INTRODUCTION

Convergent plate boundaries constitute one of the most dynamic tectonic environments. There, materials originally formed in the deep ocean are emplaced into an accretionary prism, uplifted, and ultimately exposed as mountain belts. Upon their initial incorporation into accretionary prisms, oceanic sediments typically have more than 50% porosity whereas, by the time of their subaerial exposure, the accreted rocks normally have less than 10% porosity. The expulsion of fluid associated with this porosity reduction necessarily causes the development of an active hydrologic system that affects many aspects of the geology. The fluid pressures and movements can not only trigger fault displacements (Hubbert and Rubey, 1959), but control the shape of the accretionary prism (Davis et al., 1983) and transport heat and solutes that have major effects on the diageneis and metamorphism of deforming rocks. Moreover, the surface expulsion of methane-rich fluids even supports unique benthic communities at convergent margins (Kulm et al., 1986; Le Pichon et al., in press).

ODP Leg 110 was designed to investigate a complex range of geologic and hydrologic problems along the northern Barbados Ridge. The prime technological and scientific objective of Leg 110 was to completely penetrate the accretionary prism, the décollement zone, and underthrust sediment to the oceanic crust. Extensive geophysical surveys and a previous drilling effort on DSDP Leg 78A provided a concrete scientific basis for Leg 110 plans. Here we review the overall regional setting of the northern Barbados Ridge and the results of Leg 78A, explicitly define the goals of Leg 110, and discuss scientific and technological approaches required to achieve these objectives. The explanatory notes provide guidelines for the subsequent Site chapters.

REGIONAL SETTING

Overview

The Lesser Antilles volcanic arc is the leading edge of the Caribbean Plate, which has been moving eastward with respect to North and South America since at least Eocene time (Fig. 1). The resulting subduction of the Mesozoic Atlantic oceanic crust beneath the Caribbean is evident seismically to a depth of about 200 km (Tomblin 1975). The direction and rate of convergence between the Atlantic and Caribbean crusts are not accurately known. From plate-motion models, Jordan (1975) estimated a west-northwest convergence at 2 cm/yr in the Leg 110 area whereas Sykes et al. (1982) proposed a WSW direction at 3 and 4 cm/yr at the same location. Estimates from seismic slip rates are much lower at about 0.25 to 0.5 cm/year (Dorel, 1981; Molnar and Sykes, 1969).

The Lesser Antilles volcanic arc presently includes eight active volcanoes which have erupted magma that varies in composition from basalts to rhyolites (Westercamp, 1979; Tomblin, 1975). Porphyritic andesites and basaltic andesites are dominant except on the southern islands (Grenada, the Grenadines and St. Vincent) where alkaline basalts occur. Widespread evidence of Neogene volcanism is apparent on the Lesser Antilles Islands (Maury and Westercamp, 1985), but the older volcanic rocks have a more restricted distribution: Oligocene lava flows, pyroclastics, and intrusive rocks are known on Antigua island and on the Grenadines; lower to upper Eocene volcanic rocks are exposed on St. Martin, St. Bartholomew, and the Grenadines. This Eocene volcanic activity apparently reflects the initial underthrusting of Atlantic crust beneath an arc of the present geometry. Older volcanic rocks of Upper Cretaceous–Paleocene age dredged on the Aves Ridge, the Upper Jurassic and Lower Cretaceous outcrops on Desirade island, as well as plate kinematics suggest intermittent Mesozoic subduction in the eastern Caribbean (Bouysse, 1984).
The Grenada Basin (or trough) and the Aves Ridge make up a probable backarc basin and remnant arc, respectively (Figs. 1 and 2). The southern and deeper half of the Grenada Basin is underlain by anomalously thick oceanic crust thought to be of early Tertiary age. The Late Cretaceous-Paleocene ages and the calc-alkaline affinities of rocks dredged from the Aves Ridge, as well as its basement morphology, suggest its original development as a volcanic arc (Pinet, et al., 1985; Boynton, et al., 1979).

The forearc of the Lesser Antilles consists of the Barbados Ridge complex and the Tobago forearc basin (Fig. 2). This forearc narrows from 450 km in the south to less than 50 km in the north; the width at the latitude of Leg 110 is about 260 km. The Tobago Basin shows an asymmetrical section on most of the seismic profiles (Fig. 3). To the west its sedimentary infilling thins through progressive onlap over the eastward-dipping island arc basement. To the east the thickest portion of the Tobago Basin is being accreted to the Barbados Ridge complex with tight folding and possibly thrusting in pre-Pliocene sediments and moderate folding in the Pliocene to Quaternary sediments.

The Barbados Ridge complex can be divided from east to west in four main zones as shown in Figure 3 (Westbrook, et al., 1984):

Zone of Initial Accretion

This zone forms the seaward margin of the complex, bounded to the east by the front of deformation. Here sediments of the Atlantic ocean floor are transferred to the accretionary prism. The style of this initial deformation varies from south to north according to the sediment thickness on the incoming oceanic crust. To the south, thick sedimentary sequences are deformed into broad eastward-verging folds with westward-dipping reverse faults or thrusts occurring at about 5-km intervals as imaged on the seismic records. North of the Tiburon Rise the relatively thin Atlantic sedimentary cover is initially accreted along eastward-verging low-angle thrusts spaced about 1 km apart. In spite of these disparities between the northern and southern parts of the Barbados Ridge complex, both areas show a clearly developed décollement or detachment surface between the overlying accreted sequences and the underlying underthrust sediments.

Zone of Stabilization

The zone of stabilization occurs west of the zone of initial accretion and is marked by a decrease in the seaward-dipping slope. The seafloor topography remains rough but rises only gently or may even be flat in the zone of stabilization. This decrease in surface slope probably marks a decrease in the thickening of the wedge (decrease in wedge taper) that may reflect the strengthening of the sediments in an arcward direction (Davis, et al., 1983).

Supracomplex Basins

This region is restricted to the southern half of the accretionary complex in an area of slightly syntectonically deformed ba-
Figure 2. Top: Lesser Antilles margin in the eastern Caribbean geological framework. Contours are isopachs of undeformed sediments (in seconds, two-way traveltime) and dashed areas are accretionary complexes (from Mascle, et al., 1985). Bottom: Cross-sectional model of the Lesser Antilles active margin through Barbados and St. Vincent (from Westbrook, et al., 1984).
Barbados Ridge Uplift

This crestal zone of the accretionary complex extends from 15°N to 11°N only and locally emerges above the sea level at Barbados island. The uplift is as much as 3 km with respect to the Tobago forearc basin and probably occurred in Pliocene and Quaternary time. Barbados island provides an exceptional opportunity to examine the interior of an accretionary prism. Most of the island is covered by a Quaternary limestone (the Coral Reef Formation); however, a small area along the east coast exposes tertiary rocks (Saunders, 1979; Speed, 1981; Biju-Duval, et al., 1985). There, a terrigenous suite of Paleocene to late Eocene age (Scotland Formation) is tightly folded in the east-west direction and subdivided into packets commonly separated by vertical east-west faults. Detailed analysis of sedimentary facies and structures suggests that this terrigenous suite accumulated on the lower slope of a deep sea fan and/or in a trench wedge. The terrigenous suite is overlain structurally, and possibly depositionally, by a few hundred meters of middle Eocene to middle Miocene pelagic rocks (the Oceanic Formation) that may have been accumulated on a trench slope or previously accreted deposits or alternatively in a forearc basin. Both terrigenous and pelagic deposits were folded in middle or late Miocene. Both types of deposits were intruded in the quaternary by large masses of disrupted scaly clays (Joes River Formation) interpreted as the core of a mud diapir.

