9. SITE 664¹

Shipboard Scientific Party²

HOLE 664A

Date occupied: 30 March 1986, 2250 UTC

Date departed: 30 March 1986, 2330 UTC

Time on hole: 0.7 hr

Position: 0°06.44'N, 23°13.65'W

Water depth (sea level; corrected m, echo-sounding): 3806

Water depth (rig floor; corrected m, echo-sounding): 3816.5

Bottom felt (rig floor; m, drill pipe measurement): (subsurface core)

Distance between rig floor and sea level (m): 10.5

Total depth (rig floor, m): 3845.7

Penetration (m): 28.9

Number of cores (including cores with no recovery): 1

Total length of cored section (m): 9.5

Total core recovered (m): 9.64

Core recovery (%): 101.0

Oldest sediment cored: Depth (mbsf): 28.9 Nature: calcareous nannofossil ooze Age: Pleistocene (0.7 Ma)

HOLE 664B

Date occupied: 31 March 1986, 0130 UTC Date departed: 31 March 1986, 2309 UTC

¹ Ruddiman, W., Sarnthein, M., Baldauf, J., et al., 1988. Proc., Init. Repts. (Pt. A), ODP, 108.

² William Ruddiman (Co-Chief Scientist), Lamont-Doherty Geological Observatory, Palisades, NY 10964; Michael Sarnthein (Co-Chief Scientist), Geologisch-Paläontologisches Institut, Universität Kiel, Olshausenstrasse 40, D-2300 Kiel, Federal Republic of Germany; Jack Baldauf, ODP Staff Scientist, Ocean Drilling Program, Texas A&M University, College Station, TX 77843; Jan Backman, Department of Geology, University of Stockholm, S-106 91 Stockholm, Sweden; Jan Bloemendal, Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882-1197; William Curry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543; Paul Farrimond, School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, United Kingdom; Jean Claude Faugeres, Laboratoire de Géologie-Océanographie, Université de Bordeaux I, Avenue des Facultés, Talence 33405, France; Thomas Janacek, Lamont-Doherty Geological Observatory, Palisades, NY 10964; Yuzo Katsura, Institute of Geosciences, University of Tsukuba, Ibaraki 305, Japan; Hélène Manivit, Laboratoire de Stratigraphie des Continents et Océans, (UA 319) Université Paris VI, 4 Place Jussieu, 75230 Paris Cedex, France; James Mazzullo, Department of Geology, Texas A&M University, College Station, TX 77843; Jürgen Mienert, Geologisch-Paläontologisches Institut, Universität Kiel, Olshausenstrasse 40, D-2300 Kiel, Federal Republic of Germany, and Woods Hole Oceanographic Institution, Woods Hole, MA 02543; Edward Pokras, Lamont-Doherty Geological Observatory, Palisades, NY 10964; Maureen Raymo, Lamont-Doherty Geological Observatory, Palisades, NY 10964; Peter Schultheiss, Institute of Oceanographic Sciences, Brook Road, Wormley, Godalming, Surrey GU8 5UG, United Kingdom; Rüdiger Stein, Geologisch-Paläontologisches Institut, Universität Giessen, Senckenbergstrasse 3, 6300 Giessen, Federal Republic of Germany; Lisa Tauxe, Scripps Institution of Oceanography, La Jolla, CA 92093; Jean-Pierre Valet, Centre de Faibles Radioactivités, CNRS, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France; Philip Weaver, Institute of Oceanographic Sciences, Brook Road, Wormley, Godalming, Surrey GU8 5UG, United Kingdom; Hisato Yasuda, Department of Geology, Kochi University, Kochi 780, Japan.

Time on hole: 21.7 hr Position: 0°06.44'N, 23°13.65'W Water depth (sea level; corrected m, echo-sounding): 3806 Water depth (rig floor; corrected m, echo-sounding): 3816.5 Bottom felt (rig floor; m, drill pipe measurement): 3816.8 Distance between rig floor and sea level (m): 10.5 Total depth (rig floor, m): 4063.8 Penetration (m): 247.0 Number of cores (including cores with no recovery): 26 Total length of cored section (m): 247.0 Total core recovered (m): 244.9 Core recovery (%): 99.1 Oldest sediment cored:

Depth (mbsf): 247.0 Nature: calcareous nannofossil ooze Age: early Pliocene (~4.5 Ma)

HOLE 664C

Date occupied: 1 April 1986, 0145 UTC Date departed: 1 April 1986, 0730 UTC Time on hole: 5.75 hr Position: 0°06.44'N, 23°16.5'W Water depth (sea level; corrected m, echo-sounding): 3810 Water depth (rig floor; corrected m, echo-sounding): 3820.5 Bottom felt (rig floor; m, drill pipe measurement): 3817.3 Distance between rig floor and sea level.(m): 10.5

Total depth (rig floor, m): 3878.5

Penetration (m): 61.2

Number of cores (including cores with no recovery): 7 Total length of cored section (m): 61.2

Total core recovered (m): 57.1

Core recovery (%): 93.3 Oldest sediment cored:

Depth (mbsf): 61.2 Nature: calcareous nannofossil ooze Age: middle Pleistocene (1.4 Ma)

HOLE 664D

Date occupied: 1 April 1986, 1000 UTC

Date departed: 2 April 1986, 1040 UTC

Time on hole: 24.7 hr

Position: 0°06.44'N, 23°13.65'W

Water depth (sea level; corrected m, echo-sounding): 3807.0 Water depth (rig floor; corrected m, echo-sounding): 3817.5 Bottom felt (rig floor; m, drill pipe measurement): 3812.2 Distance between rig floor and sea level (m): 10.5

Total depth (rig floor, m): 4109.0

Penetration (m): 296.8

Number of cores (including cores with no recovery): 32

Total length of cored section (m): 296.8

Total core recovered (m): 302.8

Core recovery (%): 102.0

Oldest sediment cored:

Depth (mbsf): 296.8 Nature: clayey calcareous nannofossil ooze Age: late Miocene (~9 Ma)

Principal results: Site 664 is located at 0°06.44'N, 23°13.65'W, in a water depth of 3806.3 m in the central equatorial Atlantic on the upper-middle flank of the east side of the mid-Atlantic Ridge just north of the Romanche Fracture Zone (see "Background and Scientific Objectives" section, this chapter). The site is situated in a sediment pond with about 0.3–0.4 s of relatively transparent layering (see "Background and Scientific Objectives" section, this chapter). Although basement outcroppings are common in the surrounding terrain, the region immediately adjacent to Site 664 is largely covered with sediments. Our primary objective at this site was to obtain late Neogene records of the equatorial divergence and of eolian sedimentation.

From Holes 664A, 664B, 664C, and 664D, we recovered a total of 66 advanced piston corer (APC) cores to depths of 28.9, 247.0, 61.2, and 296.8 meters below the seafloor (mbsf), respectively. Holes 664B, 664C, and 664D were cored continuously. We recovered only one core from Hole 664A below the mud line because of miscounting the pipe stands. Recovery averaged 101.0% for Hole 664A, 99.1% for Hole 664B, 93.3% for Hole 664C, and 102.0% for Hole 664D.

The entire cored section (0-296.8 mbsf) consisted of one lithologic unit composed of nannofossil and foraminifer-nannofossil oozes of late Miocene, Pliocene, and Pleistocene age (Fig. 1). Secondary components are clay (including zeolitic clay in Cores 108-664D-31H and -664D-32H), diatoms, and radiolarians. Two deeper holes (Holes 664B and 664D) contain many slump units, as well as several other partially deformed layers (see "Composite-Depth Section," this chapter).

Paleomagnetic reversal boundaries provided a useful stratigraphy down to the Jaramillo subchron only (see "Paleomagnetism" section, this chapter). Below this level, the decreasing natural remanent magnetization precluded the use of paleomagnetic results. The nannofossil and planktonic-foraminifer biostratigraphy also provided numerous datums to constrain the age-depth curve throughout the sequence (see "Sediment-Accumulation Data" section, this chapter).

Preservation of calcareous fossils is generally good, although it becomes worse at about 200 mbsf (4.4 Ma; early Pliocene). This change in carbonate preservation agrees with similar evidence from previous Leg 108 sites, providing additional confirmation of a major change in bottom-water chemistry in the early Pliocene.

Preservation of diatoms is moderate to poor in the upper 200 mbsf, and sediments have no diatoms below this depth. This suggests a much lower supply of biogenic silica from surface waters because of lower productivity before about 4.0 to 4.5 Ma.

The depositional rate of pelagic sediments varied and, in those parts of the sequences with frequent slumps, was difficult to determine. The upper Pleistocene pelagic sequence (0-55 mbsf) in Holes 664A, 664B, and 664C was deposited at average rates of about 49 m/m.y. The late Pliocene rates farther down in Hole 664B were difficult to determine owing to frequent slump interruption, but appeared to be slightly lower (see "Sediment-Accumulation Rates" section, this chapter). In the less disrupted lower Pliocene to Pleistocene sequence in Hole 664D, rates average 32–51 m/m.y. down to a slump at 185 mbsf, and then decrease to less than 20 m/m.y in the Miocene and early Pliocene sequence from 208 mbsf to the bottom of the hole.

Neither paleomagnetic-susceptibility nor *P*-wave measurements were useful for between-hole correlations, so we used carbonate layering from core photographs to provide these links. We succeeded in correlating the uppermost pelagic unit (0–55 mbsf; 0 to 1.25 Ma) between Holes 664B and 664D, thus tracing a continuous compositedepth section throughout that entire upper Pleistocene sequence (see "Composite-Depth Section," this chapter).

Figure 1. Lithostratigraphic and biostratigraphic summary of Site 664, based on Hole 664D. Black layers are badly deformed gravity-flow mass deposits (mostly slumps); slightly deformed bedding from 49 to 87 mbsf and 190 to 208 mbsf indicates possible slump deformation, but with little or no disturbance of the age-depth sequence; remainder of section is pelagic-nannofossil ooze. Schematic representation of CaCO₃ cycles shows general range of percentage of CaCO₃ variations increasing upward. Actual timing of this increase cannot be determined from widely spaced shipboard CaCO₃ analyses.

Slumps at 55 to 97 mbsf in Hole 664B and 49 to 87 mbsf in Hole 664D interrupt this continuous sequence. The slump in Hole 664B brought in disturbed allochthonous sediments of late to early Pliocene age, older than the underlying upper Pliocene pelagic layer (see "Sediment-Accumulation Rates" section, this chapter). In contrast, the sediments at equivalent depths in Hole 664D were disturbed much less (slightly tilted, with bioturbation and mottling partially obscured), and their age fits directly on the age-depth curve interpolated from over- and underlying pelagic sequences. This indicates that the "slumped" unit in Hole 664D may be nearly *in situ*. These results show a surprising variability in degree of deformation and in age of slumped units over very small lateral scales (1000 m) within the same sediment pond.

Below these slumps, we were able to correlate only a short (10-m) sequence near 100 mbsf, which represents a short upper Pliocene (2.4 Ma) section. Below 110 mbsf, the CaCO₃ layering was too faint to use core photographs for correlations. The high recovery and the relatively undisturbed condition of the sections below 200 mbsf at Hole 664D suggest that we recovered a valuable upper Miocene sequence deposited at high rates.

As at Sites 662 and 663, there was an intensification of the $CaCO_3$ cycles from the late Pliocene to the late Pleistocene (see "Organic Geochemistry" section, this chapter). This increased amplitude occurred because of stronger $CaCO_3$ minima, accompanied by increased silica and clay contents in grayish green sediment layers. Because of interruptions from slumps and aliasing of the true signal by our limited shipboard sampling resolution, we were unable to ascertain whether this increase in amplitude was gradual or abrupt. Possible explanations for this change include increased carbonate dissolution, decreased carbonate productivity, increased silica productivity, or increased eolian sedimentation.

The slump at approximately 1.25 Ma may coincide with mid-Pleistocene deformation at Sites 662 and 663. All three sites are located adjacent to the active transform-fault section of the Romanche Fracture Zone. The almost simultaneous occurrence of slump deformation at these sites could indicate that a major seismic event within the Romanche Fracture Zone dislodged pelagic sediments over a broad region of the upper flanks of the mid-Atlantic Ridge, sending slumps and turbidites down into sediment ponds in many areas.

BACKGROUND AND SCIENTIFIC OBJECTIVES

Site 664 (target Site Eq-9) was the last of three Leg 108 sites designed to retrieve a late-Neogene record of climatic variability from near the equator (see Fig. 2, Site 662 chapter). For a discussion of our overall scientific criteria and rationale for these sites, see "Background and Scientific Objectives" section, Site 662 chapter (this volume). Because of its location more than 1100 km to the west-northwest of Sites 662 and 663, we felt Site 664 should contain a climatic record dominated primarily by equatorial divergence and influenced less by advection of cold water in the Benguela Current flow from the Southern Hemisphere.

Our primary scientific objectives at Site 664 were as follows:

1. To determine the late-Neogene history of variations in equatorial surface-ocean circulation, using estimated sea-surface temperatures from planktonic foraminifers, as well as fluxes of opaline silica, $CaCO_3$, and organic carbon.

2. To reconstruct the late-Neogene history of variations in African aridity, as indicated by biogenic material and windblown terrigenous dust from the African continent.

Our secondary objectives for Site 664 were the following:

1. To obtain a continuous, late-Neogene sequence for highresolution paleomagnetic, biostratigraphic, and stable-isotope analyses.

2. To obtain a calcareous sequence for analysis of late-Neogene dissolution trends.

Geologic and Topographic Setting

Site 664 is located in the central equatorial Atlantic on the upper-middle flank of the east side of the mid-Atlantic Ridge (Fig. 2; see also Fig. 2, Site 662 chapter, this volume). The ridge topography in this region is complex, with major east-west jumps of the rift valley between fracture zones separated by an average north-south distance of about 40 km. Just 120 km south of Site 664, the rift valley shifts some 1000 km to the east across the Romanche Fracture Zone, the largest such jump in the equatorial Atlantic Ocean.

Air-gun records from the Site 664 region reveal a fairly complex topography, with areas of outcropping or near-outcropping basement alternating with ponds of thin sediment fill on a scale of miles to tens of miles. The sediment fill averages about 0.2 s (about 150 m) and reaches maximum values of about 0.4 s (about 300 m).

The appearance of the fill in the sediment ponds varies considerably. V3004 cruise seismic lines some 25 to 50 km to the east of the proposed site are similar to those obtained in the region of Sites 662 and 663, with small ponds of reflective, flat-lying sediments in larger areas of basement outcropping. Based on drilling results at those sites, these sediments frequently may be disturbed by turbidites and slumps. The several hours of seismic record from the immediate vicinity of Site 664, however, are somewhat different in character from the surrounding region (Fig. 3). These sediments are faintly layered, more conformable to basement topography, and, generally, have more of the "draped" character typical of pelagic deposition, with only minor amounts of redeposition in thicker sediment ponds. Based on data obtained during the GEOTROPEX '85 cruise of the Polarstern, the location of Site 664 was adjusted to an area of thick, moderately reflective sediment cover (Fig. 2).

The basement age at Site 662 is estimated as late Miocene, based on regional magnetic lineations. The anticipated sedimentary section is a cyclical alternation of upper Miocene, Pliocene, and Pleistocene nannofossil ooze and mud.

OPERATIONS

After departing Site 663, we steamed at a speed of 13 kt on a course of 290° toward the location of Site 664. On 30 March at 1200 UTC, we slowed to 5 kt and streamed out 80-in.3 water guns and a magnetometer. (All times are UTC, Universal Time Coordinated, formerly GMT, Greenwich Mean Time.) We continued on the same course until 1350, when we turned to a course of 305° to position our track over the sediment pond we wished to core (see Fig. 2; "Background and Scientific Objectives" section, this chapter). All navigation during this survey was controlled by our global positioning system (GPS). At 1452, we turned to a course of 270°. At this point, we finally selected the Site 664 location at a position about 2 nmi east-northeast of the approved position; we chose a position we had crossed earlier at 1440 on the JOIDES Resolution line 108-8, shown in Figure 2. At 1515, we steamed on a course of 100° and returned to the Site 664 location at 0°06.44' N, 23°13.65' W.

We arrived at the site at 1605 on 30 March and dropped a beacon. We then slowed to 2 kt, retrieved our geophysical gear, and returned to the beacon. We began running drill pipe into the hole by 1640 and finished at 2200. The first and only advanced piston corer (APC) core from Hole 664A came on deck at 2330 (Table 1), by which time we discovered that we had miscounted one pipe stand and that the core actually was shot below the mud line. We moved 15 m south to try again. Our first attempt produced a water core, but our second attempt gave us our first core from Hole 664B, which was brought on deck at 0205 on 31 March. We continued APC coring to a total penetration depth of 247 meters below the seafloor (mbsf) and brought the final core (108-664B-26H) on deck at 2309.

We then pulled out of Hole 664B and offset the drill string 15 m to the north. We spudded in Hole 664C on 1 April at 0145. The first APC core from Hole 664C came on deck at 0205. We continued APC coring until Core 108-664C-7H, which came on deck at 0730. We then pulled out of Hole 664C and offset the drill string 1000 m to the north at Hole 664D, hoping to avoid some of the slumped sections encountered in Hole 664B.

We spudded in Hole 664D at 1000 on 1 April. The first APC core from Hole 664D came on deck at 1030. We oriented Cores 108-664D-3H through -664D-6H. We continued APC coring until Core 108-664D-32H came on deck at 1040 on 2 April. One final core attempted as we neared the acoustic basement stroked out completely, but became stuck in the stiffer sediment. The core

Figure 2. Seismic track lines near Site 664.

barrel parted at 145,000 lb of overpull during our attempts to retrieve it. At 1300, we began pulling out of the hole, and the drill string was back on deck by 1945. We got under way from Site 664 at 1945 on 2 April and headed for Site 665. The weather was favorable—warm and sunny throughout all operations, with weak to moderate winds and swell.

LITHOSTRATIGRAPHY AND SEDIMENTOLOGY

Introduction

One major lithologic unit was recognized at Site 664 (Fig. 4). It is composed primarily of calcareous-nannofossil ooze and is late Miocene through Pleistocene in age. The unit is further subdivided on the basis of distinct variations in carbonate content in Hole 664B. Subunits are described in detail in the following sections.

Subunit IA

- Cores 108-664A-1H-1 through -664A-1H, CC; depth, 19.4-28.9 mbsf; age, Pleistocene.
- Cores 108-664B-1H through -664B-6H-4, 70 cm; depth, 0-52.7 mbsf; age, Pleistocene.
- Cores 108-664C-1H through -664C-6H-5, 90 cm; depth, 0-49.1 mbsf; age, Pleistocene.
- Cores 108-664D-1H through -664C-7H-1, 130 cm; depth, 0-51.1 mbsf; age, Pleistocene.

Subunit IA is composed primarily of clay- and foraminiferbearing nannofossil ooze interbedded with foraminifer-nannofossil and muddy nannofossil oozes. This subunit is characterized by carbonate concentrations ranging from 60% to 90%, with a few intervals having values of less than 50%. The sediments range in color from white (5Y 8/1, 7.5YR 8/0) and light

Figure 3. Seismic-reflection record from cruise V3004 near Site 664.

gray (5Y 7/1) to gray (5Y 6/1). The darker intervals (gray to light gray) generally have higher terrigenous concentrations. The calcareous component is composed primarily of nannofossils (55% to 70%) and foraminifers (5% to 30%). The terrigenous component of the sediments is primarily clay (10% to 25%) and quartz (trace to 5%). Siliceous material is present in minor concentrations (trace to 5%) and is composed primarily of diatoms and radiolarians. These sediments are weakly to moderately bioturbated, and green, purple, and black laminations are present throughout the subunit. The nannofossil ooze is interrupted by scattered sandy foraminifer turbidites or contourites, ranging from 2 to 10 cm thick.

Subunit IB

Cores 108-664B-6H-4, 70 cm, through -664B-26H, CC; depth, 52.7-247.0 mbsf; age, Pliocene through Pleistocene.

- Cores 108-664C-6H-5, 90 cm, through -664C-7H, CC; depth, 49.1-61.2 mbsf; age, Pleistocene.
- Cores 108-664D-7H-1, 130 cm, through -664D-32H, CC; depth, 51.1-296.8 mbsf; age, late Miocene through Pleistocene.

Subunit IB is composed primarily of mud and foraminiferbearing nannofossil oozes. Muddy nannofossil and foraminifernannofossil oozes are scattered. The subunit is characterized by high carbonate concentrations, generally 85% to 90%. The sediments are predominantly white (2.5Y 8/0, 7.5YR 8/0), with scattered light gray (5Y 7/1) intervals. Nannofossils range in concentration from 75% to 90%, with foraminifers making up 5% to 20% of the sediments, except in a few intervals, where concentrations are as high as 45%. Clay content is generally less than 10%, with a few intervals as high as 25%. Siliceous material, mostly diatoms and radiolarians, is present in trace amounts.

This subunit is characterized by slumped and folded sediments of lithology similar to normal pelagic sediments. Microfaults and turbidites commonly occur in the slumped intervals. In Hole 664B, these slumped intervals are characterized by carbonate values greater than 85%, similar to those values observed in the older (>2.6 Ma) sediments at Sites 662 and 663. In intervals not affected by slumping (100–116, 147–163, 170–180, and 204–220 mbsf), carbonate concentrations are more variable and range from 75% to 90%.

Depositional Environment

The stratigraphic sequences recovered at Site 664 are similar to those recovered at Sites 662 and 663. The depositional history of these sediments is typical of equatorial Atlantic high-productivity regions. As at Sites 662 and 663, the normal pelagic sedimentation was interrupted by slumps and turbidites of similar lithology. The remarkably uniform age-depth curve for Hole 664D (see "Sediment-Accumulation Rates" section, this chapter) suggests that the slumped intervals in this hole may represent sediment deformed *in situ*, rather than material originating from topographic highs. In some cases, the degree of deformation is slight.

Table 1. Site 664 coring summary (drilling depths).

