Leg 107 has investigated a wide range of geological questions including passive margin and back-arc basin evolution, crustal heterogeneity, protrusion of upper mantle material to the seafloor, chronology of circum-Tyrrhenian eruptive volcanism, cyclic evaporite deposition, origin of sapropels, origin of metaliferous basal sediments, as well as definition of the Miocene/Pliocene boundary. This color frontispiece illustrates some of the large variety of sediments and rocks recovered during the leg.

A. Transition between Pliocene and Messinian, Interval 652A-20R-6, 50-115 cm. The alternation of red to grayish green clay and mud layers constitutes the transition between the marine planktonic foraminifer and nannofossil ooze of Pliocene age at the top and the gray gypsiferous dolomitic clays of Messinian age at the bottom.

B. Subaerial Messinian(?) clastics, Interval 656A-9R-7, 0-65 cm. Note the red to brown color of the claystone and mudstone embedding the clasts in a true matrix-supported conglomerate. The large white clast is made essentially of huge fibrous crystals of amphibole (actinolite-tremolite group) deriving from alteration of a mafic rock.

C. Sediment/basalt contact, Interval 650A-66X-2, 25-90 cm. Note the 10-cm pale green/blue dolomitic layer which separates the vesicular basalt from the overlying reddish/brown nannofossil ooze.

D. Serpentinized peridotite, Interval 651A-57R-1, 30-95 cm. Note the white veins of chrysotile criss-crossing the dark green serpentinized peridotite.
Site 654 is located on a fault-bounded tilted block on the upper margin of Sardinia (H). The lower portion of Site 654 (E, F, G) shows a classic example of a progressive transgression which is attributed to the subsidence of the Sardinia margin during block-faulting and extension. In this context, the Messinian desiccation event (C, D) appears as a short-term regression superimposed on the subsidence-driven transgression.

A. Gray marly foraminifer-nannofossil ooze (Interval 654A-9R-3, 110-150 cm) and dark gray aphanitic basalt (Sections 654A-9R-4 and -CC) lying near the Pliocene/Pleistocene boundary. Depositional environment: Open marine sea.

B. Foraminifer-nannofossil ooze, Interval 654A-26R-5, 0-75 cm. This section is early Pliocene in age and lies immediately above the Messinian sediments. Note the change of color from dark yellowish brown to light olive brown, and the white bioturbations. Depositional environment: Open marine sea.

D. Interval 654A-38R-1, 12-87 cm: Pyrite-bearing claystone alternating with dolomitic mudstone; the color ranges from very dark gray to light gray on millimetric to centimetric parallel laminations; age Messinian. Depositional environment: Open marine waters probably with high organic productivity.

E. Interval 654A-43R-5, 0-75 cm: Gray nannofossil and calcareous ooze of Tortonian age with abundant Chondrites burrows. Depositional environment: A relatively shallow, well ventilated, fertile open marine sea.

F. Intervals 654A-46R-1, 7-60 cm and -CC, 0-17 cm: Dark gray glauconite-rich polymictic sandstone and gray marly calcareous chalk. Note the presence of broken thick-walled oyster shell in the core-catcher. Depositional environment: Nearshore setting.

G. Interval 654A-50R-1, 72-147 cm: Matrix-supported conglomerate. The matrix sediment is reddish to dark red, the rock pebbles are metalimestone/dolostone and metacalcirudite. Most probable depositional environment: Braided alluvial fan.

