Shipboard Scientific Party²

HOLE 672A

Date occupied: 1110, 15 July 1986

Date departed: 1430, 22 July 1986

Time on hole: 7 days, 3 hr, 20 min

Position: 15°32.40'N, 58°38.46'W

Water depth (sea level, corrected m; echo-sounding): 4975

Water depth (rig floor, corrected m; echo-sounding): 4986

Bottom felt (rig floor, m; drill-pipe measurement): 4983

Distance between rig floor and sea level (m): 10.5

Total depth (rig floor, m): 5477

Penetration (m): 493.8

Number of cores (including cores with no recovery): 53

Total length of cored section (m): 493.8

Total core recovered (m): 381.3

Core recovery (%): 77

Oldest sediment cored:

Depth sub-bottom (m): 493.8 Nature: radiolarian mudstone Age: early Eocene Measured velocity (km/s): 1.9

² J. Casey Moore (Co-Chief Scientist), Dept. of Earth Sciences, University of California at Santa Cruz, Santa Cruz, CA 95064; Alain Mascle (Co-Chief Scientist), Institut Français du Pétrole, 1-4 Ave Bois-Preau, B.P. 311, 92506 Rueil Malmaison Cedex, France; Elliott Taylor (Staff Scientist), Ocean Drilling Program, Texas A&M University, College Station, TX 77840; Francis Alvarez, Borehole Research Group, Lamont-Doherty Geological Observatory, Columbia University, Palisades, NY 10964; Patrick Andreieff, BRGM, BP 6009, 45060 Orleans Cedex-2, France; Ross Barnes, Rosario Geoscience Associates, 104 Harbor Lane, Anacortes, WA 98221; Christian Beck, Département des Sciences de la Terre, Université de Lille, 59655 Villeneuve d'Ascq Cedex, France; Jan Behrmann. Institut für Geowissenschaften und Lithosphärenforschung, Universität Giessen, Senckenbergstr. 3, D6300 Giessen, FRG; Gerard Blanc, Laboratoire de Géochimie et Métallogénie U. A. CNRS 196 U.P.M.C., 4 Place Jussieu, 75252 Paris Cedex 05, France; Kevin Brown, Dept. of Geological Sciences, Durham University, South Road, Durham, DH1 3LE, U.K. (current address: Dept. of Earth Sciences, University of California at Santa Cruz, Santa Cruz, CA 95064); Murlene Clark, Dept. of Geology, LSCB 341, University of South Alabama, Mobile, AL 36688; James Dolan, Earth Sciences Board, University of California at Santa Cruz, Santa Cruz, CA 95064; Andrew Fisher, Division of Marine Geology and Geophysics, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149; Joris Gieskes, Ocean Research Division A-015, Scripps Institution of Oceanography, La Jolla, CA 92093; Mark Hounslow, Dept. of Geology, Sheffield University, Brook Hill, Sheffield, England S3 7HF; Patrick McLellan, Petro-Canada Resources, PO Box 2844, Calgary, Alberta Canada (current address: Applied Geotechnology Associates, 1-817 3rd Ave. NW, Calgary, Alberta T2N OJ5 Canada); Kate Moran, Atlantic Geoscience Centre, Bedford Institute of Oceanography, Box 1006, Dartmouth, Nova Scotia B2Y 4A2 Canada; Yujiro Ogawa, Dept. of Geology, Faculty of Science, Kyushu University 33, Hakozaki, Fukuoka 812, Japan; Toyosaburo Sakai, Dept. of Geology, Faculty of General Education, Utsunomiya University, 350 Minemachi, Utsunomiya 321, Japan; Jane Schoonmaker, Hawaii Institute of Geophysics, 2525 Correa Road, Honolulu, HI 96822; Peter J. Vrolijk, Earth Science Board, University of California at Santa Cruz, Santa Cruz, CA 95064; Roy Wilkens, Earth Resources Laboratory, E34-404 Massachusetts Institute of Technology, Cambridge, MA 02139; Colin Williams, Borehole Research Group, Lamont-Doherty Geological Observatory, Columbia University, Palisades, NY 10964.

Principal results: Site 672, located 6 km east of the Barbados Ridge deformation front, penetrated 500 m of Pleistocene to Eocene deposits of the locally 800-m-thick Atlantic sedimentary cover. Lower Pleistocene to the lower Miocene massive hemipelagic clay(stones) and mud(stones) include numerous ash layers. Middle Eocene to upper Oligocene alternating sandstones and siltstones, claystones, calcareous mudstones, marlstones and limestones record lateral clastic and biogenic input, respectively, from the South American continent and the upper slope of the Tiburon Rise, in addition to the background hemipelagic sedimentation. Lower Eocene and lowermost middle Eocene deposits consist of siliceous claystones. The carbonate content of these sediments is high from middle Eocene to lower-upper Oligocene and from upper Miocene to Pleistocene, whereas lower Eocene and upper Oligocene through middle Miocene sediments contain almost no carbonates. Radiolarian-bearing claystones accumulated during early Miocene and early Eocene.

Normal faults and low to very low bedding dips prevail in most of the core section. However, local steep dips, mud-filled en-echelon veins in subhorizontal shear zones, and reverse faults occur in a lower Miocene interval extending from 175 to 195 mbsf. These deformational features are interpreted as an incipient compressional failure that could be related to an anomalous porosity high and to a probable correlative decrease of sediment strength. This high-porosity and structurally anomalous zone correlates with the top of the décollement zone at Sites 671 and 541. Anomalies in chloride and methane pore-water content occur near the potential future décollement surface as well as deeper in the hole. A low chloride content at 365 mbsf (upper Eocene) and a modest increase in methane content at 425 mbsf (middle Eocene) suggest lateral fluid advection in sandy layers. A prominent methane high at about 200 mbsf (lower Miocene or uppermost Oligocene) is succeeded upsection by a slowly decreasing diffusive gradient. This high value of methane content also requires lateral fluid advection at a depth broadly correlative to the future décollement.

BACKGROUND AND OBJECTIVES

The portion of Atlantic abyssal plain facing the Lesser Antilles island arc has decreasing water depths ranging from more than 6000 m north of the arc, to less than 3000 m to the south. This bathymetric gradient is related to the main sedimentary influx to this area from the South American continent, most of which was deposited during the late Miocene to Holocene time (mainly through the Amazon and Orinoco drainage system). Bottom-water currents, moving from the south to the north (Damuth and Fairbridge, 1970; Embley and Langseth, 1977) provide the transportation mechanism for these sediments. As a result of this supply, sediment thickness on the Atlantic ocean floor decreases from over 7 km south of 11°N to about 200 m at 19°N in the Antillean region (Speed, Westbrook, et al., 1984; Mascle et al., 1985). The underlying oceanic crust north of 12°N is of Senonian age, and presumably of Late Jurassic-Early Cretaceous age to the south (Westbrook et al., 1984). The oceanic crust north of 12°N shows WNW- to ESE-trending fracture zones which are probably remnant transform faults. These faults clearly offset magnetic anomalies and have generated troughs and flanking asymmetrical ridges (Peter and Westbrook, 1976; Westbrook et al., 1984). The two most prominent of these ridges are the Barracuda and Tiburon Ridges at 16°33'N and 15°N, respectively.

Site 672 is located on the Atlantic abyssal plain at 15°30'N, i.e., at the northwestern extremity of the Tiburon Rise where it

¹ Mascle, A., Moore, J. C., et al., 1988. Proc., Init. Repts. (Pt. A), ODP, 110: College Station, TX (Ocean Drilling Program).

intersects the accretionary complex (Fig. 1). The average seafloor slope at this location is about 1.5°, dipping to the northwest. A similar dip is observed at the top of the oceanic basement. Site 672 is 6 km east of the deformation front, 10 km east of Site 671 and 20 km south of Site 543, the reference site of DSDP Leg 78A. The sedimentary cover at the selected site is about 800 m thick. and has a well-defined seismic sequence, thus making it an attractive site to document the lithostratigraphy of the Atlantic plain sediments (Fig. 2). Site 672 is designed as the reference hole of the ODP Leg 110 site transect that also includes DSDP Holes 541 and 542. Accordingly, Site 672 should provide an important set of data on lithology, biostratigraphy, physical properties, and geochemistry of the oceanic stratigraphic units prior to accretion or subduction. These data will allow critical direct comparisons to be made between sedimentary deposits of the same age cored in the accretionary complex and on the oceanic plate, and thus will provide a better understanding of the acting tectonic processes.

During DSDP Leg 78A, a reference site (Site 543) was drilled 3 km east of the deformation front but 20 km north of the present site transect (Fig. 3). A complete sedimentary section ranging in age from Campanian to early Pleistocene was cored at Site 543, but lower Pliocene, middle Miocene, middle Eocene, and Maestrichtian sections were significantly condensed, and the Paleocene was missing. Furthermore, the seismic sequences on Line A1C at Site 543 look quite different from these on Line CRV 128 (Fig. 2) and no correlation between the two lines has been possible. Obviously, Site 543 could not be considered as an appropriate reference site for ODP Leg 110, and Site 672 is proposed as a new and more convenient one. It is believed, however, that comparisons of sedimentary processes between the two sites will allow a better understanding of sediment paleoenvironment on the slopes of Tiburon Rise.

OPERATIONS

Hole 672A is located about 5 nmi seaward of Site 671. The site was positioned immediately east of the Barbados forearc accretion and subduction zone and was selected as a reference site for the holes drilled on the prism. The stratigraphy and sediment properties of the oceanic abyssal plain sediments prior to accretion/subduction could then be compared to the sediments cored on the forearc. Site 672 is situated at 15°32.40'N, 58° 38.46'W in 4973 m of water.

The hole was located from seismic line CRV-128 and dead reckoning as the ship's position was outside of the GPS window and satellite information was not available during transit. The beacon was dropped at 1110 hr on 15 July 1986 and the site spudded at 2030 hours. The BHA consisted of a long-toothed APC-XCB 11-7/6" diameter core bit with a 6-drill collar bottom hole assembly. The flapper was removed from the float valve in the bit-sub to allow logging without dropping a bit.

The hole was cored using the APC to 123.3 mbsf where the sediment stiffness caused high pullout forces. APC recovery was excellent (100%). Temperature measurements were taken on Cores 110-672A-2H, -4H, and -6H using the APC temperature recorder. The new pore-water-temperature-pressure (WSTP) sampler probe was deployed after Cores 110-672A-5H and -10H.

Figure 1. Regional and detailed location maps of Site 672.

Figure 2. Top: Line drawing of migrated high-resolution multichannel line CRV 128. Bottom: Detailed seismic section and location of Site 672.

Figure 3. Summary lithology of Site 543 and presumed location of Site 543 on seismic line A1C. The positioning of this line is very poor and correlations with other lines suggest that it is actually located 2 km to the south.

The XCB coring system was deployed after Core 110-672A-14H and used until hole termination at 493.8 mbsf. XCB recovery was 69.3%. The WSTP sampler was deployed after Cores 110-672A-15X and -20X. The second sampler run was aborted when the sampler barrel stuck, 500 m below the rotary table.

Particular attention was given to the drilling parameters of Site 672 to keep cuttings from overwhelming the circulation system. The amount of fill found in the bottom of the hole after each core was reported by the driller. If the fill thickness exceeded 2 m, two annular volumes of seawater were circulated after cutting the next core but before retrieving the core barrel. Pump pressure was increased as the hole deepened and the sediment firmed. The amount of fill increased between cores and the hole became quite sticky as we neared total depth. The operations procedure used for the last few cores was to pull the bit off bottom before retrieving the core and allow the pipe to stand 5 min without circulation. If a significant overpull above the string weight was required to move the pipe after waiting 5 min, the pipe was then moved to a spot higher up the hole, more water was circulated, and the test repeated. The purpose of this test was to approximate the conditions encountered while running into the well to retrieve the core barrel with the sand line. A twenty-barrel mud flush was pumped at 5420 m below rig floor (mbrf) to aid in removing the cuttings. The target depth was obtained at 493.8 mbsf.

The hole was conditioned for logging by pumping a twentybarrel mud flush and making a short wiper trip back up to 5116 mbrf. The hole was then reamed to bottom to clean out fill from 5460 to 5477 mbrf. The bit was positioned at 5101 mbrf and the Schlumberger DIL-GR-SONIC-CAL tool was run into the hole. The logging tool signal was lost at 5131 mbrf, so the tool was retrieved and inspected. The short bridle between the tool and the torpedo connection was found to be at fault. A second short bridle was installed and the same tool was run back into the hole. The tool signal was once again lost, at 500 mbsf, and was therefore retrieved.

The Lamont multichannel sonic tool was attached to the logging cable and deployed while the Schlumberger cable connections were being repaired. The tool functioned well outside the drill pipe but was stopped by a bridge at 5249 mbrf. The tool was initially stuck but became free after 30 min of repeated pulls at 1800 lb over cable weight. The sonic tool was retrieved and the cable was found to be kinked over the bottom 40 m. Caving conditions in the hole were such that further logging could not be carried on successfully. The pipe was run back to 300 mbsf, and the well was abandoned with heavy mud. Pipe was tripped to surface and the *Resolution* departed Site 672 at 1430 hr, 22 July 1986.

The total operations time at Site 672 was 7.1 days, during which time 493.8 m were cored, 381 m recovered (77.3%) and approximately 30-50 m logged. A core summary for Hole 672A is listed in Table 1.

STRUCTURAL GEOLOGY

Site 672 is especially valuable for assessment of the magnitude of deformation occurring in the incoming oceanic deposits. Thus it provides an important reference for understanding the added structural complexity imprinted onto the sedimentary section during accretion or underthrusting. Unfortunately, cores were not oriented to provide azimuth readings.

There are three discrete zones of bedding disturbance, although in most cores bedding attitudes are horizontal or subhorizontal (Fig. 4). The uppermost zone is limited to Core 110-672A-8H, with bedding dips up to 20°. The second zone shows strongly variable bedding attitudes with dips as steep as 70° in Cores 110-672A-21X and -22X. The third zone of bedding disturbance is found in Core 110-672A-42X. Comparing these positions with the log of faulting intensity, we find that in all three cases bedding disturbance correlates well with sections of intensive faulting of the core, and may therefore be induced by tectonic activity.

In general, Hole 672A displays a low background of fault density with zero to one fault per 10 m throughout most of the section. Dip angles of most fault planes are high, and there is a strong predominance of normal displacement senses. This type of faulting is in line with the structural interpretations of the seismic reflection profiles, which shows normal faulting of the oceanic crust and its sedimentary cover in the vicinity of Site 672. Abundant high-angle faulting is recorded in Core 110-672A-8H, numerous normal faults are observed in Core 110-672A-12H, and high-angle faults are commonly developed in Core 110-672A-42X.

The fault geometries and kinematics of Cores 110-672A-20X and -21X are clearly different from the rest of the section. In addition to normal faults, there are singular fault planes with reverse displacements, and one horizontal fault. In addition there is evidence for low-strain ductile-to-semibrittle shearing in the form of centimeter-scale subhorizontal en echelon arrays of dilation veins filled by clay minerals (Fig. 5). Displacements along the shear zones are either horizontal or reverse, as indicated in one case by the dip and geometry of the vein array. No overprinting relationships between normal and reverse faults could be established, but their geometry makes them mutually exclusive with respect to a particular orientation of the three principal stress axes. We must therefore invoke two independent phases of tectonic activity for their formation. With the exception of one fault in Core 110-672A-10H, all reverse or horizontal faults are concentrated in Cores 110-672A-20X and -21X. In terms of lithostratigraphy and biostratigraphy this is broadly the same horizon that hosts the décollement zone in Hole 671B (see Site 671 chapter, this volume). It is conceivable that the compressive structures encountered in Cores 110-672A-20X and -21X represent the tip strains associated with a slowly propagating horizontal décollement within the Miocene sediment section, well ahead of the megascopically visible deformation front.

Syntectonic subvertical dilation veins with clay mineral fills are developed in Cores 110-672A-12H and -13H. They are spatially associated with a zone of normal faulting, and can be ascribed to the same stress geometry that created the normal faults.

Irregular clay-filled vein networks occur in Cores 110-672A-20X to -22X together with subvertical veins and the en echelon vein arrays described above.

In summary, the rocks penetrated in Hole 672 were found to contain a much stronger tectonic imprint than expected in a pile of sediments riding passively on oceanic crust. Many of the observed structures can be related to the normal faulting also visible on the seismic reflection profiles in the area. The cause of the compressive structures encountered in Hole 672 remains unclear, although they may represent precursors of future thrusting associated with the seaward (eastward) progradation of the Lesser Antilles accretionary prism.

LITHOSTRATIGRAPHY

Sediment Lithology: Description

The 494-m-thick succession cored at Site 672 has been divided into five lithologic units (Table 2). Major sediment types as well as some minor lithologies were used as criteria for subdivision. Units 1, 2, and 5 are characterized by relatively homogeneous hemipelagic sedimentation whereas Units 3 and 4 are composed of cyclic alternations of three or four different lithologies reflecting a significant influx of terrigenous material and possible redeposition by a variety of mechanisms. Unit 2 has been

Table 1. Corin	g summary	for Site 672.
----------------	-----------	---------------

Core no. 110-672A-	Date July 1986	Time	Sub-bottom top (m)	Sub-bottom bottom (m)	Meters cored (m)	Meters recovered (m)	Percentage recovery
1H	15	2110	0.0	3.3	3.3	3.35	101.0
2H	15	2250	3.3	12.8	9.5	10.04	105.7
3H	15	2355	12.8	22.3	9.5	9.69	102.0
4H	16	0155	22.3	31.8	9.5	9.80	103.0
SH	16	0250	31.8	41 3	9.5	9.60	101.0
6H	16	0645	41 3	50.8	95	9.81	103.0
7H	16	0825	50.8	60.3	9.5	9.68	102.0
8H	16	1030	60.3	69.8	9.5	9.81	103.0
9H	16	1145	69.8	79 3	95	9.65	101.0
10H	16	1300	79.3	88.8	9.5	9.85	103.0
11H	16	1746	88.8	98 3	9.5	9.73	102.0
12H	16	1905	98 3	107.8	9.5	9.81	103.0
13H	16	1958	107.8	117.3	95	6.77	71.2
14H	16	2157	117.3	123 3	6.0	5.19	86.5
15X	17	0010	123.3	132.8	9.5	6.71	70.6
16X	17	0410	132.8	142.3	9.5	1.81	19.0
17X	17	0605	142.3	151.8	9.5	8 22	86.5
18X	17	0805	151.8	161.3	95	5 55	58.4
19X	17	1003	161 3	170.8	9.5	8.00	84.2
20X	17	1203	170.8	180.3	9.5	4.87	51.2
21X	17	1422	180.3	189.8	9.5	6.28	66.1
22X	17	1613	189.8	199.3	95	8.51	89.6
23X	17	1955	199 3	208.8	95	9 57	101.0
24X	17	2155	208.8	218 3	95	9.40	98.9
25X	17	2358	218 3	227 8	9.5	5 30	55.8
26X	18	0210	227 8	227.3	0.5	5 72	60.2
278	18	0405	227.3	246.8	0.5	8 98	94.5
28%	18	0605	246.8	256 3	95	9.12	96.0
298	18	0812	256 3	265.8	9.5	9 59	101.0
30X	18	1025	265.8	275 3	95	9.47	99.7
31X	18	1215	275 3	284 8	9.5	5 39	56.7
32X	18	1525	284.8	204.0	9.5	7 34	77.2
33X	18	1800	294 3	303.8	95	8 66	91.1
34X	18	2010	303.8	313 3	95	8 16	85.9
35X	18	2220	313 3	322.8	95	9 33	98.2
36X	19	0015	322.8	332.3	9.5	9.51	100.0
37X	19	0231	332.3	341 8	95	8.83	92.9
38X	19	0525	341.8	351.3	9.5	9.38	98.7
39X	19	0816	351.3	360.8	9.5	5.01	52.7
40X	19	1100	360.8	370.3	95	9 58	101.0
41X	19	1310	370.3	379.8	9.5	3.21	33.8
42X	19	1505	379.8	389 3	9.5	6.72	70.7
43X	19	1715	389 3	398.8	95	8 84	93.0
44X	19	1950	398.9	408 3	9.5	5.58	58.7
45X	19	2210	408.3	417.8	9.5	1.38	14.5
46X	20	0145	417.8	427 3	9.5	2.34	24.6
47X	20	0410	427.3	436.8	9.5	0.54	5.7
48X	20	0640	436.8	446.3	9.5	6.04	63.6
49X	20	0900	446.3	455.8	9.5	6.70	70.5
50X	20	1200	455.8	465 3	9.5	5.39	56.7
51X	20	1410	465.3	474 8	9.5	4.32	45.5
52X	20	1750	474.8	484 3	9.5	0.72	7.6
53X	21	0500	484.3	493.8	9.5	8.27	87.0
557		0500	404.5	475.0	2.5	0.27	07.0

subdivided into Subunits 2-A, 2-B, and 2-C on the basis of subtle lithologic differences, biostratigraphy, physical properties, and structural data. Subunit 2-B includes the interval that is equivalent to the décollement zone at Site 671.

Lithologic Unit 1 (0-123.3 mbsf)

This unit consists of lower Pleistocene to upper Miocene pale yellowish-brown to greenish-gray calcareous clay, calcareous mud and marl. Transitions between these sediment types are gradational. Carbonate content varies between 5.6% and 48.6% with most sediments containing 20-45% carbonate (Fig. 6). Most smear slides of sediments from Unit 1 show traces (up to 2%) of radiolarians and sponge spicules. Ash layers (vitric, vitric crystalline, and crystalline) are present throughout Unit 1 (2 to 5 discrete ash layers per core on the average; Fig. 7) and are commonly highly bioturbated (Fig. 8).

Lithologic Unit 2 (123.3-227.8 mbsf)

The transition to this unit is marked by a sharp decline in carbonate content of the sediments to near-zero values (Fig. 6).

Subunit 2-A (123.3-170.8 mbsf)

The unit is composed of green and olive gray mud/mudstone and clay/claystone of late Miocene and indeterminate age. Ash content is significantly reduced relative to Unit 1 sediments, especially at depths greater than 128 m (Fig. 7). Ash beds are commonly bioturbated, although the overall intensity of bioturbation in Unit 2 is less than that in Unit 1.

Subunit 2-B (170.8-208.8 mbsf)

The unit consists of claystones and siliceous claystones of early Miocene and indeterminate ages. Radiolarians and sponge

Figure 4. Log of structural data measured on cores of Hole 672A. Singular brittle fault surfaces are depicted as solid lines, the angle with the horizontal indicating the dip angle. The dip of shear zone boundaries of semibrittle dilatant shear zones is indicated by broken lines. Where faulting kinematics could be identified, the sense of movement is indicated by small arrows.

spicules comprise an average of 5-15% of these sediments. The frequency of ash beds and overall ash content of Subunit 2-B are greater than those of Subunit 2-A (Fig. 7). The intensity of bioturbation decreases with depth. Examples of *Zoophycos* and *Chondrites* are shown in Figures 9 and 10, respectively. Subunit 2-B is predominantly brown and orange-brown in color, distinctly different from the green and olive characteristic of Subunit 2-A. Zeolites (probably clinoptilolite) are dispersed throughout much of Core 110-672A-23X in the lower 10 m of Subunit 2-B. In addition to these lithologic differences, Subunit 2-B is characterized by relatively high porosities and the presence of structural features such as veins and faults. Subunit 2-B's lithologic characteristics and precise age (as determined from radio-

larians) suggest that these sediments are equivalent to the décollement zone of Site 671.

Subunit 2-C (208.8-227.8 mbsf)

This unit consists of varicolored (brownish green, bluish green, and olive gray) claystones and mudstones of indeterminate age with horizontally laminated quartz silt-rich intervals increasing in number and thickness with depth (Fig. 11). Ash content is low (Fig. 7) and sediments are only mildly bioturbated.

Lithologic Unit 3 (227.8-332.3 mbsf)

The unit is characterized by interbedded marlstones and claystones, mudstones, and siltstones of variable carbonate content.

Figure 5. Core photograph shows an en-echelon array of sigmoidal dilatant veins (arrow) in Sample 110-672A-20X, CC (28-30 cm). The vein array is subhorizontal, and vein geometry may be interpreted in terms of top-to-left shearing.

The sediments of Unit 3 have been dated as early to late Oligocene. Unit 3 is distinguished by the presence of common calcareous intervals; Unit 2 is generally noncalcareous (Fig. 6). The claystones are noncalcareous to slightly calcareous, generally green or olive gray, and are commonly mildly bioturbated. The mudstones are brown to dark gray and their carbonate content varies from near-zero to 30% (transition to marlstone). The mudstones are locally parallel laminated and are generally free of bioturbation. The siltstones are dark gray to black and commonly are parallel or cross laminated. They are noncalcareous to slightly calcareous and are commonly transitional to silty mudstones. Silt also occurs as very thin laminae within mudstone intervals, and locally exhibits micro-cross laminations and small-scale convolute features (Fig. 12). The silt-sized grains are dominantly quartz, with traces of glauconite and very rare mafic minerals (glaucophane and mica) and microcline. The marlstones of Unit 3 are pale greenish gray and contain up to 80% carbonate. Some of these carbonate-rich intervals show Planolites, Teichichnus, and Chondrites burrows. These burrows are commonly more abundant near the top of each carbonate-rich layer, and are generally filled with overlying noncalcareous green claystone.

Both sharp and gradational contacts occur between the different lithologies of Unit 3. Cores 110-672A-26X through -29X (227.8-265.8 mbsf) have few intervals of marlstone and the transitions between claystone, mudstone and siltstone are commonly gradational. In contrast, the lower portion of Unit 3 (Cores 110-672A-30X through -36X, 265.8-332.3 mbsf) is characterized by common marlstones composed of nannofossils and clay. These beds typically exhibit sharp lower contacts, laminated basal intervals, and bioturbated tops (Fig. 13). These carbonate-rich layers either grade upward into, or are overlain with sharp contacts by, less calcareous lithologies.

Lithologic Unit 4 (332.3-455.8 mbsf)

This unit is also characterized by cyclic sedimentation. Ages range from middle to late Eocene/early Oligocene; Cores 110-672A-37X and -38X are barren of microfossils. The sediments of Unit 4 are lithologically very similar to those of Unit 3 and are differentiated primarily by the presence of intercalated, pale green to gray, quartz sandstones in the lower unit. The sandstone horizons are calcareous and slightly glauconitic (Fig. 14) and range in thickness from 1 cm to 60 cm. The quartz grains average 0.5 mm in diameter and are subangular to subrounded. These beds commonly contain a mixture of very fine-grained silt and sand-sized quartz (Fig. 15). The calcareous mudstones locally contain foraminifer fragments, glauconite, and rare detrital grains of microcline (Fig. 16); fragments of benthic foraminifers also occur locally.

The sandstones of Unit 4 are interlayered with dark green, noncalcareous claystones and olive, brown, and dark gray mudstones and siltstones with variable carbonate contents. Claystone layers vary in thickness from 15 cm to 6 m. Mudstones, muddy siltstones and siltstones generally range from 5 to 60 cm in thickness. These beds are generally similar in composition to the calcareous quartz sandstones except for higher clay contents. Pale green marlstones similar to those of Unit 3 (Fig. 13) range from 10 cm to 1.5 m in thickness. These beds are commonly silty or sandy. Many of the marlstone layers are highly indurated and can therefore be classified as limestones.

Cross-lamination and convolute bedding are common in the calcareous sandstones, siltstones, and mudstones (Figs. 17, 18, and 19). Slumps commonly occur at the base of marlstone layers (Fig. 20). The calcareous quartz sandstones and the marlstones both typically exhibit sharp basal contacts and laminated silty lower portions. The beds commonly grade upward to less silty, bioturbated intervals that are in turn overlain by dark green, noncalcareous claystone (Figs. 21 and 22).

Analysis of five thin sections made of limestones from Unit 4 (Cores 110-672A-41X, -43X, and -49X) revealed two different lithologies. The more common of the two lithologies consists of wackestones to packstones that contain well-preserved foraminifers, sand-sized quartz, and rare echinoid fragments dispersed in a micritic and clayey matrix (Fig. 23). Foraminifer tests are generally filled with the matrix material (Fig. 24) although rarely they are filled with glauconite. The second variety of limestone is relatively rare and consists of silty to sandy, laminated, finegrained limestone that is locally ferruginous (Fig. 25). Foraminifers and radiolarians are fragmented and recrystallized (Fig. 26) and traces of glauconite, microcline, and glaucophane were observed in these limestones.

Lithologic Unit 5 (455.8-493.8 mbsf)

This unit consists of slightly siliceous to siliceous claystones/ mudstones of early to middle Eocene age. Carbonate content is essentially zero. Unit 5 exhibits common color changes from dark green to brown to reddish brown. Radiolarian contents vary from 5 to 30% and traces of quartz silt are dispersed throughout the unit. Unit 5 sediments are free of bioturbation.

Sediment thickness versus age is shown in Figure 27. Unit 1 sediments exhibit moderate sedimentation rates whereas Unit 2 exhibits low to very low rates. Unit 3 is characterized by moder-

Table 2.	Lithologic	subdivisions	at	Site	672.
----------	------------	--------------	----	------	------

Unit	Lithology	Core range (Hole 672A)	Depth (mbsf)	Age
1	Calcareous clay and mud; common ash layers; traces of biogenic silica; CaCO ₃ : 5 to 65%	1H to 14X	0-123.3	Early Pleistocene to late Miocene (upper part)
2-A	Mudstone and claystone; few ash layers; CaCO ₃ : 0-15%	15X to 19X	123.3-170.8	Late Miocene (lower part) and indeterminant
2-B	Claystone and siliceous claystone; common ash layers: CaCO ₂ : 0%	20X to 23X	170.8-208.8	Indeterminant and early Miocene
2-C	Claystone and mudstone with laminated silt intervals; CaCO ₂ : 0%	24X to 25X	208.8-227.8	Indeterminant
3	Interbedded claystone, calcareous mudstone, and marl; frequent thin quartz silt laminae; CaCO ₃ : 0 to 65%	26X to 36X	227.8-332.3	Late Oligocene (lower part) to early Oligocene
4	Interbedded claystone, laminated calcareous mudstone, micritic limestone and calcarenite; glauconitic sand layers; CaCO-: 0 to 90%	37X to 49X	332.3-455.8	Early Oligocene/late Eocene to middle Eocene
5	Siliceous (radiolarian) claystone; shaly in lower part; CaCO ₃ : <10%	50X to 53X	455.8-493.8	Middle Eocene (lowermost) to early Eocene

Figure 6. Profile of percentage carbonate in Site 672 sediments.

ate sedimentation rates whereas Unit 4 is marked by high values. Unit 5 rates are low.

Volcanic Ash Occurrence

As at Site 671, a semiquantitative estimate of the volume of ash deposited in the sedimentary sequence recovered at Site 672 was determined by plotting the intervals over which ash horizons occur and by estimating the concentration in those intervals. The graphic ash log (Fig. 7) results from analysis of core descriptions, core photos, and smear-slide descriptions. In con-

Figure 7. Concentration of ash versus depth for Hole 672A.

trast to Site 671, the estimate of ash concentration is probably more accurate here because it was determined in each ash interval by careful core examination and by calibration with smearslide analysis. The rationale for this painstaking analysis is to identify ash beds that have been diluted and dispersed because

Ash material consists primarily of plagioclase laths and glass shards (both fresh and devitrified). In thick beds crystals are concentrated near the base and glass near the top, suggesting they accumulated by air-fall. Lack of internal structure of the

Figure 8. Bioturbated ash bed in Unit 1; photograph of Sample 110-672A-10H-1, 65-95 cm.

Figure 10. Chondrites burrows in claystone of lithologic Unit 2. Photograph of Sample 110-672A-21X-2, 24-30 cm.

Figure 11. Laminated silt layer from base of lithologic Unit 2. Photograph of Sample 110-672A-25X-1, 138-150 cm.

Figure 12. Horizontal and convolute laminations in calcareous mudstone typical of lithologic Unit 4. Photograph of Sample 110-672A-30X-3, 132-146 cm.

ash layers, and homogeneity of particle size, favor the hypothesis of segregation by air-fall rather than by turbidity currents. Although some pure crystalline and vitric ashes do occur, most beds are a mixture of both components.

Comparison of these results with those from Site 671 shows that the ash distribution is generally similar in both holes. Abundant ash was deposited in the Pliocene and Pleistocene, the amount decreases in the Miocene, and ash is nearly absent below the Miocene/Oligocene boundary. The details of this comparison match imperfectly, but this variation can be explained by variable diagenesis and by the current lack of resolution of biostratigraphic boundaries.

Analysis of Sediment Coarse Fractions

Analysis of the coarse fraction (>63 μ m) of sediments from Site 672 provides valuable information for sediment provenance interpretation. Grains obtained by sieving sediment through a 63- μ m sieve, as well as coarse grains in smear slides, were examined.

Figure 13. Lower laminated portion of 70-cm-thick, pale green marlstone bed in lithologic Unit 3. Photograph of Sample 110-672A-34X-5, 12-55 cm.

There are three distinct groups of coarse-fraction grains in the Site 672 sediments. The first group is composed of ash components and is characteristic of Cores 110-672A-1H through -22X (lower Pleistocene through lower Miocene). Common minerals are feldspar (mostly plagioclase), hornblende (brown-green or rarely brown-red), orthopyroxene, clinopyroxene, quartz, opaque minerals, and glass (including volcanic rock fragments). The feldspar and quartz grains are usually angular, but some rounded quartz, probably of continental origin, is present. The rounded quartz grains have wavy extinction indicating derivation from metamorphic or granitic rocks.

