
gravity flows, 188B
Water content
Glacial transport, 234B
Wet-bulk density
Exuma Sound, 353A, 358A-359A, 360A,
405A, 409A, 410A-411A,
450A-451A, 458A-461A
Little Bahama Bank, 137A-139A, 150A,
282A, 291A, 292A-294A
Northeast Providence Channel, 536A,
541A, 542A
Northeast Providence Channel, 535A-536A,
541A, 542A
SITE INDEX

- Site 534, 50A
 - paleogeography, 433B, 435B
 - lithology, 432B, 433B, 441B, 442B, 460B
 - platform drowning, 465B-466B
 - nannofossils, 61A-62A

- Site 627, 50B-50B
 - biostratigraphy, 265B, 157B-158B
 - bioclastic foraminifera, 18B-19B, 36B-38B
 - data summary, 49A-50A, 63A-66A, 69A, 71A
 - drilling results, 465B-468B, 462B, 463B
 - foraminifer biostratigraphy, 11B-18B, 36B-38B
 - geologic history, 158A
 - dinoflagellate cysts, 121B-124B, 126B, 126B-127B, 133B
 - interstitial-water chemistry, 364B-366B, 367B, 369B
 - organic geochemistry, 225A-226A, 229A, 230A, 231A
 - paleontological results, 87B-103B
 - paleontological results, 344B-351B
 - paleontological results, 357A-358A
 - X-ray data, 217A, 227A

- Site 628, 50B-50B
 - biostratigraphy, 246B-248B
 - carbonate characteristics, 285B-286B
 - carbonate sediments, 434B
 - data summary, 271A, 238A
 - drilling results, 465B-468B, 462B, 463B
 - foraminifer biostratigraphy, 18B-19B, 36B-38B
 - Hole 628A, 31B, 40A, 52B
 - interstitial-water chemistry, 364B-366B, 367B
 - magnetic measurements, 351B-355B
 - magnetic parameters, 351B-355B
 - magnetic properties, 328B-329B, 330B
 - paleoenvironment, 106B-108B, 109B
 - paleomagnetism, 135A-137A, 145A
 - paleontological results, 473B-480B
 - physical properties, 226A-227A, 229A
 - radioisotopes, 52B
 - drilling results, 465B-468B, 462B
 - foraminifer biostratigraphy, 36B-38B
 - X-ray data, 217A, 227A

- Site 630, 50B-50B
 - biostratigraphy, 277A-278A, 279A
 - carbonate characteristics, 305B-314B
 - carbonate sediments, 51B
 - coring summary, 11A-15A
 - data summary, 271A, 238A
 - drilling results, 465B-468B, 462B, 463B
 - foraminifer biostratigraphy, 18B-19B, 36B-38B
 - Hole 630A, 27A
 - interstitial-water chemistry, 364B-366B
 - magnetic measurements, 351B-355B
 - magnetic parameters, 351B-355B
 - magnetic properties, 328B-329B, 330B
 - paleoenvironment, 106B-108B, 109B
 - sedimentology, 213A-220A, 221A
 - X-ray data, 217A, 227A

- Site 632, 50B-50B
 - data summary, 271A
 - drilling results, 465B-468B, 462B, 463B
 - foraminifer biostratigraphy, 18B-19B, 36B-38B
 - Hole 632B, 27A
 - foraminifer biostratigraphy, 246B-248B
 - foraminifer biostratigraphy, 18B-19B, 36B-38B
interstitial-water chemistry, 364B-366B, 367B
mineralogy, 365B, 379B
lithology, 7A, 467B
maps, 6A, 272A
nannofossil biostratigraphy, 74B-75B
organic geochemistry, 280A-281A, 288A, 289A
palaeomagnetism, 281A-282A, 290A
palaeontological results, 444A, 447A, 448A
physical properties, 282A-283A
paleontological results, 473B-480B
paleomagnetism, 281A-282A, 290A
organic geochemistry, 280A-281A, 288A, 289A
nannofossil biostratigraphy, 78B, 494A
physical properties, 498A-499A, 500A, 501A, 502A
radiolarian, Cenozoic, 120B
sedimentology, 487A-493A, 494A, 495A
seismic stratigraphy, 502A-503A, 506A, 508A-509A
sonic-velocity log, 446B-447B
X-ray data, 496A, 498A
Site 635, 50B, 525A-543A
bathymetry, 246B, 255B, 464B
biostratigraphy, 530A-533A, 534A
carbonate turbidite sequences, 305B-314B
coring summary, 527A
data summary, 543A
dinoflagellate cysts, 122B
drilling results, 459B, 465B
geochemistry, 381B-387B
Hole 635A, 525A
turbidites, 207B, 208B-212B
Hole 635B, 525A
diagenesis, deep-marine, 258B-260B
diagenesis, shallow-marine, 256B-258B
dinoflagellate cysts, 124B-126B, 127B, 133B
isotope compositions, 257B
magnetic properties, 360B
ostracodes, middle Cretaceous, 153B, 155B
inorganic geochemistry, 533A, 534A, 535A, 536A, 537A
lithology, 460B
maps, 6A
nannofossil biostratigraphy, 78B-79B, 531A-532A
organic geochemistry, 533A-535A, 538A-539A
palaeomagnetism, 535A, 540A
physical properties, 535A-536A, 541A-542A
platform drowning, 465B-466B
sedimentology, 526A-530A, 531A
X-ray data, 533A, 535A, 536A
Site 636, 50B, 525A-543A
bathymetry, 246B, 255B, 464B
carbonate turbidite sequences, 305B-314B
coring summary, 527A
drilling results, 459B, 465B
Hole 636A, 525A
magnetic field data, 33A-36A
maps, 6A
nannofossil biostratigraphy, 79B
Amauroliths, 65B-66B, 76B-78B, 499A, 500A, 501A