H. Multichannel seismic line ST06 IFREMER-IFP-CNRS showing Site 654 location and tectonic setting. Light yellow: Pleistocene; mauve dots: Basalt layer; dark yellow: Pliocene; red lines: high-amplitude reflectors at the top and bottom of the main Messinian evaporitic interval; purple: upper Messinian evaporites; orange: lower Messinian(?); blue: upper Tortonian; white dots: Top of continental conglomerate; green: High-amplitude reflectors in the basement.
This publication was prepared by the Ocean Drilling Program, Texas A&M University, as an account of work performed under the International Ocean Drilling Program, which is managed by Joint Oceanographic Institutions, Inc., under contract with the National Science Foundation. Funding for the program was provided by the following agencies at the time of this cruise:

- Department of Energy, Mines and Resources (Canada)
- Deutsche Forschungsgemeinschaft (Federal Republic of Germany)
- Institut Francais de Recherche pour l'Exploitation de la Mer (France)
- National Science Foundation (United States)
- Natural Environment Research Council (United Kingdom)
- University of Tokyo, Ocean Research Institute (Japan)

Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation, the participating agencies, Joint Oceanographic Institutions, Inc., Texas A&M University, or Texas A&M Research Foundation.

It is recommended that reference to the whole or to part of this volume be made in one of the following forms, as appropriate:

Effective Publication Dates of ODP Proceedings

According to the International Code of Zoological Nomenclature, the date of publication of a work and of a contained name or statement affecting nomenclature is the date on which the publication was mailed to subscribers, placed on sale, or when the whole edition is distributed free of charge, mailed to institutions and individuals to whom free copies are distributed. The mailing date, not the printed date, is the correct one.

The mailing dates of recent Proceedings of the Ocean Drilling Program are as follows:

- Volumes 101/102 (Part A): December 1986
- Volume 103 (Part A): April 1987
- Volume 104 (Part A): July 1987
- Volume 105 (Part A): August 1987

Distribution

Copies of this publication may be obtained from Publications Distribution Center, Ocean Drilling Program, 1000 Discovery Drive, College Station, Texas 77840. Orders for copies will require advance payment. See current ODP publication list for price and availability of this publication.

Printed October 1987

ISSN 0884-5883

The paper used in this publication meets the minimum requirements of American National Standard for Information Sciences—Permanence of Paper for Printed Library Materials, ANSI Z39.48-1984
Foreword
By the National Science Foundation

The scientists of the Ocean Drilling Program (ODP) have embarked on what could prove to be one of the most important earth science initiatives of the decade—an initiative rivaling in scope and impact the exploration of the frontiers of outer space. The program explores our planet’s last frontier—the Earth’s structure and history as it is revealed beneath the oceans. The scope of the program’s scientific goals excites the imagination, challenges the intellect, and enhances the spirit of cooperation among peoples in countries around the world.

Between 1872 and 1876, HMS Challenger undertook the world’s first major oceanographic expedition. That expedition greatly expanded man’s knowledge of the world’s oceans and revolutionized our ideas about planet Earth. From 1968 to 1983, another ship named Challenger logged more than 375,000 miles on 96 voyages across every ocean for the Deep Sea Drilling Project (DSDP), operated by Scripps Institution of Oceanography. Among the project’s many remarkable discoveries were the confirmation of seafloor spreading and the establishment of the relative youth of the seafloor, thus verifying the dynamic and changing nature of the Earth’s crust.

Today, the Ocean Drilling Program, which began in 1983, brings new resources to bear on scientific ocean drilling. A new drillship is in operation—the JOIDES Resolution—one of the world’s most modern and best equipped drillships with enhanced capability for drilling and coring in polar areas and rough weather, expanded laboratory space, facilities for more scientists, and a major drill-hole logging program. The name of the ship was derived from the international scientific partnership that directs the program—the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES)—and from the flagship of Captain Cook’s second voyage to the Pacific Ocean in the late 18th century. Texas A&M University is responsible for science operations in the program, and Lamont-Doherty Geological Observatory is responsible for the logging program.

The Ocean Drilling Program truly has international participation. In 1975, the International Phase of Ocean Drilling began with member nations—the U.S.A., U.S.S.R., the Federal Republic of Germany, Japan, the United Kingdom, and France—all providing funds and scientific guidance for the project. Today, ODP partners include the U.S.A., Canada, France, the Federal Republic of Germany, Japan, the United Kingdom, and the European Science Foundation, which represents Sweden, Finland, Norway, Iceland, Denmark, Belgium, the Netherlands, Spain, Switzerland, Italy, Greece, and Turkey.