The second coarse-fraction association, found in Cores 110-672A-22X through -49X, is dominated by continentally-derived quartz. Trace amounts of glaucophane are found in the coarse fractions of sediments from Cores 110-672A-26X through -38X, and minor amounts of microcline are commonly associated with the quartz throughout this interval. Rarely, trace amounts of clinopyroxene also occur in this coarse fraction association. Radiolarians are common in Core 110-672A-21X and rare fish teeth were found in Core 110-672A-24X.

The third coarse-fraction association, found in Cores 110-672A-50X to -53X, consists of radiolarians and fish teeth.

The following conclusions can be drawn from analysis of these coarse -fraction associations:

1. Volcanic ash was supplied to the Site 672 region from at least the early Miocene to the present, probably from the Lesser Antilles Arc. In comparison with Site 671, ash is less abundant and generally more fine-grained at Site 672. Most ash material appears to be associated with calc-alkaline volcanism. The presence of rounded, metamorphic/granitic quartz grains in the lower Miocene-Pleistocene sediments probably reflects periodic terrigenous influx from South America.

2. The quartz-glaucophane-microcline coarse-fraction assemblage reflects a continental sediment source during the lower Miocene to lower to middle Eocene. The lack of ash components indicates either significant distance from the volcanic arc during this time period, or lack of arc activity, or both.

3. The coarse fractions from lower Eocene sediments reflect pelagic sedimentation with no arc-derived or continent-derived coarse grains.

Depositional Environments and Processes

The combination of clay and biogenic siliceous materials in Unit 5 sediments indicates that sedimentation during the early Eocene and early middle Eocene was hemipelagic and below the carbonate compensation depth (CCD). During the middle Eocene, and continuing through the late Eocene/early Oligocene (Unit 4 sediments), there was a significant influx of coarser (siltand sand-sized) terrigenous detritus. These sediments presumably were originally delivered to the region as turbidites originating from the South American continent. Their presence on the slope top of the Tiburon rise is problematic. They may represent either: (a) very distal turbidites that flowed upslope to their present depositional site, or (b) redeposition by bottom currents. Biogenic siliceous sediment occurs only sporadically, and sponge spicules observed in mudstones and sandstones of Unit 4 are blackened and appear to be reworked. The pale green marlstones of Unit 4 commonly have sharp basal contacts, prominent laminations, cross-bedding, and slump structures. The common restriction of bioturbation to the upper portions of these beds suggests rapid deposition, probably by turbidity currents. The presence of slumps composed of pale green nannofossil marlstone within the marlstone beds coupled with the occurrence of these beds on the slope of the Tiburon Rise suggests a source area higher on the Rise. The presence of minor silt-sized quartz (as well as rare glaucophane and microcline) in the calcareous deposits of Unit 4 is somewhat problematic in that it requires deposition of terrigenous silt on the Tiburon Rise before redeposition in the marlstone beds.

From the late Eocene/early Oligocene through the late Oligocene (Unit 3 sediments) delivery of silt and clay-sized terrigenous debris to the Site 672 region continued, but sand deposi-

Figure 14. Glauconitic quartz sand (smear slide), Sample 110-672A-40X-1, 29-31 cm; lithologic Unit 4.

Figure 15. Silty sand from lithologic Unit 4; note contrast in grain size between sand and silt fractions (smear slide). Sample 110-672-37X-5, 71-73 cm.

tion ceased. Deposition of biogenic silica continued sporadically. The marlstones of Unit 3 may represent a combination of true pelagic accumulation and turbidity current deposition; differentiation between the two origins is difficult and requires further investigation. Interpretation of the position of Site 672 with respect to the CCD during deposition of Unit 3 sediments depends on the origin of the calcareous intervals. If some marlstone layers contain carbonate accumulations of pelagic origin, the site can be assumed to have been above the CCD, or perhaps between the compensation depths for foraminifers and nannofossils. If, however, all carbonate is considered to have been delivered to the site from a topographically higher lateral source (Tiburon Rise), it can be concluded that the site remained below the CCD during deposition of Unit 3 sediments. The presence of noncalcareous clay and mudstone interlayered with the carbonate-rich horizons provides support for the second hypothesis.

The upper Oligocene to upper Miocene sediments of Unit 2 record a return to hemipelagic deposition. Terrigenous input is limited principally to clay-sized material. The biogenic silica content of Unit 2 sediments is generally low, but is somewhat variable. Sediments of Subunit 2-B are notably siliceous. Carbonate is either absent or present in very low concentrations in Unit 2, indicating that Site 672 was below, or very near, the CCD during deposition of Unit 2 sediments. Bioturbation increased during the Miocene. The appearance of ash layers in

500 µm

Figure 16. Foraminifer fragment and quartz, glauconite, and microcline grains in calcareous mudstone of lithologic Unit 4 (smear slide), Sample 110-672A-42X-1, 20-22 cm.

Miocene sediments indicates increasing proximity of the site to the Lesser Antilles Arc, or an upsurge in Neogene arc activity, or both.

Deposition of the upper Miocene to lower Pleistocene sediments of Unit 1 was dominated by accumulation of terrigenous clay, pelagic carbonate, and ash layers. The predominance of both foraminifers and nannofossils indicate sedimentation above the CCD. The biogenic silica content of Unit 1 sediments is relatively low. Bioturbation is very well developed.

Bulk Mineralogy

The bulk mineralogy of sediments from Site 672 is presented in terms of cumulative percentage of the four phases: total clay minerals, quartz, plagioclase, and calcite (Fig. 28). Methods of sample preparation, X-ray diffraction analysis, and semiquantitative analysis are given in the Explanatory Notes chapter. Several major trends in the percentages of the four primary components are evident. In general, these trends can be related to the changing influence of hemipelagic sedimentation vs. lateral influxes of terrigenous and calcareous sediment, overprinted by deposition of volcanic ash from the Lesser Antilles Arc.

The percentage of total clay minerals in the upper 100 m of section varies widely between about 20%-60% with an average of about 40%. From 100 to 190 mbsf, the percentage of total clay increases, with wide fluctuations, to values between 80% and 90%. This high clay content is characteristic of the sediments from about 190 to 250 mbsf. The sediments in the upper 250 m of section reflect hemipelagic sedimentation and correspond to lithologic Units 1, 2, and the uppermost part of Unit 3. The wide fluctuations of percentage total clay in Unit 1, and the overall increase from Unit 1 to Unit 2, are related to changes in carbonate content (discussed below). Below 250 mbsf, the cyclic sediment sequences of the lower Oligocene and middle to upper Eocene (Units 3 and 4) have variable clay contents reflecting the alternations of lithologies (noncalcareous clay/mudstones, marlstones and calcareous siltstones, and sandstones). The lower part of the middle Eocene section marks a return to dominantly hemipelagic sedimentation (Unit 5, 456 to 494 mbsf). The siliceous clay/mudstones of this unit have total clay contents ranging from 82% to 94%.

There are sharp fluctuations in percentage calcite throughout Unit 1 sediments with average values increasing slightly with depth from roughly 25 to 30%, to about 40% at a depth of 80 mbsf. Below 80 mbsf, calcite content decreases until the section becomes calcite-free at the base of Unit 1 (123 mbsf). With the exception of two samples containing 11% to 16% calcite at about 157 mbsf, Unit 2 sediments are calcite-free. Calcite first reappears at a depth of 252 mbsf in Unit 3. The trend in percentage calcite in Unit 1 and 2 sediments may reflect a shallowing of the CCD through the late Oligocene. The calcite content of Unit 3 and 4 sediments is highly variable and largely reflects periodic lateral influxes of carbonate sediment, probably derived from the Tiburon Rise, during the early Oligocene and middle to late Eocene. The carbonate-rich horizons of Units 3 and 4 are interbedded with noncalcareous claystone and mudstone layers, which probably represent background sedimentation. The upper portion of Unit 4 (335-370 mbsf) is calcite-free. The sediments of Unit 5 are calcite-free and record deposits below the CCD.

The plagioclase content of Site 672 sediments reflects the occurrence of ash layers and dispersed ash. In Units 1 and 2 sediments, plagioclase varies from 0% to 64%, reflecting the abundant ash layers in these units (Fig. 7). The sediments of Units 3, 4, and 5 have no discrete ash layers and their plagioclase contents are between 0% and 9%.

In Units 1 and 2 sediments, quartz varies between 2% and 23% with one sample containing 48% (128 mbsf). Most samples contain about 10% quartz, a value similar to that of the hemipelagic sediments in the upper 500 m at Site 671. Units 3 and 4 sediments show widely varying quartz contents reflecting the influence of terrigenous silts and sands derived from South America. The quartz content of Unit 5 sediments is about 10%, similar to that of Units 1 and 2 sediments.

Sediments of Subunit 2B were noted in the lithologic descriptions as having characteristics like those of the décollement zone at Site 671. In terms of bulk mineralogy, Cores 110-672A-22X and -23X within this subunit are most similar to those of the décollement observed in other Leg 110 sites. These sediments are clay-rich, containing 80% to 95% total clay minerals. They are calcite-free, and contain 2% to 10% quartz and 0% to 5% plagioclase.

Figure 17. Cross-lamination in calcareous sandy siltstone. Photograph of Sample 110-672A-48X-2, 0-30 cm.

Figure 18. Relatively large-scale, nonplanar cross-stratification in calcareous mudstone of lithologic Unit 4. Photograph of Sample 110-672A-40X-5, 42-56 cm.

The bulk mineralogy of most of the sediments sampled at Site 672 is adequately described in terms of the four phases: total clay, calcite, quartz, and plagioclase. Many of the samples of early to middle Eocene age, however, contain significant concentrations of opal-CT that are not accounted for in the semiquantitative analysis. Opal-CT is a form of silica $(SiO_2 \cdot 2H_2O)$ that is an intimate admixture of cristobalite and tridymite. It is a common product of the diagenesis of the opaline silica (opal-A) in radiolarian and diatom tests. Opal-CT first appears with depth in some of the carbonate-rich horizons of the middle Eocene between 409 and 441 mbsf. It is present in all samples analyzed below 448 mbsf and is a major component of the lower and middle Eocene sediments of Unit 5.

BIOSTRATIGRAPHY

Summary

Site 672 was drilled in the previously presumed undeformed sediments of the Atlantic abyssal plain as a biostratigraphic ref-

Figure 19. Oblique stratification (ripple drift ?) in intercalated sand and silt layers, lithologic Unit 4. Photograph of Sample 110-672A-38X-7, 10-20 cm.

Figure 20. Slump folding in pale green silty marlstone. Photograph of Sample 110-672A-40X-2, 101-109 cm.

Figure 21. Cyclic sequences in lithologic Unit 4; noncalcareous claystones (dark) and marlstones (light). Note sharp base of marlstone layer at 104 cm and gradational, bioturbated upper contact of same bed into dark green claystone at 96 cm. Photograph of Sample 110-672A-48X-4, 74-110 cm.

Figure 22. Idealized stratigraphic section showing major sediment types in cyclically bedded lithologic Unit 4.

erence for structurally deformed sections in the Barbados accretionary wedge. The biostratigraphy at Site 672 (Fig. 29) is based on a combination of data from calcareous nannofossils, foraminifers, and radiolarians. These fossil groups define an early Pleistocene through early Eocene age for the reference section. The biostratigraphic record is not complete at Site 672, largely owing to the effect of Miocene dissolution.

A significant biostratigraphic gap is indicated between Sections 110-672A-4H-CC and -5H-CC by missing zones in both calcareous fossil groups. This gap in the sedimentary record contains the Pleistocene/Pliocene boundary and may span 1.4 to 2.4 Ma.

The Miocene section in Hole 672A is highly dissolved, and remains for the most part, biostratigraphically unresolved by calcareous microfossil groups. Upward migrations of the CCD during Miocene time are probably responsible for the carbonate-poor intervals observed in sediments of this portion of the Atlantic abyssal plain. Radiolarian species are abundant and well preserved in the lower Miocene section and provide excellent biostratigraphic control between Samples 110-672A-21X-1, 27-29 cm and -23X-4, 97-99 cm. Based on radiolarian ages, the décollement zone in Hole 671C is correlative with the lower Miocene silica-rich sediments in Hole 672A.

Oligocene sediments between Samples 110-672A-26X-1, 48-49 cm and -36X-CC include clastic and bioclastic sequences which originated from either the upper slope of the Tiburon Rise or the South American continent. Eocene taxa of all three fossil groups are reworked into the Oligocene section. Reworking is particularly apparent in Sections 110-672A-31X-CC through -35X-CC. Preservation of carbonate assemblages in pelagic Oligocene deposits is moderate to good.

Recovery of Eocene sediments in Hole 672A was poor, owing to variations in lithification and consequent difficulty in coring. Calcareous fossils are locally recrystallized in the middle and upper Eocene but retain a moderate level of preservation down through Section 110-672A-48X-CC. Below this point, silica-rich clays underlie the calcareous sediments. The basal portion of the sequence contains radiolarian assemblages which range from middle to early Eocene in age.

Calcareous Nannofossils

Nannofossiliferous sediments in Hole 672A range from early Pleistocene to middle Eocene in age. The biostratigraphic succession in Hole 672A is frequently interrupted by intervals of strong dissolution which are particularly apparent in the Miocene. Preservation is generally good in the Pliocene and Pleistocene but deteriorates in older sediments. The Paleogene section is affected by dissolution and recrystallization and is of moderate preservation.

Samples 110-672A-1H-1, 71-73 cm to -4H-CC are early Pleistocene in age. These samples are placed within the *Pseudoemiliania lacunosa* small gephyrocapsa Zone of Gartner (1977) because of the presence of *Pseudoemiliania lacunosa* without *Helicosphaera sellii*. Upper Pleistocene sediments were not observed at this site.

Between Samples 110-672A-4H-CC and -5H-1, 80-81 cm a significant amount of missing sediment section is indicated. The base of Core 110-672A-4H is above the H. sellii datum of early Pleistocene age and Sample 110-672A-5H-1, 80-82 cm is within the Calcidiscus macintyrei Zone (Gartner, 1977) of late Pliocene age. The Helicosphaera sellii Zone of Gartner (1977) was not observed in the section. Samples 110-672A-5H-1, 80-82 cm through -5H-3, 80-82 cm are assigned to the Calcidiscus macintyrei Zone (Gartner, 1977) based on the presence of C. macintyrei without D. brouweri. Samples 110-672A-5H-4, 80-82 cm through 6H-3, 98-100 cm are zoned into the late Pliocene CN12d Zone of Okada and Bukry (1980) owing to the presence of D. brouweri without D. pentaradiatus. Subzone CN12c of Okada and Bukry (1980) is found between Samples 110-672A-6H-4, 98-100 cm and -6H-6, 98-100 cm. The presence of D. surculus in Samples 110-672A-6H-CC through -7H-3, 80-82 cm indicates the Subzone CN12b of Okada and Bukry (1980). The D. tamalis Subzone CN12a occurs between Samples 110-672A-7H-4, 80-82 cm through -10H-3, 80-82 cm and is designated by the presence of D. tamalis without Reticulofenestra pseudoumbilica. The early/late Pliocene boundary is defined in Sample 110-672A-10H-4, 80-82 cm by the LAD of R. pseudoumbilica. Zone CN11 of early Pliocene age is restricted to the interval between Samples 110-672A-10H-4, 80-82 cm and -12H-1, 82-84 cm and was not refined to subzone level. Rare specimens of Amaurolithus primus are observed in Sample 110-672A-12H-1, 82-84 cm. The top of species A. primus is not consistent in this geographic area (Bergen, 1984) and is not used as a marker in Hole 672A. A. tricorniculatus occurs in Sample 110-672A-12H-2, 82-84 cm and indicates the top of the early Pliocene Zone CN10c. The range of Ceratolithus acutus designates the CN10b Subzone of Okada and Bukry (1980) in Samples 110-672A-12H-6, 82-84 cm through -13H-2, 87-89 cm. Sample 110-672A-13H-

1 mm

Figure 23. Limestone (packstone to wackestone) from lithologic Unit 4, composed predominantly of planktonic foraminifers (thin section); Sample 110-672A-41X-CC, 18-19 cm.

500 µm

Figure 24. Thin-section detail of packstone shown in Figure 23. Planktonic foraminifer showing both clay infilling (light) and micrite infilling (dark); Sample 110-672A- 41X-CC, 18-19 cm.

3, 97-99 cm does not contain *C. acutus* or *D. quinqueramus* and is placed within Subzone CN10a (Okada and Bukry, 1980), which is latest Miocene in age.

Upper Miocene sediment occurs in Sample 110-672A-13H-4, 97-99 cm, below the LAD of *Discoaster quinqueramus*. The cooccurrence of *D. quinqueramus* and *Amaurolithus primus* in Samples 110-672A-13H-4, 97-98 cm through -15X-2, 70-72 cm defines the CN9b Subzone of Okada and Bukry (1980). A barren interval extends from Sample 110-672A-15X-3, 70-72 cm to -17X-2, 110-112 cm and is probably the result of a late Miocene dissolution episode. The CN9a Zone of Okada and Bukry (1980) occurs in Samples 110-672A-17X-3, 110-112 cm through -18X- 4, 39-41 cm based on the presence of *Discoaster berggrenii* without *Amaurolithus primus*.

Sample 110-672A-18X-CC is assigned to Zone CN7 of Okada and Bukry (1980) owing to the tentative identification of *D. hamatus*. Specimens of *D. hamatus* are six-rayed forms which often appear near the top of the range of this taxon. Poor preservation makes positive recognition of this species difficult. Section 110-672A-18X-CC is the last nannofossiliferous interval in the Miocene section. Below this a long barren zone persists between Samples 110-672A-19X-1, 78-80 cm and -25X-CC, a circumstance attributed to a rather extensive upward excursion of the Miocene CCD.

1 mm

Figure 25. Laminated ferruginous limestone (thin section), Sample 672A-49X-3, 116-118 cm, lithologic Unit 4.

500 µm

Figure 26. Radiolarian "ghost" in recrystallized limestone shown in Figure 25 (thin section), Sample 110-672A-49X-3, 116-118 cm.

The top of the Paleogene is marked in Core 110-672A-26X by Sphenolithus ciperoensis which is the range marker for the late Oligocene CP19 Zone of Okada and Bukry (1980). Sediments belonging to the latest Oligocene CN1 Zone are not found in the section and may have been removed by dissolution. The *S. ciperoensis* Zone (CP19) of Okada and Bukry (1980) is identified from Samples 110-672A-26X-1, 86-88 cm through -28-CC by the presence of *S. ciperoensis*. Zone CP18, defined by the occurrence of *S. distentus* in the absence of *S. ciperoensis*, is observed in Samples 110-672A-29X-1, 85-87 cm through -37-X-1, 67-69 cm. Many barren intervals were noted in the CP18 section. Zone CP18 is reassigned to the early Oligocene by Berggren, Kent, and Flynn (1985) from its earlier designation as late

Oligocene by Okada and Bukry (1980). Reworking of Eocene nannofossils into the CP18 section is common especially in Section 110-672A-31X-CC.

Lower Oligocene sediment is also observed in Sample 110-672A-37X-6, 67-69 cm. The Oligocene section is slightly recrystallized and of moderate preservation overall. Early Oligocene zone CP16b of Okada and Bukry (1980) is recognized in Core 110-672-37X samples above because of the occurrence of *Reticulofenestra umbilica* and *Cyclicargolithus formosus*.

Upper Eocene sediments are confined to Samples 110-672A-39X-2, 26-28 cm through -40X-5, 13-15 cm. This section is often very recrystallized and is of moderate to poor preservation. The co-occurrence of *Discoaster sipanensis* and *D. barbadiensis*

Figure 27. Sediment thickness vs. age for Site 672. Sedimentation rates for each interval are also shown.

Figure 28. Bulk mineralogy of Site 672 samples expressed as cumulative percentages of total clay minerals, quartz, plagioclase, and calcite.

without Chiasmolithus grandis suggests Zone CP15 of Okada and Bukry (1980).

An expanded middle Eocene section is recognized in Samples 110-672A-40X-6, 44-46 cm through -49X-2, 70-72 cm. This interval is confined to the CP14 Zone of Okada and Bukry (1980) by the presence of *C. grandis* and *Reticulofenestra umbilica*. Samples 110-672A-49X-3, 79-81 cm through -53X-CC are barren of nannofossils.

Planktonic Foraminifers

Planktonic foraminifer-bearing sediments at Site 672 range from early Pleistocene to Eocene in age. Foraminifers are generally abundant and well preserved throughout the Pleistocene and the Pliocene. As at Site 671, the Pliocene-Miocene passage is marked by an increase in dissolution which reduced drastically the number of species and, finally, gave way to a long interval barren of foraminifers. Below this barren interval, which corresponds to almost the whole Miocene, sediments yield some well-preserved and generally poor assemblages belonging to the Oligocene and the Eocene.

The Pleistocene assemblage, recovered between Sections 110-672A-1H-CC and -4H-CC, is dominated by *Globorotalia truncatulinoides*, *G. hessi*, *Neogloboquadrina dutertrei*, *Sphaeroidinella dehiscens*, *Pulleniatina obliqueloculata*, *Globigerinoides conglobatus*, *G. trilobus* and *G. ruber*. The *Globorotalia menardii-G. tumida* complex is well represented only in Cores 110-672A-1H and -2H. This interval is placed within the lower Pleistocene *Globorotalia hessi* subzone of the *G. truncatulinoides* Zone, owing to the presence of the subzonal marker in the absence of younger or older species, such as *Globigerina calida* or *Globorotalia viola*.

The lowermost Pleistocene G. viola Subzone of the G. truncatulinoides Zone has not been identified here; sediments corresponding to this relatively long time (ca. 1 Ma, according to Berggren, Kent and Van Couvering, 1985) are probably missing from the section.

The last downhole occurrence of G. truncatulinoides is noted in Section 110-672A-4H-CC, while the first downhole occurrence of G. miocenica is in Section 110-672A-6H-CC. Consequently, Core 110-672A-5H falls in the uppermost Pliocene G. tosaensis Zone, which is bracketed by these two events. Nannofossils from the same core are assigned to Zone CN12a, which corresponds to a lower level in our planktonic foraminifer zonal scheme, i.e., to the Globorotalia miocenica Zone. This discrepancy is perhaps due to the somewhat erratic distribution of the thin-shelled G. miocenica and G. exilis, appearance of which may have been by dissolution. Following this hypothesis, Core 110-672A-5H should be placed within the G. miocenica Zone instead of within the G. tosaensis Zone. In this case, the abovementioned hiatus between lower Pleistocene and uppermost Pliocene would represent on the order of 1.8 m.y. of sedimentation.

Sections 110-672A-6H-CC and -7H-CC are assigned to the *G. miocenica* Zone (upper part: *G. exilis* Subzone or Berggren's PL5) because of the (apparent?) first occurrence of the zonal and subzonal markers, frequent and very well preserved in Core 110-672A-7H.

The short Zone PL4, defined by the coexistence of last Sphaeroidinella dehiscens s.s. (large flange) and first Globoquadrina altispira, has not been recognized. These two events were successively noted, however, in Sections 110-672A-7H-CC and -8H-CC; the zone could nevertheless be represented in Core 110-672A-8H.

The lower part of the G. miocenica Zone (PL3) was observed in Sections 110-672A-8H-CC and -9H-CC. The assemblage is dominated by Globorotalia limbata, G. multicamerata, Globoquadrina altispira, Globigerinoides extremus, Globigerina vene-

Figure 29. Biostratigraphic summary, Site 672. R9: Calocycletta costata Zone; R10: Stichocorys wolffii Zone; R11: Stichocorys delmontensis Zone; R12: Cyrtocapsella tetrapera Zone; R13: Lychnocanoma elongata Zone; R14: Dorcadospyris ateuchus Zone; R16: Thyrsocyrtis bromia Zone; R16a: Carpocanistrum azyx Zone; R16b: Calocyclas bandyca Zone; R19: Podocyrtis mitra Zone; R22: Dictyoprora mongolfieri Zone.

zuelana, Sphaeroidinellopsis seminulina and S. sphaeroides. The zonal marker is lacking, probably removed by dissolution.

Sections 110-672A-10H-CC through -12H-CC belong to the lower Pliocene, *Globorotalia margaritae* Zone, although the nominate taxon has not been identified in the core-catcher samples. As at Site 671, this zone can nevertheless be recognized in using the alternative markers *Pulleniatina primalis*, *Globorotalia plesiotumida* and *Globigerinoides obliquus*. The first downhole occurrence of *Globigerina nepenthes* and *Globorotalia cibaoensis* in Section 110-672A-11H-CC marks the lower part of the zone (PL1a to early PL1b).

The Pliocene/Miocene boundary is placed between Cores 110-672A-12H and -13H on the basis of the nannofossil data. Section 672A-13H-CC, however, contains rare specimens of *Globigerinoides conglobatus*. Estimated age of the FAD of this taxon (5.3 Ma; cf. Berggren, Kent, and Van Couvering, 1985) seems to need further investigations in the Caribbean because it occurs here together with *Discoaster quinqueramus*, of which the LAD is calibrated at 5.6 Ma (Berggren, Kent, and Van Couvering, 1985).

Cores 110-672A-14H through -16X and -18X through -25X are barren of planktonic foraminifers. Core 110-672A-17X yields a poor assemblage composed of the dissolution-resistant species *Globigerina nepenthes* and *Sphaeroidinellopsis seminulina*; the core is tentatively dated from the upper Miocene, *Neoglobo-quadrina humerosa* Zone.

Sections 110-672A-26X-CC through -36X-CC are placed within the Oligocene. Characteristic taxa include Cassigerinella chipolensis, Globigerina gr. ciperoensis, G. gr. praebulloides, G. anguliofficinalis, G. gr. tripartita, G. gortanii, G. officinalis and Globorotalia nana.

Core 110-672A-26X is tentatively assigned to the late Oligocene, *Globigerina ciperoensis* Zone owing to the presence of the zonal marker and on the basis of nannofossil data.

Globorotalia opima was noted from Samples 110-672A-30X-3, 77-79 cm to -35X-CC, which thus belong to the lower Oligocene, *G. opima* Zone (Bolli, 1957a).

The last definite Oligocene microfauna is found in Core 110-672A-36X, which yields rare *Cassigerinella chipolensis* and *Globigerina* sp. Cores 110-672A-37X and -38X are barren of foraminifers.

Reworked Eocene assemblages are common within this Oligocene interval, especially in its lower part where relatively frequent *Globorotalia pseudoscitula, Acarinina broedermanni, A. bullbrooki* and *Pseudohastigerina micra* have been identified.

An upper Eocene interval is suspected between Cores 110-672A-39X and -40X, according to the absence of either definite Oligocene or middle Eocene species.

Sections 110-672A-41X-CC through -45X-CC belong to the middle Eocene. A very rich assemblage, including *Globorotalia* cerroazulensis, G. pomeroli, Morozovella lehneri, M. spinulosa, Truncorotaloides rohri, T. topilensis, Globigerinatheka index, G. gr. mexicana and Hantkenina mexicana, occurs in Core 110-672A-41X, which is dated from the uppermost middle Eocene, Truncorotaloides rohri Zone of Bolli (1957b).

Cores 110-672A-43X and -44X are assigned to the Morozovella lehneri Zone, because of the occurrence of the nominate taxon together with Acarinina broedermanni, A. bullbrooki, Globorotalia pomeroli, G. bolivariana, G. subscitula, and Globigerinatheka gr. subconglobata.

Cores 110-672A-46X through -53X are barren of foraminifers.

Benthic Foraminifers

Benthic foraminifer evidence suggests that Hole 672A material was deposited at abyssal depths throughout its Pliocene-Pleistocene history. Sections 110-672A-1H-CC through -11H-CC contain well-preserved benthic assemblages which are dominated by the following species: Nuttallides umboniferus, Planulina wuellerstorfi, Pyrgo murrhina, and Oridorsalis umbonatus. Epistominella exigua, Globocassidulina subglobosa, Pullenia bulloides, Eggerella bradyi, and Gyroidinoides sp. are consistantly found within the section but are not dominant faunal components. All of the above species are collectively indicative of the Atlantic abyssal environment. Upper Neogene population changes are inferred as abundance patterns shift among the four dominant taxa. Abyssal population dynamics in this portion of the Atlantic are controlled by changes in Antarctic bottom-water volume which responds, in turn, to episodic glaciation.

Pliocene sediments between Sections 110-672A-5H-CC and -11H-CC show marked variation in the percentages of Nuttallides umboniferus. N. umboniferus is indicative of Antarctic bottom water and is assumed to peak in abundance during times of increased Antarctic bottom-water flow. Miliolid taxa are associated with warmer bottom-water temperatures and vary inversely with percentage N. umboniferus. Two periods of bottom-water cooling are inferred from the distribution of these species: the first occurred during the late Pliocene and the second during the early Pleistocene. The late Pliocene cooling event is signaled by a pronounced peak in N. umboniferus in Sample 110-672A-8H-CC. The age of this sample is based on planktonic foraminifer zone PL5 which is dated paleomagnetically as 2.2 to 3 Ma. Weissert et al. (1983) presented evidence of increased bottomwater flow in the South Atlantic at 2.5 Ma that they attributed to an episode of Pliocene glaciation. The increased amount of N. umboniferus in Core 110-672A-8H may be synchronous with the cooling event observed in the South Atlantic sediment record.

A second increase in N. *umboniferus* occurs between Sections 110-672A-3H-CC and -4H-CC. This early Pleistocene shift in population dominance may be coincident with the Illinoian Glacial event. The relative percentage of N. *umboniferus* remains elevated in Section 110-672A-1H-3.

Radiolaria

No radiolarians are preserved in the sediments in the Sections 110-672A-1H-CC to -19X-CC, although some sponge spicules are found in the upper part of the interval. A few radiolarians are found in Core 110-672A-20X, although they are conspicuously dissolved and no speciation is possible.

Samples 110-672A-21X-1, 27-29 cm through -23X-2, 65-66 cm contain well-preserved, lower Miocene, extremely diverse, radiolarian assemblages. Samples 110-672A-21X-1, 27-29 cm through -22X-3, 105-106 cm (180.6-193.6 mbsf) are assigned to the Calocycletta costata Zone (Riedel and Sanfilippo, 1978) because of the presence of C. costata and Dorcadospyris dentata, and the absence of Dorcadospyris alata. The last occurrence of Carpocanistrum cingulata is in Section 110-672A-21X-CC. Samples 110-672A-22X-4, 115-116 cm through -22-5, 46-48 cm (195.5-196.3 mbsf) are assigned to the Stichocorys wolffii Zone (Riedel and Sanfilippo, 1978). Cyrtocapsella tetrapera, C. cornuta, Calocycletta virginis, Stichocorys delmontensis, and S. wolffii are present in these samples whereas C. costata, D. dentata and Liriospyris stauropora are absent. Samples 110-672A-22X-6, 35-36 cm and -22X-CC (197.7-199.3 mbsf) are assigned to the Stichocorys delmontensis Zone (Riedel and Sanfilippo, 1978). C. tetrapera, C. cornuta, C. virginis, Carpocanopsis bramlettei, and S. delmontensis are present and S. wolffii, D. dentata, and C. costata are absent in these samples. Samples 110-672A-23X-1, 65-66 cm and -23X-2, 65-66 cm (200.0-201.5 mbsf) are assigned to the Cyrtocapsella tetrapera Zone (Riedel and Sanfilippo, 1978) because of the presence of C. tetrapera, C. cornuta, C. virginis, and Lychnocanoma elongata, and the absence of S. delmontensis, S. wolffii, and C. costata. Calocycletta serrata is common in the lower sample and absent in the

upper sample. Sample 110-672A-23X-3, 65-66 cm and -23X-4, 97-98 cm (203.0-204.8 mbsf) are assigned to the *Lychnocanoma* elongata Zone (Riedel and Sanfilippo, 1978) because of the presence of *L. elongata*, *C. cingulata* and *Dorcadospyris ateuchus*, and the absence of *C. tetrapera*, *C. cornuta*, and *C. serrata*.

In Samples 110-672A-23X-5, 97-98 cm and -23X-CC (206.3-208.8 mbsf), radiolarians are still abundant, but the quality of preservation decreases rapidly with increased dissolution. Orosphaerid fragments are common in this interval. No zonal assignments were attempted with these samples.

Samples from Cores 110-672A-24X to -39X are barren or contain scarce, badly dissolved, and/or opaque (probably replaced with pyrite) radiolarian specimens. No age indicator is present except in Samples 110-672A-32X-CC; -34X-3, 87-88 cm; -34X-5, 87-88 cm; -35X-5, 87-85 cm through -36X-1, 78-79 cm; and -39X-2, 36-37 cm.

Tristyrospyris triceros, ranging from upper Eocene to Oligocene (from Thyrsocystis bromia Zone of Riedel and Sanfilippo (1978) or Carpocanestrum azyx Zone of Riedel and Sanfilippo, 1978) to Dorcado spyris ateuchus Zone of Reidel and Sanfilipo (1978), is always found in these samples. In addition to this species, the following indicators, all of which are replaced by opaque minerals, are found in Section 110-672A-32X-CC:

Calocyclas turris	Lithochytris vespertilio
Calocyclas hispida	Podocyrtis mitra
Dictyoprora mongolfieri	

in Sample 110-672A-34X-5, 87-88 cm:

Artophormis gracialis	Theocyrtis annosa
Dorcadospyris ateuchus	

Section 110-672A-32X-CC is assigned to the lower Oligocene from the calcareous nannofossils and foraminifers. *T. triceros* is consistent with this age, but the ranges of five Eocene species identified in this interval represent notable inconsistency with the early Oligocene age. These opaque Eocene radiolarians may be regarded as reworked specimens. Sample 110-672A-34X-5, 87-88 cm is assigned to *D. ateuchus* Zone owing to the presence of *T. annosa*. In this interval, opaque sponge spicules also occur rather frequently.