1045-515	14114-0004	112-225-25			Length	Length
Core	Date	Time	Depths	cored	recovered	Recovery
no.	(1980)	(010)	(most)	(m)	(m)	(%)
108-664A-1H	30 March	2330	19.4-28.9	9.5	9.6	101.0
108-664B-1H	31 March	0205	0-9.5	9.5	9.6	101.0
108-664B-2H	31 March	0304	9.5-19.0	9.5	9.3	97.3
108-664B-3H	31 March	0355	19.0-28.5	9.5	9.5	100.0
108-664B-4H	31 March	0432	28.5-38.0	9.5	9.5	100.0
108-664B-5H	31 March	0530	38.0-47.5	9.5	9.7	101.0
108-664B-6H	31 March	0627	47.5-57.0	9.5	9.5	99.8
108-664B-7H	31 March	0/18	57.0-66.5	9.5	9.4	99.1
108-664B-8H	31 March	0800	66.5-76.0	9.5	9.5	100.0
108-004B-9H	31 March	0845	/0.0-85.5	9.5	9.7	102.0
108-664B-11H	31 March	1010	05.0-104.5	9.5	9.2	90.5
108-664B-12H	31 March	1050	104 5-114 0	0.5	9.5	100.0
108-664B-13H	31 March	1145	114.0-123.5	9.5	9.7	102.0
108-664B-14H	31 March	1240	123.5-133.0	9.5	9.2	96.4
108-664B-15H	31 March	1326	133.0-142.5	9.5	9.4	99.2
108-664B-16H	31 March	1417	142.5-152.0	9.5	9.8	103.0
108-664B-17H	31 March	1502	152.0-161.5	9.5	9.5	100.0
108-664B-18H	31 March	1548	161.5-171.0	9.5	9.5	100.0
108-664B-19H	31 March	1643	171.0-180.5	9.5	8.5	89.7
108-664B-20H	31 March	1725	180.5-190.0	9.5	9.6	101.0
108-664B-21H	31 March	1819	190.0-199.5	9.5	9.4	98.4
108-664B-22H	31 March	1919	199.5-209.0	9.5	9.7	101.0
108-664B-23H	31 March	2012	209.0-218.5	9.5	9.6	101.0
108-664B-24H	31 March	2059	218.5-228.0	9.5	9.9	104.0
108-664B-25H	31 March	2149	228.0-237.5	9.5	8.7	91.1
108-004B-20H	31 March	2309	237.5-247.0	9.5	8.8	92.5
108-664C-2H	1 April	0205	4 2 12 7	9.2	4.2	100.0
108-664C-3H	1 April	0351	13 7-23 2	9.5	85	80.0
108-664C-4H	1 April	0450	23 2-32 7	9.5	8.5	88.9
108-664C-5H	1 April	0559	32.7-42.2	9.5	9.3	97.6
108-664C-6H	1 April	0650	42.2-51.7	9.5	7.8	82.2
108-664C-7H	1 April	0730	51.7-61.2	9.5	9.4	98.8
108-664D-1H	1 April	1030	0-2.3	2.3	2.3	98.7
108-664D-2H	1 April	1115	2.3-11.8	9.5	9.9	103.0
108-664D-3H	1 April	1227	11.8-21.3	9.5	9.7	102.0
108-664D-4H	1 April	1320	21.3-30.8	9.5	9.5	100.0
108-664D-5H	1 April	1415	30.8-40.3	9.5	9.7	102.0
108-004D-0H	1 April	1508	40.3-49.8	9.5	9.6	101.0
108-004D-/H	I April	1559	49.8-59.5	9.5	9.5	100.0
108-664D-8H	1 April	1722	59.3-00.0	9.5	9.1	102.0
108-664D-9H	1 April	1926	79 2 97 9	9.5	9.0	101.0
108-664D-11H	1 April	1912	87 8-97 3	9.5	9.0	103.0
108-664D-12H	1 April	1959	97.3-106.8	9.5	9.8	103.0
108-664D-13H	1 April	2048	106.8-116.3	9.5	9.6	101.0
108-664D-14H	1 April	2137	116.3-125.8	9.5	9.4	99.2
108-664D-15H	1 April	2228	125.8-135.3	9.5	9.9	104.0
108-664D-16H	1 April	2315	135.3-144.8	9.5	10.0	105.3
108-664D-17H	2 April	0001	144.8-154.3	9.5	9.8	103.0
108-664D-18H	2 April	0048	154.3-163.8	9.5	9.6	101.0
108-664D-19H	2 April	0130	163.8-173.3	9.5	9.6	101.0
108-664D-20H	2 April	0220	173.3-182.8	9.5	9.5	100.0
108-664D-21H	2 April	0258	182.8-192.3	9.5	9.5	100.0
108-664D-22H	2 April	0345	192.3-201.8	9.5	9.7	102.0
108-664D-23H	2 April	0425	201.8-211.3	9.5	9.8	103.0
108-664D 25H	2 April	0510	211.3-220.8	9.5	9.7	102.0
108-664D-25H	2 April	0630	220.0-230.3	9.5	9.0	102.0
108-664D-27H	2 April	0715	239 8-249 2	9.5	9.7	102.0
108-664D-28H	2 April	0750	249 3-258 8	9.5	9.8	103.0
108-664D-29H	2 April	0830	258.8-268.3	9.5	9.9	104.0
108-664D-30H	2 April	0910	268.3-277.8	9.5	9.8	103.0
108-664D-31H	2 April	1000	277.8-287.3	9.5	9.7	102.0
108-664D-32H	2 April	1040	287.3-296.8	9.5	9.7	101.0

H = hydraulic piston. UTC = Universal Time Coordinated.

BIOSTRATIGRAPHY

Four holes were drilled at Site 664, but Hole 664A was abandoned after only drilling one core because the mud line could not be recovered. All other holes were cored continuously. Hole 664B reached a depth of 247 mbsf and Hole 664C penetrated to 61.2 mbsf. Hole 664D attained a depth of 296.8 mbsf, with a maximum age of about 9 Ma (late Miocene). Although Hole 664D is within 1 km of the other three holes, it shows much less stratigraphic disturbance than the other deep hole, Hole 664B. Age and zonal assignments for Holes 664B and 664D are shown in Figures 5 and 6.

Figure 4. Carbonate and total-organic-carbon (TOC) concentrations for Hole 664B. Also shown are subunits observed at this site.

Calcareous nannofossils and planktonic foraminifers were generally abundant and well preserved, except that planktonic foraminifers show poor preservation in the Miocene and lower Pliocene of Hole 664D, and discoasters exhibit overgrowths of calcium. Discoasters are substantially more numerous at Site 664 than at Sites 662 and 663, located farther east. The planktonic-foraminifer fauna is characterized by a greater percentage of tropical vs. temperate species than that found at Sites 662 and 663. Benthic foraminifers are rare to few, with preservation generally moderate to poor. Diatom abundances fluctuate markedly, but are generally few to common. No diatoms were observed in the Miocene and lower Pliocene sediments.

The presence of extensive slumps and turbidites in Hole 664B leads to considerable stratigraphic complexity, and fossil-based age assignments were often reversed (see "Sediment-Accumulation Rates" section, this chapter). Hole 664D, however, contains slumps and turbidites, but no alterations to the normal stratigraphic sequence. A number of marker taxa occur only sporadically near the limits of their ranges, restricting the number of useful biostratigraphic zones in both holes.

Calcareous Nannofossils

Discoasters are substantially more abundant at Site 664 than at Sites 662 and 663. At Site 664, placoliths are dissolved mod-

		6	Calca	reous fossils		Plank for ami	tonic inifers	8	Dia	toms
		Hole	Age (Ma)	Zone	Epoch	Zone	Age (Ma)	Hole	Age (Ma)	Zone
C) —	1		NN20 -		Ś		1		Pseudo- eunotia
675		2	0.47	111121	e	alia oide		2		00110105
20	,	з			iocei	rata ulin		3		schi
100		4			leist	ncat		4		vitz
40) —	5			đ	tru		5	118	
	1	6		NN19-		PI 5	1.8	6	1.0	
60) —	7		NN18				7		
	-	8				PL3		8		ø
80	» —	9				M13		9		schi
	1	10			5.00 P	PL1		10		Nitz ma
100	» —	11	2.4		sene			11		
8f)	14	12			oliod	PL5		12		
E120) —	13			ate F	PL3		13		l
pth	4	14			<u></u>	PL4		14		
on 140) —	15				PL5		15		
	1	16		NN16		PL4		16		
160) —	17		NN15				17		
	-	18		10-0010-10				18		in a
180) —	19						19		Isea
	2	20			5	PL3		20		Nitz
200) —	21	1 3.7		cene			21		
		22	}		Pliot			22		
220		23		NN14	rly	PL2		23		
220		24	h		ea			24		
240)	25	4.2			PL1		25		
240		26		NN3				26		Unzoned

Figure 5. Zonal assignments for cores recovered from Hole 664B.

erately in the latest Miocene through Pleistocene and are dissolved severely in the earliest late Miocene. Discoasters show moderate overgrowth in the latest Miocene through Pliocene. Overgrowth increases in the late Miocene, and most primary morphological characters in the earliest late Miocene are blurred severely by secondary calcium.

Holes 664A and 664C

Pseudoemiliania lacunosa was observed at both the top and bottom of Core 108-664A-1H. Both levels lacked Calcidiscus macintyrei, placing this core in the middle part of the Pleistocene. In Hole 664C, the extinction of P. lacunosa was observed in Core 108-664C-3H. Sample 108-664C-6H, CC still contained a typical Pleistocene assemblage without either C. macintyrei or Helicosphaera sellii. Sample 108-664C-7H, CC yielded these species as well as common reworked Pliocene species (e.g., Sphenolithus abies), making the presence of C. macintyrei biostratigraphically valueless in this sample.

Hole 664B

Emiliania huxleyi has its first occurrence (FO) in Section 108-664B-1H-6, and its acme interval seems restricted to the up-

permost few tens of centimeters in Section 108-664B-1H-1. The disappearance of *P. lacunosa* occurs either in lower Section 108-664B-2H-3 or in upper Section 108-664B-2H-4. The first major slump was encountered in Core 108-664B-6H, and all samples investigated above the slump in Core 108-664B-6H had no occurrences of *H. sellii* and *C. macintyrei*.

Sample 108-664B-6H-4, 30 cm, was taken from the uppermost part of the slump and contained abundant Pliocene discoasters, including *Discoaster asymmetricus* and *Discoaster tamalis*. This upper Pliocene assemblage also was observed in Cores 108-664B-8H and -664B-9H, whereas Cores 108-664B-9H and -664B-10H contained an assemblage suggesting an early Pliocene age, with common *Reticulofenestra pseudoumbilica* and sphenoliths.

The discoaster assemblages in Core 108-664B-11H represent the late Pliocene, with common *Discoaster brouweri* and rare *Discoaster pentaradiatus*. The latter species is significantly more abundant in Core 108-664B-12H. Neither Core 108-664B-11H nor Core -664B-12H shows early Pliocene reworking. The sediments from Cores 108-664B-11H and -664B-12H are not disturbed by slumping. Therefore, we can place the evolutionary last occurrence (LO) of *D. pentaradiatus* within Core 108-664B-

Figure 6. Zonal assignments for cores recovered from Hole 664D. The intervals representing calcareous-nannofossil Zones NN14 and NN17 were not identified at this hole.

12H, despite its high abundances upsection within slumped intervals.

Cores 108-664B-13H through -664B-19H all contain late-Pliocene discoaster assemblages typical of those that thrived during the time of the existence of *D. tamalis*. A few samples in this interval yielded rare early-Pliocene nannofossils, probably because several cores from this interval contain turbidites, debris flows, or slumps.

Although Cores 108-664B-20H and -664B-21H were retrieved from within a slumped unit, they are in biostratigraphic sequence and seemingly undisturbed, in that sphenoliths disappear in Core 108-664B-20H, and *R. pseudoumbilica* disappears in Core 108-664B-21H. The first downhole observation of *Amaurolithus* spp. was in Core 108-664B-24H.

Ceratolithus rugosus was present throughout the lower part of Hole 664B and occurred with *Ceratolithus acutus* in the deepest core (Core 108-664B-26H).

Hole 664D

Cores 108-664D-1H and -664D-2H show typical late-Pleistocene assemblages, characterized by low species diversity and strong dominance by gephyrocapsids. The extinction of *P. lacunosa* occurs in Section 108-664D-3H-3, whereas the early Pleistocene markers *H. sellii* and *C. macintyrei* disappear in Cores 108-664D-7H and -664D-8H, respectively.

Discoaster brouweri and D. triradiatus are present at the base of Core 108-664D-9H, but are not found farther upsection, indicating a position for the Pliocene/Pleistocene boundary within Core 108-664D-9H (about midway between the extinction levels of C. macintyrei and D. brouweri). Both core-catcher samples of Cores 108-664D-9H and -664D-10H displayed high proportions (>20%) of D. triradiatus relative to D. brouweri. This percentage decreased to 3% in Section 108-664D-11H-4, implying that the upper one-half of Core 108-664D-11H has an age of about 2.0 to 2.1 Ma. Discoaster pentaradiatus does not occur above Section 108-664D-12H-3; Section 108-664D-12H, CC contains Discoaster surculus, which disappears in the lower onehalf of Core 108-664D-12H.

The succession of late Pliocene assemblages is broken in Core 108-664D-13H by a slump representing sediment of early Pliocene age. Sphenoliths and small reticulofenestrids are abundant in this assemblage, and discoasters, *Calcidiscus leptoporus*, and

Dictyococcites productus also are common. The biostratigraphically important *C. acutus* is rare, but nevertheless indicates that this assemblage can be referred to basal Pliocene (the upper onehalf of Zone NN12). Discoasters show substantial overgrowth, and placoliths have rather strong etching.

Cores 108-664D-14H through -664D-17H all contain D. tamalis and D. asymmetricus, but no sphenoliths or R. pseudoumbilica were observed. Sphenoliths disappear in Section 108-664D-18H-3, and R. pseudoumbilica disappears immediately above 108-664D-18H, CC. The first downhole occurrence of Amaurolithus spp. was observed in Core 108-664D-21H, presumably indicating that we missed the extinction event of this genus owing to its low abundance. This suggestion is supported by planktonic-foraminifer data, as well as by the anomalously high sedimentation rates that would be required if amaurolithids had their extinction within Core 108-664D-21H.

Ceratolithus rugosus is present down to the top of Section 108-664D-23H-2. This species is never abundant or even common and often is overgrown severely with diagenetic calcium, which, in several samples, caused problems regarding the separation between C. rugosus and its predecessor, C. acutus. Rare, but distinct, C. acutus was observed between Sections 108-664D-23H-5 and -664D-25H-2. The LO of C. rugosus was observed in Section 108-664D-25H-5.

Overgrowth of the central areas of the discoasters made recognition of *Discoaster quinqueramus* difficult in many samples. Therefore, the LO of this species is placed tentatively in Section 108-664D-26H-2; it co-occurs with *A. amplificus* in Section 108-664D-26H-4. *Amauroliths* spp. and *D. quinqueramus* have overlapping ranges down through Core 108-664D-28H, below which *D. quinqueramus* continues its range to Section 108-664D-31H-4. The central-area/ray-length ratio increases markedly toward the earliest part of the range of *D. quinqueramus*; however, we have not attempted to distinguish between those ranges showing high central-area/ray-length ratios (*Discoaster berggrenii*) and those having lower ratios (*D. quinqueramus*), mainly because diagenetic alterations have blurred the critical morphological parameters in most specimens observed.

Dissolution has strongly biased the composition of the nannofossil assemblages in the early part of the late Miocene, with abundant discoasters and few placoliths. Three important biostratigraphic events occurred in Core 108-664D-32H; *Discoaster bollii* disappeared in Section 108-664D-32H-3, whereas *Discoaster hamatus* and *Catinaster calyculus* have their last occurrences in Section 108-664D-32H-6. The core-catcher sample contained all three species, but *C. coalitus* was absent.

Planktonic Foraminifers

The record of planktonic foraminifers extends to the lower Pliocene in Hole 664B, through the upper Pleistocene in Hole 664C, and to the upper Miocene in Hole 664D. All three holes contained slumps, identified by the presence of anomalous biostratigraphic markers or other reworked species. A complete late-Pleistocene record was recovered from each hole, and two holes, 664B and 664D, exhibit good recovery before 3.0 Ma. This site is characterized by numerous tropical species (including *Globigerinoides ruber, Neogloboquadrina dutertrei, Globigerinoides trilobus, Dentogloboquadrina altispira*, and *Globigerina decoraperta*), more so than Sites 662 and 663, which contained more temperate *Globorotalia inflata, Globigerina bulloides*, and *Neogloboquadrina pachyderma* (right-coiling). Thus, it appears that the influence of the Benguela Current or equatorial divergence lessens toward the west along the equator.

Planktonic foraminifers were abundant, with moderate-togood preservation, in the Pleistocene. In Holes 664B and 664C, the FO of *Globorotalia truncatulinoides* lies directly above slumped sediments belonging to Zone PL5 (2.2 to 2.9 Ma). Part of the lowermost Pleistocene may be missing in these holes along with all of Zone PL6, which was not recorded. In Hole 664D, the entire Pleistocene record appears to be present, with the *Globorotalia truncatulinoides*/PL6 boundary, indicated by the LO of *G. obliquus*, found between Samples 108-664D-9H, CC and -664D-8H, CC. Zone PL6 continues through Sample 108-664D-12H, CC, which contains *Globorotalia miocenica* and thus is placed in Zone PL5.

Holes 664B and 664D contain extensive slumped material within the upper Pliocene. Between Samples 108-664B-6H, CC and -664B-14H, CC in Hole 664B, zonal assignments appear to be random, changing with almost every core-catcher sample. Only after Sample 108-664B-15H, CC (assigned to Zone PL5), does a normal stratigraphic section appear. Zone PL4, found between the last occurrences of Sphaerodinellopsis seminulina and D. altispira, occurs in Sample 108-664B-16H, CC. Zone PL3, between the last occurrences of G. margaritae and S. seminulina, encompasses Samples 108-664B-17H, CC through -664B-22H, CC. This zone is characterized by good preservation and numerous N. humerosa, G. trilobus, and D. altispira. In Hole 664D, Zone PL3 is found directly below slumped material and, hence, may be missing a few meters of sediment at its top. Zone PL3 was identified in Samples 108-664D-15H, CC through -664D-19H, CC.

In both Holes 664B and 664D, Zone PL2 is short, occurring only in Samples 108-664B-23H, CC and -664D-20H, CC, respectively. The apparent truncation of this zone may be an artifact of the unreliability of the LO of *G. margaritae*, which defines the top of this zone.

The lowermost samples in Hole 664B (108-664B-24H, CC through -664B-26H, CC), can be assigned to Zone PL1, based on the presence of Globigerina nepenthes. As in the late Pliocene, D. altispira and G. trilobus are the dominant members of the fauna. Neogloboquadrina humerosa is slightly less abundant. In Hole 664D, Zone PL1 occurs in Samples 108-664D-21H, CC through -664D-25H, CC, and the bottom of this zone begins to reflect the poor preservation that continues into the upper Miocene. The LO of Globoquadrina dehiscens (in Sample 108-664D-26H, CC) marks the top of Miocene Zone M13, and the FO of Globorotalia cibaoensis (in Sample 108-664D-27H, CC) marks the base of this zone. The Miocene fauna is characterized by abundant N. pachyderma (left-coiling), with lesser amounts of S. seminulina, G. nepenthes, D. altispira, and G. trilobus. The deepest cores recovered, Samples 108-664D-28H, CC through -664D-32H, CC, were assigned to Zones M11/ M12, which could not be differentiated.

Diatoms

Diatoms were examined from all core-catcher samples recovered from Site 664. Abundance and preservation varied from sample to sample and were less consistent than at previous sites. Marine diatoms were generally present in upper to lower Pliocene through Holocene sediments. Freshwater *Melosira* spp. were generally few to common in all samples from Holes 664A, 664B, and 664C, and in Samples 108-664D-1H, CC through -664D-20H, CC. No diatoms were observed in lowermost Pliocene or Miocene sediments.

Core-catcher Samples 108-664C-1H, -664C-2H, and -664D-1H contain *Pseudoeunotia doliolus* without *Nitzschia reinholdii*, which allows us to assign these samples to the *Pseudoeunotia doliolus* Zone (<0.65 Ma). *Nitzschia reinholdii* and *P. doliolus* were observed in core-catcher Samples 108-664A-1H, 108-664B-1H through -664B-5H, 108-664C-3H through -664C-7H, and 108-664D-3H through -664D-10H, indicating that these samples can be placed in the *Nitzschia reinholdii* Zone. The LO of the

silicoflagellate *Mesocena quadrangula* occurs in Samples 108-664B-4H, CC and -664D-5H, CC, which suggests an approximate age of 0.79 Ma for these samples.

The FO of *P. doliolus*, which defines the base of the *Nitz-schia reinholdii* Zone, occurs in Sample 108-664D-9H, CC. Because of the occurrence of slump deposits and/or a decrease in diatom preservation and abundance, this zonal boundary was not recognized in Holes 664B.

Core-catcher Samples 108-664B-11H through -664B-13H and 108-664D-10H through -664D-12H are tentatively placed in the *Nitzschia marina* Zone. The LO of *Thalassiosira convexa* s. ampl. occurs in Samples 108-664B-12H, CC and -664D-13H, CC.

The Nitzschia jouseae Zone, which is defined by the total range of N. jouseae, occurs from core-catcher Samples 108-664B-14H through -664B-23H and 108-664D-14H through -664D-17H. Although core-catcher Samples 108-664B-24H, 108-664B-25H, and 108-664D-18H through -664D-20H contained diatoms, no age-diagnostic species were observed. Diatoms were not observed in Samples 108-664B-26H, CC and 108-664D-21H, CC through -664D-32H, CC. This abrupt decrease and eventual absence downcore of biogenic silica (indicated by strewn-slide analysis) occurs between Samples 108-664D-20H, CC and -664D-21H, CC, suggesting that equatorial divergence at Site 664 may have been less intense before ~ 3.5 Ma.

Benthic Foraminifers

Rare-to-common benthic foraminifers occur in core-catcher samples examined from Holes 664B and 664D; preservation is generally poor to moderate. The characteristic species throughout the stratigraphic interval examined are Oridorsalis tener, Globocassidulina subglobosa, Eggerella bradyi, Pyrgo murrhyna, Pyrgo lacernula, Melonis pompilioides, Melonis barleeanus, and Gyroidinoides soldanii. The abundance of these species varies from sample to sample. Spiroplectammina sp. was observed only in Sample 108-664B-10H, CC and -664D-23H, CC. Several specimens of Gyroidinoides soldanii acuta are observed in Samples 108-664B-10H, CC and -664D-25H, CC. The first occurrence of Uvigerina hispida occurs in Sample 108-664D-23H, CC.

PALEOMAGNETISM

Magnetostratigraphy

We measured the archive halves from Cores 108-664B-1H through -664B-6H, 108-664C-1H through -664C-6H, and 108-664D-1H through -664D-6H. Based on results from previous sites, the natural remanent magnetization was not measured, and all sections were demagnetized directly to 50 Oe.