The National Science Foundation, with funds contributed by the United States and international partners, supports the scientific operations and planning for the ODP through a contract with Joint Oceanographic Institutions, Inc. (JOI).

The information gained by the program leads to a better understanding of the Earth and its dynamic processes. Drilled sediment cores and logs reveal clues to past climatic history and tie into parallel studies of paleoclimates from glacial ice cores drilled on the continents. Understanding these sediment cores will enable scientists to complete the map of major geologically active regions of the Earth, and to identify processes that lead to dynamic change such as earthquakes, volcanic eruptions, and mountain and continental growth. We are far from being able to predict such changes accurately now; but with the new tools and understanding, the accuracy of such predictions can be improved. This better understanding of the Earth’s system(s) will allow us to identify regions of potential mineral and energy resource development, an issue of worldwide human interest. The Ocean Drilling Program is not in itself aimed at finding resources, but the knowledge of the Earth’s processes that is gained through such a basic research program will inevitably provide pieces of information required for such resource discovery and exploitation.

The program is fully under way in its aim to further the understanding of the Earth’s dynamic systems. People of our planet will benefit directly and indirectly from this research in both their daily living and work activities. This multinational endeavor will perhaps foster other cooperative efforts in science or among societies. The Ocean Drilling Program has distinguished ancestors in the original Resolution and Challenger expeditions and the Deep Sea Drilling Project. The National Science Foundation is proud to be playing a leading role in this program, and we are looking forward to significant and innovative science for many years to come.

Erich Bloch
Director
National Science Foundation
Washington, D.C.
Foreword
By Joint Oceanographic Institutions, Inc.

This volume presents results from the Ocean Drilling Program (ODP), where scientists use a specially equipped ocean drilling ship to sample and measure the properties of the submerged part of the Earth's crust. These data are then synthesized with other information to yield new insights into earth processes.

These results address the scientific goals of the program, which include providing a global description of geological and geophysical structures and materials, studying in detail areas of major geophysical activity such as mid-ocean ridges and the associated hydrothermal circulations, and studying passive and active continental margins. In addition, the ODP data support the study of sea-level and ocean-circulation changes, the effects of the Earth's orbital variations on climate, and the study of processes and mechanisms of evolution from the biological records in the cores which are recovered from drilling.

The Ocean Drilling Program is a partnership of scientists and governments. Overall scientific policy and management guidance is provided by Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES), which consists of committees and panels made up of representatives of the participating institutions and other scientific and engineering experts. The JOIDES Executive Committee (EXCOM) provides general oversight; the JOIDES Planning Committee (PCOM) is the focal point for all scientific planning for the ODP and is key to the scientific success of the program.

The PCOM has a network of panels and working groups which screen drilling proposals, evaluate instrumentation and measurement techniques, and assess geophysical survey data and other safety and siting information. PCOM uses the recommendations of these panels and committees to select drilling targets, to specify the major scientific objectives of each two-month drilling segment or leg, and to provide the science operator with nominations for co-chief scientists. The science operator, Texas A&M University, in turn is responsible for planning the detailed ship's operations, actual drilling schedules, and final scientific rosters, which are developed in close cooperation with PCOM and the cognizant panels.

Many of the scientific goals can be met only with new technology. Thus the program has identified engineering goals, which include the ability to start a hole and to core on bare rock at mid-ocean ridge sites, to drill in high temperature and corrosive regions typical of hydrothermal areas, and to core in high latitudes with minimum interference from high seas and sea ice. To meet these needs, the program operates a specially equipped drillship, the JOIDES Resolution, which contains laboratories and equipment that are state-of-the-art, and carries a major new logging program.

