3. ODP LEG 104, UNDERWAY GEOPHYSICS¹

Shipboard Scientific Party²

INTRODUCTION

We obtained geophysical site surveys during Leg 104 of the Ocean Drilling Program between Bremerhaven, Federal Republic of Germany and St. John's, Newfoundland, Canada. Five lines of geophysical data were collected on Leg 104. Line 1 data were collected before the beacon drop at Site 642; Line 2 when underway between Sites 642 and 643; Line 3 between Sites 643 and 644; Line 4 during the transit from Site 644 to Stavanger, Norway; and Line 5 between Stavanger and St. John's (Leg 104 Part B). We were underway 13.9 days (21% percent of the time) during the 65.4 days of Leg 104 and traveled a total of 3,087 miles (4980 km).

The onboard instrumentation included two precision echosounders, a magnetometer, seismic-reflection profilers, and a satellite-navigation system. The instruments were maintained and operated by the ODP marine technicians in cooperation with the scientific party and the officers and crew of SEDCO-FOREX, Inc.

NAVIGATION

Navigation data were collected on the ship's bridge by a Decca navigation system and a Magnavox MX702A satellite-navigation system (SATNAV). Positions were obtained with these systems through the entire 57 days spent at sea (Table 1). The general ship track chart for Leg 104 is shown in Figure 1. Detailed navigation of the ship surveys for site location, reference multichannel seismic lines, and the positions of Leg 104 drill sites are illustrated in Figure 2.

BATHYMETRIC DATA RECORDING

Bathymetric data were obtained with both 3.5-kHz and 12kHz echo-sounders using a Raytheon recorder system for the 3.5-kHz and an EDO 248C recorder for the 12-kHz instrument. Unfortunately, because of transducer location, the quality of the recorded data is very poor at times when the ship operated at speeds over 6 kt. A total of 2,020 n. mi. (3258 km) of bathymetric coverage was collected on Leg 104 and is displayed in Figures 3 and 4. The real-time recording parameters of the data are provided in Table 2.

MAGNETICS

A Geometrics 801 proton precession magnetometer was towed between sites and along the transits from Site 644 to Stavanger and from Stavanger to St. John's. The analog record is incomplete; however, summaries of the results are shown in Figures 3 and 4. Preliminary studies of the magnetic record suggest that some anomalies may be detected in future data processing.

SEISMIC-REFLECTION PROFILES

Seismic-reflection profiles were collected over 2,367 n. mi. (3818 km) during Leg 104 Parts A and B (Fig. 3). The seismicreflection coverage is shown by means of the bar in Figures 3 and 4, and records are available from the Data Base Supervisor, Ocean Drilling Program. These data were recorded with the equipment described here.

Sources

The seismic sources used aboard the *JOIDES Resolution* during Leg 104 were usually two 80-in.³ waterguns. Several seismic sources were used during the transit to St. John's: two 80-in.³ guns were deployed the first 3 days of the transit. Later, one of the waterguns was replaced by an airgun for a few hours. The transit ended with one watergun as the seismic source.

Streamer-hydrophones

One Teledyne streamer was deployed at the fantail. The 100m-long streamer contains sixty active sections and was towed approximately 500 m behind the vessel. The towing depth was set by external depth depressors (birds). The hydrophone elements were combined to procure a single signal.

Data Recording

The seismic system was supported by a supermicro 561 Masscomp computer as the central unit to record, process, and display the data. The Masscomp allowed data to be processed and displayed in real time on a 15-in.-wide Printronix, a high-resolution graphic printer (160 dots per inch). The processing treatments applied are described in Table 3. The raw data were recorded on a Cither tape, using an SEG-Y format and a density of 1600 bits/in.

Seismic lines 1, 4, and 5 were displayed in the Printronix printer with the following parameters:

Traces per inch = 10

Clip high = 0.10 in.

- Clip low = -0.10 in.
- Deflection = 0.10 in.
- Positive peaks to the right

Seismic data were also displayed in real time in analog format on two EDO 550 dry-paper recorders, using only streamers, an amplifier, and two band-pass filters (see Table 3).

 ¹ Eldholm, O., Thiede, J., Taylor, E., et al., 1987. Proc., Init. Repts. (Pt. A), ODP, 104.
² Olav Eldholm, (Co-Chief Scientist), University of Oslo, Oslo, Norway; Jörn