In Cores 110-672A-40X through -53X, radiolarians are few to abundant, but their state of preservation is poor owing to high silica cementation. Cores 110-672A-40X to -42X contain few to common radiolarians, but age assignments could not be made. Cores 110-672A-43X through -53X are placed in the Eocene, based on the nearly continuous occurrence of Lithocyclia ocellus and Calocyclas hispida. In addition to these two species, the radiolarian assemblages of Samples 110-672A-43X-1, 94-95 cm and -43X-2, 94-95 cm include T. triceros and T. bromia and are assigned to C. azyx Zone-Calocyelas bandyca Zone of Saunders, et al. (1984) (late Eocene). Sections 110-672A-45X-CC, -47X-CC, -48X-CC, and Sample 49X-4, 73-75 cm include Sethochytris triconiscus. Samples 110-672A-49X-1, 73-75 cm through -49X-3, 73-75 cm include the late form of Podocyrtis mitra with large pores of elongate abdomen. These latter samples are assigned to P. mitra Zone of Riedel and Sanfilippo (1978) (middle Eocene). Samples 110-672A-49X-CC and -50X-1. 80-82 cm include Podocyrtis trachodes, P. mitra, and Lithapium mitra, and Section 110-672A-50X-CC contains Podocyrtis sinuosa and P. mitra, thus being assigned to Podocyrtis ampla Zone-Podocyrtis mitra Zone of Riedel and Sanfilippo (1978) (middle Eocene). Sample 110-672A-51X-2, 68-70 cm contains Eusyringium lagena, and Section 110-672A-51X-CC assigned to Dictyoprora (= Theocampe) mongolfieri Zone-P. mitra Zone

of Riedel and Sanfilippo (1978) (middle Eocene), contains *P. sinuosa* and *Thyrosocyrtis triacantha*. Sample 110-672A-52X-1, 23-24 cm contains frequent occurrences of *P. mitra* and *T. sinuosa* and is barren of *P. mitra* and *T. triacantha* as well as *Dictyoprora mongolfieri, Eusyringium fistuligerum*, and *Rhopalocanium ornatum*. This sample is assigned to *D. mongolfieri* Zone of Riedel and Sanfilippo (1978) (middle Eocene). In the lowest samples, Sections 110-672A-52X-CC through -53X-CC, *D. mongolfieri* is absent, and *L. ocellus* and *C. hispida* are present as mentioned above. Cores 110-672A-51X and -52X are therefore assigned to *Buryella clinata* Zone—*Theocotyle cryptocephala* Zone of Riedel and Sanfilippo (1978) (early Eocene).

Ichthyoliths were frequently found in Cores 110-672A-24X through -38X.

PALEOMAGNETICS

Paleomagnetic samples where not collected at this site because of the time constraints of measuring the samples. However, the site provided an opportunity to measure a reference section for magnetic susceptibility to compare to the susceptibility log at Site 671.

The methodology used in measuring the susceptibility was the same as at Site 671, as were the constraints on the reliability of the measurements (see Chapter 1, this volume). The susceptibility log for this site (Fig. 30) shows the Pleistocene to upper Miocene section to have an average value of about 60 G Oe⁻¹ compared to the slightly higher average at Site 671 of about 70 to 80 G Oe⁻¹. The susceptibility shows the same broad low in the upper Pliocene which was present at Site 671. The reduction in the susceptibility at about 200 mbsf in the lower Miocene sequence corresponds to the reduction in the ash content of the sediments and the change in provenance of the coarse fraction. The low values (average of 16 G Oe⁻¹) in the Oligocene section (220 to 350 mbsf) correspond to lithologic Unit 3 (Lithostratigraphy Section, this chapter). From visual observations it was noted that the small-scale fluctuations in this section correspond to variations in the carbonate content such that chalk horizons have low susceptibility values compared to the marls and claystones. This is likely to be a result of the diluting influence of calcite, which has a small negative susceptibility. A decline in the susceptibility at about 360 mbsf corresponds to lithologic Unit 4, which is comparatively richer in silt and sand than the Oligocene section. The sand/silt rich layers in this part of the sequence tend to have lower susceptibilities than the surrounding marls, suggesting that the source for the magnetic minerals in this part of the sequence is associated with clay-sized particles

The correlation between the lower Pliocene-upper Miocene sections from Sites 671 and 672 is exceptionally good (Fig. 31) and indicates the degree to which the ash beds, which give rise to these fluctuations, are uniformly deposited on the abyssal plain. The correlation of Core 110-671B-1H with Cores 110-672A-1H and -2H is also good (Fig. 32), although this breaks down in the lower part of the Pleistocene. A small repeated section is present from the base of Core 110-672A-2H to near the base of Core 110-672A-3H, which is seen again in Core 110-672A-4H. The correlation between these two repeated sections is exceptionally good (Fig. 33). Such a correlation is consistent with the nannofossil stratigraphy, which over these cores have the same zone. This repeated section is probably caused by a small fault or rotational slip plane at the base of Core 110-672A-3H (21 mbsf). In comparison to the sequence at Hole 672A, the susceptibility stratigraphy over the core interval 110-671B-2H to -4H is considerably expanded. This is corroborated by the expanded biostratigraphic interval at Hole 671B.

Figure 30. Susceptibility log for Site 672.

GEOCHEMISTRY

Introduction

Site 672 was drilled as an oceanic reference site for the transect of holes drilled during Legs 78A and 110 across the accretionary prism of the Barbados subduction zone complex at about $15^{\circ}32'$ N. In this report we discuss the geochemical data collected at Site 672, and compare it with Site 671.

Inorganic Geochemistry

Results

The data collected on interstitial waters are presented in Tables 3 and 4, and also in Figure 34.

Discussion

Chloride

The concentration-depth profile of dissolved chloride shows remarkable complexity, with chloride extremes occurring at various depths in the sediment column (Fig. 34). In the upper 100 mbsf a classic profile is observed with a slight maximum in dissolved chloride. Below 100 mbsf chloride generally decreases toward a concentration of 505 mmol/L at 367 mbsf in a zone of sand-layer lenses. However, there are some notable excursions in this general trend. High chloride concentrations are present in the radiolaria-rich zone at 190 mbsf and in three other horizons, especially at 310 and 352 mbsf. In addition, a slight minimum occurs at 216 mbsf, i.e., at the base of the zone characterized as the "future décollement."

The chloride minimum in the sandy horizons at Site 672 parallels the apparent low chloride concentration in the sand underlying the lowest point cored in Site 671, suggesting horizontal advection of low-chloride waters east of the deformation front. Slightly higher methane concentrations within the sand layers (Fig. 35) support this concept. A pronounced methane peak is also associated with the chloride minimum at the bottom of "future décollement." It is quite possible that water is already moving along this "zone of future décollement"; if so, some of the hydrological characteristics of the accretionary prism extend seaward of the deformation front.

We see no *a priori* reason to reject the chloride values that are distinctly above the general trend of the profile. On closer analysis, each chloride maximum is accompanied by a distinct positive excursion in the ammonia and (Na + K) concentrations (Fig. 34). On the other hand, there is no distinct effect on the concentrations of Ca, Mg, or SO₄ (Fig. 34), in part because of the relatively minor chloride concentration changes (maximum difference in Cl at 350 mbsf is about 12%).

Are the observed chloride maxima real or are they due to artifacts? First we examine the apparent correlation between changes in NH_4 , Cl, and Na in the high-chloride samples. The following table presents the relevant information.

Sample 110-672A-	Lithology	ΔCl	∆Na	ΔNH_4 (mmol/L)
21X-2, 140-150 cm	Radiolarian mudstone	10	15	160
34X-4, 140-150 cm	Marl	30	38	110
39X-2, 145-150 cm	Quartzose muddy siltstone	70	60	300
53X-4, 145-150 cm	Mudstone	10	10	70

△ Values calculated from "expected" values on trend lines.

 Δ Cl and Δ Na are roughly correlated with Δ NH₄. This suggests the possibility that the maxima in NH₄ are caused by ionexchange processes, in which enhanced Na concentrations may displace some NH₄ ions from exchange positions in clay minerals. The ion-exchange process will be quite different in various lithologies, clayey sediments having higher exchange capacities than sands or silts. The radiolaria-containing sample has the highest relative increase in NH₄. Thus, some of the increases in ammonia may also be due to enhanced bacterial activity.

Artifact?

It is difficult to support the artifact hypotheses for the very high observed chloride concentrations. Contamination by seawater appears most unlikely, especially because this is not supported by the data on Ca, Mg, and SO₄ (Fig.34). Furthermore, the chloride values are higher than that of seawater. Because the high chloride concentrations occur in different lithologies, there does not appear to be any common compositional cause. A squeezing artifact is not likely, especially because two sections (110-672A-21X-2 and -53X-4) yielded water quite easily without using high pressures. Water was extracted from the other samples with more difficulty, but surrounding samples with similar lithologies required similar treatment and did not show anomalies. Further chemical analysis is planned for the squeezed cakes,

Figure 31. Correlation between the susceptibility of Cores 110-671B-6H to -13X and 110-672A-7H to -14H.

but at this point it is not possible to identify the source of an artifact, if there is one.

Real?

Does membrane filtration occur at the relatively low lithostatic pressures present in these sediments? If so, why is it not observed at similar depths elsewhere? During DSDP Leg 57, low-chloride concentrations were traced back to a sandy layer at Site 438 (Moore and Gieskes, 1980). A site slightly to the east (Site 440) did not show any chloride decreases despite a thick sedimentary section and similar lithologies. The low chloride concentrations found in Leg 57 sites were probably related to a freshwater aquifer, not to dewatering. Similarly, low chloride concentrations at Site 241 of DSDP Leg 25 (Gieskes, 1974) can best be understood in terms of an aquifer, and not in terms of dewatering. We could be misinterpreting both cases, but the question remains why dewatering, accompanied by membrane filtration, does not occur more frequently in deep-sea sediments.

Now let us assume that membrane filtration does account for observed depletions and increases in Cl concentrations. The assumption is that salt is retained in the dewatered zone during membrane filtration. The processes must be occurring at a high enough rate to maintain considerable gradients in chloride over a short distance, less than a few meters. The process must have occurred within the last 10,000 yr or less to maintain such high concentration gradients. The majority of the data follow the general trend of the chloride profiles, suggesting that solute diffusion is important at this site. We submit that the low chloride concentrations at Site 672 are causally related to those seen in Site 671, and that significant advection may occur along the sandy aquifers. Perhaps *in situ* dewatering is superimposed on this phenomenon. It may be possible that high pore-water pressures or local deformation creates a localized environment for processes resembling membrane desalination.

Alkalinity

A good alkalinity profile was obtained to a depth of 300 mbsf (Fig. 34). Just below the sediment-seawater interface there is a small alkalinity maximum largely attributed to the production of HCO_3 during sulfate reduction processes associated with the bacterial oxidation of organic matter. Below approximately 25 mbsf, the alteration of volcanic ash, which also causes sharp

Figure 32. Correlation between the first 10 m of cores from Holes 671B and 672A.

changes in Ca and Mg (see below), leads to a decrease in alkalinity. This is consistent with Site 671 data. Volcanic ash is a significant component of the upper 130 m of the sediment column, with some minor occurrences down to approximately 200 mbsf. Thus, it is not surprising that a minimum in alkalinity occurs at approximately 130 mbsf, followed by a gradual increase. The latter increase is due to continued sulfate reduction at greater depths (Fig. 34).

Calcium and Magnesium

The concentration-depth profiles for Ca and Mg at Sites 671 and 672 are compared in Figure 34B. As discussed in the Site 671 report, the Ca profile above the décollement chiefly reflects the alteration of volcanic materials in the sediment column. Below the décollement, however, the almost linear and sharply increasing Ca gradients suggest diffusive supply from greater depth (Fig. 35). Below 200 mbsf a change in slope of the Ca profile is apparent, with a minor change in slope in the upper part of the sand/silt/limestone section at 325 to 375 mbsf. We surmise that the changes result from enhanced diffusivities and boundary conditions created by advection of "low-chloride" fluids. The Site 672 Ca profile, as well as the Mg profiles discussed below, confirm our hypothesis that the concentration gradients below the décollement at Site 671 are largely "fossil gradients."

Mg profiles are presented in Figure 34B. Alteration of volcanic ash creates a minimum in Mg at approximately 125 mbsf, below which concentrations increase to a maximum of 43 mmol/L at approximately 275 mbsf. The similarity with the Mg profile below the décollement at Site 671 is striking, and supports the idea that the radiolarian zone around 200 mbsf is the zone of the future décollement. The Mg concentration maximum at Site 671 is less than at Site 672, presumably because of increased diffusive exchange with the overlying sediment in Site 671, aided by the sharper Mg depletion above the décollement.

The Mg gradient at Site 672 (and also at Site 671) decreases in the lowermost section of the sediment column, and with basement located about 300 mbsf below the depths drilled, it is likely that Mg will be near zero concentration at the sedimentbasalt interface. This depletion, combined with the Ca gradient suggests a $\Delta Ca/\Delta Mg$ ratio of less than -2, among the lowest ratios yet observed, but consistent with our speculation that formation waters in this old basement are essentially depleted in Mg (McDuff, 1981).

Sodium and Potassium

As mentioned in the Site 671 chapter, we can only estimate the sum of (Na+K) from charge balance calculations. The (Na+K) concentration-depth profile and the ratio (Na+K)/Clis presented in Figure 34.

Below 100 mbsf there is a gradual decrease in (Na + K) with increasing depth, with a minimum in the low-chloride sandstone layers. As we suggested for Site 671, the (Na + K) gradient appears to be caused by a sink in the deeper undrilled section, presumably in the underlying basalts.

Typically, the high Cl samples also show high (Na + K) concentrations when compared with the general trend line. Similarly, the ratio of (Na + K)/Cl is anomalous for at least the three upper anomalous Cl levels. A slight minimum in (Na + K)/Cloccurs in the sand layers, related to the probable presence of an advective component in the low-chloride layer.

Sulfate and Ammonia

The sulfate concentration-depth profile at Site 672 (Fig. 34) shows an almost linear decrease with depth to about 375 mbsf, i.e., to below the section characterized by sand and silts. In

Figure 33. Correlation between the first six cores of Holes 671B and 672A, with the repeated interval in Hole 672A indicated by brackets.

comparison with Site 671, SO_4 depletions are less pronounced at Site 672, but sulfate reduction is still important in the presubduction sediments below the zone of "future décollement."

Notwithstanding the larger depletions in SO₄ at Site 671, ammonia concentrations in Site 672 (Fig. 34) are about the same as at Site 671. This is perhaps owing to the gradual absorption of NH_4 into clay minerals.

The anomalously high NH_4 concentrations in the high-Cl sediments have already been alluded to.

Silica

As at Site 671, the concentrations of dissolved silica typically reflect the local lithology (Fig. 34).

Conclusions

1. The inorganic geochemistry of interstitial waters obtained at Site 672 suggests that this site is not a true reference site, representative of a "normal" oceanic environment. This is particularly clear from the chloride profiles, which indicate a continuation of low-chloride water flow through permeable sand beds perhaps associated with *in situ* dewatering.

2. Based on the occurrence of a chloride minimum and a CH_4 maximum in Hole 672A, we suggest that indeed the "zone of future décollement" is already a horizon of active fluid transport.

Dissolved Gases and Organic Carbon

Methane

The methane data from Site 672 are given in Table 5. The dissolved methane profile (Fig. 35) shows a maximum concentration of about 208 μ mol/L at 216 mbsf, comparable to the concentrations found at the thrust above the décollement in Hole 671B.

How can we explain the high concentration at this level? The thermal gradient found at Site 672A is 79° C/Km (see Heat Flow section). This thermal gradient does not support a thermogenic origin for methane production at the depths cored. The large sulfate concentrations are inconsistent with a biogenic origin of methane from microbial anaerobic respiration (Claypool and Kaplan, 1974). We therefore propose that the methane measured at Site 672 is not produced *in situ*, but is instead advected with low-chloride waters, probably originating from the west.

The sharp methane concentration gradient in the upper 160 m suggests methane diffusion. Below 245 mbsf, the observed variations in dissolved methane concentrations are complex, probably related to similar variations in dissolved chloride. The increasing methane concentration with increasing depth probably results from thermogenic production of methane at greater depth and a diffusive supply from this source. It is not immediately apparent why methane concentrations away from zones of

Core	Sec.	Interval (cm)	Depth (mbsf)	pH	Alkalinity (mmol/L)	Salinity (‰)	Chlorinity (mmol/L)
1H	4	145-150	6	n.d.	n.d.	n.d.	560
2H	6	145-150	12	7.43	2.99	35.5	563
3H	4	145-150	18	7.65	3.19	36	563
4H	5	145-150	29	7.68	3.20	35.3	562
5H	5	145-150	38.5	7.70	2.05	35.3	563
*I.S.1			40	7.43	2.23	35	561
7H	5	145-150	57.5	7.81	1.74	35	563
9H	5	145-150	76	7.70	1.26	n.d.	562
*I.S.2			89	7.95	1.63	35	564
12H	5	145-150	105	7.79	1.17	n.d.	562
15X	3	140-150	130	7.96	1.13	34.5	559
*I.S.3			132	8.51	1.85	35	550
18X	3	140-150	158	7.90	1.32	34.3	552
21X	2	140-150	185	7.60	2.06	35	565
24X	5	140-150	216	7.70	3.33	35	540
27X	5	140-150	245	7.69	3.46	34.2	554
30X	5	140-150	274	7.80	4.47	34.0	549
32X	4	140-150	290	7.70	5.49	35	549
34X	4	140-150	309	7.40	5.17	35	573
36X	4	140-150	327	n.d.	n.d.	34.2	532
38X	5	145-150	346	n.d.	n.d.	33.8	518
39X	2	145-150	352	7.69	n.d.	36.2	576
40X	5	145-150	367	n.d.	n.d.	32.2	505
41X	1	145-150	376	n.d.	n.d.	n.d.	n.d.
42X	2	145-150	382	n.d.	n.d.	33	522
43X	4	145-150	395	n.d.	n.d.	n.d.	529
46X	1	140-150	425	n.d.	n.d.	34.3	535
48X	3	140-150	447	n.d.	n.d.	34	527
51X	2	140-150	470	n.d.	n.d.	n.d.	545
53X	4	145-150	489	6.52	7.64	33.8	572

* Denote in-situ pore-water samples.

SITE 672

possible fluid transport are significantly higher at Site 672 than at Site 671.

Organic Carbon

Rock-Eval data are given in Table 6. The total organic carbon (TOC) contents in Hole 672A are very low (<0.6%). We provide an interpretation of the Rock-Eval parameters for only three samples (at 290, 327, and 352 mbsf) ranging in age from early Oligocene to late Eocene. The plot of total organic carbon (TOC) vs. depth (Fig. 35) suggest a division of the Hole 672A sediment column into five parts:

1. From the seafloor to 105 mbsf, in lower Pleistocene and lower Pliocene sediments, the TOC values are very low (average = 0.04%).

2. Below 105 mbsf, the TOC increases from 0.01% to 0.29%. This increase in TOC could result from a change in organic matter deposition rates during late Miocene. From 160 to 275 mbsf, the observed increase with decreasing burial depth could be caused by a slight increase in the rate of deposition of organic matter from the lower Oligocene to the upper Miocene.

3. From 270 to 375 mbsf, the TOC are variable with three peaks that decrease with burial depth (from lower Oligocene to upper Eocene). For these three peaks, the S2/S3 ratios and the plot of HI versus OI (Fig. 36) both indicate that terrestrial organic carbon is the major component of organic matter in these samples. We propose that terrestrial organic matter input increased from the upper Eocene to the lower Oligocene. The average temperature of maximum S₂, T_{max}, for these three samples of about 404°C indicates an immature zone.

4. From 375 to 450 mbsf, in middle Eocene to lower Eocene sediments, the TOC is very low (average = 0.05%). Thus, the Oligocene sediments could be the most important series relative to the amount of organic matter.

Core	Depth (mbsf)	Ca (mmol/L)	Mg (mmol/L)	NH4 (µmol/L)	Si (mmol/L)	SO ₄ (mmol/L)	Na+K (mmol/L)	(Na+K)/Cl
1	6	11.6	51.5	0	369	26.3	489	0.87
2	12	12.7	49.9	27	420	27.1	495	0.88
3	18	14.1	48.0	60	218	25.4	493	0.87
4	29	13.7	48.2	30	337	26.6	494	0.88
5	38.5	16.6	44.7	125	195	25.2	493	0.87
*I.S.1	40	16.6	49.8	80	124	26.3	483	0.86
7	57.5	19.3	41.9	206	169	24.2	491	0.87
9	76	21.8	39.1	225	137	23.3	489	0.87
*I.S.2	89	22.6	42.8	122	58	26.3	487	0.86
12	105	26.2	36.7	232	168	22.5	483	0.86
15	130	29.0	35.9	215	151	21.5	473	0.85
*I.S.3	132	23.9	43.8	200	65	23.3	463	0.84
18	158	32.2	38.4	230	150	21.1	454	0.82
21	185	32.8	35.0	400	1030	20.4	471	0.83
24	216	34.7	41.6	223	428	17.9	426	0.79
27	245	37.4	42.2	210	255	16.8	432	0.78
30	274	40.4	42.8	245	253	15.3	418	0.76
32	290	42.2	41.8	255	323	14.1	415	0.75
34	309	44.5	38.9	345	572	12.8	437	0.76
36	327	50.2	42.1	235	463	13.9	381	0.72
38	346	51.1	40.9	265	612	12.1	364	0.70
39	352	53.2	38.2	560	740	13.0	425	0.74
40	367	52.6	39.0	305	606	11.8	351	0.70
41	376	52.7	35.9	280	509	10.8	<u> </u>	
42	382	51.3	37.5	335	777	10.3	371	0.71
43	395	56.5	37.5	320	682	12.4	372	0.70
46	425	62.7	37.7	300	622	12.0	364	0.68
48	447	61.6	38.8	315	472	15.8	364	0.69
51	470	71.9	36.4	325	773	13.9	363	0.65
53	489	79.2	35.4	405	676	11.8	374	0.65

Table 4. Interstitial water compositions: Ca, Mg, NH₄, Si, SO₄, Na + K, (Na + K) /Cl, Site 672.

* Denote in-situ pore-water samples.

232

Figure 34. A. Pore-water chloride, alkalinity, (Na + K), (Na + K)/Cl, sulfate, ammonia, and silica profiles, Site 672. Open symbols indicate *in situ* water samples. Ammonia concentrations at chloride maxima are circled. B. Calcium and magnesium profiles, Sites 671 and 672.

233

Figure 35. Plot of methane and total organic carbon vs. depth, Hole 672A.

Table 5. Geoc	hemistry data:	organic carbon,	inorganic carbon,
and methane,	Hole 672A.		

Core	Sec.	Interval (cm)	Depth (mbsf)	Organic carbon (%)	Inorganic carbon (%)	CH4 (µmol/L)
1	4	145-150	6	0.03	4.43	22
2	6	145-150	12	0.00	0.14	n.d.
3	4	145-150	18	0.09	3.77	n.d.
4	5	145-150	29	0.02	1.97	46
5	5	145-150	38.5	0.04	4.32	n.d.
7	5	145-150	57.5	0.07	4.43	55
9	5	145-150	76	n.d.	n.d.	88
12	5	145-150	105	0.01	2.78	99
15	3	140-150	130	0.18	0.01	n.d.
18	3	140-150	158	0.29	0.06	119
21	2	140-150	185	0.21	0.02	n.d.
24	5	140-150	216	0.13	0.02	208
27	5	140-150	245	0.16	0.02	57
30	5	140-150	274	0.14	0.04	50
32	4	140-150	290	0.57	0.90	n.d.
34	4	140-150	309	0.14	0.07	100
36	4	140-150	327	0.33	7.68	93
38	5	145-150	346	0.11	0.05	114
39	2	145-150	352	0.20	0.48	n.d.
40	5	145-150	367	0.10	0.05	72
41	1	145-150	376	0.05	0.11	69
42	2	145-150	382	0.03	3.09	37
43	4	145-150	395	0.04	0.71	55
46	1	140-150	425	0.05	0.03	168
48	3	140-150	447	0.01	0.67	101
51	2	140-150	470	0.07	0.70	136
53	4	145-150	489	0.13	0.03	126

Conclusion

The dissolved chloride data, like the dissolved pore-water methane data, indicates that Site 672 is not a true reference site representative of a "normal" oceanic environment. Methane and chloride anomalies were found at the base of the stratigraphic equivalent to the décollement zone described at Site 671. These anomalies indicate active fluid flow at least 6 km seaward of the encroaching accretionary wedge. In contrast to Site 671, some dissolved methane diffusion with seawater occurs. The most important organic matter-bearing levels are contained in the lower Oligocene to upper Eocene sediments. At Site 671, the most important organic matter-bearing levels are in the upper Oligocene sediments. These results suggest that the most important terrestrial organic matter inputs are Oligocene in age and that lateral variations of organic matter-bearing levels can be expected in the underthrust and accreted sediments. The maturation of the Oligocene terrestrial organic matter could be the main source of gas once the sediment below the décollement zone reaches proper thermal conditions.

PHYSICAL PROPERTIES

Introduction

Site 672 was chosen as the reference site for the Leg 110 transect. With respect to the physical property measurements for the study area, Site 672 serves as a reference by defining the physical character of sediments that are considered to have been uninfluenced by the stresses induced in the region of the active margin front. Although *in situ* measurements of stresses were not made at the site, it is assumed that the location (6 km east of the deformation front as defined by the geophysical reflection data) is not influenced by stresses propagating laterally from the accretionary prism. Physical property data from this site raise questions about this assumption.

Data presented in this section include index properties (water content, bulk and grain densities, and porosity), compressional wave velocity, formation factor, undrained shear strength (peak and residual), and thermal conductivity. All of the data are from recovered core samples. Data above 123 mbsf were measured on good quality advanced piston core (APC) samples and the remainder of the data were collected from samples cored with the extended core barrel (XCB). Within the APC zone, all physical property measurements were made on one sample from every other section of core (nominally). Within the XCB zone, strength and formation factor were not measured owing to sample disturbance. Index property and compressional velocity measurements were made on selected coherent sediment blocks or 'biscuits' within the XCB zone and thermal conductivity mea-

Table 6. Rock Eval geochemistry data, Hole 672A.

Core	Sec.	Interval (cm)	Depth (mbsf)	Temp. (°C)	S ₁	S ₂	S ₃	PI	S2/S3	PC	TOC	ні	OI
1	4	145-150	6	427	0.03	0.01	3.19	0.75	0.00	0.00	0.03	33	10633
2	6	145-150	12	304	0.05	0.00	1.71	1.00	0.00	0.00	0.00	0	0
3	4	145-150	18	253	0.02	0.00	3.13	1.00	0.00	0.00	0.09	0	3477
4	5	145-150	29	214	0.04	0.01	3.12	1.00	0.00	0.00	0.02	50	15600
5	5	145-150	38.5	332	0.04	0.03	3.30	0.67	0.00	0.00	0.04	75	8250
7	5	145-150	57.5	190	0.03	0.00	2.67	1.00	0.00	0.00	0.07	0	3814
12	5	145-150	105	246	0.02	0.00	2.82	1.00	0.00	0.00	0.01	0	28200
15	3	140-150	130	469	0.02	2.25	0.14	0.01	16.07	0.18	0.18	1250	77
18	3	140-150	158	469	0.03	3.56	0.46	0.01	7.73	0.29	0.29	1227	158
21	2	140-150	185	568	0.10	2.48	0.07	0.04	35.42	0.21	0.21	1180	33
24	5	140-150	216	465	0.03	1.62	0.14	0.02	11.57	0.13	0.13	1246	107
27	5	140-150	245	471	0.03	1.81	0.23	0.02	7.86	0.15	0.16	1131	143
30	5	140-150	274	542	0.05	1.25	0.35	0.04	3.57	0.10	0.14	892	250
32	4	140-150	290	407	0.05	0.16	1.39	0.25	0.11	0.01	0.57	28	243
34	4	140-150	309	484	0.06	1.27	0.55	0.05	2.30	0.11	0.14	907	392
36	4	140-150	327	393	0.05	0.10	2.17	0.36	0.04	0.01	0.33	30	657
38	5	145-150	346	482	0.03	1.33	0.42	0.02	3.16	0.11	0.11	1209	381
39	2	145-150	352	412	0.01	0.05	0.63	0.17	0.07	0.00	0.20	25	315
40	5	145-150	367	576	0.06	1.11	0.58	0.05	1.91	0.09	0.10	1110	580
41	1	145-150	376	542	0.02	0.60	0.54	0.03	1.11	0.05	0.05	1200	1080
42	2	145-150	382	381	0.04	0.04	1.19	0.50	0.03	0.00	0.03	133	3966
43	4	145-150	395	355	0.05	0.06	1.24	0.50	0.04	0.00	0.04	150	3100
46	1	140-150	425	548	0.05	0.62	0.62	0.08	1.00	0.05	0.05	1240	1240
48	3	140-150	447	386	0.03	0.04	1.25	0.50	0.03	0.00	0.01	400	12500
51	2	140-150	470	530	0.04	0.83	0.10	0.05	8.30	0.07	0.07	1185	142
53	4	145-150	489	545	0.05	1.37	0.12	0.04	11.41	0.11	0.13	1053	92

Figure 36. Plot of hydrogen index (HI) vs. oxygen index (OI), Site 672.

surements were made selectively, based on recovered sample quality.

Index Properties

Methods

The methods used to measure the index properties at Site 672 are detailed in Chapter 1, this volume. Samples collected within the upper 190 m of core were first oven-dried for 24 hr at 60°C and then freeze-dried. Index measurements were nominally made at an interval of one every two sections (3 m). In addition to index measurements on selected samples, densities were measured using the GRAPE on all core sections.

Results

The index properties measured at Site 672 include bulk density, porosity, water content (reported as a percentage of total sample weight and a percentage of dry sample weight), and grain density. Water content is presented as a percentage of dry sample weight except as noted. Both calculations of water content (total and dry) are listed with the other index properties (Table 7).

All of the index properties follow similar downhole trends at Site 672 (Fig. 37). The index data can be separated into four distinct zones. The zones are closely associated with the lithologic subdivisions at the site with the exception of the Unit 3/Unit 4 lithologic boundary; however, lithologic breaks in Hole 672A do not correlate exactly with changes in the index properties. This inconsistency is expected because the changes in porosity, density, and water content are influenced not only by the lithology and sedimentological facies, but also by the stress history at the site. Consequently, the correlation between the lithologic boundaries and the index properties should include transition zones where the index data show variability between the major lithologic units. This summary describes the index properties in the context of four zones of similar index data character. The zones are associated with the lithology as follows:

Index zone 1 :	=	lithologic Unit 1
Index zone 2 =	=	lithologic Unit 2
Index zone 3 =	=	lithologic Units 3 and 4
Index zone 4 =	=	lithologic Unit 5

Index property subdivisions (Fig. 37) show an upper zone between the seafloor and 101 mbsf (lithologic Unit 1 equivalent). Below Zone 1, the index properties change significantly in a transitional region above Zone 2 between 101 and 126 mbsf. Zone 2, the equivalent to lithologic Unit 2, extends to a depth of 186 mbsf. Below Zone 2, the index properties are again transitional to a depth of 204 mbsf. The index properties are consistent within Zone 3 to a depth of 442 mbsf (lithologic Units 3 and 4 equivalents). Significant changes in index properties define Zone 4, which extends to the bottom of Hole 672A.

Table 7. Index properties summary, Hole 672A.