The ship, registered as SEDCO/BP 471 after her owners and her length in feet (144 meters), is 70 feet (21 meters) wide, and has a displacement of 16,595 long tons. Her derrick towers 200 feet (61 meters) above the waterline, and a computer-controlled dynamic-positioning system stabilizes the ship over a specific location while drilling in water depths up to 27,000 feet (8230 meters). The drilling system collects cores from beneath the seafloor with a derrick and drawworks that can handle 30,000 feet (9144 meters) of drill pipe. More than 12,000 square feet (1115 square meters) of space distributed throughout the ship is devoted to scientific laboratories and equipment. The ship sails with a scientific and technical crew of 50 and a ship's crew of 65.

Logging is a major part of the overall operation. The program provides a full suite of geochemical and geophysical measurements for every hole deeper than 1300 feet (400 meters). For each such hole, there are lowerings of basic oil-industry tools: nuclear, sonic, and electrical. In addition, a borehole televsion is available for imaging the well-bore wall, a 12-channel logging tool provides accurate velocity and elastic property measurements as well as sonic waveforms for spectral analysis of energy propagation near the well bore, and a vertical seismic profiler records reflectors from below the total depth of the hole.

Texas A&M University serves as science operator for the Ocean Drilling Program. In this capacity, they operate and staff the drillship to collect cores from JOIDES-designated sites from around the world. The science operator also ensures that adequate scientific analyses are performed on the cores by maintaining the shipboard scientific laboratories and by providing logistical and technical support for shipboard scientific teams. Onshore, Texas A&M manages scientific activities after each leg, is curator for the cores, distributes samples, and coordinates the editing and publication of the scientific results. Lamont-Doherty Geological Observatory (LDGO) of Columbia University manages the program's logging operations, which include processing the data and provision of assistance to scientists in data analysis. The ODP Data Bank, a repository for geophysical data, is also managed by LDGO. Core samples from ODP and the previous Deep Sea Drilling Project are stored for future investigation at three sites: ODP Pacific and Indian Ocean cores at Texas A&M University, ODP and DSDP Atlantic and Antarctic cores at Lamont-Doherty Geological Observatory, and DSDP Pacific and Indian Ocean cores at Scripps Institution of Oceanography.

International oversight and coordination are provided by the ODP Council, a governmental consultative body of partner country representatives, chaired by the United States, which periodically reviews the general progress of the program and discusses financial plans and other management issues. Joint Oceanographic Institutions, Inc., a nonprofit consortium of U.S. oceanographic institutions, serves as the National Science Foundation's prime contractor and manages the ODP. JOI is responsible for seeing that the scientific objectives and plans are translated into scientific operations consistent with JOIDES recommendations and budgetary constraints.

Scientific achievements of the ODP already include new data on early seafloor spreading and how continents separate and their margins evolve. We have new insight into glacial cycles and the fluctuations of currents throughout geological time. Technical achievements include the first bare-rock coring, and logging data more accurate and complete than ever before. JOI is pleased to have played a facilitating role in the Ocean Drilling Program.

D. James Baker
President
Joint Oceanographic Institutions, Inc.

Washington, D.C.
OCEAN DRILLING PROGRAM

MEMBER ORGANIZATIONS OF THE JOINT OCEANOGRAPHIC INSTITUTIONS FOR DEEP EARTH SAMPLING (JOIDES):
University of California at San Diego, Scripps Institution of Oceanography
Columbia University, Lamont-Doherty Geological Observatory
University of Hawaii, Hawaii Institute of Geophysics
University of Miami, Rosenstiel School of Marine and Atmospheric Science
Oregon State University, College of Oceanography
University of Rhode Island, Graduate School of Oceanography
Texas A&M University, Department of Oceanography
University of Texas at Austin, Institute for Geophysics
University of Washington, College of Ocean and Fishery Sciences
Woods Hole Oceanographic Institution
Canada, Department of Energy, Mines, and Resources
European Science Foundation Consortium for Ocean Drilling (ECOD), Belgium, Denmark, Finland, Iceland, Italy, Greece, the Netherlands, Norway, Spain, Sweden, Switzerland, and Turkey
Federal Republic of Germany, Bundesanstalt für Geowissenschaften und Rohstoffe
France, Institut Français de Recherche pour l'Exploitation de la Mer
Japan, University of Tokyo, Ocean Research Institute
United Kingdom, Natural Environment Research Council