Thiede (Co-Chief Scientist), Christian-Albrechts-Universität, Kiel, FRG; Elliott Taylor (Staff Scientist), ODP, Texas A&M University, College Station, TX; Colleen Barton, Stanford University, Stanford, CA; Kjell Bjørklund, University of Oslo, Oslo, Norway; Ulrich Bleil, Universität Bremen, Bremen, FRG; Paul R. Ciesielski, University of Florida, Gainesville, FL; Alain Desprairies, Université de Paris Sud, Orsay, France; Diane Donnally, Amoco Production Co., New Orleans, LA; Claude Froget, Faculté des Sciences de Luminy, Marseilles, France; Robert Goll, IKU/SINTEF, Trondheim, Norway; Rudiger Henrich, Christian-Albrechts-Universität, Kiel, FRG; Eystein Jansen, University of Bergen, Bergen, Norway; Larry Krissek, Ohio State University, Columbus, OH; Keith Kvenvolden, USGS, Menlo Park, CA; Anne LeHuray, Lamont-Doherty Geological Observatory, Palisades, NY; David Love, University of Waterloo, Ontario, Canada; Peter Lysne, Sandia National Laboratory, Albuquerque, NM; Thomas McDonald, Texas A&M University, College Station, TX; Peta Mudie, Geological Survey of Canada, Nova Scotia, Canada; Lisa Osterman, Smithsonian Institution, Washington, DC; Lindsay Parson, Institute of Oceanographic Sciences, Surrey, UK; Joseph Phillips, University of Texas, Austin, TX; Alan Pittenger, Texas A&M University, College Station, TX; Gunnbjørg Qvale, Norsk Hydro, Oslo, Norway; Günther Schönharting, University of Copenhagen, Copenhagen, Denmark; Lothar Viereck, Ruhr Universität, Bochum, FRG.

_

ACKNOWLEDGMENTS

The scientific party of Leg 104 is extremely grateful to Captain Ed Oonk and his officers and crew for their excellence in navigation and their cooperative spirit. Thanks go also to the ODP group for the many hours of watch-standing and to Mark Weiderspahn and Ali Tufayli of the University of Texas at Austin, who designed and wrote the software for the seismic digital acquisition system.

Table 1. Leg 104 navigation satellite fixes.

Day of Year	Time UTC	Latitude N	Longitude E	Site	
177	1144	61,68000	4.12000	642	
177	1338	62.06205	4.02408		
177	1436	62.27527	4.00640		
177	1550	62.54350	3.94040		
177	1654	62.66670	3.87642		
177	1738	62.93425	3.87250		
177	1820	63.08123	3.83018		
177	1842	63.15017	3.80722		
177	1928	63.31750	3.73222		
177	2028	63.52790	3.71772		
177	2116	63.69880	3.67222		
1//	2304	64.06/80	3.61952		
177	2348	64.22552	3.01008		
178	0134	64.50242	3.59470		
178	0408	65 05950	3 53227		
178	0556	65 31185	3 48422		
178	0724	65 51580	3 42270		
178	0852	65,73147	3.34812		
178	1158	66.22657	3.25213		
178	1250	66.36618	3.30053		
178	1416	66.59573	3.30407		
178	1630	66.98322	3.04298		
178	1710	67.07816	2.95327		
178	1900	67.23337	2.87237		
211	0930	67.22200	2.92933		
213	1958	67.22010	2.93090	642	
213	2104	67.21990	2.93070		
213	2146	67.21986	2.93098		
214	0046	67.41513	2.07648		
214	0212	67.55985	1.512/7		
214	0306	67 70572	1.26815		
214	0638	67 71385	1.02582		
214	0652	67 71447	1 03243		
214	0732	67,71535	1.03510		
214	0752	67,71600	1.02363		
219	0205	67.71535	1.03347		
219	2320	67.71458	1.03683	643	
220	0046	67.64795	1.19952		
220	0144	67.55534	1.67857		
220	0532	67.04668	3.21820		
220	0624	66.94047	3.60280		
220	0718	66.83280	4.00718		
220	0746	66.77730	4.21508		
220	0816	66.75177	4.39257		
220	0842	00./3238	4.53015		
222	1716	66 62690	4.57007	644	
222	1026	66 21993	4.55015	044	
222	2022	66 02412	4.55002		
222	2056	65 90332	4 56260		
222	2304	65.44217	4.53017		
223	0724	63.67697	4.37253E		
228	1700	59.50322	3.98238W		
228	1806	59.48475	4.41725		
228	2048	59.46437	5.56102		
228	2158	59.47055	6.02872		
228	2242	59.43044	6.29323		
229	0132	59.36067	7.52420		
229	0250	59.34045	8.08948		
229	1012	59.21320	11.20010		
229	1126	59.15897	11.69958		
229	1404	59.098/2	12.41238		
229	1432	59.00820	12.73848		
229	1744	59.02083	13.20328		
229	1/44	38.98437	11.90/18		

Table 1 (continued).

