10. SITE 712 AND 7131

Shipboard Scientific Party²

SITE 712

Hole 712A

Date occupied: 0705 L, 16 June 1987

Date departed: 2045 L, 16 June 1987

Time on hole: 13 hr, 40 min

Position: 04°12.99'S, 73°24.38'E

Water depth (sea level; corrected m, echo-sounding): 2904.3

Water depth (rig floor; corrected m, echo-sounding): 2914.8

Bottom felt (m, drill pipe): 2902.9

Penetration (m): 115.3

Number of cores: 12

Total length of cored section (m): 115.3

Total core recovered (m): 41.6

Core recovery (%): 36.1

Oldest sediment cored: Depth (mbsf): 115.3 Nature: nannofossil chalk and volcanic ash Age: middle Eocene Measured velocity (km/s): 1.6

SITE 713

Hole 713A

Date occupied: 2330 L, 16 June 1987

Date departed: 1300 L, 20 June 1987

Time on hole: 4 days, 13 hr, 30 min

Position: 04°11.58'S, 73°23.65'E

Water depth (sea level; corrected m, echo-sounding): 2915.3

Water depth (rig floor; corrected m, echo-sounding): 2925.8

Bottom felt (m, drill pipe): 2920.3

Penetration (m): 191.7

Number of cores: 22

Total length of cored section (m): 191.7

Total core recovered (m): 115.0

Core recovery (%): 60

Oldest sediment cored: Depth (mbsf): 155.1 Nature: nannofossil chalk and volcanic ash Age: middle Eocene Measured velocity (km/s): 2.6

¹ Backman, J., Duncan, R. A., et al., 1988. Proc. ODP, Init. Repts., 115: College Station, TX (Ocean Drilling Program). Basement rocks: Depth (mbsf): 107.0 to 191.7 Nature: basalt Age: middle Eocene Measured velocity (km/s): 5.7

Principal results: In transit from Site 711 to Sites 712 and 713, the JOIDES Resolution crossed the Central Indian Ridge, which forms the boundary between the African and Indian plates (Fig. 1). This spreading ridge has been active since Chron 13 time (35 Ma), when the Chagos Bank was rifted from the Nazareth Bank and the Ninetyeast Ridge was separated from the Kerguelen hotspot. Before this time, the plate boundary spreading system was located further to the south (McKenzie and Sclater, 1971; Schlich, 1982). Our rationale for drilling at the Chagos Bank was to sample hotspot volcanism midway between the Deccan flood basalts and ocean island basalts at Réunion and Mauritius (see "Background and Objectives" section, this chapter).

Sites 712 and 713 are located on the northern margin of the Chagos Bank. Site 712 is at $4^{\circ}12.99'S$, 73°24.38'E, in 2892.4-m water depth. Because of hole instability problems, basement could not be reached at this site, so drilling was relocated 1.6 nmi to the north. Site 713 is at $4^{\circ}11.58'S$, 73°23.65'E, in 2909.8-m water depth. Shallow-water carbonate reefs and banks lie 70 nmi to the south and southwest. An abrupt scarp, probably related to transform faulting before 35 Ma, drops 3000 m just 30 nmi to the east. In the immediate region of these sites is a gently dipping volcanic apron which deepens to the north to the 4500-m channel that separates the Chagos Bank from the Maldive Islands.

Site 712

The basement rocks in this region form a series of offset steps, probably resulting from extension and normal faulting. At this site, the sediment cover is about 190 m thick, whereas only 1.6 nmi away at Site 713 the basement is 106 mbsf. Hole 712A was terminated in middle Eocene nannofossil oozes and volcanic ashes at 115.3 mbsf. Rotary coring averaged 60% recovery through the first 58 m of nannofossil oozes, then fell abruptly to nearly nothing for the next 40 m. This zone was probably an unconsolidated coarse carbonate sand as it continually caved in on the drill pipe and eventually ended drilling at this site. Fair recovery was achieved again in the last two cores of nannofossil ooze mixed with volcanic ashes.