OPERATING INSTITUTION
College of Geosciences
Texas A&M University
College Station, Texas
Melvin Friedman, Principal Investigator

OCEAN DRILLING PROGRAM
Philip D. Rabinowitz
Director
Louis E. Garrison
Deputy Director
Sylvia Cecile DeVoge
Administrator
Audrey W. Meyer, Manager
Science Operations
Barry Harding, Manager
Engineering and Drilling Operations
Russell B. Merrill, Manager
Science Services
Robert E. Olivas, Manager
Technical and Logistics Support

LOGGING OPERATOR
Borehole Research Group
Lamont-Doherty Geological Observatory
Columbia University
Palisades, New York
Roger Anderson, Head

PRIME CONTRACTOR
Joint Oceanographic Institutions, Inc.
Washington, D.C.
Thomas E. Pyle
Director, Ocean Drilling Programs
PARTICIPANTS ABOARD JOIDES RESOLUTION FOR LEG 107

Kim A. Kastens
Co-Chief Scientist
Lamont-Doherty Geological Observatory
Columbia University
Palisades, New York 10964

Jean Mascle
Co-Chief Scientist
Laboratoire de Géodynamique Sous-Marine
Université Pierre et Marie Curie
B.P. 48
06230 Villefranche-sur-Mer
France

Christian Auroux
Staff Scientist/Physical Properties Specialist
Ocean Drilling Program
Texas A&M University
College Station, Texas 77843

Enrico Bonatti
Petrologist
Lamont-Doherty Geological Observatory
Columbia University
Palisades, New York 10964

Cristina Broglia
Logging Scientist
Lamont-Doherty Geological Observatory
Columbia University
Palisades, New York 10964

James Channell
Paleomagnetist
Department of Geology
University of Florida
Gainesville, Florida 32611

Pietro Curzi
Physical Properties Specialist
Istituto di Geologia Marina
Consiglio Nazionale delle Ricerche
Via Zamboni, 65
40127 Bologna
Italy

Kay-Christian Emcis
Geochemist
Ocean Drilling Program
Texas A&M University
College Station, Texas 77843

Georgette Glaçon
Paleontologist (foraminifers)
Laboratoire de Stratigraphie et de Paleoécologie
Université de Provence
3, Place Victor Hugo
13331 Marseille Cedex 3
France

Shiro Hasegawa
Paleontologist (foraminifers)
Institute of Geology and Paleontology
Faculty of Science
Tohoku University
Aobayama, Sendai, 980
Japan

Werner Hieke
Sedimentologist
Lehrstuhl für Geologie
Technische Universität München
Lichtenbergstrasse 4
D-8046 Garching
Federal Republic of Germany

Floyd McCoy
Sedimentologist
Department of Geology
University of Florida
Gainesville, Florida 32611

Georges Mascle
Sedimentologist
Institut Dolomieu
Université de Grenoble
15 Rue Maurice Gignoux
38031 Grenoble Cedex
France

James Mendelson
Logging Scientist
Department of Earth, Atmospheric and Planetary Sciences
Massachusetts Institute of Technology
42 Carleton Street
Cambridge, Massachusetts 02142

Carla Müller
Paleontologist (nannofossils)
Geologisches-Paläontologisches Institut
Universität Frankfurt/Main
32-34 Senckenberg-Anlage
D-6000 Frankfurt/Main 1
Federal Republic of Germany