Setting of the Leg 110 Area

Leg 110 is located at about 15° 30' N, i.e. at the latitude of Dominica island. There the prominent NW-SE trending Tiburon Rise enters the subduction zone (Fig. 1). The Tiburon Rise dams terrigenous sediments originating from the South American continent, resulting in a thinning of the Atlantic crust sediment cover north of the rise to less than 1000 m. Pelagic and hemipelagic sediments are dominant on the Tiburon Rise in the Leg 110 area. Owing to the lesser volume of sediment input, the width of the accretionary complex is reduced from 210 km to 130 km, from south to north across the Tiburon Rise (see Ngokwey, et al., 1984). The thickness of sediment on the oceanic basement (Fig. 4) shows an increase to the west-northwest that represents the bending of the northern edge of the Tiburon Rise toward the subduction zone. The slope of the Tiburon Rise is interrupted by a few NW to SE- and NE to SW-trending faults which are a common structural pattern of the Atlantic plain in this area (Westbrook, et al., 1984; Fontas, et al., 1984). Displacements along these faults are, at least in part, of pre-Eocene age and probably related to the early stages of oceanic lithosphere formation and subduction. The thickness of accreted deposits above the decollement (Fig. 4) shows a contrasting trend. The regular westward thickening of the accretionary prism reflects the progressive accretion of Neogene strata without any apparent effect from the structural grain of the underthrust basement. The average seafloor deepening to the northeast (Fig. 1) appears as a result of the west-northwest deepening of the basin.

RESULTS FROM DSDP LEG 78A

The principal goal of Leg 78A was to drill through the toe of the accretionary prism. The northern Barbados Ridge area has been a favored area for drilling owing to clear seismic definition of the décollement and underlying oceanic crust, moderate water depths, and acceptable total depth to basement (Fig. 5, Backpocket, and Fig. 6). Although this major objective was not achieved during the short 1-month leg, holes at two sites did penetrate to near or within the décollement, and provided clear evidence of accretion and thrust faulting of the incoming oceanic sediment column. Moreover, the apparent discovery of overpressured fluids in the décollement and related faults provided the impetus for a range of hydrogeologic investigations during ODP Leg 110.

Coring at DSDP Sites 541 and 542 arcward of the deformation front recovered a lower Miocene to Holocene sedimentary section composed of marly nannofossil ooze interbedded with smectitic mud-mudstone, underlain by radiolarian clay (at Site 541). See Figure 7 and Biju-Duval, Moore, et al. (1984). Ash beds make up a minor but conspicuous portion of the cored section. Clear lithologic similarities between sediments at Sites 541 and 542 arcward of the deformation front and Site 543 on the oceanic plate argue for offscraping of sediments recovered at the former sites. The upper 200 m of the incoming oceanic section...
apparently is being incorporated into the accretionary prism while the section below is at least initially being underthrust with the oceanic crust.

Five thrust faults with throws of up to 70 m were defined by biostratigraphic inversions at Site 541 and 542 (Figs. 7 and 8). Site 541 ended in the décollement separating the offscraped and underthrust material whereas Site 542 bottomed in a thrust zone, just above the décollement surface. Neither the major faults nor the décollement are discrete surfaces but are deformation zones tens of meters thick characterized by fracturing and scaly fabrics. Bedding dips in the offscraped material averaged about 25 degrees with no overturned surfaces, suggesting a preponderance of thrust faulting and not overturned folding (Cowan, et al., 1984).

In a final attempt to penetrate through the décollement at Site 542, a 60-m string of drill-in casing was emplaced in an unstable fault zone just above the décollement. The casing became stuck because of the collapse of surrounding sediment and unexpectedly provided a closed conduit to the surface. Immediately following sticking, abnormally high pressures and water flow occurred on the rig floor. Apparently, the fault zone surrounding the casing was overpressured. Moreover, drilling fluid could be pumped easily into the fault zones, suggesting that its foliated mudstone gouge had a high fracture permeability. Elevated temperatures in the cored section and in the open holes at Sites 541 and 542 suggest upward flow of porewater, also consistent with abnormal fluid pressures (Davis and Hussong, 1984).

SPECIFIC OBJECTIVES OF LEG 110

Study of the geologic and hydrologic evolution of the northern Barbados Ridge was approached through three sites located near the deformation front of the accretionary prism, by a single site on the adjacent oceanic plate, and by two sites upslope, substantially arcward of the deformation front (Backpocket Fig. 5). Sites 671, 675, and 676 are all located within 4 km of the deformation front of the northern Barbados Ridge. Coring there was designed to achieve the principal goal of leg 110, complete penetration of the accretionary prism and underthrusting oceanic sedimentary sequence. Although none of the holes reached completely to the oceanic crust, all were drilled into the décollement zone separating the overthrusting and underthrusting plates. Furthermore coring at Site 671 penetrated some 150 m below this surface into the subjacent sedimentary sequence. Coupled with Sites 541 and 542 from DSDP Leg 78a, the Leg 110 sites near the deformation front provided an opportunity to study the geologic and hydrologic processes associated with the initial accretionary process.
Figure 6. Seismic profiles along which Leg 78A sites were located (Ngokwey, et al., 1984). See Figures 1 and 4 for locations of profiles. Circles locate reflectors. West of the deformation front, Reflector 1 separates the discontinuously reflective seismic unit from the acoustically layered unit below; this surface is interpreted as a décollement. The equivalent stratigraphic level has also been projected seaward as Reflector 1. Reflector 3 marks the top of the oceanic crust. Reflector 2 separates two parts of the acoustically layered unit: an upper tabular sequence and a lower portion of variable thickness. On Line A1D the thrust fault 3 km east of the deformation front appears to sole out near Reflector 1 and defines the eastern limit of the sediment package presently being scraped off.

Site 672 was drilled on the adjacent oceanic plate to obtain an oceanic reference section in sediments directly equivalent to those being offscraped and underthrust along the Leg 110 transect. The goal of Site 672 was to provide a baseline on virtually every lithologic, paleontologic, physical and chemical aspect of the sediments entering the subduction zone. The previous reference site (Site 543), 20 km to the north, sampled a sedimentary sequence of approximately half the thickness of that shown on the seismic reflection line at Site 672 and would not have provided an adequate standard for sites of the Leg 110 transect.

The principal goals of Sites 673 and 674 were to define the continuing structural and hydrologic evolution of the offscraped sediments. An essential objective there was to sample sediments in different evolutionary stages of the accretionary prism between its initial offscraping, well defined at Sites 671, 675, 676, and its final state of uplift locally at Barbados.