Results obtained from Holes 664B, 664C, and 664D are similar. As an example, in Figures 7A through 7E we show the declination, inclination, and intensity variations recorded in Sections 108-664D-2H through -664D-6H. At the equatorial latitude of the site, polarity intervals cannot be identified from the inclination values, which fluctuate near 0° . Nonetheless, these inclination records are useful for ascertaining the reliability of remanence; i.e., scattered inclinations suggest a poor record. Interpretation of the results in terms of polarity intervals can be obtained only from changes in the declination record. No orientation of cores was attempted at Hole 664B; however, Cores 108-664C-3H and -664C-4H were oriented, and the declinations reported in Figures 7B and 7C were corrected.

At this equatorial site, declination data obtained from the five upper cores provided an exceptionally good record. This is illustrated in Figures 7C and 7D by the records of the Brunhes-Matuyama, lower and upper Jaramillo transitions. The stratigraphic position of each reversal is well delimited, and no further sampling was necessary to establish the magnetostratigraphy of these sections. Figures 7A through 7E also show that the remanent-magnetization intensity decreases as a function of depth and is just above the noise level at the bottom of Core 108-664B-6H. No reliable record could be obtained between 40 and 296.8 mbsf. After the promising results of the upper 40 m at Site 664, we were forced to the same conclusions we reached at Sites 662 and 663—no magnetic record was available. Lithology of the three sites is similar, and the absence of magnetism could result from the same unknown processes.

Magnetic Susceptibility

Whole-core volume susceptibilities from Hole 664B were measured for Cores 108-664B-1H through -664B-6H. Susceptibility values averaged around 20×10^{-6} SI units; from previous experience at Sites 662 and 663, we knew this was too low to provide reliable stratigraphy.

SEDIMENT-ACCUMULATION RATES

Sediment-accumulation rates were calculated for Holes 664B and 664D, the two holes with the greatest penetration. Stratigraphic control for Hole 664B consisted of 25 biostratigraphic and magnetostratigraphic events (Tables 2 and 3). Diatom datums were excluded for both Holes 664B and 664D because most were poorly constrained from sporadic diatom occurrences. Because of the extensive disturbance of the sediments in Hole 664B, stratigraphic zones were plotted based on the overlapping of key taxa at specific depths in each core. As is evident in Figure 8, a number of displaced stratigraphic units occur in Hole 664B because of slumps (see "Composite-Depth Section," this chapter). We have, therefore, replotted the age-depth curve after removing recognizable slumps and by ignoring biostratigraphic events within the disturbed sections. The resulting curve (Fig. 9), which uses 14 stratigraphic events, reveals that normal, pelagic sediments accumulated at a rate of 49 m/m.y. during most of the Pleistocene (~1.35 Ma to the present) and that approximately 10 m of sediment is missing from the top of the section. A hiatus spans the time interval from ~ 1.35 to 2.27 Ma. From 2.27 Ma to the base of the section (~4.6 Ma), the sediment-accumulation rate averaged 37 m/m.y.

Stratigraphic control for Hole 664D was based on 21 nannofossil, planktonic-foraminifer, and paleomagnetic events (Table 4). The resulting curve (Fig. 10) suggests a continuous, average accumulation rate of 32 m/m.y. for the late Pleistocene (<0.47 Ma). Between 4.3 and 0.47 Ma, the accumulation rate averaged 51 m/m.y., whereas the average accumulation rate from 4.3 Ma to the bottom of the hole (~8.85 Ma) was 19 m/m.y. Inspection of the core reveals numerous turbidites and slumps concentrated between 50 and 220 mbsf (see "Composite-Depth Section," this chapter). These apparently contribute to the high accumulation rates observed between 4.3 and 0.47 Ma. Because of their large numbers and generally small vertical extension, we have not attempted to construct a revised, "no-turbidite/slump" section.

No biostratigraphic datums fall below the line in Figure 10; however, several fall slightly above the line. These are the last occurrences of *Discoaster brouweri*, *D. pentaradiatus*, *Sphaeroidinellopsis seminulina*, and *Globorotalia crassaformis*, all of which occur slightly higher up in the section than would be expected, based on other stratigraphic data. These anomalies may be the result of upward reworking.

INORGANIC GEOCHEMISTRY

Interstitial-water samples were squeezed from five sediment samples recovered routinely approximately every 50 m from Site 664. Values for pH and alkalinity were measured in conjunction, using a Metrohm 605 pH-meter, followed by titration with 0.1N HCl, and salinities were measured using an optical refractometer. Cl⁻, Ca²⁺, and Mg²⁺ concentrations were determined by the titrations described in Gieskes and Peretsman (1986). SO_4^{2-} analyses were conducted by ion chromatography using a Dionex 2120i instrument. Results from all analyses are presented in Table 5.

ORGANIC GEOCHEMISTRY

At Site 664, Holes 664B and 664D, 185 samples were used to determine carbonate content. Of these, 40 samples also were analyzed for total-organic-carbon (TOC) contents, and 12 samples were measured by Rock-Eval pyrolysis.

Organic and Inorganic Carbon

Inorganic carbon (IC) was measured using the Coulometrics Carbon Dioxide Coulometer, while total carbon (TC) was determined using the Perkin Elmer 240C Elemental Analyser. TOC values were calculated by difference. Analytical methods are discussed, and data listed in the Appendix (this volume).

According to the carbonate record, the sediment sequence at Site 664 can be divided into two parts that correspond to lithologic Subunits IA and IB (see "Lithostratigraphy and Sedimentology" section, this chapter). The upper 51 mbsf (i.e., Hole 664B, Cores 108-664B-1H through 664B-6H-3) is characterized by high-amplitude variations ranging from about 50% to 90% CaCO₃ (Fig. 11). The lower part of the sequence (i.e., Hole 664B, Cores 108-664B-6H-4 through 664B-26H [Fig. 11], and Hole 664D, down to Core 108-664D-32H) is characterized by constantly high carbonate values of about 90%, with one exception: lower values of 77% to 81% CaCO₃ occur in Core 108-664D-11H (at about 100 mbsf).

TOC values fluctuate from 0% to 0.53% in the upper 51 m, whereas most of the lower part of the sequence has a TOC content of about 0%. TOC values for 165 to 220 mbsf range between 0.05% and 0.15% (Fig. 11). According to results of Rock-Eval pyrolysis (Table 6), samples with higher TOC values are dominated by lower hydrogen-index values (i.e., possibly by a higher content of terrigenous organic matter).

Discussion

The high-amplitude variations of $CaCO_3$ possibly are caused by changes in carbonate dissolution and/or by the input of noncarbonate (i.e., biogenic silica and terrigenous) material. A higher content of terrigenous organic matter during intervals of low carbonate content may support a higher input of terrigenous matter during these times. However, more data are required to verify this preliminary interpretation. The intervals of slumps (see "Lithostratigraphy and Sedimentology" section, this chapter) are characterized by constantly high carbonate values of about 90% and TOC values of 0% (Fig. 11).

PHYSICAL PROPERTIES

The techniques used for shipboard physical-properties measurements at Site 664 are outlined in the "Introduction and Explanatory Notes" (this volume). Hole 664A consisted of only one core (108-664A-1H), which will be used for a detailed study of the *P*-wave logger (see following section). Physical-properties measurements were conducted on four holes: 664A, 664B, 664C, and 664D. Data for Holes 664B and 664D are presented here.

Tables 7 and 8 show the index-properties and vane-shearstrength data for Holes 664B and 664D, respectively. Figures 12 through 18 show downhole plots of these data. Continuous *P*wave-velocity and GRAPE records were obtained from Holes 664A, 664B, and 664C. Only a partial record was obtained from Hole 664D because of time constraints. Table 9 shows a synthesis of the *P*-wave-logger velocity data for Hole 664B, which are plotted in Figure 15. The calcium carbonate content for Hole 664B is plotted in Figure 14. No data presented here were screened for bad data points. The carbonate content in lithologic Unit IA varies from 50% to 90% (see "Lithostratigraphy and Sedimentology" section, this chapter). Changes in carbonate content determine the index properties for Unit IA. For example, the sharp increase in carbonate content from about 50% to 90% at 11 mbsf results in an increase in the wet-bulk density (approximately 1.3 to 1.5 g/ cm³) and other related parameters (e.g., dry density changes from 0.5 to 0.9 g/cm³, water content changes from 50% to 60%, and porosity changes from 70% to 80%). Grain density has an average value of 2.6 g/cm³.

Below 52 mbsf (in lithologic Unit IB), a high calcium carbonate content prevails, with an average value of 95%. In contrast, the index properties, vane shear strength, and *P*-wave velocities are highly variable. This variability is caused by seven slumped intervals (52-96, 106-128, 142-147, 163-170, 179-189, 191-204, and 220-225 mbsf; see "Lithostratigraphy and Sedimentology" section, this chapter) that interrupted the undisturbed pelagic sediment sequence. The major slump (52-96 mbsf) is characterized by an abrupt decrease in water content and porosity and a sharp increase in wet- and dry-bulk densities (Fig. 12). This caused a distinctive sequence of high *P*-wave-velocity variations (1520-1640 m/s) and an increase in vane shear strength from the top of the slump to its base (from approximately 40 to 80 kPa).

To reconstruct the depositional history of the slump, the water content at the top of the slump was extrapolated to the depth reaching the water content of the undisturbed pelagic sequence. If one assumes that no significant dewatering occurred, then the top of the slump probably originated from sediments that previously had been buried to a depth of about 100 mbsf. However, some dewatering possibly may have occurred if significant pore pressures were developed during the shearing process when the slump was mobile.

Figure 19 shows the *P*-wave logger record for Core 108-664A-1H measured across four different axes at 45° intervals. The "physical noise" is restricted to low-amplitude, high-frequency excursions. We anticipate that this core will be sampled in detail to investigate the primary cause of the velocity fluctuations. In particular, detailed profiles of grain-size distribution and carbonate content will be compared with velocity profiles.

SEISMIC STRATIGRAPHY

Water-gun seismic profiler records were obtained both during the initial crossing of Site 664 and during a return approach to the site (see "Operations" section, this chapter). The record shown in Figure 20 is from the first crossing. Four seismic units can be discerned:

Seismic unit 1 (0-0.05 s) is an upper unit with a false acoustic signal caused by water guns. This unit should equate to about the upper 38 m of sediment.

Seismic unit 2 (0.05-0.18 s) is a unit with regular, moderately reverberant reflectors almost parallel to the seafloor. This unit should equate to the interval from about 38 to 136 mbsf.

Seismic unit 3 (0.18-0.34 s) is a nearly transparent, lower unit with faint scattered reflections. This unit should equate to the interval at 136 to 258 mbsf.

Seismic unit 4 (>0.34 s) is the acoustic basement.

These unit thicknesses apply specifically to Holes 664A, 664B, and 664C. Hole 664D was positioned 1000 m to the north of this location, but no seismic record from directly over this hole is available. This hole is near the bracketed section of the seismic record in Figure 20. The sediment pond deepens in this region, and the acoustic basement lies at a depth of approximately 0.4 s or greater (300 mbsf).

Figure 7. Declination, inclination, and intensity variations obtained from A, B, C, D, and E: Cores 108-664B-1H through -664B-6H. The stratigraphic positions of the reversals in Figures 7C and 7D are indicated by arrows. For a better representation of results, declination values have been rotated arbitrarily in Figure 7C, adjusting the mean normal data to 90° and the mean reversed data to

SITE 664

631

270°.

Figure 7 (continued).

We used a mean sound velocity of 760 m/s for the entire sediment section at Site 664 (see "Physical Properties" section, this chapter) to evaluate the correlations of the seismic units with lithologic units (Fig. 20). Seismic unit 1 is an artifact.

Seismic unit 2 encompasses both the lower part of lithologic Subunit IA, in which maximum variations in $CaCO_3$ occur, as well as the upper part of lithologic Subunit IB, in which only a few $CaCO_3$ changes are evident (see "Lithostratigraphy and Sedimentology" section, this chapter). The carbonate layering (or some correlative property), thus, does not appear to cause the changes in acoustical reflectivity, nor is any correlation apparent between the seismic units and the position of slumps in lithologic Subunit IB (see "Principal Results" section, this chapter).

Seismic unit 3 is equivalent to the lower Pliocene and upper Miocene nannofossil oozes cored in Hole 664D; despite increasing depth below the seafloor, these layers showed no obvious tendencies toward lithification (see "Physical Properties" section, this chapter).

Seismic unit 4 is basement, presumably the altered basalts of the mid-Atlantic Ridge. The last coring attempted in Hole 664D was fired to full stroke, but became stuck; the core barrel broke at an overpull of 145,000 lb (see "Operations" section, this chapter). This suggests that firm sediments just above the basement were encountered. The last two cores recovered (108-664D-32H and -664D-33H) consisted of clay-bearing nannofossil ooze. The age of the deepest sediments (8-9 Ma; see "Biostratigraphy" section, this chapter) agrees with the basement age estimated from magnetic lineations (see "Background and Scientific Objectives" section, this chapter). The depth to acoustic basement at the approximate offset position of Hole 664D in Figure 20 also is consistent with this conclusion.

COMPOSITE-DEPTH SECTION

As at Sites 662 and 663, Site 664 contains a rapidly deposited pelagic section interrupted by several slumps. In Figures 21 and 22, the depths below the seafloor of the slumps in Holes 664A and 664D are plotted in relation to the sections marked by pelagic deposition. The two holes were plotted separately because they had somewhat different sedimentation histories. The ages of biostratigraphic datum levels in the pelagic intervals are shown by triangles (see "Biostratigraphy" section, this chapter).

Table 2. Depth and age estimates of biostratigraphic and magnetostratigrahic indicators used to establish accumulation rates for Hole 664B.

Datum	Depth (mbsf)	Age 1 ¹ (Ma)	Age 2 ² (Ma)
LO Pseudoemiliania lacunosa	14.0	0.47	0.47
Brunhes/Matuyama	27.0	0.73	0.73
Matuyama/Jaramillo	35.5	0.91	0.91
LO P. lacunosa to LO Calcidiscus macintyrei	56.0	0.47	1.45
Discoaster tamalis (p), Dentogloboquadrina altispira (a)	57.0	2.65	2.90
D. altispira (p), Sphaerodinellopsis seminulina (a)	66.5	2.90	3.00
Pulleniatina (p), Sphenolithus abies (a)	76.0	3.30	3.45
D. tamalis (p), S. abies (a)	85.5	2.65	3.45
D. tamalis (p), S. abies (a)	95.0	2.65	3.45
D. pentaradiatus (p), D. surculus (a)	104.5	2.35	2.45
D. pentaradiatus (p), D. surculus (a)	114.0	2.35	2.45
D. altispira (p), S. seminulina (a)	123.5	2.90	3.00
D. altispira (p), S. seminulina (a)	133.0	2.90	3.00
D. tamalis (p), D. altispira (a)	142.5	2.65	2.90
D. altispira (p), S. seminulina (a)	152.0	2.90	3.00
Pulleniatina (p), Sphenolithus abies (a)	161.5	3.30	3.45
Pulleniatina (p), S. abies (a)	171.0	3.30	3.45
Sphaerodinellopsis seminulina (p), Pulleniatina (a)	180.5	3.00	3.30
Sphenolithus abies (p), Reticulofenestra pseudoumbilica (a)	190.0	3.45	3.56
R. pseudoumbilica (p), Amaurolithus (a)	199.5	3.56	3.70
R. pseudoumbilica (p), Amaurolithus (a)	209.0	3.56	3.70
R. pseudoumbilica (p), Amaurolithus (a)	218.5	3.56	3.70
Globigering nepenthes (p), G. crassaformis (a)	228.0	3.90	4.20
G. crassaformis (p), Ceratolithus rugosus (a)	237.5	4.20	4.60
C. rugosus (p), C. acutus (a)	247.0	4.50	4.70

¹ Age 1 = youngest possible age.

Note: (p) = present; (a) = absent.

Table 3. Depth and age estimates of biostratigraphic and magnetostratigraphic indicators used to establish accumulation rates in the absence of identifiable slumps and turbidites.

Datum	Depth (mbsf)	Age 1 ¹ (Ma)	Age 2 ² (Ma)
LO Pseudoemiliania lacunosa	14.0	0.47	0.47
Brunhes/Matuyama	27.0	0.73	0.73
Matuyama/Jaramillo	35.5	0.91	0.91
LO P. lacunosa to LO Calcidiscus macintyrei	56.0	0.47	1.45
Globorotalia miocenica (p), Discoaster pentaradiatus (a)	58.0	2.20	2.35
D. pentaradiatus (p), D. surculus (a)	67.5	2.35	2.45
Dentogloboquadrina altispira (p), Sphaerodinellopsis seminulina (a)	87.5	2.90	3.00
Pulleniatina (p), Reticulofenestra pseudoumbilica (a)	97.0	3.30	3.56
Pulleniatina (p), R. pseudoumbilica (a)	98.8	3.30	3.56
R. pseudoumbilica (p), Globigerina nepenthes (a)	111.8	3.56	3.90
R. pseudoumbilica (p), G. nepenthes (a)	121.3	3.56	3.90
G. nepenthes (p), G. crassaformis (a)	126.3	3.90	4.20
G. crassaformis (p), Ceratolithus rugosus (a)	135.8	4.20	4.60
C. rugosus (p), C. acutus (a)	145.3	4.50	4.70

¹ Age 1 = youngest posssible age.

Note: (p) = present; (a) = absent.

We attempted between-hole correlations for the uppermost pelagic sections of Holes 664B and 664C. For pelagic sections below 100 mbsf, we attempted correlations between Holes 664A and 664D. However, no useful magnetic susceptibility data existed for this, nor were *P*-wave records entirely suitable because of the limited analyses for Hole 664D. Thus, we used the CaCO₃ layering visible in core photographs to make these correlations.

Table 10 shows the correlation levels we used as a pathway to produce the continuous composite-depth sections within the intervals of pelagic deposition in Holes 664B, 664C, and 664D. These composite-depth sections were chosen so as to use short sequences in Holes 664C and 664D for spanning core-break gaps in the Hole 664B record.

The first correlated interval covered the pelagic sequence (0-54.7 mbsf) in the upper six cores at Holes 664B and 664D and

Figure 8. Sediment-accumulation rates for Hole 664B.

ended at the top of a large slumped unit (Table 10, Figs. 21 and 22). This pelagic interval covers roughly the last 1.25 m.y.

Unlike the slumps at the previous two sites, the slump in Hole 664B caused the loss of the section. Anomalously old (lower Pliocene) sediment was brought in by the slump (54.7-97 mbsf; Fig. 21). The first undisturbed sediment beneath the slump dates to about 2.4 Ma, indicating the loss of all material between 1.25 and 2.4 Ma. In Hole 664D, however, the "slumped" material at nearly the same depths below the seafloor as at Hole 664B is not anomalously old, based on the age-depth curve (Fig. 22), but seems to be part of a nearly continuous stratigraphic section and is relatively undisturbed.

The only remaining part of the sediment section that could be correlated by photographs was a short section in Core 108-664B-12H through a section in Cores 108-664D-12H and -664D-13H (Table 10). This section provided correlations of a lower Pleistocene interval roughly 10 m long. For this interval, we used the listed ODP depth below the seafloor of the top of Core 108-664B-12H as a reference point to begin the short compositedepth section.

Some suggestion of a correlation for Cores 108-664B-11H and -664D-11H is also apparent, but would require laboratory CaCO₃ analyses for confirmation. At and below Cores 108-664B-14H and -664D-14H, the CaCO₃ layering is too faint for

² Age 2 = oldest possible age.

² Age 2 = oldest possible age.

Figure 9. Sediment-accumulation rates for Hole 664B in the absence of identifiable slumps and turbidites.

Table 4. Depth and age estimates of biostratigraphic and magnetostratigraphic indicators used to establish accumulation rates for Hole 664D.

Datum	Depth (mbsf)	Age (Ma)
LO Pseudoemiliania lacunosa	14.9-16.4	0.47
Brunhes/Matuyama	27.9-28.0	0.73
Matuyama/Jaramillo	35.8-35.8	0.91
Jaramillo/Matuyama	38.3-38.3	0.99
LO Calcidiscus macintyrei	59.3-68.8	1.45
LO Discoaster brouweri	68.8-78.3	1.89
FO D. triradiatus acme	89.6-92.6	2.07
LO Globorotalia miocenica	97.3-106.8	2.20
LO Discoaster pentaradiatus	99.4-102.4	2.35
LO D. tamalis	116.3-125.8	2.65
LO Sphaerodinellopsis seminulina	125.8-135.3	3.00
LO Pulleniatina	154.3-163.8	3.30
LO Sphenolithus abies	157.0-160.0	3.45
LO Reticulofenestra pseudoumbilica	163.0-163.8	3.56
LO Globigerina nepenthes	182.8-192.3	3.90
FO G. crassaformis	182.8-192.3	4.20
FO Ceratolithus rugosus	203.4-207.9	4.60
LO Discoaster quinqueramus	227.1-231.9	5.60
FO D. quinqueramus	282.5-285.5	8.20
LO Catinaster calyculus	294.4-295.9	8.75
LO Discoaster hamatus	294.4-295.9	8.85

LO = last occurrence. FO = first occurrence.

Figure 10. Sediment-accumulation rates for Hole 664D.

photographs to be useful for correlations, and the pelagic record at Hole 664B is interrupted by numerous slumps. Laboratory analyses of other properties might provide some correlation between Holes 664B and 664D in this part of the section.

Discussion

Because of numerous slumps, Site 664 added little to the Pleistocene or late-Pliocene history of the equatorial divergence. In particular, slumps again disrupted the pelagic sequence in the 1.3 to 1.2 Ma interval that was disturbed at both earlier sites. However, the slightly deformed sediments between 49 and 87 mbsf in Hole 664D possibly will prove useful for studying this interval. We did collect a continuous upper Pleistocene section (0-1.25 Ma), which can be compared with results from the more easterly Sites 662 and 663.

We also retrieved from Hole 664D an excellent upper Miocene and lower Pliocene section that extends the results at earlier sites well back into the Neogene. Although continuity of this section cannot be confirmed by shipboard results, the excellent recovery from Holes 664B (99%) and 664D (102%) suggests that sediment loss at core breaks was minimal.

REFERENCES

Gieskes, J. M., and Peretsman, G., 1986. Water chemistry procedures aboard JOIDES Resolution. ODP Technical Note No. 5.

Table 5. Results of inorganic-geochemical analyses conducted for Site 664.