Day of Year	Time UTC	Latitude N	Longitude E	Site
229	1932	58.95847	14.69333	
229	2022	58.93884	15.00442	
229	2256	58.82787	15.95315	
230	0142	58.70483	16.96750	
230	0330	58.61568	17.59898	
230	1032	58.32549	20.10438	
230	1108	58.28738	20.30308	
230	1440	58.08445	21.08597	
230	1758	57.89590	22.19347	
230	1856	57.84402	22.55623	
230	1914	57 60590	22.60/80	
230	2134	57 50020	24 20120	
230	0130	57 47117	24.20120	
231	0736	57 13035	26 70268	
231	0830	57 07555	26 98342	
231	1927	56,39030	30.27800	
231	2038	56.27725	30,72737	
231	2103	56.24854	30.86622	
231	2133	56.20615	31.03930	
231	2250	56.10122	31.44420	
231	2308	56.07632	31.54980	
232	0114	55.89147	32.22405	
232	0259	55.73500	32.77150	
232	0339	55.67517	32.95284	
232	0525	55.50452	33.49902	
232	0653	55.37593	33.97698	
232	0714	55.34700	34.08950	
232	0732	55.32345	34.16597	644
232	0919	55.16727	34.73867	
232	0957	55.13951	34.86032	
232	1305	55.00515	35.41145	
232	1335	54.95007	35.56577	
232	2028	54.44653	37.08700	
232	2301	54.21368	37.78762	
233	0050	54.01300	38.30380	
233	0131	53.90082	38 70727	
233	0417	53.65355	30.79727	
233	0502	53 59883	39 52917	
233	0604	53 52650	39 77550	
233	0650	53 44967	40 00633	
233	1122	52.97438	41,17592	
233	1216	52.88085	41,42162	
233	1311	52.78593	41.68168	
233	1348	52.72997	41.84795	
233	1534	52.55030	42.34230	
233	2142	52.02162	43.65110	
233	2238	51.93185	43.88240	
234	0000	49.44278	49.25048	
234	0106	51.70500	44.44164	
234	0413	51.41883	45.18567	
234	0439	51.37667	45.26633	
234	0701	51.14067	45.75583	
234	0808	51.01472	45.97807	
234	0955	50.80985	46.35817	
234	1059	50.68845	46.56553	
234	1144	50.61105	46.75128	
234	1240	50.51497	46.95382	
234	1312	50.45560	47.07215	
234	1424	50.33623	47.34103	
224	1430	50.16600	47.40003	
234	1647	50.11370	47.72007	
234	1720	50.06057	47 94490	
234	1930	49.86522	48.34888	
234	2104	49.72325	48,65190	
234	2212	49.62015	48.86345	
235	0002	49.44278	49.25048	
235	0118	49.31655	49,50980	
235	0150	49.26155	49.61173	
235	0600	48.78428	50.38194	
235	0730	48.62535	50.67238	
235	0748	48.59307	50.72637	
235	1034	48.32385	51.23337	
235	1104	48.27488	51.32645	
235	1314	48.05302	51.73962	
235	1406	47.96520	51.90535	

Figure 1. Leg 104 ship track.

47

Figure 2. Positions of sites, and site survey profiles at the Vøring Plateau. Navigation for multichannel seismic lines BGR-1 and NH-1 is also shown.

Figure 3. Magnetic and bathymetric profile records obtained during Leg 104A. Solid bars show the seismic reflection coverage during this portion of the leg.

	Line 1	Line 2	Line 3	Line 4	Line 5
Start at:	Survey of Site 642	Site 642	Site 643	Site 644	Stavanger
End at:	Site 642	Site 643	Site 644	Stavanger	St. John's
Source:	Two 80-in. ³ Waterguns	Two 80-in. ³ Waterguns	Two 80-in. ³ Waterguns	Two 80-in. ³ Waterguns	See text
Streamer:	Port	Port	Port	Port	Port or Starboard
EDO 1:					
High Cut:	190-200 Hz	120-190 Hz	180 Hz	200 Hz	200 Hz
Low Cut:	80-40 Hz	20-40 Hz	80 Hz	80 Hz	70-80 Hz
Gain: Amp: Recorder:	Unknown Unknown	20–30 db Full	80 db Variable	80 db Variable	80 db Variable
EDO 2:					
High Cut:	200 Hz	120-200 Hz	180 Hz	200 Hz	200 db
Low Cut:	40-60 Hz	20-40 Hz	80 Hz	80 Hz	80-90 Hz
Gain: Amp: Recorder:	Unknown Unknown	20-30 db Full	80 db Variable	70-90 db Variable	80 db Variable

Table 2. Real-time recording parameters for Leg 104 seismic data.

Table 3.	Processing	parameters	for	Leg	104	seismic
data.						

	Line 1	Line 4	Line 5
Data Window:	Variable	Variable	Variable
Plot start time:	Variable	Variable	Variable
Plot stop time:	Variable	Variable	Variable
Plot time scale:	6.25 in./s	4.00 in./s	4.00 in./s
Zero-phase			
band-pass filter:			
High cut (Hz):	250	250	250
Low cut (Hz):	20	20	20

Figure 4. Magnetic and bathymetric profile records obtained during Leg 104B. Solid bars show the seismic-reflection coverage during this portion of the leg.

Figure 4 (continued).

50