Technological and Scientific Approaches of Leg 110

Because Leg 110 was attempting to drill in active fault zones in partially consolidated sediments, special drilling technology was made available. Moreover, the topical focus on structural and hydrological studies required a specific scientific program aided by both logging and downhole measurements, the latter to include a temperature probe, interstitial water sampler, and a packer.
INTRODUCTION AND EXPLANATORY NOTES

Figure 7. Lithostratigraphy and structural geology of the cores from Leg 78A.

Figure 8. Cross section through Sites 541 and 542 showing major faults and décollement. The section from Site 543 is also shown for reference. The break in this figure represents a lateral offset of about 20 km (see Fig. 1).

The lack of penetration through the décollement surface during Leg 78a was apparently caused by high fluid pressures and unstable hole conditions. To overcome these problems, ODP engineering and operations personnel designed a drilling plan that included careful maintenance of conditions in an open hole. A casing string capable of extending from the mudline through the décollement zone was also available aboard ship for control of unstable conditions. Moreover, drill-in casing, specifically designed to span only the décollement zone, could have been utilized in a final effort to penetrate this interval.

The results from Leg 78a suggested localization of fluid flow along faults. Accordingly, our drilling strategy focused on recognition of these surfaces biostratigraphically, coupled with intensive investigation of their structural fabrics, physical properties, thermal characteristics, and fluid compositions. We also planned an extensive logging program to define in situ sediment and fluid characteristics. A special drill-in packer was developed for Leg 110 to directly measure fluid pressures, permeabilities, and flow rates in the sedimentary section.

EXPLANATORY NOTES

In this section we have assembled information that will help the reader understand the basis for our preliminary conclusions.
and help the interested investigator select samples for further analysis. Standard procedures for both drilling operations and preliminary shipboard analyses of the material recovered have been regularly amended and upgraded since 1968 during Deep Sea Drilling Project and Ocean Drilling Program drilling. This section deals only with shipboard operations analyses and interpretations described in the site reports in Part A of the Leg 110 Proceedings of the Ocean Drilling Program. Methods used by various investigators for further shore-based analyses of Leg 110 data will be detailed in the individual scientific contributions published in Part B of the Proceedings.

AUTHORSHIP OF SITE REPORTS

Authorship of the site reports is shared among the entire shipboard scientific party, although the two co-chief scientists and the staff scientist edited and rewrote part of the material prepared by other individuals. The site chapters are organized as follows (authors in parentheses):

- Site Summary (Mascele, Moore)
- Background and Objectives (Mascele, Moore)
- Operations (Hayes, Taylor, Thompson)
- Lithostratigraphy (Beck, Dolan, Ogawa, Schoonmaker, Vrolijk)
- Structural Geology (Behrmann, Brown)
- Biostratigraphy (Andreieff, Clark, Sakai)
- Paleomagnetics (Hounslow)
- Geochemistry (Blanc, Gieskes)
- Physical Properties (McLellan, Moran, Taylor, Wilkens)
- Seismic Stratigraphy (Mascele, Moore)
- Heat Flow (Fisher, Hounslow)
- Packer Experiments (Fisher)
- Logging Results (Alvarez, Williams)
- Conclusions (Mascele, Moore)

Following the text are summary graphic lithologic and biostratigraphic logs, core descriptions (barrel sheets), and photographs of each core.

SURVEY AND DRILLING DATA

The survey data used for specific site selections are discussed in each site chapter. En route between sites, continuous observations were made of depth and sub-bottom structure, and magnetic field. Short surveys using a precision echo sounder and seismic profiles were made on JOIDES Resolution before dropping the beacon at each site. All geophysical data collected during Leg 110 are presented in the "Geophysical Profiling" chapter (this volume).

The seismic profiling system on JOIDES Resolution consisted of two 80-in. and one 400-in. water gun, a Scripps-designed hydrophone array, Bolt amplifiers, two bandpass filters, and two EDO recorders, usually recording at different filter settings.

Bathymetric data were displayed on 3.5- and 12-kHz precision depth recorder systems which consist of sound transceiver, transducer, and recorder. The depths were read on the basis of an assumed 1500 m/s sound velocity for water. The water depth (in meters) at each site was corrected by the Matthews’s Tables (1939) and (2) for the depth of the hull transducer (6 m) below sea level. In addition, the depths referred to the drilling platform level are assumed to be 10 m above the water line.

Drilling Characteristics

Water circulation through the drill pipe downhole is open, thus cuttings are lost onto the seafloor and cannot be examined. The only available information about sedimentary stratification in uncored or unrecovered intervals, other than from seismic data or wireline logging results, is from an examination of the behavior of the drill string as observed on the drill platform. The harder the layer being drilled, the slower and more difficult it usually is to penetrate. There are, however, a number of other factors, such as pump pressure and bit configuration, which determine the rate of penetration, so it is not always possible to relate rate of penetration directly to the hardness of the layers. The parameters of bit weight and revolutions per minute are recorded on the drilling recorder and influence the rate of penetration.

Drilling Deformation

When cores are split, many show signs of significant sediment disturbance. Such disturbance includes the concave-downward appearance of originally horizontal bands, the haphazard mixing of lumps of different lithologies, and the near-fluid state of some sediments recovered from tens to hundreds of meters below the seafloor. Core deformation probably occurs during one of three different steps at which the core can suffer stresses sufficient to alter its physical characteristics: cutting, retrieval (with accompanying changes in pressure and temperature), and core handling.

SHIPBOARD SCIENTIFIC PROCEDURES

Numbering of Sites, Holes, Cores, and Samples

ODP drill sites are numbered consecutively from the first site drilled by Glomar Challenger in 1968. Site numbers are slightly different from hole numbers. A site number refers to one or more holes drilled while the ship is positioned over a single acoustic beacon. Several holes may be drilled at a single site by pulling the drill pipe above the seafloor, moving the ship some distance from the previous hole, and then drilling another hole. For all ODP drill sites, a letter suffix distinguishes each hole drilled at the same site; the first hole being designated A and proceeding alphabetically thereafter at a given site.

The cored interval is measured in meters below the seafloor (mbsf). The depth interval of an individual core extends from the depth below seafloor that the coring operation began to the depth that the coring operation ended. Each coring interval is up to 9.7 m long, which is the maximum length of a core barrel. The coring interval may, however, by shorter. “Cored intervals” are not necessarily adjacent to each other but may be separated by “drilled intervals.” In soft sediment, the drill string can be “washed ahead” with the core barrel in place but not recovering sediment, by pumping water down the pipe at high pressure to wash the sediment out of the way of the bit and up the space between the drill pipe and wall of the hole; however, if thin, hard rock layers are present, it is possible to get “spotty” sampling of these resistant layers within the washed interval.

Cores taken from a hole are numbered serially from the top of the hole downward. Maximum full recovery for a single core is 9.6 m of sediment or rock in a plastic liner (6.6 cm I.D.), plus about a 0.2-m-long sample (without a plastic liner) in a core catcher. The measured core length on deck may actually be greater, generally owing to core and gas expansion. The core catcher is a device at the bottom of the core barrel that prevents the core from sliding out when the barrel is being retrieved from the hole. The sediment core, which is in the plastic liner, is then cut into 1.5-m-long sections that are numbered serially from the top of the sediment core (Fig. 9). When full recovery is obtained, the sections are numbered from 1 through 7 (from the top of the core downward), the last section being shorter than 1.5 m. For sediments, the core-catcher sample is placed below...
ODP core and sample identifiers include "core type." This qualifier designates the drilling and coring method used to obtain a given core. The following abbreviations are used to describe core type: R = rotary barrel; H = hydraulic piston core (HPC); P = pressure core barrel (PCB); X = extended core barrel (XCB); B = drill bit recovery; C = center bit recovery; I = in-situ water sample; S = side wall sample; W = wash core recovery; N = Navidrill core barrel (NCB); and M = miscellaneous material. HPC, XCB, rotary, and wash coring were all used at some point during Leg 110 operations.