Jean-Pierre Réhault
Sedimentologist
Laboratoire de Géodynamique Sous-Marine
Université Pierre et Marie Curie
B.P. 48
06230 Villefranche-sur-Mer
France
Alastair Robertson
Sedimentologist
Department of Geology
University of Edinburgh
West Mains Road
Edinburgh EH9 3JW
United Kingdom

Renzo Sartori
Sedimentologist
Istituto di Geologia Marina
Consiglio Nazionale delle Ricerche
Via Zamboni, 65
40127 Bologna
Italy

Rodolfo Sprovieri
Paleontologist (foraminifers)
Istituto di Geologia
Corso Tukory, 131
90100 Palermo
Italy

Masayuki Torii
Paleomagnetist
Department of Geology and Mineralogy
Kyoto University
Sakyo-ky, Kyoto 606
Japan

Captain Gerard Kuster
Master of the Drilling Vessel
Undersea Drilling, Inc.
707 Texas Avenue South
Suite 103 D
College Station, Texas 77840-1917

Rod McQuaig
Drilling Superintendent
Undersea Drilling, Inc.
707 Texas Avenue South
Suite 103 D
College Station, Texas 77840-1917

ODP ENGINEERING AND OPERATIONS PERSONNEL

David Huey
Supervisor of Drilling Operations

Mark Robinson
Special Tools Technician

Joe Johnson
Engineer

Lee Geiser
Logger

ODP TECHNICAL AND LOGISTICS PERSONNEL

Wendy Autio
Marine Technician

Larry Bernstein
Chemistry Technician

Roy Davis
Photographer

Bettina Domeyer
X-Ray Technician

Tamara Frank
Chemistry Technician

Henrike Groschel
Marine Technician

Ted (“Gus”) Gustafson
Laboratory Officer

Bob Hayman
Curatorial Representative

Harry (“Skip”) Hutton
Marine Technician

Jessy Jones
Marine Technician

Brad Julson
Senior Marine Technician

Bill Meyer
Computer System Manager

Dwight Mossman
Electronics Technician

Mark (“Trapper”) Neschleba
Marine Technician

Gail Peretsman
Yoperson

Bill Robinson
Electronics Engineer

Gregory Simmons
Marine Technician

John Weisbruch
Marine Technician

AMOCO Production Company International
P.O. Box 3385
Tulsa, Oklahoma 74102

Schlumberger Offshore Service
Houston Offshore District
8460 Gulf Freeway
Houston, Texas 77017
Ocean Drilling Program Publications Staff

Publications Supervisor
William D. Rose

Chief Editor
Norman J. Stewart

Editors
Sondra Stewart
William R. Winkler

Chief Production Editor
Raymond F. Silk

Production Editor
Mei-Chun Y. Lee

Manuscript Coordinator
Elsa Kapitan Mazzullo

Hole Summary Coordinator
Patricia M. Wunneburger

Publications Distribution Specialist
Fabiola Muñoz Byrne

Senior Photographer
John W. Beck

Photographer
Roy Davis

Chief Illustrator
Karen O. Benson

Illustrators
Garnet D. Gaither
Larry Lewis
Pamela Vesterby
Christine L. Yokley

Compositor
Rhoda Segur
TABLE OF CONTENTS

VOLUME 107—PART A

ACKNOWLEDGMENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION</td>
<td>5</td>
</tr>
<tr>
<td>2. THE TYRRHENIAN SEA BEFORE LEG 107</td>
<td>9</td>
</tr>
<tr>
<td>3. A REVIEW OF CIRCUM-TYRRHENIAN REGIONAL GEOLOGY</td>
<td>37</td>
</tr>
<tr>
<td>4. EXPLANATORY NOTES</td>
<td>65</td>
</tr>
<tr>
<td>5. UNDERWAY GEOPHYSICS</td>
<td>89</td>
</tr>
</tbody>
</table>