1 2 73 2.23 44.7821 81.1008 68.9890 1.5783 2.633 2 2 73 5.53 53.9261 117.0430 76.6479 1.4562 2.692 2 3 134 7.64 50.9187 103.7440 74.5897 1.5008 2.692 2 4 73 8.53 53.5764 115.4070 76.4687 1.4622 2.644 2 6 73 11.53 48.1716 92.9445 73.2379 1.5576 2.744 3 4 75 18.05 54.7303 120.8980 78.1329 1.4626 2.590 3 6 75 21.05 42.6977 74.4980 69.4674 1.6670 2.655	7 1.5414 6 1.4289 1 1.4679 2 1.4268 3 1.5124 9 1.4058 7 1.5783 4 1.4109 0 1.5560	67.8773 75.7598 73.4896 75.1645 71.6285 75.6602 66.2555 77.4017
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7 1.5414 6 1.4289 1 1.4679 2 1.4268 3 1.5124 9 1.4058 7 1.5783 4 1.4109 0 1.5560	67.8773 75.7598 73.4896 75.1645 71.6285 75.6602 66.2555 77.4017
2 2 73 5.53 53.9261 117.0430 76.0479 1.4502 2.692 2 3 134 7.64 50.9187 103.7440 74.5897 1.5008 2.697 2 4 73 8.53 53.5764 115.4070 76.4687 1.4622 2.644 2 6 73 11.53 48.1716 92.9445 73.2379 1.5576 2.744 3 4 75 18.05 54.7303 120.8980 78.1329 1.4626 2.590 3 6 75 21.05 42.6927 74.4980 69.4674 1.4626 2.590	1.4269 1.4679 2.1.4268 3.1.5124 9.1.4058 7.1.5783 4.1.4109 0.1.5560	73.4896 75.1645 71.6285 75.6602 66.2555 77.4017
2 4 73 8.53 53.5764 115.4070 76.4687 1.4622 2.644 2 6 73 11.53 48.1716 92.9445 73.2379 1.5576 2.744 3 4 75 18.05 54.7303 120.8980 78.1329 1.4626 2.590 3 6 75 21.05 42.697 74.4980 69.4574 1.6570 2.5556	2 1.4268 3 1.5124 9 1.4058 7 1.5783 4 1.4109 0 1.5560	75.1645 71.6285 75.6602 66.2555 77.4017
2 6 73 11.53 48.1716 92.9445 73.2379 1.5576 2.744 3 4 75 18.05 54.7303 120.8980 78.1329 1.4626 2.590 3 6 75 21.05 42.6927 74.4980 69.4674 1.6670 2.665	3 1.5124 9 1.4058 7 1.5783 4 1.4109 0 1.5560 0 1.5020	71.6285 75.6602 66.2555 77.4017
3 4 75 18.05 54.7303 120.8980 78.1329 1.4626 2.590 3 6 75 21.05 42.6927 74.4980 69.4674 1.6670 2.665	9 1.4058 7 1.5783 4 1.4109 0 1.5560	75.6602 66.2555 77.4017
3 6 75 21.05 42.6927 74.4980 69.4674 1.6670 2.665	7 1.5783 4 1.4109 0 1.5560	66.2555 77.4017
	0 1.5560	//.401/
4 2 75 24.55 55.7991 126.2400 79.0699 1.4516 2.754 4 4 75 27.55 45.7920 84.4746 71.0889 1.5905 2.799	1 5070	70.0462
4 6 75 30.55 42.1416 72.8358 67.1882 1.6334 2.716	9 1.59/0	66.1702
5 2 69 33.99 42.7487 74.6685 68.5615 1.6431 2.647	0 1.5737	66.1509
5 3 133 36.13 49.9121 99.6488 73.5585 1.5099 2.577	5 1.4626	71.7911
5 4 75 37.05 48.8986 95.6893 74.0350 1.5511 2.619.	1.4825	71.2851
6 2 71 43 51 42 0515 72 5671 67 7768 1 6512 2 6650	1.5428	65 6568
6 4 75 46.55 41.6701 71.4387 67.2693 1.6539 2.707	2 1.6025	65.6530
6 6 75 49.55 43.2946 76.3500 70.1162 1.6592 2.605	3 1.5574	66.3036
7 2 20 52.50 39.4489 65.1498 64.9680 1.6872 2.716	1 1.6401	63.6110
7 4 10 55.40 38.7422 63.2445 63.6887 1.6842 2.684	5 1.6446	62.6461
7 6 20 58.50 38.8158 63.4409 63.7046 1.6814 2.712 8 2 50 52.20 40.7701 68.9226 57.0514 1.6840 2.776	1.6498	62.9612
8 4 50 65 30 38 9763 63 8707 64 7005 1 7007 2 804	3 1.6673	63 8834
8 4 80 65.60 41.6041 71.2449 66.6731 1.6418 2.695	1.6012	65.4969
8 6 50 68.30 41.5474 71.0788 66.0702 1.6292 2.7020	1.6033	65.4951
9 2 70 72.00 42.7126 74.5584 67.9711 1.6303 2.7104	1.5869	66.6413
9 4 70 75.00 39.0189 63.9852 63.7368 1.6735 2.704	5 1.6446	63.0921
9 6 70 78.00 40.0418 66.7828 64.9228 1.6611 2.6770	1.6220	63.8583
10 2 70 81.50 44.2327 79.3166 69.1727 1.6021 2.6999 10 4 70 84.50 41.8718 72.0336 67.0165 1.6307 2.6747	1.3018	65 5671
10 6 70 87.50 36.9000 58.4786 61.9637 1.7204 2.715	1.6831	61.0616
11 2 70 91.00 39.5474 65.4189 64.8212 1.6792 2.706	1.6362	63.6221
11 3 137 93.17 38.4969 62.5935 63.9046 1.7007 2.7013	1.6525	62.5483
11 4 70 94.00 42.9517 75.2900 68.2872 1.6288 2.7099	1.5831	66.8550
11 6 70 97.00 39.5388 65.3954 64.5285 1.6720 2.659	1.6259	63.2101
12 2 75 100.55 41.9272 72.1977 67.3051 1.6446 2.706 12 4 75 103.55 24.2222 52.0526 58.0227 1.7634 2.6020	1.5983	58 0455
12 4 75 105.55 34.2335 52.0520 58.9227 1.7034 2.050	1.7147	58.5249
13 2 75 110.05 34.1765 51.9215 59.0690 1.7707 2.739	1.7381	58.4012
13 3 130 112.10 34.5986 52.9018 60.0159 1.7771 2.7004	1.7199	58.5066
13 4 75 113.05 33.3770 50.0983 57.9630 1.7792 2.6778	1.7359	56.9688
14 2 82 119.31 36.6117 57.7577 62.2121 1.7409 2.6752	1.6781	60.4073
14 5 00 120.59 30.1062 50.5098 01.7073 1.7509 2.7595 15 2 78 125 58 46 6283 87 3653 71 8045 1 5777 2 7484	1.5352	70 3766
15 4 53 128.33 49.6270 98.5192 74.4055 1.5360 2.6248	1.4738	71.9227
17 2 83 144.63 43.8364 78.0514 69.5685 1.6259 2.4284	1.5127	65.2304
17 3 133 146.63 40.8579 69.0843 63.8436 1.6009 2.3067	1.5221	61.1958
17 4 86 147.66 40.7060 68.6511 65.1446 1.6396 2.3676	1.5395	61.6562
18 4 58 156.88 58.8088 63.4223 62.6386 1.6556 2.5490 19 2 7 162.87 50.0113 100.0450 74.2060 1.5501 2.6665	1.0114	01.3020
19 4 90 166 70 47 4867 90 4281 72 1095 1 5557 2 7202	1.5182	70.8831
20 1 35 171.15 45.0552 82.0008 69.3283 1.5764 2.5892	1.5291	67.7507
20 2 88 173.18 47.2392 89.5348 72.0047 1.5616 2.6111	1.5032	69.8284
21 2 137 183.17 59.6316 147.7190 80.4787 1.3827 2.4497	1.3342	78.2655
21 4 99 185.79 58.7182 142.2370 79.4904 1.3869 2.4727	1.3465	77.7680
22 2 115 192.45 50.9014 103.6720 74.0822 1.4911 2.5392 22 4 74 195.04 46.2381 86.0054 69.8585 1.5479 2.5878	1 5126	68 7785
22 6 27 197.57 41.5382 71.0519 65.8160 1.6233 2.5529	1.5716	64.2032
23 1 25 199.55 40.6492 68.4898 64.1538 1.6169 2.5699	1.5885	63.5025
23 1 49 199.79 40.0294 66.7485 64.3770 1.6476 2.6014	1.6051	63.1825
23 2 67 201.47 40.7939 68.9016 66.2351 1.6634 2.6078	1.5948	63.9777
23 4 61 204.41 42.8379 74.9411 66.8665 1.5992 2.5860	1.5599	65.7132
23 0 70 207.30 34.0153 52.9411 59.4978 1.7009 2.0208 24 2 64 210.94 35 5970 55 2724 60.9100 1.7530 2.5070	1.6998	57 7910
24 4 75 214.05 33.7215 50.8785 58.1539 1.7668 2.2586	1.6023	53.1785
24 6 94 217.24 33.4548 50.2739 57.6941 1.7668 2.9753	1.8126	59.5995
25 2 98 220.78 32.4516 48.0420 58.4051 1.8439 2.6012	1.7305	55.2241
25 3 83 222.13 29.3074 41.4575 54.9181 1.9198 2.7721	1.8437	53.1221
25 4 40 223.20 31.0761 45.0876 58.3016 1.9220 2.7550 26 2 40 220 70 32.1008 47.2066 57.7232 1.8420 2.4850	1.8022	55.0602
26 4 75 233 05 29 7927 42 4254 54 1478 1 8620 2 9305	1.8808	55.0743
27 2 74 239.54 31.2023 45.3538 55.2173 1.8130 2.3956	1.6860	51.7546
27 4 74 242.54 33.9326 51.3606 61.0821 1.8442 2.0549	1.5285	51.0835
27 6 74 245.54 38.4451 62.4565 67.6848 1.8037 2.4542	1.5929	60.2406
28 2 71 249.01 31.1887 45.3249 55.4135 1.8203 2.2957	1.6514	50.6845
20 4 90 252.20 27.9955 38.8802 50.8770 1.8619 3.0035 29 2 75 258.55 32.0618 47.1024 55.7502 1.7914 2.4070	1.9446	53.0000
29 4 72 261.52 34.0221 51.5659 59.0769 1.7790 2.5434	1.6863	56.4259

Table 7 (continued).

Core	Sec.	Int. (cm)	Depth (mbsf)	% Water (wet)	% Water (dry)	Porosity ^a (%)	Bulk density ^a (g/cm ³)	Grain density (g/cm ³)	Bulk density ^b (g/cm ³)	Porosity ^b (%)
30	2	62	267.92	26.4328	35.9301	49.6360	1.9238	2.6731	1.8713	48.6351
30	4	32	270.62	28.5868	40.0300	51.3379	1.8399	2.6708	1.8259	51.3221
30	6	66	273.96	32.0063	47.0724	56.2726	1.8012	2.6636	1.7572	55.2998
31	1	74	276.04	34.4701	52.6020	60.3356	1.7933	2.5675	1.6858	57.1458
31	4	30	280.10	29.2478	41.3384	53.4347	1.8717	2.6425	1.8033	51.8636
32	2	40	286.70	27.4067	37.7538	50.3168	1.8809	2.7004	1.8603	50.1288
32	4	65	289.95	28.9234	40.6932	52.6093	1.8635	2.6789	1.8218	51.8088
33	2	22	296.02	23.2892	30.3598	44.7572	1.9689	2.7441	1.9689	45.0808
33	4	90	299.70	30.2767	43.4242	54.7621	1.8530	2.7018	1.8020	53.6431
33	6	54	302.34	30.7308	44.3642	55.4064	1.8471	2.7153	1.7972	54.3002
34	2	49	305.79	25.0787	33.4733	47.8010	1.9527	2.6267	1.8828	46.4310
34	4	48	308.78	26.9057	36.8096	50.7075	1.9308	2.6549	1.8549	49.0720
35	2	49	315.29	30.8584	44.6308	55.9480	1.8575	2.5568	1.7452	52.9644
35	4	118	318.98	26.6505	36.3337	49.7356	1.9119	2.6657	1.8640	48.8465
36	2	64	324.94	31.4141	45.8027	56.2808	1.7800	2.5900	1.7400	53.8900
36	4	92	328.22	32.6800	48.5500	56.8700	1.7800	2.5900	1.7200	55.3700
36	6	25	330.55	27.4982	37.9276	51.0434	1.9017	2.6223	1.8312	49.5146
36	6	70	331.00	27.3800	37.7100	50.5900	1.8900	2.6600	1.8500	49.7400
37	2	60	334.40	27.5100	37.9500	51.5100	1.9180	2.5800	1.8200	49.1100
37	4	48	337.28	27.2800	37.5100	50.5100	1.8970	2.6430	1.8430	49.4300
37	6	80	340.60	28.5990	40.0500	52.6870	1.8870	2.6730	1.7550	51.2320
38	2	91	344.21	28.4940	39.8480	52.6370	1.8930	2.6730	1.8290	51.2330
38	5	58	348.38	31.1942	45.3366	56.0807	1.8418	2.5759	1.7453	53.5407
39	2	90	353.70	26.5730	36.1896	49.6148	1.9129	2.6515	1.8606	48.6145
39	2	104	353.84	27.6940	38.3011	51.5038	1.9053	2.612/	1.8239	49.0091
39	3	88	355.18	30.6946	44.2888	56.1582	1.8/44	2.62/6	1.7708	53.44/1
39	3	104	355.34	25.5095	34.2453	48.8829	1.9632	2.6000	1.8035	40./408
40	4	126	303.14	33./8/9	51.0298	58.3409	1.7090	2.6327	1.7215	57.1930
40	4	120	300.30	32.8/14	48.90//	57.7498	1./999	2.02/4	1.7507	49 0722
40	0	125	300.70	20.2109	35.5500	49.1139	2.0240	2.0423	2.0114	40.0732
41	2	61	372 41	20.4037	40 2551	40.0000	1 8606	2.0034	1 9211	51 3030
42	2	100	382 30	25 4902	34 2106	47 0126	1.0000	2.6601	1.8702	47 1007
42	Ã	79	385.00	27 0219	37 0274	50 1350	1 9008	2 5971	1 8317	48 6728
43	2	44	301.24	26 7322	36 4856	48 7785	1 8694	2 5981	1 8378	48 3132
43	4	12	393.92	30 2910	43 4534	53 4874	1.8090	2 5272	1 7457	52.0070
43	6	85	397 65	19 5407	24 2864	39 8606	2 0899	2 6816	2 0340	39 0796
44	1	8	398.88	25.4911	34 2122	47 3572	1.9033	2 5100	1.8289	45.8529
44	4	15	403.45	28,1456	39,1703	50.5974	1.8418	2.6259	1.8195	50.3567
46	1	0	417.80	21.5729	27 5069	42 1977	2 0040	2 4918	1.9002	40.3196
46	î	112	418.92	24.9589	33,2603	46.8391	1.9226	2.5819	1.8679	45.8472
48	1	1	436.81	24,6975	32,7977	46.9326	1.9468	2.5851	1.8746	45.5295
48	1	124	438.04	24.2176	31,9568	46.5704	1.9701	2.4790	1.8411	43.8571
48	4	73	442.03	18,4058	22.5577	35,7861	1.9919	2.7755	2,1077	38.1379
49	2	75	448.55	23.6969	31.0563	43.9626	1.9007	2.4970	1.8590	43.3287
49	4	119	451.99	26.4093	35.8868	48.0395	1.8636	2.4848	1.8014	46.7948
50	2	58	457.88	27.4828	37.8983	48.8244	1.8201	2.4256	1.7592	47.5616
50	3	143	460.23	25.2024	33.6941	46.3277	1.8833	2.4238	1.7995	44.6146
51	2	78	467.58	27.7511	38.4104	50.6232	1.8689	2.5539	1.8018	49.1755
51	3	11	468.41	30.9109	44.7406	54.4968	1.8062	2.5752	1.7502	53.2027
52	1	0	474.80	27.2619	37.4795	49.4785	1.8594	2.4907	1.7878	47.9393
53	1	1	484.31	35.8109	55.7896	62.4161	1.7856	4.3522	2.0055	70.5184
53	6	40	492.20	33.4710	50.3103	58.8346	1.8009	1.3396	1.2124	40.3723

^a Calculated on basis of wet and dry measurements.

^b Calculated on basis of dry volumetric measurements.

Within the uppermost zone (lithologic Unit 1 equivalent), the bulk density increases slightly from 1.46 g/cm^3 near the seafloor to 1.64 g/cm^3 at 100.6 mbsf (Fig. 37). The maximum and minimum densities within this zone are 1.72 g/cm^3 and 1.45 g/cm³, respectively. The porosity and water content follow this same trend by decreasing within this zone, with maxima at 24.5 mbsf of 126% (water content) and 79.1% (porosity) and minima at 87.5 mbsf of 58% (water content) and 62% (porosity). The grain density is consistent within this zone, with a range of 2.58 to 2.80 g/cm^3 and a mean value of 2.61 g/cm^3 (Fig. 37), although the data for the upper 50 mbsf is quite scattered. With the exception of the data scatter near the seafloor within Zone 1, the sediment behaves as a normally consolidating sequence with similar ranges of water content, porosity, and density as Unit 1 at Site 671. The transition between Zones 1 and 2 shows little variation in index properties (Fig. 37). The bulk density is consistently higher than the overlying zone with little variability (1.74 to 1.78 g/cm^3). Similarly, the water content varies between 50% and 58% and the porosity between 58% and 62%, both of which are lower than in Zone 1. The grain density (Fig. 37) is comparable to the overlying unit, with little change (2.68 to 2.75 g/cm³).

Below the transition within Zone 2 (lithologic Unit 2 equivalent), the index properties change sharply (Fig. 38). The bulk density decreases from 1.63 g/cm³ at 145 mbsf to 1.39 g/cm³ at 186 mbsf. The porosity and water content data both increase within this zone to maxima at 183 mbsf of 81% and 148%, respectively. The grain density is quite scattered throughout, but generally increases with depth below seafloor. The mean grain density within the Unit 2 equivalent is 2.56 g/cm³.

Figure 37. Index property zones, lithologic units, grain density, water content (calculated as the percentage of the total sample weight), water content (calculated as a percentage of the dry sample weight), porosity, bulk density and compressional wave velocity plotted vs. depth below seafloor.

Below Zone 2, the index properties reverse trends within a transition zone (Fig. 37). Between 186 mbsf and 204 mbsf, the water content decreases from 104% to 75%. The porosity decreases over the same interval from 74% to 67% and the bulk density increases from 1.44 to 1.56 g/cm^3 . The grain density within this transition zone shows a distinct increase with depth that contrasts with the scatter in Zone 2. The grain density increases from a low value of 2.48 g/cm^3 at 192 mbsf to a high of 2.61 g/cm^3 at 201 mbsf. This transition zone lies above the lithologic boundary between Units 2 and 3 at 228 mbsf and may extend to that depth.

In Zone 3, below 204 mbsf, the index properties become more consistent with depth. The properties show increasing bulk density, decreasing water content and porosity, and generally decreasing grain density with depth below seafloor. The water content ranges from 55% at 211 mbsf to 25% at 398 mbsf. The porosity varies between 61% and 40% at 243 and 398 mbsf, respectively. The bulk density low within this zone (1.75 g/cm³) occurs at 211 mbsf and the highest density (2.09 g/cm³) occurs at 398 mbsf. The grain density data are scattered at the top of this zone, but vary between 2.30 and 2.98 g/cm³ with a mean of 2.61 g/cm³. The variation of water content, density, and poros-

ity within this zone suggests a normally consolidating sequence, similar to that of Zone 1.

Within Zone 4, the equivalent to lithologic Unit 5, the properties again reverse trend, although not as dramatically as in the transition above Zone 3. The water content and porosity increase from 22% and 36% at 442 mbsf to 50% and 59% respectively at the bottom of the hole (492 mbsf). The bulk density decreases from 1.99 g/cm³ to 1.80 g/cm³ within this zone and the grain densities, with a mean value of 2.53 g/cm³, are slightly lower than those within Zone 3.

Discussion

The index properties at Site 672 are divided into four zones. Of these divisions, Zones 1 and 3 can be described as sediment sequences which appear to be normally consolidated and therefore useful as reference sediment units. The reverse trend in porosity in Zone 2 may have been caused by anisotropic loading conditions (e.g., overpressure lateral stresses higher than the vertical overburden stress) or by compositional changes within the zone (e.g., changes in radiolarian distribution). Zone 4 may have also been affected by lateral loading, although the change in lithology coincident with the boundary between Zones 3 and

Figure 38. A. Linear least-squares approximation of water content vs. depth below seafloor in index Zones 1 and 3 and Zones 2 and 4.

4 could result in the changed water content profile. These trends are shown in Figure 38, where linear approximations to the water content vs. depth profile are shown for Zones 1 and 3 and Zones 2 and 4. A normally (one-dimensional, axial) consolidating sedimentary sequence is suggested in Zones 1 and 3, while Zones 2 and 4 show a reverse behavior.

Compressional Wave Velocity

Methods

The methods employed at Site 672 for measurement of sediment compressional wave velocity are detailed in Chapter 1 of this volume. Compressional wave velocities were measured using the *P*-wave logger and, for samples deeper than Core 110-672A-10H, also with the Hamilton frame velocimeter. Velocities were measured in the whole-round core with the logger and in two directions with the Hamilton frame.

Results

Compressional wave velocities measured on samples from the core are listed in Table 8. In general, the velocities measured with the propagation direction parallel to the axis of the core (vertical) are slightly slower than those measured with propagation normal to the axis of the core (horizontal). This slight anisotropy has been observed many times before in ocean sediment samples and may be the result of stress release opening fine cracks parallel to bedding as a result of overburden loss during core recovery. These fine cracks tend to reduce V_p in the vertical direction. There is also the possibility of a preferred fabric anisotropy induced by stress anisotropy (and potential shear failure) or depositional processes.

In the uppermost section of Hole 672A, between 90 and 120 mbsf, velocities were selected from the *P*-Wave Logger and in-

 Table 8. Compressional wave velocity, Hole

 672A.

Core	Sec.	Int. (cm)	Depth (mbsf)	Vel (A) ^a (km/s)	Vel (B) ^t (km/s)
11	2	68	90.98	1.5900	1.5800
11	4	68	93.98	1.5400	1.5500
11	6	68	96.98	1.5700	1.5800
12	4	72	100.52	1 5800	1.5000
12	6	72	106.52	1.5800	1 6000
13	2	70	110.00	1.5600	1.5800
13	4	70	113.00	1.5600	1.5900
14	3	60	120.59	1.5500	1.5500
15	4	53	128.33	1.7700	1.7600
19	2	7	162.87	1.6300	1.5800
20	4	90	171.15	1.4900	1.5200
21	2	137	183 17	1 5800	1.5900
21	4	99	185.79	1.5000	1.5800
22	2	115	192.45	1.6000	1.6700
22	4	74	195.04	1.5900	1.5900
22	6	27	197.57	1.5800	1.6000
23	4	61	204.41	1.5800	1.5900
24	4	76	214.06	1.6000	1.6400
24	2	94	217.24	1.6000	1.6200
26	2	46	229.76	1.5900	1.6000
26	4	75	233.05	1.6000	1.6100
27	2	74	239.54	1.6000	1.6200
27	4	74	242.54	1.6300	1.6400
27	6	74	245.54	1.5400	1.6300
28	2	71	249.01	1.6200	1.6600
20	4	75	252.20	1.6400	1.6900
29	4	72	261.52	1.0100	1,6000
30	2	62	267.92	1.6900	1.7200
30	4	32	270.62	1.6600	1.6900
30	6	66	273.96	1.6200	1.6400
31	2	74	277.54	1.6000	
31	4	30	280.10	1.6300	1.6800
32	2	40	286.70	1.6500	1.6500
32	4	65	289.95	1.6700	1 7300
33	2	22	296.02	1.7000	1.7400
33	6	54	302.34	1.6600	1.7000
34	2	49	305.79	1.6800	1.7000
34	4	48	308.78	1.6900	
35	2	49	315.29	1.6400	1.6900
35	4	118	318.98	1.6700	1.7300
36	2	64	324.05	1.0000	1 7200
36	4	92	328.22		1.6800
36	6	70	331.00	1.6600	1.7000
37	2	59	334.39	1.6600	1.7400
37	4	48	337.28	1.6900	1.6500
37	6	80	340.60	1.5800	1.7400
38	2	91	344.21	1 6000	1.7400
30	2	90	340.30	1.8300	1.7000
39	2	104	353.84	1.0500	1.6400
40	2	84	363.14	1.6500	
40	4	126	366.56	1.6800	1.8000
41	1	125	371.55	1.8500	1.8600
41	2	61	372.41	1 0000	1.6500
42	2	100	382.30	1.8200	1.8500
42	4	19	385.09	1.8700	1.8200
43	4	12	393.92	1.7500	1.8000
44	1	8	398.88		1.9600
46	1	45	418.25		2.6100
46	1	112	418.92	1.7900	
46	2	35	419.65		3.1800
48	1	1	436.81	3 0000	2.0100
48	4	73	442.03	2.0000	2.0000
49	4	75	448.55	2.0000	
50	2	58	457.88	1.9500	2.0500
50	3	143	460.23	2.0600	2.1900
51	2	78	467.58	1.9300	
51	3	11	468.41	1.7300	1.7400
52	1	1	474.81	1.9400	
53	1	1	484.31		2.0300
33	0	40	492.20		2.0000

^a Velocity measured parallel to cored direction.

^b Velocity measured perpendicular to cored direction.

cluded on the plot of Hamilton frame velocities vs. depth presented in Figure 37. The general agreement between the two measurements is quite good, although the logger appears to have an offset of approximately -0.03 km/s when compared to the Hamilton Frame. It was observed that an interval of recovered core consisting of 100% water was indicating a V_p of 1.48 km/s, also suggesting an offset on the order of 0.02–0.03 km/s for the logger data.

Both the logger and the Hamilton Frame describe a very gradual increase in velocity with depth to almost 375 mbsf, at which point the sediments become more indurated. Velocities in claystones recovered from below 375 mbsf increase to near 1.90 km/ s, while velocities in carbonate and sand-rich layers are often greater. The single "slow" data point recorded at approximately 475 mbsf may be the result of sample disturbance and is suspect.

Discussion

Perhaps the major observation to be made about the velocity profile at Site 672 is its lack of expression. Much like the upper 500 m of Site 671, there are very few excursions in velocity at this site which might be chosen as the possible sources for reflectors in the seismic data. It is particularly interesting that the local maximum in porosity seen between 180 and 200 mbsf appears to have no expression at all in the velocity data. This can be explained by the fact that soft sediments have very little variation in their acoustic properties unless there are major changes in water content. In Figure 39 the velocity-water content data from both Sites 671 and 672 are shown. There is little change in velocity from changes in water content when the water contents are large (>30% of total sample weight). It is only at the lower water content values that velocity variation is seen, and these

Figure 39. Compressional wave velocity vs. water content calculated as weight percentage of the total sample. Hole 672A is compared to Hole 671B.

are the result of lithification. Figure 39 illustrates that, for unlithified sediments, there is little variation of velocity with water content, and for partially lithified sediments there is very little variation of water content with velocity. This suggests that in the upper sediments seismic reflections will be related to density changes, while lower in the sediment sequence reflections will be related to changes in compressional velocity.

Thermal Conductivity

Methods

Measurements of thermal conductivity were made using the needle probe technique of Von Herzen and Maxwell (1959), which is described in detail in Chapter 1, this volume. Thermal conductivity measurements were attempted on every other section of a core, but disturbed areas were avoided when they were seen through the core liner. Several measurements were eliminated after viewing the split core on the sampling table, and several others remain questionable based on core observations after measurement.

Results

Determinations of the thermal conductivity of cored sediments from Site 672 are plotted vs. depth below seafloor in Figure 40 and listed in Table 9. Thermal conductivity values quickly increase from a near-surface low of 0.88 W/m °C to a local maximum in excess of 1.5 W/m °C at around 30 mbsf. Below this level the thermal conductivity fluctuates between 1.1 and 1.3 W/m °C until near the Unit 1/Unit 2 boundary. The exact nature of the change from this regime into lower values between 140 and 210 mbsf is unclear because of the disturbed state of the core recovered in this interval.

Although the low values of thermal conductivity seem to coincide with lithologic Unit 2, it is worth noting that the measured values increase above the Unit 2/Unit 3 boundary. The thermal conductivities measured in the bottom 20 m of Unit 2

Figure 40. Thermal conductivity variation with depth below seafloor, Hole 672A.
Table 9. Thermal conductivity, Hole 672A.

Core	Sec.	Int. (cm)	Depth (mbsf)	$Cal/cm \cdot ^{\circ}C \cdot s$ (×10 ⁻⁴)	W/m°C
2	2	75	15.05	22 8000	0.0520
3	Ã	75	18.05	20,9000	0.9330
3	6	75	21.05	25,7000	1 0800
4	2	75	24.55	26,6000	1,1100
4	4	75	27.55	29.4000	1.2300
4	6	75	30.55	33.4000	1.4000
5	2	75	34.05	35.2000	1.4700
5	4	75	37.05	32.6000	1.3700
5	6	75	40.05	35.4300	1.4800
6	2	75	43.55	26.9000	1.1200
6	4	75	46.55	26.0000	1.0900
6	6	75	49.55	27.3000	1.1400
4	2	20	52.50	30.8000	1.2900
-	4	20	59.50	31.9000	1.3400
8	2	50	62 30	29 9000	1.3000
8	4	50	65 30	28.3000	1 1800
8	6	50	68.30	29.0000	1.2100
9	2	70	72.00	26,5000	1,1100
9	4	70	75.00	27,8000	1.1600
9	6	70	78.00	29.1000	1.2200
10	2	70	81.50	29.7800	1.2500
10	2	70	81.50	29.8000	1.2500
10	4	70	84.50	29.1000	1.2200
10	4	70	84.50	29.1300	1.2200
10	6	70	87.50	31.5000	1.3200
10	6	70	87.50	31.4500	1.3200
11	2	70	91.00	33.6200	1.4100
11	6	70	94.00	29.7000	1.2400
12	2	75	100 55	27 9000	1.1700
12	ã	75	103.55	31 2300	1 3100
12	6	75	106.55	31,1200	1.3000
13	4	75	113.05	31.3500	1.3100
17	2	75	144.55	27.9900	1.1700
17	4	75	147.55	27.5000	1.1500
19	2	100	163.80	27.7000	1.1600
19	4	100	166.80	23.8600	0.9990
22	2	80	192.10	24.2000	1.0100
22	4	80	195.10	25.2800	1.0600
22	0	30	197.00	28.4900	1.1900
23	4	70	201.50	27.3700	1.1300
23	6	70	207.50	27.7900	1.1400
24	2	70	211.00	36.5900	1.5300
24	4	70	214.00	37.3700	1.5600
24	6	70	217.00	36.1900	1.5200
26	2	75	230.05	32.6200	1.3700
26	4	75	233.05	33.5200	1.4000
27	2	75	239.55	32.3500	1.3500
27	4	75	242.55	32.5500	1.3600
28	2	75	249.05	32.2100	1.3500
28	2	75	249.05	32.2100	1.3500
28	4	75	252.05	30.7200	1.2900
20	2	75	252.05	30.7200	1.6500
29	Ā	75	261.55	40 2800	1 6900
29	6	83	264.63	35,6100	1,4900
30	2	64	267.94	39,1300	1.6400
30	4	83	271.13	29.2900	1.2300
30	6	71	274.01	30.6400	1.2800
31	2	75	277.55	30.0300	1.2600
31	4	48	280.28	36.1700	1.5100
32	2	40	286.70	38.8000	1.6200
32	4	60	289.90	37.0400	1.5500
33	2	60	296.40	35.1000	1.4700
33	4	60	299.40	33.6800	1.4100
35	6	60	302.40	38.2900	1.6000
34	4	70	300.30	30.3100	1.3000
34	6	15	311 45	30 2200	1.3000
35	2	75	315.55	21,9400	0.9180
35	4	75	318.55	19.5600	0.8190

are similar to those of Unit 3, alternating between values of 1.2 and 1.3 W/m °C. Measurements were terminated near 300 mbsf when the sediments became too indurated for probe placement.

Discussion

Thermal conductivity values are plotted vs. water content in Figure 41. The Site 672 data present a picture similar to that of

Figure 41. Thermal conductivity vs. water content calculated as weight percentage of the total sample at Hole 672A.

Site 671, but with more data scatter in the upper unit. The four determinations from the lower section of lithologic Unit 2, plus all of the data from Unit 3, are in better agreement with the Unit 2 data from Site 671. This trend may reflect a system that is becoming dominated by the framework mineralogy, while the Unit 1–Unit 2 trend, which is in general agreement with previous soft sediment determinations, represents a water-dominated system.

Formation Factor

Methods

Formation-factor measurements were made on even-numbered sections of split cores from the upper 10 cores of Hole 672A. Electrical problems developed with the sensor while we measured Core 110-672A-11X, so the program was terminated pending repair of the tool. Procedures were essentially those outlined in Chapter 1, this volume.

Results

Formation-factor values are plotted vs. depth below seafloor in Figure 42 and listed in Table 10. These values generally increase with depth and show some regular variation that is probably related to small fluctuations in the water content of the core. The increase in the formation factor (F) over the first 90 mbsf at Site 671 is a little greater than at Site 672. This may be attributed to a greater concentration of pelagic carbonate in the upper sediments of Site 672 and, consequently, a more open, less electrically resistive, fabric.

Discussion

Data from both Holes 672A and 671B are plotted in Figure 43 as a function of water content calculated as a percent of total sample weight. The formation-factor data from Hole 672A sed-

Figure 42. Formation factor, peak and residual vane shear strengths measured in the APC-recovered sediments from Hole 672A, and hydrostatic and total overburden stress curves calculated for the sedimentary section cored at Site 672.

Core	Sec.	Int. (cm)	Depth (mbsf)	F-horiz.	F-vert.
1	2	72	2.22	2.1000	2.3000
2	2	72	5.52	2.2000	2.5000
2	4	72	8.52	2.1000	2.2000
2	6	72	11.52	2.2000	2.5000
3	2	70	15.00	2.2600	2.4500
3	4	70	18.00	2.2000	2.5000
3	6	67	20.97	2.7000	2.8200
4	2	72	24.52	2.0000	2.1000
4	4	72	27.52	2.6000	2.8000
4	6	72	30.52	2.9000	3.0000
5	2	71	34.01	2.4600	2.5000
5	4	69	36.99	2.2300	2.3800
5	6	68	39.98	2.5600	3.1200
6	2	72	43.52	2.4600	2.7700
6	4	69	46.49	2.4800	2.7200
6	6	69	49.49	2.6400	2.8000
7	2	12	52.42	3.0900	3.1000
7	4	15	55.45	2.9800	3.0900
7	6	12	58.42	2.8400	3.1000
8	2	44	62.24	2.7000	2.7400
8	4	42	65.22	2.7200	2.7600
8	4	86	65.66	2.5000	2.2600
8	6	42	68.22	2.7100	3.0000
9	2	60	71.90	2.5200	2.7700
9	4	65	74.95	2.6800	2.8100
9	6	64	77.94	2.9100	3.1300
10	2	64	81.44	2.9200	3.0100
10	4	58	84.38	2.7000	2.9200
10	6	74	87.54	2.8000	2.8600

Table 10. Sediment formation factor, Hole 672A.