Core/ section	pН	Alkalinity (mmol/L)	Salinity (‰)	Chlorinity (mmol/L)	SO ₄ ²⁻ (mmol/L)	Mg ²⁺ (mmol/L)	Ca ²⁺ (mmol/L)
1-5	7.88	2.22	33.9	559.0	18.15	52.88	8.50
6-5	7.49	3.49	34.1	564.9	17.02	52.85	8.91
11-5	7.66	4.42	34.1	565.4	16.62	51.83	9.77
16-5	7.76	3.96	34.9	562.3	16.78	52.10	9.38
21-5	7.60	4.55	34.3	567.5	16.51	51.37	10.23

Figure 11. Carbonate and total-organic-carbon (TOC) records from Site 664, Hole 664B. M = high amount of marine organic matter. T = dominant terrigenous organic matter.

Table 6. Results of Rock-Eval pyrolysis for Site 664.

Sample no. (cm)	TOC (%)	Hydrogen index	Oxygen index	T _{max}
1-1, 120	0.46	74	743	372
1-3, 120	0.37	95	903	401
1-4, 120	0.17	171	1900	_
1-6, 120	0.18	122	1177	-
2-1, 120	0.53	98	847	465
2-4, 120	0.23	257	1526	429
2-6, 120	0.15	313	1593	-
3-5, 130	0.35	69	686	-
3-6, 130	0.38	108	692	463
4-3, 120	0.26	215	1173	466
5-3, 120	0.16	206	1475	_
6-3, 33	0.35	31		_

Table 7. Index-properties and vane-shear-strength data for Hole 664B.

Core/ section	Interval (cm)	Depth (mbsf)	Grain density (g/cm ³)	Wet-water content (%)	Dry-water content (%)	Dry-bulk density (g/cm ³)	Wet-bulk density (g/cm ³)	Porosity (%)	Vane shear strength (kPa)
1-1	121	1.21	2.64	36.47	129.72	1.39	0.64	77.24	17.00
1-2	121	2.65	2.39	32.57	110.85	1.43	0.71	73.98	25.00
1-3	121	4.15	2.87	39.41	146.37	1.38	0.38	70.93	15.00
1-4	121	5.65	2.34	31.93	108.04	1.40	0.73	71.47	30.00
1-5	121	7.15	2.64	31.03	104.19	1.46	0.77	73.19	30.00
1-6	121	8.63	2.39	49.01	99.24	1.47	0.77	71.81	30.00
2-1	121	10.71	2.42	62.32	165.40	1.30	0.34	79.93	18.00
2-2	121	12.21	2.47	32.19	109.15	1.42	0.72	72.79	20.00
2-3	121	13.71	2.36	45.70	84.15	1.32	0.87	65.09	23.00
2-4	121	13.21	2.61	35.32	123.82	1.40	0.67	70.26	25.00
2-5	111	16.61	2.87	45.43	83.26	1.82	0.38	67.90	36.00
2-0	111	18.11	2.81	47.93	92.04	1.48	0.01	69.39	31.00
3-1	121	20.21	2.03	40.75	87.78	1.51	0.84	09.54	20.00
3-2	121	21.71	2.49	49.41	97.00	1.45	0.78	10.07	39.00
3-4	121	23.21	2.52	47.70	87.11	1.40	0.82	60 10	20.00
3.5	121	24.71	2.00	40.00	107.09	1.31	0.80	73 22	20.00
3-6	121	27.71	2.35	83.60	115 52	1.43	0.73	75.96	30.00
4-1	121	29.71	2.70	39.21	145 18	1 34	0.39	77.92	39.00
4-2	131	31 29	2.49	84 97	122.08	1 39	0.67	75 14	24.00
4-3	121	32.69	2.59	31.89	107.84	1.44	0.73	73.43	29.00
4-4	121	34.19	2.70	46.74	95.07	1.30	0.80	71.73	29.00
4-5	121	35.69	2.71	44.25	79.38	1.56	0.91	68.05	38.00
4-6	121	37.19	2.72	47.78	91.49	1.51	0.83	71.12	36.00
5-1	121	39.21	2.67	45.30	82.82	1.54	0.89	68.65	30.00
5-2	121	40.71	2.66	46.19	85.85	1.53	0.86	69.34	29.00
5-3	121	42.21	2.64	51.27	105.22	1.45	0.74	73.34	30.00
5-4	121	43.71	2.66	45.69	84.11	1.53	0.86	68.90	31.00
5-5	116	45.16	2.53	46.37	86.47	1.30	0.85	68.41	26.00
5-6	121	46.71	2.34	47.53	90.59	1.49	0.81	69.34	34.00
6-1	121	46.71	2.52	47.61	90.89	1.48	0.83	69.41	36.00
6-2	121	50.21	2.61	44.80	81.17	1.54	0.89	67.68	41.00
6-3	121	51.71	2.64	49.11	96.52	1.48	0.80	71.59	35.00
6-4	121	53.21	2.78	43.30	76.37	1.39	0.93	67.74	26.00
6-5	121	54.71	2.60	39.81	66.13	1.61	1.02	62.97	41.00
6-6	121	56.21	2.62	40.47	67.99	1.60	0.99	63.81	41.00
7-1	121	58.21	2.54	40.67	68.55	1.58	0.98	63.25	39.00
7-2	121	59.71	3.87	16.74	20.11	2.52	1.35	41.40	35.00
7-3	121	61.21	2.66	39.87	66.30	1.62	0.99	63.55	38.00
7-4	121	62.71	2.62	39.05	64.06	1.62	1.03	62.38	32.00
1-5	121	64.21	2.75	39.23	64.55	1.65	1.04	63.69	38.00
/-0	121	67.01	2.11	40.95	69.34	1.63	0.99	65.48	32.00
0-1	121	69 01	2.67	40.74	69 91	1.01	0.98	62.05	31.00
8-3	121	70 41	2.01	20.84	64 57	1.60	1.03	61 62	34.00
8-4	121	71.91	2.63	39.04	64.05	1.63	1.02	62 47	34.00
8-5	51	72 71	2.36	38.81	62 62	1.62	1.03	61 29	35.00
8-6	121	74.39	2.59	41.67	71.43	1.58	0.96	64.68	38.00
9-1	121	77.21	2.60	42.37	73.53	1.57	0.94	65.38	30.00
9-2	121	78.71	2.49	38.83	63.49	1.60	1.03	60.96	42.00
9-3	121	80.21	2.70	36.90	58.47	1.68	1.10	60.95	48.00
9-4	121	81.71	2.66	35.94	56.10	1.68	1.11	59.54	56.00
9-5	121	83.21	2.64	36.82	87.53	1.67	1.09	60.04	50.00
9-6	121	84.71	2.00	37.78	60.73	1.71	1.07	63.33	51.00
10-1	121	86.71	2.57	35.41	54.82	1.67	1.11	58.21	54.00
10-2	121	88.21	2.58	34.40	62.44	1.69	1.15	57.20	54.00
10-3	121	89.71	2.60	36.45	57.37	1.66	1.11	69.57	78.00
10-4	121	91.21	2.60	34.92	53.66	1.69	1.13	57.91	80.00
10-5	121	92.71	2.61	34.26	82.11	1.70	1.10	57.32	63.00
10-6	121	94.09	2.63	31.38	45.74	1.76	1.24	54.23	84.00
11-1	110	90.10	2.02	33.93	50.09	1.08	1.11	54 07	0.00
11-1	121	96.21	2.50	34.30	92.34	1.09	0.96	67 70	43.00
11-1	121	90.31	2.52	40.16	67 11	1.51	1.01	62 01	26.00
11-3	121	99.21	2.50	42 72	74 57	1.57	0.95	66.04	34.00
11-4	121	100 71	2.57	38 41	62 37	1.62	1.05	61.28	41.00
11-5	121	102.21	2.66	38 35	62.20	1.65	1.05	62.07	30.00
11-6	121	103.61	2.60	40.34	67.61	1.60	1.00	63.47	43.00
12-1	121	105.71	2.63	39.06	64.11	1.63	1.03	62.45	34.00
12-2	121	107.21	2.66	42.04	72.53	1.59	0.95	65.61	35.00
12-3	121	108.71	2.36	40.06	66.82	1.55	1.00	60.96	45.00
12-4	121	110.21	2.61	39.05	64.07	1.62	1.02	62.33	32.00
12-5	116	111.66	2.62	40.18	67.16	1.61	0.99	63.52	35.00
12-6	111	112.81	2.54	38.25	61.93	1.62	1.04	60.90	47.00
13-1	121	115.21	2.49	40.75	68.78	1.57	0.97	62.85	34.00
13-2	121	116.71	2.34	45.98	85.12	1.47	0.83	66.40	35.00
13-3	121	118.21	2.63	40.44	67.89	1.61	1.00	63.83	41.00
13-4	121	119.71	2.68	39.81	66.13	1.63	1.00	63.63	42.00

Table 7 (continued).

Core/ section	Interval (cm)	Depth (mbsf)	Grain density (g/cm ³)	Wet-water content (%)	Dry-water content (%)	Dry-bulk density (g/cm ³)	Wet-bulk density (g/cm ³)	Porosity (%)	Vane shear strength (kPa)
13-5	121	121.21	2.60	37.31	59.50	1.65	1.08	60.46	46.00
13-6	121	122.71	2.55	39.31	64.77	1.60	1.01	61.97	41.00
14-1	111	124.61	2.58	41.29	70.33	1.58	0.97	64.17	21.00
14-2	121	126.06	2.82	40.70	68.65	1.58	0.97	63.13	36.00
14-3	121	127.51	2.55	36.54	62.71	1.62	1.03	61.23	38.00
14-4	121	129.01	2.62	38.24	61.93	1.64	1.04	61.61	40.00
14-5	121	130.51	2.70	39.23	64.56	1.64	1.06	63.29	48.00
14-6	121	132.01	2.73	39.12	64.25	1.65	1.05	63.43	31.00
15-1	119	134.19	2.52	40.36	67.67	1.38	0.99	62.79	48.00
15-2	121	135.60	2.61	38.21	61.84	1.63	1.05	61.42	30.00
15-5	121	137.10	2.62	35.64	55.38	1.68	1.11	38.90	31.00
15-4	121	138.00	2.4/	40.18	65 22	1.57	1.00	62.10	45.00
15-6	110	141.58	2.50	37 37	50.67	1.61	1.05	60 94	40.00
16-1	121	141.50	2.05	38 51	62.64	1.64	1.00	62.24	36.00
16-2	121	145.71	2.00	39.07	64 11	1.58	1.00	60.80	55.00
16-3	121	146.67	2.61	38.87	63 57	1.62	1.03	62.08	60.00
16-4	121	148.17	2.65	38.40	62.34	1.64	1.06	61.97	60.00
16-5	121	149.67	2.47	38.25	61.94	1.60	1.06	60.17	62.00
16-6	121	151.17	2.61	37.33	59.57	1.65	1.08	60,60	57.00
17-1	121	153.21	2.72	35.63	55.36	1.71	1.13	59.79	55.00
17-2	121	154.71	2.64	39.08	64.14	1.63	1.02	62.58	33.00
17-3	121	156.21	2.61	41.05	69.64	1.59	0.98	64.27	45.00
17-4	121	157.71	2.59	38.08	61.50	1.63	1.06	61.18	40.00
17-5	121	159.21	2.61	39.33	64.81	1.62	1.02	62.54	39.00
17-6	121	160.71	2.66	38.84	63.50	1.64	1.03	62.55	32.00
18-1	121	162.71	2.65	38.87	63.58	1.65	1.02	61.67	38.00
18-2	121	164.13		37.53	60.08	1.67	1.05	60.35	42.00
18-3	121	165.63		37.83	60.84	1.66	1.04	60.64	50.00
18-4	121	167.13		39.13	64.30	1.64	1.01	61.93	37.00
18-5	111	168.53		37.35	59.62	1.67	1.06	60.17	35.00
18-0	121	170.13		38.66	63.03	1.65	1.02	61.47	32.00
19-1	121	172.21		40.74	68.75	1.62	0.97	03.40	41.00
19-2	121	175.01		39.00	69.54	1.64	0.07	62.44	39.00
19-3	121	176.61		40.07	64 11	1.64	1.01	61.86	40.00
10.5	121	178 11		39.00	62.02	1.64	1.01	61.00	40.00
20-1	121	181 71		30.94	58 59	1.68	1.03	59.76	41.00
20-2	121	183.19		35.66	55 43	1.70	1.10	58.45	47.00
20-3	121	184.69		36.77	58.16	1.68	1.07	59.59	47.00
20-4	121	186.19		39.54	65.41	1.64	1.00	62.32	32.00
20-5	121	187.69		39.42	65.06	1.64	1.00	62.20	35.00
20-6	121	189.19		37.97	61.21	1.66	1.04	60.78	32.00
21-1	121	191.21		39.20	64.48	1.64	1.01	61.99	21.00
21-2	121	192.64		38.03	61.36	1.66	1.04	60.84	42.00
21-3	121	194.12		39.54	65.39	1.64	1.00	62.31	55.00
21-4	121	195.62		38.48	62.56	1.65	1.03	61.29	52.00
21-5	121	197.12		38.12	61.60	1.66	1.04	60.93	48.00
21-6	121	198.52		39.87	66.32	1.63	0.99	62.64	36.00
22-1	121	200.71		39.11	64.23	1.64	1.01	61.90	50.00
22-2	121	202.21		38.85	63.53	1.65	1.02	61.65	60.00
22-3	121	203.68		38.94	63.78	1.65	1.01	61.74	46.00
22-4	121	205.18		34.08	04.15	1.04	1.01	67.35	43.00
22-5	121	200.30		34.30	68.04	1.64	0.97	62.33	42.00
23-1	121	200.10		20.60	65 82	1.62	0.97	62 46	24.00
23-1	121	211.71		38.62	62 01	1.65	1.02	61 42	31.00
23-3	121	213.19		37 94	61 12	1.65	1.02	60.75	32.00
23-4	121	214.67		36.56	62.76	1.65	1.02	61.37	40.00
23-5	121	216.17		37.49	59.96	1.67	1.05	60.30	42.00
23-6	121	217.67		36.37	62.26	1.66	1.03	61.18	53.00
24-1	121	219.64		32.84	48.91	1.75	1.18	65.43	48.00
24-2	121	221.06		34.69	53.12	1.72	1.13	57.43	58.00
24-3	121	222.54		33.24	49.79	1.74	1.17	55.87	67.00
24-4	121	224.01		34.61	52.93	1.72	1.13	57.34	56.00
24-5	11	224.41		35.62	55.33	1.70	1.10	50.40	53.00
24-6	121	227.01		35.86	55.92	1.70	1.10	58.66	55.00
25-1	93	228.76		35.88	55.95	1.70	1.10	58.67	53.00
25-2	121	230.54		34.70	83.14	1.72	1.13	57.44	58.00
25-3	121	232.04		34.21	51.99	1.73	1.14	56.91	44.00
25-4	93	233.24		34.36	52.35	1.72	1.14	57.08	38.00
25-5	121	234.70		33.94	51.39	1.73	1.15	56.63	43.00
26-1	121	238.67		34.06	51.66	1.73	1.15	56.75	35.00
26-2	121	240.17		36.32	57.04	1.69	1.09	59.13	37.00
26-3	121	241.67		35.36	54.71	1.71	1.11	58.13	46.00
26-4	121	243.17		32.62	48.40	1.75	1.19	55.18	53.00
26-5	121	244.67		33.08	49.44	1.74	1.17	55.70	35.00

Table 8. Index-properties a	and vane-	shear-strength	data for	r Hole	664D.
-----------------------------	-----------	----------------	----------	--------	-------

Core/ section	Interval (cm)	Depth (mbsf)	Grain density (g/cm ³)	Wet-water content (%)	Dry-water content (%)	Wet-bulk density (g/cm ³)	Dry-bulk density (g/cm ³)	Porosity (%)	Vane shear strength (kPa)
6-1	121	41.51	2.51	48.28	93.34	1.47	0.80	69.87	25.00
6-2	121	43.01	2.70	44.34	79.66	1.36	0.90	67.99	38.00
6-3	121	44.31	2.63	45.17	82.38	1.54	0.88	68.21	31.00
6-5	121	46.01	2.99	45.08	84.78	1.32	0.87	66 62	30.00
6-6	121	48.99	2.68	46.03	85.28	1.53	0.87	69.38	28.00
12-1	121	98.51	2.49	39.84	66.21	1.58	1.02	61.97	35.00
12-2	121	99.89	2.61	39.36	63.44	1.62	1.01	62.84	39.00
12-3	121	101.38	2.62	39.13	64.28	1.62	1.02	62.43	32.00
12-4	121	102.08	2.37	46.02	25.27	1.47	0.84	63.00	52.00
12-6	121	105.88	2.70	40.55	68.22	1.62	1.00	64.36	41.00
13-1	121	108.01	2.60	40.90	69.80	1.59	0.99	64.05	36.00
13-2	121	109.47	2.58	39.63	68.65	1.61	1.02	62.62	32.00
13-3	121	110.93	2.38	39.82	66.17	1.60	1.02	62.77	34.00
13-4	121	112.43	2.51	39.99	62 70	1.58	1.01	61.81	34.00
13-6	121	115.39	2.69	34.27	32.15	1.72	1.18	88.06	44.00
14-1	121	117.51		34.77	83.31	1.72	1.13	57.51	37.00
14-2	121	118.88		34.06	81.66	1.73	1.15	86.76	38.00
14-3	121	120.38		40.86	68.23	1.62	0.97	63.29	36.00
14-4	121	121.88		40.63	63.42	1.62	1.00	63.35	47.00
14-6	121	124.85		39.91	66.41	1.63	0.99	62.67	27.00
15-1	121	127.01		40.23	67.32	1.63	0.98	62.98	35.00
15-2	121	128.46		38.36	62.22	1.66	1.03	61.17	65.00
15-3	121	129.96		38.81	63.41	1.65	1.02	61.61	32.00
15-4	121	131.46		38.64	62.97	1.65	1.02	62 23	45.00
15-6	115	134.40		40.34	67.61	1.62	0.98	63.08	45.00
16-1	96	136.26		40.17	67.15	1.63	0.98	62.92	31.00
16-2	121	137.61		41.13	69.84	1.61	0.96	63.82	38.00
16-3	121	139.11		42.25	73.16	1.60	0.93	64.85	33.00
16-5	121	140.01		30.52	62.00	1.65	0.99	62 62	48.00
16-6	121	143.61		41.04	69.60	1.61	0.96	63.74	35.00
17-1	121	146.01		30.13	61.63	1.66	1.04	60.94	41.00
17-2	121	147.44		37.95	61.16	1.66	1.04	60.77	48.00
17-3	121	148.94		37.41	89.77	1.67	1.05	60.23	41.00
17-4	121	150.44		39.40	65.03	1.64	1.00	62.19	47.00
17-6	121	153.44		37.55	60.13	1.67	1.05	60.37	34.00
18-1	121	155.51		40.51	68.09	1.62	0.97	63.24	57.00
18-2	121	156.96		40.06	66.84	1.63	0.99	62.82	84.00
18-3	121	158.46		44.87	81.40	1.56	0.87	67.18	43.00
18-5	121	159.96		41.08	76.62	1.60	0.95	65.87	45.00
18-6	121	162.96		41.92	72.17	1.60	0.94	64.55	43.00
19-1	121	164.98	2.54	41.25	70.21	1.57	0.97	63.81	39.00
19-2	121	166.48	2.58	41.56	71.13	1.58	0.96	64.49	35.00
19-3	121	167.98	2.57	40.98	69.44	1.58	0.98	63.86	42.00
19-4	121	170.98	2.64	40.48	68.02	1.61	1.02	63.94	32.00
19-6	115	172.42	2.64	42.83	74.91	1.57	0.94	66.19	25.00
20-1	121	174.51	2.70	40.99	69.46	1.61	0.99	64.97	39.00
20-2	121	176.01	2.75	41.16	69.94	1.62	0.99	65.50	29.00
20-3	121	177.51	2.56	30.97	63.87	1.61	1.03	63 23	39.00
20-5	121	180.31	2.71	36.81	38.26	1.68	1.11	60.93	44.00
20-6	121	182.01	2.68	37.65	60.40	1.66	1.07	61.49	37.00
21-1	121	183.93	2.58	39.47	65.20	1.61	1.03	62.42	47.00
21-2	121	185.40	2.56	37.50	60.01	1.63	1.06	60.26	55.00
21-3	121	186.90	2.60	37.60	60.26	1.64	1.08	60.79 50.68	21.00
21-5	121	189.90	2.56	39.31	65.31	1.60	1.08	62.32	47.00
21-6	121	191.40	2.59	37.68	60.46	1.64	1.05	60.69	44.00
22-1	121	193.51	2.57	36.17	56.66	1.66	1.11	59.03	70.00
22-2	121	195.01	2.60	35.67	55.44	1.68	1.12	58.76	70.00
22-3	121	196.51	2.54	35.76	58.00	1.66	1.12	59.65	70.00
22-5	121	199.31	2.60	36.19	56.70	1.67	1.11	59.27	80.00
22-6	121	201.01	2.54	37.57	60.18	1.63	1.08	60.17	47.00
23-1	121	203.01	2.67	35.66	55.43	1.69	1.11	59.39	56.00
23-2	121	204.51	2.60	35.10	54.09	1.69	1.13	58.17	50.00
23-3	121	206.01	2.43	34.28	59.72	1.65	1.18	60.87	54.00

Table 8 (continued).