The major lithologies we recognized in Hole 712A are as follows:

Unit I (0-58 mbsf) contains foraminifer-bearing nannofossil ooze and foraminifer-nannofossil ooze with thin turbidites and minor bioturbation. With depth, these sediments become more consolidated as foraminifer-nannofossil chalks. Unit I sediments range in age from Pleistocene to middle Miocene.

Unit II (58-106 mbsf) provided essentially no recovery except for drilling rubble, including coarse fragments of recrystallized limestone. Sediments are of late Oligocene age.

Unit III (106-115 mbsf) is composed of foraminifer-bearing and foraminifer-nannofossil chalk with numerous, thin interbedded volcanic ashes. It is middle Eocene in age.

Site 713

Total penetration at this site was 192 m by rotary coring. The 22 cores yielded an average recovery rate of 60%. During the cutting of Core 115-713A-20R, the drilling rate dropped to less than 2 m/hr, and we assumed that the four-cone bit might be worn out. A reentry cone was deployed, seated in the hole using the video camera system, and the pipe tripped to replace the bit. Surprisingly, the old bit was not badly

² Shipboard Scientific Party is as given in the list of Participants preceding the contents, with the addition of Isabella Premoli Silva and Silvia Spezzaferria, Dipartimento di Scienze della Terra, Universitá di Milano, Via Mangiagalli 34, I-20129, Milano, Italy.

Figure 1. Regional setting and location of Sites 712 and 713, Chagos Bank, central Indian Ocean. Drilling on this elevated ridge was intended to sample a midway point on the hot-spot track connecting active volcanism in the region of the island of Réunion with the Deccan flood basalts, western India.

worn. We installed a diamond bit and reassembled the drill string for reentry, which was accomplished in fairly rough weather, again using the camera. The new bit cut only 8.4 m at a very slow pace, and we felt that bit failure was imminent. Drilling stopped, and the drill string was recovered. The new bit had indeed nearly fallen apart (see "Operations" section, this chapter).

Hole 713A bottomed in basalt flows of olivine tholeiitic composition, intercalated with nannofossil chalks of early middle Eocene age (47-48 Ma). The basalts vary from thicker (10 m), more vesicular flows at the top, to thinner (1 m), more compact flows with depth. Some 35 separate flow units were distinguished on the basis of sediment interbeds and glassy, chilled margins. The basalts were erupted well below sea level, but the degree of vesicularity in some of the flows indicates conditions a good deal shallower than the present depth (3000 m). Thermal subsidence considerations (Sclater et al., 1977) predict a depth for this site of about 1000 m during volcanic activity. The benthic foraminiferal assemblage observed between the lava flows indicates a deeper-water environment (see "Biostratigraphy" section, this chapter).

A significant finding was the large amount of magnificently preserved black volcanic ash increasing toward the base of the sediment column and intercalated with the basalt flows. Preliminary examination indicates that these may represent much more evolved magmas than those identified from the basaltic rocks. The ashes are undoubtedly of local origin, but the variability of the compositions among the fresh glasses will allow a much more complete assessment of the range of volcanic products at this location on the hotspot track.

We measured stable and consistent paleomagnetic field directions from the basaltic rocks at Site 713. These yield an estimated paleolatitude for the site of $12.2^{\circ} \pm 3.1^{\circ}$ S. From the hotspot model we expected a paleolatitude between 21° and 30° S, so this result is, for the present, puzzling and anomalous with respect to other site paleolatitudes (see "Principal results" section, "Site 715" chapter, this volume). The evidence for faulting of the basaltic rocks (see "Seismic Stratigraphy" section, this chapter) may provide a possible mechanism for rotation of basement blocks ($10^{\circ}-20^{\circ}$ about an east-west horizontal axis). Since the laminae in sediments interbedded with the basalts do not show any consistent tilt, however, this may not be a satisfactory solution.

The major lithologies recovered in Hole 713A can be summarized as follows:

Unit I (0-31 mbsf) contains foraminifer-nannofossil ooze to foraminifer-bearing nannofossil ooze and chalk. Sediments range in age from Pleistocene to late Miocene.