Figure 43. Formation factor vs. water content calculated as weight percentage of the total sample from Hole 672A. Results from Hole 671B are shown for comparison.

iments are in agreement with the trend observed at Site 671, although there seems to be a broader range of water content values for a given formation factor than was seen previously.

Undrained Shear Strength

Results

The methods used to measure the undrained shear strength of the sediment at Site 672 are described in Chapter 1. A total of 48 strength measurements were made from 2.25 to 120.6 mbsf in the APC section of Hole 672A (Table 11). The peak shear strength vs. depth profile shows three major trends within the tested portion of the hole, and a secondary trend in the lower 20 m (Figure 42). Peak strength increases monotonically within the upper trend from 9.2 kPa at 2.25 mbsf to nearly 74 kPa at 18 mbsf. This rapid strength increase in the upper 20 m ends with a downcore drop in peak strength to values between 16 and 33 kPa. The second strength trend extends from 20 to 55 mbsf. Peak strengths in this depth range are approximately 60 kPa, although the data are scattered.

Table 11.	Vane	shear	strength,	Hole	672A.
-----------	------	-------	-----------	------	-------

Core	See	Int.	Depth	Peak (k-Pa)	Residual
Core	Sec.	(cm)	(mosi)	(KFa)	(KFd)
1	2	75	2.25	9.2000	
2	2	75	5.55	17.5000	7.4000
2	3	1	6.31	26.3000	9.5000
2	4	75	8.55	19.8000	9.9000
2	6	65	11.45	41.5047	20.7410
3	2	75	15.05	34.5835	11.5278
3	3	1	15.81	39.1901	11.5278
3	4	75	18.05	73.7736	
3	6	75	21.05	32.2689	13.8198
4	2	75	24.55	25,3703	11.5278
4	4	75	27.55	18,4264	13,7744
4	6	75	30.55	16,1344	11.5278
5	2	70	34.00	25,3703	16.1344
5	3	1	34.81	29,9542	16,1344
5	4	75	37.05	48,4260	16.1344
5	6	74	40.04	34.5835	18,4491
6	2	70	43.50	59 9538	25 3703
6	4	75	46.55	57 6846	23.0527
6	6	75	49.55	46 1113	27 6623
7	2	19	52 49	66 8524	20 7410
7	3	50	54 30	34 5835	23 0557
7	4	10	55 40	50 0538	23.0557
7	6	20	58 50	53 0326	27 6623
7	7	20	60.00	55 3245	20 0542
8	1	118	61.48	50 7170	18 4401
8	1	120	61.60	43 7067	23 0557
0	2	150	62.20	43.7907	19 4401
0	4	50	65 30	41.3047	22 0557
0	4	80	65 60	40.1115	25.0557
0	4	60	69.20	49.3000	23.3703
0	0	50	72.00	57.0392	34.5035
9	4	70	72.00	62.2438	34.3833
9	4	70	75.00	53.0320	32.2089
9	0	70	/8.00	02.2458	30.8981
10	4	70	81.50	55.3245	29.9/09
10	4	70	84.50	69.16/0	43./90/
10	0	70	87.50	00.8524	41.504/
11	2	70	91.00	80.6948	32.2689
11	4	70	94.00	103.7510	30.8981
11	0	70	97.00	87.6161	41.5047
12	2	75	100.55	106.0650	
12	3	1	101.31	124.4920	39.1901
12	4	75	103.55	101.4360	48.4260
12	6	60	106.40	122.1770	39.1901
12	6	75	106.55	110.000	48.4260
13	2	75	110.05	112.9640	39.1901
13	3	1	110.81	87.6161	36.8981
13	4	75	113.05	131.4130	41.5047
14	2	88	119.37	87.6161	36.8981
14	3	60	120.59	85.3014	27.6623
33	2	18	259.98	179.8340	

The third principal trend in the vane shear strength data is from 55 to 120 mbsf. The overall depth trend within this lower segment exhibits a well-constrained depth dependency, increasing from 40 to 131 kPa over the interval. This lower section can, however, be subdivided into two secondary trends. The upper subgroup extends from 55 to 87 mbsf, and the other subgroup is below this latter depth. The lower subgroup has a high-strength gradient and the upper boundary correlates with the transition from upper to lower Pliocene sediments.

Residual vane strengths at Site 672 range from a low of 7.4 kPa at 5.6 mbsf to a maximum of 48.4 kPa at 103 and 106 mbsf. The residual strengths slowly and steadily increase with depth (Figure 42). The sensitivity of the tested sediments is calculated assuming the residual strength approximates the remolded value (Pyle, 1984). Using this criteria, sensitivities range from 1.5 to about 3.3.

The effective overburden stress and total overburden (or lithostatic) stress were calculated for the Site 672 sedimentary section using bulk density measurements and assuming hydrostatic pore-pressure conditions. The two stress curves show a slight deviation from a linear increase with depth (Fig. 42). This deviation is more pronounced in the effective overburden curve. The source of this feature at approximately 180–200 mbsf is the siliceous composition (higher porosity and lower density) of lithologic Unit 2. Numerous faults and en echelon veins also occur at this sub-bottom depth, and the interval corresponds to the equivalent stratigraphic position of the top of the décollement zone found at Site 671.

Discussion

The physical properties of the hemipelagic sediment blanket at Site 672 serve as a reference against which the measurements from the accreted and subducted sequences can be compared. Undrained vane shear strengths within the upper 110 mbsf of Site 672 sediments have a lower rate of strength increase with depth compared to those in the upper 270 mbsf for Site 671. Linear regressions computed only for the APC-recovered sediments at each site yield the following relationships:

Site 671-	Strength = $8.6 + 1$.51 * Depth	r =	0.92
Site 672-	Strength = $16.5 +$	0.70 * Depth	r =	0.89

where strength units are in kPa and depth in meters. The slightly greater strength of the sediments from Site 671 may be a reflection of tectonic strengthening of this accreted material and/or the result of diagenesis.

Summary

The physical property data define four major zones in Hole 672A. These zones are primarily defined by the index property data, but are consistent with the thermal conductivity, shear strength, and formation-factor measurements. The zones show two different characteristics. First, a character that can probably be attributed to a normally consolidated sequence (Zones 1 and 3); and second, a character that shows increasing water content with depth (Zones 2 and 4) which may either be attributed to stress conditions not expected at a "reference" site, to compositional changes within the zone, or both.

The compressional velocity data do not resolve the zones, primarily because of the dependence of the measurement on the water within the sediment-water matrix. The shear strength data, although limited to the upper index zone, shows lower strength than at Site 671. As defined by the index data, Zone 1 shows no evidence of influence from stresses at the deformation front, suggesting that the higher strengths at Site 671 are owing to stresses induced within the sediment column during accretion. When compared to the biostratigraphy, the transition between index Zone 1 and Zone 2 is coincident with the lower Pliocene/ lower Miocene boundary. Below Zone 2, the transition falls within the lower Miocene/lower Oligocene lower bound. The distinct physical property break between Zones 3 and 4 does not correlate with any break in age.

The structural geologic profile at Site 672 shows very good correlation with the physical properties. At the upper physical property transition zone where low water content and porosity occur, the structural picture is a zone of normal faults and subvertical veins. At the base of Zone 2, where there is a peak in the water content and porosity profiles, the sediments show shear zones, fault surfaces and vein networks. Although the index data trends are opposed for the upper normal fault zone (110 mbsf) and the lower reverse fault zone (180 mbsf), the physical character of the sediments may be indicative of the maturity of the "future" décollement zone.

LOGGING RESULTS

Bad hole conditions similar to those encountered at Site 671 hindered attempts to log Hole 672A, and logging at two different levels in the hole yielded only 45 m of measurements. The first logging run utilized a Schlumberger DIL-LSS-GR-CAL string (see Logging Results section, Site 671, for a description) with the pipe set at 146.5 mbsf. We hoped that this would be far enough into the formation to avoid the sloughing problems which commonly plague logging operations in soft sediments. However, the tool string hit an obstruction 13 m out of the bit; after we raised the pipe the tool recorded over an open hole interval from 141.5 to 116 mbsf (Cores 110-672A-16X to -13H).

After pulling the tools out of the pipe, the bit was lowered to 188 mbsf. Some extra pipe was retained above the rig floor to push past any obstructions developed during the 3 hr required for logging tool rig-up and transit through pipe to open hole. Hitting the bridge on the first logging run damaged the Schlumberger cable head, and the backup cable head failed in the water column 200 m below the rig floor, necessitating a run with the Lamont Multichannel Sonic (MCS) tool. The MCS tool encountered a bridge only 33 m into the open hole. After obtaining a log in this section and pulling the MCS out of the hole, logging was discontinued because of the poor hole conditions.

Schlumberger Run

Figure 44 displays the open-hole section of the log from the DIL-LSS-GR-CAL tool string. The Caliper and gamma-ray traces are in track 1, the three resistivity traces (ILD, ILM, SFLU) are in track 2, and the two slowness traces from the LSS tool (DT and DTL) are in track 3. Two important observations are immediately available from these logs.

First, the borehole diameter stays in the range of 7 to 8 in. over most of the open-hole section, despite the bit size of 11.4 in. This is a clear indication of the difficult hole conditions, with the constrictions forming as a result of some combination of slumping of the borehole wall and hole deformation. An observed increase in the cable tension across this interval also serves as an indicator of the confining hole size.

Second, the logs over this section are remarkably uniform in character, with almost all of the major changes in value (especially for the gamma-ray and resistivity curves) corresponding to changes in hole diameter and not to formation properties. All of the measured properties are consistent in magnitude with the same properties measured in Hole 671C. The ILD and ILM, which still seem to be the most accurate resistivity measurements, vary in a range from 1.5 to 3.0 ohm-m, with the minimum values occurring at depths of increased hole diameter. Except for hole size-affected sections, the gamma-ray curve maintains a nearly constant value of approximately 55 API units, while both the DT and DTL slowness curves remain between 190 μ s/ft (1.60 km/s) and 195 μ s/ft (1.56 km/s). The sonic velocities derived from these curves are compared with physical properties measurements in Table 12. Considering the uncertainties inherent in both types of measurement, the close correspondence is surprising, especially in light of the fact that the core velocities have not been corrected for decompaction resulting from removal of the weight of the sediment column. This correction usually raises the measured velocities by a few percent; in this case, an increase of a few percent in the core velocities would give even better agreement between the core and log values.

The logged section in Hole 672A extends from 116 to 141.5 mbsf, an interval almost identical in depth to the 110- to 132-mbsf logged section in Hole 671C. While these two sections contain different stratigraphic intervals (a lower Pliocene to upper Miocene section in Hole 671C as opposed to an upper Miocene section in Hole 672A) and are in what are thought to be two different tectonic environments (the toe of an accretionary prism and the undisturbed Atlantic abyssal plain), the almost identical values of resistivity and sonic velocity suggest that depth of burial is the dominant factor in determining the bulk, in situ physical properties. Sonic and resistivity logs, being sensitive to changes in porosity, are valuable tools for estimating the onset of overpressuring in a formation. By comparing a log from an overpressured zone with one from a hydrostatically pressured zone of the same lithology, it is possible to arrive at an estimate of the amount and extent of overpressuring (Ransom, 1986 and Fertl, 1976). Overpressuring shows up both in the value of a log measurement and in the gradient with depth. For the resistivity logs from Holes 672A and 671C, the gradients (approximately 0.01 ohm-m/m) and the values of resistivity have basically the same value, which implies that, over the sub-bottom depths covered by the logs, near-lithostatic pore pressures are either absent in the prism or present in both the toe of the prism and in the abyssal plain in front of the prism. Of course, overpressuring is often limited to intervals below a discrete low-permeability boundary, so the possible absence of large overpressures in the upper section of Hole 671C does not necessarily invalidate the numerous models of accretionary prisms which invoke the presence of near-lithostatic fluid pressures (e.g., Davis et al., 1983).

Lamont Multichannel Sonic Log

The MCS is a variable spacing, single-source 12- receiver sonic logging tool that records the full sonic waveforms produced by the interaction of the source signal with the formation. A MASSCOMP 561 computer at the surface controls the tool during logging, digitizes the data uphole, and records the digitized data on magnetic tape. The large number of receivers and their close (15 cm) spacings enable the operator to arrive at accurate estimates of the acoustical properties of the formation surrounding the borehole; these estimates are generally superior to those obtainable from a standard sonic log. The accuracy of the MCS tool, even under bad hole conditions, has been established in a number of holes on land and at sea (Salisbury, Scott, Auroux, et al., 1986). A typical analysis of the waveforms yields an estimate of compressional velocity and, in moderately fast formations, an estimate of shear velocity, allowing calculation of the formation's dynamic elastic constants.

Usually, for moderatly fast formations, four dominant modes of wave motion are found in an acoustic log waveform. The first two are the compressional and shear (or composite shear-pseudo Rayleigh after Tsang and Rader, 1979) head waves, which travel along the interface between the formation and the borehole fluid. The other two are the tube (or Stoneley) wave, a form of surface wave that propagates along the wall of the borehole at a speed slightly below the borehole fluid speed, and the normal modes,

Figure 44. Schlumberger logs run in Hole 672A. Note the small caliper readings and the correspondence of low resistivity and gamma-ray values with increases in hole diameter.

which are trapped or guided waves propagating in the borehole. In a fast formation, the compressional and shear waves arrive at the receivers ahead of the other waves, allowing for the calculation of both compressional and shear velocity (see Fig. 45). In a slow formation, however, such as the soft claystone/mudstone penetrated at all of the Leg 110 sites, the weak shear wave is refracted away from the borehole, making calculation of the shear velocity impossible without the use of an inversion technique (e.g., Cheng et al., 1986). Figure 46 shows typical waveforms recorded in Hole 672A; note that while the compressional wave is visible, the fluid wave dominates the entire waveform behind the compressional arrival.

Velocity for the compressional part of the full waveform is determined by a semblance technique similar to that used in

 Table 12. Comparison of LSS-derived velocities with core data.

Dep	th (m)	Vor	Vort	v
rig floor	sub-bottom	(km/s)	(km/s)	(km/s)
5102.81	119.11	1.57	1.57	
5102.96	119.26	1.57	1.57	
5103.11	119.41	1.57	1.57	
5103.26	119.56	1.54	1.54	
5103.57	119.72	1.58	1.58	
5103.72	120.02	1.58	1.58	
5103.87	120.17	1.57	1.57	1.55
5104.03	120.33	1.60	1.60	1.55
5104.18	120.48	1.58	1.58	1.55
5104.33	120.03	1.50	1.50	1.55
5104.64	120.94	1.57	1.57	
5104.79	121.09	1.57	1.57	
5104.94	121.24	1.57	1.57	
5105.09	121.39	1.58	1.58	
5105.25	121.55	1.57	1.57	
5105.55	121.85	1.58	1.58	
5105.70	122.00	1.58	1.58	
5105.86	122.16	1.58	1.58	
5106.01	122.31	1.58	1.58	
5106.16	122.46	1.57	1.57	
5106.31	122.01	1.58	1.58	
5106.62	122.92	1.58	1.58	
5106.77	123.07	1.57	1.57	
5106.92	123.22	1.57	1.57	
5107.07	123.37	1.57	1.57	
5107.23	123.53	1.57	1.57	
5107.53	123.83	1.57	1.57	
5107.68	123.98	1.56	1.56	
5107.84	124.14	1.57	1.57	
5107.99	124.29	1.58	1.58	
5108.14	124.44	1.57	1.57	
5108.29	124.59	1.58	1.58	
5108.60	124.90	1.58	1.58	
5108.75	125.05	1.59	1.59	
5108.90	125.20	1.59	1.59	
5109.06	125.36	1.59	1.59	
5109.21	125.51	1.59	1.59	
5109.50	125.81	1.59	1.59	
5109.67	125.97	1.56	1.56	
5109.82	126.12	1.58	1.58	
5109.97	126.27	1.58	1.58	
5110.12	126.42	1.57	1.57	
5110.28	120.58	1.50	1.50	
5110.58	126.88	1.58	1.58	
5110.73	127.03	1.57	1.57	
5110.89	127.19	1.58	1.58	
5111.04	127.34	1.58	1.58	
5111.19	127.49	1.58	1.58	
5111.54	127.64	1.59	1.59	
5111.65	127.95	1.59	1.59	1.76 (anomalous
5111.80	128.10	1.59	1.59	1.76 readings from
5111.95	128.25	1.59	1.59	1.76 ash layer)
5112.11	128.41	1.59	1.59	
5112.26	128.56	1.59	1.59	
5112.56	128.86	1.58	1.58	
5112.72	129.02	1.58	1.58	
5112.87	129.17	1.59	1.59	
5113.02	129.32	1.58	1.58	
5113.17	129.47	1.57	1.57	
5113.33	129.63	1.58	1.58	
5113.63	129.78	1.59	1.59	
5113.78	130.08	1.58	1.58	
5113.94	130.24	1.58	1.58	
5114.09	130.39	1.58	1.58	
5114.24	130.54	1.58	1.58	

multichannel seismic surveys (Neidell and Taner, 1971). The semblance analysis is a statistical method used to detect arrival and associated slowness. This method assumes only that the formation is homogenous over the span of the receiver array; if discontinuities, such as fractures, are present on a smaller scale, then those discontinuities show up as isolated low values of semblance. The method is applied by passing a set of time windows of assumed arrival times and values of slowness through the waveforms. After this, the scalar semblance is computed for each windowed waveform, resulting in a measure of the presence or absence of an arrival with the specified slowness and arrival time. A high value of semblance (close to 1.0) indicates that the segments delimited by the window are identical in both shape and magnitude; thus, the window has identified a coherent arrival. A low value of semblance (less than 0.5) indicates that there is no coherent arrival for the specified value of slowness.

The result of a preliminary semblance calculation over 13 m of MCS data is shown in Figure 47. The high value of semblance (approximately 0.7) indicates that the estimated velocities are reasonably accurate. There appear to be four separate zones of slowness. From 201 to 202.5 mbsf the slowness is 192 μ s/ft (1.59 km/s). This changes to approximately 187 μ s/ft (1.63 km/s) from 202.5 to 204.5 mbsf and then to 190 μ s/ft (1.60 km/s) from 204.5 to 210 mbsf. From 210 to 214 mbsf, the slowness drops to 185 μ s/ft (1.65 km/s). As with the Schlumberger sonic data, the MCS velocity values correlate well with the physical properties values as is shown in Table 13.

The lithology of the section covered by the MCS data is a fairly homogenous mudstone/claystone (see Lithostratigraphy section, this chapter), so it is not certain what accounts for the small-scale velocity variations seen in the log. It should be noted, however, that Core 110-672A-23X, which is thought to contain part of the future décollement, spans most of this section of the log (199.3 to 208.8 mbsf). Given the steady steplike increase in velocity with depth shown in the log, it is possible that the formation of the décollement at this depth is partially determined by a transition from material of higher porosity and lower strength to material of lower porosity and greater strength.

SEISMIC STRATIGRAPHY

Seismic line CRV 128 clearly depicts five seismic sequences in the area of Site 672 (Fig. 48). Because of some inaccuracy in the location of the seismic line with respect to the hole, the correlation of the limits of the seismic sequences with the lithologies and physical properties observed at Site 672 are not perfectly constrained, and uncertainties of about 20 m (2 cores) are likely.

Seismic Unit A

The top of Unit A is the seafloor and its base is reflector A (depths: 0-110 mbsf). The unit shows little variation in thickness (0.130 s) except between SP90 to 130 where the thickness increases to 0.180 s, apparently owing to young down-faulting of a small block. This seismic unit comprises weak to very weak, discontinuous, parallel reflectors. Age control from Site 672 indicates a latest Miocene to early Pleistocene age, and its dominant facies are calcareous clays, calcareous muds, and marls.

Seismic Unit B

Unit B is bound by the weak reflector A at the top and the strong reflector B at the bottom (depths: 110-205 mbsf). It is parallel to unit A, and composed of discontinuous, parallel, weak to strong reflectors of relatively uniform thickness. Unit B is Miocene in age, bearing in mind the indeterminate two-core age at the lower boundary, reflector B. The dominant facies in Unit 3 are mudstones and claystones. Reflector A may be re-

Figure 45. Typical multichannel sonic data recorded in granitic rock. In such fast formations the various wave arrivals are well separated.

Figure 46. Waveforms recorded by the MCS tool in Hole 672A. Here the fluid arrival is slightly later than the compressional arrival, obscuring the later head and surface wave modes.

Figure 47. Velocity, semblance, and slowness for the interval 5184 m (200 mbsf) to 5198 m (214 mbsf). Note the steplike increase in velocity (decrease in slowness) across the section; this could be linked to the future location of the décollement. Points on slowness curve mark positions of maximum semblance.

lated to a slight decrease in bulk density (about 10%) just below the Pliocene/Miocene boundary (depth: 120 mbsf).

Seismic Unit C

The top of Unit C is the strong low-frequency reflector B and its base is at reflector C, a prominent reflector with a slightly higher frequency than reflector B (depth: 205–370 mbsf). This unit is almost transparent, is parallel to the overlying seismic units and thickens from east to west (0.190 s at Site 672 to 0.240 s at SP 200). Unit C is late Oligocene to late Eocene in age; however, the exact age of reflector C is poorly constrained in the late Eocene. The lithology is made of alternating claystones, calcareous claystones and mudstones, mudstones, and thin beds of silt. Reflector B is probably generated by a nearly 20% increase in density at a 200 mbsf; however, velocities do not show any significant change at this depth.

Seismic Unit D

Unit D consist of prominent, moderately strong and continuous reflectors. The upper boundary of Unit D is reflector C, whereas its lower boundary is reflector D (depth: 370-470 mbsf). This seismic unit is 0.100 to 0.130 s thick along most of CRV 128 and is parallel to the overlying units. Unit D is of middle Eocene age and consists of alternating claystones, calcareous mudstones, marls and sands. Slight density and velocity variations explain the unit's acoustically layered appearance (see Physical Properties section).

Seismic Unit E

Unit E is the sedimentary seismic sequence immediately overlying oceanic crust (reflector E) and underlying Unit D from which it is separated by the strong, low-frequency reflector D (depth: 470-800 mbsf). Unit E shows weak to very weak parallel reflectors especially in its lower half. Large thickness variations occur in this unit owing to basement faulting; the highest measured thickness is 0.300 s at SP 70. Reflector D might be related to the slight decrease of density between 450 and 470 msbf. The age and lithology of this unit are not known, as only its uppermost part was drilled at Site 672. The three cores that penetrated into the top of this unit consist of lower Eocene siliceous claystones. Correlation with DSDP Site 543 suggests that the remainder of Unit E is made of clays and calcareous clays, ranging from early Eocene to Campanian age. Reflector E is the top of the faulted oceanic crust, found to be of Late Cretaceous age at DSDP Site 543.

Several normal faults have been described in Hole 672A (see Structural Geology section). These faults might be related to the subtle but clearly depicted ones observed on the seismic record (Fig. 49). Subtle variations of the seafloor topography are clearly related to recent normal displacements along these faults.

HEAT FLOW

Introduction

To determine the magnitude of any heat-flow anomalies within the Lesser Antilles accretionary complex, it is first necessary to establish a background reference. Site 672 is located on the northwestern edge of the Tiburon Rise, 6 km east of the deformation front and 20 km south of Site 543, the reference for Deep Sea Drilling Project Leg 78A (Biju-Duval, Moore, et al., 1984). Langseth et al. (1986) conducted the Leg 110 site survey, which included transects at 14°20'N and 14°35'N. The authors noted

Table	13.	Comparison	of	MCS
velociti	ies wit	h core velocitie	es.	

Dep	oth (m)	V	v
rig floor	sub-bottom	(km/s)	(km/s)
5184.7	201.0	1.58	1000
5185.0	201.3	1.58	
5185.3	201.6	1.58	
5185.6	201.9	1.58	
5185.9	202.2	1.58	
5186.2	202.5	1.58	
5186.5	202.8	1.58	
5186.8	203.1	1.61	
5187.1	203.4	1.61	
5187.4	203.7	1.61	1.59
5187.7	204.0	1.62	1.59
5188.0	204.3	1.62	1.59
5188.3	204.6	1.60	0.00
5188.6	204.9	1.60	
5188.9	205.2	1.60	
5189.2	205.5	1.60	
5189.5	205.8	1.60	
5189.8	206.1	1.60	
5190.1	206.4	1.60	
5190.4	206.7	1.60	
5190.7	207.0	1.60	
5191.0	207.3	1.60	
5191.3	207.6	1.60	
5191.6	207.9	1.60	
5191.9	208.2	1.60	
5192.2	208.5	1.60	
5192.5	208.8	1.59	
5192.8	209.1	1.60	
5193.1	209.4	1.60	
5193.4	209.7	1.61	
5193.7	210.0	1.62	
5194.0	210.3	1.63	
5194.3	210.6	1.62	
5194.6	210.9	1.63	
5194.9	211.2	1.63	
5195.2	211.5	1.65	
5195.5	211.8	1.63	
5195.8	212.1	1.65	
5196.1	212.4	1.66	
5196.4	212.7	1.65	
5196.7	213.0	1.63	
5197.0	213.3	1.65	
5197.3	213.6	1.65	1.64
5197.6	213.9	1.63	1.64
5197.9	214.2	1.65	1 64

progressively lower heat-flow values from the abyssal plain westward, as is theoretically predicted. They also found no evidence of pore-water movement through the prism at these latitudes. However, at $15^{\circ}30'$ N nearly the same latitude as ODP Site 672, they reported progressively higher heat flow values while moving up the accretionary complex. Langseth et al. (1986) suggested that local heat-flow highs at $15^{\circ}30'$ N indicate significant upward flow of interstitial water through the sediment of the complex. One such high (125 mW/m^2) is located just 3 km west of Site 672. Moore and Biju-Duval (1984) noted the presence of a penetrating thrust on a seismic line east of the deformation front (their Figure 5A). Langseth (pers. comm., 1986) suggested that this thrust may act as a conduit for migration of warm fluid, resulting in the large measured heat flow.

Methods and Results

See Chapter 1 for a discussion of experimental methods, intertool calibration, and data reduction. Tool properties are summarized in Table 14 and measured temperatures are summarized in Table 15.

Hole 672A

The APC tool was deployed during collection of Cores 110-672A-2H, -4H, -6H, -8H, and -10H with a sampling interval of

15 s. Prior to taking Core 110- 672A-2H, the shoe was lowered past the bit, 3 m below mudline, to measure bottom-water temperature. The shoe was held in this position for 10 min and equilibrated to 2.20°C, which was corroborated (± 0.05°C) by later deployments of the same tool as well as the T-probe. After measuring bit temperature, the APC was fired into the sediment. Accurate sediment temperatures were determined with the APC tool at depths of 13.3 mbsf (Core 110-672A-2H, Fig. 50); 32.3 mbsf (Core 110-672A-4H, Fig. 51); and 52.3 mbsf (Core 110-672A-6H, Fig. 52). Records from deployments 110-672A-2H and -6H display frictional heating during penetration, followed by cooling of the coring shoe and tool. Temperatures for these deployments were extrapolated to 3.66°C (±0.05) and 6.65°C (± 0.05) , respectively. The temperature record from deployment for Core 110-672A-4H suggests that the APC tool moved slightly while in the sediment, so an equilibrium temperature of 4.30°C (± 0.05) was calculated from only the first portion of the record. Probe malfunctions resulted in no data being recorded during lowerings for Cores 110-672A-8H and -10H.

The T-probe, mounted in the WSTP tool, was run successfully after Cores 110-672A-5H and -15X to depths of 42.3 and 133.8 mbsf, respectively (Figs. 53, 54). The APC tool and WSTP tool were run in tandem after Core 110-672A-15X. During this run the APC thermistor sat 60 cm behind the tip of the T-probe. The T-probe record for this lowering indicates sediment penetration and subsequent cooling while the APC tool record (Fig. 55) indicates that the shoe did not penetrate the sediment surface. The temperatures that were recorded with the T-probe after Core 110-672A-15X were extrapolated to an equilibrium temperature of $5.25^{\circ}C$ ($\pm 0.05^{\circ}C$).

The temperature record for run after Core 110-672A-15X (Fig. 55) indicates that the WSTP-probe penetrated sediment after latch-in to the bit, but before lowering to the bottom of the hole. The probe was probably in contact with sediment fill that had fallen from the borehole wall. This fill was probably approaching the ambient sediment temperature at this depth when the probe was pressed in further to sample pore water. The temperature drops continuously during the 20 min that the probe remained in this position. Analysis of the pore-water sample collected at the time indicates seawater contamination. This evidence suggests that the fill was penetrated and cracked, allowing inflow of seawater. The 12.7°C temperature determined for this lowering was calculated from the cooling of the T-probe prior to penetration and cracking of the hole bottom, and is thus a lower bound. This value has an estimated error of 0.1°C.

Interpretations

A linear-least-squares best fit of the temperature values from Hole 672A yields a thermal gradient of 79° C/km (Fig. 56). This gradient is 160% higher than the sediment gradient estimated at Site 543 (Davis and Hussong, 1984). There is apparent concavedown curvature of the gradient from 0 to 35 mbsf, followed by a lesser degree of concave-up curvature from 35 to 50 mbsf. Thermal conductivity varies over this same interval (Fig. 56), with a steady increase to 40 mbsf (as the thermal gradient decreases) and a sharp decrease after 40 mbsf coinciding with a thermal gradient increase.

To calculate the heat flow at Site 672, changes in sediment thermal properties were taken into account by calculating the integrated thermal resistance of the sediment column at the depth of each temperature measurement (as in Bullard, 1939). Thermal conductivities were converted to thermal resistances with variations between adjacent thermal conductivity measurements assumed to be linear, and the thermal resistance was numerically integrated at each temperature-measurement depth using Simpson's rule (Burington, 1973). This method should be more precise than assuming thermal conductivity is a linear function of depth (as in Becker et al., 1983). The gradient of the linear-

Figure 48. Top: Depth section of Line CRV 128 from Site 672 to Site 671. No vertical exaggeration. Bottom: Correlation of lithologic units and physical properties with seismic sequences of Line CRV 128.

1 km

least-squares best-fitting line through these temperature-thermal resistance values is the conductive heat flow (Fig. 57). Since there was no thermal conductivity data for the upper 15 m of sediment, it was necessary to assume a surface value. Langseth et al. (1986) reported surface conductivity values of $0.82 \text{ W/m} \,^{\circ}\text{C}$ from piston cores taken just east of the deformation front at 14°20'N. Davis and Hussong (1984) assumed a thermal conductivity of 1.04 W/m °C for the upper portion of the sediment column at Site 543. A series of values ranging from 0.75 to 1.00 W/m °C were used in the current analysis with resulting variations in the calculated heat flow ranging from 91 to 92 mW/m².

The heat flow found at Site 672 is approximately 80% greater than that theoretically predicted for 90-Ma crust. Earlier surveys of the Barracuda Ridge (Birch, 1970; Schubert and Peter, 1974), which is tectonically similar to the Tiburon Rise (Moretti and Ngokwey, 1985), revealed anomolously small heat-flow values. These were attributed to hydrothermal circulation in the basement and a lateral thermal conductivity contrast. By analogy, one might expect to find similar low values at reference Site 672, near the Tiburon Rise.

Two possible explanations for the large heat flow observed at Site 672 are:

1. Anomolously warm oceanic crust is maintaining a linear gradient of 70°C/km through the entire sediment column. This

gradient requires a temperature of about $65^{\circ}C$ at the base of the sedimentary sequence.

To maintain a strong geothermal gradient through the entire sediment column without fluid migration, the oceanic crust would have to be unusually thin. The Moho is anomolously shallow beneath the thick sedimentary sequence on the northern flank of the Barracuda Ridge (Moretti and Ngokwey, 1985). By analogy, the Tiburon Rise may be flanked to the north by thin oceanic crust. However, if the Moho is in fact shallower than normal beneath the northern flanks of both aseismic ridges, it would seem likely that the two would yield similar heat-flow values. The two yield dissimilar values, suggesting that different processes dominate the thermal regimes over the two features.

2. There is a steady supply of heat within the sedimentary sequence below 140 m. This heat source may be warm fluid moving through the sand layer(s) encountered at around 400 mbsf, through normal faults that penetrate the sedimentary sequence and basement, or through the "future décollement zone" at 175 to 195 mbsf (see sections on Structural Geology and Lithostratigraphy, this chapter). If at a depth of 400 mbsf, the heat source would have to maintain a sediment temperature of 32°C.

Geochemical evidence (Geochemistry section, this chapter), and the linear thermal gradient encountered at Site 672, do not suggest significant pore-water movement up through the sediment column, although lateral flow is still conceptually feasible 1 km

Figure 49. Distribution of faults in the vicinity of Site 672. Apparent displacements along these faults are normal, some of which could still be active as they affect the seabottom topography.

Table 14. Temperature measurement instruments used at Site 672.

Tool	Thermistor housing	Thermistor resolution	Recorder program
APC Tool	Steel annular cylinder ID: 0.0617 m OD: 0.0786 m	0.02 °C	15 s recording interval
T-probe	Steel cylindrical 0.0125-m dia	0.05 °C	5.12 s recording interval

Table 15. Temperature measurement summary, Hole 672A.