Benthic foraminifers
Ampitheatelin sp., 52B-53B
Archaias angulatus, 51B-52B
biostratigraphy, 54B
Cenomanian to Maestrichtian, Northeast Providence Channel, 50B
Cretaceous
Bahamas, 67B, 70B, 71B, 72B-73B
Northeast Providence Channel, 81B
Cyclicselectedithus abraeus, first appearance, 94B
Cycoaster nidiifer, last appearance, 95B
discostars
Exuma Sound, 347A, 395A, 443A
Little Bahama Bank, 127A
Northeast Providence Channel, 532A
Straits of Florida, 62A
downhole contamination, 70B, 71B
Emiliania huxleyi
Exuma Sound, 395A
Eocene
drilling summary, 477B
Little Bahama Bank, 74B
Northeast Providence Channel, 78B
Exuma Sound, 347A-348A, 395A-396A, 443A
high-latitude datum levels, 94B
Holocene, Little Bahama Bank, 19B
Isthmolithus recurvus, last appearance, 95B
Lanternithus minutus, 93B
Little Bahama Bank, 126A-127A, 220A-222A, 275A, 276A, 277A
Maestrichtian, drilling summary, 477B
Miocene
Bahamas, 68B-69B
Exuma Sound, 21B-22B, 23B, 80B
Little Bahama Bank, 50B, 73B-74B
Miocene to Pliocene, Exuma Sound, 78B
Neogene
drilling summary, 475B
Exuma Sound, 76B
Northeast Providence Channel, 79B
Northeast Providence Channel, 531A-532A
Northwest Providence Channel, 494A
Oligocene
Bahamas, 68B-69B
Exuma Sound, 21B-22B, 23B, 80B
Little Bahama Bank, 50B, 73B-74B
Miocene to Pliocene, Exuma Sound, 78B
Neogene
drilling summary, 475B
Exuma Sound, 76B
Northeast Providence Channel, 79B
Northeast Providence Channel, 531A-532A
Northwest Providence Channel, 494A
Oligocene
Bahamas, 68B-69B
biostratigraphy, 87B-97B
drilling summary, 476B-477B
Exuma Sound, 76B, 78B
Little Bahama Bank, 74B, 80B, 87B-97B
Oligocene to Holocene, Bahamas, 64B
Paleocene
drilling summary, 477B
Paleogene
Bahamas, 66B
Exuma Sound, 78B
Little Bahama Bank, 74B
Northeast Providence Channel, 78B, 79B
Pleistocene
Bahamas, 68B-69B
Northeast Providence Channel, 79B
Pleistocene to Holocene, Exuma Sound, 77B
Pliocene
Exuma Sound, 75B, 76B, 77B, 79B-80B
Little Bahama Bank, 74B, 79B-80B
Northeast Providence Channel, 79B
Pliocene
Straits of Florida, 79B
Pliocene, Bahamas, 68B-69B
poor recovery, 69B-70B, 78B
Quaternary, Northeast Providence Channel, 79B
Sphenolithus predistentus/S. ciperoensis lineage, 89B-93B
Straits of Florida, 61A-62A
zonation, 18A
Calculites obscurus Zone, 477B
Calycocletta costata Zone
Ceratoliths, 75B
Cytocellana austinsensis Zone
Little Bahama Bank, 153B, 157B
Northeast Providence Channel, 153B
Dinoflagellate cysts
Albian, Little Bahama Bank, 122B, 124B
Cenomanian, Little Bahama Bank, 124B
Cepedopterum sp. VAHA, 128B
Compositosphaeridium bahamensis n. sp., 128B
Forma A, 129B-130B
Forma B, 130B-131B
Little Bahama Bank distribution, 123B
Magphrebitis breviorata n. sp., 129B
Northeast Providence Channel
Cenomanian, 126B
distribution, 125B
paleoenvironment
Little Bahama Bank, 124B
Northeast Providence Channel, 126B-127B
Pervosphaeridium truncatum, 129B
Subitilisphaera habbi, 129B
Cycoaster asymmetrics Zone
Little Bahama Bank, 74B
Cycoaster triradiatus Zone
Exuma Sound, 77B
Discoasters, 77B-78B
Dorcadorispyris ateuchus Zone
Little Bahama Bank, 108B, 109B
Emiliania huxleyi Zone
Exuma Sound, 76B, 77B
Little Bahama Bank, 70B, 74B
Northeast Providence Channel, 78B
Epeidoosphaeridium spinosa Zone
Little Bahama Bank, 124B, 135B
Gephyrocapsids, 74B, 76B
Globorotalia crassaformis Zone
Exuma Sound, 22B, 23B, 24B-30B, 31B, 41B
Little Bahama Bank, 43B
Globorotalia lobata Zone
Little Bahama Bank, 12B-17B, 18B-19B
Straits of Florida, 7B-9B
Globorotalia kuweili Zone
Little Bahama Bank, 10B, 12B-17B, 18B, 31B, 41B
Straits of Florida, 31B
Globorotalia margaritae Zone
Exuma Sound, 21B, 23B, 24B-30B, 31B, 32B-37B, 45B
Little Bahama Bank, 11B, 12B-17B,
Pervosphaeridium truncatum Zone
Little Bahama Bank, 129B, 130B, 137B