Unit III (31-107 mbsf) is dominated by foraminifer-bearing nannofossil chalk, clay-bearing in parts, with volcanic ashes increasing in occurrence and thickness with depth. Spectacular bioturbation and smallscale faulting are preserved and clearly seen because of the color contrast. Sediments are middle Eocene in age.

Unit IV (107-192 mbsf) is composed of vesicular to compact submarine basalts of olivine basalt composition. Flows vary from 1 to 10 m in thickness and are interbedded with middle Eocene nannofossil chalks and volcanic-ash layers.

The geologic columns for the two sites (Fig. 2) show that there is a major hiatus between late Miocene and middle Eocene sediments at Site 713, with Unit II sediments missing. Oligocene sediments of Unit II were found at Site 712, only 1.6 nmi to the south, indicating highly variable patterns of erosion and subsidence.

192 T.D.

Figure 2. Stratigraphic summary of Sites 712 and 713. Black column represents recovered section.

BACKGROUND AND OBJECTIVES

The Mascarene-Chagos-Maldive-Laccadive volcanic lineament is a major aseismic ridge system in the central Indian Ocean basin. It connects young volcanic activity in the vicinity of Réunion Island with the massive volumes of continental flood basalt erupted along India's western margin near the time of the Cretaceous/Tertiary boundary. This lineament parallels the remarkable Ninetyeast Ridge, and the two together record the northward motion of the Indian subcontinent away from stationary hotspots near Réunion and Kerguelen Islands, respectively (Fig. 3).

Our overall strategy for sampling this volcanic trend is presented in the Site 705/706 chapter. Age-progressive volcanism along the Ninetyeast Ridge has already been documented (Duncan, 1978), and comparable age determinations along the western trend will allow precise calculation of rotation poles for Indian plate motion during Tertiary time. This will have applications in plate reconstructions for the Indian Ocean, the timing of India's collision with Asia, and the rise of the Himalaya

Figure 3. Predicted hotspot tracks and present-day distribution of aseismic ridges in the Indian and South Atlantic Oceans. Letters refer to Réunion (R), Comores (C), Kerguelen (K), Bouvet (B), Marion (M), and Tristan (T) hotspots. The present outcrop of flood basalts of the Deccan Traps is shown in western India (from Emerick, 1985).

Mountains. Another necessary result will be a direct test of the proposition that the Indian and Atlantic basin hotspots have maintained a fixed geometry throughout the period of volcanic activity (Morgan, 1981; Duncan, 1981).

From the known relative plate motions across the Central Indian Ridge and ages along the Ninetyeast Ridge, the predicted age of Site 713 on the Chagos Bank is 45-50 Ma (Emerick, 1985). This age would provide an important intermediate point between Site 706 (36 Ma) and the Deccan flood basalts (66-68 Ma).

Of further interest is the geochemical composition of basalts erupted along this lineament. Potential mantle source regions for melting include the hotspot itself, the uppermost suboceanic mantle (the source of Mid-Ocean Ridge basalts), and the subcontinental mantle. At the southern extreme the basalts of Réunion and Mauritius probably best represent hotspot compositions, and at the north the Deccan basalts have had melt contributions from the mantle beneath India. In between, we may expect to see evidence of magma mixed from these sources and the Central Indian Ridge, depending on the position of the hotspot with respect to continental India and the spreading ridge through time. The Chagos Bank formed well south of India and before rifting on the Central Indian Ridge (Fig. 4), so we expect to see a strong hotspot signature in the basalt compositions (trace element and isotopic compositions).