Depth (mbsf)	Tool	Equilibrium temp. (est. error) (°C)	Sediment/water temperature
0	APC-tool #6	2.20 (0.05)	Water
13.3	APC-tool #6	3.66 (0.05)	Sediment
32.3	APC-tool #6	4.30 (0.05)	Sediment
42.3	T-probe #14	5.25 (0.05)	Sediment
51.3	APC-tool #6	6.65 (0.05)	Sediment
133.8	T-probe #14	12.7 (0.10)	Sediment

at a depth below 135 mbsf. The seismic stratigraphy of Site 672 (Seismic Stratigraphy section, this chapter) reveals high-angle normal faults penetrating the sedimentary sequence to basement, but these do not appear to continue or join other faults west of the deformation front. Thus, these normal faults are unlikely to be transporting fluids that flowed along thrusts through the accretionary complex. These arguments do not, however, rule out lateral migration of fluid at a depth below the bottom of the hole.

The question remaining is whether the large heat flow measured at Site 672 is truly anomalous or indicative of the region. If it is the former, then it will be difficult to establish a regional "reference" to which heat flow over the accretionary complex may be compared.

SUMMARY AND CONCLUSIONS

Site 672 is located 6 km east of the deformation front of the northern Barbados Ridge on the transect including DSDP Sites 541–542 and ODP Site 671. The principal aim of Site 672 was to core a reference section on the seaward side of the accretionary complex and to provide complete data on the biostratigraphy, lithologies, physical properties, and geochemistry of the incoming oceanic sedimentary cover (Fig. 58).

Four lithologic units have been recognized at Site 672, which range in age from early Pleistocene to early Eocene.

Figure 50. A. Temperature vs. time record for first deployment of APC tool, Core 110-672A-2H, 13.3 mbsf. B. Detail of record, showing sediment temperature.

Unit 1 (0-123 mbsf) consists of calcareous clays and mud, marls, and frequent ash layers. This unit is of early Pleistocene to upper late Miocene age.

Unit 2 (123–228 mbsf) includes mudstones, claystones, and ash layers, with a locally conspicuous biogenic siliceous component. This unit is of late Miocene to early Miocene age (but the two deepest cores are of undeterminate age). Units 1 and 2 show quite homogenous hemipelagic facies and contrast with the two following units where alternating lithologies suggest lateral clastic and biogenic input and reworking in addition to the background hemipelagic sedimentation.

Unit 3 (228-332 mbsf) consists of Oligocene interbedded claystones, calcareous claystones/mudstones, marls, and thin silt layers.

Unit 4 (332-446 mbsf) records significant lateral clastic and biogenic inputs in the form of cyclic alternation of claystones, laminated calcareous mudstones and marls, micritic limestones, and calcarenites (in the lower part only) and sandstones. Unit 4 is of latest to middle Eocene age.

Unit 5 (446-494 mbsf), the deepest cores of Site 672, consist of pelagic siliceous claystone of early middle to early Eocene age. This is the upper part of transparent seismic sequence which extends down to the oceanic basement about 300 m below the bottom of the hole. The oceanic crust is presumed to be of Senonian age according to results from DSDP Site 543, located 20 km to the north.

Obvious seismic evidence of normal faulting is supported by small-scale normal faults observed in cores. Most of these faults

Figure 51. A. Temperature vs. time record for second deployment of APC tool, Core 110-672A-4H, 32.3 mbsf. B. Detail of record, showing sediment temperature.

appear between 60 and 110, and 170 and 200 msbf. Dilatant subvertical veins filled with clays also occur within these depth intervals. In the interval 180–200 mbsf some of these faults show a conspicuous subhorizontal en-echelon pattern. Displacements along these shear zones are predominantly horizontal, but in one case a reverse movement has been documented. A few reverse faults were also observed at the same depth. This 180–200 mbsf interval, with dilatent veins plus low-angle faults, is of early Miocene age and shows evidence of compressive stresses whereas most of the cored section is affected by normal faulting only.

Bulk densities increase regularly with depth except in two anomalous intervals. The first interval is between 120 msbf (upper late Miocene) and 215 msbf (Oligocene-Miocene boundary). Over this interval average density decreases about 10% with a local pronounced low at a depth of 190 mbsf (lower Miocene). This 95-m-thick interval corresponds quite well with lithologic Unit 2, characterized by a low to very low carbonate content and a relatively high siliceous content. The central portion of this interval, Subunit 2b, also corresponds to the cores that include en-echelon dilatant veins in subhorizontal shear zones.

The second low-density interval is between 450 msbf and the bottom of the hole. It is of early Eocene to early middle Eocene age and exactly correlates with lithologic Unit 5. Here, too, the lithology is characterized by a lack of carbonates and a high siliceous content.

An unexpected result at Site 672 is the large heat flow values (79°C/km) calculated from the temperature measurements in

Figure 52. A. Temperature vs. time record for third deployment of APC tool, Core 110-672A-6H, 51.3 mbsf. B. Detail of record, showing sediment temperature.

Figure 53. Temperature vs. time record for first deployment of T-probe, after Core 110-672A-5H, 42.3 mbsf.

Figure 54. Temperature vs. time record for second deployment of Tprobe, after Core 110-672A-15X, 133.8 mbsf.

Figure 55. Temperature vs. measurement number for deployment of APC tool, run in tandem with T-probe after Core 110-672A-15X, 133.3 mbsf.

the hole. Interpretation of this result is still debatable but these heat flows could have originated from a superficial source in the sediments rather than far below in the crust or upper mantle. Another spectacular result came from the magnetic susceptibility measurements that have shown quite distinct average values above and below 180-200 mbsf (lower Miocene). These two magnetic susceptibility zones are correlated to a rapid source change for the magnetic minerals. The Neogene magnetic minerals are related to ash beds from the volcanic arc, whereas Pa-

Figure 56. Plots of A. temperature and B. thermal conductivity vs. depth for Hole 672A.

leogene magnetic minerals are more probably derived from clays originating on the South American continent. A similar distribution of magnetic minerals had already been proposed at Site 671.

Site 672, as an oceanic abyssal plain reference hole, was intended to reveal standard trends in pore-water chemistry. The decrease of magnesium and the increase of calcium with depth both reflect the alteration of volcanic ashes in the upper level (0-120 mbsf), and respective diffusion of these elements to or from the oceanic crust in the lower half of the hole (300-500 mbsf). A slight increase in curve slopes between 325 and 375 mbsf is related to greater diffusivity of the sand layers at the top of the lithologic Unit 4. The concentration-depth profile of dissolved chloride is more complex as several anomalies are superimposed. A normal slight decrease in chloride occurs from 0 to 300 msbf. The major anomaly is a sharp decrease in chloride content below 300 msbf with a prominent low value at 367 mbsf. This depth corresponds to the principal sand layer of lithologic Unit 4. Apparently, advection of freshwater is the origin of the low chloride content. A single low value at 216 msbf would probably have been neglected if it had not been 25 m below the previously described lower Miocene shear zone. Furthermore, it correlates with a high value of methane content. These observations suggest advection of freshwater just below the lower Miocene shear zone. A few anomalously high values of chloride content remain difficult to explain. The only presently known process leading to very local variation in chloride concentration and perhaps other ions is recent membrane filtration.

From this brief summary of Site 672, three major points are especially noteworthy:

1. DSDP Site 543 and ODP Site 672 are both located on the moderate slopes (average: 1.5%) of the Tiburon Rise, a broad

Figure 57. Plot of downhole temperature vs. integrated thermal resistance in Hole 672A. Linear least-squares best-fitted curves generated with different assumed surface sediment thermal conductivities.

NW-SE trending and 40-km-wide oceanic ridge that culminates at about 1500 m above the surrounding abyssal plains (Fig. 59). Site 672 is on an westward-facing slope at a water depth of 4983 m, whereas Site 543 is on a northward-facing slope at a water depth of 5633 m. The sediment thickness is about twice as great at Site 672 as at Site 543. Most of this thickening occurs in pre-Neogene strata, and is particularly well documented in middle Eocene and Oligocene time (Fig. 60). At Site 672, these two intervals are each 100 m thick and they correspond to relatively high rates of sedimentation with clastic and biogenic influxes from the South American continent as well as from the upper slope of the Tiburon Rise (see Lithostratigraphy section). At the same time, a cumulative thickness of 40 m consisting only of pelagic clays was deposited at the location of Site 543. These differences can be explained by two processes. First, the lack of biogenic components is probably related to the greater depth of Site 543: if located well below the CCD, both primary (pelagic) and reworked foraminifers or nannofossils have been dissolved. Second, the absence of any silt or sand layers at Site 543 could be a result of some obstructing effect of the Tiburon Rise, particularly if the main source of these clastic influxes is South America. This however, does not explain why we found these silts and sands at Site 672 which, in its present setting, is some 650 m higher than Site 543. On line CRV-128, the related seismic sequences do not show any evidences of thinning or pinch outs from west to east as would be expected if they onlapped the Tiburon Rise at the edge of a deeper basin to the south or to the west. These sands and silts could be distal turbiditic deposits although they lack true Bouma sequences. Alternatively, they could be explained as sediments transported and reworked by bottom currents coming from the south. These currents could have decreased in velocity and energy upon topping the Tiburon Rise leading to the deposition of the entrained clastic particles.

2. Structural features related to compressive stresses (reverse faults, en-echelon veins) are restricted to the lower Miocene interval whereas normal faults occur within Pliocene to middle Eocene sediments. This lower Miocene section correlates exactly with the top of the décollement zone defined at Site 671. Why are these veins and faults concentrated in this peculiar interval from 175 to 200 mbsf? Data show a sharp increase in porosity in this interval, perhaps indicating significant underconsolidation and elevated pore pressure plus consequent lower strength than sediments above and below. This anomalously weak interval permits the development of the compressive structural features. Apparently, some of the stresses related to the developing accretionary complex are propagating a few kilometers forward of the deformation front (here defined as the first appearance of large-scale folds and faults).

3. A first comparison of Ca, Mg, Cl, and CH₄ content between Sites 671 and 672 shows strong similarities in absolute values and trends when stratigraphic intervals are plotted at the same depth (Fig. 61). In the upper 100 m the fits are almost perfect except for methane, where diffusion from 225 mbsf can be inferred. A similar trend agreement is also observed within the repeated upper Miocene-Pleistocene section below thrust T4. The Miocene interval is too disturbed by faulting and folding at Site 671 to allow direct comparison with Site 672. However, if we correlate the décollement as defined at Site 671 with the shear zone we encountered at Site 672, the three elements and the methane below the décollement zone show remarkable similarities in both values and trends. This is quite consistent with a scenario of recent underthrusting of the Paleogene series, which has an overall low diffusive permeability (with the noticeable exception of some sand layers). The high methane content below the shear zone at Site 672 mimics that measured in the décollement zone of Site 671. This supports the hypothesis that water is laterally advecting from the accretionary complex to Site 672 along an incipient shear zone that will become the future décollement.

REFERENCES

- Becker, K., Von Herzen, R., and Karoto, S., 1983. Geothermal measurements from drilling of sediments near the Galapagos Spreading Center, 86° W, Deep Sea Drilling Project Leg 70. In, Honnorez, J., Von Herzen, R. P., et al., Init. Repts. DSDP, 70: Washington (U.S. Govt. Printing Office), 445-458.
- Bergen, J., 1984. Calcareous nannoplankton from Deep Sea Drilling Project Leg 78A: evidence for imbricate underthrusting at the Lesser Antillian active margin. In Biju-Duval, B., Moore, C., et al., Init. Repts. DSDP, 78A: Washington (U. S. Govt. Printing Office), 411– 445.
- Berggren, W. A., Kent, D. V., and Flynn, J. J., 1985. Paleogene geochronology and chronostratigraphy, *In*: Snelling, N. J., The geochronology and the geologic record. *Geol. Soc. London, Mem.* 10:141– 195.
- Berggren, W. A., Kent, D. V., and Van Couvering, J. A., 1985. Neogene geochronology and chronostratigraphy. In: Snelling, N. J., The geochronology and the geologic record. Geol. Soc. London, Mem. 10: 211-260.
- Biju-Duval, B., Moore, J. C., et al., 1984. Init. Repts. DSDP, 78A: Washington (U.S. Govt. Printing Office).
- Birch, F. S., 1970. The Barracuda Fault zone in the western North Atlantic: geological and geophysical studies., *Deep Sea Res.*, 17:847– 859.

- Bolli, H. M., 1957a. Planktonic foraminifera from the Oligocene-Miocene Cipero-Lengua Formations of Trinidad, B.W.I. Bull. U.S. Nat. Museum, 215:92-123.
- Bolli, H. M., 1957b. Planktonic foraminifera from the Eocene Navet and San Fernando Formations of Trinidad, B.W.I. Bull. U.S. Nat. Museum, 215:155-172.
- Bullard, E. C., 1939. Heat flow in South Africa, Proc. Roy. Soc. London, A173:474-502.
- Burington, R. S., 1973. Handbook of Mathematical Tables and Formulas, New York (McGraw-Hill).
- Cheng, C. H., Wilkens, R. H., and Meredith, J. A., 1986. Modeling of the fluid waveform acoustic log in soft marine sediments. SPWLA 27th Annual Logging Symposium.
- Claypool, G. E., and Kaplan, I. R., 1974. The origin and distribution of methane in marine sediments. *In Kaplan, I. R., (Ed.), Natural Gases* in Marine Sediments. Plenum Press: 99-140.
- Damuth, J. E., and Fairbridge, R. W., 1970. Equatorial Atlantic deep-Sea arkosic sands and ice-age aridity in tropical South America. Geol. Soc. Am. Bull., 81:189-206.
- Davis, D., and Hussong, D., 1984. Geothermal observations during Deep Sea Drilling Project Leg 78A. In Biju-Duval, B., Moore, J. C., et al., Init. Repts. DSDP, 78A: Washington (U.S. Govt. Printing Office), 593-598.
- Davis, D., Suppe, J., and Dalhen, F. A., 1983. Mechanism of fold-andthrust belts and accretionary wedge. J. Geophys. Res., 88:1153-1172.
- Embley, R. W., and Langseth, M. G., 1977. Sedimentation processes on the continental rise of northeastern South America. *Mar. Geol.*, 25: 297.
- Fertl, W. H., 1976. Abnormal Formation Pressure: Amsterdam (Elsevier Scientific Publishing Company).
- Gartner, S., 1977. Calcareous nannofossil biostratigraphy and revised zonation of the Pleistocene. Mar. Micropaleontology, 2:1-25.
- Gieskes, J. M., 1974. Interstitial water studies, Leg 25. In Simpson, E. S., Schlich, R., et al., Init. Repts. DSDP, 25: Washington (U.S. Govt. Printing Office), 361-394.
- Langseth, M., Westbrook, G., and Hobart, M., 1986. Geothermal transects of the lower trench slope of the Barbados accretionary prism, [paper presented at the 11th Annual Caribbean Geological Conference, Bridgetown, Barbados].
- McDuff, E., 1981. Major cation gradients in DSDP interstitial waters: the role of diffusive exchange between sea water upper ocean crust. *Geochim. Cosmochim. Acta*, 45:1705.
- Mascle, A., Cazes, M., and Le Quellec P., 1985. Structure des marges et bassins Caraibes: une revue. In Mascle, A. (Ed.), Symposium sur la Geodynamique des Caraibes: Paris (Edition Technip.)
- Moore, G. W., and Gieskes, J. M., 1980. Interaction between sediment and interstitial water near the Japan Trench, Leg 57, Deep Sea Drilling Project. In Scientific Party, Init. Repts. DSDP, 57: Washington (U.S. Govt. Printing Office), 1269–1275.
- Moore, J. C., and Biju-Duval, B., 1984. Tectonic synthesis, Deep Sea Drilling Project Leg 78A: structual evolution of offscraped and underthrust sediment, Northern Barbados Ridge Complex. In Biju-Duval, B., Moore, J. C., et al., Init. Repts. DSDP, 78A: Washington (U.S. Govt. Printing Office), 601-621.
- Moretti, I., and Ngokwey, K., 1985. Aseismic ridge subduction and vertical motion of an overiding plate. In, Mascle, A. (Ed.), Geodynamique des Caraibes: Paris (Editions Technip.), 245-253.
- Neidell, N., and Taner, H., 1971. Semblance and other coherency measure for multichannel data. *Geophysics*, 36:482-497.
- Okada, H., and Bukry, D., 1980. Supplementary modification and introduction of code numbers to the low latitude coccolith biostratigraphic zonation (Bukry 1973, 1975). *Mar. Micropaleontology*, 5: 321-325.
- Peter, G., and Westbrook, G. K., 1976. Tectonics of southwestern north Atlantic. Bull. Soc. Assoc. Pet. Geol., 60:1078-1106.
- Pyle, M. R., 1984. Vane shear data on undrained residual strength. J. Geotech. Div., Am. Soc. Civ. Eng., 110:543-547.
- Ransom, R. C., 1986. A method for calculating pore pressure from well logs. Log Analyst SPWLA, Mar.-Apr.: 72-76.
- Riedel, W. R., and Sanfilippo, A., 1978. Stratigraphy and evolution of tropical Cenozoic radiolarians. *Micropaleontology*, 24:61–96.
- Salisbury, M. H., Scott, J. H., Auroux, C., et al., 1986. Proc., Init. Repts. (Pt. A), ODP. 102.

- Sanfilippo, A., and Riedel, W. R., 1982. Revision of the radiolarian genera *Theocotyle, Theocotylissa* and *Thyrsocyrtis. Micropaleontol*ogy, 28:170-188.
- Saunders, J. B., Bernoulli, D., Müller-Merz, E., Oberhaensli, H., Perch-Nielsen, K., Riedel, W. R., Sanfilippo, A., and Torrini, R. Jr., 1984. Stratigraphy of late Middle Eocene to Early Oligocene in Bath Cliff section Barbados, West Indies. *Micropaleontology*, 30:390-425.
- Schubert, C. E., and Peter, G., 1974. Heat flow northeast of Guadeloupe Island, Lesser Antilles, J. Geophys. Res., 79:2139-2140.
- Speed, R. C., Westbrook, G. K., et al., 1984. Lesser Antilles Arc and adjacent terranes; Ocean Margin Drilling Program. Atlas 10, Regional Atlas Series, Woods Hole (Marine Science International).
- Tsang, L., and Rader, D., 1979. Numerical evaluation of the transient acoustic waveform due to a point source in a fluid filled borehole. *Geophysics*, 44:1706–1720.

- Von Herzen, R. P., and Maxwell, A. E., 1959. The measurement of thermal conductivity of deep-sea sediments by a needle probe method. J. Geophys. Res., 65:1535-1541.
- Weissert, H. J., McKenzie, J. A., Wright, R. C., Clark, M., Oberhansli, H., and Casey, M., 1983. Paleoclimatic record of the Pliocene at Deep Sea Drilling Sites 519, 521, 522, and 523 (central South Atlantic). In Hsu, K. J., LaBreque, J. L., et al., Init. Repts. DSDP, 73: Washington (U.S. Govt. Printing Office), 701-715.
- Westbrook, G. K., Mascle, A., and Biju-Duval, B., 1984. Geophysics and the structure of the Lesser Antilles Forearc. In Biju-Duval, B., Moore, J. C., et al., Init. Repts. DSDP 78A: Washington (U.S. Govt. Printing Office), 23-38.
- Ms 110A-106

Figure 58. Summary of Site 672.

Figure 58 (continued).

Figure 59. Location of DSDP Site 543 and ODP Site 672 with respect to the Tiburon Rise and the deformation front. Contours are water depths in kilometers.

Figure 60. Comparison of DSDP Site 543 lithologies with those cored at ODP Site 672.

Figure 61. Comparison of Sites 671 (dashed) and 672 (dotted) diagrams in calcium, magnesium, chloride and methane in pore water. The values for Site 672 have been projected onto the Site 671 diagram, taking into account the stratigraphic intervals and the tectonic repetitions.

	FOSS	SIL	CHAI	RACTI	ER	cs	TIES					URB.	RES						
	INIFERS	FOSSILS	LARIANS	WS		MAGNET	PROPER	STRY	NO	5	GRAPHIC LITHOLOGY	ING DIS	STRUCTU	ES	LITHOL	OGIC DES	CRIPTIO	N	
TIME	FORAN	NANNO	RADIO	DIATO		PALEO	PHYS.	CHEMI	SECTI	METER		DRILL	SED.	SAMPL					
										-					CALCAREOUS CLAY and MUD p	plus MARL			
									1	0.5					CALCAREOUS CLAY and MU 10YR5/4, 10YR4/4), nannofoss	D plus MA sil-rich.	RL, yellov	vish brov	n (10YR5/8,
										1.0				*	Minor lithology: interbeds of vit 90–92 cm and 133–139 cm, a gray (10YR6/2–10YR5/1).	tric and min and in Sect	on 2, 139	lline ash I–143 cn	In Section 1, n; light to medium
									┝	-	<u>> (> " > "</u>			*	SMEAR SLIDE SUMMARY (%):				
							58	3.35 %		1					1, 92 M	1, 107 D	1, 135 M	2, 84 D	2, 142 M
							•	•	2					*	Sand 10		90 10	2	85 15
											-				Clay -	95	2	86	
	C/P	C/P	m						3	-				-	Quartz — Feldspar 20	rT rT	Tr 60		60
	zone								Γ		an ei ei Seorada aike S				Volcanic glass 76 Calcite/dolomite — Accessory minerals	-	15	-17 1T	33
ENE	i sut	e													Orthopyroxene 1 Clinopyroxene 1 Opaques 2		22	- 5	1 1 2
51 OC	hess	Zon	_												Homblende — Foraminifers — Nannofossils —	4 25	20	3 20	3
	3	esou	arrei												Bioclasts —	2	Ξ	-	Ξ
л I Т	Zone	lacu	8																
	ides	iania																	
	ning	10mil																	
	uncal	Pseud																	
	ia tr																		
	rotal																		
	GIODO																		

TE	6	72		HOL	E ,	A	-	CO	RE 2	2 H CO	RE	DI	NT	ERVAL 4976.3-4985.8 mbsl; 3.3-12.8 mbsf	
TIND	FO	STR	CHA	ZONE/ RACTE	2 00	TIES					URB.	RES			
TIME-ROCK (FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PAI FOMAGNETI	PHYS. PROPER	CHEMISTRY	SECTION	METERS	GRAPHIC	DRILLING DIST	SED. STRUCTU	SAMPLES	LITHOLOGIC DESCRIPTION	10
1					T	T	T						*	MUD plus CALCAREOUS CLAY and MUD plus MARL	20
								1	0.5					MUD plus CALCAREOUS CLAY and MUD plus MARL; very pale brown, yellowish brown, and brown (10/YR4/4, 10/YR5/4, 10/YR6/4, 10/YR7/4, 10/J7/2 0 6 M/6/4, 0 FM/20,	2
									1.0-					Minor lithology: interbeds of vitric and minor crystalline ash, light brown to dark cravish brown (7.5Y6K4-10Y8/2); pwite locally developed.	3(
													*	SMEAR SLIDE SUMMARY (%):	3
						46	×							1, 19 1, 129 3, 40 4, 6 4, 124 7, 15 D D M M M M	40
						- % •	.8.0	2						TEXTURE:	4:
						e s				× = 11	i			Silit 40 8 80 20 20 70 Clay 60 90 5 — — 30	50
	<i>hessi</i> subzone Zone						-						COMPOSITION: Quartz Tr _ 1	60	
		0							4				*	reidspar 2 1 20 40 50 20 Rock fragments - - - 43 40 Tr Clay 65 80 5 - - 30 Veloatic class - 70 5 - 40 1	6!
	hess	Zon				50	* 0	3						Accessory minerals Tr 2 2 8 Orthopyroxene 10 10 Clinopyroxene Tr 1 2	70
ENE	0.0	nosa				-9-	•35.							Homblende 2 — 1 — Tr — Foramillers 4 2 — — — — — Nannolossils 25 10 — — — — —	75
STOCI	Zone	a lacu	c			9					1		*	Hadiolanans Tr — Tr — — — Sponge spicules Tr 1 — — — — Bioclasts 4 — — — — —	80
PLEI	oides	liania	Barre			0=76	8.6	4			1	\$3			8
VER	atulin	mobi						-						9(
LOV	runca	Pseu							-				*		95
	alia t														100
	oroti							5							103
1	GIOD											ł			115
								-			1	1			120
						=3.56	3.8 %		-		-				125
							• 2	6			1	1			130
															135
								-				33	*		140
								/	-		-	11			145
	A/G	A/G	8					cc				1			150

SITE 672

BIO	STRAT	. ZON	E/ TER	R S	TIES				URB.	SES		ATAL 400.0-400.0 11001; 12.0-22.0 MOST	5-	-	1
TIME-ROCK U FORAMINIFERS	NANNOFOSSILS	PADIOLARIANS		PALEOMAGNETI	PHYS. PROPER	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION	10-15-		
							0	5				CALCAREOUS CLAY and minor CALCAREOUS MUD plus MARL CALCAREOUS CLAY and minor CALCAREOUS MUD plus MARL; light yellowish brown to light olive-gray (10YR4/1-10YR6/6, 5Y6/2-5Y6/3); nannofossil-rich, and locally foraminiler-rich. Minor lithology: interbeds of vitric and minor crystalline ash, dark to light gray	20- 25- 30-		
						**				2 2		(10YHS/1-5Y4/1); horizontal bedding dips. SMEAR SLIDE SUMMARY (%): 2, 149 3, 64 4, 12 6, 103 6, 150 M M D D D	35- 40- 45-		
zone					1		2			***		TEXTURE: Sand 90 95 - 3 - Silt 10 5 5 17 6 Clay - 95 80 94 COMPOSITION:	50- 55-		
ENE De <i>G. hessi</i> sub	unosa Zone						3			\$	*	Quartz	60_ 65_ 70_ 75_		
LOWER PLEISTOC uncatulinoides Zor	Seudomiliania lac	Darrei			0-78	* 0.0	4			****	*	Opiques 2 7 - - - - - - - - - - - - - - - - - - - 1 Nanofossils - - 20 15 15 Sponge spicules -	80- 85- 90- 95-		
Globorotalia tru							5			*	IW		100 105 110 115		-
					• (-1.67	8.4 X	6			\$	*		120 125 130 135		and
A/G	A/G	8					7 C				*		140	-	and him

SITE 672

5 6 7

CC

-

-

1-1

ITE	6	572		HC	DLE	A			CO	RE4H C	ORE	D	INT	ERVAL 4995.3-5004.8 mbsl; 22.3-31.8 mbsf
L.	BIO FO	SSIL	AT.	ZONE	E/ TER	50	IES				RB.	50		
TIME-ROCK UN	FORAMINIFERS.	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
									1	0.5			*	CALCAREOUS CLAY and MUD plus MARL CALCAREOUS CLAY and MUD plus MARL; light yellowish brown, brownish gray, and light dive-gray (2.5Y6/3, 2.5Y7/2, 5Y6/2); nannotossil-rich. Minor lithology: lithic and vitric ash occurs dispersed throughout the sediment and as ash beds, gray (2.5Y5/1, 7.5YR6/0). SMEAR SLIDE SUMMARY (%):
							5					8		1,51 1,87 1,106 4,6 5,120 6,10 CC,5 M M D M D M D M D
							• \$=19	e7.6 %	2			~~~~		TEXTURE: Sand 10 90 2 Silt 90 50 10 10 10 20 5 Clay 50 90 90 78 95 COMPOSITION:
	e											22		Quartz Tr _r Tr Tr Tr Tr Findspar S35 1 40 Tr 10 Tr Findspar S35 1 54 S35 1 54 S35 1 54
	IDZQD								3			1		Clay — 40 85 — 74 65 75 Volcanic glass 5 5 Tr 2 — 20 — Accessory minerals
ш	G. hessi su	osa Zone										*******		Zoolities
WER PLEISTOCEN	atulinoides Zone	eudomiliania lacuno	Barren				•	032.3%	4			-		Bioclasts — — 2 — 2 — 3
LO	Sloborotalia trunc	Pse							5		-		*	
	9						• \$=1.63	036.5 %	6			1	*	
	A/G	A/G	8						7 CC				*	

SITE 672 HOLE	Α	COF	RE 5 H	CORE	DINT	ERVAL 5004.8-5014.3 mbsl; 31.8-41.3 mbsf	1 2	5 6	7
LINO XOOR SUSTRAT. ZONE/ FOSSIL CHARACTER SUSTRAT. ZONE/ SUSTRAT. SUSTRAT. SUSTRAT. SUSTRAT. SUSTRAT. SUSTRAT. SUSTRAT. SUSTRAT. SUSTRAT. SUSTRAT. SUSTRAT. SUSTRAT. SUSTRAT	EOMAGNETICS S. PROPERTIES MISTRY	TION	GRAPHIC LITHOLOGY	LLING DISTURB.	. STRUCTURES PLES	LITHOLOGIC DESCRIPTION	5		H
DCENE TIME DCENE FORA for NAWW a NAWW n PLANE RADI	• 1 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =	1 2 3		ן ין	 ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲	CALCAREOUS CLAY plus MARL. CALCAREOUS CLAY plus MARL; light gray to light olive-gray (2.5Y5/2, 2.5Y7/2, 5Y6/2); nannolossil-rich. Minor lithology: minor thin ash beds, dark gray (2.5Y3/0); mangenes-oxide(?) particles dispersed through sediment; horizontal bedding dips. SMEAR SLIDE SUMMARY (%): 3.6 4, 43 5, 140 D D D TEXTURE: Sand 2 - Sit 18 10 4 Clay 80 90 96 COMPOSITION: Quartz 1 - 1 Clay 65 60 76 Accessory minerals 65 60 76 Glauconite? - Tr - Opage (Mn oxide) 15 - Tr Site 3 3 -	15- 20- 25- 30- 35- 40- 45- 50- 55- 60- 65- 70- 75- 80- 		
UPPER PLIC <i>Globorotalia</i> CN12 Barrei	● (-1,51 ● (-1,55 ● 28.3 × ● 28.3 × ● 28.3 ×	4 5		<u>, , , , , , , , , , , , , , , , , , , </u>	* *************************************		85 90 95 100 105 110 115 120 125 130 135		
C/M C/M B		7		1 1 1	6 33335		140		F

SITE 672

7 1

- -

SELUCITS.

NIT	BIO	STR	CHA	ZONE	/ ER	cs	TIES				adi	SES		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETH	PHYS. PROPER	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	TRIC DIST INCO	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
							2 = 1.65 0=68	37.5 %	1				* *	CALCAREOUS CLAY and MUD plus MARL CALCAREOUS CLAY and MUD plus MARL; gray to light olive-gray (5Y5/1, 5Y6/3, 10Y5/1); nannofossil-rich. Minor litthology: dispersed ash material and discrete ash beds, dark gray (2.5Y5/2), both lithic and vitric ash; horizontal bedding. SMEAR SLIDE SUMMARY (%): 1, 126 1, 150 2, 126 3, 69 5, 56 7, 60 M D M M D D TEXTURE:
							•	ě	2				*	Sand 30 100 80 Silt 70 8 20 15 12 Clay 92 85 88 COMPOSITION: Feldspar 15 1 25 Tr Pock fragments 37 55 28
ENE	ica Zone (PL5)								3				*	Nucleon insummers 57 75 53 55 70 70 Clay 30 - 40 30 1 -
UPPER PLIOC	borotalia miocen	CN12 a	Barren				• \$-1.65 • 67	• 27.9 %	4		1,1,1,1,1	*	00	Sponge spicules Tr Tr Bioclasts Tr Bioclasts Tr Tr Tr Tr Tr Tr Tr Tr Tr 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3
	GIG								5			5	*	
							• 0=1.66	•42.9 %	6					
	C/M	C/M	В						7				*	6

SITE 672 HOL	ΕA	g	CORE	7 H	CORED) IN	ITER	RVAL 5023.8-500	13.3 r	mbsl;	50.8	-60.3 mbsf		1	2	3	4	5	6	7
TIME - ROCK UNIT TIME - ROCK UNIT FORMINIFERS MANNOFOSSIL SUSSILS RADIOLARIANS DIATOMS	PALEOMAGNETICS PHYS. PROPERTIES	CHEMISTRY	SECTION	GRAPHIC LITHOLOG	→ DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LITH	LOGIC D	DESCRIP	TION		5- 10- 15-		-	E	-			
UPPER PLIOCENE <i>Globorotalia miocenica</i> Zone (PL5) <i>CN12 a</i> Barren Barren	P (1.68 (1.6	• 01.8 % • 17.5 % • 17.5 %	w i 1 o. 1 i 2 i 3 i 4 i 5 i 6 i				* * *	CALCAREOUS CLAY plus MARU CALCAREOUS CLAY plus MA SY6/2); nannolossil-rich. Minor ithology: vitric and minor discrete beds. SMEAR SLIDE SUMMARY (%): 1, 56 M TEXTURE: Sand 10 Silt 20 Clay 70 COMPOSITION: Quartz — Feldspar 2 Clay 59 Volcanic glass 10 Accessory minorals 10 Accessory minorals 10 Accessory minorals 25 Radiolarians — Foraminifers 2 Nannolossils 25 Radiolarians — Sponge spicules 1 Silioclast — Altered grains —	RL; light r lithic as 3, 77 D 	brownish 4,600 D 98 	h and olive sed throug 0 4, 123 	-gray (2.5Y6/2, th sediment and in 5,84 M 8 25 57 5 15 35 40 - 2 1 - - - 1 2	10 20 25 30 35 40 45 50 55 60 75 80 90 100 105 100 125 130 130							
A/G A/G B			7			1							140-	H	E	-			-	-

	BIOS FOSS	TRAT.	ZONE/	E TICS	PERTIES	CC	RE	
TIME-ROC	FORAMINIFI	RADIOLARIJ	DIATOMS	PALEOMAGN	PHYS, PRO	CHEMISTRY	METERS	LITHOLOGY
							0.5	
						1	1.0	
					67	* 1.2	+	
					•	2	-	
							-	
	PL4)							
	(PL3/					3	.	
OCENE	ca Zone	en		0	35		╞	
ER PLI	iocenic	Barre			-9-0	4	-	
UPPI	talia m				0-67	0.00	-	
	Globoro					F		
						5		
					• 0-66	6		
						7	-	
	C/P	B B				CC	-	

-

7

cc

6

5

267

SITE	6	72	но	LE	Α		CORE	9 H	CORE	ED	INTE	RVAL 5042.8-5052.3 mbsl: 69.8-79.3 mbsf	1 2 3 4 5 6 7	-
5	BIO	STRAT	ARACI	TER .	S				.92	50				
TIME-ROCK UN	FORAMINIFERS	NANNOF OSSILS	DIATOMS		PHYS. PROPERTI	CHEMISTRY	SECTION	GRAPH LITHOLI SE U U U U U U U U U U	DRILLING DISTUR	SED. STRUCTURE	SAMPLES	LITHOLOGIC DESCRIPTION		A COMPANY
UPPER PLIOCENE	Gioborotalia miocenica Zone (PL3/PL4)	CN128 Barren			• 1.1.66 • 1.1.66 • 1.1.65	045.0 X 0.39.4 X 0.39.4 X	1 0 1 1 2 3 4 5 6			22 Summer m funner	*	<section-header></section-header>	20- 25- 30- 35- 40- - 45- - 50- - 55- - 60- - 65- - 70- - 75- - 80- - 85- - 90- - 95- - 100- - 110- - 120- - 120- - 120- - 135- - 140- -	
	A/G	A/G	n				cc	P						-

Image: Solution 1. 2002; Image:		52.5-500	1 2 3	4
NUTL NARI. MARI.	DESCF	LITHOLOG		
	20 5 5 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	γ to light olive-gray ash occurs dispen (5Y3/1). Two 60°- i offset of 3 cm. MMARY (%): 1, 50 D 10 90 		

SITE 672

1 1

-

リートリートリ

6

5

7

cc

269

.