Core/ section	Interval (cm)	Depth (mbsf)	Grain density (g/cm ³)	Wet-water content (%)	Dry-water content (%)	Wet-bulk density (g/cm ³)	Dry-bulk density (g/cm ³)	Porosity (%)	Vane shear strength (kPa)
23-5	121	209.01	2.55	35.72	55.58	1.66	1.14	58.36	55.00
23-6	121	210.51	2.59	32.96	49.16	1.72	1.21	55.66	96.00
24-1	121	212.47	2.64	35.83	55.83	1.68	1.12	59.25	72.00
24-2	121	213.92	2.61	36.31	57.00	1.67	1.10	59.47	47.00
24-3	121	215.39	2.60	35.51	55.07	1.68	1.13	58.58	46.00
24-4	121	216.87	2.62	34.87	53.55	1.69	1.17	58.11	32.00
24-5	121	218.37	2.58	33.85	51.18	1.70	1.18	56.59	42.00
24-6	121	219.87	2.60	31.68	46.36	1.74	1.24	54.35	68.00
25-1	121	221.97	2.53	34.36	52.36	1.68	1.16	56.65	53.00
25-2	121	223.47	2.96	33.65	50.73	1.81	1.21	59.72	53.00
25-3	121	224.97	2.62	32.96	49.17	1.73	1.20	55.99	52.00
25-4	121	226.47	2.63	34.64	52.99	1.70	1.15	57.94	44.00
25-5	121	227.97	2.61	34.15	51.85	1.70	1.16	57.20	52.00
25-6	121	229.47	2.51	35.06	53.98	1.66	1.13	57.27	38.00
26-1	121	231.51	2.55	35.59	55.26	1.66	1.14	58.17	52.00
26-2	121	233.01	2.48	34.62	52.96	1.66	1.17	56.46	43.00
26-3	121	234.51	2.65	35.44	54.90	1.69	1.16	58.96	43.00
20-4	121	236.01	2.54	33.44	50.25	1.69	1.18	55.72	55.00
20-5	121	237.81	2.59	33.77	50.98	1.70	1.18	50.59	45.00
20-0	121	238.98	2.00	30.32	43.51	1.79	1.27	53.28	50.00
27-1	121	241.01	2.55	32.03	48.44	1./1	1.25	54.95	48.00
27-2	121	242.81	2.51	35.52	50.41	1.69	1.10	50.02	48.00
27-3	121	244.01	2.67	35.34	52.02	1.70	1.14	58.03	45.00
27-4	121	245.51	2.02	33.03	40.42	1.09	1.10	56.05	45.00
27-6	121	247.01		35.07	49.42	1.72	1.15	58.64	\$4.00
28-1	121	240.51		34.62	52.03	1.00	1.13	57 35	85.00
28-2	121	251.97		34.02	52.34	1.72	1.13	57.09	75.00
28-3	121	253 44		34.68	53.08	1.72	1 13	57 41	75.00
28-4	121	254 94		30.31	43 49	1.80	1 26	52 56	60.00
29-5	121	256 44		32 92	49.07	1.75	1.18	55.51	74.00
29-1	121	259.97		31.86	46.75	1.77	1.21	54.34	58.00
29-2	121	261.47		33.78	51.01	1.73	1.15	56.45	57.00
29-3	121	262.94		32.55	48.26	1.75	1.19	55.11	62.00
29-4	121	264.44		32.53	48.22	1.75	1.19	55.09	44.00
29-5	121	265.91		31.01	44.94	1.78	1.24	53.37	72.00
29-6	121	267.39		31.86	46.76	1.77	1.21	54.34	52.00
30-1	121	269.46		33.00	49.26	1.75	1.10	55.60	59.00
30-2	121	270.88		33.67	50.76	1.73	1.16	56.33	57.00
30-3	131	272.42		32.44	48.03	1.76	1.19	54.99	58.00
30-4	121	273.82		34.53	52.73	1.72	1.13	57.25	59.00
30-5	121	275.32		32.38	47.88	1.76	1.19	54.92	85.00
30-6	121	276.82		31.39	45.76	1.78	1.22	53.81	67.00
31-1	121	279.01		33.36	50.07	1.74	1.17	56.00	61.00
31-2	121	280.51		34.57	52.82	1.72	1.13	57.29	33.00
31-3	121	282.01		34.27	52.14	1.72	1.14	56.98	34.00
31-4	121	283.49		32.46	48.07	1.76	1.19	55.01	47.00
31-5	121	284.99		32.30	47.71	1.76	1.20	54.83	36.00
31-6	121	286.49		33.28	49.88	1.74	1.17	55.91	36.00
32-1	121	288.49		34.41	52.47	1.72	1.14	57.13	53.00
32-2	121	289.99		33.91	51.30	1.73	1.15	56.59	49.00
32-3	121	291.49		34.04	51.60	1.73	1.15	56.73	33.00
32-4	121	292.99		34.21	52.00	1.73	1.14	56.92	46.00
32-5	121	294.49 295.99		32.08	47.22 43.12	1.76	1.20	54.58 52.35	38.00 52.00

Figure 12. Wet- and dry-bulk-density profiles for Hole 664B.

Figure 13. Water-content and porosity profiles for Hole 664B.

Depth (m)	P-wave velocity (km/s)	Depth (m)	P-wave velocity (km/s)	Depth (m)	P-wave velocity (km/s)
0.20	1.641	70.50	1.526	145 40	1 560
0.20	1.541	72.80	1.530	145.40	1.509
1.40	1.558	73.70	1.569	147.00	1.560
2.20	1.520	75.20	1.540	149.00	1.552
2.60	1.550	77.00	1.560	151.40	1.573
2.70	1.520	78.00	1.552	153.00	1.550
2.90	1.549	78.30	1.617	153.50	1.580
3.30	1.515	79.00	1.538	155.00	1.548
3.70	1.538	80.00	1.550	157.50	1.524
4.10	1.521	82.00	1.580	160.00	1.550
4.40	1.501	83.00	1.555	162.50	1.535
6.20	1.512	85 80	1.578	169 50	1.532
7.00	1.530	86 50	1.550	172.00	1.540
8.00	1.540	87.90	1.575	172.90	1.566
10.00	1.506	89.30	1.539	175.10	1.529
11.40	1.541	90.10	1.600	175.40	1.555
12.20	1.510	90.80	1.550	178.20	1.533
12.90	1.545	91.50	1.598	178.50	1.560
13.20	1.509	94.00	1.564	181.20	1.540
14.70	1.529	95.20	1.624	182.90	1.570
15.30	1.505	95.50	1.587	186.30	1.540
16.10	1.557	95.80	1.623	188.80	1.561
17.20	1.530	96.10	1.553	189.40	1.538
20.00	1.520	96.20	1.640	190.70	1.539
20.90	1.509	90.50	1.555	192.00	1.542
23.00	1.532	98 30	1.536	194 20	1.617
24.30	1.521	99.60	1.565	194.40	1.550
24.70	1.589	100.00	1.530	195.00	1.575
25.70	1.520	101.00	1.560	195.40	1.540
27.00	1.540	101.80	1.521	197.40	1.545
27.30	1.501	102.50	1.569	200.50	1.562
29.50	1.538	103.50	1.525	201.10	1.530
30.90	1.514	105.50	1.550	202.00	1.565
31.20	1.569	107.70	1.558	203.50	1.535
32.70	1.521	108.00	1.523	204.60	1.570
34.20	1.512	109.20	1.575	203.50	1.550
33.30	1.557	110.30	1.520	208.30	1.542
37.20	1.555	111.00	1.517	210.00	1.552
39.40	1.540	112.50	1.549	211.20	1.575
40.30	1.550	113.60	1.560	212.00	1.540
44.70	1.548	115.00	1.532	216.00	1.542
45.60	1.570	117.00	1.540	219.30	1.560
46.70	1.518	118.40	1.528	220.20	1.570
48.30	1.559	118.60	1.595	221.50	1.547
49.40	1.519	119.00	1.560	223.50	1.570
50.00	1.560	120.70	1.587	223.80	1.547
52.00	1.515	121.50	1.562	225.90	1.502
54.40	1.570	122.90	1.504	227.50	1.570
55.00	1.530	125.80	1.526	229.30	1.640
55.50	1.548	127.80	1.550	229.40	1.540
58.00	1.564	129.60	1.570	230.70	1.563
59.10	1.540	129.90	1.530	232.00	1.552
59.60	1.572	130.10	1.564	234.50	1.552
62.00	1.570	131.90	1.528	236.30	1.551
62.60	1.638	134.00	1.542	238.00	1.572
62.80	1.565	135.50	1.611	239.50	1.557
64.90	1.536	136.00	1.567	241.50	1.533
65.40	1.560	137.00	1.583	242.40	1.560
67.50	1.540	140.00	1.623	242.80	1.531
68 90	1.540	140.00	1.542	244.90	1.572
00.70	1.000	142 50	1 565	2.0.00	

Figure 14. Grain-density and carbonate contents for Hole 664B.

Figure 15. Vane-shear-strength and *P*-wave-velocity profiles for Hole 664B.

Figure 16. Wet- and dry-bulk-density profiles for Hole 664D.

Figure 17. Water-content and porosity profiles for Hole 664D.

Figure 18. Grain-density and vane-shear-strength profiles for Hole 664D.

Hole 664B core/section interval (cm)	Hole 664C core/section interval (cm)	Composite depth (mbsf)	Hole 664B core/section interval (cm)	Hole 664D core/section interval (cm)	Composite depth (mbsf)
	1H-1, 0	0	-	12H-3, 25	100.55
1H-1, 50	1H-1, 120	1.20	12H-6, 45	12H-7, 42	106.72
1H-7, 22	2H-4, 25	9.92	12H-7, 35	13H-2, 45	108.12
2H-1, 52	2H-5, 55	11.72		13H-3, 22	109.39
2H-7, 0	3H-3, 125	20.20			
3H-1, 30	3H-4, 60	21.05			
3H-6, 145	4H-3, 65	29.70			
4H-1, 75	4H-4, 58	31.13			
4H-7, 30	5H-3, 140	39.68			
5H-1, 75	5H-4, 100	40.78			
5H-7, 31	6H-3, 50	49.34			
6H-1, 105	6H-5, 37	^a 51.26			
6H-4, 0		54.71			

^a A turbidite from Cores 108-664C-4-0 through -664C-4-95 was removed from the composite depth.

Figure 20. Comparison of Site 664 seismic units with lithologic units. Hole 664D lies off this seismic line and deeper in the sediment pond; the most nearly equivalent position within the sediment pond is indicated by the bracket. Estimated depth to the acoustic basement (the boundary between seismic units 3 and 4) at Hole 664D is indicated by the designation "3/4."

Figure 21. Age-depth curve for Hole 664B (also applies to Holes 664A and 664C). Black layers represent gravity-deposited sediments (slumps); white layers represent pelagic deposition; diagonal pattern indicates slight deformation (tilting) of pelagic sediments. Age-depth biostratigraphic control points are shown by triangles.

Figure 22. Age-depth curve for Hole 664D. Black layers represent gravity-deposited sediments (slumps); white layers represent pelagic deposition; diagonal pattern indicates slight deformation (tilting) of pelagic sediments. Age-depth biostratigraphic control points are shown by triangles.

-	81	OSTA.		ZONE	E/		90														
TIME-ROCK UNI	FORAMINIFERS	MANNOFOSSILS	RADIOLARIANS	DIATOMS	BENTHIC FORAM.	PALEOMAGNETICS	PHYS. PROPERTIE	CHEMISTRY	SECTION	METCRS	GRAPHIC LITHOLOGY	DRILLING DISTUR	SED. STRUCTURES	SAMPLES			LITHO	.osic p	ESCRIPT	ION	
MIDDLE FLEISIOCENE IO HOLOCENE	G. truncatulinoides	s NN20 NN21		N. reinholdii				O 162-86.7 O 162-80.71 O 102-26.17 O 102-26.37 O 162-86.20 O 162-86.46	1 2 3 3 4 5 6						FORAMINIFERIAU NAMOFOSSILO BEARING NANNO BEARING NANNO BEARING NANNO STATUS In Section 1, 14 SMEAR SLIDE SU TEXTURE: Sand Sit Clay COMPOSITION: Ouartz Clay Accessory Mineral Foraminifers Nannolossils Diatoma Radogariana Chemistry: IC here	NNOF(OZE, a) FOSSII ing namately bio ing namately bio A-150 (MMAF) refers t	DSSIL O Itemating C OOZE ar VOCE C OOZE (C OOZE ar VIC) C OOZE (C OOZE ar VIC) C OOZE (C OOZE (C OOZE ar VIC) C OOZE (C OOZE ar VIC) C OOZE (C OOZE ar VIC) C OO	02E and with CL 11, 771, 12, 12 Section 1 1, 70 0 20 10 70 5 5 225 65 7 7 7 8 6 65 7 7 7 8 8 6 65 7 7 7 8 8 6 65 7 7 7 8 8 6 65 7 7 7 8 8 8 6 6 5 7 7 7 7 1, 7 7 7, 7 7, 7 7, 7 7, 7 7, 7	H MUD-BUD Rearing for 571, alter 571, alter 11, 132, 57, 146-15 220 20 20 20 25 25 55 77 5 50 23 23 20 20 20 20 20 20 20 20 20 20	EARIII RING, and constant of the second seco	NG FORAMINIFER- FORAMINIFER- information of the second sec

1.17	B105	STRA	CHA	RAC	TER	77	168			1.1	R8.	-			
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	BENTHIC FORAM.	PALEOMAGNETIC	PHYS, PROPERT	CHEMISTRY	SECTION	CRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	BAMPLES	LITHOLOGIC DESCRIPTION	
								Of 6c=0.53	1			1	*	FORAMINIFER-MANNOFOSSIL OOZE and MUD-BEARINN NANNOFOSSIL OOZE, alternating with CLAY-BEARING, F BEARING NANNOFOSSIL OOZE and MUD-BEARING AN Foraminifer-nanofossi Locze and mud-bearing foraminif white, light-gray or gray (SY 8/1, 7/1, 6/1), alternating wi toraminifer-bearing nannofossil ooze, who to light-gray and mud-bearing nannofossil ooze, gray (SY 8/1); weaki throughou; green laminations in Sections 1 and 4. Turbi Section 2, 70 cm.	B FORAMINIFER- ORAMINIFER- NOFOSSIL DOZE H-nannotossil coze, h clay-bearing 7.5YR 8/0, 5Y 7/2) bioturbated dite or contourite in
		NN20						OIC-79.1	2			1	•	SMEAR SLIDE SUMMARY (%): 1, 60 2, 75 D D D D TEXTURE: 5 10 5 Silt 15 10 Clay 75	
IST UCENE	llinoides			ioldii				OIC-88.5	3			1		COMPOSITION: Ciay 10 20 Accessory Minerals <5 5 Foraminifers 10 5 Nannfolositis 75 65 Diatoms 17 5 Radiolarians 19 —	
MIDULE PLE	G. truncatu			N. reint				OT00-0.23	4						
		NN19						O 1C=87.0	5				OG		
	9	9		P	W			O 100-0.15	6		1.1.1.1.1.	1			

11	BI FO	SSIL	CH.	ZQN	Eł Ter		108					in a	s		
TIME-ROCK UI	FORAMINIFERS	NAMNOFOESILS	RADIOLARIANS	DIATOMS	BENTHIC FORAM.	PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	BECTION	CRAPH LITHOL	11 C 0 G Y	DRILLING DISTL	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
								OIC-85.2	1			1			CLAY-BEARING, FORAMINIFER-BEARING NANNOFOSSIL QOZE, alternating with MUDDY NANNOFOSSIL QOZE Clay-bearing, foraminifer-bearing nannolossil coze, light-gray to white (§Y7/1, 8/1), alternating with muddy nanofossil coze, clive-gray to gray (10/52, 5Y 5/1), weakly biofurbated; green larminations common throughout, but particularly in Sectors 5 and 6. Sector 3, 145 cm, and 5ector 4, 125 cm, contain coarse foraminifer sands, the latter with sharp lower and upper contacts. Minor void in Sectors 6, 144–150 cm.
								500	2		H H			NIL I	SMEAR SLIDE SUMMARY (%): 1, 140 2, 100 3, 60 D D D TEXTURE:
								OIC-80						•	Sand 25 5 — Silit 25 15 15 Clay 50 80 85 COMPOSITION
STOCENE	linoides	6		idii				O IC-87.9	3		F, F, F, F, F, F, F			•	Quartz TP Ciay 20 20 Accessory Minerals Tr 5 5 Fourieniders 30 5 5 Accessory Mineralis 50 70 70 Datoms Tr Radiolarians Tr
MIDDLE PLE	G. truncatu	INN		N. reint				OIC-84.5	4		H, H, H, H, H, H, H,		1		
								O 100-0.35	5		,		1		
	/W	/C		/P	/W			O1C=77.2 TOC=0.38	6		F, F, F, F, F, F, F	1	1		

Towers CLAM-BEATING, FORAMINFER-BEARING MANNOFOSSIL COZE, at the transmitter bearing namodastic cost, physical	FOSS	STRA	T. Z	RAC	E/ TER	40	168					IRB.	23		
Bill Image: State of the	FORAMINIFERS	NANNOFOBBILS	RADIOLARIANS	DIATOMS	BENTHIC FORMM.	PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	BECTION	GR LIT	APHIC IOLOGY	DRILLING DISTL	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
Image: Second								OIC-51.6	1			***	1		CLAY-BEARING, FORAMINIFER-BEARING NANNOFOSSIL OOZE, alternating with MUDDY NANNOFOSSIL OOZE Clay-bearing, foraminifer-bearing nannofossi ooze, light-gray to while (SY 7/1, 8/1), alternating with muddy nannofossil ooze, light-gray to while (SY 7/1, 8/1), listenating with muddy nannofossil ooze, light-gray to while (SY 7/1, 8/1), weak to moderate bioturbation; green, black, and purple laministions common throughout core: Two subridges in Section 2, one at 88–88 cm, and one at 98–125 cm. Minor voids in Section 1, 0–3 and 148–150 cm. SMEAR SLIDE SUMMARY (%):
City 25 15 Comments 5 15 Comments 5 15 Comments 5 15 Comments 5 15 Comments 65 5 No. Cellingia Comments 65 Comments 65 Comment								O IC-89.2	2					*	2,60 4,60 D TEXTURE: Sand 5 15 Silt 10 20 Clay 85 65 COMPOSITION:
	linoides			oldii				O10C=08.9	3						Clay 25 15 Accessory Minerals 5 5 Foraminifers 5 15 Nannofossils 65 60 Diatoms — 5 Radiolarians —
	G. truncatu	NN1 8		N. reinh				OIC-85.3	4					•	
								O166-0-1 2	5				1		
								O IC-78.7	6						

SITE 664

645

ROCK UNIT	INIFERS 1 G	STRAT	ARAC	C FORMM. BIL	WAGNETICS	PROPERTIES	N		GRAPHIC LITHOLOGY	NG DISTURE.	83	LITHOLOGIC DESCRIPTION		ROCK UNIT	BIOS FOR	STRAT	T. 20 CHAR	ACTE	C FORAM . 2	PROPERTIES	· · · · · · · · · · · · · · · · · · ·	STRY
TIME	FORAM	NAMEN	DIATO	BENTH	PALEO	SYHE	SECTU	METER	=:	DRILLU	BAMPL			TIME	FORAM	NANNO	RADIO	DIATON	BENTHU P.1. FO	PHY8.		CHEMI
						@IC-85.7	1	0.5			ii ll i li l	CLAY BEARING, FORAMINIFER-BEARING NANNOFOSSIL OOZE, atternating with MUDOY NANNOFOSSIL OOZE Clay-being foraminifer bearing nannofossil coze, light-gray to while (5Y 7/1, 8/1), alternating with muddy nannofossil coze, clive-gray to gray (107 52, 25 5/1), weld, to moderate boldnation; green, black and purple attiminations common throughout core. A turbidite (7) in Section 5, 110 cm. Minor voids in Section 6, 77–78 and 85–87 cm. SMEAR SLIDE SUMMARY (%):									OIC-84.1	
							2					4,115 6,100 D D D TEXTURE: Sand 15 5 Sit 20 15 Clay 65 80 COMPOSITION:									OIC-74.8	200
STOCENE	inoides		idii			@IC-80.6	3	and and an		: :::::::::::::::::::::::::::::::::::::	1111111 111	Cuar 15 20 Accesory Minerals 15 5 Foraminiters 20 10 Namotostis 65 60 Distorms — 17 Radiolarisms — 17		ICCENE		6 I NN					010-78.0	
LOWER PLEIS	G. truncatul	NN19	N. reinho			OIC+85.6	4						in output	חררבא דר	PLS	9 I NN 1 6					OIC-80 2	
						(e) IC=89.4	5	and the form			00											
						() IC=78.4	6	and the other of			•										Ore-an a	0.08-010
	/0	W/	/P	/W			7	1000		π					A/G	A/M		C/P	C/M			

5	BIO	STR	CHA	ZONE	I/ TER		it's				- BR	53	141	
TIME-ROCK UN	FORAMINIFERS	NANNOFOBSILS	RADIOLARIANS	DIATOMS	BENTHUC FORAM.	PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	BECTION	GRAPHIC L.ITHOLOGY	DRILLING DISTU	SED. STRUCTURE	SAMPLES	LITHOLOGIC DESCRIPTION
								OIC-84.1	1		1			CLAY-BEARING, FORAMINIFER-BEARING NANNOFOSSIL OOZE and MUDDY NANNOFOSSIL OOZE Clay-bearing, foraminifer-bearing nannofossil ooze, light-gray to white (SY 77), 81). Muddy nannofosail coze, clive-gray to gray (10Y 52, 57 51). A slomp tubidities: one in Section 4, 0-73 cm, and another in Section 1, 0-30 cm. Weak to moderate bioturbation in sections not disturbed by lumping; green, black, and purple laminations are common throughout core. Minor vold in Section 5, 145–150 cm.
								OIC=74.8	2					
OCENE		0119						OIC=76.0	3			1		
UPPER PLI	PLS	NN16						O IC=89.2	4					
								OIC=91.4	5			1-125101-111V	IW	
	A/G	A/M		C/P	C/M			010-90.8	6 7 CC			VAIIIIII V		

SIT	E 6	64	HOLE	EВ		CORI	57	н	COF	RED	INT	TERVAL 3863.3-3872.8 mbsl; 57.0-66.5 mbsf	SITE	6	64	HOL	ΕB		COR	E 8 H	CORE	ED INT	ERVAL 3872	.8-388:	2.3 mbsl; 66.5-76.0 mbsf	
TIME-ROCK UNIT	FORAMINIFERS 0 0	RADIOLARIANS	DIATOMS AND A DIATOMS	PALEOMAGNETICS	CHEMISTRY	BECTION	METERS	GRAPHIC LITHOLOG	ÿ	DRILLING DISTURS.	SAMPLES	LITHOLOGIC DESCRIPTION	TIME-ROCK UNIT	FORAMINIFERS 3	NANNOF OSSILS HANNOF OSSILS	SWOLTIO	PALEOMAGNETICS	PHYS. PROPERTIES CHEMISTRY	SECTION	GR. HTLL MELENS	APHIC APHIC APHIC	SED. STRUCTURES SAMPLES		LITHO	DLOGIC DESCRIPTION	
UPPER PLIOCENE	A/M PL3	A/M NNIO	R/P C/M		OIC-69-8 OIC-01.10 OIC-89-3 OIC-89-3 OIC-89-4 OIC-90-8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						CLAY-BEARING, FORAMINIFER-BEARING NANNOFOSSIL OOZE Clay-bearing, formanifer-bearing nannofosali ooze, light-gray to white (Y 7), 8/1, 73/18 80). Most of one schibtis taiwing testures including dipping bads, microfaults, and convoluted bedding. Green and black laminations common and generally dip 10° or more.	UPPER PLIOCENE (slump)	/G PL3	/W	d	W/	QIC-61.7 QIC-62.7 QIC-62.8 QIC-68.8 QIC-68.6 QIC-68.70 IC-80.30	2 3 4 5 6 7		▶ → → → →	32 []] 4 4 []] 4 5 []]	CLAY-BEARING, FC City-bearing, form 8/17, 5778 800; v Iaminations are co is probably a slum SMEAR SLIDE SUM TEXTURE: Sant Sit Clay COMPOSITION: Clay Foraminifers Namofossils Radiolarians Sponge spicules	RAMINIFER- minifer-bearing meak to mode- ing to mode through p. MARY (%-): 6 5 00 75 75 75 77 77 77 77 77 77 77 77 77 77	BEARING NANNOFOSSIL COZE grammologial occe. Ight-gray to white (5Y 71, new tore, dipping approximately 10° All of core 6, 82 5 10 26 5 7 10 26 5 7 10 26 5 7 10 26 5 7 10 26 5 7 10 26 5 7 10 26 5 7 10 26 5 7 10 26 5 7 10 26 5 7 10 26 5 7 10 26 5 7 10 26 5 7 10 26 5 7 10 26 26 7 7 10 26 26 7 7 10 26 26 7 7 10 26 26 7 7 10 26 26 7 7 10 26 26 7 7 10 26 26 7 7 10 26 26 7 7 7 10 26 26 7 7 7 7 7 7 7 7 7 7 7 7 7	
		-	-	-					-		1			<		1021	U C		NU.		_					

