7. SITE 662¹

Shipboard Scientific Party²

HOLE 662A

Date occupied: 24 March 1986, 0300 UTC

Date departed: 25 March 1986, 0745 UTC

Time on hole: 28.75 hr

Position: 1°23.41'S, 11°44.35'W

Water depth (sea level; corrected m, echo-sounding): 3821.3

Water depth (rig floor; corrected m, echo-sounding): 3831.8

Bottom felt (rig floor; m, drill pipe measurement): 3824.3

Distance between rig floor and sea level (m): 10.5

Total depth (rig floor, m): 4034.8

Penetration (m): 200.0

Number of cores (including cores with no recovery): 22

Total length of cored section (m): 200

Total core recovered (m): 204.12

Core recovery (%): 102.06

Oldest sediment cored: Depth (mbsf): 200.0 Nature: calcareous nannofossil ooze Age: Pliocene, 3.6 Ma Measured velocity (km/s): 1.52

HOLE 662B

Date occupied: 25 March 1986, 0745 UTC

Date departed: 26 March 1986, 1215 UTC

Time on hole: 28.5 hr

Position: 1°23.41'S, 11°44.35'W

Water depth (sea level; corrected m, echo-sounding): 3821.3

Water depth (rig floor; corrected m, echo-sounding): 3831.8

Bottom felt (rig floor; m, drill pipe measurement): 3824.3

Distance between rig floor and sea level (m): 10.5

Total depth (rig floor, m): 4023.0

Penetration (m): 188.2

Number of cores (including cores with no recovery): 12

Total length of cored section (m): 114

Total core recovered (m): 114.66

Core recovery (%): 100.58

Oldest sediment cored:

Depth (mbsf): 188.2 Nature: calcareous nannofossil ooze Age: Pliocene, 3.58 Ma Measured velocity (km/s): 1.52

Principal results: Site 662 is located in the eastern equatorial Atlantic at 1°23.41'S, 11°44.35'W in a water depth of 3813.8 m on the upper eastern flank of the mid-Atlantic Ridge just south of the Romanche Fracture Zone (see "Background and Scientific Objectives" section, this chapter). This site is situated in a sediment pond with about 0.5 s of moderately reflective acoustic layering in a region characterized mostly by outcropping basement (see "Background and Scientific Objectives" section, this chapter). Our primary objective was to obtain late Neogene records of equatorial divergence, advection of the Benguela Current, and eolian sedimentation.

From Holes 662A and 662B, we recovered a total of 34 advancedpiston-corer (APC) cores to depths of 200.0 and 188.2 meters below the seafloor (mbsf), respectively. Hole 662A was cored continuously; Hole 662B was spot cored in the upper 120 mbsf (Table 1). Recovery averaged 102.06% in Hole 662A and 100.58% in Hole 662B.

The entire section cored (0-200 mbsf) is one lithologic unit composed of nannofossil and foraminifer-nannofossil oozes of late Pliocene through Holocene age. Secondary components include clay, diatoms, and radiolarians.

This unit is divided into four subunits, based on carbonate content (see "Organic Geochemistry" section, this chapter) and on deformation features (Fig. 1). Subunit IA (0-26.2 mbsf) is composed of Pleistocene (0 to 0.5 Ma) nannofossil and foraminifer-nannofossil oozes deposited by pelagic sedimentation, except for two turbidites. Subunit IB (26.2-96.2 mbsf) has the same lithology as Subunit IA, but was deposited mostly by mass-gravitational flows, such as slumps, debris flows, and turbidites. Two intervals of undisturbed, or littledisturbed, pelagic sediments also occur between three large slumps (Fig. 1). Subunit IC (96.2-154.6 mbsf) is upper Pliocene to early Pleistocene nannofossil ooze similar to Subunit IA. Subunit ID (154.6-200 mbsf) is made up of upper Pliocene nannofossil and foraminifer-nannofossil oozes, distinguished from the overlying subunits by their uniformly higher carbonate content (see "Organic Geochemistry" section, this chapter).

Although a useable paleomagnetic stratigraphy could not be obtained at Site 662, the nannofossil and planktonic-foraminifer biostratigraphy provided several well-dated datum levels to constrain the age-depth curve (see "Sediment-Accumulation Rates" section, this chapter). Depositional rates of pelagic sediments in Subunits IA, IC, and ID average 42 m/m.y. Preservation of calcareous fossils is good to moderate; preservation of diatoms is moderate to fair.

¹ Ruddiman, W., Sarnthein, M., Baldauf, J., et al., 1988. Proc., Init. Repts. (Pt. A), ODP, 108.

² William Ruddiman (Co-Chief Scientist), Lamont-Doherty Geological Observatory, Palisades, NY 10964; Michael Sarnthein (Co-Chief Scientist), Geologisch-Paläontologisches Institut, Universität Kiel, Olshausenstrasse 40, D-2300 Kiel, Federal Republic of Germany; Jack Baldauf, ODP Staff Scientist, Ocean Drilling Program, Texas A&M University, College Station, TX 77843; Jan Backman, Department of Geology, University of Stockholm, S-106 91 Stockholm, Sweden; Jan Bloemendal, Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882-1197; William Curry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543; Paul Farrimond, School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, United Kingdom; Jean Claude Faugeres, Laboratoire de Géologie-Océanographie, Université de Bordeaux I, Avenue des Facultés Talence 33405, France; Thomas Janacek, Lamont-Doherty Geological Observatory, Palisades, NY 10964; Yuzo Katsura, Institute of Geosciences, University of Tsukuba, Ibaraki 305, Japan; Hélène Manivit, Laboratoire de Stratigraphie des Continents et Océans, (UA 319) Université Paris VI, 4 Place Jussieu, 75230 Paris Cedex, France; James Mazzullo, Department of Geology, Texas A&M University, College Station, TX 77843; Jürgen Mienert, Geologisch-Paläontologisches Institut, Universität Kiel, Olshausenstrasse 40, D-2300 Kiel, Federal Republic of Germany, and Woods Hole Oceanographic Institution, Woods Hole, MA 02543; Edward Pokras, Lamont-Doherty Geological Observatory, Palisades, NY 10964; Maureen Raymo, Lamont-Doherty Geological Observatory, Palisades, NY 10964; Peter Schultheiss, Institute of Oceanographic Sciences, Brook Road, Wormley, Godalming, Surrey GU8 5UG, United Kingdom; Rüdiger Stein, Geologisch-Paläontologisches Institut, Universität Giessen, Senckenbergstrasse 3, 6300 Giessen, Federal Republic of Germany; Lisa Tauxe, Scripps Institution of Oceanography, La Jolla, CA 92093; Jean-Pierre Valet, Centre des Faibles Radioactivités, CNRS, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France; Philip Weaver, Institute of Oceanographic Sciences, Brook Road, Wormley, Godalming, Surrey GU8 5UG, United Kingdom; Hisato Yasuda, Department of Geology, Kochi University, Kochi 780, Japan.

Table 1. Site 662 coring summary (drilling depths).

Core no.	Date (March 1986)	Time (UTC)	Depths (mbsf)	Length cored (m)	Length recovered (m)	Recovery (%)
108-662A-1H	24	1355	0-3.2	3.2	3.2	100.0
108-662A-2H	24	1445	3.2-12.7	9.5	9.9	104.0
108-662A-3H	24	1534	12.7-22.2	9.5	9.5	99.6
108-662A-4H	24	1622	22.2-31.7	9.5	9.6	100.0
108-662A-5H	24	1714	31.7-41.2	9.5	9.4	98.5
108-662A-6H	24	1807	41.2-50.7	9.5	9.5	100.0
108-662A-7H	24	1854	50.7-60.2	9.5	9.6	101.0
108-662A-8H	24	1944	60.2-69.7	9.5	9.6	101.0
108-662A-9H	24	2034	69.7-79.2	9.5	8.8	92.9
108-662A-10H	24	2123	79.2-88.7	9.5	9.6	101.0
108-662A-11H	24	2212	88.7-98.2	9.5	9.7	102.0
108-662A-12H	24	2259	98.2-107.7	9.5	9.8	103.0
108-662A-13H	24	2346	107.7-117.2	9.5	9.7	102.0
108-662A-14H	25	0038	117.2-126.7	9.5	9.4	98.4
108-662A-15H	25	0118	126.7-136.2	9.5	9.7	102.0
108-662A-16H	25	0154	136.2-145.7	9.5	9.8	103.0
108-662A-17H	25	0245	145.7-155.2	9.5	9.0	94.9
108-662A-18H	25	0320	155.2-164.7	9.5	9.7	102.0
108-662A-19H	25	0408	164.7-174.2	9.5	9.5	100.0
108-662A-20H	25	0505	174.2-183.7	9.5	9.6	100.0
108-662A-21H	25	0600	183.7-193.2	9.5	9.6	101.0
108-662A-22H	25	0645	193.2-200.0	6.8	9.8	145.0
108-662B-1H	25	0918	0-9.5	9.5	9.5	100.0
108-662B-2H	25	1005	9.5-19.0	9.5	9.6	101.0
108-662B-3H	25	1140	36.2-45.7	9.5	9.3	97.5
108-662B-4H	25	1420	64.7-74.2	9.5	9.4	99.3
108-662B-5H	25	1710	93.2-102.7	9.5	9.4	98.6
108-662B-6H	25	1948	121.7-131.2	9.5	9.7	102.0
108-662B-7H	25	2035	131.2-140.7	9.5	9.7	102.0
108-662B-8H	25	2136	140.7-150.2	9.5	9.7	102.0
108-662B-9H	25	2227	150.2-159.7	9.5	9.6	101.0
108-662B-10H	26	0300	159.7-169.2	9.5	9.6	101.0
108-662B-11H	26	0445	169.2-178.7	9.5	9.7	102.0
108-662B-12H	26	0545	178.7-188.2	9.5	9.6	101.0

Note: H = hydraulic piston. UTC = Universal Time Coordinated.

If the slumps and disturbed sediments in Subunit IB are removed, the undisturbed pelagic sediments in this subunit also appear to have been deposited at rates close to 42 m/m.y. As explained in the "Sediment-Accumulation Rates" section (this chapter), extrapolation of sedimentation rates from existing control points appears to indicate largely continuous sedimentation around the disturbed sections. Thus, it appears that these slumps were added to rapidly deposited pelagic sediment sections, with little loss to erosion.

Neither magnetic-susceptibility nor P-wave measurements were useful for between-hole correlations, except for some suggestion of P-wave correlations in Subunit ID. As a result, we used carbonate layering visible in core photographs to attempt these correlations. We succeeded in correlating measurements between the two holes only within Subunits IA, IC, and ID. This indicates that we have complete composite-depth sections of pelagic sedimentation from 0 to 0.5 Ma and from 1.3 to 3.6 Ma at Site 662.

One paleoclimatic result evident in this pelagic sequence from initial shipboard studies is the intensification of $CaCO_3$ variations toward higher-amplitude changes and lower $CaCO_3$ minima around 2.6 Ma (see "Organic Geochemistry" section, this chapter). This prominent change appears to precede slightly or to correlate with the initiation of significant-scale Northern Hemisphere glaciation at 2.5 Ma. This change may reflect (1) increased dilution of carbonate content by opaline silica, (2) increased dilution by eolian dust, (3) increased dissolution of $CaCO_3$, or (4) decreased productivity of $CaCO_3$. As the sedimentation rates do not change, it seems likely that explanations 3 and/or 4 must be balanced by explanations 1 and/or 2.

The relatively low levels of dissolution observed at Site 662 are not sufficient to have caused the observed $CaCO_3$ changes alone. Increased silica would require increased productivity, but this might contradict decreased $CaCO_3$ productivity. Increased dust input would indicate increased continental aridity or wind velocity. More detailed studies and accurate age-depth models will be required to choose among these possibilities.

Figure 1. Lithostratigraphic and biostratigraphic summary of Site 662. Black layers are gravity-flow mass deposits (mostly slumps); remainder of section is pelagic deposition. Schematic CaCO₃ cycles show general range of CaCO₃ variations, probably at periods of 10,000 to 100,000 yr.

BACKGROUND AND SCIENTIFIC OBJECTIVES

Site 662 (target Site Eq-7) was one of three Leg 108 sites designed to retrieve a late Neogene record of climatic variability from near the equator (Fig. 2). Two primary objectives were planned for this site:

1. To determine the late Neogene history of variations in surface-ocean circulation.

Reconstructions of sea-surface temperatures at the last glacial maximum 18,000 yr ago show that the surface ocean was chilled as much as 6° to 8° C in relation to the present in a band along and just south of the equator in the eastern half of the Atlantic Ocean (CLIMAP, 1981). Studies of the last 250,000 yr of the Pleistocene by McIntyre et al. (in press) show that the rel-

Figure 2. Locations of Sites 662 through 668.

ative abundance of planktonic foraminifers indicating cool water varied mostly with a 23,000-yr period of orbital precession. This signal requires extensive cooling of the sea surface or of the shallow subsurface layers, either by increased advection of colder waters from high southern latitudes, or by wind-driven changes in the subsurface isotherm structure caused by increased divergence or shallowing of the thermocline. Tracing several paleoceanographic signals back through the Neogene should help to distinguish among the above explanations. The critical indicator signals are (1) estimated sea-surface temperature and (2) the fluxes of opaline silica, $CaCO_3$, and organic carbon.

Site 662's position in the far southeastern part of the equatorial Atlantic enabled us to detect both the near-equatorial divergence signal as well as the advective Southern-Hemisphere contribution from the Benguela Current. Site 662 lies in the Southern-Hemisphere thermal regime (south of the thermal equator), and its long-term, sea-surface-temperature response probably reflects forcing from the Southern Hemisphere.

2. To monitor late Neogene variations in African aridity, as indicated by biogenic material and windblown terrigenous dust from the African continent.

Pokras and Mix (1985) proposed that the abundance of freshwater diatoms (genus *Melosira*) can be used in this region to monitor periodic drying out of lakes in north equatorial Africa during a 23,000-yr cycle. Because of the prominence of southern trade winds at this site, eolian deposition also may include a contribution from southern African source areas in or near the Namib and Kalahari deserts. Evaluating the relative importance of northern and southern sources was a primary objective at Site 662.

In addition to our two primary objectives, secondary objectives were as follows:

1. To obtain a continuous late-Neogene sequence for highresolution paleomagnetic, biostratigraphic, and stable-isotopic analyses.

2. To obtain a calcareous sequence to monitor late-Neogene carbonate dissolution. Based on its location, Site 662 must be free of the fluvial input that may contribute to the record of several preceding Leg 108 sites, which indicates that productivity, dissolution, and dilution are the primary factors controlling the $CaCO_3$ record.

Geologic and Topographic Setting

Site 662 is located in the southeastern equatorial Atlantic on the upper eastern flank of the mid-Atlantic Ridge just south of the Romanche Fracture Zone (Figs. 2 and 3). *Conrad* cruise air-gun records indicate small scattered ponds of sediment up to 5 nmi wide in an area of outcropping, or nearly outcropping, basement (Fig. 4). Site 662 lies in one of the larger ponds. A tendency toward focusing of thicker sediment accumulations into low terrain indicates some degree of sediment redistribution along the seafloor, including the possibility of turbidites and other gravity-controlled sediment deposition. Despite this risk, we chose to core in such a pond because sediment cover on the nearby topographic highs was thin, discontinuous, and, in some areas, faulted.

The basement age at Site 662 is late Miocene, based on regional magnetic lineations. The anticipated sedimentary section is cyclically alternating upper Miocene through Holocene nannofossil ooze and mud.