SIT	E 6	72	HOLE	E A		CC	DRE	11 H	CORE	ED	INT	ERVAL 5061.8-5071.3 mbsl: 88.8-98.3 mbsf	1 2 3 4 5 6 7
6	B10	STRAT	ZONE/		60								
INN	FOS	SIL CH	ARACTER	ICS	RTIE				TURB	DF S			5
č	FERS	SILS		NET	OPEI	*		GRAPHIC	c Sig	1LUI		LITHOLOGIC DESCRIPTION	
- RO	N.	OF OS	SWO	OMAG	g .	ISTR	SS SS	LITHOLOG	GY SN	STO	8		
IWE	ORAN	ANNO	IATO	ALE	HYS	HEM	ETE		RILL	5	AMP		15
-	-	Z 0	°	1ª	<u>م</u>	0 0	2			a	0 0		
									171			CALCAREOUS MUD and MARL	20
1							0.5		. 11	1	3	CALCAPEOUS MUD and MARI - array light alive array calls alive light array	
				1			0.5			18	2	and light brownish gray (5Y6/1, 5Y6/2, 5Y6/3, 5Y7/2, 2.5Y6/2); nannofossil-	
1						1		1	-11	1	۱	and foraminifer-rich.	20
		84					1.0		- 1	Ľ		Minor lithology: crystalline and vitric ash occurs dispersed throughout the sediment and as discrete beds, gray to dark gray (2.5Y4/0, 2.5Y3/0). A	
									!	1	3 I	single fault with possible normal displacement is recorded at Section 3, 20	35
							+			i	1	un.	
1		1		Į.	89	×				1	s	SMEAR SLIDE SUMMARY (%):	
				1.0	- 0	4.4	1.		- []	18	8	1, 100 4, 35 5, 95 6, 32 7, 20	45
					•	0 2			-11	1		D M M D	
									11	1		TEXTURE:	50
							1			13		Sand 5 2 5	
1									-1	1	{	Clay 70 35 30 25 95	
									-	Ľ	2	COMPOSITION:	60-
									-	ľ		Feldspar - 40 15 40 -	
1	5						1		1	15	8	Rock fragments — — 10 10 — Clay 75 35 30 25 55	
	θ								1-		'I I	Volcanic glass — 15 20 20 — Accessory minerals	70 000
	De				6.10	2			-			Glauconite(?) — Tr — — — Provense — 3 — — —	
HZ N	N			1.2	-	7						Opaques — 5 25 5 —	75
UH UH	36				•	•					PP	Nannofossils 20 — — 40	
1 2	E	00			0	×			÷	1	3	Bioclasts 2 1 - 2	
ā	-93	NI			-1.6	-			T	R	1 *		05
E R	mai	U E		1	.0	. 4				13			
8	D.								-				90
10	tal						1		±	1			
	2]	1	1	00		95
	90						+		T	1	PF		
	15							1993	1-	1			
				1			1 -			1	•		
				1		5			-				
1									1	R	3 *		
									1				115-1
									1	1	8		
					-	×			1-	12	8		
					1.6	0.			-=	1	{ *		125-
					0	939	3	1999	-	1	8		
									-	12	8		
							1 3		1	1	1		135
								hand	+	1			
						H	-			1	11		140
1						-				51	*		
	N/	10							±		"		
-	LL.	< [0		_		C	9	1	1		1		150
													The second state of the second s

SITE	0	12	<u> </u>	HO	LE	A		3	CO	RE	12 H	COR	ED	INT	ERVAL 5071.3-5080.8 mbsl; 98.3-107.8 mbsf	Contraction of the local division of the loc	-	1 11540	101 B	Contraction of
NIT	BIO FOS	STRA	CHAR	RACT	ER	s	TIES					BB				5-		11		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERI	CHEMISTRY	SECTION	METERS	GRAPHI	C Y DNI I HOU		SAMPLES	LITHOLOGIC DESCRIPTION	10- 15-			E	
LOWER PLIOCENE	Globorotalia margaritae Zone (PL1a/lower PL1 b)	CN1OD	Barren Bar	0147		PALE PALE	• • • • • • • • • • • • • • • • • • •	Φ4.2 % Φ33.0 % Φ22.0 % Other	1 2 3 4 5 6	0.5- 1.0-					CALCAREOUS CLAY and MUD, MARL, and MUD: grayish brown, light gray, aburows. Minor tithology: vitric and crystalline ash occurs disseminated throughout the normal faults range in dip from 35°-85° and are intimately associated with "sincurser" that also dip steepy in Section 3, 70–105 cm, Section 5, 20–60 cm, and Section 6, 0–53 cm. SMEAR SLIDE SUMMARY (%): Sand 2, 127 3, 110 5, 142 7, 31 TEXTURE: Sand 2, 17 1, 5, 142 7, 31 Collay 20, 80 90 95 80 COMPOSITION: Vietarize 15 1, 17 1, 1 Solutarize 15 2, 2 Collay 20, 80 90 95 80 COMPOSITION: Vietarice 13 1, 2 Normalise 15 2, 2 Normalise 15 2, 2 Normalise 17, 25 35 2, 3 Normalise 17, 3 No	15- 20- 25- 30- 35- 40- 45- 55- 60- 55- 60- 65- 70- 75- 80- 85- 90- 95- 100- 105- 100- 105- 110- 115- 120- 125- 130- 135-				
	W	1/G							7					*		140 - 145 - 150 -			H	and and and

E-ROCK UNIT	MINIFERS 4	SSIL SSIL	OLARIANS 7	RACTER	OMAGNETICS	3. PROPERTIES	AISTRY	NOI	GRAPHIC LITHOLOGY	LING DISTURB.	STRUCTURES	PLES	,		DGIC DE	SCRIPTI	ON		
UPPER MIOCENE	Neogloboquadrina humerosa Zone	CN9b	Barren Bar	70	PAI	• 2:178 • 2:178 • 2:178 • 2:17	•20.2 X •7.8 X •22.8 X •20.4	1 2 3 4			·	6 6 8 1 × * * * * 8 1	CALCAREOUS CLAY and i CALCAREOUS CLAY and (SY6/2, SY5/4); nannofor discrete beds, dark gray structure" is observed in SMEAR SLIDE SUMMARY TEXTURE: Sand Silt Clay COMPOSITION: Quartz Feldspar Rock fragments Clay Volcanic glass Accessory minerals Zeolites Proxene Opaques Hormblende Foraminifers Nannofossils Bioclasts	CLAY pin d CLAY rs disses and great Section (%): 1, 36 M 2 58 40 Tr 20 20 40 12 - - - - - - - - - - - - -	us MARL plus mir iminated nenish gr. 	througho ay (2.5Y3 1, 143 D Tr 5 95 	:; light of ut sedim //0, 5BG; 2, 27 M Tr 5 95 	ent and a 4, 149 D Tr 2 98 	01
	P.	W				•	•	4			* ****	*							

TE	6	72	<u> </u>	HOL	.E	A		cc	RE	14 H C	ORE	D	INT	ERVAL 5090.3-5096.3 mbsl; 117.3-123.3 mbsf		A. LAND
	BIO FOS	SIL	CHA	ZONE/	R	0	2				RB.	S			5-	1
ROCK U	INIFERS	FOSSILS	ARIANS	S		MAGNETIC		N		GRAPHIC LITHOLOGY	NG DISTU	TRUCTUR	ES	LITHOLOGIC DESCRIPTION	10-1-	
TIME-	FORAM	NANNO	RADIO	DIATON		PALEO		SECTIO	NETER		DRILLI	SED. S	SAMPL		15	0-
											H	1	*	CALCAREOUS CLAY and MARL	20	1 alt
								1	0.5		H	1		GALCAREOUS CLAY and MARL; pale brown, light brownish gray, and grayish brown (10YR6/3, 2.5Y6/2, 2.5Y5/2); nannofossil-rich.	25-	
								ľ	1.0	F		1	*	Minor lithology: ashy beds occur in Sections 2, 3, 4, and CC as dispersed crystalline and vitric ash material, light greenish gray (5G6/2, 5G7/2).	30	7
										VOID				SMEAR SLIDE SUMMARY (%):	35	7
										-		1		1, 20 1, 96 2, 45 3, 47 CC D D M M M	40	
						1.74	62				1		*	TEXTURE:	45	1
						1	9				11	133		Sand — — 5 10 5 Silt 5 2 20 90 45 Clav 95 98 75 — 50	50-2.	
											1	1		COMPOSITION:	55-	- Carl
								⊢	┢	- VOID				Quartz — — 1 — — Feldspar — — 2 10 1	60-	
		_	-			1.7	-62 4 2			#=		"	*	Clay 78 93 77 — 64 Volcanic glass — — 1 86 35 Calcite/dolomite — 1 — — —	65	
S N	~	arrer	arrer			•		3				1		Accessory minerals Orthopyroxene — — — 2 — Clinopyroxene — — 2 —	70-	
5		ñ	B									I.		Opaques — Tr — — Tr Fe/Mn hydroxide — 2 — — —	76	
										VOID		33		Bioclasts 2 – – – –	15	
												133			80	the state
][85	
								1		1					90-	195
										VOID					95-	
								\vdash	┢	-	•				100	
											1				105	
								5							110	
															115 94	
		٩						_							100-	~
		2	8		_			C					*		120	

4

CC

273

- IN	BIC FO	STR	CHA	ZONE	/ ER	cs	TIES				URB.	RES						
TIME-ROCK L	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETI	PHYS. PROPER	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTUI	SAMPLES	LITHOLOGIC DESCRIPTION				
									1	0.5				CLAYSTONE and MUDSTONE CLAYSTONE and MUDSTONE; gray, grayish brown, and light grayish brown (SY6/1, SY5/2, SY6/2). Minor lithology: vitric and crystalline ash dispersed throughout the sediment, creating slightly darker colored horizons. Mostly massive with local <i>Planolites</i> and other burrows. SMEAR SLIDE SUMMARY (%):				
NE C	Barren		Barren				• 0=72	× 6.0•	2			************		4, 6 4, 53 5, 48 D M M TEXTURE: Sand — Tr — Silt 15 25 2 Clay 85 75 98 COMPOSITION:				
UPPER MIOCE		Barren							3				100	Feldspar 3 Tr Tr Clay 85 94 98 Volcanic glass 10 - - Calcite/dolomite - 2 - Accessory minerals - - - Opaques 2 Tr Tr Fe/Mn Mydroxide(?) - Tr Tr Nannofossils - 3 - Sponge spicules - - Tr Bioclasts - 2 2				
							• 2-1-54	•0.2 X	4		///××/×/×/×	**						
									5			1	*					

TIME-ROCK UNIT	BIOSTRAT. ZONE/											BB.	S			
	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERI	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTI	SED. STRUCTUR	SAMPLES	LITHOL	LOGIC DESCRIPTION
ER MIUCENE	Barren	Barren	Barren						1	0.5	VOID	××××		*	CLAYSTONE and MUDSTONE CLAYSTONE and MUDSTONE (5GY6/1, 5BG4/1); strongly blot SMEAR SLIDE SUMMARY (%): 1, 77 D	; greenish gray and dark greenish gray turbated; <i>Planolites</i> identified. 7 CC, 3 M
	В	в	В						2 CC			>>>		*	TEXTURE: Silt — Clay 100 COMPOSITION:	45 55
															Feldspar Tr Mica Tr Clay 100 Volcanic glass Tr Accessory minorals Tr Opaques Tr Dark red grain Tr Sponge spicules Tr	1 55 44

1.1	1	2	CC
5-	12-	and-	- T-Y-
10-	12-		-
15-	- 1/1-		
20-			Contra .
25-		-	-
30-		-	-
35-			-
40-		6	
45-			- -
50-			
55-			-
60-			
65-		201	-
70-	Stat-	and a	a reality and
75-	-	-	
80-	-		11111
85-	-	-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
90-	-	-	- 11
95-	-	111.7	-
100-	-	-	11100
105-	-	100	
110-	-	-	- 11/1
115-	-	14 a	-
120-		-	8 - A
125-	-	100	Constant of the
130-	-		198.00
135-	1000	199.00	-
140-		10/2 4-	1000
145-	-		
150-		11	-

SITE 672

SIT	E 6	72	ŀ	IOLE	: A		C	ORE	17	x	CC	DRED	INT	ERVAL 5115.	3-512	4.8 n	nbsl;	142.3	-151.8 mbs	sf	1		1.115	3	4	5	6	100
TIME-ROCK UNIT	FORAMINIFERS	STRA STIL STILSSOLONNAN	T. ZO CHARI	NE/	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY		METERS	GRAPI LITHOL	HIC OGY	DRILLING DISTURB.	SED. STRUCTURES SAMPLES		LITHOL	LOGIC DE	ESCRIPT	ION		12.22	5- 0- 5-							
UPPER MIOCENE	R/M Neogloboquadrina humerosa Zone Fo	F/M CN8	Barren Barren		PA	• 4=5.4 • 5=6.4 • 5=1.60 • 5=1.63 PH		a i i i i i i i i i i i i i i i i i i i						CLAYSTONE and CALL CLAYSTONE and CALL Gray, olive-gray, and fraction in mudstone Minor lithology: minc bioturbation modera in Section 3. SMEAR SLIDE SUMM. TEXTURE: Silt Clay COMPOSITION: Ouartz Feldspar Rock fragments Clay Calciter/dolomite Accessory minerals Mn oxide Namofossils Sponge spicules Bioclasts	CAREOUS AlcAREO grayish bri consists o r ash dispiration aRY (%): 1, 91 M 5 95 	MUDSTC US MUD: If foramin a near-v 3, 57. D 1 99 Tr Tr Tr Tr Tr Tr Tr Tr Tr Tr Tr Tr Tr	DNE STONE; (5) Ifers. J D 20 80 - 1 - 3 3 - - 3 - - - - - - - - - - - - -	greenish g ment in S 4, 50 D 2 98 	ray, dark greenish 2.5Y5/2); silt section 1; rmal displacement 5, 148 D 3 97 	1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14	5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0							
																				14	5-0-	-	-				E.	-

145-150-

276

SITE 672

CC

1.1.1.1.

--H --

L. L. L. J.

Ē

-

-

TAPPIN

SITE 672

SITE 672 HOLE A CORE 19 X CORED INTERVAL 5134.3-5143.8 mbsl; 161.3-170.8 mbs	of 1 2 3 4 5 6 CC
BIOSTRAT. ZONE/ FOSSIL CHARACTER S STATULERS S STANDLC USED STATUS OCCUPATION STATU	
C LAYSTONE CLAYSTONE: greating party of olive-party and olive-boxen (GOYS1, SY32, 2007 Stability of the olive-data found in Section 3. SMEAR SLIDE SUMMARY (%):	20- 25- 30- 35- 40- - 45- - 50- - 55- - 60- - 65- - 70- - 75- - 80- - 95- - 90- - 95- - 100- - 110- - 110- - 120- - 130- - 130- -
	150

278

	FO	STR	CHA	RAC	E/ TER	s	TIES					URB.	SES		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETI	PHYS. PROPER	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
						57	(*1.58 Ø=69	0.0 %	1	0.5		~~~~~~			CLAYSTONE CLAYSTONE; greenish gray (5GY5/1, 5GY6/1); with slight to intense burrowing causing mottling of sediment. Minor lithology: discrete vitric ash beds found in Sections 2, 3, and CC, dark gray (NZ, N4); ash also concentrated in burrows. "Vein structure" developed in low-angle normal shear zones throughout core.
2	Barren	Barren	indet.				• 72 0=72	* 9'0 •	2	and and and		>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>		œ	3, 19 3, 85 M D TEXTURE: Sand Sitt 15 Clay 84 OMPOSITION:
									3					*	Feldspar Tr — Clay 40 95 Volcanic glass 60 5
	8	В	F/vP						сс			1	1		

SITE 672

ITE 6	STR	T 70	HOLE		Ť	-	CO	RE	21 X CO	REI		NTE	RVAL 5153.3-5162	.8 m	bsi;	180.3-189.8 mbsf		-	C
FORAMINIFERS	NANNOFOSSILS	CHAR SNEI ANDIOLARIANS	SWOLVIO	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LITHOL	DGIC DE	SCRIPTI	ON	5- 10- 15-		No.Comment
B Barren	Barren	4/G Calocycletta costata Zone A/G			8C.1-7.		1 2 3 4 CC	0.5				* * *	CLAYSTONE CLAYSTONE, light brownish gra (2.576/3, 576/3, 576/3, 10785) Zoophycos, Chondrites and Pla Minor lithology: disseminated as generations of "vein structure," records downward flow of mater shows normal shear offset. Bedd 65–75°. SMEAR SLIDE SUMMARY (%): 1, 31 D TEXTURE: Sand	y, pale o polites id polites id ing dip i 1, 93 D Tr 6 94 	live, olive y to stron entified. in dark is signoid econd is pround 20 3, 83 D 	, and yellowish brown gly bioturbated, with ayers in Section 3. Two all and steeply dipping and at low angles and mostly 30°, locally as much as 4, 32 M 	20- 25- 30- 35- 40- 45- 50- 55- 60- 65- 70- 75- 80- 85- 90- 95- 100-		CALLON X

SITE	E (572	2	HC	LE	Α			CO	RE 2	2 X C	ORE	D	INT	ERVAL 5162.8-5172.3 mbsl; 189.8-199.3 mbsf
+	BI	SSIL	AT.	ZONE	E/		ŝ					8.			
TIME-ROCK UNI	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETICS	PHYS. PROPERTI	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTUR	SED. STRUCTURE:	SAMPLES	LITHOLOGIC DESCRIPTION
MIOCENE	arren	arren	Calocycletta costata Zone A/G A/G				• (*149	00.3 % 00.5 %	1 2 3	0.5	51. 51. 51.			*	CLAYSTONE CLAYSTONE: pale olive, light olive-gray, light brownish gray, and brown (SY6/3, SY6/2, 2.SY6/3, 7.SYR5/4); slight to intense bioturbation. Minor lithology: minor ash-rich mudstone, vitric and drystal ash, in Sections 1–5. SMEAR SLIDE SUMMARY (%): 2, 105 4, 45 CC, 13 CC, 24 TEXTURE: Sand 1 3 3 2 Sitt 5 15 7 10 Clay 94 82 90 88 COMPOSITION: 2 3 2 2 Quartz - 2 3 2 2 Yolcanic glass 5 10 10 6 Accessory minerals Opaque/Mn oxide - - 10 7 7
LOWER	Bar	Bar	Stichocorys wolffii Zone A/G		Stichocorys delmontensis Zone A/G		• (*1.52 • (*1.55 • (*1.55	\$0.3 % • 0.6 %	4 5 6 CC				**************************************	*	
	8	B	Stichocol		- Stichocorys delmont		• \$=1.62	% E.O.	6 CC					**	

TE 672	HOLI	ΕA		С	ORE	23	3 X C	ORE	DI	NTE	RVAL 5172.3	-518	31.8	mbsl;	199.	3 - 20	8.8 mb	f sizes	A CONTRACTOR OFFICE	3	-	4 5	-	6
BIOSTRAT. Z	ZONE/ RACTER	R o	IES					88.	50									5-		5 9	11	and F.	31.12	
FORAMINIFERS FORAMINIFERS NANNOFOSSILS RADIOLARIANS	DIATOMS	PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	METERS		GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTURE	SAMPLES		THOL	OGIC DE	SCRIPTIC	DN			10- 15-						
A/G			7=1.65 •	0.2 %	0.5	and the states of the states o		XXXXX		* *	MUDSTONE, CLAYSTONE MUDSTONE, CLAYSTO brown, pale olive, and d with zeolite concretions consists of radiolaria in	E, and S DNE, an plive (10 (0.5-1 silt frac	SILICEOU d SILICE YR6/4, 5 0 mm dia tion.	OUS MUDS OUS MUI Y6/3, 10Y imeter); S	TONE DSTONE '6/2, 5Y5 ILICEOU	; light yei /3), unbic IS MUDS	owish turbated TONE	20- 25- 30- 35-						
C. tetrapera			• 0=66	* 1.0•	2	the states of the					SMEAH SLIDE SUMMAAN TEXTURE: Sand Silt Clay	r (%): 1, 7 M 80	1, 54 D 25 75	1, 64 D 	3, 60 D 	6, 147 D 	7, 20 M 5 80 15	40- 45- 50-			-			
A/G				;	3	and				*	Feldspar Clay Volcanic glass Calcite/dolomite Accessory minerals Dissem. pyrite Authigenic zeolite Radiolarians Sponge spicules Stilleraff-solates	™ 100 100 100 100 100 100 100 100 100 10	83 15 1	95	80 10 	99 17 17 17 17	15 5 80 	55- 60- 65- 70-						
.owek MIUCENE Barren <i>Barren</i> <i>ma elongata</i> Zone			• [=1.60 • 67	•0.2 %	1	1999 Barriston					Sinconagenates	u	_			-		75- 80- 85- 90-		and .				
vP [<i>Lychnocano</i>					5	alana ana ana ana ana ana ana ana ana an												95- 100- 105-		-	-			and the second
inate A/									90 00 000 00 00	OG								115- 120- 125-						Section of the section of the
indeterm			• \$=1.76	•0.2 %	6	the state of the s			0000	*								130 135 140		-				ALL TANK
B B A/vP				c	c	11111			0 0 0 0	*								145-		-				

1E		57	2	н	OLE	- A	1	_	CO	RE 2	24 X CO	RE	DI	INT	ERVAL 5181.8-5191.3 mbsl; 208.8-218.3 mbsf
ī.	FO	SSIL	CH.	ZON	E/	0	ES					RB.	s		
IIME-ROCK O	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTURI	SAMPLES	LITHOLOGIC DESCRIPTION
									ï	0.5				*	CLAYSTONE CLAYSTONE; light olive-gray, greenish gray, olive, olive-gray, and bluish gray (5Y6/2, 5G6/1, 5G5/2, 5Y5/3, 5Y5/2, 5G6/2). Minor lithology: very minor siltstone in Section 6; unbidurbated, Dispersed altered ash may be responsible for bluish/meenine for an bede
										-		1			and a set may be responsible for eluising teenan gray beds.
							-61,75	2 %		1 1 1 1 1		トトト		*	SMEAR SLIDE SUMMARY (%): 1, 96 2, 48 2, 93 7, 27 D M D D
							2.		2	hunda		エ エ エ		*	TEXTURE: Silt 5 85 5 8 Clay 95 15 95 92 COMPOSITION:
												1 1 1			Ouartz 60 Clay 95 15 95 97 Volcanic glass 5 20 5 Calctle/dolomite 2
arron		arren	arren						3	u li i i i i i i i i i i i i i i i i i i					Accessory minerals — 50 — 1 Pyroxene — Tr — —
α		B	8				• 0-58	•0.1 %	4					PP	
									-		D 0				
									5		-				
							7-1.77 Ф-58	0.2 %	6					W	
							•	•	7			エエエ			
a		œ۱	8						cc	-		11		*	

INC YOOK - SWIT	FORAMINIFERS	NANNOFOSSILS S	RADIOLARIANS	ZONE/ RACTER SWOLVIO	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION	
								1	0.5		~~~~~			MUDSTONE, CLAYSTONE, and SILTSTONE MUDSTONE, CLAYSTONE, and minor SILTSTONE; grayish green, gre gray, and dark greenish gray (10/5/2, 565/2, 565/1, 566/1, 5Y4/4, 5B 5GY5/1); unbioturbated; silty intervals are quartz-rich and planar-lamina SMEAR SLIDE SUMMARY (%):	enish 5/1, ited.
									-		1	$ \Delta $		2, 57 2, 32 3, 26 4, 7 M D D M	
									3	82828	1			TEXTURE:	
				1.1	1				-		1			Silt 80 60 2 100	
	en	en	en			6-1.8	0.2 %	2	-		L	-	*	Clay 20 40 98 COMPOSITION:	
	E	E	E			•	•		-		1.			Quartz 70 40 1 95	
	Ba	Ba	Ba						1 3	HEHER				Feldspar 3 1	
	-	_							1. 8		1.			Clav 20 40 98 —	
					1						1	= =		Volcanic glass 2 10	
						+					1		*	Dolomite Tr — — — Accessory minerals	
						8.8	×		1.2			1		Zeolites – 8 – –	
					1.0	1	~	2				•		Chlorite – – 1	
					1			3	1.1		1			Opaques 5 1 1 3	
						-	-		1 5					Mornblende — — 1 Zircon(2)	
					1				1 -			15		Glaucophane T	
											1	71			
						55	*	-	-			3	*		
						-0	0.2	4		HERE	1				
									-	FEEE		-			
	m	m	m		1	L		00	-			-			

BI0 FO	SSIL	CHA	ZONE/	cs	TIES					URB.	RES		9
FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETI	PHYS. PROPER	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTU	SAMPLES	LITHOLOGIC DESCRIPTION
							1	0.5				*	MUDSTONE, CLAYSTONE, and CALCAREOUS MUDSTONE MUDSTONE and CLAYSTONE, gray, dark greenish gray, and dark gray to black (584/1, 565/2, 584/1, 5Y5/3); and CALCAREOUS MUDSTONE. light greenish gray and light brownish gray (5G7/2, 5Y5/3), CALCAREOUS MUDSTONE is mildly to moderately bloturbated. Beds dip at 10° near base of core. SMEAR SLIDE SUMMARY (%);
peroensis Zone	19	ren			• 2=1.84	0.5 %	2			+ $+$ $+$ $+$ $+$		* **	1, 117 2, 50 2, 96 2, 100 4, 93 D D D D M D D TEXTURE: Silt 3 - 70 2 21 Clay 97 100 30 98 79 COMPOSITION:
Globigerina ci	CP	Bari					3			ノートトトトト		œ	Colariz
3/P	A/M	В			• \$=1.86	•0.2 %	4			ノノノノイ	٢	*	

SITE	67	2	HOL	E /	4	-	CO	RE	27 X (ORE	DI	NTE	RVAL 5210.3-5219.8 mbsl; 237.3-246.8 mbsf	1 2 3 4 5 6 CC
TIME-ROCK UNIT	BIOST FOSS	RADIOLARIANS	SWOLVIG	R	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION	
UPPER OLIGOCENE	indet. Form	Barren Rabio	01470	0115	1,80 • (1,81 •	3 X 0.2 X 0.2 X 0.2 X CHEMI	1 2 3 4 5	0.5				* * *		15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 115 120 125
	R/P	A/M			Ĩ		cc					*		

112	BIO	STR	Z АТ.	ZONE	ILE.	A				RE 2		RE			ERVAL 5219.0-5229.5 IIIDSI: 240.0-250.5 IIIDSI
TIME-ROCK UNIT	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	SWOLVIO	TER	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
							~		1	0.5			1	*	CLAYSTONE, CALCAREOUS CLAYSTONE, and SILTSTONE CLAYSTONE and CALCAREOUS CLAYSTONE; dark greenish gray, gray, grayish green, very dark gray, and Dale green (654/1, 5V4/1, 5G5/2, 5Y3/1, 5G6/2); slightly bioturbated; <i>Planotites</i> identified. Minor SILTSTONE forms planar laminations. A 60° dipping fault in Section 3. SMEAR SLIDE SUMMARY (%): 1, 80 3, 18 3, 56 4, 109 D M D M
							• 0-55		2	and and an					TEXTURE: Silt 2 80 5 90 Clay 98 20 95 10 COMPOSITION: Quartz 1 70 - 75 Feldspar - 2
IGOCENE	đ.,	6	en						3	and and and a set				*	Mica 1 Clay 98 8 83 3 Calcite/dolomite 1 Accessory minerals 1 5 2 10 Glauconite 1 Tr Glaucophane 1 Chlorite Tr Foraminifer 1 Tr 2 Nannofossils Tr 10 15 12 Radiolarians 1 Fish remains Tr Blociastis 1
UPPER OL	inde	CP1	Barr				• (=1.86 0=51	•21.7 %	4			+ $+$ $+$ $+$ $+$ $+$ $+$ $-$	-	*	
									5	a controntere					
	R/P	A/M	8						6 CC			$+\times\times\times\times\times$			

E UTZ HULL	Α	CO	RE 29 X	COREL	DINT	ERVAL 5229.3-53	238.8	mbsl; 256.3-265.8	mbsf	1 2	3	4	5	6	7
BIOSTRAT. ZONE/ FOSSIL CHARACTER	RTIES			TURB.	URES				5-	-	1				-
INIFER FOSSIL	PROPE	N	GRAPHIC LITHOLOG	NG DIS	ES	LITH	LOGIC D	DESCRIPTION	10-	1		8-8		-	- 20
FORAM NANNOI RADIOL DIATOA	PALEO	SECTIO	METER	DRILLI	SED. S SAMPL				15-					1 San	1
				31	1	CLAYSTONE, CALCAREOUS C	AYSTON	E, MARLSTONE, and CHALK	20-	4	8-12		-	- A	-
			0.5	三二	}, *	CLAYSTONE, CALCAREOUS dark greenish gray, greenish	CLAYSTO ray, pale	ONE, MARLSTONE, and CHALK; green, dark blue gray, and gray	25-				-65		-20
			1.0	크비	ř -	(5G4/1, 5G6/1, 5GY6/1, 5BG4 slightly tc moderately burrowe Sections 2, 3, and 4.	/1, 5Y5/1, d; <i>Planoli</i> i	, 5G6/2); mostly massive, but locally ites identified. Planar laminations in	30-		1-12		1-2	1	-
					{	SMEAR SLIDE SUMMARY (%):			35-	mi -	1-13		-13		108
	80			늂고	\$5	1, 5- D	1, 76 D	i 1, 99 D	40-	100-100			-35		-
	0-56	2 2				TEXTURE:	14.462	1990	45-				-17	10	CC
	•			크는	33	Silt 3 Clay 97	25 75	15 85	50-				-	1-1-1	-
				<u></u>	Ť	COMPOSITION: Quartz Tr	-	Tr	55-			8-18			-
					=	Feldspar Tr Clay 94 Calcite/dolomite —	25 Tr	25	60-		- 1-		-	- 10-	-
		3				Accessory minerals 1 Foraminifers — Nannofossils Tr	1 3 70	Tr 2 70	65-					1 6	-
				31 1		Bioclasts	1	2	70-		-13	1-18			-
				麗士					75-		-		-		-
ren				計り					80-	-		8-68			-
ind CP Bar	-1.78 -59	2 4			=				85-	-			-63		
	•								90-	-			-	1-4-1	-
				8+	0				95-	H			-05	-	H
		F		Ŧ	"				100-		1		-	1 2 2	
		5	Drill	x					105-	-	-		- 1	1	-
		ľ	Brecci	a X X					.110-		2-12		-		<u></u>
				—×	00				115-				1-122	4	-
		F	-	×	F	1			120-		-	-	- Kindle	1-0-1	-
			1	××					125-		1		-	1 Am	-
		0	Drill	×					130-				-	- 47	-
			Brecci	a 🗙					135-			-	-	-	
		7		××	1				140-		-		-	-	-
d/N/		co		[]	1				145-	- B	S		-	- 44	-

SITE 672

FORAMINIFERS	OSTR OSTR	RADIOLARIANS	ZONE/ RACTE SWOLVIQ	ER	PALEOMAGNETICS 3	PHYS, PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION	5- 10- 15-	
					on t A	• 0==00	•32.4 %	1	0.5			*	MUDSTONE, CALCAREOUS MUDSTONE, and MARLSTONE MUDSTONE, CALCAREOUS MUDSTONE, and MARLSTONE; varicolored gray, dark blue-green, pale blue-green, and olive (N4, 5G4/1, 5G5/1, 5G7/1, 5G4/1, 104/2, 5G2/47); blninj interbedded (5–30-cm thick beds). MARLSTONE is typically parallel-laminated and siltier at base and has burrowed tops; beds are normally graded. Ripple cross-lamination identified in Section 4 and CC. Bedding is horizontal.	20 – – 25 – – 30 – – 35 – –	
OLIGOCENE ? Barren	Barren	Barren				and a state of the	• 0.2 %	2				*	SMEAR SLIDE SUMMARY (%): 1, 75 2, 99 D D TEXTURE: Silt 10 Clay 90 B9 COMPOSITION:	40	
LOWER							×	3					Quartz49Feldspar11Clay6589Volcanic glass1Foraminifers5Nannofossils25BadiolariansTr	60- 65- 70- 75-	
в	В	В				0.53	• 33.3	4						80- 85- 90-	

	LOWER	OLIGOCENE (rev	W. EOCENE)			TIME-ROCK UNIT
	610	borotalia opima	Zone			FORAMINIFERS
		indet.				RADIOLARIANS
						SWOLEIO
						PALEOMAGNETICS
	0 -53 0 -53			• 4-50 ⁸⁸		PHYS. PROPERTIES
5	4	3	2	× 0' 07	1	SECTION
	and an element	and and and	the letter	1.0	0.5	METERS
						GRAPHIC LITHOLOGY
		~	**	<u>*</u> *		SED. STRUCTURES SAMPLES
		Quartz Clay Volcanic glass Foraminifers Nannofossils	TEXTURE: Sand Silt Clay COMPOSITION:	minor convolu in Sections 2 SMEAR SLIDE S	MUDSTONE, CA MUDSTONE, olive-gray, gre gray (5Y4/2, 5 slightly to moc	
		2 58 	2 98	te-lamination at b and 5. SUMMARY (%): 2, 16 M	LCAREOUS MUI CALCAREOUS M enish gray, light g GY5/1, 5G5/1, 50 Jerately bioturbate	LITHO
		10 80 5 5	2 18 80	ase of b 2, 57 M	OSTONE MUDSTO preenish 37/1, 5G	_OGIC D
		12 86 Tr 2 		ds; ripple cross-lamination identified 2, 78 D	and MARLSTONE NE, and MARLSTONE; varicolored ray, grayish green, and very dark v2, 5G5/2, SY3/1); 30–100 cm thick, top of beds; parallel-lamination and	ESCRIPTION
105-	85- 90- 95-	65 70- 75-	50 - 55 - 60 -	35- 40- 45-	20- 25- 30-	5- 10- 15-
			-			
			1			
	Contraction of the local distance of the loc					

SITE 672

CC

-

Fire

n.