	D CORE O H CORED IN	VIERVAL 3882.3-3891.8 most: 70.0-85.5 most	SITE 664 HOLE B CORE TO H CORED INTERVAL SEST 6-3501.5 HOST OF	10 0010 111
TIME-ROCK UNIT FORMANINE FCR MANNOFORSTLS MA	PHYS. Padekarts CHEMISTRY SIGTION SIGTION MITGAS MITGAS MILLING DISTURS. SIGUELURS. SIGUELURS.	LITHOLOGIC DESCRIPTION		i.
UPPER PLIOCENE (WITH LOWER PLIOCENE SLUMP) M M13 M NN15 M	O(co3.4 $O(co3.4$ $O(co3.5)$ $O(co3.5)$ $O(co3.5)$ $O(co4.4$ 0 <td>CLAY-BEARING, FORAMINIFER-BEARING NANNOFOSSIL OOZE Clay-bearing, foraminifer-bearing mannolosali ooxa, julyih-gray to vhite (97 71, Bian data) in the constraints boarding approximately 10°. Microbauts a stump.</td> <td>CLAY BEARING, FORAMINER-BEARING NANNOPOS CLAY BEARING NANNOPOS</td> <td>ISIL OOZE</td>	CLAY-BEARING, FORAMINIFER-BEARING NANNOFOSSIL OOZE Clay-bearing, foraminifer-bearing mannolosali ooxa, julyih-gray to vhite (97 71, Bian data) in the constraints boarding approximately 10°. Microbauts a stump.	CLAY BEARING, FORAMINER-BEARING NANNOPOS Clay BEARING NANNOPOS	ISIL OOZE

SITE 664

3891.8-3901.3 mbsl; 85.5-95.0 mbsf

NIT	FO	0518	CHJ	ZON	E/		831					. BR.	83		
TIME-ROCK UI	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	BENTHIC FORMM.	PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
								OIC=90.7	1	0.5			X 1111/1/100-		FORAMINIFER-BEARING NANNOFOSSIL OOZE to NANNOFOSSIL OOZE Foraminifer-bearing nannotossil ooze to nannotossil ooze, white (2.5Y 8/0) to light-gray (107 7/1), weak to modorate bioturbation; green, black, and purple laminations common throughout care. Section 1 is part of a slump. SMEAR SLIDE SUMMARY (%):
								O IC=89.4	2	and sectors a					TEXTURE: Sand 10 10 Silt 15 15 Clay 75 75 COMPOSITION:
IOCENE	5	8		rina				OIC-77.3	3						Nannolossiis 75 70 Diatoms Tr — Radiolarians Tr Tr Sponge spicules Tr 5
UPPER PL	PLS	INN		N. mai				OIC-89.9	4					•	
								OIC-81.7	5					TW	
								O TOC==0.00	6				1		
	A/G	A/M		C/P	W/C				7	-					

	810 F 01	1918. 1911.	CHA	ZON	E/ TER	5	10					.88.	ES		
TIME-ROCK UI	FORAMINIFERS	NANNOF 0831LS	RADIOCARIANS	DIATONS	BENTHIC FORAM.	PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	BECTION	METERS	GRAPHIC LITHOLOGY	DRICLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
								OIC-91.2	1	0.5		0000-	1		FORAMINIFER-BEARING NANNOFOSSIL OOZE, alternating with FORAMINIFER-NANNOFOSSIL OOZE Foraminifer-bearing nannofossil ooze, white (2.5YR 8:0) to light-greenish-gray (5GY 77)), alternating with forminifer-analossil ooze, white (2.5YR 8:0) to light greenish gray (5GY 77); weak bioturbation; faint green and black laminations throughout core. Gradeb bedding and erosional contacts in Section 3, 25 cm, and Section 5, 120 cm.
								OIC=87.4	2	a section and sector					3,41 5,80 5,114 M D D TEXTURE:
CENE								OIC- 80.0	3				4	•	Quartz 10 Tr 5 Clay 10 10 Foraminitera 10 15 45 Nannolosalis 70 80 50 Diatoms Tr Radiolarians 5
UPPER PLIO	PL5	L I NN 1 7						OIC+87.8	4	and and area					
								OIC-90.1	5	and markets				* * 0G	
	/0	/W		/P	/W			O 10-86.9 700-00	6	the mediane from				1111	

SITE 664	HOLE	B (ORE	13 Н СО	RED IN	TERVAL 3920.3-3929.8 mbsl: 114.123.5 mbsf	SI	TE 6	64	но	LEE	3	CORE	14 H CO	RED IN	TERVAL3929.8-3939.3 mbsl: 123.5-133.0 mbs
FORAMINIFEHS FOR UNIT	PLADIOLARIANS DIATOMS DIATOMS BENTHUC FORAM	PALEOMAGNETICS PHYS, PROPERTIES CHEMISTRY	SECTION METERS	GRAPHIC LITHOLOGY	DRILLING DISTURD. SED. STRUCTURES	LITHOLOGIC DESCRIPTION		FORAMINIFERS 2 8	SSIL C SSIL C SSIL C	DIATOMS DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURG. BED. STRUCTURES	LITHOLOGIC DESCRIPTION
		OIC+88.2	0.5-			FORAMINIFER-BEARING NANNOFOSSIL OOZE, alternating with FORAMINIFER-NANNOFOSSIL OOZE Foraminie-barring narronosali ocze, white (2.5YR 80) to light-greenish-grag (SGV 771), alternating with foraminifer-nannotosali ocze, with (2.2YR 80) to light-greenish-grag (SGV 771). Section 3 strough 6 have erosional ontacts, tilled and contorted beds, and are part of a slump; remainder of core, weak to moderate bioturbation and black pyrttic blebs throughout.						() IC-84.2	0. 1 1,		-	FORAMINIFER-BEARING NANNOFOSSIL OOZE Foraminifer-bearing namofossil occe, while (2.5YR 8/0), with purple and greening-bary laminadies throughout core: weak bioturbation; pyrtic burn common. Minor void in Section 2, 144–150 cm.
		Oic-80.4	2		~							@IC=87.7	2			
LIOCENE 3	sr in a	OIC-90.9	3		₩//// ¥≪ :			PL4	4N16	jouseae		@ic-90.5	3		11111 //	
UPPER PL	N. M8	O IC-89.5	4						2	N.		() IC-88.3	4			
		OIC=93.0	5		+ /////							OIC-AN D	5		"	
0 5	0.5	OIC-89.4	6					A/G	A/M	C/M	R/M	6.10-010	000000000000000000000000000000000000000			

SITE 664	HOLE B	COF	RE 15 H	CORED IN	TERVAL 3939.3-3948.8 mbsl: 133142.5 mbsf	SITE	66	4 1	IOLE	в	CORE	16 H (CORED	INTE	ERVAL 3948.8-3958.3 mbsl: 142.5-152 mbsf
TIME-ROCK UNIT POSSIT CHAL RANNOF ORANINI REAL RANNOF ORANINI REAL	DIATOMS PALEOMAGNETICS PHYS. PROPERTIES	CHEMISTRY SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURD.	LITHOLOGIC DESCRIPTION	TIME-ROCK UNIT	FORAMINIFERS	RAT . ZO	CTER	PHYS. PROPERTIES CHEMISTRY	SECTION METERS	GRAPHIC	ORILLING DISTURB. SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
UPPER PLIOCENE A/G PL5 A/M NN16 A/D NN16	v. Jouseae	Olc-81.3 Olc-88.5 Olc-82.2 Olc-82.0 Olc-81.8 Olc-80.3 20 2 9 5 6 6 6 7 7 1 <td></td> <td></td> <td>CORAMINIFER-BEARING MUDDY NANNOFOSSIL OOZE Special of the section of the sec</td> <td>UPPER PLIOCENE</td> <td>/G PL4</td> <td></td> <td>.rr. Juosaa</td> <td>ତା(c-88.3 ତି)(c-87.3 ତି)(c-88.4 ତି)(c-88.4 ତି)(c-88.4 ତି)(c-88.7</td> <td>2 3 3 6 6 7</td> <td></td> <td></td> <td></td> <td>FORAMINIFER-BEARING, MUDDY NANNOFOSSIL OOZE Proammise-bearing, mud-bearing nannofossil ooze, white (7.5YR 80); weak bioturbation with green imamisoins commonly occuring in Section 4 to CC. Sections 1 through 3 have numerous microfaults. Turbuiltes present at top of Sections 1 and 2. Minor voids in Section 1, 146–150 cm, and Section 6, 140–150 cm.</td>			CORAMINIFER-BEARING MUDDY NANNOFOSSIL OOZE Special of the section of the sec	UPPER PLIOCENE	/G PL4		.rr. Juosaa	ତା(c-88.3 ତି)(c-87.3 ତି)(c-88.4 ତି)(c-88.4 ତି)(c-88.4 ତି)(c-88.7	2 3 3 6 6 7				FORAMINIFER-BEARING, MUDDY NANNOFOSSIL OOZE Proammise-bearing, mud-bearing nannofossil ooze, white (7.5YR 80); weak bioturbation with green imamisoins commonly occuring in Section 4 to CC. Sections 1 through 3 have numerous microfaults. Turbuiltes present at top of Sections 1 and 2. Minor voids in Section 1, 146–150 cm, and Section 6, 140–150 cm.

SITE 66	54	HOL	ΕB		COR	E 17 H C	ORE	DIN	NTE	RVAL 3958.3-3967.8 mbsl: 152.0-161.5 mbsf	SITE		664	н	LE B	I	0	ORE	18	н со	RED IN	TERVAL 3967.8-3977.3 mbsl; 161.5-171.0 mbsf
FORAMINIFERS	RADIOLARIANS 22 TH	ZONE/ IRACTE SNOLTIG	PALEOMAGNETICS	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES	\$4MPLES	LITHOLOGIC DESCRIPTION	TIME-ROCK UNIT	FORAMINIFERS 7 G	STRAT SSIL C STISSOJONNAN	ZONE	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	PRICKS	GRAPHIC ITHOLOGY	DRILLING DISTURB. BED. STAUCTURES SAMMI IS	LITHOLOGIC DESCRIPTION
VG UPPER PLIOCENE PL3	O MA	IP N. jouseae		OIC-89.8 OIC-91.7 OIC-88.8 OIC-88.6 OIC-81.7 OIC-90.3	1 1 2 3 4 5 6			hal a way in the and way way a second and the second and the itter is the second and the second		GRAMINFER-BEARING, MUD-BEARING NANNOFOSSIL OOZE, alternating MUD-BEARING, FORAMINFER-BEARING NANNOFOSSIL OOZE, MIDE GRAMINFER-Bearing, mod-bearing nannofossil ooze, white (37578.0%), and mud-bearing, foraminfer-bearing nannofossil ooze, white (37578.0%), was to moderate bloubabloon with green and purple innations and occasional nodules (manganese?). Minor void in Section 6, 142–150 cm.	UPPER PLIOCENE	PL3	M NN16	() N. jousee			O 10-92.3 O 10-84.2 O 100-92.3 O 10-92.9 O 10-83.7 O 10-89.9	2 3 4 5 7		$F_{F} F_{F} F} F_{F} F_{F} F_{F} F_{F} F} F_{F} F_{F} F_{F} F} F_{F} F_{F} F} F_{F} F_{F} F_{F} F} F_{F} F_{F} F F} F_{F} F} F_{F} F} F_{F} F} F_{F} F} F_{F} F} F_{F} F} F F} F F F \mathsf$		MUD-BEARING, FORAMINIFER-BEARING MANNOFOSSIL OOZE Mud-bearing, foraminiter-bearing namofosal oots, while (7.5YR 80); was to move the biochation with puppe and green laminations that dip slightly throughout. Turbidite in Section 2, 70 on. SMEAR SLIDE SUMMARY (%): 1,60 6,70 D D TEXTURE Sand 15 15 Sin 15 20 ComPOSITION: Clay 15 10 Accessory Mineralia 5 5 D alorna 5 —
4	1	Ц.			CC	1 -k -k			_			A	A	U		L		CC		L _L		

SITE 664 HOLE B CORE 19 H CORED INT	TERVAL 3977.3-3986.8 mbsl; 171.0-180.5 mbsf	SITE 664 HOLE B CO	DRE 20 H CORED INT	TERVAL 3986.8-3996.3 mbsl; 180.5-190.0 mbsf
TIME-ROCK UNIT TIME-ROCK UNIT AMOUPTORITICAR AMOUPTORICAR AMOUPTORITORIAR AMOUPTORINAR AMOUPTORITICAR A	LITHOLOGIC DESCRIPTION	TIME- ROCK UNIT IME- ROCK UNIT IMAMOPTICS INTICS INTICS INTICS INTICS INTICS	METICAS CHARTER CHARTER CHARTER CANTOLOGY CANTOL CA	LITHOLOGIC DESCRIPTION
UPPER PLIOCENE A/6 UPPER PLIOCENE A/M UPPER PLIOCENE A/M NU16 B/P PL3 A/M NU16 PL3 B/P PL4 PL3 B/P PL4 PL4 PL4 B/P PL4 PL4 PL4 B/P PL4 PL4 PL4 PL4 P </td <td>MUD-BEARING, FORAMINIFER-BEARING NANNOFOSSIL OOZE Mid-bearing, foraminifer-bearing nannofossil ooze, white (7,5YR 80); weak bourbation with oocesional purple and green laminations.</td> <td>A/G UPPER PLIOCENE A/G PL3 A/M NN16 A/M NN16 C/P N. jousese C/P N. jousese Olceas 0 Olceas 2 Olceas 1 Glceas 2 Olceas 2 N</td> <td></td> <td>MUD-BEARING, FORAMINIFER-BEARING NANNOFOSSIL OOZE Mud-bearing, foraminifer-baaring nannofossil ooza, white (7.5YR 80); weak bourbaarin with purple audio grane, slightly dragging laminations. Core is part of slump. Minor void in Section 1, 148–150 cm.</td>	MUD-BEARING, FORAMINIFER-BEARING NANNOFOSSIL OOZE Mid-bearing, foraminifer-bearing nannofossil ooze, white (7,5YR 80); weak bourbation with oocesional purple and green laminations.	A/G UPPER PLIOCENE A/G PL3 A/M NN16 A/M NN16 C/P N. jousese C/P N. jousese Olceas 0 Olceas 2 Olceas 1 Glceas 2 Olceas 2 N		MUD-BEARING, FORAMINIFER-BEARING NANNOFOSSIL OOZE Mud-bearing, foraminifer-baaring nannofossil ooza, white (7.5YR 80); weak bourbaarin with purple audio grane, slightly dragging laminations. Core is part of slump. Minor void in Section 1, 148–150 cm.

SITE 664 HO	OLE B CORE 21 H CORED INTER	RVAL 3996.3-4003.8 mbsl; 190.0-199.5 mbsf	SITE 664 HOLE	B CORE 22 H CORED IN	TERVAL 4005.8-4015.3 mbsl; 199.5-209.0 m				
TIME - ROCK UNIT n oramitrite Ray n oramitrite Ray Lows n annof ossili L Radio of Astainas a 0.1470MS 0.1470MS	0 01/000 0 01/0	LITHOLOGIC DESCRIPTION		PALEOMADETA Phile	LITHOLOGIC DESCRIPTION				
UPPER PLIOCENE A/G PL3 A/M NN15 F/P N. jouceee		MUD-BEARING, FORMINIFER-BEARING NANNOFOSSIL OQZE Mud-bearing, foraminifer-bearing nanodosali ooze, white (7.5YR 80); weak bioturbation with occasional purple and green, slightly dipping laminations. Core is part of alump. Minor voids in Section 1, 143–150 cm, and Section 2, 148–150 cm.	UPPER PLIOCENE PL3 NN15 N. jousee		MUD-BEARING, FORAMINIFER-BEARING NANNOFOSSIL OOZE Mud-bearing, foraminifer-bearing nannofossil ooze, white (7.5YR 8/0); weak bioturbation with occasional purple and green, slightly dipping laminations. Con is part of slump.				
Initiation Initiation <th>SITE 664 HOL</th> <th>LE B CORE 23 H CORED INT</th> <th>ERVAL 4015.3-4024.8 mbsl; 209.0-218.5 mbsf</th> <th>SITE 664</th> <th>HOLE</th> <th>вс</th> <th>ORE 24 H C</th> <th>ORED INT</th> <th>ERVAL 4024.8-4034.3 mbsl: 218.5-228 mbsf</th>	SITE 664 HOL	LE B CORE 23 H CORED INT	ERVAL 4015.3-4024.8 mbsl; 209.0-218.5 mbsf	SITE 664	HOLE	вс	ORE 24 H C	ORED INT	ERVAL 4024.8-4034.3 mbsl: 218.5-228 mbsf
---	--	---	--	--	-----------------------	--	----------------------	---	--
MUD-BEARING, FORAMINIFER-BEARING NANNOFOSSIL OZZE Mud-Bearing, foraminifer-bearing nanofossil ozze, while (7.5YR B0); weak biolutuation with occasional purple and green laminations. Turbidite in Section 2, 148–150 cm, and Section 3, 147 cm. MUD-BEARING, FORAMINIFER-BEARING NANNOFOSSIL OZZE Mud-Bearing, foraminifer-bearing nanofossil ozze, while (7.5YR B0); weak biolutuation with occasional purple and green laminations. Turbidite in Section 2, 148–150 cm, and Section 3, 147 cm.	TIME- BOCK UNIT FOR A COCK OR A COCK	PALCOMAGNETICS PALCOMAGNETICS PHYTE FIPPYERITES CHEMISTRY GETTION METERS METERS METERS SEC. STRUCTURES SEC. STRUCTURES	LITHOLOGIC DESCRIPTION	LINE-ROCK UNIT	T. ZONE/ CHARACTER	PALEOMAGNETICS PHYS. PROPEATIES CHEMISTRY	GRAPHIC LITHOLOGY	DRILLING DISTURB. SED.: STRUCTURES. BAMPLES	LITHOLOGIC DESCRIPTION
	A/G LOWER PLIOCENE A/G PL2 A/M NN13-14 F/P N. joussee		MUD-BEARING, FORAMINIFER-BEARING NANNOFOSSIL OOZE Mud-basing, foraminifer-basing nannofossil ooza, while (7,5YR 80); weak bachatation with occasional purple and green laminations. Turbidile in Section 1, 30 on. Minor void in Section 2, 148–150 cm, and Section 3, 148–150 cm.	LOWER PLIOCENE A/G PL1 A/M NN13-14	R/P	OI 01-10.7 OIC-83.2 OIC-81.1 OIC-82.4 OIC-81.1 OIC-82.4 OIC-81.5			MUD-BEARING, FORAMINIFER-BEARING NANNOFOSSIL OOZE Mud-bearing, Ioraminiter-bearing nanofossil ooze, white (7.5VR 80); weak blothotation with occasional purple and green laminations. Turbidite in Section 2, 00 cm. Beds are strongly deformed in Sections 2. Through 4. Minor volds in Section 2, 148–150 cm, and Section 3, 147 cm.

SITE 664 HOL	E B CORE 25 H CORED INTERVAL 4034.3-4043.8 mbsl; 228-237	.5 mbsf SITE 664 HOL	E B CORE 26 H CORED IN	ITERVAL 4043.8-4053.3 mbsl; 237.5-247.0 mbsf
BIOSTRAT. ZONE/ DIOSTRAT. ZONE/ TOSSIL CHARACTE BIOSTRAT. ZONE/ BIOSTRAT. ZONE/ BIOSTRAT. DIOSTRAT. ZONE/ BIOSTRAT. DIOSTR	PALCOMADIE TICS PHYLE, PROPERTIES PHYLE, PROPERTIES SECTION METERIS METERIS SECTION METERIS BIBILLING DISLUBS. SECTION METERIS BIBILLING DISLOBUSING BIBILLING DISLOBUSING BIBILLING BIBILLING DISLOBUSING BIBILLING DISLOBUSING BIBILLING DISLOBUSING BIBILLING DISLOBUSING BIBILLING DISLOBUSING BIBILL	L BIOGTRAT. ZONE/ HWW CHARACE L GOSTIL CHARACE BIODO VIGITAE BIODO VIGITAE BIODO VIGITAE DI JONE	PALCOMARTICS PAVS PROPARTICS PAVS - PROPARTICS PAVS - PROPARTICS CHICALISTAY ASCOTION ACTION	LITHOLOGIC DESCRIPTION
A/G LOWER PLIOCENE A/G PL1 A/M NN13-14 R/P	Image: Second	A/M LOCENE LOWER PLIOCENE Name: (0.8 Name: 10.6 Na Name: 10.6 Name: 10.6 Na		MUD-BEARING, FORAMINIFER-BEARING NANNOFOSSIL OOZE Mud-bearing, foraminifer-bearing nanotossil ooze, white (7.5YR 80); wear bioturbation with occasional purple and green iaminations. Microfault occurs in Section 1, 30 cm, and in Section 2, 140 cm. Minor void in Section 1, 0-5 cm.