OPERATIONS

After departing Site 661, we steamed at an average speed of 13.7 kt on a southeasterly course to a way point at $1^{\circ}00'$ S, $11^{\circ}59'$ W (Fig. 3), where the ship slowed to 5 kt at 2205 UTC on 23 March 1986, and we streamed out the geophysical gear (using 80-in.³ water guns and a magnetometer). We then followed a course of 147° toward the eventual location of Site 662. We dropped a beacon at 0300 UTC on 24 March as we crossed the site ($1^{\circ}23.41'$ S, $11^{\circ}44.35'$ W). The ship slowed, we retrieved the geophysical gear, and then returned to the beacon. (All times are UTC, Universal Time Coordinated, formerly GMT, Greenwich Mean Time.)

We began running drill pipe into Hole 662A at 0315 and finished coring by 0845 on 24 March. After three attempted mudline cores came up empty, we discovered a 60-m miscount on the bottom-hole assembly. With this problem corrected, the first APC core came on deck at 1355. We continued APC coring to the complete penetration depth of Hole 662A (200.0 mbsf). The last APC core (108-662A-22H) came on deck at 0645 on 25 March. Total recovery for Hole 662A was 102%. We then began pulling out of Hole 662A at 0700 and cleared the mud line at 0745.

The drill string was offset 15 m south to Hole 662B, the hole spudded in, and we retrieved the first APC core at 0918 on 25 March. Based on frequent slumps and turbidites in Hole 662A above 120 mbsf, we decided to spot core in Hole 662B only those depth intervals in the upper 100 m equivalent to relatively undisturbed pelagic sections in Hole 662A. We retrieved Cores 108-662B-1H through -662B-5H within longer washed-down intervals, as indicated in Table 1. Beginning with Core 108-662B-6H, recovered from 121.7 to 131.2 mbsf and brought on board at 1948 on 25 March, we cored continuously to Core 108-

Figure 3. Seismic track lines near Site 662.

Figure 4. Seismic-reflection record from cruise C2403 near Site 662.

LITHOSTRATIGRAPHY AND SEDIMENTOLOGY

Introduction

One major sedimentary unit was recognized at Site 662 (Fig. 5). This unit is composed primarily of interbedded nannofossil

and foraminifer-nannofossil oozes and is Pliocene to Pleistocene in age. The unit can be subdivided further into four subunits, based on variations in carbonate content and deformation features. Each subunit is described in the following sections.

Subunit IA

- Cores 108-662A-1H through -662A-4H-3, 100 cm; depth, 0-26.2 mbsf; age, Pleistocene.
- Cores 108-662B-1H through 662B-2H, CC, 19 cm; depth, 0-19.0, mbsf; age, Pleistocene.

Subunit IA is composed primarily of interbedded foraminifer-nannofossil and nannofossil oozes with minor (10% to 25%) amounts of clay, diatoms, radiolarians, and sponge spicules. In addition, Cores 108-662A-2H and -662A-3H contain a siliceous

Figure 5. Carbonate and organic-carbon contents of sediments at Site 662, Hole 662A. Also shown is the division of the unit into subunits.

nannofossil ooze interbedded with pelagic carbonates. The carbonate content of the sediments in this subunit ranges from 60% to 90%. The foraminifer-nannofossil and nannofossil oozes are commonly white, light gray, or gray, depending on the clay and biogenic-silica contents. The siliceous nannofossil ooze is gray to light gray. All sediment types are moderately bioturbated. Two thin (<10 cm), sandy foraminifer turbidites occur near the top of Cores 108-662A-2H and -662A-3H and in the middle of Cores 108-662B-2H and -662B-3H.

The depth of the base of this subunit in Hole 662B can be estimated only minimally as the next two core intervals were washed and the subunit boundary was not cored.

Subunit IB

- Cores 108-662A-4H-3, 100 cm, through 662A-11H-5, 150 cm; depth, 26.2-96.2 mbsf; age, Pleistocene.
- Cores 108-662B-3H through 662B-5H-5, 150 cm; depth, 36.2-100.7 mbsf; age, Pleistocene.

Subunit IB is composed of interbedded foraminifer-nannofossil and nannofossil oozes with minor (10% to 25%) amounts of clay, diatoms, radiolarians and sponge spicules. Sediments are white, light gray, and gray. The carbonate content of this subunit generally ranges from 80% to 90%, with the exception of a clayey silt interval around 40 mbsf (Hole 662A) having carbonate values as low as 55%. This subunit is defined on the basis of deformation features, particularly three slumps (mass flows?). These slumps are characterized by folded, dipping, and vertically stretched bedding planes. Microfaulting and slide planes are common within the slumped intervals. Erosional contacts and graded bedding (turbidites?) are common in Core 108-662A-5H-7H and Cores 108-662B-3H through -662B-5H. Intervals between the slumps appear to be normal pelagic units. The precise upper boundary of this subunit in Hole 662B is unknown as it occurs in a washed interval.

Subunit IC

Cores 108-662A-11H-6 through -662A-17H, CC, 12 cm; depth, 96.2-154.64 mbsf; age, late Pliocene to Pleistocene.

Cores 108-662B-5H through -662B-9H-1, 100 cm; depth, 100.7-151.2 mbsf; age, late Pliocene to Pleistocene.

Subunit IC is composed primarily of nannofossil ooze, with minor amounts of clay, diatoms, radiolarians, sponge spicules, and foraminifers. In addition, Cores 108-662A-13H and -662A-14H contain siliceous nannofossil ooze interbedded with the nannofossil ooze. The carbonate content of this subunit generally ranges from 75% to 90%, with two intervals of lower (50% to 70%) carbonate content (115-120 and 150-155 mbsf; Hole 662A). The nannofossil ooze is generally white to light gray, and the siliceous nannofossil ooze is olive gray. Both sediment types are moderately bioturbated and contain numerous green and black laminae. Erosional contacts and graded bedding (turbidites) occur in Cores 108-662A-12H, -662A-13H, -662-17H, and -662B-5H.

The precise location of the lower boundary of this Hole 662B subunit is unknown. The boundary was determined from variations in carbonate content in Hole 662A. Carbonate data were not generated for Hole 662B. Therefore, the Hole 662B boundary is based on correlation of light to dark color variations with those of Hole 662A.

Subunit ID

Cores 108-662A-18H through -662A-22H, CC, 21 cm; depth, 154.64-203.00 mbsf; age, Pliocene.

Cores 108-662B-9H-1, 100 cm, through -662B-12H, CC, 17 cm; depth, 151.2-188.2 mbsf; age, Pliocene.

Subunit ID is composed primarily of nannofossil and foraminifer-nannofossil oozes, with minor (0% to 10%) amounts of clay, radiolarians, and diatoms. The carbonate content of this subunit is generally high (85% to 90%), with less apparent variability than in the other subunits. The foraminifer-nannofossil ooze is generally white, while the foraminifer-bearing nannofossil ooze is light gray to light olive gray. Both sediment types are weakly to moderately bioturbated, and black and green microlaminae are common.

Depositional History

The depositional history of the stratigraphic section recovered at Site 662 shows normal calcareous and siliceous-calcareous pelagic sedimentation typical of highly productive equatorial locations. These pelagic deposits are interrupted by slumps and turbidites of similar lithology originating from surrounding topographic highs. Three slumps flowed over the pelagic beds, tilting these beds slightly, but not deforming them extensively. After each slumping episode, normal pelagic sedimentation resumed.

BIOSTRATIGRAPHY

Two holes were cored at Site 662, located in a water depth of 3813.8 m, to investigate the history of divergence in the equatorial Atlantic. Hole 662A was cored continuously to a depth of 200 mbsf, while Hole 662B was cored discontinuously. Only selected intervals of sediments (0–19.0, 36.2–45.7, 64.7–74.2, 93.2–102.7, and 121.7–188.2 mbsf) were recovered from this hole. The oldest sediments cored are early Pliocene in age. Zonal assignments for the cores are shown in Figures 6 and 7.

Calcareous nannofossils and planktonic foraminifers are abundant at this site. The nannofossils are generally moderately well preserved, with occasional poor preservation caused by dissolution. The planktonic foraminifers are characterized by goodto-moderate preservation. Numerous reworked specimens identified throughout the record are attributed to the presence of extensive slumps and turbidites, especially within the Pleistocene section. Diatoms are generally common to abundant, with moderate-to-poor preservation, and benthic foraminifers range from rare to common, with good preservation.

The planktonic fauna and flora are characterized variously by both cool and warm taxa and may be recording glacial/interglacial intervals, especially in the upper one-half of both holes. Shore-based investigations at closer sampling intervals should clarify the floral and faunal records of climate changes at this site.

Calcareous Nannofossils

Calcareous nannofossils are abundant in all sediment samples investigated from Site 662. Most assemblages are moderately well preserved, but in many samples poorer preservation occurs caused by dissolution. Reworked specimens (e.g., discoasters in the late Pleistocene) were observed in most samples investigated. Generally, this background "noise level" of reworking was moderate above Section 108-662A-10H-6 and below Section 108-662A-12H-2, except in scattered samples in the upper one-half of the cored sequence, which is characterized by extensive turbidite deposition. Pliocene and Pleistocene nannofossil assemblages commonly are intermixed severely between these two sections. Within the slump deposits in Cores 108-662A-11H and -662A-12H, sediments of older age sometimes overlie younger sediments.

All major slumps occur from Section 108-662A-12H-2 upward, shortly above the extinction level of *Calcidiscus macintyrei* (at the Core 108-662A-12H/108-662A-13H boundary, 1.45 Ma). The slumped material (e.g., in Samples 108-662A-10H, CC and -662A-11H, CC) seems derived mostly from the latest part of Zone NN18, within the *Discoaster triradiatus* acme interval (1.89 to 2.07 Ma).

Figure 6. Zonal assignments for cores recovered from Hole 662A.

The extinction of *Reticulofenestra pseudoumbilica* occurs in the deepest core retrieved (Core 108-662A-22H), implying that the latest part of the early Pliocene was reached. The Pliocene and Pleistocene nannofossil assemblages at Site 662 are similar in composition to those observed in previous Leg 108 sites, perhaps with the exception that *Umbilicosphaera mirabilis* makes up a greater share of the total assemblage at Site 662. Gephyrocapsids and reticulofenestrids dominate the Pliocene and Pleistocene assemblages, respectively. Ceratoliths, pontosphaerids, and scyphosphaerids are rare in both the Pliocene and Pleistocene samples, whereas common elements consist of *Helicosphaera carteri*, *Helicosphaera sellii* (the latter is found up to

Figure 7. Zonal assignments for cores recovered from Hole 662B. The interval representing calcareous-nannofossil Zone NN17 was not identified in this hole.

immediately below the slumped interval in Section 108-662A-12H-2), *Calcidiscus leptoporus*, *C. macintyrei*, *Pseudoemiliania lacunosa*, rhabdosphaerids, and syracosphaerids.

Two assemblage features are particularly noteworthy. First, in light of the equatorial location of Site 662, we were surprised to find that discoasters are minor components of the total assemblage. More detailed sampling within cores showed distinct abundance fluctuations of the discoasters; however, they never contributed more than 5% to 10% of the total assemblage. We hope that by quantifying their fluctuations in abundance we can gain insight as to the cause of their low relative abundances at this low-latitude site. Second, *Coccolithus pelagicus* never was present in any of the middle or upper Pleistocene assemblages, except within slumps of older age, but this species was a consistent if rare component of upper Pliocene and lowermost Pleistocene assemblages.

Late Pliocene nannofossil biostratigraphy is based entirely on discoaster events. Combined with reworking, the low abundance of discoasters at Site 662 suggests that more precise determinations of these late Pliocene markers can be made only through detailed quantitative analysis and then judged in relation to the background level of reworking.

Pleistocene

Pseudoemiliania lacunosa is fairly common below Sample 108-662A-4H-1, 100 cm, rare in 108-662A-3H, CC, and absent from 108-662A-3H-6, 150 cm, and upward. In Hole 662B, *P lacunosa* disappears between Cores 108-662B-3H and -662B-2H.

Helicosphaera sellii was present in sediments immediately below the slump, which begins in Section 108-662A-12H-2. Calcidiscus macintyrei was observed in Sample 108-662A-13H-1, 75 cm, and downward, but was not observed above-Sample 108-662A-12H-6, 110 cm (except within slumped intervals). Hole 662B was spot cored; these two events occur within the uncored interval between Cores 108-662B-5H and -662B-6H.

Pliocene

Discoaster brouweri and D. triradiatus disappear between Samples 108-662A-14H-4, 150 cm, and 108-662A-14H-5, 75 cm. Rare specimens of D. brouweri were observed in Samples 108-662A-14H-4, 150 cm, and 108-662A-14H-4, 75 cm, but these were considered to be reworked. In Hole 662B, these events probably occur in Core 108-662B-6H, but the ages are difficult to determine because of intense reworking of the core-catcher sample. Sample 108-662B-7H, CC was deposited before the acme interval of D. triradiatus. This acme interval begins with the lower one-half of Section 108-662B-15H-5 in Hole 662B.

Neither D. pentaradiatus nor D. surculus was observed in Sample 108-662A-17H-1, 75 cm. Occurrences at shallower levels most likely result from reworking. Discoaster pentaradiatus has its last occurrence (LO) in Sample 108-662A-17H-2, 142 cm, and D. surculus in Sample 108-662A-17H-3, 118 cm. Both species are rare toward the end of their indicated ranges, and present assignments of their extinctions to specific samples should be considered tentative. Discoaster tamalis disappears in the lower part of Core 108-662A-18H. The less-refined sampling intervals in Hole 662B, restricted to core-catcher samples, were too coarse to yield conclusive results regarding the extinctions of D. pentaradiatus and D. surculus. Judging from the depths below the seafloor, one would expect to find these events in Sample 108-662B-8H, CC. However, only a trace of D. surculus was observed in this sample; thus, it was considered as being reworked. Abundant D. brouweri and rare D. triradiatus were observed in Sample 108-662B-9H, CC, although D. pentaradiatus and D. surculus were absent. Both these species were present in Sample 108-662B-10H, CC, together with D. tamalis. We consider that in Hole 662B too-wide sampling intervals, sediment

mixing, and generally low relative abundances of discoasters prevented us from identifying the true extinction levels of *D. pentaradiatus* and *D. surculus*. In Hole 662B, *D. tamalis* disappeared in the upper part of Core 108-662B-18H. Closer sampling intervals within this section did not improve the precision owing to very low relative abundances of discoasters.

Sphenolithus abies and Sphenolithus neoabies persist into the lower one-half of Core 108-662A-21H, whereas *Reticulofenestra pseudoumbilica* showed a distinct extinction between Samples 108-662A-22H-3, 50 cm, and -662A-22H-1, 70 cm. Hole 662B was not cored deeply enough to reach these events.

Planktonic Foraminifers

A record of planktonic foraminifers extending to the early Pliocene was recovered at Site 662. Although two holes were drilled, only Hole 662A was cored continuously and, hence, gives a clearer picture of distribution of the planktonic zones in the sediments. With few exceptions, planktonic foraminifers were abundant at this site, with preservation ranging from good to moderate. The fauna is tropical, typically containing common *Neogloboquadrina dutertrei, Globigerinoides ruber, Globigerinoides trilobus*, or *Globorotalia menardii*, with rarer, yet consistently present, *Pulleniatina obliquiloculata, Orbulina universa, Globigerinoides sacculifer, Globigerina decoraperta*, and *Globorotalia scitula*. The presence of common *Neogloboquadrina pachyderma* (right-coiling) and *Globorotalia inflata* in the top 60 m of Hole 662A may reflect intensification of glaciations since 1 Ma.

Berggren's (1973) PL zones were recognized easily at this site. The PL6/Globorotalia truncatulinoides zonal boundary, marked by the LO of Globigerinoides obliquus, fell between Samples 108-662A-10H-3, 9 cm, and -662A-10H-5, 49 cm, in Hole 662A and between Samples 108-662B-4H, CC and -662B-5H, CC in Hole 662B. A short overlapping (<0.1 Ma) in the ranges of G. truncatulinoides and G. obliquus was not observed and may indicate that G. obliquus is too rare at the top of its range to be used with confidence. The few specimens of G. obliquus, identified well within the Globorotalia truncatulinoides Zone, are believed to be reworked, a conclusion supported by the presence of numerous slumps and turbidites within the Pleistocene section.