We also hoped to investigate the phenomenon of true polar wander at Site 713. If the position of the earth's spin axis changes relative to its figure (due, say, to mass redistribution), then the hotspot reference frame will appear to move with respect to the geomagnetic pole (aligned with the spin axis). Thus, a straightforward test is to determine the paleomagnetic latitude of sites along the hotspot track. If the hotspot has not moved with respect to the spin axis, then all sites should exhibit the same paleolatitude. Systematic departures indicate true polar wander. The Deccan flood basalts yield a paleolatitude of about 29°S (Courtillot et al., 1986), or 8°S of Réunion. Thus, there has

Figure 4. Reconstruction of the western Indian Ocean for the predicted age of Site 713, northern Chagos Bank, in the hotspot reference frame. The hotspot lies under the Indian plate and to the north of a spreading ridge segment. Letters refer to Comores (C), Réunion (R), Marion (M), and Kerguelen (K) hotspots.

been 8° of true polar wander since about 67 Ma. Paleolatitudes from additional sites along this lineament will allow us to determine when the true polar wander occurred.

OPERATIONS

Site 712 was an alternate site added to the leg when permission to drill in Mauritian territorial waters was rescinded. The survey gear was streamed 2 hr prior to arriving at Site CB-1 to ensure that a complete survey was made. At 2400 hr, 15 June 1987, the beacon was dropped to establish Site 712.

Hole 712A

The objective of Hole 712A was to penetrate and recover basement rocks of presumed basaltic composition. The bottom hole assembly (BHA) was lowered to the seafloor, and the mud line was established at 2892.4 m. Recovery started out well until a chert stringer was encountered at 2930.7 m (38.3 mbsf). We penetrated the chert stringer, but recovery still dropped off considerably. Virtually no core was recovered from 2949.9 to 2978.8 m, at which time the deplugger was dropped. When coring continued, recovery was low and the hole was getting tight. Each time the drill string was picked up, the hole was lost and had to be washed back down. Gel/water mud was used to sweep the hole with little effect.

With hole conditions becoming worse, we decided to abandon Hole 712A. Total penetration was 115.3 mbsf to 3007.7 m, with 41.6 m of core recovered for a recovery rate of 36% (Table 1). An alternate site was then chosen by the Co-Chiefs from seismic survey data in hopes of finding better drilling conditions. We pulled the drill string 100 m above the seafloor and moved the ship 1.6 nmi north-northwest in the dynamic positioning (DP) mode. We dropped a beacon at 2200 hr on 16 June 1987 to establish Site 713.

Table 1. Coring summary, Sites 712 and 713.

Core no.	Date (June 1987)	Time (local)	Depth (mbsf)	Cored (m)	Recovered (m)	Recovery (%)
115-712A-						
1R	16	0730	0-9.4	9.4	9.40	100.0
2R	16	0815	9.4-19.0	9.6	8.13	84.7
3R	16	0900	19.0-28.6	9.6	6.44	67.1
4R	16	0930	28.6-38.3	9.7	3.67	37.8
5R	16	1015	38.3-47.9	9.6	3.30	34.4
6R	16	1045	47.9-57.5	9.6	3.60	37.5
7R	16	1115	57.5-67.2	9.7	0	0
8R	16	1200	67.2-76.8	9.6	0.05	0.5
9R	16	1330	76.8-86.4	9.6	0	0
10R	16	1415	86.4-96.1	9.7	0.13	1.3
11R	16	1645	96.1-105.7	9.6	2.32	24.1
12R	16	2045	105.7-115.3	9.6	4.52	47.1
115-713A-						
1R	17	0015	0-1.6	1.6	1.63	102.0
2R	17	0100	1.6-11.2	9.6	8.48	88.3
3R	17	0145	11.2-20.8	9.6	9.87	103.0
4R	17	0230	20.8-30.5	9.7	9.67	99.7
5R	17	0315	30.5-40.1	9.6	4.53	47.2
6R	17	0400	40.1-49.7	9.6	6.95	72.4
7R	17	0445	49.7-59.4	9.7	8.50	87.6
8R	17	0530	59.4-69.1	9.7	5.21	53.7
9R	17	0600	69.1-78.7	9.6	3.13	32.6
10R	17	0645	78.7-88.4	9.7	2.32	23.9
11R	17	0730	88.4-98.1	9.7	5.05	52.0
12R	17	0830	98.1-107.7	9.6	3.23	33.6
13R	17	1230	107.7-117.2	9.5	2.78	29.2
14R	17	1545	117.2-126.7	9.5	4.35	45.8
15R	17	2000	126.7-136.2	9.5	7.76	81.7
16R	17	2130	136.2-145.7	9.5	6.61	69.6
17R	17	2245	145.7-155.2	9.5	6.34	66.7
18R	18	0145	155.2-164.4	9.2	1.85	20.1
19R	18	0815	164.4-173.9	9.5	3.27	34.4
20R	18	1500	173.9-183.3	9.4	8.25	87.7
21R	20	0045	183.3-190.2	6.9	4.72	68.4
22R	20	0330	190.2-191.7	1.5	0.48	32.0