Planktonic foraminifers abundance, 17A-18A
Albian to Campanian, drilling summary, 479B
Campanian, drilling summary, 477B-478B
Campanian to Santonian, drilling summary, 478B-479B
Cenozoic. See Planktonic foraminifers, specific epochs
Eocene, Bahamas, 71B
Holocene, Exuma Sound, 23B
Holocene/Pleistocene unconformity, 11B
Maestrichtian, drilling summary, 477B
Miocene
Bahamas, 69B
Little Bahama Bank, 18B, 19B, 20B, 74B
Straits of Florida, 12B-17B
Miocene/Pliocene unconformity, 11B
Neogene, 3B-45B
Neogene/Pleistocene unconformity, 21B
Oligocene, Little Bahama Bank, 161B
Oligocene/Pleistocene unconformity, 21B
Pliocene
absence of, 31B, 36B-37B
Exuma Sound, 21B, 22B-23B
Little Bahama Bank, 11B, 19B, 72B-73B

Staits of Florida, 4B
poor recovery, 75B
Quaternary, drilling summary, 473B-474B, 475B
Staits of Florida, 57A, 62A-63A
stratigraphic ranges, 32B-35B
zonation, 17A
Pteropods
Staits of Florida, 57A
Radiolarians
abundance, 18A-19A
Atlantic Margin Coring Project (AMCOR) 6002, 10B
Blake-Bahama Basin zones, 109B
Campanian zones, 120B
correlation of sites, 111B
Eocene
Bahamas, 71B
Blake-Bahama Basin, 108B, 110B
Little Bahama Bank, 105B
Northwest Providence Channel, 117B-118B
zones, 120B
Little Bahama Bank, 129A, 223A
Little Bahama Bank zones, 107B, 108B, 109B
Miocene
Bahamas, 71B
Blake-Bahama Basin, 110B
Little Bahama Bank, 105B-106B
Northwest Providence Channel, 117B-118B
South Carolina, 110B
Southeast Georgia Embayment, 110B
Oligocene zones, 120B
Paleocene zones, 120B
Pliocene to Pleistocene zones, 120B
zonation, 18A
See also Sponge spicules
Shallow-water larger foraminifers.
See Benthic foraminifers
Sphenolithus ciperenensis Zone
Little Bahama Bank, 89B-95B, 97B-98B, 100B-103B
Sphenolithus distensus Zone
Little Bahama Bank, 89B-95B, 97B, 99B-101B
Sponge spicules
Miocene
Blake-Bahama Basin, 161B-162B
Little Bahama Bank, 160B-161B
Oligocene, Little Bahama Basin, 161B
paleoecology, 162B-163B
spine vs. spicule classification, 159B-160B
Stichocorys delmontensis Zone
Little Bahama Bank, 106B, 107B, 109B, 110B, 113B, 117B-120B
Stichocorys wolffii Zone