Core Handling

As soon as a core is retrieved on deck, it is checked for potential hydrocarbons and a sample is taken from the core catcher to the paleontological laboratory for an initial assessment of the age of the sample.

The core is then placed on a long horizontal rack and gas samples are taken by piercing the core liner and withdrawing gas into a vacuum-tube sampler (Vacutainer). Voids within the core are sought as sites for the gas sampling. Some of the gas samples are stored for shore-based study, but some are analyzed immediately, as part of the safety and pollution-prevention program. Next, the core is marked into section lengths, each section is labeled, and the core is cut into sections. Interstitial water (IW), organic geochemistry (OG), and physical properties (PP). Whole-round samples are taken at this time as well as small samples from the base of some sections for gas head-space analysis. These whole-round samples are capped with red end caps (no acetone) and taped. Each of the core sections is sealed top and bottom by gluing on a plastic cap, blue to identify the top of a section and clear for the bottom. A yellow cap is placed on a section end from which a whole-round core sample has been removed. The caps are attached to the liner by coating the end of the liner and the inside rim of the end cap with acetone. The top cap of one section from each core was generally not glued with acetone until a vane-shear-strength test had been run in that section end.

The cores are then carried into the laboratory, where the sections are again labeled and the core-section identifier is engraved on the liner. The length of core in each section and the core-catcher sample is measured to the nearest centimeter, and this information is logged on the shipboard corelog data-base program.

The cores are then allowed to warm to room temperature before splitting (usually 2 to 4 hr). During this time, the whole-round sections are run through the GRAPE (gamma-ray-attenuation porosity evaluation) and P-wave logger device for estimating bulk density and compressional wave velocity (see below; Boyce, 1976). A significant number of sections were also passed through a magnetic susceptibility loop (see below). After the cores reach thermal equilibrium, thermal conductivity measurements are made, immediately before cores are split.

Cores of relatively soft material are then split lengthwise into the working and archive halves. The softer cores are split with a wire. In soft sediments, some smearing of material can occur, and to minimize contamination users of the cores should avoid using the very near-surface part of the split core. Semiconsolidated and hard-rock cores are split utilizing a high-speed, water-lubricated, diamond-blade saw.

The working half core is then sampled for both shipboard and shore-based laboratory studies. Each extracted sample, and the name of the investigator receiving the sample, is logged, by location, in the sampling computer program. Records of all removed samples, including both those taken aboard ship and those taken after the cores are returned to the archiving facility, are kept by the Curator at ODP in College Station. The ex-
Sedimentary Structures

Drilling slurry surrounds fragments. Commonly associated with fracturing in hard sediments (Fig. 11): 1. Slightly fractured: Core pieces in place, with very little deformation in hard sediments (Fig. 11): 2. Moderately fragmented: Core pieces in place or partly displaced, but original orientation is preserved or recognizable. Drilling slurry surrounds fragments. Commonly associated with “drilling biscuits” created by core-barrel rotation.

There are three classes of firmness for calcareous sediments:

1. Soft: Sediments which have little strength and are readily deformed under the finger or broad blade of the spatula are termed ooze.
2. Firm: Partly lithified ooze or friable limestone is called chalk. Chalks are readily deformed under the fingernail or the edge of a spatula blade.
3. Hard: Limestone is restricted to nonfriable cemented rock.

Only two classes of firmness were regularly noted for noncalcareous sediments:

1. Soft: Sediment core may be split with a wire cutter. Soft terrigenous sediment, pelagic clay, and transitional calcareous biogenic sediments are termed sand, silt, clay, or mud.
2. Hard: The core is hard (i.e., consolidated or well indurated) if it must be cut with a saw. For these materials, the suffix...
INTRODUCTION AND EXPLANATORY NOTES

<table>
<thead>
<tr>
<th>SITE</th>
<th>TIME-ROCK UNIT</th>
<th>FORAMINIFERS</th>
<th>NANNOFOSILS</th>
<th>RADIOCABINANES</th>
<th>CALITONS</th>
<th>PALEOMAGNETICS</th>
<th>PHYSICAL PROPERTIES</th>
<th>GRAPHIC LITHOLOGY</th>
<th>SED. STRUCTURES</th>
<th>SAMPLES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

| | | | | | | | | | | |

SITE

SITE

HOLE

CORE

CORED INTERVAL

LITHOLOGIC DESCRIPTION

<table>
<thead>
<tr>
<th>Description text</th>
<th>Physical properties</th>
<th>Organic geochemistry</th>
<th>Interstitial water</th>
<th>smear slide</th>
</tr>
</thead>
</table>

PRESERVATION:

- **G** = Good
- **M** = Moderate
- **P** = Poor

ABUNDANCE:

- **A** = Abundant
- **C** = Common
- **F** = Frequent
- **R** = Rare
- **B** = Barren

Porosity and density

Carbonate (%)

PP

- full round sample

DC

- sample

Smear slide summary (%):

- **M** = minor lithology,
- **D** = dominant lithology

SMEAR SLIDE SUMMARY (%)

Section

Interval (cm)

Lith. (D=dominant; M=minor)

TEXTURE:

- Sand
- Silt
- Clay

COMPOSITION:

- Quartz
- Feldspar
- Rock Fragments
- Mica
- Clay
- Volcanic Glass
- Inorganic Calcite
- Dolomite
- Cement
- Pore Space
- Accessory Minerals

Foraminifers

Nannofossils

Diatoms

Radiolarians

Sponge Spicules

Silicoflagellates

Fish Remains

Plant Debris

Figure 10. Core-description form ("barrel sheet") used for sediments and sedimentary rocks.
-stone is added to the soft-sediment name (e.g., sandstone, siltstone, claystone, mudstone).

Basic Sediment Types

The following defines compositional class boundaries for the use of qualifiers in the lithologic classification scheme:

Pelagic Clay

Pelagic clay is principally authigenic pelagic deposits which accumulate at very slow rates. Since all clay-rich sediments cored during Leg 110 show an evident terrigenous origin, this category was not used.

Siliceous Biogenic Sediments

Siliceous biogenic sediments are distinguished from pelagic clay because they contain common siliceous microfossils. Siliceous biogenic sediments are distinguished from the calcareous category by a calcium carbonate content of less than 30%.