The PL6/PL5 zonal boundary, dated at 2.2 Ma and based on the LO of Globorotalia miocenica, lies between Samples 108-662A-16H-1, 137 cm, and -662A-16H-3, 136 cm, and Samples 108-662B-7H-5, 135 cm, and -662B-7H, CC. The transition between Globorotalia puncticulata and G. inflata occurs within these samples. Zone PL5 is characterized by increasing numbers of G. decoraperta and Neogloboquadrina humerosa. The short Zone PL4 (2.9 to 3.0 Ma), which occurs between the last occurrences of Spaeroidinellopsis seminulina and Dentogloboquadrina altispira, was identified at both holes-in Samples 108-662A-19H-3, 74 cm, and -662B-10H-6, 131 cm. Zone PL3 starts above Samples 108-662A-19H, CC and -662B-10H, CC. Only Hole 662A reaches the early to late Pliocene boundary marked by the top of Zone PL2. The top of this zone, however, is based on the LO of Globorotalia margaritae, which has proved an unreliable marker at previous Leg 108 sites. Therefore, the PL3/ PL2 boundary, as found between Samples 108-662A-22H-3, 135 cm and -662A-22-5, 135 cm, may be in sediments older than 3.4 Ma if the LO of G. margaritae follows the same pattern as at previous sites. This possibility appears to be borne out by nannofossil data. Finally, the LO of Pulleniatina praecursor, dated at 3.3 Ma (Berggren et al., 1985) was identified between Samples 108-662A-20H, CC and -662A-21H, CC.

Benthic Foraminifers

Benthic foraminifers occurred in all core-catcher samples examined from Site 662A. Samples 108-662A-1H, CC through -662A-16H, CC contain rare-to-common and well-preserved specimens. The characteristic species of the assemblage are consistent throughout this interval, but their abundances vary from sample to sample. In Sample 108-662A-2H, CC, Chilostomella oolina, Melonis pompilioides, and Melonis barleeanus are relatively abundant. Core-catcher Samples 108-662A-3H and -662A-6H are characterized by high diversity and the dominance of uvigerinids. Oridorsalis tener and Sphaeroidina bulloides are the dominant species in Sample 108-662A-5H, CC. Globobulimina auriculata occurs frequently in Sample 108-662A-7H, CC and in Samples 108-662A-13H, CC through -662A-17H, CC. This species is most abundant (about 70%) in Sample 108-662A-13H, CC. Globobulimina auriculata typically is associated with North Atlantic Deep Water (Schnitker, 1979) and suggests relatively warm deep water. In core-catcher Samples 108-662A-10H through -662A-20H, the agglutinated foraminifers, such as Eggerella bradyi and Karreriella bradyi, are relatively common. Core-catcher Samples 108-662A-17H through -662A-22H contain rare and poorly to moderately well-preserved specimens. The LO of Bulimina alazanensis occurs in Sample 108-662A-20H, CC (3.2 Ma). This age is similar to that reported by Lutze (1977).

Diatoms

Diatoms are present in all samples examined from Hole 662A. The assemblage is dominated by warm- to cool-water taxa indicative of moderate-to-high productivity. Common to abundant diatoms occur in all samples except Samples 108-662A-13H, CC and -662A-21H, CC, where few diatoms are present. Preservation varies from moderate to poor, with no systematic trend evident. The species composition varies and may reflect glacial/ interglacial changes. Samples dominated by Pseudoeunotia doliolus, Thalassionema nitzschioides vars., and fragments of Ethmodiscus rex suggest glacial intervals, whereas samples with greater numbers of Coscinodiscus nodulifer, Thalassiosira eccentrica, and Roperia tesselata probably were deposited under interglacial conditions. Windblown freshwater diatoms, predominantly Melosira spp., also occur in varying numbers. Sampling density is insufficient to delineate specific climatic trends or cycles among either marine or windblown diatoms. Because of time constraints, no samples from Hole 662B were examined.

The sporadic occurrences of *Rhizosolenia praebergonii* and *R. praebergonii* var. *robustus* required that Burckle's zonation (1977), defined for the eastern equatorial Pacific, be exchanged for that defined by Baldauf (1984) for the North Atlantic, thus replacing the *Rhizosolenia praebergonii* Zone with the *Nitzschia marina* Zone. Increased sampling resolution during subsequent studies will determine the stratigraphic continuity of *R. praebergonii*.

Samples 108-662A-1H, CC and -662A-2H, CC are assigned to the *Pseudoeunotia doliolus* Zone, based on the presence of *P. doliolus* stratigraphically above the LO of *N. reinholdii*. Samples 108-662A-3H, CC through -662A-14H, CC are assigned to the *Nitzschia reinholdii* Zone, based on the co-occurrence of these two species.

The LO of the silicoflagellate *Mesocena quadrangula* has an approximate age of 0.70 Ma in the middle latitudes of the Atlantic (Baldauf et al., 1987) and an age of 0.79 Ma in the eastern equatorial Pacific (Barron, 1980). The LO of *Nitzschia fossilis* has an approximate age of 0.58 to 0.64 Ma in the middle latitudes of the Atlantic (Baldauf et al., 1987) and approximates the LO of *Mesocena quadrangula* (0.79 Ma) in the eastern equatorial Pacific (Barron, 1980). The last occurrences of both *M. quadrangula* and *N. fossilis* occur between Samples 108-662A-5-1, 30 cm, and -662A-4H, CC. However, this interval contains numerous slumps and turbidites, which may result in the reworking of these taxa. The last consistent, common occurrence

of *M. quadrangula* occurs in Sample 108-662A-7H-1, 150 cm, whereas that of *N. fossilis* occurs in the upper part of Section 108-662A-7H-6. Additional studies using quantitative methods will be required to determine the actual LO of these species.

Based on the first occurrence (FO) of *P. doliolus*, Sample 108-662A-14H, CC represents the base of the *Nitzschia reinholdii* Zone. Comparison with the planktonic-foraminifer and calcareous-nannofossil stratigraphies suggests an age of 2.0 to 2.1 Ma for this sample, rather than the accepted date of 1.8 Ma (Barron, 1980) for the LO of *P. doliolus*. The older date, which is similar to the estimated age of this event at Site 658 (this volume), suggests that *P. doliolus* occurred earlier (0.2 to 0.3 m.y.) in the equatorial Atlantic and later spread to the Pacific. This finding is similar to those of L. Burckle and E. Fortanier (pers. comm., 1984); however, correlation of the LO of *P. doliolus* to absolute time will be required to verify this hypothesis.

The Nitzschia marina Zone (Baldauf, 1984), which is defined as the interval from the LO of Nitzschia jouseae to the FO of P. doliolus, occurs in Samples 108-662A-14H, CC through 662A-18H, CC. The LO of Thalassiosira convexa s. ampl. in Sample 108-662A-17H, CC suggests an age of approximately 2.1 Ma; however, the LO of N. jouseae (2.6 Ma) in Sample 108-662A-18H, CC argues that the LO of T. convexa in Core 108-662A-17H is anomalously early (about 0.2 Ma). In the equatorial Pacific, the abundance of this species decreases near the end of its stratigraphic range (Baldauf, 1985). A similar decrease in abundance at Site 662 or ecological exclusion may explain the earlier occurrence of this event. The occurrence of N. jouseae in core-catcher Samples 108-662A-18H through -662A-22H allows us to place these samples into the Nitzschia jouseae Zone of Baldauf (1984).

The FO of substantial numbers of windblown, siliceous microfossils occurs in Sample 108-662A-17H, CC. Below this level, opal phytoliths are absent, and freshwater *Melosira* spp. occur only in Sample 108-662A-20H, CC. Below Sample 108-662A-7H-1, 142 cm, *Melosira* spp. invariably outnumber phytoliths. From this sample to the top of Core 108-662A-1H, phytoliths frequently outnumber *Melosira* spp.

PALEOMAGNETISM

Paleomagnetics

Archive halves of sections were measured from Cores 108-662A-1H through -662A-6H, 108-662A-8H, and 108-662A-13H through -662A-15H. No cores were measured from Hole 662B. Intensities were weak, and vector data were highly scattered. Duplicate measurements of the same section exclude noise from instruments as the cause of the scatter. Rather, poor agreement between archive and working halves suggests that continued magnetic grain mobility is responsible. We do not know whether the incoherence is a consequence of coring disturbance or an inherent property of the sediments. No discrete samples could be measured using our shipboard equipment owing to extremely weak magnetizations.

Magnetic Susceptibility

We measured whole-core volume susceptibilities for Cores 108-662A-1H through -662A-21H and for Cores 108-662B-1H through -662B-8H. Susceptibilities were low (often less than 10×10^{-6} SI units), and in many cores the record obviously was dominated by contaminants. No between-hole correlations were possible.

SEDIMENT-ACCUMULATION RATES

Sediment-accumulation rates were calculated for Hole 662A, based on 16 nannofossil, planktonic-foraminifer, and diatom biostratigraphic events (Table 2). The resulting curve (Fig. 8)

Table	2. 1	Biostratigraph	ic	and r	nagne	tostratigra	phic
events,	their	stratigraphic	plac	ement	, and	estimated	ages
for Ho	le 662	2A.					3

	Datum	Depth (mbsf)	Age (Ma)
LO	Pseudoemiliania lacunosa	21.7-22.2	0.47
LO	Nitzschia reinholdii	12.7-22.2	0.65
LO	Calcidiscus macintyrei	106.8-108.5	1.45
FO	Pseudoeunotia doliolus	126.7-136.2?	1.80
LO	Discoaster brouweri	123.2-124.0	1.89
FO	D. triradiatus acme	133.5-134.2	2.07
LO	Globorotalia miocenica	137.5-140.5	2.20
LO	Thalassiosira convexa	145.7-155.2	2.20
LO	Discoaster pentaradiatus	146.5-148.6	2.35
LO	D. surculus	148.6-149.9	2.45
LO	N. jouseae	155.2-164.7	2.65
LO	Discoaster tamalis	155.3-159.8	2.65
LO	Dentogloboquadrina altispira	166.9-168.5	2.90
LO	Sphaeroidinellopsis seminulina	174.2-175.5	3.00
LO	Pulleniatina	183.7-193.2	3.30
LO	Reticulofenestra pseudoumbilica	193.9-196.7	3.56

Note: LO = last occurrence. FO = first occurrence.

Figure 8. Sediment-accumulation rates for Hole 662A. Identifiable slumps and turbidites indicated by black bars on left. Uncertainties in the depth placement of the datums are delineated by points of the triangles.

suggests a continuous average accumulation rate of $\sim 42 \text{ m/m.y.}$ from the late to early Pliocene through the early Pleistocene, at which time the accumulation rate more than doubles to $\sim 87 \text{ m/m.y.}$ During the latest Pleistocene (<0.5 Ma), the accumulation rate falls to the pre-Pleistocene level. Of all biostratigraphic markers used, only three diatom events, the FO of *Pseudoeunotia doliolus* and the last occurrences of *Nitzschia reinholdii* and *Thalassiosira convexa*, fall off the curve. This most likely results from the sporadic occurrences of *P. doliolus* and *T. convexa* near the limits of their stratigraphic ranges, and the diachronous LO of *N. reinholdii* between the equatorial Pacific and Atlantic (Baldauf, 1986). The last occurrences of *Globorotalia margaritae* (3.4 Ma) and *Globigerinoides obliquus* (1.8 Ma) were not used because of their scarcity at the tops of their ranges.

The apparent doubling of accumulation rates in the Pleistocene is not caused by an increase in pelagic sedimentation, but results from the presence of numerous turbidites and slumps between 25 and 100 mbsf that contribute a minimum of 43.2 m of sediments to the Pleistocene interval (see "Composite-Depth Section," this chapter). The actual depths of datums below 100 m thus were converted to "no-turbidite/slump" depths (Table 3) by subtracting 43.2 m from each depth and are replotted in Figure 9.

Figure 9 more accurately represents the pelagic sedimentary history at Site 662, with an apparent accumulation rate of ~ 42.0 m/m.y. over the last 3.6 m.y. All the nannofossil and planktonic-foraminifer datums fall on or very close to the line in Figure 9. Thus, in spite of the extensive slumping that has occurred, we see no evidence of major hiatuses in the pelagic sedimentary record at this site.

INORGANIC GEOCHEMISTRY

Interstitial-water samples were squeezed from six sediment samples routinely recovered approximately every 50 m from Hole 662A. Values for pH and alkalinity were measured in conjunction, using a Metrohm 605 pH-meter, followed by titration with 0.1N HCl. Salinities were measured using an optical refractometer, and chlorinities were determined by titration with silver nitrate to a potassium chromate end point.

Magnesium and sulfate analyses were performed by ion chromatography using a Dionex 2120i instrument. Results from all analyses are presented in Table 4.

Table 3. Biostratigraphic and magnetostratigraphic events, their stratigraphic placement, and estimated ages in the absence of 43.2 m of identifiable slumps and turbidites for Hole 662A.

	Datum	Depth (mbsf)	Age (Ma)
LO	Pseudoemiliania lacunosa	21.7-22.2	0.47
LO	Nitzschia reinholdii	12.7-22.2	0.65
LO	Calcidiscus macintyrei	63.6-65.3	1.45
LO	Discoaster brouweri	80.0-81.8	1.89
FO	D. triradiatus acme	90.3-91.0	2.07
LO	Globorotalia miocenica	94.3-97.3	2.20
LO	Discoaster pentaradiatus	103.3-105.4	2.35
LO	D. surculus	105.4-106.7	2.45
LO	N. jouseae	112.0-121.5	2.65
LO	Discoaster tamalis	112.1-116.6	2.65
LO	Dentogloboquadrina altispira	123.7-125.3	2.90
LO	Sphaeroidinellopsis seminulina	131.0-132.3	3.00
LO	Pulleniatina	140.5-150.0	3.30
LO	Reticulofenestra pseudoumbilica	150.7-153.5	3.56

Note: LO = last occurrence. FO = first occurrence.

Figure 9. Sediment-accumulation rates for Hole 662A in the absence of 43.2 m of identifiable slumps and turbidites. Uncertainties in the depth placement of the datums are delineated by points of the triangles.

ORGANIC GEOCHEMISTRY

At Site 662, Hole 662A, 126 physical-properties samples were used for determining carbonate content. Of these, 45 samples from throughout the sequence also were analyzed for total-organic-carbon (TOC) contents. No analyses were performed on samples from Hole 662B.

Organic and Inorganic Carbon

Inorganic-carbon (IC) content was measured on the Coulometrics Carbon Dioxide Coulometer, while total-carbon (TC) values were determined using the Perkin Elmer 240C Elemental Analyzer. TOC values were calculated by difference. Analytical methods are discussed, and data presented in the Appendix (this volume).

The boundary between sedimentary Subunits IC and ID (see "Lithostratigraphy and Sedimentology" section, this chapter) may be observed in the carbonate curve (Fig. 10), found within Core 108-662A-17H (155 mbsf; about 2.65 Ma). Subunits IA through ID are characterized by variations in carbonate contents of from 52% to 97%, with most samples lying within the range of 75% to 90%. In contrast, Subunit ID displays rela-

Core/ section	pН	Alkalinity (mmol/L)	Salinity (‰)	Chlorinity (mmol/L)	SO ₄ ²⁻ (mmol/L)	Mg ²⁺ (mmol/L)	Ca ²⁺ (mmol/L)
1-5	7.60	4.33	33.9	554.4	20.48	52.59	**
3-3	7.43	5.59	34.3	561.03	19.82	46.99	**
4-3	7.26	5.84	34.0	560.05	20.69	49.15	**
6-5	7.48	6.72	34.1	557.5	17.52	52.81	**
16-5	7.31	7.27	33.9	557.5	17.37	56.04	**
21-5	7.43	7.19	33.8	557.5	16.96	54.53	**

Table 4. Results of inorganic-geochemical analyses conducted for Site 662.