Hole 713A

The rotary core barrel (RCB) BHA was lowered back to the seafloor, and coring commenced at 2345 hr, 16 June, establishing the mud line at 2909.8 m. We encountered basalt at 3016.8 m (107 mbsf). After Core 115-713A-19R, the hole became tight. The drill string was worked, the hole was swept with gel/water mud, and coring resumed. While cutting Core 115-713A-20R, penetration dropped off to 1 m/hr. Because of the possibility of junking the hole due to a broken bit, we decided to drop a minicone, pull out of the hole, and reenter with a diamond bit.

The top of the BHA was pulled to the mud line, and a minicone was deployed at 1900 hr, 18 June. At 1930 hr, the camera was lowered. After finding that the minicone was positioned properly in the hole, the BHA was pulled through with no problem. We then tripped out the camera and drill string.

The roller cone bit was replaced by the diamond bit, and the BHA was lowered back to the seafloor. The camera was lowered to begin reentry. After 2 hr of searching and 1 hr of positioning over the cone, reentry was made. We retrieved the camera, washed the hole down to bottom at 3093.1 m (183.3 mbsf), with no fill found, and resumed coring.

After 6.9 m of penetration on Core 115-713A-21R, we had to retrieve the core barrel due to jamming. While cutting Core 115-713A-22R, penetration had slowed to nothing and the pump pressure had climbed to 1800 psi. Whenever the bit was picked up off bottom, pump pressure would drop to 250 psi. Everything indicated that the bit was worn out and further penetration was impossible. Therefore, we tripped out the drill string and abandoned Hole 713A. The diamond bit had only penetrated 8.4 m of basalt and recovered 5.2 m of core. Total penetration was 191.7 mbsf to 3101.5 m, with 115 m of core recovered for a recovery rate of 60% (Table 1).

Site 713 to the Maldive Islands

With everything secured at 1300 hr, 20 June, the ship was under way to the Maldive Islands. We encountered a storm with 35-40-kt winds, gusting to 65 kt, and heavy rains in the early morning hours on 21 June, which continued throughout the transit to the Maldives. The storm slowed the ship to 9 kt, and arrival at Male in the Maldives was at 1100 hr, 22 June, 2 hr behind schedule. Because of high winds and associated seas, we did not anchor the ship but remained positioned approximately 1 nmi south of Male in the DP mode. Dr. Philip Rabinowitz had made the trip from Ocean Drilling Program headquarters to Male to secure drilling clearance for two of the Maldive sites. Dr. Rabinowitz, two observers, and customs, immigration, and security officials from the Maldives came on board at Male.

LITHOSTRATIGRAPHY

Introduction

Sites 712 and 713 are located within 1.6 nmi of each other on the northern margin of the Chagos Bank at water depths of 2892.4 and 2909.8 m, respectively. Because our principal objective at this location was to penetrate and sample basement rocks, we selected these sites because of their relatively thin sediment cover, paying little attention to the completeness of the stratigraphic sequence. Site 712 was rotary cored to a depth of 115.3 mbsf, where hole instability problems forced the termination of drilling short of basement. Site 713 was offset slightly to the north and drilled to a total depth of 191.7 mbsf, with basalt reached at 106 mbsf.