There are two categories of siliceous biogenic sediments: (a) pelagic siliceous biogenic sediments that contain greater than 30% siliceous microfossils and less than 30% silt and clay; and (b) transitional siliceous biogenic sediments that contain between 10% and 70% siliceous microfossils and greater than 30% silt and clay.
For pelagic biogenic siliceous sediments with 30% to 100% siliceous fossils, the following terminology is used:

1. Soft: Siliceous ooze (radiolarian ooze, diatom ooze, etc., depending on the dominant fossil component).
2. Hard: Radiolarite, diatomite, chert, or porcellanite. Diatoms and radiolarians may be the principal components of these sediments; thus one or two qualifiers may be used, for example:

Indeterminate siliceous fossils: Siliceous ooze, chert, or porcellanite.

Radiolarians predominate: Radiolarian ooze, or radiolarite
Diatoms predominant: Diatom ooze, or diatomite
Diatoms < Radiolarians: Diatom radiolarian ooze, or diatom radiolarite
Diatoms > Radiolarians: Radiolarian diatom ooze, or radiolarian diatomite

The most dominant component is listed last and the minor component is listed first.

For transitional biogenic siliceous sediments, the following terminology is used:

1. Soft: Siliceous ooze, diatom ooze, or porcellanite.
2. Hard: Radiolarite, diatomite, or chert.

The most dominant component is listed last and the minor component is listed first.

For pelagic biogenic calcareous sediments with 30% to 100% calcareous fossils, the following terminology is used:

1. Soft: Nannofossil ooze, foraminiferal ooze, etc., depending on the dominant fossil component.
2. Hard: Nannofossil chalk, foraminiferal chalk, or calcareous chalk.

The most dominant component is listed last and the minor component is listed first.

For transitional biogenic calcareous sediments, the following terminology is used:

1. Soft: Nannofossil ooze, foraminiferal ooze, etc., depending on the dominant fossil component.
2. Hard: Nannofossil chalk, foraminiferal chalk, or calcareous chalk.

The most dominant component is listed last and the minor component is listed first.
Sedimentary rocks in the consolidated category include constituents during Leg 110 were zeolite and glauconite, repre­
pyritic, feldspathic). The most commonly encountered minor
saw.

hard or consolidated equivalents for the same textural groups
are cut with a wire in the shipboard core splitting process. The
ing triangular diagrams (Fig. 14). The groups are defined accord­
ing to the abundance of clay (>90%, 90% to 10%, < 10%) and

proportions of three grain-size constituents, i.e., clay, silt, and

Amounts of CaCO

to 30% calcareous components are given the modifier “calcare­
ments and sedimentary rocks containing 10%
and (b) transitional
carbonate analysis, ground gently with a mortar and pestle, and
of the samples were freeze-dried, then partitioned prior to car­
bonate analysis, ground gently with a mortar and pestle, and
of the samples were freeze-dried, then partitioned prior to car­
bonate analysis, ground gently with a mortar and pestle, and
of the samples were freeze-dried, then partitioned prior to car­

shipboard Philips PW1710/
program was calibrated using the six standards listed in Table 2. An external check on the accuracy of the semiquantitative analysis was provided by comparing the percentage of calcite as determined by X-ray diffraction with total carbonate measured by coulometric analysis on Site 671 samples (see Site 671 chapter, this volume). The two determinations showed generally good agreement. Oriented pastes were prepared for some samples and were analyzed qualitatively to identify the clay minerals present. Although the estimates of mineral abundances obtained from XRD data by this method are only relative and semiquantitative, they do provide a useful mechanism for comparing compositional changes downcore and between cores.

BIOSTRATIGRAPHY

Radiolarian Biostratigraphy

Zonation

The radiolarian zonation of Riedel and Sanfilippo (1978) was used almost exclusively to describe the silica-rich, lower Miocene through middle Eocene sediments from Leg 110. The Theocyrtis bromia Zone of Riedel and Sanfilippo (1978) of late Eocene age further refined the use of the subzone designations of Saunders et al. (1984).

Abundance and Preservation

Discussions of abundance of radiolarians in the “Biostratigraphy” sections of the site chapters is based on slides of sieved, acid residues, and consequently they may differ markedly from the lithologic descriptions, which are based on smear slides. Our abundance estimates are completely qualitative, and are based on visual approximations of the total volume of processed residue and the relative frequency of radiolarians in each residue. Based on our long experience with these observations, we suggest that our abundance terms have the following range of absolute frequency:

- A (abundant) = >50,000 specimens/g.
- C (common) = 10,000-49,000 specimens/g.
- F (few) = 1000 to 9000 specimens/g.
- T (trace) = <1000 specimens/g.

The quality of radiolarian preservation in Leg 110 recovery ranged from poor to good. Degraded preservation was largely a result of dissolution effects. There is little evidence of corrosion pitting or metallic coating.

- G (good) = a majority of whole specimens with spines intact and normal index of refractions.
- M (moderate) = many broken specimens, or opal with high index of refraction.
- P (poor) = mostly broken fragments or specimens lacking all delicate lattice components.

Sample Preparation

Radiolarians were studied from the coarse fraction components (>44 μm). As a standard procedure the samples were boiled in H₂O₂, sieved, treated with HCl, and then with ultrasound for about 5 s (repeated several times if the sediment was tough to disintegrate), sieved, and an aliquot of the suspendable part of the residue was mounted on a slide using Canada balsam.

Calcareous Nannofossil Biostratigraphy

Zonation

The nannofossil biostratigraphy of Leg 110 is based on the modified zonations of Gartner (1977) for Pleistocene sediments, and Okada and Bukry (1980) and Bukry (1973, 1975) for sediments below the Plio-Pleistocene boundary. Zonal modifications adopted in this report are the same as those proposed by Bergen (1984).

Emendations to the Pleistocene zonation are minor. The small gephyrocapsa Zone of Gartner (1977) is difficult to recognize owing to the effects of dissolution on gephyrocapsid abundance. The Pseudoemiliania lacunosa Zone is therefore expanded to contain this interval. The P. lacunosa Zone is defined in this report as the interval between the LAD of P. lacunosa and the LAD of Helicosphaera sellii.

Changes in the Pliocene zonation scheme are also minor. The top of the late Pliocene is marked, in the zonation of Okada and Bukry (1980) and Bukry (1973, 1975), by the LAD of Reticulofenestra pseudoumbilica and the LAD of the genus Sphenolithus. In the Leg 110 zonation scheme the datum is recognized solely by the LAD of Reticulofenestra pseudoumbilica.

The LAD of Amaurolithus tricorniculatus is more consistent than that of A. primus in this geographic area (Bergen, 1984) and will be used to designate the top of the A. tricorniculatus Zone of Okada and Bukry (1980).

The Miocene/Pliocene boundary is recognized by Okada and Bukry (1980) and Bukry (1973, 1975) by the LAD of Triquetro-rhabdulus rugosus. Because T. rugosus is frequently found in

![Classification scheme used for terrigenous sediments and sedimentary rocks, Leg 110.](image)
the early Pliocene section, the FAD of *Ceratolithus acutus* will be substituted as the boundary marker.

Abundance and Preservation

Abundance of nannofossils was based on the method described by Hay (1970), using a magnification of 1000×. The abundances reported follow the format:

- **VA** = very abundant (more than 10 specimens per field of view).
- **A** = abundant (1 to 10 species per field of view).
- **C** = common (1 specimen per 2 to 10 fields of view).
- **F** = few (1 specimen per 11 to 100 fields of view).
- **R** = rare (1 specimen per 101 to 1000 fields of view).