**No data are available from this site for calcium because of problems with instruments.

Figure 10. Carbonate and total-organic-carbon (TOC) records from Site 662, Hole 662A.

TOC values fluctuate between 0.0% and 1.0% in the upper part of the sequence, corresponding to Subunits IA through IC (see "Lithostratigraphy and Sedimentology" section, this chapter). Subunit ID, however, appears to be characterized by very low or zero TOC contents (0.0% to 0.04%; Fig. 10), although more samples should be analyzed to confirm this pattern.

Discussion

Sediments at Site 662 display highly variable, but generally rather low, TOC contents that range from 0.0% to 1.0%. Subunit ID contains little or no organic carbon. The highest values lie within Subunits IA and IC. These values generally correlate with levels containing high proportions of biogenic-siliceous debris (see "Lithostratigraphy and Sedimentology" section, this chapter) and relatively low-carbonate content (Fig. 10). Thus, all evidence suggests that surface productivity was low before approximately 2.65 Ma and that after this time, productivity fluctuated.

PHYSICAL PROPERTIES

Techniques used for shipboard physical-properties measurements at Site 662 are outlined in the "Introduction and Explanatory Notes" chapter (this volume). Index-properties and vaneshear-strength measurements were conducted on cores from Holes 662A and 662B. Continuous *P*-wave-velocity records also were obtained from these holes. Tables 5 and 6 show index-properties and vane-shear-strength data for Holes 662A and 662B, respectively. Table 7 gives a synthesis of *P*-wave-logger velocity data for Hole 662A. Most data for Hole 662A are presented graphically in Figures 11 through 17 (the calcium carbonate profile is shown in Figure 15 for comparison with the other properties). No data presented in this summary were screened for bad data points. All whole-core sections were logged continuously using the GRAPE.

Site 662 had a high calcium carbonate content throughout the cored interval (200 mbsf), as illustrated in Figure 15. Most of the sediments had a carbonate content of 80% to 90%, with some low values of about 60%. Wet- and dry-bulk densities (Fig. 11) correlate positively with the carbonate content (Fig. 15).

Vane shear strength also correlates positively with the carbonate content (Fig. 16). This illustrates that the vane-shearstrength test probably becomes progressively less valid as the carbonate contents increase, which in turn suggests that permeability increases as carbonate content increases. Hence, it is likely that mean grain size also increases with increasing carbonate content.

A synthesis profile of P-wave-logger velocity data (Fig. 17) shows only a slight velocity gradient over the 200 m cored. The average velocity is about 1.53 km/s, with velocity spikes of up to 1.65 km/s that occur in the coarser turbidite or winnowed lithologies.

An experiment was performed on Core 662B-12H to investigate the repeatability of the *P*-wave logs, the physical heterogeneity of the cores, and their shock sensitivity. Results of this experiment are illustrated in Figure 18. Profile 1 is a normal log obtained with the double line on the liner facing upward. Profile 2 is a repeat log of the same core, except that the double line faces horizontally (i.e., at 90° to profile 1). These two profiles illustrate that much of the higher frequency fluctuations are not common to both profiles. However, these fluctuations are not caused by instrument noise, as demonstrated by profiles 3 and 4. We concluded, therefore, that these higher frequency fluctuations result from a "physical noise" within the sediments. The small-scale changes in velocity, which manifest themselves as this physical noise, must be caused by local density fluctuations. Profiles 1 and 2 are different because the *P*-wave logger effectively "looks" at only a thin section through the core; this section can vary, depending on orientation of the core. It probably would be useful in highly calcareous sediments to obtain an average whole-core velocity. Spinning the core along its axis should produce this effect. A profile similar to A (Fig. 18) should result; A is an "eye-ball" estimate of the common mode present in profiles 1 and 2.

To investigate the velocity sensitivity to rough handling of high-carbonate cores, Section 108-662A-4H was subjected to a significant shock after profile 4 had been run. A significant acceleration was produced (possibly as much as 5 G) when the section collided horizontally with the deck. This impact is not dissimilar to that suffered by the core when opened after splitting (depending on the marine technician on duty and other factors). A computer-based, risk-analysis model had shown that the chance of accidentally splitting the liner and remolding its sediments on deck immediately after impact was significant. Nevertheless, we felt that this risk was acceptable. The velocity profile recorded after impact is shown as trace 5 (Fig. 18). Our semicontrolled test then was repeated (the estimated acceleration for this second impact was 7.5 G), and the velocity profile recorded (profile 6, Fig. 18). These geotechnical impact tests illustrate a slight sensitivity of high-carbonate cores to rough handling (the sharp peak in the velocity profile broadens after impact, indicating some dilation and grain mobilization), but the overall nature of the signature remains the same. It might be instructive for the global physical-properties community if this experiment were repeated on a clay-rich section (assuming that the riskanalysis model can be refined sufficiently to make chances of disaster much less).

SEISMIC STRATIGRAPHY

The water-gun seismic-profiler records obtained during our approach to Site 662 have four seismic units within the 0.267 s of two-way traveltime roughly equivalent to the interval cored at that site. These four units (Fig. 19) are described as follows:

Seismic unit 1: 0-0.05 s, an upper unit with a false acoustic signal caused by the water guns. This unit should equate to approximately the upper 38 m of sediment.

Seismic unit 2: 0.05–0.08 s, an irregular, finely laminated unit with a wavelike pattern that occasionally rises into the overlying unit and may be masked by an artificial acoustic overprint. This unit should equate to an interval of about 38 to 61 m in the sediment section.

Seismic unit 3: 0.08-0.13 s, a more transparent unit with faint acoustic returns between 0.08 and 0.10 s, but with near-transparency below this interval. This unit should equate to an interval of about 61 to 97 m in the sediment section.

Seismic unit 4: 0.13–0.32 s, a unit of evenly spaced, moderately reflective layering that shows some relief laterally. The top of this unit should equate to a depth of about 97 m in the sediment section, with its bottom lying below the cored interval.

We used a mean sound velocity of 760 m/s for the entire sediment section at Site 662 (see "Physical Properties" section, this chapter) to evaluate correlations of both seismic and lithologic units (Fig. 19). Seismic unit 1 is an artifact. Seismic units 2 and 3 are equivalent in depth to the mid-Pleistocene interval of slumps and turbidites (lithologic Subunit IB), perhaps indicating partial destruction of the acoustic layering by slump deformation. The top of Seismic unit 4 corresponds to the late Pliocene to mid-Pleistocene interval of normal pelagic deposition (lithologic Subunit IC), with the acoustic layering apparently returning because of the absence of deformation.

Table 5. Index-properties and vane-shear-strength data for Hole 662A.

Core/ section	Interval (cm)	Depth (mbsf)	Grain density (g/cm ³)	Wet-water content (%)	Dry-water content (%)	Wet-bulk density (g/cm ³)	Dry-bulk density (g/cm ³)	Porosity (%)	Vane shear strength (kPa)
108-662A-1H-1	121	1.21	2.47	68.78	220.26	1.25	0.42	84.47	2.60
108-662A-1H-2	111	2.61	2.43	60.87	155.55	1.32	0.56	78.98	4.80
108-662A-2H-1	121	4.10	2.41	62.74	168.40	1.30	0.52	80.19	5.60
108-662A-2H-2	121	5.60	2.58	58.60	141.52	1.36	0.59	78.39	7.00
108-002A-2H-3	121	7.10	2.59	65.43	189.26	1.29	0.48	83.02	0.00
108-662A-2H-5	121	10.10	2.55	49 64	98.56	1.39	0.79	71.89	11 40
108-662A-2H-6	121	11.60	2.06	64.54	182.00	1.24	0.48	78.98	10.80
108-662A-3H-1	26	12.96	2.48	54.54	120.00	1.39	0.67	74.68	15.00
108-662A-3H-2	149	15.69	2.36	52.24	109.38	1.40	0.69	71.90	15.00
108-662A-3H-3	120	16.90	2.39	63.04	170.56	1.29	0.52	80.26	13.00
108-662A-3H-4	121	18.41	2.58	52.50	110.51	1.43	0.72	73.89	20.00
108-002A-3H-3	111	19.81	2.58	54.09	117.81	1.41	0.70	/5.06	18.00
108-662A-4H-1	121	21.41	2.04	46.06	85 39	1.51	0.86	68 49	26.00
108-662A-4H-2	39	23.95	2.75	47.44	90.24	1.52	0.84	71.04	21.00
108-662A-4H-2	99	24.55	2.50	47.22	89.46	1.48	0.81	68.90	20.00
108-662A-4H-2	121	24.77	2.55	47.58	90.77	1.49	0.81	69.60	24.00
108-662A-4H-3	99	26.05	2.53	53.62	115.59	1.41	0.69	74.34	13.00
108-662A-4H-4	121	27.77	2.51	53.33	114.29	1.41	1.31	74.00	0.00
108-662A-4H-5	121	29.27	2.69	51.93	108.03	1.45	0.73	74.20	0.00
108-662A-4H-0	121	30.77	2.51	48.01	92.33	1.44	0.44	72 76	30.00
108-662A-5H-2	121	34.38	2.33	53 54	115 23	1.37	0.68	72.40	38.00
108-662A-5H-3	121	35.88	2.47	55.92	126.88	1.38	0.64	75.67	40.00
108-662A-5H-4	121	37.38	2.43	57.60	135.82	1.35	0.61	76.64	29.00
108-662A-5H-5	121	38.88	2.67	59.26	145.49	1.36	0.59	79.41	28.00
108-662A-5H-6	121	40.38	2.52	48.34	93.58	1.47	0.80	70.01	31.00
108-662A-6H-1	121	42.41	2.67	47.09	88.99	1.51	0.83	70.13	28.00
108-662A-6H-2	121	43.91	2.49	55.63	125.36	1.38	0.64	75.61	30.00
108-002A-0H-3	121	45.41	2.68	51.50	74.90	1.40	0.75	13.83	31.00
108-662A-6H-5	121	46.91	2.55	42.82	85.07	1.55	0.92	69.01	37.00
108-662A-6H-6	121	49.91	2.48	48.42	93.86	1.46	0.80	69.74	38.00
108-662A-7H-1	121	51.91	2.50	50.57	102.31	1.44	0.75	71.72	32.00
108-662A-7H-2	121	53.41	2.58	49.32	97.30	1.47	0.77	71.35	40.00
108-662A-7H-3	121	54.91	2.62	50.33	101.32	1.46	0.76	72.47	37.00
108-662A-7H-4	121	56.41	2.75	46.08	85.46	1.54	0.86	69.93	40.00
108-662A-7H-5	121	57.91	2.53	46.43	86.66	1.50	0.83	68.47	39.00
108-002A-/H-0	121	59.41	2.02	42.18	72.94	1.58	0.94	65.57	50.00
108-662A-8H-2	121	62 71	2.40	46.21	85 91	1.52	0.86	69.42	40.00
108-662A-8H-3	121	64.21	2.52	45.62	83.88	1.51	0.86	67.63	54.00
108-662A-8H-4	121	65.71	2.59	44.22	79.28	1.54	0.91	66.98	56.00
108-662A-8H-5	121	67.21	2.58	45.90	84.84	1.52	0.86	68.46	49.00
108-662A-8H-6	121	68.71	2.52	49.75	99.01	1.46	0.77	71.20	51.00
108-662A-9H-1	121	70.91	2.54	47.33	89.86	1.49	0.83	69.29	23.00
108-662A-9H-2	121	72.40	2.43	48.38	93.74	1.40	0.80	69.29	24.00
108-662A-9H-4	121	75.40	2.42	47.21	89.43	1.47	0.84	68.18	24.00
108-662A-9H-5	121	76.90	2.59	47.07	88.94	1.50	0.84	69.55	25.00
108-662A-10H-1	121	80.41	2.56	47.78	91.50	1.49	0.81	69.84	31.00
108-662A-10H-2	65	81.35	2.46	47.13	89.15	1.48	0.82	68.51	51.00
108-662A-10H-2	121	81.91	2.54	45.57	83.71	1.51	0.87	67.79	52.00
108-662A-10H-3	121	83.41	2.56	44.50	80.18	1.53	0.89	66.96	49.00
108-662A-10H-4	121	84.91	2.53	43.50	76.98	1.54	0.93	65.20	45.00
108-662A-10H-5	143	87.98	2.55	42.58	80.20	1.50	0.95	65.20	46.00
108-662A-11H-1	121	89.91	2.53	41.88	72.07	1.56	0.95	64.36	53.00
108-662A-11H-2	121	91.41	2.53	43.44	76.90	1.54	0.91	65.74	51.00
108-662A-11H-3	121	92.91	2.50	41.05	69.62	1.57	0.98	63.23	54.00
108-662A-11H-4	121	94.41	2.60	42.30	73.30	1.57	0.95	65.30	52.00
108-662A-11H-5	121	95.91	2.44	45.89	84.81	1.49	0.87	67.20	58.00
108-662A-11H-6	121	97.41	2.49	38.27	62.00	1.61	1.04	60.44	94.00
108-662A-12H-1	121	100.01	2.55	48 71	04.00	1.01	0.79	70.83	15.00
108-662A-12H-3	121	102 41	2.60	46.28	86.16	1.51	0.87	68.93	25.00
108-662A-12H-4	121	103.91	2.50	47.47	90.38	1.48	0.82	69.12	30.00
108-662A-12H-5	121	105.41	2.44	49.86	99.44	1.44	0.78	70.66	29.00
108-662A-12H-6	121	106.91	2.64	42.66	74.41	1.57	0.95	65.98	26.00
108-662A-13H-1	121	108.91	2.44	47.27	89.65	1.47	0.82	68.44	24.00
108-662A-13H-2	121	110.41	2.43	48.96	95.93	1.45	1.07	69.78	24.00
108-662A-13H-3	121	111.91	2.43	49.80	99.21	1.44	0.76	70.48	50.00
108-662A-13H-5	121	114 91	2.52	52.00	108 34	1.43	0.64	73.06	68.00
108-662A-13H-6	121	116.41	2.54	45.27	82.70	1.52	0.88	67.52	32.00

Table 5 (continued).