SECTION 1: INTRODUCTION

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION</td>
<td>5</td>
</tr>
<tr>
<td>THE TYRRHENIAN SEA BEFORE LEG 107</td>
<td>9</td>
</tr>
<tr>
<td>A REVIEW OF CIRCUM-TYRRHENIAN REGIONAL GEOLOGY</td>
<td>37</td>
</tr>
<tr>
<td>EXPLANATORY NOTES</td>
<td>65</td>
</tr>
<tr>
<td>UNDERWAY GEOPHYSICS</td>
<td>89</td>
</tr>
</tbody>
</table>

SECTION 2: SITE REPORTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE 650: MARSILI BASIN</td>
<td>129</td>
</tr>
<tr>
<td>SITE 651: TYRRHENIAN SEA</td>
<td>287</td>
</tr>
<tr>
<td>SITE 652: LOWER SARDINIAN MARGIN</td>
<td>403</td>
</tr>
<tr>
<td>SITE 653: CORNAGLIA TERRACE</td>
<td>599</td>
</tr>
<tr>
<td>SITE 654: UPPER SARDINIAN MARGIN</td>
<td>747</td>
</tr>
<tr>
<td>SITE 655: GORTANI RIDGE, WESTERN VAVILOV BASIN</td>
<td>877</td>
</tr>
<tr>
<td>SITE 656: DE MARCHI SEAMOUNT</td>
<td>951</td>
</tr>
</tbody>
</table>

SECTION 3: INDEX

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INDEX</td>
<td>1003</td>
</tr>
<tr>
<td>JOIDES ADVISORY GROUPS</td>
<td>1007</td>
</tr>
<tr>
<td>SAMPLE-DISTRIBUTION POLICY</td>
<td>1011</td>
</tr>
</tbody>
</table>

BACK-POCKET FOLDOUTS

- **VOLUME 107: CHAPTER 2: FIGURE 11:** SINGLE-CHANNEL SEISMIC LINES ILLUSTRATING THE GENERAL SHALLOW CHARACTER ACROSS THE TYRRHENIAN.
- **VOLUME 107: CHAPTER 2: FIGURE 19:** TWO PROCESSED MULTICHANNEL SEISMIC LINES ACROSS THE VAVILOV BASIN.
- **VOLUME 107: CHAPTER 3: FIGURE 16:** SOUTHERN APENNINES STRUCTURAL MAP AND STRATIGRAPHIC COLUMNS OF THE DIFFERENT STRUCTURAL UNITS IN THE SOUTHERN APENNINES.
- **VOLUME 107: CHAPTER 9: FIGURE 11:** TENTATIVE CORRELATION BETWEEN HOLES 653A AND 653B.
ACKNOWLEDGMENTS

Innumerable workers have contributed to our present understanding of the Mediterranean and its surrounding regions, thus making it possible to conceive and begin to solve the questions underlying Leg 107. Excellent seismic profiles collected for specific site selection were obtained through an IFREMER-IFP-CNRS cooperative cruise aboard the Noroit. Seismic data processing was provided in a very short time by IFP Data Processing Center (M. Ripoll). Valuable advice for site selection and cruise planning was provided by the Mediterranean Working Group, the Atlantic Regional Panel, the Safety Panel, and other JOIDES Advisory Panels and Committees.

We are grateful for permission from the government of Italy to drill in their Exclusive Economic Zones.

The smooth shipboard operations are a tribute to the competence and cooperative spirit of Captain Gerard Kuster and his officers and crew; to the SEDCO-FOREX engineers and rig floor crew; and to Laboratory Officer “Gus” Gustafson and the ODP Technician Group.

Dave Huey, ODP Operations Manager for Leg 107, provided a vital link between the scientific goals and the engineering realities of drilling in the Mediterranean. Karen Benson, Norman Stewart, Ray Silk, and their associates have had the thankless task of illustrating, editing, and assembling this volume.

K. Kastens thanks Yale University’s Department of Geology and Geophysics for their hospitality, and the National Science Foundation’s Program of Visiting Professorships for Women in Science (grant RII-8600385) for financial support, during the editing of this volume.