The sedimentary sequence at Sites 712 and 713 is punctuated by hiatuses, but we can divide it nonetheless into three major units (Fig. 5). Unit I is composed of foraminifer-nannofossil ooze, foraminifer-bearing nannofossil ooze, and foraminifer-nannofossil chalk; it ranges in age from Pleistocene to middle Miocene in the two sites. Unit II consists of an unconsolidated sequence of coarse carbonate sands and limestone rubble, known only from spotty recovery at Site 712 and missing completely at Site 713. Limited biostratigraphic data suggests a late Oligocene age for at least part of this unit. Unit III is composed of a rather spectacular interbedded sequence of nannofossil and micritic chalks and volcanic ash of middle Eocene age which directly overlies basement in Site 713, and which was also found intercalated within the olivine tholeiitic basalt flows.

Each of the three major sedimentary units is described in more detail in the following sections.

Unit I: Cores 115-712A-1R through -6R (0-57.5 mbsf) and Cores 115-713A-1R through -4R (0-30.5 mbsf); Age: Pleistocene to middle Miocene.

Unit I in Holes 712A and 713A consists of foraminifer-nannofossil ooze, foraminifer-bearing nannofossil ooze, and foraminifer-nannofossil chalk. This purely pelagic sequence is further divided into two subunits on the basis of the induration differences between the ooze and chalk.

Subunit IA: Cores 115-712A-1R through -4R (0-38.3 mbsf) and Cores 115-713A-1R through -4R (0-30.5 mbsf); Age: Pleistocene to late Miocene.

Subunit IA is composed of a foraminifer-nannofossil ooze at the top which grades downhole into a foraminifer-bearing nannofossil ooze. Foraminifers typically make up 35%-45% of the

Figure 5. Summary of lithostratigraphic units recognized at Sites 712 and 713. Major hiatuses are shown based on biostratigraphic data presented in "Biostratigraphy" section, this chapter.

sediment near the mud line and 15%-20% of the sediment near the base of the subunit. Well-preserved calcareous nannofossils are the dominant component throughout and generally comprise 45%-70% of the total. Other biogenic components present in minor (<10\%) and trace amounts include radiolarians, sponge spicules, diatoms, and occasional fish debris. Clay, quartz, feldspar, volcanic ash, dolomite rhombs, and pyrite are nonbiogenic components present in similarly small amounts. The carbonate content of these sediments appears to be very uniform and averages about 94\%, based on the few measurements from samples taken for the study of physical properties (see "Geochemistry" section, this chapter).

The sediments of Subunit IA are predominantly white (10YR 8/1-8/2, N9), very pale brown (10YR 8/2-8/3), and light gray to very light greenish gray (N8, 10YR 7/2, 5G 8/1). In Hole 712A, a number of very thin light gray (10YR 7/1) to very light yellowish gray (2.5Y 7/2), and very light green (5G 8/2) horizons are faintly visible throughout the subunit. Core disturbance from rotary drilling has deformed many of these, and no such distinct layers were observed in Hole 713A, which recovered a considerably more disturbed sequence. Mottling due to bioturbation, visible in sediment from Hole 712A, was difficult to detect in Hole 713A because of the much poorer core quality.

A small number of thin turbidites interrupt the sequence in Holes 712A and 713A. These are most numerous in the upper 5 m of the subunit. The turbidites range in thickness from 10 to 60 cm, are normally graded, and generally consist of pelagic material only slightly coarser than the surrounding sediments. No shallow-water platform debris was identified in any of these allogenic layers, indicating that they must not have originated too far upslope.

The stratigraphic distribution of Subunit IA sediments is shown in Figure 5. Biostratigraphic data ("Biostratigraphy" section, this chapter) indicate an age range of Pleistocene to late Miocene for the subunit, although Pleistocene sediments are present in only a thin veneer (<70 cm) at the top of the sequence at Site 712.

Subunit IB: Cores 115-712A-5R and -6R (38.3-57.5 mbsf); Age: late to middle Miocene.

Subunit IB consists of semi-indurated, foraminifer-nannofossil chalk with interbedded foraminifer-nannofossil ooze. Sediment color is white (N9) to very light greenish gray (5G 8/1), and the subunit is generally indistinguishable from the overlying Subunit IA except for the incipient lithification. Foraminifers and calcareous nannoplankton dominate the sediment and are present in roughly equal numbers. Sediment texture reflects this largely two-component system, being typically 35%-50% sand, 10% silt, and 40%-55% clay. The carbonate content of these sediments ranges from 93% to 97%.