The state of nannofossil preservation was designated as follows:

- **G** = good (Little or no evidence of overgrowth and/or etching of specimens).
- **M** = moderate (Some degree of overgrowth and/or etching, but identification generally not impaired).
- **P** = poor (Substantial overgrowth and/or etching, identification of specimens is difficult but still possible).

Sample Preparation

Samples from sediment-bearing cores were prepared into smear slides and studied with the light-microscope.

Planktonic Foraminifer Stratigraphy

Zonation

The zonal scheme established by Bolli et al. (1985) is employed throughout this volume. This zonation, however, was modified in the lower Pliocene sequences recovered during Leg 110, because of the rarity or absence of the zonal markers *Globorotalia margaritae* and *G. miocenica*.

Consequently, the Miocene/Pliocene and early/late Pliocene boundaries were tentatively determined on the basis of the FAD of *Globigerinoides conglobatus* (s.s.) and the LADs of *Pulleniatina primalts* and/or *Globigerinoides obliquus*, respectively.

Series/Subseries Boundaries

The planktonic foraminifer events that were chosen to define Eocene-Pleistocene series and subseries boundaries are:

- **Base Eocene**: Last appearance datum (LAD) *Morozovella velascoensis* and/or first appearance datum (FAD) *Pseudoagnostigerina wilcozensis*.
- **Base middle Eocene**: FADs *Hantkenina* and/or *Globigerina theka*.
- **Base late Eocene**: LAD “hispid globorotalids” (i.e., *Acarinina-Morozovella-Truncorotaloides* group).
- **Base Oligocene**: LADs *Globorotalia cerroazulensis* and/or *Hantkenina*. Base late Oligocene: LAD *Globigerina obliquus*.
- **Base Miocene**: FAD *Globorotalia kugleri*.
- **Base middle Miocene**: FAD *Praeorbulina glomerosa*.
- **Base late Miocene**: FAD *Neogloboquadrina acostaensis*.
- **Base Pliocene**: FAD *Globigerinoides conglobatus*.
- **Base late Pliocene**: LADs *Pulleniatina primalts* and/or *Globigerinoides obliquus*.
- **Base Pleistocene**: FAD *Globorotalia truncatulinoides*.
- **Base late Pleistocene**: LAD *Globorotalia flexuosa*.

Abundance and Preservation

The abundance of a particular species in the residue assemblage is:

- **A** = Abundant (>40% of the population).
- **F** = Frequent (40% to 20%).
- **C** = Common (20% to 5%).
- **R** = Rare (<5%).

Preservation includes the effects of diagenesis, epigenesis, abrasion, encrustation, and/or dissolution. The state of preservation used in the volume for foraminifers:

- **G** = good (dissolution effects rare to obscure).
- **M** = moderate (specimen dissolution common but minor).
- **P** = poor (specimen identification very difficult or impossible).

Sample Preparation

Samples (about 100 cm³ from the core catchers and 10 cm³ from the cores) were soaked in a 10% solution of hydrogen peroxide and washed through a 63-μm mesh, then dried and examined.

Analyses were carried out on the >150-μm fraction.

PALEOMAGNETISM

Paleomagnetic measurements performed during Leg 110 consist of remanent magnetization and whole-core susceptibility determinations.

Remanent Magnetization Measurements

Samples were taken by pushing 2.1-× 2.1-× 1.45-cm plastic boxes into the sediment, with the fiducial arrow pointing upcore. Samples from more indurated cores where cut, using a stainless-steel knife, to fit inside the plastic boxes. The remanent magnetization of these samples was measured on a Molspin spinner magnetometer using the 6-spin procedure, both on the JOIDES Resolution and in the laboratory at Sheffield University, England. These magnetometers were calibrated so as to take account of the smaller volume of the plastic box samples compared to the standard provided with these instruments. All resulting intensities are in milliamperes per meter (mA/m). The noise level of these instruments is of the order of 0.05 mA/m for these ODP samples.

The samples were progressively demagnetized on the ship using a Schonstedt 3-axis, nontumbling demagnetizer. In the laboratory at Sheffield the samples were demagnetized by a Molspin, 3-axis tumbling demagnetizer.

Behavior during demagnetization was examined using stereographic projections and Zijderveld (vector endpoint) diagrams, which are connected interactively with the program controlling the magnetometer. The basis of the Zijderveld diagram plot is explained in the caption to Figure 24 in the Site 671 chapter.

Whole-Core Susceptibility Measurements

Whole-core susceptibility was determined with the Bartington MSI meter and the whole-core field loop. Readings from cores of drilling breccia were rejected from the data set, as were data recorded at voids in the cores. The data from the hydraulic piston cores is of the best quality. The XCB coring process tends to mix the lithologies so that the susceptibility signal from a single horizon is spread out, and as a result a large value from a single horizon may be relatively lowered from its true value. The field loop is also most sensitive to the material closest to it so it tends...
to see volumetrically more of the drilling-deformed material just inside the core liner than actually exits, resulting in a smearing of the signal.

During Leg 110 the whole-core susceptibility meter was calibrated with a short length of core liner filled with MnO₂. The output from the meter was found to be incorrect and in volume susceptibility units (i.e. susceptibility per cm³) of 10⁶ Gauss/Oersted (G/Oe). The susceptibilities recorded on this leg have been multiplied by 2.06 to make them consistent with this calibration.

GEOCHEMISTRY

The organic and inorganic geochemistry program for ODP Leg 110 included (1) measurement of hydrocarbon gases, (2) determination of organic and inorganic carbon, (3) characterization of the organic matter by Rock-Eval pyrolysis, and (4) analysis of interstitial water for pH, alkalinity, salinity, sulfate, chlorinity, calcium, magnesium, silica, and ammonia. Samples for geochemical studies were generally recovered from every third core in the lower stratigraphic sections, and at more frequent intervals in the upper section.

Hydrocarbon Gases

The sampling method for interstitial water dissolved methane analysis was recently improved during the “Hydrotenth” expedition to the Atlantis II Deep (Blanc et al., 1986). Sediment samples for this analysis were taken immediately upon arrival of the cores on deck. A small volume of sediment was placed in a borosilicate glass vial, and the vial was then filled to approximately two thirds of its total volume with sodium azide-poisoned, hydrocarbon-free seawater. The sodium azide (NaN₃) inhibits any possible microbial activity after sampling. The vial was then capped and sealed with an aluminum ring. The sample was agitated on a high-speed shaker to partition gas into a helium-filled headspace similar to the method used by Bernard et al. (1976, 1978). The headspace methane was then analyzed by gas chromatography on a Hewlett-Packard 5890A. Methane concentrations are then expressed in micromoles per kilogram of seawater, calculated from the sediment dry weight and original water content (see Physical Properties).

Elemental Analysis

Shipboard organic carbon and total carbon analyses were done using a Perkin-Elmer 240C Elemental Analyzer. For the direct determination of organic carbon, portions of acidified sediment from carbonate analyses were washed with deionized water, and dried at 35°C. Samples containing about 15-mg of sediment were weighed on a Cahn Electrobalance for elemental analysis. Samples were burned at 1000°C in the presence of oxygen, and the volumes of the evolved gases determined as measures of the C, H, and N contents of sediment organic matter. Concentrations were determined by the Perkin-Elmer 3600 Data Station and compared with those of known standards. Neither hydrogen nor nitrogen results were reproducible nor realistic, and therefore are not reported. Organic carbon values are reported on a dry sediment weight basis. Total carbon was determined in a like manner except that the sediment samples were not acidified. Total carbon was used to calculate organic carbon by taking the difference between total carbon and carbonate carbon.