Core/ section	Interval (cm)	Depth (mbsf)	Grain density (g/cm ³)	Wet-water content (%)	Dry-water content (%)	Wet-bulk density (g/cm ³)	Dry-bulk density (g/cm ³)	Porosity (%)	Vane shear strength (kPa)
108-662A-14H-1	121	118.41	2.56	52.08	108.67	1.43	0.73	73.43	47.00
108-662A-14H-2	121	119.91	2.59	43.91	78.29	1.54	0.91	66.71	33.00
108-662A-14H-3	121	121.41	2.59	44.76	81.02	1.53	0.90	67.50	49.00
108-662A-14H-4	121	122.91	2.54	44.71	80.88	1.52	0.88	67.01	38.00
108-662A-14H-5	121	124.41	2.44	44.76	81.03	1.50	0.89	66.16	40.00
108-662A-14H-6	121	125.91	2.59	41.88	72.05	1.57	0.96	64.84	45.00
108-662A-15H-1	121	127.89	2.60	43.92	78.30	1.55	0.90	66.82	31.00
108-662A-15H-2	121	129.39	2.43	42.58	74.16	1.53	0.94	64.07	30.00
108-662A-15H-3	121	130.89	2.60	41.04	69.60	1.59	0.98	64.14	31.00
108-662A-15H-4	121	132.39	2.69	43.88	78.19	1.57	0.96	67.57	44.00
108-662A-15H-5	121	133.89	2.69	42.74	74.65	1.58	0.95	66.52	41.00
108-662A-15H-6	121	135.39	2.12	48.86	95.53	1.39	0.76	66.74	58.00
108-662A-16H-1	121	137.41	2.57	41.29	70.34	1.58	0.98	64.13	45.00
108-662A-16H-2	121	138.85	2.53	43.64	77.42	1.54	0.94	65.94	48.00
108-662A-16H-3	121	140.35	2.53	39.23	64.55	1.60	1.02	61.71	35.00
108-662A-16H-4	121	141.85	2.49	40.13	67.02	1.58	1.00	62.22	41.00
108-662A-16H-5	121	143.35	2.41	42.52	73.98	1.53	0.92	63.86	51.00
108-662A-17H-1	121	146.91	2.56	40.76	68.81	1.58	1.01	63.52	41.00
108-662A-17H-2	121	148.41	2.54	41.48	70.87	1.57	0.98	64.02	33.00
108-662A-17H-3	82	149.52	2.42	44.89	81.44	1.50	0.88	66.13	78.00
108-662A-17H-4	121	151.41	2.53	39.76	65.99	1.59	1.01	62.27	56.00
108-662A-17H-5	121	152.91	2.45	41.95	72.26	1.54	0.95	63.66	51.00
108-662A-17H-6	121	154.41	2.46	42.65	74.36	1.53	0.94	64.38	60.00
108-662A-18H-1	121	156.41	2.43	44.65	80.67	1.50	0.90	66.00	27.00
108-662A-18H-2	121	157.91	2.52	41.62	71.30	1.56	0.95	63.97	32.00
108-662A-18H-3	121	159.36	2.46	42.46	73.80	1.54	0.93	64.20	20.00
108-662A-18H-4	121	160.86	2.63	39.03	64.02	1.63	1.05	62.44	30.00
108-662A-18H-5	121	162.36	2.50	41.15	69.92	1.57	0.95	63.36	25.00
108-662A-18H-6	121	163.86	2.47	41.81	71.85	1.55	0.96	63.68	25.00
108-662A-19H-1	121	165.76	2.71	42.02	72.48	1.60	0.97	66.04	39.00
108-662A-19H-2	121	167.26	2.58	42.81	74.85	1.56	0.93	65.60	55.00
108-662A-19H-3	121	168.76	2.73	40.22	67.29	1.63	1.01	64.44	57.00
108-662A-19H-5	114	170.15	2.73	40.73	68.72	1.62	1.01	64.96	72.00
108-662A-19H-6	125	171.76	2.50	42.64	74.35	1.54	0.92	64.77	48.00
108-662A-20H-1	121	175.41	2.58	44.97	81.73	1.53	0.98	67.60	43.00
108-662A-20H-2	121	176.88	2.55	42.71	74.55	1.55	0.94	65.24	44.00
108-662A-20H-3	121	178.38	2.57	42.25	73.16	1.57	0.95	65.06	53.00
108-662A-20H-4	121	179.88	2.58	41.36	70.54	1.58	0.97	64.31	53.00
108-662A-20H-5	111	181.28	2.62	40.37	67.70	1.60	1.03	63.63	53.00
108-662A-20H-6	121	182.88	2.57	41.36	70.53	1.58	0.96	64.17	44.00
108-662A-21H-1	121	184.91	2.48	41.26	70.24	1.56	0.97	63.24	32.00
108-662A-21H-2	121	186.41	2.59	42.35	73.45	1.57	0.96	65.25	33.00
108-662A-21H-3	121	187.91	2.64	40.27	67.41	1.61	1.01	63.78	38.00
108-662A-21H-4	121	189.41	2.65	41.51	70.98	1.59	0.99	65.02	39.00
108-662A-21H-5	121	190.91	2.59	40.49	68.04	1.60	0.99	63.51	49.00
108-662A-21H-6	111	192.31	2.50	43.45	76.85	1.53	0.91	65.55	34.00
108-662A-22H-1	121	194.41	2.62	43.02	75.49	1.56	0.93	66.14	20.00
108-662A-22H-2	121	195.91	2.55	39.97	66.58	1.60	1.00	62.71	72.00

COMPOSITE-DEPTH SECTION

Several difficulties were encountered when making betweenhole correlations at Site 662. The magnetic-susceptibility measurements revealed no measurable signal. The *P*-wave logs were reliable only for small parts of the section. In addition, numerous slumps and other disturbances in the depth range of approximately 26 to 100 mbsf made correlations impossible. Nevertheless, we were able to use the strong $CaCO_3$ -induced color layering visible in our core photographs to correlate between the holes and to create a composite-depth section within two depth intervals.

Table 8 shows the correlation levels we used as a pathway to produce a continuous composite-depth section between the two holes. This composite-depth section was chosen so as to use Hole 662B only for short sequences to fill core-break gaps in Hole 662A. Figure 20 shows the general configuration of slumps and pelagic sediments, including a line representing the extrapolated age-depth curve, defined at the top and bottom of the sediment section (see "Sediment-Accumulation Rates" section, this chapter). The first interval spanned the top several cores in the pelagic interval at each hole (Fig. 20), which we correlated as shown in Table 8. This produced a composite-depth section 21.5 m long that represents the last 500,000 yr of the Pleistocene.

Because of slumps and turbidites encountered in Hole 662A, we recovered only a few cores in Hole 662B within the range of 26 to 100 mbsf, coring only at levels of relatively little disturbance. This generally precludes assembling a composite-depth section in this interval. Core 108-662B-4H (64.7–74.2 mbsf) was positioned to bridge the gap between Cores 108-662A-8H and -662A-9H in the undeformed interval from 63 to 80 mbsf (Fig. 20). However, we were not able to correlate these cores based solely on photographs.

We did see a correlation of Core 108-662A-12H with Core -662B-5H as both contained the base of the slumped section. The next interval for which overlapped coring in the two holes allowed us to create a continuous composite-depth section began with Cores 108-662A-14H and -662B-6H (Table 8). We used the ODP depth of 117.35 mbsf for the top of Core 108-662A-14H as a reference point to begin the next composite-depth section.

Table 6. Index-properties and vane-shear-strength data for Hole 662B.

Core/ section	Interval (cm)	Depth (mbsf)	Wet-water content (%)	Dry-water content (%)	Porosity (%)	Wet-bulk density (g/cm ³)	Dry-bulk density (g/cm ³)	Vane shear strength (kPa)
108-662B-1H-1	121	1.21	60.78	154.97	79.18	1.36	0.55	6.00
108-662B-1H-2	121	2.71	62.30	165.28	80.16	1.35	0.53	6.00
108-662B-1H-3	121	4.21	53.15	113.46	73.84	1.45	0.69	12.00
108-662B-1H-4	121	5.71	64.77	183.82	81.71	1.32	0.48	7.50
108-662B-1H-5	121	7.21	62.73	168.33	80.44	1.34	0.52	12.00
108-662B-1H-6	121	8.71	61.50	159.72	79.64	1.36	0.54	11.00
108-662B-2H-1	121	10.71	63.13	171.24	80.69	1.34	0.51	10.00
108-662B-2H-2	121	12.16	54.61	120.33	74.92	1.43	0.66	14.00
108-662B-2H-3	121	13.66	60.60	153.80	79.06	1.37	0.55	10.00
108-662B-2H-4	121	15.16	52.86	112.16	73.62	1.45	0.70	16.00
108-662B-2H-5	116	16.61	57.45	135.03	76.93	1.40	0.61	14.00
108-662B-2H-6	121	18.16	52.71	111.47	73.51	1.46	0.70	14.00
108-662B-3H-1	121	37.41	48.39	93.76	70.13	1.51	0.79	32.00
108-662B-3H-2	121	38.77	46.45	86.74	68.53	1.54	0.83	37.00
108-662B-3H-3	121	40.27	47.04	88.82	69.02	1.53	0.82	39.00
108-662B-3H-4	111	41.67	50.45	101.83	71.78	1.48	0.75	36.00
108-662B-3H-5	121	43.27	51.02	104.15	72.22	1.48	0.74	37.00
108-662B-3H-6	121	44.77	44.33	79.63	66.71	1.57	0.88	38.00
108-662B-5H-3	121	97.36	46.63	87.38	68.68	1.53	0.83	72.00
108-662B-5H-4	121	98.86	38.64	62.97	61.44	1.65	1.02	85.00
108-662B-5H-6	121	101.86	45.49	83.46	67.72	1.55	0.86	36.00
108-662B-6H-2	121	124.41	45.10	82.14	67.38	1.56	0.86	35.00
108-662B-6H-3	121	125.91	41.15	69.91	63.84	1.61	0.96	48.00
108-662B-7H-1	121	132.41	39.84	66.22	62.60	1.63	0.99	36.00
108-662B-7H-2	121	133.87	45.14	82.29	67.42	1.55	0.86	50.00
108-662B-7H-3	121	135.37	44.04	78.69	66.45	1.57	0.89	96.00
108-662B-7H-4	121	136.87	43.70	77.62	66.15	1.57	0.90	62.00
108-662B-7H-5	121	138.37	39.10	64.21	61.89	1.64	1.01	42.00
108-662B-7H-6	121	139.87	40.41	67.82	63.15	1.62	0.98	72.00
108-662B-8H-1	121	141.91	39.09	64.18	61.88	1.64	1.01	32.00
108-662B-8H-2	121	143.41	40.37	67.71	63.11	1.62	0.98	22.00
108-662B-8H-3	121	144.91	44.06	78.77	66.48	1.57	0.89	36.00
108-662B-8H-4	121	146.39	42.71	74.56	65.27	1.59	0.92	36.00
108-662B-8H-5	121	147.89	43.91	78.27	66.34	1.57	0.89	63.00
108-662B-8H-6	121	149.39	44.12	78.94	66.52	1.57	0.89	28.00
108-662B-9H-1	121	151.41	41.20	70.07	63.89	1.61	0.96	32.00
108-662B-9H-2	121	152.86	41.82	71.89	64.46	1.60	0.94	43.00
108-662B-9H-3	121	154.36	41.67	71.43	64.32	1.60	0.95	29.00
108-662B-9H-4	121	155.86	42.90	75.13	65.44	1.59	0.92	34.00
108-662B-9H-5	121	157.36	42.61	74.25	65.18	1.59	0.92	36.00
108-662B-9H-6	121	158.83	42.13	72.81	64.75	1.60	0.93	29.00
108-662B-10H-1	121	160.91	38.54	62.70	61.35	1.65	1.02	44.00
108-662B-10H-2	121	162.41	41.77	71.74	64.42	1.60	0.94	43.00
108-662B-10H-3	121	163.91	40.80	68.93	63.52	1.62	0.97	43.00
108-662B-10H-4	121	165.41	41.23	70.14	63.91	1.61	0.96	46.00
108-662B-10H-5	121	166.91	39.56	65.45	62.34	1.64	1.00	49.00
108-662B-10H-6	121	168.41	39.73	65.91	62.50	1.63	0.99	57.00
108-662B-11H-1	121	170.41	40.62	68.39	63.34	1.62	0.97	42.00
108-662B-11H-2	121	1/1.91	41.70	71.53	64.35	1.60	0.94	45.00
108-002B-11H-3	121	173.41	41.85	/1.98	64.49	1.60	0.94	43.00
108-062B-11H-4	121	174.91	42.15	72.87	04.70	1.60	0.93	44.00
108-002B-11H-5	121	177.01	42.75	74.07	65.30	1.59	0.92	48.00
108-002B-11H-0	121	1/7.91	42.59	/4.18	05.10	1.59	0.92	48.00
108-002B-12H-1	121	101.01	40.52	60.13	63.25	1.62	0.97	37.00
108-002B-12H-2	121	181.51	41.07	09.09	63.70	1.01	0.96	52.00
108-002B-12H-3	121	183.01	41.60	11.22	64.25	1.01	0.95	33.00
108-002B-12H-4	121	184.51	40.25	67.30	62.99	1.63	0.98	40.00
108-002B-12H-5	121	107.51	40.80	60.91	63.51	1.02	0.97	41.00
108-002B-12H-0	121	187.51	41.12	09.84	03.81	1.01	0.90	30.00

From this point, we were able to correlate unambiguously down to the base of Core 108-662B-12H, at a composite depth of 184.73 mbsf. This 67.38-m section represents an interval of time from approximately 1.3 to 3.3 Ma. Thus, the only time interval for which we could not assemble a composite-depth section was that between 0.5 and 1.3 Ma.

Correlations between the two holes generally indicate a loss of sediment across core breaks. The amount lost ranges from 0 to 150 cm, averaging about 50 cm. At the mean depositional rate for this part of the record, this represents gaps of about 12,000 yr that otherwise would be lost without using overlapped cores.

REFERENCES

Baldauf, J. G., 1984. Cenozoic diatom biostratigraphy and paleoceanography of the Rockall Plateau region, North Atlantic, Deep Sea Drilling Project Leg 81. In Roberts, D. G., Schnitker, D., et al., Init. Repts. DSDP, 81: Washington (U.S. Govt. Printing Office), 439-478.

_____, 1985. A high resolution late Miocene-Pliocene diatom biostratigraphy for the eastern equatorial Pacific. *In* Mayer, L., Theyer, E., et al., *Init. Repts. DSDP*, 85: Washington (U.S. Govt. Printing Office), 457-475.

_____, 1986. Diatom biostratigraphy and paleoceanographic interpretations for the middle to high latitude North Atlantic Ocean. In Summerhayes, C. P., and Shackleton, N. J. (Eds.), North Atlantic Paleoceanography: Geol. Soc. London Spec. Publ., 21:243-252.

- Baldauf, J. G., Thomas, E., Clement, B., Takayama, T., Weaver, P.P.E., Backman, J., Jenkins, G., Mudie, P. J., and Westberg-Smith, M. J., 1987. Magnetostratigraphic and biostratigraphic synthesis, Deep Sea Drilling Project Leg 94. *In* Ruddiman, W., Kidd, R., Thomas, E., et al., *Init. Repts. DSDP*, 94 (Pt. 2): Washington (U.S. Govt. Printing Office), 1159-1205.
- Barron, J. A., 1980. Upper Pliocene and Quaternary diatom biostratigraphy of Deep Sea Drilling Project Leg 54, tropical eastern Pacific. In Rosendahl, B. R., Hekinian, R., et al., Init. Repts. DSDP, 54: Washington (U.S. Govt. Printing Office), 455-485.
- Berggren, W. A., 1973. The Pliocene timescale: calibration of planktonic foraminiferal and calcareous nannoplankton zones. *Nature*, 243:391-397.
- Berggren, W. A., Kent, D. V., and Van Couvering, J. A., 1985. Neogene geochronology and chronostratigraphy. In Snelling, P. J. (Ed.), The Chronology of the Geological Record: Geol. Soc. London Mem., 10:211-259.

Table 7. P-wave-logger velocity data for Hole 662A.