The chalky material in Subunit IB is moderately to heavily disturbed by the rotary coring, particularly in Core 115-712A-6R where much of the ooze may actually be a drilling paste. Numerous pebble-sized, subangular fragments of shallow-water limestone were found in Section 115-712A-6R-1, but these were scattered throughout the interval and not concentrated in one obvious horizon.

The stratigraphic distribution of Subunit IB chalks and oozes is shown in Figure 5. Sediments of Subunit IB are completely missing from Hole 713A and are known only from their recovery in Hole 712A. Biostratigraphic data suggest that sediment deposition in the latter hole was continuous across the Subunit IA/IB transition. Subunit IB sediments range in age from late to middle Miocene.

Unit II: Cores 115-712A-7R through -11R (57.5-105.7 mbsf); Age: late Oligocene.

The lithology and extent of Unit II is poorly known because of the rather dismal rate of recovery achieved in Cores 115-712A-7R through -11R. Of the approximately 48 m that was continuously cored in this interval, only 2.5 m of material was recovered (5% recovery), and this was mostly drilling rubble. Therefore, we assigned the unit boundaries to encompass the entire interval of low recovery and assumed that the small amount of material obtained was representative of the lithology of the entire sequence.

Unit II is thought to consist of an unconsolidated sequence of coarse carbonate sands and limestone rubble. Core 115-712A-8R recovered a total of three wackestone and packstone pebbles, with preserved bryozoans and moldic porosity suggesting shallow-water origins. Core 115-712A-10R contained several small pieces of foraminifer-bearing nannofossil chalk and a single fragment of well-lithified foraminifer grainstone in the core catcher. The chalk fragments resemble the chalks of Subunit IA, but we have no data to evaluate if they originated uphole. Finally, Core 115-712A-11R recovered a veritable bonanza of material, nearly a section and a half of unconsolidated coarse carbonate sand and angular to subrounded recrystallized limestone rubble. Most of this material was too abraded and recrystallized to identify.

A single age determination from nannofossils in Core 115-712A-11R indicates a late Oligocene age for at least the lower part of Unit II (see "Biostratigraphy" section, this chapter). This age fits relatively well with the sedimentation-rate data on this site, suggesting that the coarse sand and gravel was deposited in place and is not part of a larger slump feature. In addition, the apparent collapse of this material around the drill pipe, which eventually terminated operations at Site 712, seems to indicate that the material was unconsolidated at the time of its drilling. We suspect that Unit II represents a coarse submarine lag deposit, the material probably having originated from the shallow reefs and carbonate banks to the south and southwest. Unit II sediments are not found in the stratigraphic sequence of Site 713, just 1.6 nmi away.

Unit III: Core 115-712A-12R (105.7-115.3 mbsf), Cores 115-713A-5R to Section 115-713A-12R, CC (30.5-107.7 mbsf), and Section 115-713A-15R-5, 112 cm, through Core 115-713A-17R (133.8-155.2 mbsf); Age: middle Eocene.

Unit III is composed of a complexly interbedded sequence of fine-grained chalks and volcanic ash that is moderately to heav-

ily bioturbated. This unit records considerable evidence of microfaulting and local tectonic activity. The result is a colorful and rather spectacular sequence which extends from the base of Subunit IA to the first basalt encountered in Hole 713A, and occurs again intercalated in a roughly 20-m-thick layer within the massive olivine tholeiitic basalt flows. We also reached Unit III sediments in the last core of Hole 712A before we abandoned drilling at Site 712 (Fig. 5). Biostratigraphic data indicate that the entire Unit III sequence is of middle Eocene age.