III	810 + 01	STRA SSIL	CHA	RACTE	R	0	6.2				188	83					
TIME-ROCK UI	FORAMINIFERS	NAMNOF 0531LS	RADIOLARIANS	D/410MS		PALEOMAGNETIC	WILLIAM CONTRACTOR	CHEMISTRY	METERS	GRAPHIC LITHOLOGY	DRILLING DIST	SED. BTRUCTUR	\$AMPLE8	LITHOLOGIC	DESCRIPT	ON	
ENE									0.5-				*	FORAMINIFER-BEARING, SILUCEOUS, to CLAY-BEARING, FORAMINIFER-BEA FORAMINER-BEARING NANNOFOSS NANNOFOSSIL OOZE Foraminifer-bearing, siliceous, mud-be (1078 R63) or tight-yellowish-brown, to rasnofossil ooze, give-gray (107 52) o rasnofossil ooze, give-gray (107 52) o	NUD-BEAR RING NAN IL OOZE a aring nann clay-bearin r gray (10Y	ING NANNOFOSSIL OOZE NOFOSSIL OOZE to nd FORAMINIFER- ofossil ooze, pale-brown ng, foraminifer-bearing 51), to foraminifer-bearing 70), and foraminifer-	
CENE TO HOLOC	'runcatulinoides	NN20-21		P. doliolus				-	2					namotosal coza, ligh-gray (107 77), moderate biolurbanon. SMEAR SLIDE SUMMARY (%): 1, 28 1, 8 D D D TEXTURE:	0 1, 131 D	h (10Y 6/1, 5/1); weak to 2, 91 D	
LLCIOIO	6.1											1		Sand 5 5 Sitt 30 20 Clay 65 75 COMPOSITION:	5 20 75	10 20 70	
	A/G	A/G		F/P				0	3					Clay 10 10 Clay 10 10 Accessory Minerals Tr Tr Foraminifers 10 15 Nannofossils 65 70 Diatoms Radiolarians 10 5	5 20 70 5	" 	

SITE		564	ŧ.	HO	LE	С			COP	RE 2	н со	RE	D	INT	ERVAL 3811.0-3820.5 mbsi: 4.2-13.7 mbst
LI L	B10 F01	STR	CHA	RACT	/ EEA	51	168					BB.	8		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIAMS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
									1	0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1		11-1 5 5 110	FORAMINIFER-BEARING, CLAY-BEARING, NANNOFOSSIL OOZE to FORAMINIFER-BEARING NANNOFOSSIL OOZE Foraminifer-bearing, clay-bearing, nannofossil ocze to foraminifer-bearing nannofossil ocze, gray (SY 51,61), light-gray (SY 71), or light-olive-gray (SY 62); moderate to heavy bioturbation with occasional purple and green laminations. SMEAR SLIDE SUMMARY (%):
									2				****	*	2,95 5,129 D D TEXTURE: Sand 5
PLEISTOCENE	inoides	21		sn					3				*****		Clay Accessory Minerals T
IDDLE TO UPPER	G. truncatul	NN20-2		P. doliol					4				#林林林###		
W									5					****	24
									6				11 + 11		
	A/G	A/G		F/P					cc	-	 		"		

SITE 664 HOLE C	CORE 3 H CORED IN	TERVAL 3820.5-3830.0 mbsl; 13.7-23.2 mbsf	SITE 664 HOLE C CORE 4 H CORED INTERVAL 3830.0-3839.5 mbsi; 23.2-32.7	most
	APPES - PROPERTIES SECTION SECTION METCAS METCAS ASOTIMAT ASOTIMAS	LITHOLOGIC DESCRIPTION	A DIAL CHARACTER STITUTION CONTRACTOR STATES	
MIDDLE PLEISTOCENE A/M NN19 G. truncatulinoides A/G NN20-21 F/P N. reinholdii		FORAMINIFER-MANNOFOSSIL OOZE, alternating with CLAY-BEARING, FORAMINIFER-BEARING NANNOFOSSIL OOZE Foraminifer-nannofosali ooze, white (SY 8/1), alternating with clay-bearing, foraminifer-bearing nannofosali ooze, gray (SY 6/1), for olive-gray (SY 5/2); weak to moderate biolubation with occasional purple laminations.	W V V V V V V V V V V V V V V V V V V V	ak n 1,

STIE 664 HOLE C	CORE 5 H CORED INT	ERVAL 3839.5-3849.0 mbsl; 32.7-42.2 mbsf	SITE 664 HOLE C CORE 6 H CORED INTERVAL 3849.0-3858.5 Mbsi; 42.2-51.7	most
TIME-ROCK UNITERS FORAMINETERS MANAGE COST. L'ALIDOR MANGE COST. MANGE MANGE MANGE MANGE DIATOMS DIATO	encurs inv accrion herchas herchas faoronturi faoroni faoroni anidaras faoroni f	LITHOLOGIC DESCRIPTION	TIME- ROOK UNIT FORMANINE REPORT OF THE PARTIER PARTI	
MIDLE PLEISTOCENE A/G G. <i>truncatulinoides</i> A/M NN19 F/P N. <i>reinholdit</i>		CLAY-BEARING, FORAMINIFER-BEARING NANNOFOSSIL OOZE to FORAMINIFER-BEARING, CLAY-BEARING NANNOFOSSIL OOZE Clay-bearing nannotosali ooze, light-gray (SY 617, S17), or white (SY 617, S78 R0); west to moderate bioturbation with occasional purple and black laminations.	CLAY-BEARNO, FORAMINEER ASUBOCES DATE OF A SUBJECT AND A DECOMPOSITION AND A DECOMPOS	9 reak cm,

SITE	E. 1	664	4	HO	LE	C	2		COF	RE 7	н со	RE	DI	NT	ERVAL 3858.5-3868.0 mbsl; 51.7-61.2 mbsf
t	810 F0	SSIL	AT. CHA	ZONE	U.		8					48.			
TIME-ROCK UN	FORAMINIFERS	KANNOF 0581LB	RADIOLARIANS	DIATOMS		PALEOMAQUETICS	PHYS, PROPERTI	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLDGY	DRILLING DISTUR	SED. STRUCTURE	BAMPLES	LITHOLOGIC DESCRIPTION
LOWER TO MIDDLE PLEISTOCENE	/G PLS	/W/19		IP N. reinholdii					1 2 3 3 4 5 6						CAY-BEARING, IORAMINIFER, BEARING NAMNOFOSSIL OOZE to FORAMINIFER-BEARING NAMNOFOSSIL ooze to foraminifer-bearing nanotossil ooze, light-gray (5Y 77), jury (5Y 61, 5Y), or white (5Y 61'); beds are folded, controled, and sterebeck-lighteren lisher plenes common throughout slumped sections. Large turbidite between Section 1, 86 cm, and Section 2, 110 cm.

-	FOR	SSIL	AT. CHA	RACI	/ TER	-00	\$31					RB.	8		
TIME-ROCK UN	FORAMINIFERS	NANNOF OSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS, PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
OCCINE TO NOLVERINE	/G G. truncatulinoides	/G NN20-21		IP P. doliolus					1	0.5				*	MUDDY FORAMINIFER-NANNOFOSSIL OOZE Muddy foraminifer-nannofossil ooze, gray (SY 6/1, 5/1) or light-gray (SY 7/1); moderate to heavy bioturbation. Minor void in Section 1, 0–4 cm. Minor lithology: Section 1, 4–32 cm: mud-bearing foraminifer-nannofossil ooze, light-gray (SY 7/2); weak to moderate bioturbation. SMEAR SLIDE SUMMARY (%): 1, 20 1, 62 2, 3 M D TEXTURE:
Distriction of the second s	A	A		0					cc				1		Sand 20 10 20 Silt 25 30 30 Clay 55 60 50 COMPOSITION:

SITE	Ξ (564	ŧ.	HC	DLE	C)		CO	RE	2 H C	ORE	DI	NT	ERVAL 3804.0-3813.5 mbsl; 2.3-11.8 mbsf
F	810	STR	AT . 1	LONE	17										
TIME-ROCK UNI	FORAMINIFERS	NANNOF OSSILS	RADIOLARIANS	DIATOMS	- En	PALEOMAGNETICS	PHYS. PROPERTIE	CHEMISTRY	BECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTUR	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
									1	0.5		000000			MUD-BEARING FORAMINIFER-NANNOFOSSIL OOZE, altenating with MUDDY FORAMINIFER-NANNOFOSSIL OOZE Mud-bearing foraminifer-nannofossi coze, while (5Y 8/1) or light-gray (5Y 7/1), attenating with muddy foraminifer-nannofossi coze, gray (5Y 6/1, 5/1); moderate to heavy bioturbation with occasional purple and black laminations. Minor void in Section 6, 19–23 cm.
									2						
LEISTOCENE	noides								3	and the state of the state			1 1 1 2 2		
DDLE TO UPPER P	G. truncatulin	NN20-21							4	and a set of			11 11 11 11		
IIW									5						
									6				-		
	A/G	A/G		R/P					7 CC			1	Ŧ		

SITE 664

SITE	664	HOL	ED	CC	RE	3 H	CORED	INT	ERVAL 3813.5-3823.0 mbsi; 11.8-21.3 mbsf	SI	TE	664	HO	LE D)	COR	E 4 H	CORE	D INT	ERVAL 3823.0-3832.5 mbsl; 21.3-30.8 mbsf
TIME-ROCK UNIT	FOSSIL STRAT	CHARACTE	PALEOMAGNETICS PHYS. PROPERTIES	CHEMISTRY SECTION	WETERS	GRAPHI LITHOLO	2 PRILLING DISTURE.	SAMPLES	LITHOLOGIC DESCRIPTION		TIME-ROCK ON 1	NANNOFOSSIT	- ZONE HARACT	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURS.	SED. STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION
MIDDLE PLEISTOCENE	A/G NN19 A/G NN19	R/P N. reinholdii		1 2 3 3 4 5 6 6 7 7 CCC	0.5		╴┵╷┽╷┽╷┽╷┽╷┽╷┽╷┽╷┽╷┽╷┽╷┽╷┽╷┽╷┽╷┽╷┽╷┽╷┽╷┽		MUD-BEARING FORAMINIFER-NANNOFOSSIL COZE and MUDDY FORAMINIFER-NANNOFOSSIL COZE.			A/G NN19	R/P N. reinholdii			2 3 3 4 5 6 7 CC				CLAY-BEARING, SILLOCOUS-BEARING, FORAMINIFER-BEARING MANNOPOSSIL.0022 City-bearing, sillocous-bearing, foraminifer-bearing namofossil coze, white (25 Y8 0): moderate to heavy boltwiston with occasions purple and black fainnations. Piow-in from Section 6 through CC. Minor vicids in Section 1, 0-2 and 41-43 or, and Section 2, 146–150 or. SMEAR SLIDE SUMMARY (%): 2, 70 3, 55 5, 98 M D D TEXTURE: Sand 5 10 5 City 800 60 70 COMPOSITION: City Glass 7 70 70 Diatoms 77 70 70 Diatoms 77 70 70 Diatoms 77 10 Sponge spicules

SIT	E 6	64	HOL	E D		CO	RE	5 H	CO	RED	INT	TERVAL 3832.5-3842.0 mbsl; 30.8-40.3 mbsf	SITE	Ę	664	H	OLE	D	С	ORE	6 H	CORE	D INT	ERVAL 3842.0-3851.1 mbsl; 40.3-49.8 mbsf
TIME-ROCK UNIT	FORAMINIFERS 4 8	NANNOFOSSILS TIT	ZONE/	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	METERS	GRAPH LITHOLO	UC OGY	DRILLING DISTURB.	SED. STRUCTURES	LITHOLOGIC DESCRIPTION	TIME-ROCK UNIT	FORAMINIFERS 3 E	OSTRAT	PIADIOLARIANS		PALEOMAGNETICS PHYS. PROPERTIES	CHEMISTRY	METERS	GRAPHIC LITHOLOG	2 19 DRILLING DISTURG.	SED. STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION
LOWER TO MIDDLE PLEISTOCENE	A/G G. truncatulinoides	BINN W/T	c/P N. reinholdii			1 2 3 4 5 7 CC			<u>. </u>			Much-Bearling, SilicEoUs-Bearling, FORAMINIFER-BEARING NANNOCOSSIL.COZE Much-bearing, siliceous-bearing, foraminifer-bearing nannolossil coze, light-gray (SY 771), gray (SY 671, 571), or while (10Y 80); moderately biotucited with gray, greenits-purple, or black laminatoria throughout core. Flow-in from Section 6, 150 cm, through CC. Minor void in Section 6, 0-2 cm. SMEAR SLIDE SUMMARY (%): 1, 78 0 TEXTURE: Sand 10 Sit 20 CARPOSITION: Outro: 5 Gray 5 Foraminiters 15 Nannolossilis 65 Diatoms 7 Radiolarians 5 Sponge spicules 5	LOWER PLEISTOCENE	C. trunoatuinoides	V/M NN19	N. reinholdii				4 5 7				MUD-BEARING, SILICEOUS-BEARING, FORAMINIFER-BEARING MANNOPOSITIL OOSE (Y77)1, gray (BY 61, 51), to white (10Y 80); moderately bioutbated with gray, greenish-purgle, or libeic laminations throughout core. Riowin from Section 6, 120 cm, through CC. Minor void in Section 6, 107–110 cm.

SIT	E 66	4 HOLE	D	co	RE 7	н	ORED I	NTERVAL 3851.5-3861.0 mbsl: 49.8-59.3 mbsf	SITE	664	HO	LE D		COR	E 8 H COR	ED INT	ERVAL	3861.0	-3870	5 mbsl: 59.3-68.8 mbs	f
TIME-ROCK UNIT	FORAMINIFERS	AT. ZONE/ CHARACTER SWEINEROUTER SWOTEIO	PALEOMAGNETICS PHYS. PROPERTIES	CHEMISTRY BECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB. SED. STRUCTURES	LITHOLOGIC DESCRIPTION	TIME-ROCK UNIT	FORAMINIFERS	RADIOLARIANS DIATOMS	PALEOMAGNETIC9	PHYS. PROPERTIES CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	SED. STRUCTURES SAMPLES			LITHOLOGI	C DESCRIPTION	
LOWER PLEISTOCENE	A/G G. truncatulinoides A/M NN19	C/P N. reinholdii		1 2 3 3 4 5 5 6 6			· · · · · · · · · · · · · · · · · · ·	MUC-BEARING, SILICEOUS-BEARING, FORAMINIFER-BEARING NAMOFOSSIL OZZE Mud-bearing, silicoous-bearing, foraminifer-bearing namotossil ooza, light-gray (by 77), gray (b) 101, jor white (107 bb); noderately bioturbated with by have dipping and folded beds; part of a stump. 7 Nave dipping and folded beds; part of a stump.	UPPER PLIOCENE TO LOWER PLEISTOCENE	A/G G. truncatulinoides A/M NN19	C/P N. reinholdii			2 3 4 5 6 7 CC		ansiers / // // // == * // -= * // * // // * * // * * * * *	FORA FORA FORA FORA For Son Son Composition Clay Composition Clay Composition Clay Composition Clay Composition Clay Composition Clay Clay Composition Clay Clay Composition Clay Clay Clay Clay Clay Clay Clay Clay	MINIFER-NANNOFC MINIFER-BEARING aminifer-bearing naminifer-bearing naminifer- motional locate, green inclusion occasional purple ar ump. R SLIDE SUMMARY VARE: OSITION: UPDY Minerals mismi to fossile a spicules	SSIL COZE NANNOFCS NANNOFCS NANNOFCS 00228, while ubsail coze ht-gray (SGY d green, slig) (%): 3, 112 4, D D D D D T S 55 6 55 6 7 7 7 7 7 8 7 7 7 7 7 7 8 7 7 7 7 7 7 8	alternating with MUD-BEARING, SIL 0022 and CLAY-BEARING, SIL 0022 and CLAY-BEARING, SIL 0021 and CLAY-BEARING, SIL 0022 and CLAY-BEARING, and clay-bearing, foraminifer-bearing for the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the second of the comparison o	

SITE 6	664	HOL	LE D)	COF	RE 9 H	CORE	DIN	TERVAL 3870.5-3880.0 mbsl: 68.8-78.3 mbsf	SITE	66	4	HOLE	D	CO	RE 10 H	CORE	D INT	TERVAL 3880.0-3889.5 mbsl: 78.3-87.8 mbsf
TIME-ROCK UNIT	NANNOFOSSILE C	TONE/	PALEOMAGNETIC9	PHYS. PROPERTIES	SECTION	GRAPHI LITHOLO	DRILLING DISTURD.	SED. STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION	TIME-ROCK UNIT	FORAMINIFERS	LAT - 20 CHAR BADIOLARIANS	NE/ ACTER	PALEOMAGNETICS PHYS. PROPERTIES	CHEMISTRY SECTION	METERS	RAPHIC DISTORY	BED. STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION
UPPER PLIOCENE PL6	A/M NN18	F/P N. reinholdii			1 2 3 4 5 6 7 CC		ו הן	/ mart for an affer and affer and affer and affer and / 22 and // ///	CLAY-BEARING, FORMINIFER-BEARING NANNOFOSSIL OOZE Ciay-bearing, foraminifer-bearing nannofosail ooza, white (SY 87), light-olive- gray (SY 62), or light-gray (SY 77); weakly bioturbated; green familations probably part of a along. Two furbiaties in Section 1. Minor voids in Section 1, 146–150 on, and Section 2, 25–30 on. SMEAR SLIDE SUMMARY (%): <u>1,130</u> 2, 70 <u>D</u> TEXTURE: Sand 15 10 Sit 10 15 Clay 75 75 COMPOSITION: Clay 15 20 Accessory Mineralis <u>17</u> 70 Diatoms <u>17</u> 77 Radiolarians <u>5</u> 7	UPPER PLIOCENE	PL6 PL6 NN18		1F		1 2 3 3 4 5 6 6			the set in the set of	CLAY-BEARING, FORAMINIFER-BEARING NANNOFOSSIL OOZE Clay-bearing, foraminiter-bearing nannofosall ooze, white (7.5Y 80) or light-gray (5Y 77); weaky boundated; pupe (14 7) laminations along bound in Section 1, 146–150 cm.

TE	6	64		HC	DLE	-	2	-	COR	RE 1	1 H CC	RE		INT	ERVAL 3889.5-3899.0 mbsl; 87.8-97.3 mbsf
NIT	+0	SSIL	CHA	RAC	TER	- 12	830					URB.	83		
TIME-ROCK U	FORAMINIFERS	NANNOF 0551L5	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTI	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
									1	0.5					CLAY-BEARING, FORAMINIFER-BEARING NANNOFOSSIL OOZE Clay-bearing, foraminifer-bearing nannofosail ooze, white (5Y 8/1, 7.5Y 8/0), light-low-gray (5Y 8/2), or light-gray (5Y 7/1); bioturbation weak to moderate; purple (N) jaminations common. Turbidite in Section 5, 50 cm. Minor void in Section 1, 147–150 cm. SMEAR SLIDE SUMMARY (%): 2, 80 3, 90
									2				# 1	•	TEXTURE: Sand 20 25 Silt 15 15 Clay 65 60 COMPOSITION: Clay 20 Clay 20 20 Accessory Minerals 17 17
NE									3					•	Poraminens 20 - 20 Namolosalis 60 60
UPPER PLIDCE	PL6	NN18		N. marina					4	ليستيستين			+ + + + + + + + + + + + + + + + + + + +		
									5						
									6						
	16	/W		/W					7	1111	 	- 10			

	BIO:	STRA	CHA	RACI	ren	10	IES.					.88	ES.		
TIME-ROCK UN	FORAMINIFERS	NANNOF DSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTURI	SAMPLES	LITHOLOGIC DESCRIPTION
									1	0.5		000000			CLAY-BEARING, FORAMINIFER-BEARING NANNOFOSSIL OOZE Clay-bearing, foraminifer-bearing nannofossil ooze, white (5Y 8/1), light-olive- gray (5Y 6/2), or light-gray (5Y 7/1); bioturbation reliabively weak; weil-defined, horizontal green and purple laminations common. Turbidite in Section 2, 20 cm.
		NN18							2				1. 11		
NE									з				1		
UPPER PLIOCE	PL5	NN16-17		M. marina					4						
									5	the function of the second sec			1111		
		NN16							6	the sector of th					
	A/G	A/M		C/M					7				1		

SIT	E 6	64	HOLE D		COR	E 13	н	COR	ED	INT	ERVAL 3908.5-3918.0 mbsl; 106.8-116.3 mbsf	SITE	6	564	HOL	ED	_	CORE 14	H CO	RED	INT	ERVAL 3918.0-3927.5 mbsl: 116.3-125.8 mbsf
TIME-ROCK UNIT	FORAMINIFICRS 0.0	RADIOLARIANS	PALEOMAGNETICS	PHYS. PROPERTIES CHEMISTRY	BECTION	METERS	GRAPHIC	Noise Inc. Substant	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION	TIME-ROCK UNIT	FORAMINIFERS 2 2	NANKNOFOSSILS	RACTER SMOLVIG	PALEOMAGNETICS	PHYS. PROPERTIES CHEMISTRY	SECTION METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES BAMPLES	LITHOLOGIC DESCRIPTION
UPPER PLIOCENE	A/G PL1	A/M NN16			2 3 4 5 6 7 CC						CLAY-BEARING, FORAMINIFER-BEARING NANNOFOSSIL OOZE Cipy-basing, foraminite-basing nannofosol ooza, white (SY 8/1, 7.5Y 80) or fair or grant of the second state of the	UPPER PLIOCENE	A/M PLS	A/M NN16	F/P N. jouseae			2 3 4 5 7 CC				<section-header></section-header>

SITE 664

SITE 664 HOLE D CC	ORE 15 H CORED INTE	RVAL 3927.5-3937.0 mbsl: 125.8-135.3 mbsf	SITE	664	HO	E D	CO	ORE	16 H CC	RED	INTER	RVAL 3937.0-3946.5 mbsl: 135.3-144.8 mbsf
TIME-ROOC LUNI TIME-ROOC LUNI MANNOF 0655115 AADIOLARANS FORSTERS BIATOMS PALEOMADETICS PHYS. PROPERTICS PHYS. PROPERTICS PHYS. PROPERTICS	METERS METERS Controles Annor of the Annor o	LITHOLOGIC DESCRIPTION	TIME-ROCK UNIT	FORAMINIFERS FORAMINIFERS	LARACT SWELLONG	PALEOMAGNETICS PHYS. PROPERTIES	CHEMISTRY BECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB. SED. STRUCTURES	\$AMPLE8	LITHOLOGIC DESCRIPTION
UPPER PLIOCENE N/M N/I N/I N/I N/I N/I 1 1 1 1 1 1 1 1 1 1 1 1 1		CAV-BEARING, FORAMINFER-BEARING, DIATOM-BEARING ANNOFOSSIL OOZE	UPPER PLIOCENE	M PL3 M NN16	P N. jouseae		3	2 2 2 7				CLAY-BEARING, FORAMINIFER-BEARING NANNOFOSSIL OOZE Clay-bearing, foraminifer-bearing nannofosail ooze, while (5Y 81, 7, 5Y 80) or light-gray (5Y 77); biourballon relatively weak; green and purple laminations COMPOSITION: Clay 15 25 Clay 15 15 Clay 20 15 Accessory Minerals 17 17 Nannofosails 63 65 Datoms -3 17