Carbonate Carbon

Carbonate carbon was determined by means of the Coulometrics 5030 Carbonate Carbon Apparatus. With the Carbonate Carbon apparatus, about 250 mg of dried, powdered sediment was gently heated and reacted with HCl. The resulting CO₂ was transferred to a Coulometer with ethanalamine as the indicator solution. The CO₂ was converted to a strong acid and the changing color of the solution was monitored. The results are reported in micrograms C and percentage CaCO₃. Carbonate carbon values from the carbonate bomb and the coulometer were similar except that the coulometer was more sensitive.

Rock-Eval Procedure

The source character and maturity of organic matter in selected sediment samples were determined with the shipboard Delsi Nermag Rock-Eval II pyrolysis instrument. About 100 mg of nonacidified, coarsely ground dried sediment was heated from 250°C to 550°C at a rate of 25°C/min. Gases released during this heating were carried off in a helium stream, which was split into two parts. One part was directed through a flame ionization detector to monitor hydrocarbons; the other passed through a CO₂ trap from which the total amount of evolved CO₂ was released at the end of the heating program to be measured by a thermal conductivity detector.

This pyrolysis procedure yields four parameters that characterize the organic matter in a sample (Tissot and Welte, 1984):

1. Area of peak S₁, which corresponds to the quantity of free hydrocarbons present in the sample.
2. Area of peak S₂, which corresponds to the quantity of hydrocarbons released by pyrolysis of kerogen up to 550°C.
3. Temperature, Tₘₐₓ, at the top of peak S₂, which is related to the maturity of the organic matter.
4. Area of peak S₃, which corresponds to the CO₂ released from pyrolysis of kerogen and is a measure of the amount of oxygen in the kerogen matrix.

From S₂, S₃, and the organic carbon concentration, the hydrogen index (HI) and oxygen index (OI) can be calculated and used to determine kerogen source, character, and maturity.

Interstitial Waters

Interstitial waters were routinely analyzed for pH, alkalinity, salinity, sulfate, chlorinity, calcium, magnesium, silica, and ammonia. The method of obtaining interstitial waters from the sediment, using a stainless-steel press, was described in detail by Manheim and Sayles (1974). In essence, 10-cm long full-round sediment core samples for interstitial water analyses were collected every second or third core of sediment. The sediment was extruded from the core liner, the outer layer of the sediment was removed by scraping with a spatula, and the sample was placed in a Carver Laboratory Hydraulic Press for removal of interstitial water. The press was operated to a pressure of about 30,000 psi (2.11 × 10⁶ kg/m²). The sediment sample remained under pressure until water could no longer be squeezed from it. Intertidal water was collected in 50-cm³ syringes and filtered through a 0.45-μm Millipore filter. IAPSO standard seawater was the primary standard for the water analysis onboard ship.

Individual inorganic parameters were analyzed according to procedures outlined by Gieskes and Peretsman (1986). Alkalinity and pH were determined by using a Brinkmann-650 pH meter coupled with a Brinkmann-655 Dosimat. The pH value of the sample was calibrated with 4.01, 6.86, and 7.41 buffer standards; readings in millivolts were converted to pH. The pH measurements were made immediately prior to the alkalinity measurements. The 3- to 5-cm³ interstitial water sample, after being tested for pH, was titrated with 0.1 M HCl as a potentiometric titration (Gieskes, 1973).

Salinity was determined by means of a hand-held AO refractometer that measures the total dissolved solids. Sayles et al. (1970) found that this “salinity” agreed well with their measured ion sums.

Chlorinity was determined by titrating 0.1 mL of sample, diluted with 5 mL of deionized water, with silver nitrate. The
Mohr titration used potassium chromate as an indicator. In addition, electrometric titrations were carried out. The electrometric technique utilized potentiometric titration with Ag/Ag 25 coupled electrodes. The Gram method was used to evaluate the equivalence volume (Jagner and Aren, 1970). Accurate results to within about 0.5% of the IAPSO seawater standard were obtained with this method.

Sulfate was quantified using a Dionex-2120 Ion Chromatograph. Calcium was determined by complexometric titration of a 0.5-cm³ sample with EGTA using GHA as an indicator. To enhance the determination of the endpoint, the calcium-GHA complex was extracted into a layer of butanol (Gieskes, 1973). No correction was made for strontium, which is also included in the no.

Magnesium was determined by EDTA titration for total alkaline earths (Gieskes, 1973). Subsequent subtraction of the calcium value (also including strontium) yielded the magnesium concentration in the interstitial water sample. Ammonia and silica determinations were carried out using colorimetric methods described by Gieskes and Peretsman (1986).

PHYSICAL PROPERTIES

Introduction

Physical property measurements of sediments recovered during deep sea coring operations provide an important link between geophysical data, such as marine seismic survey records or electric well logs, and the geological realities of the materials that constitute the sedimentary section described by shipboard stratigraphers and sedimentologists. It is the combination of these three data sets that allow for a broader and more reasonable view of the seafloor around the borehole. The goal of the physical properties program during Leg 110, beyond aiding in geophysical interpretation, was to attempt to quantify the changes which different sedimentary units have undergone as a result of their involvement in the tectonic processes associated with an active accretionary prism.

Index Properties

Methods

Index properties measured during ODP Leg 110 include water content, porosity, bulk density, and grain density. Bulk density and porosity are listed in the PHYSICAL PROPERTIES column on core description sheets (Fig. 10). The water content values in this volume are reported in two ways: (1) weight of water relative to the weight of dry solids (used in text), and (2) weight of water relative to the total wet sample weight. Weights were obtained using a programmed dual SciencoTech pan system with an estimated error of ± 0.03 g. Volumetric measurements were obtained by using a helium-purged Quantachrome pycnometer with an estimated error of ± 0.02 cm³ (multiple measurements) or ± 0.05 cm³ (single measurement; used at Site 671). All index properties reported herein are corrected for salt assuming a pore-water salinity of 35%. Further details of calculations can be found in Boyce (1976). Samples were freeze dried for a minimum of 12 hr, weighed, volume remeasured, and then split for carbonate (coulometric) and bulk mineralogy (XRD) analyses.

Bulk densities and porosities were also obtained from GRAPE (gamma-ray attenuation porosity evaluation) scanning of whole-core sections. Bulk densities and porosities are computed assuming a grain density of 2.75 g/cm³. Further details of this analytical tool are discussed by Boyce (1976). The reader is advised to exercise caution when using GRAPE data from cores obtained using the extended core barrel (XCB). Biscuiting, a common core-disturbance feature, produces interlayering of intact 'biscuits' and drilling slough or breccia. Peak values of GRAPE porosities and densities, associated with intact biscuits, are used in the following discussions.