	P-wave		P-wave		P-wave
Depth	velocity	Depth	velocity	Depth	velocity
(mbsf)	(km/s)	(mbsf)	(km/s)	(mbsf)	(km/s)
0.50	1.534	48.20	1.529	108.20	1.532
1.00	1.504	49.50	1.570	111.70	1.528
1.70	1.520	49.90	1.510	114.70	1.520
2.10	1.510	51.70	1.520	117.70	1.530
4.00	1.554	53.70	1.530	118.90	1.544
4.40	1.520	55.70	1.510	119.20	1.525
5.20	1.519	56.20	1.650	121.20	1.521
5.60	1.539	56.70	1.520	123.20	1.535
5.80	1.515	57.40	1.640	125.20	1.530
7.70	1.530	58.50	1.520	127.70	1.536
8.20	1.514	58.70	1.588	130.70	1.555
8.40	1.526	58.90	1.508	131.70	1.524
10.20	1.512	59.80	1.551	135.20	1.525
11.70	1.505	61.70	1.555	137.70	1.555
12.20	1.529	62.30	1.584	139.70	1.555
13.30	1.556	62.40	1.527	140.20	1.535
14.60	1.505	63.60	1.514	143.40	1.523
15.50	1.540	64.00	1.555	146.70	1.530
15.70	1.509	65.70	1.510	148.70	1.560
17.10	1.523	66.70	1.660	149.70	1.530
19.70	1.502	67.50	1.522	151.20	1.516
20.20	1 535	71.20	1 532	152 70	1 524
21 20	1.506	73 70	1.530	156.20	1 540
23 20	1 525	76 70	1 552	158 70	1 532
25 70	1 540	79 70	1.528	161 20	1 542
26.20	1 522	81 70	1 537	162 40	1.528
27 20	1 541	82 20	1.570	165 50	1.563
28 70	1.550	83.20	1.516	166 10	1.505
20.70	1.580	82.00	1.556	167.00	1.550
20.70	1.500	85 20	1.550	160.40	1.500
24.20	1.515	83.20	1.505	170.90	1.520
25.00	1.509	07.20	1.545	170.00	1.551
35.90	1.508	87.90	1.602	174.60	1.520
26.30	1.552	88.00	1.510	174.00	1.501
36.70	1.500	89.50	1.505	170.20	1.522
30.90	1.620	91.20	1.539	1/9.00	1.522
37.10	1.530	92.10	1.579	182.00	1.540
37.20	1.615	92.50	1.530	185.70	1.535
37.40	1.507	94.30	1.528	188.40	1.543
37.90	1.560	95.20	1.596	188.70	1.522
38.70	1.510	96.20	1.534	189.90	1.539
41.20	1.545	97.20	1.605	191.70	1.516
42.00	1.510	97.70	1.538	193.10	1.539
42.50	1.558	99.70	1.577	195.20	1.535
43.20	1.507	103.70	1.505	198.20	1.520
44.70	1.535	104.70	1.536	200.90	1.543
47.20	1.518	106.40	1.514	202.70	1.531

- Burckle, L. H., 1977. Pliocene and Pleistocene diatom datum levels from the equatorial pacific. *Quat. Geol.*, 7:330–340.
- CLIMAP Project Members, 1981. Seasonal reconstructions of the earth's surface at the last glacial maximum. Geol. Soc. Am. Map Chart Ser. MC-36.
- Lutze, G. F., 1977. Neogene benthic foraminifera from Site 369, Leg 41, Deep Sea Drilling Project. In Lancelot, Y., Seibold, E., et al., Init. Repts. DSDP, 41: Washington (U.S. Govt. Printing Office), 659– 660.
- McIntyre, A., Ruddiman, W. F., Mix, A. C., and Karlin, K., in prep. Late Pleistocene variations in equatorial Atlantic sea-surface temperature.
- Pokras, E., and Mix, A., 1985. Hemispheric asymmetry of late Pleistocene climate in tropical West Africa: aeolian diatom evidence. *Quat. Res.*, 24:137-148.
- Schnitker, D., 1979. The deep waters of the western North Atlantic during the past 24,000 years, and the re-initiation of the Western Boundary Undercurrent. Mar. Micropaleontol., 4:265-280.

Figure 11. Wet- and dry-bulk-density profiles for Hole 662A.

Figure 12. Wet- and dry-bulk-density profiles for Hole 662B.

Figure 13. Water-content and porosity profiles for Hole 662B.

Figure 15. Carbonate-content profile for Hole 662A.

Figure 16. Vane-shear-strength and grain-density profiles for Hole 662A.

Figure 17. *P*-wave-logger velocity profile for Hole 662A and vane-shearstrength profile for Hole 662B.

Figure 18. *P*-wave-velocity profile for Core 108-662B-12H (see text for details).

Table	8. Composite-depth sections	be-
tween	Holes 662A and 662B.	

Hole 662A interval (cm)	Hole 662B interval (cm)	Composite depth (mbsf)
1H-1, 0	_	0
^a 1H-3, 0	1H-2, 75	3.0
2H-2, 25	1H-3, 118	4.93
2H-6, 137	2H-1, 92	12.05
3H-1, 127	2H-3, 100	15.13
3H-7, 15	—	21.51
14H-1, 15		^b 117.35
14H-7.5	6H-3, 72	126.25
15H-3, 86	6H-6, 95	130.98
15H-7, 20	7H-3, 35	136.32
16H-1, 73	7H-4, 10	137.57
^a 16H-5, 90	8H-1, 70	143.74
17H-1, 12	8H-3, 75	146.79
17H-6, 117	9H-2, 90	155.34
18H-1, 105	°9H-4, 51	157.95
18H-7, 39	10H-4, 8	166.29
19H-2, 77	10H-5, 141	169.12
19H-6, 96	11H-3, 130	175.31
20H-2, 50	11H-6, 132	179.83
20H-5, 90	12H-4, 20	184.73

 ^a These correlations are approximate and should be refined by CaCO₃ analyses.
 ^b This depth is not in true composite-depth

⁶ This depth is not in true composite-depth units because of a break in the correlations.
⁶ A dark layer in Core 108-662B-9H-6 from 60 to 105 cm has no counterpart in Core 108-662A-18H.

Figure 19. Comparison of Site 662 seismic units with lithologic units.

Figure 20. Age-depth curve for Site 662. Black layers are gravity-deposited sediments; white layers indicate pelagic deposition; diagonal pattern indicates slight deformation (tilting) of pelagic sediments. Age-depth biostratigraphic control points are shown by triangles.

Lin	B10 FO	SSIL	CHA	RAC	E/ TER		10	Π				- BB	83		
TIME-ROCK UN	FDRAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATONS	BENTHIC FORAM.	PALEOMAGNETICS	PHYS. PROPERTI	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED_ STRUCTURE	BAMPLES	LITHOLOGIC DESCRIPTION
								O 10C=63.3	1	0.5		1			SILICEOUS-BEARING, FORAMINIFER-BEARING NANNOFOSSIL OOZE to SILICEOUS-BEARING NANNOFOSSIL OOZE Siliceous-bearing, foraminiter-bearing nannofossil ooze to siliceous-bearing nannofossil ooze, gray (SY 61', 51'), jahrj gray (SY 71', 72) or while (SY 61'); weak to moderate bioturbation with pyrtic staining throughout core. Minor lithology: Section 3, 37-94 cm: foraminifer-bearing, siliceous nannofossil ooze, gray (SY 51'); moderate bioturbation. SMEAR SLIDE SUMMARY (%):
								O 10C-74.1	2	Tuntun					1, ee 3, 13 3, 135 4, 81 5, 40 M D D D D D TEXTURE; Sand 50 10 10 5 23 Sand 50 10 10 10 5 20 Clay 40 60 60 70 75
EISTOCENE	oides			5				000	3		+ + + + + + + + + + + + + + + + + + +			*	COMPOSITION: Quartz Tr Tr — Tr Nannofossitis 60 15 10 10 10 10 10 10
DLE TO LATE PL	G. truncatulin	NN 20-21		P. doliolu				O100-04	4					*	
MID								O 100-86.0	5				-	*	
								O10C-74.6 70C-0.27	6				11 11 11 11 11 11 11 11 11 11 11 11 11		
	A/G	A/M		A/M	C/G				7				ŧ		

SITE 662

SITE 662 HOLE	A CORE 3 H CORED INT	ERVAL 3827.4-3836.9 mbsl: 12.7-22.2 mbsf	SITE 662 HOLE A CORE 4 H CORED INTE	RVAL 3836.9-3846.4 mbsi: 22.2-31.7 mbsf
TIME-ROCK UNIT FORAMINIFERS MANNOFOSSILS Abloclarians Diatous BEUTHIC FORAM	PHYS', PAGPGETICS CARWIFERY SCTION MCTORA MCTORA MCTORA AD710HLI AD710HLI AD710HLI AD710HLI AD710HLI AD70HLI SCTION AD70HLI SC	LITHOLOGIC DESCRIPTION	TIME-BOCK INIT RADIOLEATY SURF. RADIOLEATY SUR	LITHOLOGIC DESCRIPTION
A/G MIDDLE TO LATE PLEISTOCENE A/G G. truncatulinoides A/G NN 20-21 A/M N. reinholdii C/G N. reinholdii		DORAMINEFR-RE-RIMO, CLV-BEARING, SILICEOUS MAINOFOSSIL DOZE: SILICEOUS BARAINO, INANOFOSSIL OOZE; MORE TORICOLISE Foraminifer-bearing, allieous nannofossil ooze, gray (10Y 5r), 67); sight biodurbation, silouous nannofossil ooze, gray (10Y 7r), light-gray (SY 7r) with erosional lower contact and graded bedding. SMEAR SLIDE SUMMARY (%): 1,38 3,37 3,85 3,110 TEXTURE: 3 10 10 5 Sand - 5 10 10 Sitt 25 10 20 25 COMPOSITION: Day 0 10 10 Datation 5 15 15 Narnofossili 75 85 5 10 Datation 10 10 10 10 Sitt 25 5 5 15 Datation 10 10 10 10 Sitt 75 85 10 10 Datatione	MIDLE PLEISTOCENE A/M MIDLE PLEISTOCENE A/M 0.0000000000000000000000000000000000	NANNOFOSSIL OOZE

SIT	66	2 1	HOLE	A	C	ORE	5 H (CORE		TERVAL 3846.4-3855.9 mbsl: 31.7-41.2 mbsf	SIT	E 6	62	HO	E A		co	ORE 6H	COF	RED	INT	ERVAL 3855.9-3865.4 mbsl: 41.2-50.7 mbsf
TIME-ROCK UNIT	FORAMINIFERS 01	RADIOLARIANS	DIATOMS	PALEOMABNETICS PHYS. PROPERTIES	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURG.	SED. STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION	TIME-ROCK UNIT	FORAMINIFERS T. B	NANNOF 0551L 8 11850 TO NANNOF 0551L	ZONE/ ARACT SWOLTIO	BENTHIC FORAM. S	PHYS. PROPERTIES	CHEMISTRY SECTION	METERS	GRAPHIC LITHOLDGY	DRILLING DISTURS. SED. STRUCTURES	BAMPLES	LITHOLOGIC DESCRIPTION
LOWER TO MIDDLE PLEISTOCENE	A/M G. truncatulinoides A/G NN 19	A/M reinhaidi:	A.M. VELINGULI		OIC=82.0 OIC=85.0 OIC=82.0 OIC=82.0 OIC=82.0	0 1 2 3 4 5 6 7				Succous-bearing, for aminifer-bearing nannolosal oose, light gray to gray (9Y 77), 601 and silocous-bearing for aminifer-nannolosal oose, light gray (1Y 77), 601 and silocous-bearing for aminifer-nannolosal oose, light gray (1Y 77), 601 and silocous-bearing for aminifer-nannolosal oose, light gray (1Y 77), 601 and silocous-bearing for aminifer-nannolosal oose, light gray (1Y 77), 601 and silocous-bearing for aminifer-nannolosal oose, light gray (1Y 77), 601 and silocous-bearing for aminifer-nannolosal oose, light gray (1Y 77), 601 and silocous-bearing for aminifer-nannolosal oose, light gray (1Y 77), 601 and silocous-bearing for aminifer-nannolosal oose, light gray (1Y 77), 601 and silocous-bearing for aminifer-nannolosal oose, light gray (1Y 70, 70, 70, 70, 70, 70, 70, 70, 70, 70,	LOWER PLEISTOCENE	A/M G. truncatulinoides	A/G NN19	A/M N. reinholdi?	C/M		O (1-82.0 O (2-84.2 O (1-88.1) O (1-73.8 O (1-64.4) O (1-67.8 O (2) 0			1 11 1 manual 11 1 and and and a manual and a set in the set of th		SILICEOUS BEARING, FORAMINIFER-BEARING NANNOFOSSIL OOZE SILICOUS LAY BEARING, FORAMINIFER-ABARING NANNOFOSSIL COZE AND AND AND AND AND AND AND AND AND AND

SITE 662 HOLE	A CORE 7H CORED	NTERVAL 3865.4-3874.9 mbsl; 50.7-60.2 mbsf	SITE 662 HOLE A CORE 8H CORED INTE	RVAL 3874.9-3884.4 mbsl: 50.7-60.2 mbsf
LINE-BOCK (NIL FOSSIL CHARACTER WYNNOLOSILF BUDIOL 4411 VIE BUDIOL 4411 VIE BU	PALCOMAGNETICS PHYR. PALCOMAGNETICS CHEMISTRY 95CTION MGTCAR AGOTONLI AGOTONLI AGOTONLI AGOTONLI AGOTONLI AGOTONLI AGOTONCA AGOTO	LITHOLOGIC DESCRIPTION	TIME-ROCK UNIT POMARINITERS Information In	LITHOLOGIC DESCRIPTION
LOWER PLEISTOCENE A/G C. truncatulinoides A/M NN19 N. reinholdi C/P N. reinholdi		CLAY-BEARING NANNOFOSSIL OOZE: CLAY-BEARING, FORAMINIFER- BEARING NANNOFOSSIL OOZE: Clay-bearing nannotosail ooze, dark gray (SY 41); clay-bearing, foraminiter- bearing nannotosail ooze, gray (SY 61); and mud-bearing, foraminiter- bearing nannotosail ooze, gray (SY 61); and mud-bearing of the second oraze, light-gray (SY 71); and (SY 61); and mud-bearing of the second SMEAR SLIDE SUMMARY (%): 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3	M UPPER PLIOCENE TO LOWER PLEISTOCENE M 6. truncarulinoides M 0. truncarulinoides M	CLAY-BEARING, FORAMINIFER-BEARING NANNOFOSSIL OQZE, alternating with FORAMINIFER-NANNOFOSSIL OQZE.