SITE 664 H	OLE D CO	ORE 19 H CO	DRED IN	TERVAL 3965.5-3975.0 mbsl; 163.8-173.3 mbsf	SI	TE	664	HOL	E D	()	CORE	20 H (ORED	INT	ERVAL 3975.0-3984.5 mbsl: 173.3-182.8 mbsf
BIOSTRAT. ZON FOSSIL CHARAC NAMADI CHARAC BIOSCRATE BIOS	PALEOMAGNETICS PHYS. PROPEATIES CHEMISTRY SECTION	GRAPHIC LITHOLOGY GU LITHOLOGY LLI LI	DRILLING DISTURB. BED. STRUCTURES RAMPLER	LITHOLOGIC DEBCRIPTION	and areas and	FORAMINIFERS 2 2	NANNOFOSSILS RADIOLARIANS	ZONE/ ARACTE SWOLVIG	PALEOMAGNETICS	PHYS. PROPERTIES CHEMISTRY	BECTION	GRAPHIC LITHOLOGY	DRILLING DISTURS.	SAMPLES	LITHOLOGIC DESCRIPTION
UPPER PLIOCENE A/A PL3 A/M NN15	1 2 3 3 4 4 5 5 6 6			CLAY-BEARING, FORAMINIFER-BEARING NANNOFOSSIL OOZE and FORAMINIFER-BEARING, CLAY-BEARING NANNOFOSSIL OOZE Clay-beating, foraminifer-bearing mannofosal ooce and foraminifer-bearing, clay-bearing, nannofosal ooce, white (SY 417, 25 X 800, 98) rightgray (SY 71); biodurbation weak to moderate; green and purple laminations common. Minor void in Section 1, 68-71 cm.	I AWEN DI LAGUE	A/G PL2	A/M NN14-15	R/P			2 3 4 5 6 7 CC				MUD-BEARING, FORAMINIFER-BEARING NANNOFOSSIL O22E Mud-bearing, foraminifer-bearing nannotossil o22e, while (SY 21, 7, SY 80) or Ight-gray (SY 77); biofurbation weak to moderate; green and purple laminations SMEAR SLIDE SUMMARY (%): <u>5, 50</u> 5, 110 TEXTURE: Sand 20 15 Sit 15 Clay 65 70 COMPOSITION: Clay 65 70 Composition 5 0 Nannotossils 50 60 Diatoms 5 —

SITE	664	HOLE	D	c	ORE	E 21 H	COR	ED	INT	ERVAL 3984.5-3994.0 mbsl; 182.8-192.3 mbsf	SITE	6	64	HOLE	D		COF	RE 22 H	CORED	INT	ERVAL 3994.0-4003.5 mbsl; 192.3-201.8 mbsf
1 B	OSTRAT.	ZONE/ ARACTER	s (Cs		Т		88	0			5	B105	TRAT . I	INE/		2	Π		R8.	T	
DCK UN	SSILS		CHE TIC	2		GRAPHIC	DISTU	UCTURE		LITHOLOGIC DESCRIPTION	OK UN	FERS	IANS		INETIC	9 OPERT		GRAPHI	DISTU		LITHOLOGIC DESCRIPTION
ME-RO	NNOF OI	ATOMS	LEOMA	EMISTI	CTION		TLING	0. STH	MPLES		ME-RO	AMINI	UNOF OS	TOMS	EOMAG	EMISTR	CTION	C LITHOLD	ILLING 10	B37dW	
H 01	N N N	ä	H4 Hd	5	8	ž	ä	33	SA		4	FO	RAL	rio	PA	E B	35	N I	80	SA	
						1	-	1	1	MUD-BEARING, FORAMINIFER-BEARING NANNOFOSSIL OOZE	100							1-1	1		MUD-BEARING, FORAMINIPER-BEARING NANNOPOSSIL OOZE
					. 0	.5-1	-	Ľ		Mud-bearing, toraminiter-bearing nannofossii ocze, white (5Y 8/1, 7.5Y 8/0) or light-gray (5Y 7/1); bioturbation very weak; green and purple laminations common, Folded and dipping bedding planes and laminations in Section 2.								0.5			light-gray (SY 7/1); bioturbation very weak; green and purple laminations common.
					۶ .	, <u></u>	_	F		Turbidites in Section 2, 10-20 cm, and in Section 4, 110-120 cm. Minor voids in Section 1, 147-150 cm, and Section 6, 147-150 cm.							[']	1, + + - +			
						1	-	1										+_+	-		
				l F	+	1-1-	-	3	ž								H	- <u>+</u>	- 1		
						Į.	-	3										1	- [
					2		-]	2									2		늬		
						1	-	E										1			
		11					-	F	1										-		
						1	-	5										1	- 1		
					3	1	-	庫							11	1	3	1	-		
ω						1	-	1										1	-] [
CEN	4					1	-				ENE							1	- 1		
11	3-1				1	1	-				100	_					H				
A d	NN					1-1-1	-				P P	Ъ						3	-1 -		
LOW					4		-				OWE						4		-] [
						1	-				Ľ								- 1		
				1 -	-	1-1	-										Н	41			
						1	-	1										<u>}</u>	그	E	
					5	<u>I</u>	-]	1									5	1-1-	-]	F	
						1	-											1	-		
						1-1	-												Ξſ		
						1	-												- 1		
					6	1	-]										6		-][
						1	-											1			
							-	=													
0	×				7	1-1-	-	1									-		1-1		
A	AI	8		C	C	1	-	1				W/	N N				/ cc		-] [

STIE 004 110	IOLE D CORE 23 H CORED I	ILERVAL 4003.5-4013.5 most; 201.8-211.3 most	SITE 6	64 H	OLE D C	ORE 24 H CO	RED INT	TERVAL 4013.0-4022 mbsl; 211.3-220.8 mbsf
BIOSTRAT. ZONE FOSBIL CHARACT SUIT SUIT SUIT BIOSTRAT. ZONE FOSBIL CHARACT	Address Addres	LITHOLOGIC DESCRIPTION	ROCK UNIT MIFERS SS0.4 SS0.8 SS0.8	STISSO	AGNETICS PROPERTIES	GRAPHIC LITHOLOGY	NG DISTURB. TRUCTURES	LITHOLOGIC DESCRIPTION
TIME- FORAW NAKNO RADIOI	PALEO	MUD-REARING FORAMINIFER-REARING NANNOFOSSIL 002F	TIME-	RADIOI DIATON	PALEO PHYS. CHEMI		SED. 5 SAMPL	MUD-BEARING, FORAMINIFER-BEARING NANNOFOSSIL, OOZE
/G LOWER PLIOCENE /M NN12 PL1 /M NN13		Muchoaning, foraming -brearing namotions common; Sections 3 and 4 slightly deformed.	LOWER PLIOCENE	2 NN 2	Olc-90.7 Olc-80.4 Olc-80.4			Mud-bearing, foraminifer-bearing nannofasili ooze, white (SY 8/1, 7.5Y 8/0); boturbation very weak in Section 1 through 3 and weak to moderate in Section 3 through C2 internations rare. Minor volds in Section 1, 0-4 and 145–150 cm, and Section 2, 146–150 cm.

SITE 66	4 HOLE	D	CO	RE 25 H	C	ORED	INT	ERVAL 4022.5-4032.0 mbsl; 220.8-230.3 mbsf	SITE	6	64	HOLE	D	C	DRE 26 H	CORE	DIN	ERVAL 4	32.0-404	41.5 mbsl; 230.3-239.8 m	nbsf
TIME-ROCK UNIT FORAMIRIFERS	RAT. ZONE/ LL CHARACTER SNV LETOKO SNV LETOKO SNV LETOKO SNV LETOKO	PALEOMAGNETICS PHYS. PROPERTIES	CHEMISTRY SECTION	METERS T 0	APHIC HOLOGY	DRILLING DISTURB.	SED. STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION	TIME-ROCK UNIT	FORAMINIFERS	HANNOF OSSIL T 12	ZONE/ ARACTER	PALEOMAGNETICS	CHEMISTRY	METER8	RAPHIC THOLOGY	BED. STRUCTURES RAMPLES		LITHOL	OGIC DESCRIPTION	
LOWER PLIOCENE A/P PL1 A/M NN12			1 2 3 Olice319 6 7 CC					MUD-BEARING, FORAMINIFER-BEARING NANNOFOSSIL OOZE Must-bearing, foraminifer-bearing nannafossil ooze, white (SY 81,7,5Y 80) or hgt-ong (SY 70); biourbation moderate to heavy; occasional green and purple aminatoria.	UPPER MIOCENE	C/P M13	E/M NN11 NN12			OIC-88.7 OIC-83.4 OIC-80.8 N -				CLAY-BEARING, Clay-bearing, 6 light-gay (57) taminations. M Minor lithology (7.5YR 7.0). SMEAR SLIDE S TEXTURE: Sand Silt Clay COMPOSITION: Clay Foraminitens Nannofosalis	EORAMINIFER-I raminifer-bearing 0); biotrubation w rovid in Section Section 4, 50-8 JMMARY (%): 4, 68 0 	BEARING NANNOFOSSIL OOZE gnannotossil ooze, while (SY 8/1, 7.5Y 8/0) or reak to moderate, occasional green and purple to cm: clayey nannofossil ooze, light-gray 4 4, 110 10 10 10 10 10 10 10 10 10	

SITE	664	HOL	E D	C	ORE	27 H	CORE	INT	ERVAL 4041.5-4051.0 mbsl: 239.8-249.3 mbsf	SITE	66	4 H	DLE D		CORE	28 H COR	ED I	NTERVAL 4051.0-4060.5 mbsl; 249.3-258.8 mbsf
TIME-ROCK UNIT	FORAMINIFERS 04 9	CHARACTI CHARACTI SWEIN SWEIN SWEIN CHARACTI	PALEOMAGNETICS	CHEMISTRY	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION	TIME-ROCK UNIT	FORAMINIFERS 018	CHARAC SNVIUN	PALEOMAGNETICS	PHYS. PROPERTIES CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	SED. STRUCTURES	LITHOLOGIC DESCRIPTION
				OIC+84.0	0.5				CLAY-BEARING, FORAMINIFER-BEARING NANNOFOSSIL OOZE Clay-bearing, foraminifer-bearing nannolossil ooze, white (SY 8/1, 7.5Y 8/0); bioturbation weak to moderate; laminations rare; Zoophycos burrows common					OIC+87.8	2			CLAY-BEARING, FORAMINIFER-BEARING NANNOFOSSIL OOZE Clay-bearing, transmitter-bearing nannotossil ooze, white (SY &U, 7, XY 80); bolohation vey weak; imminitions ran; kurows pyritized; microfault in Section 7, 25 cm. Minor voids in Section 1, 145–150 cm, and Section 2, 147–150 cm.
UPPER MIOCENE	1 1 NN 1			 Ic-99.00 Ic-90.00 Ic-20.00 	3 -					UPPER MIOCENE	M11/M12 NN11			O ^{[C.e31, 3} 0	3			
	C/P E/P	8		0 17 27 00 10 10 10 10 10 10 10 10 10 10 10 10	5						D/M E/M			OIC-68.5	5 6 7	- + + + + + + + + + + + + + + + + + + +	· · · · · · · · · · · · · · · · · · ·	

State LITHOLOGIC DESCRIPTION NODE_UNIT 801238 NODE_UNIT 80138 NODE_UNIT 80138 NODE_UNIT 80138 NODE_UNIT 80138 NODE_UNIT 80138 NODE_UNIT 80138 NODEUNIT 90138
N NUD-BEARING, FORAMINIFER-BEARING NANNOFOSSIL COZE MUD-BEARING, FORAMINIFER-BEARING NANNOFOSSIL COZE Mud-bearing, foraminifer-bearing nannofossil coze, white (10Y 8/1, 7.5Y 8/0); biotration very weak laministic mark for voids in Section 1, 67-69 and 91-30 m, and 95600 2, 148-150 m, 5MEAR SLIDE SUMMARY (%): SMEAR SLIDE SUMMARY (%): 4,17 2 4,17 4 4

NIT	BIO	STR	AT. CHA	ZON	E/ TER	20	101				JRB.	53		
TIME-ROCK UI	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	CRAPHIC LITHOLOGY	ORILLING DIST	SED. BIRUCTUR	SAMPLES	LITHOLOGIC DEBCRIPTION
		I I I NNI I						O IC=86.1	1					MUD-BEARING, FORAMINIFER-BEARING NANNOFOSSIL OOZE Mud-bearing, foraminifer-bearing nannofossil ooze, white (10Y 8/1, 7.5Y 8/0). Minor void in Section 2, 145–150 cm. SMEAR SLIDE SUMMARY (%): 3, 63 D TEXTURE:
	M11/M12								2					Sand – Sitt 5 Clay 95 COMPOSITION: Clay 10 Narnofossils 90
CENE								OTOC=0.00	3		1.1.1.1.1.		•	
OTTER MIO									4			+++++++++++++++++++++++++++++++++++++++		
								OIC-88.4	5					
									6					
	A/M	A/P		8					7		-			

SITE 664

SITE 664	HOLE	D	ORE	31 H (ORE	D IN	ERVAL 4079.5-4089.0 mbsl; 277.8-287.3 mbsf	SITE	6	64	IOLE	D	CO	RE 32 H CO	RED IN	TERVAL 4089.0-4098.5 mbsl: 287.3-296.8 mbsf
TIME-ROCK UNIT FORAMINIFERS	AT. ZONE/ CHARACTER	P INTER STATE		BED., STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION		TIME-ROCK UNIT FORMMINIFERS MANNOFOSSILE RADIOLARIANS OLATOMS		NET ACTER	PALECOMAGNETICS PHYS: PROPERTIES CHEMIDIRY SECTION METERS METERS		GRAPHIC LITHOLOGY	DRILLING DISTURB- SED. STRUCTURES	LITHOLOGIC DESCRIPTION		
UPPER MIOCENE A/G M11/M12 M11/M12 NN11 A/M NN10 NN11	æ	(C-47.7) (C-43.2) (C-48.8) (C-48.8)	1 1 1 2 3 3 4 5 6 7 5				MuD-BEARING, FORAMINIFER-BEARING NANNOFOSSIL OOZE Mud-bearing, foraminifer-bearing mannolosal ooza, while (10° 81, 7.5 Y 80); boturbation very weak; lamination rare; pythe bleas common throughout. SMEAR SLIDE SUMMARY (%): 7, 57 M TEXTURE: Sand 5 Clay 15 COMPOSITION: Quartz 15 Nannolosalis 85	UPPER MIOCENE	G/M M11/M12	A/P NN14 NN16	Ξ		1 2 3 4 5 6 7 7 CCC			CLAY-BEARING, FORMINIFER-BEARING NANNOFOSSIL OOZE Clay-bearing, formunifer-bearing nanofossil ooze, while (10° 81, 2.5Y 80); biburbation very weak; laminations ran; pyrite bibes common throughout. SMEAR SLIDE SUMMARY (%):

cm	10H-2	10H-3	10H-4	10H-5	10H-6	10H,CC	11H-1	11H-2
0	And Street		-23	R. A. and	a de		1 × 14	
	1 - in	100 miles	1000				1.1	120 5 1
Г	1- in the		12 11 25	1243 201 18	ST 200	E.S.	Sec. 1	
10		12 2 8	24.4	1.000	1. 12 E.	5	1. 3. 2.	100
	1.000	12 1 2	10 m	100 100	1. 1. 27	Strategies .		1 1
13	1.000	말 수 생	10 0.7 Con-		1 2 3	1000		10.20
		2111	and the second	the second	1.00		and the second	1. 经工程书
20		100.00	2.00	and the		- 3	2.39.66	1
20			States and a	12 2 3	1000	and the second	2	18-3-1
	100 21 3		A	10.75	1.1.1.1.1.1.1	· · · · · · ·	12.2	1.2.2
F	1.20		1 2 2	72 2 3	4 13	and the second		and the second
20	100 200	and the second	1 (FL (6))		100.00	Con while the	200	1. 1. 1
30	100 100 10		Contraction of	12 12 12	1.1.1			a tree
	100 million (100 million)	(m) (10) (2)	a col Sala	28 18	1.00		1000	
	12122		1.11.12.1	12 20	122 22 1			4
	A sea and the sea		1. 10. 12.	28.6	122.21		1.10	
40		10 10 10	1.11.12.1	8 2				100-10-10-10-10-10-10-10-10-10-10-10-10-
	And the second		1.12					
	2000		100	4	at my		100	
	100 10 10		1000				1 - 1 - L	Sec. 4
50	10000	and the second	1.1.1	S-15-21			Service .	100 100 100
			1.1	2.4	100		2011年	in an all
	12.22		12	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	C. market		(10) (1) (1)	1000
	12 11 13	The sec	12.22		r M		-1 -1	and the second second
60	12.27.2	1 a - 1	1.1.1.1					1000
	100	6.15 6.1	Same in	2. 2. 2.	1.1.1		and the second	2.2.5
F	1010			6			100	1 2 2
	1000	1.5		1 2 2			1000	1. 1
70	10.00	0.4	12 8 3	Carlos and	1000		12	1000
	~ 22	1. No. 1. 1.	1	1	21.20.57		221	K. S. Or
-	1.0		10 2 1	and the second				
		1. 10 10 1	10.10		Sec. St.			and a
80	100		18.2				10 A.	1
			13 13 3	1-1-1	23-79-52		10.000	1. 2
		10 . 1	No. 2 VI		1000			and the second
	1	1 -2 -2 -	0.015		Second and		2.44	1
90	China Sala			2				
			10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	a she was a	S		12 22 43	1 1
F	Aug			1000	10 20 20		Contraction of the second	1.10
1000	100 miles (100 miles)		and the second sec	100 20 20	the second second			
100	10 mil 10 mil 1	12 22 3		12.22	1 1 2		Same a	· · · · · · · · · · · · · · · · · · ·
	10-11-1-		1.1.1.1.1.1.1.1	120.00	1 42 61		200	
F	12 100-000		1 - 3	and the second	1 10 20 1		1	12 20
				and the set	1.00		2.00	
110		1.0		10.25	1.2.2.3		1000	
-	1000			216.5	A CASE OF A		1.200	Anna and All
F	6 m -		0 10 20 -		1000		Part out	100
		1	12233	1.21			1000	
120	12.34	S. A. Cart	1	Barren and				and the second
	1	5 16 -	1 100 100 Au		12 2 3		A. E.	1 - A
		1.00		1 1 · ·			Trans S	
	13 of 12	1	1. 15 3	12 -			and the	2.119
130		1.12.12	3.4	2	100		1. J. 1.	A 34
	635		S 12.22	- mental			1000	
F	R. S. M.		1. 5. 3.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3		1000	1.5.00
	1 Alama				× 2. 19		Sec All	1 1 1
140	ALCONT.						臣、 章""	1244
	a start		122 122					
F			a state and a	14.14			6.8.28	2.24
150	15 41	The second	5. 163	12-11-18			AL NO.	1 1
150			ALC: NOT REAL TO A					

26H,CC

° –	16H-6	16H-7	16H,CC	17H-1	17H-2	17H-3	17H-4	17H-5
	1.2.29	A COLORED	-	North 1	Part Service	1 mercury		
	1.5.5	at the	建康和社	34	3.3.1	and the	1. 24	
10		- 13.0 m.	A CAL	123	10.00			
	Sect-		-	- 23		14 14 1		1.23
-	12	State and	1		1			12.23
	- Exilter	No.		1. 1.	La La	12 4	8.4	*
20	5 23	4 2 3	-	5.54	- 2-	1	12.2.3	1
	1.10	100		1 2 2			1 3 3 2	253
Г		and the		- 8		12	÷.,	12-23
30 -	29.15			1.1.1	and the second		- 23	
	1000			1			12. 2.	200
F		and the second second		52.2			1 2 3	2 - 1
				the set	1 St. 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.2.3
40	12 3 3	and and			2.00	ALE S		2.2
L	1.2.2.1	ben i			C. H. M.			
	1.2.3			2. End	Paris S.	12 42		
50 -				1000	We wanted	12.42	-	in succession
	10 10 10	4.3.1		17 11 11	外有	1. 199. 10	10.00	Sec. 14
F	1 2 7	6 k				1. 1. 1		2.3.7
60	the second	and the second		121 - 1		perior of	5.11	
	1.20						*	1.63
-		222			9 5 5	6.00		
	p	25 210		Sec. 2			13 37	Sec. 1
70		a second a		14. 3 M	turner.			1
L	B*	5		presidentes	1 1 1 1	10	100 F	2.24
	5.003			1.21	Real Provide State	1.51		
80	A	men and		1. 2. 2. 1		and the second	1.1	
10000	1	Construction of the			6 (P)	1.1.1.1	are 1.00	1
-	S. Carry			a toria	ET .			2.2.4
	2.2.2			223		and a state of the		
90	Sec. 1			-		-		
F	1 alton			1000	1.0			1.10
	1. 1.					1211	A 25	1.0
100	7			Sec. 1	1.3.5.1	a man ref	1.2.2	2.2.2
	AL 194 4				1.5	(20 CBc.))		
	1.3.1				1.1.2	10.213		12.5
110	12.21			100	1. C. 1.	1.1		1
				1. 10 1.	See and			
F	1000			1.23		and the second	and the second second	Link
				24	W St		125	in the
120						14		
L	Sec.			100 Mar.	2.1.1		+	100
	100				· 学行			520
130	200			1- 1 M	ALC: SALE		1.041	2.2.2
	1 A - 21				4. m	52		1. 30
F	-			E 21-				2-2-57
	12 3.			10	Nº TA		1	「「「「「
140	- Lone				a Carto	- 41	12-13-1	0.00
L	100			18-212	12.5		1	
	a la mai							Section 1
150	ALCOHOLD T			Re-interest	1.000-0012	100	ST CONTACT	Long and

31H,CC 32H-4 32H-5 cm 0 32H-2 32H-3 31H-7 32H-1 31H-6

32H,CC