Compressional Wave Velocity

Methods

Sonic velocities (V_p) of sediments in the recovered core were measured using two different techniques. A continuous measurement of V_p was made through the whole core using a V_p Logger. The V_p Logger employs two 1-MHz transducers which are pressed against the side of the core liner as it passes between them on a belt-driven track. The distance between the acoustic transducers is measured by a pair of displacement transducers affixed to the measuring surfaces. Travel time is calculated from the full-waveform signal by an automatic peak-picking routine on a dedicated microcomputer and corrections for the thickness and delay time of the liner are employed to arrive at the velocity of the material in the core liner. As with the GRAPE scan, this method is most effective when core sections are totally filled with undisturbed material, such as during advanced piston corer (APC) operations. Core disturbance, biscuiting, and underwrite core (or voids) severely degrade the data. An example of a V_p Logger record for an APC core is shown in Figure 15.

V_p was measured in two directions, horizontal propagation (normal to the axis of the core) and vertical propagation (parallel to the axis of the core) on discrete samples. In intervals of severe core disturbance, measurements were made only on competent “biscuits” or were not made at all. The Hamilton Frame
Velocimeter was used for velocity determinations, and the procedures followed were generally those of Boyce (1976a) with the addition of an automatic timing circuit provided by the ODP. Lutein and aluminum standards were run prior to drilling and the timing mechanism was found to be accurate to within 1% when adequate signal strength was achieved. Signal strength criteria were employed during actual measurements to determine whether sample disturbance in the core precluded accurate velocity measurement.

Formation Factor

Methods

Formation factor is a measurement of the ratio of the electrical resistivity of an interval of core to the electrical resistivity of the sediment pore fluid. Studies of sedimentary rocks in the petroleum industry indicate that this value is relatively constant within a wide range of pore fluid resistivities. Use of the formation factor rather than the actual resistivity value of a sediment allows a better comparison of electrical properties of samples from differing environments where pore-fluid characteristics vary.

The use of formation factor measurements in marine sediments and the basic methodology employed during Leg 110 are discussed in Manheim and Waterman (1974). The measurement is made on intervals of split core using four in-line electrodes spaced 1 cm apart. These are inserted into the sediment. The outer two electrodes establish an electrical potential (in this case approximately 8 V AC at 1000 Hz) and the inner two electrodes measure a drop in potential that is proportional to the sediment resistivity. This value is then normalized using a similar measurement made in a seawater bath with the same geometry as a half core liner. The assumption that seawater and porewater are essentially the same is valid in most cases; however, corrections to formation factor values can be made on the basis of the porewater chemistry at a later date. Measurements are made on thermally equilibrated sections of core allowing the effects of temperature on the pore-fluid resistivity to be compensated by the seawater bath also being at room temperature.

Shear Strength

Methods

The undrained shear strength of the sediment was determined using the Ocean Drilling Program motorized miniature vane shear device following the procedures of Boyce (1976). The ODP device has a variable rate motor that was set to 56 degrees per minute. The instrument measures the torque and strain at the vane shaft using a torque transducer and potentiometer, respectively. Output for torque and strain are recorded on a Hewlett-Packard XY recorder in volts. The vane used for all measurements has a 1:1 blade ratio with a dimension of 1.27 cm.

The shear strength reported is the peak strength determined from the torque vs. strain plot. In addition to the peak shear strength, the residual strength was determined from the torque vs. strain curve as the postpeak value in tests where the failure was not dominated by cracking of the sample (Pyle, 1984). An example of peak and residual strength determinations is shown in Figure 16.

Given the critical role that sediment strength has apparently played in the formation of the accretionary wedge, it is worthwhile at this point to highlight the nature and limitations of the undrained shear strength obtained from the minivane test. It is imperative to recognize that the undrained shear strength, whether measured by fall-cone, miniature lab or field vane, triaxial shear, shear box, unconfined compression, dilatometer, piezo-cone, or pressuremeter, is an artifact of the test procedure itself; the undrained shear strength of a sediment is not a uniquely defined parameter. In fact, shear strength is a function of numerous factors, only a few of which are identical from one testing method to another. These include the following: the effective Mohr-Coulomb parameters—cohesion and the angle of internal friction (peak or residual); the effective normal stress (hence pore pressure); porosity or water content; strain magnitude; strain rate; confining stress level; temperature; loading path; the sample's stress history; composition; and the sediment's structural fabric. The undrained shear strength as measured by the minivane is not identical to the actual shearing resistance offered on potential planes of weakness within the sedimentary section. In a laboratory situation only properly controlled triaxial or simple shear tests at *in situ* stress conditions simulating appropriate stress paths can adequately represent the operative shear strength on potential slip surfaces.

The minivane test does, however, provide an estimate of strength and a means of comparing downcore and between-hole shear strength. In the analysis of vane tests the assumption is made that a cylinder of sediment is uniformly sheared about the axis of the vane in an undrained condition. Departures from this assumption include progressive cracking within and outside of the failing specimen, uplift of the failing core cylinder, drainage of local pore pressures (i.e., no longer the undrained condition), and stick-slip behavior. Incidents of all of the above have been observed in the testing of sediment on Leg 110.

Thermal Conductivity

Methods

The thermal conductivity of the sediment was measured following the methods of Von Herzen and Maxwell (1959) using the needle-probe technique. Measurements were taken at locations on at least one, usually two, sections of each sediment core where GRAPE records indicated a homogeneous interval.
HEAT FLOW

Temperatures were measured with two different tools on Leg 110, the Von Herzen hydraulic piston corer temperature shoe (APC tool) and the water-sampler, temperature, and pore-pressure tool (WSTP tool) equipped with an Uyeda-type temperature probe (T-probe). Each of these instruments monitors the resistance of a single thermistor.

Temperatures recorded with the APC tool were extrapolated to equilibrium values following the procedure described by Koehler and Von Herzen (1986) and Horai and Von Herzen (1986). Temperatures measured with the T-probe were extrapolated to equilibrium using a method modified from Bullard (1954).

The two sediment-temperature instruments were calibrated during the early part of the cruise as follows: APC tool numbers 5 and 6 were first cross-calibrated by running them simultaneously in an ice-bath; the resulting difference in measured temperature was <0.03°C. Assuming APC tool 6 as a standard, a series of ice-bath and water-bath tests with this tool and the different T-probe thermistors were performed. All T-probe thermistors (tested without their electronics package) were within 0.03°C of APC tool 6 over a temperature range of 0 to 25°C. However, when we compared APC and T-probe temperatures with the T-probe electronics package in place, there was a significant difference in the recorded resistance from the previous calibration using no electronics package. T-probe thermistor 14 was found to have the most consistent response compared to APC 6 over the temperature range. A linear resistance correction for the T-probe thermistor/electronics package was added to the temperature reduction program for this tool. As a final test of the cross-calibration between instruments, the T-probe and APC-tools were made up in tandem and run into Hole 671B prior to circulation and logging.

Two different sampling intervals were used with the T-probe during measurements on Leg 110: 5.12 s with the new recorder and 60 s with the old one. Although these tools use different electronics packages, both use the same thermistor probes. The APC tool was run with variable recording intervals between 10 and 60 s.

Thermal conductivity measurements are described under the Physical Properties section of this chapter.

REFERENCES