SITE 662 HOLE A CORE 9H CORED INTERVAL 3884.4-3	893.5 mbsl: 69.7-79.2 mbsf	SITE 66	2	HOLE	A	co	RE 1	он со	RED IN	TERVAL 3893.5-3903.4 mbsl: 79.2-88.7 mbsf
TIME- FOCK LINIT TIME- FOCK LINIT MARNOF CORTILE MARNOF CORTILE AND AND AND AND AND AND AND AND AND AND	LITHOLOGIC DESCRIPTION	TIME-ROCK UNIT	RADIOLARIANS	DIATOMS DENTHIC FORAM	PALEOMAGNETICS PHYS. PROPERTIES	CHEMISTRY SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURD. SED. STRUCTURES AAMPISE	LITHOLOGIC DESCRIPTION
MANNOPOSSIL OCZE MannoPossil ocze, while in Sections 1 moughs MANNOPOSSIL OCZE MannoPossil ocze, while in Sections 1 moughs MANNOPOSSIL OCZE MannoPossil ocze, while in Sections 1 moughs MannoPossil ocze, while in Section 1 moughs </td <td>te (2.5 80) with extensive olive-gray (10Y 5/2) mottling 5. Minor void in Section 1, 148-150 cm. 1, 120 5 10 85 2 3 5 80 5</td> <td>UPPER PLIOCENE A/G PL6 AG G. truncatulinoides</td> <td>NN18 N. reinholdii</td> <td>A/G</td> <td></td> <td>O (c-80.0 O (c-81.1) O (c-81.8) O (c-82.3) O (c-82.3) 0 -<!--</td--><td></td><td></td><td></td><td>SILICEDUS-BEARING, MUD-BEARING, FORAMINIFER-BEARING MANNOFOSSIL OOZE to ANNOFCOSSIL OOZE to FORAMINIFER-BEARING NANNOFOSSIL OOZE to CLAY-BEARING, FORAMINIFER-BEARING NANNOFOSSIL OOZE to foraminifer-bearing nannofosal ooze to clay-bearing nannofosal ooze to altimating with clay-bearing, alliceous foraminifer-hannofosal ooze, white (16Y 00). Minor lithology: Section 1 is contorted, possibly a siluma. Section 3, 30–100 or, contains folded slump deposits. Section 5 and Section 6, 0–109 cm, contain solver allign deposits. Section 5 and Section 6, 0–109 cm, contain solver allign deposits. Section 5 and Section 6, 0–109 cm, contain solver allign deposits. Section 5 and Section 6, 0–109 cm, contain solver all lightly folded slump deposits that truncate each other. SMEAR SLIDE SUMMARY (%):</td></td>	te (2.5 80) with extensive olive-gray (10Y 5/2) mottling 5. Minor void in Section 1, 148-150 cm. 1, 120 5 10 85 2 3 5 80 5	UPPER PLIOCENE A/G PL6 AG G. truncatulinoides	NN18 N. reinholdii	A/G		O (c-80.0 O (c-81.1) O (c-81.8) O (c-82.3) O (c-82.3) 0 - </td <td></td> <td></td> <td></td> <td>SILICEDUS-BEARING, MUD-BEARING, FORAMINIFER-BEARING MANNOFOSSIL OOZE to ANNOFCOSSIL OOZE to FORAMINIFER-BEARING NANNOFOSSIL OOZE to CLAY-BEARING, FORAMINIFER-BEARING NANNOFOSSIL OOZE to foraminifer-bearing nannofosal ooze to clay-bearing nannofosal ooze to altimating with clay-bearing, alliceous foraminifer-hannofosal ooze, white (16Y 00). Minor lithology: Section 1 is contorted, possibly a siluma. Section 3, 30–100 or, contains folded slump deposits. Section 5 and Section 6, 0–109 cm, contain solver allign deposits. Section 5 and Section 6, 0–109 cm, contain solver allign deposits. Section 5 and Section 6, 0–109 cm, contain solver allign deposits. Section 5 and Section 6, 0–109 cm, contain solver all lightly folded slump deposits that truncate each other. SMEAR SLIDE SUMMARY (%):</td>				SILICEDUS-BEARING, MUD-BEARING, FORAMINIFER-BEARING MANNOFOSSIL OOZE to ANNOFCOSSIL OOZE to FORAMINIFER-BEARING NANNOFOSSIL OOZE to CLAY-BEARING, FORAMINIFER-BEARING NANNOFOSSIL OOZE to foraminifer-bearing nannofosal ooze to clay-bearing nannofosal ooze to altimating with clay-bearing, alliceous foraminifer-hannofosal ooze, white (16Y 00). Minor lithology: Section 1 is contorted, possibly a siluma. Section 3, 30–100 or, contains folded slump deposits. Section 5 and Section 6, 0–109 cm, contain solver allign deposits. Section 5 and Section 6, 0–109 cm, contain solver allign deposits. Section 5 and Section 6, 0–109 cm, contain solver allign deposits. Section 5 and Section 6, 0–109 cm, contain solver all lightly folded slump deposits that truncate each other. SMEAR SLIDE SUMMARY (%):
		A/M	A/M	C/M C/M		7	0		II/NII	

SITE 662 HOLE A	CORE 11H CORED IN	ERVAL 3903.4-3912.9 mbsl: 88.7-98.2 mbsf	SIT	E 662	2	HOLE	E A		ORE	12H CO	RED I	NT	ERVAL 3912.9-3922.	4 mbsl: 982-107.7 mbsf
TIME- ROCK UNIT RADIOLARIAN RADIOLARIAN BANOCOSSILS RADIOLARIAN BANICOSS BANALOS PALEONARE	CHERNETRY BECTION WETERP METERP DINLENG DRILLING DINLARG DRILLING DINLENG SED. STRUCTURES SED. STRUCTURES	LITHOLOGIC DESCRIPTION	TIME-ROCK UNIT	BIOSSI FOSSI SUBJINIWEUS	RAT. Z. CHAR	DIATOMS DIATOMS	PALEOMAGNETICS	PHTS. PROPERTIES CHEMISTRY	BECTION METERS	GRAPHIC LITHOLOGY	DRILLING DISTURG. SED. STRUCTURES	SAMPLES	LIT	NOLOGIC DESCRIPTION
UPPER PLIOCENE A/G PL6 A/M NN19 A/M N/ <i>reinholdii</i> F/M	3 2 9 6:0:0.3 0:0:0.0.3 0:0:0.0.3 0:0:0.0.3 0:0:0.0.3 3 2 9 0 5 5 5 5 1 +	FORAMINIFER-BEARING, CLAY-BEARING NANNOFOSSIL OOZE to FORAMINIFER-BEARING NANNOFOSSIL OOZE to CLAY-BEARING NANNOFOSSIL OOZE Toromioliter-bearing, clay-bearing nannotosal acoust to teaminiter-bearing ney 77/1), to gay by 6/1. Cong consists mailway, tight folds, sunnes and/or debris flows. Minor void in Section 1, 145–150 cm.	UPPER PLIOCENE	IM PL 6 Mileo	N. reinholdii	rp Mi		© 10-69.3 © 10-77.7 © 10-60.23 © 10-68.8 © 10-67.8 © 10-67.8	2 3 4 5 7				MUD-BEARING, SILJCEOUS-BI NANNOPOSSIL COZE, alternasi (107 7/2) and white (107 W) olive-gray (107 5/2) to light of) with tolding and turbidites in SMEAR SLIDE SUMMARY (%) 4.2 D TEXTURE: Sand 10 Sit 15 Clay 10 Accessory Minerals 5 Clay 10 Accessory Minerals 5 Foraminiters 15 Namotosalis 55 Paraminiters 15 Namotosalis 55 Namotosalis 55 Paraminiters 15 Namotosalis 55 Namotosalis 55	EARING, FORAMINIFER-BEARING my with MUDDY NANNOFOSSIL. GOZE () committee-bearing nanofossi coze. [int gran), alternating with muddy nanofosail coze. = internating with muddy nanofosail coze. = international communication Sections 1 and 2.

LIN	BI FO	SSIL	CHAT.	ZON	E/ TER	0	83				AG.	S		
TIME-ROCK UN	FORAMINIFERB	NANNOF OSSILS	RADIOLARIANS	DIATOMS	BENTHIC FORAM.	PALEOMADNETIC	PHYS, PROPERT	CHEMISTRY	BECTION	CRAPHIC LITHOLOGY	DRICLING DISTU	BED. STRUCTUR	BAMPLES	LITHOLOGIC DESCRIPTION
								1C-85.8 🔘	1		000			FORAMINIFER-BEARING, SILICEOUS-BEARING NANNOFOSSIL OOZE Foraminifer-bearing, siliceous-bearing nannofossil ooze, white (10Y 8/1), light gray (10Y 7/1), or gray (10Y 5/1); weakly to moderately bioturbated; black laminations common throughout; graded beds and sharp contacts in Sections 3 and 5. Minor tithology: Sections 3, 128–150 cm, and Section 5, 60–89 cm; siliceous nannofossil ooze, gray (10Y 7/1) to light-olive-gray (5Y 8/2).
									+		-	1		SMEAR SLIDE SUMMARY (%):
								-			-			3, 60 4, 26 5, 82 D D D
								O 10-81.	2		-	2010		TEXTURE: Sand 20 10 5 Sim 30 20 35 Clay 50 70 60
								0	1		-	12		Quartz — Tr — Clay — 5
NE								OIC=70.5	3			() /	•	Accessory Mineralis
TOCE	0	6		holdi				0	1	1	-	1	•	
UPPER PL	UPPER PLIOCENE PL6	INN		N. rein				OIC-66.1	4			1		
								O IC=71.2	5		KP II - I -	111		
								0			-	11		
								C=52.4	1		-	5		
								O 100-0.69	6			~		
									-		-	*		
	W/W	W/W		d/.	W/_				7		-			

÷ N	BIO FO	SSIL	AT. CHA	ZONE	E/ TER		5				CRB.	ES.		
TIME-ROCK U	FORAMINIFERS	NANNOF OSSILS	RADIOLARIANS	DIATOMS	BENTHIC FORAM.	PALEOMANNETI	PHYS. PROPER	CHEMISTRY SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTUR	BAMPLES	LITHOLOGIC DESCRIPTION
							C 1C=70.9	C 100-00	0.5-	2,0,0,0,0,0,0 ++++++ ++++++		4	•	FORAMINIFER-BEARING NANNOFOSSIL OOZE to FORAMINIFER-BEARING, CLAY-BEARING, SILUCEOUS-BEARING NANNOFOSSIL, OOZE, alternating with SILUCEOUS-NANNOFOSSIL OOZE Foraminiter-bearing nannotosail ooze to foraminiter-bearing, clay-bearing, siliconus-bearing nannotosail ooze, white (SY 87), to light olive-gray (SY 6/2), alternating with allicocul-annotosail ooze, olive-gray (SY 5/2); moderate bioturbation with microlaminations throughout core.
							0.000	010=84.3		0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-		~		1,100 4,24 5,125 D D D D TEXTURE: 3 10 10 Sand 10 10 10 Clay 75 60 80 COMPOSITION: 10 10 10
		NN1 9					0.00.00	C 10=82.9	a second second second	2,0,0,0,0,0,0 ++++++ ++++++				Clay 10 15 10 Foraminiters 10 10 10 Nannotossils 60 45 75 Diatoms 20 10 5 Radiolarians 10 Sponge spicules - 10 -
PER PLIOCENE	PL6			N. reinholdii			O IO TO O	@10=18.0		++++++++++++++++++++++++++++++++++++++		*	•	
-UP							0.10-77.0	0 100-010		0-0-0-0-0-0-0 +++++++++++++++++++++++++		and the state		
	A/M	A/M NN18		c/M	W/a		0.000	0 IC-80 7		++++++++++++++++++++++++++++++++++++++			*	

SITE 662 HOLE A CORE 15H C	ORED INT	TERVAL 3941.4-3950.9 mbsl; 126.7-136.2 mbsf	SIT	662		HOLE	A		COF	RE 16H (CORE	D IN	TERVAL 3950.9-3960.4mbsl: 136.2-145.7 mbsf
BIOBTRAT, 200E/ POSEL CHARACTER BIOBTRAT, 200E/ POSEL CHARACTER BIOLITAL BIOBTRAT, 200E/ POSEL CHARACTER BIOLITAL BIOLITAL BIOLITAL	DRILLING DISTURB, SED. STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION	TIME-ROCK UNIT	FORAMINIFERS 019	RADIOLARIANS	DIATOMS BENTHIC FORAM. BENTHIC FORAM.	PALEOMACHETICS	PHYS. PROPERTIES CHEMISTRY	SECTION	GRAPHIC LITHOLDOY	DRILLING DISTURS.	SED. STRUCTURES	LITHOLOGIC DESCRIPTION
A/G UPPER PLIOCENE A/G UPPER PLIOCENE A/A A/M A/M Nuns C/P Nuns C/P <td< td=""><td></td><th>FORAMINIFER-BEARING CLAY-BEARING, SULCEOUS-BEARING, MANOROSSIL, OCZE Internet and the second seco</th><td>UPPER PLIOCENE</td><td>A/M PLS A/G PLS A/G PL6 A/W NN17 NN18</td><td></td><td>C/P N. marina F/M</td><td></td><td>O 16-68.8 O 166283.51 O 16-80.1 O 16-83.4 O 16-61.0 O 16-66.8</td><td>1 2 3 4 5 6 7 CC</td><td></td><td></td><td></td><td>CLAY-BEARING, SILICEOUS-BEARING NANNOFOSSIL OOZE alternating with SILICEOUS-BEARING FORMANINEER NANNOFOSSIL OOZE argy (5Y61), alternating with alticopacibating formitmeria conditions access introlaminations common. Minor voids in Section 1, 0-3 and 145–150 cm. SMEAR SLIDE SUMMARY (%): <u>1,40</u> 1,90 <u>0</u> 0 TEXTURE: Sand <u>5</u> 15 City 70 70 COMPOSITION: City Composition <u>5</u> 75 Programmiden <u>5</u> 5 Sponge sploules <u>5</u> 5</td></td<>		FORAMINIFER-BEARING CLAY-BEARING, SULCEOUS-BEARING, MANOROSSIL, OCZE Internet and the second seco	UPPER PLIOCENE	A/M PLS A/G PLS A/G PL6 A/W NN17 NN18		C/P N. marina F/M		O 16-68.8 O 166283.51 O 16-80.1 O 16-83.4 O 16-61.0 O 16-66.8	1 2 3 4 5 6 7 CC				CLAY-BEARING, SILICEOUS-BEARING NANNOFOSSIL OOZE alternating with SILICEOUS-BEARING FORMANINEER NANNOFOSSIL OOZE argy (5Y61), alternating with alticopacibating formitmeria conditions access introlaminations common. Minor voids in Section 1, 0-3 and 145–150 cm. SMEAR SLIDE SUMMARY (%): <u>1,40</u> 1,90 <u>0</u> 0 TEXTURE: Sand <u>5</u> 15 City 70 70 COMPOSITION: City Composition <u>5</u> 75 Programmiden <u>5</u> 5 Sponge sploules <u>5</u> 5

SITE 662 HOLE	A CORE 17H CORED IN	TERVAL 3960.4-3969.9 mbsl; 145.7-155.2 mbsf	SITE 662 HOLE A	CORE 18H CORED IN	TERVAL 3969.9-3979.4 mbsl: 155.2-164.7 mbsf
LIME- BOOX ANIINI LEVEL SOUL ON ANIAN CONTRACTOR TO A CONTRACTOR OF A CONTRACT	PALEGAMONETICS PHYLE PALEGAMONETICS ORGANISTRY RECTION METCRS MET	LITHOLOGIC DESCRIPTION	TIME-ROCK UNIT SOURCE UNIT SOURCE UNIT SOURCE UNIT SOURCE	CIEMIBIRY BECTION MCTORB MCTORB MCTORB DIHURA DIHURA DIATURB DISTURB ORILLINE DISTURB.	LITHOLOGIC DESCRIPTION
UPPER PLIOCENE C/M PL5 A/M NN16 PL5 C/P NN17 R/M NN17		PORAMINIFER-BELARING NAMINOFOSSIL COZE and NANIOFOSSIL DEARING, SUICEOUS- BEARING NAMINOFOSSIL COZE and NANIOFOSSIL COZE The control of the second se	UPPER PLIOCENE A/G PLS A/M NN16 C/M N. jouseee R/M	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

ALF	0	62	-	HO	LE	-	A .	-	CO	RE	19H CC	DRE	D	INT	ERVAL 39/9.4-3988.4 mbsl; 164./-174.2 mbst	s r
NIT	810 # Q:	SSIL	CHA	RACI	ER	00	1168					URB.	ES			
TIME-ROCK UI	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	BENTHIC FORM.	PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	BECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DIST	BED. STRUCTUR	\$AMPLE8	LITHOLOGIC DESCRIPTION	
	PLS							O 10+80.6	1	0.5-	YOID YOID + + + + + + + + + + + + + + +				FORAMINIFER-NANNOFOSSIL OOZE Foraminiter-narnotosal coze, white (2.5Y 8/0) with 2-5-cm thin layers, greenish-gray (50Y 6/2), throughout core; weak bioturbation. Minor void in Section 1, 66-70 cm. SMEAR SLIDE SUMMARY (%): 1, 145 2, 70 M D	
	A/G							IC+83.0	2				1	•	TEXTURE: Sand 5 15 Sitt 20 20 Clay 75 65 COMPOSITION: Outstrain Outstrain Outstrain 5 75 Foraminitiers 15 25	
CENE	A/M PL4			96				O 10-86.6	з				- 11 11		Nannofossils 70 70 Diatoms 10 5	
UPPER PLIO	PL4	NN16		N. jouse				O 10+86.7	4	-			1 1	Plant - Andrew - Andrew -		
	PL3							O 100-0310	5		+++++++++++++++++++++++++++++++++++++++					
								O 10-87.2	6							
	A/G	A/M		C/M	R/M				7				1			