SITE 672 HOLE A CORE 33 X CORED INTERVAL 5267.3-5276.8 mbsl: 294.3-303.8 mbsf	1 2 3 4 5 6 CC
I IME - BOCKTAT. ZONE/ BIOSTRAT. ZONE/ FOSSIL CHARACTER BIOSTRAT. ZONE/ FOSSIL CHARACTER BIOSTRAT. ZONE/ FOSSIL CHARACTER BIOSTRAT. ZONE/ FOSSIL CHARACTER BIOSTRAT. ZONE/ FOSSIL CHARACTER BIOSTRAT. ZONE/ BIOSTRAT. Z	
CLAYSTONE, and CALCAREOUS MUDSTONE. Validoved light of the second part	20- -

ī	Fot	SSIL	CHA	RACT	ER	SS	2				URB.	S		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETI	10101 - 0101	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
						7=1.95	0=48	1	0.5-			10 - F	* *	CLAYSTONE, CALCAREOUS MUDSTONE, and CHALK CLAYSTONE, CALCAREOUS MUDSTONE, and CHALK; varicolored dark greenish gray, grayish green, light greenish gray, and greenish gray (5GY4/1, 5Y5/3, 5GY4/1, 5G4/2, 5G5/2, 5G7/2, 5GY71, 5GY6/1); thinly interbedded (10–50-cm thick beds); beds slightly to moderately bloturbated at top, parallel laminated at base (where sitt-sized particles are present); foraminiters make up sitly fraction. Minor lithology: pyrite concretions (<1 mm diameter) occur locally in Sections 1 and 4, Horizontal bedding. SMEAR SLIDE SUMMARY (%):
			one					2					*	1, 80 2, 23 2, 48 2, 72 5, 106 D D D D D D D D D D D D D D D D D D D
WER OLIGOCENE	indet.	CP18	spyris ateuchus Z					2 3				Ш		COMPOSITION: Quartz - Tr - 2 25 Clay 98 23 35 33 30 Calcite/dolomite - 5 5 - - Accessory minerais 2 - - - - Foraminitiers - Tr - 35 15 Nannolossils - 70 60 15 10 Sponge spicules - - - 10 15 Bioclasts - 2 - 5 5
LO			Dorcado			6. I -)	0-21	4			+ + + + + + + + + + + + + + + + + + + +	00 00	1547	
								5			+ $+$ $+$ $+$ $+$ $+$		*	
	R/G	A/M	VR/VP					e	6 C -			2		

BIOSTRAT. ZONE/		T	RESS C	JRED	NIERVAL 5200.3-5295.8 mbsi; 313.3-322.8 mbsi		
FOSSIL CHARACTER FOSSIL CHARACTER SILICIAN IN	PALEOMAGNETICS	CHEMISTRY SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURB SED. STRUCTURES	LITHOLOGIC DESCRIPTION		
<i>Globorotalia opima</i> Zone CP18 indet.	●	1 × 0.00 2 3 4 5 × 0.750 6			 CLAYSTONE and SILTY CALCAREOUS MUDSTONE; and MARLSTONE and CLAYSTONE CLAYSTONE and SILTY CALCAREOUS MUDSTONE; dark gray, grayish green, gray, pale green, and greenish gray (5Y44, 5G52, 5Y34, 5G72, 5G42, 5G42, 5G41); infebredded (20-90-en flick beds); locally moderately boundated MARLSTONE; parallel lamination in SILTY CALCAREOUS MUDSTONE. Minor lithology; minor pyrite concretions. SMEAR SLIDE SUMMARY (%): 1, 16 1, 6 1, 54 1, 81 6, 54 M d M d	20 25 30 35 40 45 50 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135	

SITE 672

TE	BIO	O / Z	AT	TONE	LE /	A			CO	RE 3	6 X CC	T	D	INT	ERVAL 5295.8-5305.3 mbsl; 322.8-332.3 mbs
UNIT	FOS	SSIL	CHA	RACT	ER	1CS	RTIES					rure.	RES		
TIME-ROCK	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNET	PHYS. PROPER	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DIS'	SED. STRUCTU	SAMPLES	LITHOLOGIC DESCRIPTION
									1	0.5		++++++		** **	MARLSTONE, CALCAREOUS MUDSTONE, and MUDSTONE Gray and light gray MARLSTONE (5G7/2, 5Y5/3); light olive-gray and olive-gray CALCAREOUS MUDSTONE (5Y6/2; SY5/2) laminated in places; and dark olive-gray and greenish gray MUDSTONE (5G5/2, 5GY5/2, 5Y4/1, GY4/1). Minor lithology: dark gray siltstone, (5Y3/1), laminated and graded in Section 6.
							1.78	*		-	VOID				SMEAR SLIDE SUMMARY (%): 1.10 1.18 1.52 1.64 5.72
							- ?-	.0.0	2			XX			D D D D D D TEXTURE:
												K			Silt 10 15 25 5 20 Clay 90 85 75 95 78
												3	_		COMPOSITION: Quartz Tr Tr 10 Tr 5 Feldspar
CENE	ene)								3			1 S			Volcanic glass 2 Accessory minerals Tr 2 Tr Tr Pyroxene 2 Homblende Homblende Tr Glaucophane Tr Tr Foraminifers Tr 1 5 8
LOWER OLIGO	indet . (Oligoce	Barren	Barren				• \$=157 ⁸	\$ 0.0 ×	4			くーーーーーー			Nannofossils 60 20 10 Tr 70 Radiolarians — — — — 1 Sponge spicules — — 2 — 2 Bioclasts — 1 3 —
							.90		5			444444	*	*	
							0-51 0 0 -5	0.44.0 %	6	mulun			**		
	(2)								7	-	1:1:	1	1		
	R/G	B	8						cc			X			

5116	. 67	2	HOL	EA		C	ORI	E 3	7 X C	ORE	DIN	ERVAL 5305.3-5314.8 mbsl; 332.3-341.8 mbsf	1 2 3 4 5 6 C
E	BIOST	RAT.	ZONE/		ES					.8	s		
TIME - ROCK UN	FORAMINIFERS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTI	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTUR	SED. STRUCTURE	LITHOLOGIC DESCRIPTION	
~	B Barren	B Darren B Barren			• \$=5 ⁸⁹ • \$=5 ⁹⁰	× 0.0 × 0.0	1 1 2 3 4 5 6 5					MUDSTONE, CLAYSTONE, CALCAREOUS CLAYSTONE, CHALK, and MARLSTONE Inely laminated MUDSTONE, dark gray (N4) and dark greenish gray (SGA1, SGA2, SGS1); MUDSTONE and CLAYSTONE, locally prifiltrous, greenish gray and light greenish gray (SGY17), SGV2051); CALCAREOUS CLAYSTONE, commonly finely laminated at a base and burrowed at too of bed, delicate Phanolites burrower also present locally; CHALK and MARLSTONE, badding dips 0° to 4°. A normal fault dipping at 60° in section 5. SMEAR SLIDE SUMMARY (%): Mark Stripe To the section of the	20- 25- 30- 35- 40- 45- 50- 55- 60- 65- 70- 75- 80- 90- 95- 100- 105- 1115- 120- 125- 130- 135- 140-

SITE 672

-

16	0	12	-	H	LE	A	-	_	CO	RE 3	18 X C	T		NII	RVAL 5314.8-5324.3 mbsl; 341.8-351.3 mbs
LIN	FOS	SIL	CHA	RAC	TER	ce	TIES					URB.	SES		
TIME-ROCK L	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETI	PHYS. PROPER	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
									1	0.5			52000	*	CLAYSTONE, MUDSTONE, and SILTY MUDSTONE Grayish green and greenish gray (5G5/2, 5GY5/1) CLAYSTONE; dark greenish gray and greenish gray (5GY4/1, 5GY4/1) MUDSTONE; and dark gray (5Y4/1) laminated and locally cross-bedded SiLTY MUDSTONE. Bedding dips 3*-7*. Minor lithology: green glauconitic mudstone (5Y4/2) in Section 6, 21-42 cm. SMEAR SLIDE SUMMARY (%):
							¢=1.89	% 0.0	2						1, 83 1, 140 3, 76 6, 39 6, 43 7, 6 D M D M M M TEXTURE:
							•	•							Sano — Tr — _ 1 Sitt 1 70 Tr 35 51 84 Clay 99 30 100 65 49 15 COMPOSITION:
									3	and and and and				*	Quartz 1 60 Tr 10 92 Tr Feldsparts Tr 1 Tr Rock fragments 2 5 Clay 99 30 100 75 Accessory minerals 5 15 Accessory minerals 5 15 Glauconite 1 Bisocophane Tr Pyroxene Tr Zircon Tr Tr
2	Barren	Barren	Barren						4						
							• X=1.84	* 0.0	5					IW	
									6	and seed and			#	**	
	8	8	8						7				1	*	

F	OSSI	AT.	ZONE/	R	0.11	ES				URB.	ES							
	FORAMINIFERS	RADIOLARIANS	DIATOMS	DAI EAMAGNETI		CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTUR	SAMPLES		LITHOL	OGIC DE	SCRIPTI	ON	
							1	0.5				*	CLAYSTONE: MUDSTONE MUDSTONE Greenish gray (5G5/2) (MUDSTONE: very dark cross-bedded SILTSTOI Minor lithology: chalk ar bioturbated tops.	E; and SI CLAYSTC gray (5Y NE, SAN nd marist	LTSTONE DNE; dark (4/1, 5Y3/ DSTONE lone, light	to medi 1) lamin and SIL greenisl	STONE a lum gray ated and TY/SANE h gray (5	nd SILTY/SANDY (5G4/2) locally Y MUDSTONE. 3Y6/1) with
indet (Foone)	Barren	indet.			16.1=7.=16.1=7	Ø =52 Ø=50 0.2 % 0.1 %	2			+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	* ****	*	SMEAR SLIDE SUMMARY TEXTURE: Sand Silt Clay COMPOSITION:	((%): 1, 89 D 	1, 136 D 50 30 20	2, 28 D 5 40 55	3, 20 D 45 30 25	3, 112 D
	0	J/vR			7-1.96- 7-1.87	0=49 0=50	3				-	*	Quartz Feldspar Clay Accessory minerals Glauconite Pyrite Foraminifers Nannofossils Radiolarians Sponge spicules Fish remains Plant debris Bioclasts	1 5 1	65 185 Tr 55 Tr Tr Tr	10 81 1 3 3 1 1 1 7 3 1 1 1 1 1 1	70 25 2 1 Tr 1 Tr 1	1 89

=	BIC	SSIL	AT. CHA	ZONE	TER	s	IES	T				88.	S		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
									1	0.5		<u> </u>		*	CLAYSTONE, MARLSTONE, and CALCAREOUS CLAYSTONE; SANDSTONE; and MUDSTONE and SANDY MUDSTONE Greenish gray (5G5/2, 5G5/1) CLAYSTONE and whitish green (5GY7/1) MARLSTONE and CALCAREOUS CLAYSTONE, with commonly laminated bases and burrowed tops, and slump folding in Section 2; dark gray (SY4/1), laminated and cross-laminated, medium-grained SANDSTONE; and grayish green (5GS/2) MUDSTONE and SANDY MUDSTONE. Bedding dips of 10°. A normal fault dipping 80° with a displacement of 7 cm in Section 6. Minor lithology: dark gray (N4) laminated silfstone.
							• 0=58	% 6'0 .	2			V<	4	*	SMEAR SLIDE SUMMARY (%): 1, 36 2, 70 4, 148 D D M TEXTURE: Sand 60
DCENE	(ocene)	5	t .						3				*	œ	COMPOSITION: Quartz 40 - - Feldspar 5 - - Rock fragments 15 - - Clay 23 95 25 Calcite/dolomite - - 55 Accessory minerals 2 - - Authigenic subpate 2 - - Glauconite 2 - - Zeolites 3 - -
UPPER EC	indet. (E	CB1	inde				• 7-1.80 0-58	*0.0*	4			+ $+$ $+$ $+$ $+$ $+$ $+$	====>>	*	Pyroxene — — 5 Foraminfers 5 — — Nannofossils 3 5 15
							~	×	5				目下作	190	
							• (=1.9	. 8,910	6		VOID		A		
	R/G	F/M	CIVP						7 CC			X-TX-			

BIOSTRAT. ZONE/ FOSSIL CHARACTER	
FORAMINIFERS NAMNOFOSSILS DIATOMS DIATOMS DIATOMS PALEOMAONET PALEOMAONET PALEOMAONET PALEOMAONET PALEOMAONET DIHATUS CITON DIHATUS DI ATONS DI ATONS D	LITHOLOGIC DESCRIPTION
des rohri Zone	MARLSTONE and CALCAREOUS MUDSTONE; CLAYSTONE; SANDY MUDSTONE; and MUDDY SANDSTONE Pale green bloturbated and laminated (5GY7/1) MARLSTONE and CALCAREOUS MUDSTONE with burrowing more concentrated at the top of individual horizons; green (SGS/1) CLAYSTONE, dark olive-brown and green (5GS/1, SG4/1) taminated; SANDY MUDSTONE, dark olive-brown (5Y4/1) taminated; and MUDDY SANDSTONE, cross-taminated and convolute-taminated.
Truncorotato:	C SMEAR SLIDE SUMMARY (%): 1, 82 1, 128 2, 130 2, 148 D D M TEXTURE: Sand 40 1 1 1 Silt 20 40 5 50
	Clay 40 59 94 49 COMPOSITION: -

110	BI0 FOS	SSIL	AT. CHA	ZON	E/ TER	s	IES					JRB.	ES		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS, PROPERI	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
									1	0.5	00000000000000000000000000000000000000		出	*	MARL: MUDSTONE and CLAYSTONE; SILTSTONE; and CALCAREOUS SANDSTONE Pale green (5GY7/1) MARL with laminated bases and burrowed tops; greenish gray (5G5/1) MUDSTONE and CLAYSTONE; gray-brown (5Y4/1) laminated SILTSTONE; and laminated and cross-laminated bioclast-rich CALCAREOUS SANDSTONE; light greenish gray and greenish gray (5GY6/1, 5GY7/1). Beds dip at 35°-63° above faults that dip 60°-80° in Section 4. Well-developed scaly clay horizon 1 cm wide occurs along the fault zone. Bedding is horizontal at the base of the core.
ENE	ohri Zone				•		• 7=1.93	033.9 %	2					100	SMEAR SLIDE SUMMARY (%): 1, 21 4, 72 5, 30 D D D D TEXTURE: Sand 10 2 10 Silt 25 30 20 Clay 65 68 70
MIDDLE EOCI	Truncorotaloides r	CP14	indet.						3		Drill Breccia	××× ~			COMPOSITION: Quartz 28 32 30 Rock fragments 5 Clay 62 58 60 Accessory minerals Opaques 2 Tr Tr Foraminifers 3 Nannofossils 10 10
	1						• 0-1.90	•23.3 %	4					*	
	R/P	F/M	C/VP						5 CC		Void		T	*	

-

a second second second

SITE 6	72	()	HOL	E 4	4	- 19	COR	E 4	43 X	CORE	D	INTE	ERVAL 5362.3-5371.8 mbsf; 389.3-398.8 mbsf	1	2	3	4	5	6	cc
	OSTR	RAT. CHA	ZONE/	8 5	LIES					JRB.	Sa			5-0-		Les ?			and the second	
OCK U	SSILS	RIANS		GNETIC	ROPERI	RY			GRAPHIC	DIST	RUCTUR		LITHOLOGIC DESCRIPTION	10-		in .	the state			1-5
ME-R	NNOFO	DIOLA	ATOMS	LEOMA	YS. P	EMIST	CTION	TERS	LITHOLOG	ILLING	D. STF	WPLES		15-0	1 com	and a second			Sec.	(Really)
F 2	Z	a	ā	đ	â	ċ	S	×			8	ŝ		10	× 4		5.2			1
			3 2.							E×	_		CLAYSTONE; CALCAREOUS MUDSTONE and SILTSTONE; and CALCAREOUS SANDSTONE	20-	1	and and		-	5	and the
			andyc				1	.5		× ×	12		Greenish gray (5G5/2) CLAYSTONE; dark green (10Y4/1) CALCAREOUS MUDSTONE and SILTSTONE; pale green (10Y6/2) laminated and cross-laminated CALCAREOUS SANDSTONE.	30	+ 0			to a		E
			q SE				1	-0.1			18	*	Minor lithology: pale green (5G6/2) calcareous mudstone.	35-	1		Sel sel	N. P. I	TR IS	E
			cycl		48	*	+			F.	18		SMEAR SLIDE SUMMARY (%):	10-10-	1 All	1			ALC: NO	- And
			Calo		6-1	24.8					11	*	1, 120 2, 30 CC, 20 D D D	40-		1 State		e pe		1 29
			o				2		<u></u>		1	11	TEXTURE:	45		1	6			T
			X N					1			-		Sand 13 Tr 50 Silt 85 80 40 Clay 2 20 10	50		1				
			827								"		COMPOSITION:	55	S. A.	11		1		1. 1
			rum										Quartz 76 12 10 Feldspar – 1 –	60		E ST	-		-	
one			nist				2				L		Calcite/dolomite 2 36 55 Accessory minerals	65		#	100	2		
NE			0009				3		0,0,	0 1 1	77		Glauconite 1 1 Tr Pyrite 2 — — Fe/Mn hydroxide(?) 1 — —	70-7-	-	100-	12-			
OCE	4	1	Car		18.0	×		1			\vdash		Biotite(?) Tr — — Foraminifers 10 30 20	75-	1 Bred		and the second		-	
E E	CP1	inde			0-5	0.0	+	- 14		ä.			Diatoms Tr — — Sponge spicules 2 — —	80		En 1	100		7.8	
IDDI					~			1					Bioclasts 3 — Ir —	85		100	1000	ates		
Moro							4				8			90-					the	1.1
											-			95			2		18.9	
										51	1	IW		100-				10	- Chine	
										Ē]_	F			105	5-2	1 and 1		7	100	
							5			E-	Ш			105	1000		and it	-1-	1951	
										0.0	14			110-1-	1 ma	1		alles t		7 7
									-	ē	F	06			1	1	and -	1.5		
							+			-1		H		120-	C. C. C.	ANT I	-		- 11.5	
					60.0	*	6			1	E			125-			- 1	-		
					- 0-5	•65.				計上	11			130	and a	-	48 -	-	- 64	
W/	W/	IVP					cc		1 100					135			and -	-	- 12.0	
	14	14	<u> </u>	1	1				1100		L III	1		140	-	-	-	-		
														145		500-		_		2000
														150			_	381	-	1.85

INIT	BI0 FOS	SSIL	CHA	ZONE/	cs s	TIES					runs.	RES							
FORAMINIFERS		NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNET	PHYS. PROPER	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTU	SAMPLES	LITHOLOGIC DESCRIPTION					
-		1			+				-		T	-	*						
						Y=1.9	11.8 5		0.5		1			CLAYSTONE: CHALK, MARLY CHALK, and SILTY INDURATED CHALK; CALCAREDUS SANDSTONE or MUDSTONE; and CALCAREOUS CLAYSTONE					
								1	1.0			•••• Ш	*	Dark green (5G5/2) CLAYSTONE, pale blue to white (5GY7/1) CHALK, MARLY CHALK, and SILTY INDURATED CHALK; plus dark gray (N4) CALCAREOUS SANDSTONE or MUDSTONE. CHALK has laminations and slumps; SANDSTONE and MUDSTONE are cross-stratified; CHALK and MARLY CHALK are bloturbated. Calcareous beds exhibit sequences with sharp base, laminated lower part, and upper part grading into CALCAREOUS CLAYSTONE. Bedding is horizontal.					
	ne								111		1	_	*	SMEAR SLIDE SUMMARY (%):					
NE	'i Zo							2	111		1 1	H		1, 2 1, 127 2, 43 4, 53 CC, 21 CC, 33 D D D M D D					
2	nei								-	··· ·· ·· ··	1	64		TEXTURE:					
	lla leh	CP14	indet								エ エ	**		Sand 85 60 2 — 20 Silt 15 40 88 15 90 60 Clay — — 10 85 10 20					
2	0Ve								7		1	_		COMPOSITION:					
· W	orozo							3			1 1			Quartz 62 15 50 -3 Feldspar Tr Tr 3 Bock fragments Tr </td					
	W										+			Clay — — 10 70 10 20 Calcite/dolomite 2 — 25 — — 15 Accessory minerals					
		6.4				1	×	\sim	7	F	T	69		Glauconite 1 — 1 — Tr					
					1	- 5	œ		1		-	"		Pvroxene(?)Tr					
						-0	39				1	-		Zircon — — Tr — — —					
						•	•		1			-		Foraminifers 20 20 5 - 10 20					
					1			4	-	CARLES I	-	-		Nannofossils 1 30 80 40					
									1			-		Hish remains Tr Tr Tr — Tr —					
	F/G	F/M	F/vP					сс	1111		エエ	44	* *	Diociasis 10 65 5 — 2					

SITE 672

5	60		GUN	RACTE	R	ES					BB.	S				
TIME-ROCI	FORAMINIFERS		RADIOLARIANS	DIATOMS	DAI COMACHEVIC	PHYS. PROPERI	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITH	IOLO	GIC DESCRIPTION
MIDDLE EUCENE	Barren B	CP14	cyrtis mitra Zone - Podocyrtis goetheana Zone					1	0.5		X H X H X	***	*	CALCAREOUS MUDSTONE, CA CHALK Light brown (5GY6/1) CALCA CALCAREOUS SANDSTONE CHALK: commonly laminated SMEAR SLIDE SUMMARY (%): 1, 4 D TEXTURE: Sand 25 Siti 70 Clay 5 COMPOSITION: Quartz 30 Mica - Clay 5 ComPOSITION: Quartz 30 Mica 5 Calcite/dolomite 45 Accessory minerals 1 Opaques 7 Authigenic albite(?) - Authigenic albite(?) - Foraminifers 10 Nannofossils 2 Biociasts 5	ARE E, ar d at t	CAREOUS SANDSTONE, and INDURATED COUS MUDSTONE, green (5G6/1) hase and bioturbated at bottom. 1, 66 D 95 5 Tr 70 Tr 3 2 2 Tr Tr 20 Tr 20 Tr

TE	673	2	HOLE	A		_	COF	RE 4	6 X C	RE	D	INT	ERVAL 5390.8	-5400	.3 mb	sl: 417.8-427.3 mb	sf
F	OSSIL	CHAP	ONE/	0	ES					88.	5						
TIME-ROCK UN	NANNOF OSSILS	RADIOLARIANS	RADIOLARIANS		PALEOMAGNETICS PHYS. PROPERTII		SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTURE	SAMPLES		LITHOL	OGIC DE	SCRIPTION	
MIDDLE EOCENE Barren	F/M CP14	RIVP Podocyrtis mitra Zone - P. goetheana Zone			7 =1.92 7=2.00	24.3 % 6 51.2 %	1 2 CC	0.5		X X X X I I X X X X		*	CALCAREOUS MUDST SANDSTONE; and INDU Dark brownish green dark olive-gray (5G4/ SANDSTONE (5G5/2 SMEAR SLIDE SUMMA TEXTURE: Sand Silt Clay COMPOSITION: Quartz Feldspar Clay Calcite Accessory minerals, Glauconite Glaucophane Auth, albite, zeolite(?) Dolomite Foraminifers Nannofossiis Radiolarians Sponge spicules Bioclasts	ONE and URATED C (5Y4/2) C (5Y4/2) C (2) C (AYS'); and paik (FY (%): 1, D 20 (2) C (AYS'); and paik (%); and paik	MUDSTO HALK ALCAPEE ONE: lar bluish g	NE; CLAYSTONE; CALCAREOUS DUS MUDSTONE and MUDSTONE; ninated CALCAREOUS reen (SGY7/1) INDURATED CHALK	
TE	672	AT T	HOLE		1	_	COF	RE 4	7 X C	ORE	D	INT	ERVAL 5400	.3 -5 4	8. 90	mbsl: 427.3-436.8 r	nbsf
TIME-ROCK UNIT	NANNOFOSSILS	RADIOLARIANS	SWOLVIG	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES		LITHOL	.OGIC DE	SCRIPTION	
MIDDLE EOCENE	CP14	Podocyrtis mitra Zone					cc			XHXH	R	* *	CHALK and INDURATED SILTSTONE Laminated pale greeni dark greenish gray (55 SILTSTONE with cross Bedding dips up to 12 SMEAR SLIDE SUMMAF TEXTURE: Silt Clay COMPOSITION: Feldspar Clay Calciter/colomite Accessory minerals Glauconite	2 CHALK; (35/1) CLA s-bedding : *. AY (%): CC, 19 M 4 96 75 5 	CLAYSTO BG5/1) C (STONE : and lamin CCC, 39 D 90 10 Tr 5 90 10	NE and CALCAREOUS SANDY HALK and INDURATED CHALK; and CALCAREOUS SANDY ations. CHALK is bioturbated. CC, 51 D 85 15 69	

MIDDLE EOCENE	TIME-ROCK UNIT
Barren	FORAMINIFERS 01 8
F/M CB14	STRA SIL SIL SIL SIL
A/P Podocyrtis mitra - P. goetheana Zone	CHAR
	NE/ ACTER
	PALEOMAGNETICS
• \$=1.99 • \$=36	47 PHYS. PROPERTIES
•24.0 % 8.1 % • 44.	X. CHEMISTRY
1 2 3 4 CC	SECTION
0.5	METERS
	- PRILLING DISTURB.
	SED. STRUCTURES
*	* SAMPLES
Gray (10Y6/1) CALCARE Iaminated CALCAREOUS CALCAREOUS MUDSTO slightly calcareous CLAYS SMEAR SLIDE SUMMARY (TEXTURE: Sand Siti Clay COMPOSITION: Quartz Clay Calcite/dolomite Accessory minerals Glauconite Foraminifers Nannotossils Diatoms Sponge spicules Fish remains Bioclasts	CALCAREOUS SANDY SILT
800 US S. SILTS'S INE and (%): 1, 19 D 90 8 2 2 1 1 1 85 2 - 1 1 7 7 -	THOLO
ADDY SI TONE (5: COHALX Normal 2, 27 D 60 30 30 5 5 20 30 5 5 	DGIC DE
1 (ESTONII) GY6(1) g and dat ault in C 3, 64 D 10 90 1 	SCRIPTI
E with cross-bedding; ading into bioturbated k olive-gray (GG4/2), C dips 45°. 3, 112 M 	ON
25- 30- 35- 40- 45- 50- 55- 60- 65- 70- 75- 80- 85- 90- 95- 100-	5- 10- 15- 20-
	the set in

CC

115

1.44.1-

6 12

105-·110-

115-120-125-130-135-140-145-150-

L N	BI0	SSIL	AT. CHA	ZONE/	50	IES				JRB.	ES						
TIME-ROCK UI	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION				
MIDDLE EOCENE	c							1		XXXXXX////			MUDSTONE, CALCAREOUS MUDSTONE, and SILTY INDURATED CHALK Interbedded greenish gray (5G5/1) MUDSTONE, laminated bluish gray (5G77/1) CALCAREOUS MUDSTONE and SILTY INDURATED CHALK. Slump in base of calcareous sequences and bioturbations at top of calcareous sequences. SMEAR SLIDE SUMMARY (%): 2, 76, 3, 40, 3, 140, 4, 136				
			itra Zone			• 2-1.90	42.2 X 42.0 X	2			22	*	D D D M TEXTURE: Sand 1 5 — Silt 49 15 3 2 Clay 50 80 97 97 COMPOSITION:				
	Barrer	Barren	Podocyrtis mi					3			* *	*	Clay 50 91 97 97 Accessory minerals 1 - - - Glauconite Tr - - - Foraminifers 3 3 1 2 Nannofossiis 1 Tr - Bioclasts 35 1 1 Tr				
						• 6-1.86	•2.8 %	4		-		*					
	8	В	A/P					5 CC		444	**						

ī	BIC FO	SSIL	CHA	RACT	ER	s	TIES					URB.	SES		
TIME-ROCK U		NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETI	PHYS. PROPER'	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
			one						1	0.5					MUDSTONE and CLAYSTONE Bluish green (5G5/1) MUDSTONE and varicolored (5G5/1 to 5GY5/1) CLAYSTONE; massive to locally bioturbated. SMEAR SLIDE SUMMARY (%): 2, 34 2, 63 3, 37 3, 76 3, 86
			Z e								EEEE	1			M D M D D
DLE EUCENE	MIUULE EUCENE Barren Barren	Barren	Zone - P. mitr				(2-1.88 ● 2.15 0-46	* 0.0 *	2				*	*	Sand - - - 5 Silt 40 2 30 2 1 Clay 60 98 70 98 94 COMPOSITION:
MIM			Podocyrtis ampla					•0.2 %	3	en bred e e la		+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$		* *	Accessory minerals Tr — 3 — — Authgenic sulphate 10 — — — — Radiolarians 10 — — 5
							•	•	4	1113			1		
		l.,	C/P						сс	1		1+			

SITE 672 H	OLE A CORE 53 X	CORED INTERVAL 5457.	3-5466.8 mbsl; 484.3-493.8	mbsf 1 2	3 4	5 6 CC
TIME-ROCK UNIT FORAMINIFERS FORAMINIFERS AMANNOFOSSIL RADIOLARIANS PLATANS	American Section were and the section of the sectio	DRILLING DISTURB. SED. STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION	5- 10- 15-		
LOWER EOCENE B Barren B Barren C/P Buryella clinata Zone -Theocotyle cyrptocephala Zone		J SILICEOUS CLAYSTO Alternating beds of greenish gray (GQY J * SMEAR SLIDE SUMM J TEXTURE: Sand Silt Clay COMPOSITION: Clay COMPOSITION: Clay Composition: Authigenic abliet(?) Homblende(?) Authigenic subpate Radiolarians	NE and CLAYSTONE brown (7.5YR5/2) SILICEOUS CLAYSTONE and (7.5YR5/2) SILICEOUS CLAYSTONE and D 0 3, 123 4, 68 5, 75 5, 144 CC D 0 0 5 70 85 50 95 100 95 70 85 50 95 99 98 70 83 50 5 - 1 30 10	20- 25- 30- 30- 40- 45- 50- 55- 60- 65- 70- 75- 80- 85- 90- 95- 100- 105- 110- 115- 120- 125- 130- 135- 140- 145- 140- 145- 140- 145- 140- 145- 140- 145- 140- 145- 140- 145- 140- 145- 140- 145- 140- 145- 140- 145- 140- 145- 140- 145- 140- 145- 140- 145- 140- 145-		
				150-	- <u>79</u>	