2	810 F05	STR	CHA	RACI	TEH		83					in i	-		
TIME-ROCK UN	FORAMINIFERS	MANNOF OSSILS	RADICLARIANS	DIATOMS	BENTHIC FORAM.	PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTURE	SAMPLES	LITHOLOGIC DESCRIPTION
								IC-88.9	1	0.5				*	FORAMINFER-NANNOFOSSIL OOZE and FORAMINIFER-BEARING NANNOFOSSIL OOZE Foraminifer-nannofosall ooze, white (107 71, 2.5% 8/1), and foraminifer-bearing nannofosall ooze, light-olive-gray of light-gray (107 6/2, 6/1); black or green microlaminations and burrows common throughout, bioturbation weak to moderate throughout. Mnor void in Section 1, 148–150 cm.
										-	+ +		-		1, 57 2, 71
										-	+ +		-		D D TEXTURE
								88.9	2				13	*	Sand 15 5
								0		1	<u> </u>		11		Silt 25 25 Clav 60 70
								\odot		-	+ +		\$		COMPOSITION
									-	-	+++	1	厚		Quartz Tr Tr
										1	- + -		t	11	Clay – 5 Foraminifers 25 15
										-	- + -		11		Nannofossils 70 75 Diatoms
DCENE				98.				O IC-84.8	3		- + + - + + - + + - + + - + + - + -		11		Radiolarians 5 5 Sponge spicules
UPPER PLIC	PL3	NN16		N. jouse				0.10-90.0	4		+ + + + + + + + + + + + + +		{	10-11-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	
									_	-	+				
										1	- + -		1		
								8.6	5	-			1		
								0-8	Ĩ	3			8		
								0		-	- + -		=		
								1		-	VOID			90	
					1	1				-	- + -		1	П	
										-	- + -		-	1	
								IC=89.6	6	hundred	+ + - + + - - + - + + -		T		
										-	- + +				
	_	_		_	_				7		- + +				
	2	S		N	N						+ +-		L	I	

SITE 662 HOLE A CORE 21H CORED INTERVAL 3998.4-4008.9 mbsl: 183.7-193	2 mbsf SITE 662 HOLE A CORE 22H CORED INTERVAL 4008.9-4018.4 mbsl; 193.2-200.0 mbsf
	HINGLE ROOM TO THE REAL TO THE
0 0	E With Mark Mark Mark Mark Mark Mark Mark Mark

SITE 662 HOLE B COP	RE 1 H CORED INTE	RVAL 3813.8-3823.3 mbsl; 0-9.5 mbsf	S	ITE	662	HO	LE B		COF	E2H	CORE	DINT	ERVAL 3823.3-3832.8 mbsl: 9.5-14.0 mbsf
Time-Rock unit Ponaumirens Ponaumirens Ponaumirens Rannerossilla Pissol Alano Pissol Diatros Pissol Pissol Pissol Pissol Pissol Cidamirens Pissol Pissol Pissol Cidamirens Pissol Bissol Pissol	METER8 BEAL CULLING DISTURES BED. STRUCTURES BEAL BEAL BEAL	LITHOLOGIC DESCRIPTION		TIME-ROCK UNIT	FORAMINIFERS - 11550	CHARACT DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURD.	SED. STRUCTURES SAMPLES	LITHOLOGIC DEBCRIPTION
Image: Second content of the second content		<text></text>		MIDDLE TO UPPER PLEISTOCENE	A/G G. Trundetruinordes A/G NN20-21				1 2 3 4 5 6 7 7 CC				SILT-BEARING, FORAMINIFER-BEARING NANNOFOSSIL OOZE Information of the presence

TIME - ROCK UNIT FORAWINI'R FORAWINI'R RADIOL A RUNNE OSITERS DI A TOMS DI A	PHYS. PROFERITIES PHYS. PROFERITIES BECTION MCTEMS MCTEMS ACOUNTIT ACOUNTIT ACOUNTIT ACOUNTING ACOUNTING ACOUNTING ACOUNTING ACOUNTING ACOUNTING ACOUNTING	LITHOLOGIC DESCRIPTION	TIME- ROCK UNIFIERS F ORAMINIFERS AMANGOF OBSTLLS PLATONG DIATIONG DIATIONG	PALEOMACNETICS PHYS, PROPERTIES CHEMISTRY SECTION METERS	CHARTER OF CONTINUES	LITHOLOGIC DESCRIPTION
A/G UPPER PLIOCENE A/M PL0 NN19		CLAY-BEARING, FORAMINFER-BEARING MANNOFOSSIL OOZE, alternating with FORAMINFER-MANNOFOSSIL OOZE. Clay Control of the control	G A/G UPPER PLIOCENE M A/G PL6 NN19			SILICEOUS-BEARING, CLAY-BEARING, FORMINIFER-BEARING NANNOFOSSIL OOZE, alternating with FORMINIFER-NANNOFOSSIL OO Silisooca-barring, clay-barring for stmirtifer-hadring nannofosal coze, priv (197 B1, 757 B0) or right priv (197 m); molarate biotuntation with data microlaminations in Section 4. Minor void in Section 1, 36–43 cm.

SI	E 66	52 H	IOLE	в	С	ORE	7 1	4	CC	RED	IN	TERVA	. 3870	- 8. 0	3880.3	mbsi; 1	31.2-140	0.7 mbsf	 SITE	663	: H	OLE	В	C	ORE	8 H	COR	ED I	NTER	VAL 3880.3-3889.8 mbsl; 140.7-150.2 mbsf
anti- anos inte	FORAMINIFERS	RADI OLATONO COSSIL S	NE/	PALEOMAGNETICS PHYS. PROPERTIES	CHEMISTRY	SECTION		GRAPH	ic bey	DRILLING DISTURB.	SED. STRUCTURES SAMPLES			á	LITHOLOGI	C DESCRIPTIO	DN		TIME-ROCK UNIT	FORAMINIFERS 018	CHARA SNEIHENOLOU	NE/ CTER	PALEOMAGNETICS PHYS. PROPERTIES	CHEMISTRY	BECTION	GRAP LITHOU	06Y	DRILLING DISTURS. SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
LIPPER DI LOCENE	A/M PLS PL6 A/G NNIR PL6					22 33 5 5 7 C		+ + <td>ד, ד, ד</td> <td></td> <td></td> <td>SILL NAA NAA SA SA SA SA SA SA SA SA SA SA SA SA S</td> <td>CECUS-BEARI INOFOSSIL OC INOFOSSIL OC INOFOSSIL OC Inorosite (7,5) ramon in the joint ray (5) vir rongitout. Minor AR SLIDE SUM TURE: POSITION: niniters forosilis me farians</td> <td>NG, CLL 222. alfi 222. (c) 223. (c) 224. (c) 225. (c) 225</td> <td>AY-BEARIN Instanting with Instanting with Inst</td> <td>IG, FORAMINI n CLAY-BEARI minifer-bearing with clay-bearing with clay-bearing with clay-bearing la coare, biologue 148–150 cm.</td> <td>FER-BEARING ING FORAMINIE I Paramider-Administration di biolutration at bation generally</td> <td>FER 26. gray to introdesti thructures weak</td> <td>UPPER PLIOCENE</td> <td>A/G PLS A/P NN18</td> <td></td> <td></td> <td></td> <td></td> <td>0.5 1 1.0 2 3 4 5 6 7 6C</td> <td></td> <td></td> <td>or states</td> <td></td> <td>PORAMINIFER-BEARING NANNOPOSSIL OOZE Io MUD-BEARING SILCEOUS-BEARING, NANNOPOSSIL OOZE Io FORAMINIFER-BEARING NANNOPOSIL OOZE Isocous-baaring nannofossil ooze, lipti ore yrg (107 021) obu-pergr (107 52) to foraminife-bearing nannofossil ooze, lipti ore yrg (107 021) obu-pergr (107 52) to foraminife-bearing nannofossil ooze, lipti ore yrg (107 021) obu-pergr (107 52) to foraminife-bearing nannofossil ooze, lipti ore yrg (107 021) obu-pergr (107 52) to foraminife-bearing nannofossil ooze, lipti ore yrg (107 021) obu-pergr (107 52) to foraminife-bearing nannofossil ooze, lipti ore yrg (107 021) obu-pergr (107 52) to foraminife-bearing nannofossil ooze, lipti ore yrg (107 021) obu-pergr (107 52) to foraminife-bearing nannofossil ooze, lipti ore yrg (107 021) obu-pergr (107 52) to foraminife-bearing nannofossil obu-pergr (107 021) obu-perg</td>	ד, ד			SILL NAA NAA SA SA SA SA SA SA SA SA SA SA SA SA S	CECUS-BEARI INOFOSSIL OC INOFOSSIL OC INOFOSSIL OC Inorosite (7,5) ramon in the joint ray (5) vir rongitout. Minor AR SLIDE SUM TURE: POSITION: niniters forosilis me farians	NG, CLL 222. alfi 222. (c) 223. (c) 224. (c) 225. (c) 225	AY-BEARIN Instanting with Instanting with Inst	IG, FORAMINI n CLAY-BEARI minifer-bearing with clay-bearing with clay-bearing with clay-bearing la coare, biologue 148–150 cm.	FER-BEARING ING FORAMINIE I Paramider-Administration di biolutration at bation generally	FER 26. gray to introdesti thructures weak	UPPER PLIOCENE	A/G PLS A/P NN18					0.5 1 1.0 2 3 4 5 6 7 6C			or states		PORAMINIFER-BEARING NANNOPOSSIL OOZE Io MUD-BEARING SILCEOUS-BEARING, NANNOPOSSIL OOZE Io FORAMINIFER-BEARING NANNOPOSIL OOZE Isocous-baaring nannofossil ooze, lipti ore yrg (107 021) obu-pergr (107 52) to foraminife-bearing nannofossil ooze, lipti ore yrg (107 021) obu-pergr (107 52) to foraminife-bearing nannofossil ooze, lipti ore yrg (107 021) obu-pergr (107 52) to foraminife-bearing nannofossil ooze, lipti ore yrg (107 021) obu-pergr (107 52) to foraminife-bearing nannofossil ooze, lipti ore yrg (107 021) obu-pergr (107 52) to foraminife-bearing nannofossil ooze, lipti ore yrg (107 021) obu-pergr (107 52) to foraminife-bearing nannofossil ooze, lipti ore yrg (107 021) obu-pergr (107 52) to foraminife-bearing nannofossil ooze, lipti ore yrg (107 021) obu-pergr (107 52) to foraminife-bearing nannofossil obu-pergr (107 021) obu-perg

SITE 662 HOLE B	CORE 9 H CORED IN	TERVAL 3889.8-3899.3 mbsl; 150.2-159.7 mbsf	SIT	E 66	2 HOL	E E	3	CORE 10 H	ORED	INT	ERVAL 3899.3-3908.8 mbsl: 159.7-169.2 mbsf
TIME-ROCK UNIT FORMINFER ARADIOLARIAN MANNOFOSSIL MANNOFOSSI MAN	Spiritics of the state of the s	LITHOLOGIC DEBCRIPTION	TIME-ROCK UNIT	FORAMINIFERS	CHARACTI	PALEOMAGNETICS	PHYS. PROPERTIES CHEMISTRY	GRAPHIC LITHOLOGY	DRILLING DISTURS.	SED. STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION
UPPER PLIOCENE A/G PLS A/M NN18		FORAMINIFER-BEARING NANNOFOSSIL COZE to MUD-BEARING. SILCEOUS-BEARING NANNOFOSSIL COZE to FORAMINIFER-BEARING NANNOFOSSIL COZE foraminiter-bearing nannofosal coze, while (2.5Y 80), to mud-bearing, allocoze-bearing, nannofosal coze, allocoze-bearing, nannofosal co	UPPER PLIOCENE	A/G PL3 A/G PL4 A/G PL5 PL5 A/M NN1 6							PORAMINIFER-BEARING NANNOFOSSIL OOZE, alternating with Coraminter-bearing nannofossil ooze, white to light gray (7.5YR 80, 70, alternating with foraminifer-annofossil ooze, white to light gray (7.5YR 80, 70); weak to moderate biolurbation throughout; taminations are common; motiles and black and green microlaminations.

SILE	562	HOLE	БВ	(ORE	11	H	CORE	DI	NTE	ERVAL 3708.8-3918.3 mbsl: 169.2-178.7 mbsf	SITE	Ξ.	562	HO	DLE	в	C	ORE	12 H COR	ED IN	TERVAL 3918.3-3827.8 mbsl; 178.7-188.2 mbsf
TIME-ROCK UNIT	NANNOFOSSILE TYNE	ZONEJ IARACTER SWOLEJO	PALEOMAGNETICS	CHEMISTRY	SECTION	METERS	GRAPHIC	DRILLING DISTURG.	SED. STRUCTURES	BAMPLES	LITHOLOGIC DESCRIPTION	TIME-ROCK UNIT	FORAMINIFERS & G	NANNOFOSSILS CONTRACTOR	ZONE ARACT SWOLVIG	TER	PHYS, PROPERTIES	CHEMISTRY	storiow Mitteos	GRAPHIC LITHOLOGY	BED. STRUCTURES	LITHOLOGIC DESCRIPTION
UPPER PLIOCENE PL3	A/P NN16			-	2 3 3 4 5 6 7		++++++++++++++++++++++++++++++++++++++				FORAMINIFER-MANNOPOSISLI COZE Foraminifer-nannofossi locza, white to light greenish-gray (2.5Y 8.0, 53Y 7.1); microlaminations and motifes, black and green; bloturbation moderate in Sections 3 and 4; terminations common in Sections 5 and 6.	UPPER PLIOCENE	A/G PL3	A/P NN15				2 2 4 4 7 7 6	4 5 7 C		معملهم محاالمعممطا معمومهممملومهممملومي المطولة المعالية المحالي المحالي المراسات معاليها معالمهم والمتعامية	FORAMINIFER-BLAINIO ANANOFOSSIL OOZE, alternating with FORAMINIFER-ADAINOFOSSIL OOZE, while to light-greenish-gray (7.5Y 8.0, 50Y 77), alternating with foraminifer-nanofossil ooze, while to Sight-greenish-gray (7.5Y 8.0); weaky bourbated throughout: black; green or purple laminations common in Sections 1 through 3.

°m_	10H-1	10H-2	10H-3	10H-4	10H-5	10H-6	10H-7	10H,CC
	1000	1. Z. 2.		#**	5 2.95	1	1 IT	
F	122	10- PC		-	12 2		a la constante	
10	1223	223		1				
		12.2						1
Γ		-			2.2.4		12	5
20				1.2.4				-1
		1	2.2.3			Same and	1.2	
F								
30		19.9		1.5.5	crist- targ	1. 11. 1	1.1	
L		12.2.7	1.50	2.2	3		新生活	
		245			No. 1			
40	1					1 2 4		
-	2		1.2.2			234		
50	14							
50				1.5				
-		14		25.3		the s		
60		35		22				
	213	222	19		7			
-	17-	1997 - 19		1.2	-	1.2.7		
70	1.20		1.2.2	1.23				
	F	and and		100	100			
F	1	1.1						
80	125	and the second	2.2.3					
	tal			1.2				
Γ	2.2.2							
90								
L	Sec.		22		in the Car			
			2.23					
100	Sec.			14 2				
F	125			2.2.5		1		
110	1000	223		23				
110			100					
F		2.24	223			a ser a		
120		123			1.2.2	2		
		100	223					
- F	12.33					1. 1. 7.		
130	1.5	2.20	24.		100			
	13.23	1	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -					
F			5 4 5 1	100		12-12-1		
140 -	12.23		18 2 3	133	13.83			
	1919		02.14	12. D. 4		1		
Γ			AND THE ST	2	Sec.			
150	28 · · · · ·	and the second	191	and the second s	10 miles 10	1.21.250		