The chalks of Unit III consist of foraminifer-bearing nannofossil chalks at the top which grade quickly downhole into the more common nannofossil chalks that characterize the unit. In the more complete sequence in Hole 713A, calcareous nannofossils dominate the carbonate fraction down through the base of Core 115-713A-8R, typically making up 60%-90% of the sediment. Foraminifers reach a maximum abundance of 10%-12% near the top of Unit III and rarely reach more than a few percent further downhole. In Core 115-713A-9R and deeper cores, most of the fine carbonate in the chalk is unidentifiable and could be of either nannofossil or shallow-water origin. Because of this uncertainty, we use the term "micritic chalk" to describe this particular lithology. Chalks preserved within the basalt, however, in Cores 115-713A-15R, -16R, and -17R, are clearly of nannofossil origin.

Volcanic-ash layers increase in frequency toward the base of the unit, generally averaging a few centimeters in thickness, and are interspersed at intervals ranging from 3 to 5 cm to a few tens of centimeters. The ash layers appear to vary widely in composition, based on color differences and our observations of widely different alteration states of the volcanic glass in smear slides. Many of the ash layers have sharp bases and preserve sedimentary structures, including graded bedding ranging from coarse sand to silt-sized, parallel laminae, and cross-stratification (Fig. 6). These features seem to indicate that at least some of the ash layers were deposited as turbidites, in addition to those which settled out of suspension in a more typical fashion.

The purest chalk layers are white (10YR 8/2, 8/3, 7/3), light gray (2.5Y 7/2, 10YR 7/2), and very pale brown (10YR 8/3). The most concentrated ash layers range from black (N2) to grayish brown (2.5Y 5/2), very dark gray (N3), and very dark grayish brown (2.5Y 3/2). Most chalk layers between the ash layers contain variable proportions of dispersed and altered volcanic ash, which causes colors to vary typically between gray (5Y5/1), light olive brown (2.5Y 5/4), and light brownish gray (2.5Y 6/2).

A relatively thick and unconsolidated trachytic volcanic ash, very fresh in appearance, was observed in Sample 115-713A-10R-2, 13-41 cm. Below this major ash horizon, both sediments and ash have an olive green tint to them, suggesting a possible redox transition in the sediment column. Chalks throughout the rest of the unit are light olive gray to pale olive (5Y 7/2, 6/2, 6/3), and light greenish gray to greenish gray (5GY 7/1-6/1). When not black (N2), ash layers tend to be dark green (5G 4/1) to dark greenish gray (5GY 4/1). This greenish hue to both chalks and ash is also found in those sediments recovered from within the basement in Cores 115-713A-15R, -16R, and -17R.

Minor lithologies that occur in Unit III include clay-bearing nannofossil chalk, nannofossil clay, and nannofossil-bearing clay. These clay-rich intervals are typically very pale brown (10YR 7/3) to light yellowish brown (10YR 6/4), or greenish gray (5GY 7/1) to grayish olive green (5GY 3/2), and occur as thin lenses within the predominantly chalk/ash sequence. In general, the average clay content of sediments intercalated within the basalt flows is higher than in those sediments overlying the basement.

Sediments of Unit III also preserve evidence of considerable local tectonic activity in the form of microfaulting, shearing, fracture filling, and numerous types of soft-sediment deforma-

Figure 6. Cross-stratification observed in a volcanic-ash bed (115-713A-7R-1, 112-118 cm).

tion. Microfaults are both normal and reversed, recording both extensional and compressional stress fields, and several generations of faulting may be visible in a single core. We can see some of the more spectacular examples of these microfaults in Figures 7 and 8.

Summary

Sediments at these two adjacent sites record a history of interrupted deposition and considerable local volcanic and tectonic activity. The absence of Subunit IB and Unit II sediments in Hole 713A can be explained by a major hiatus at about 30 mbsf which represents a gap in time of approximately 36 m.y. At Site 713, the late Miocene nannofossil oozes of Unit IA directly overlie the middle Eocene chalks and ashes of Unit III. A similar hiatus, although representing a much shorter interval of time, has been inferred from paleontologic data at Site 712, where the late Oligocene carbonate sands and rubble of Unit II also overlie the sediments of Unit III. Site 712, therefore, represents a somewhat more complete sequence.

BIOSTRATIGRAPHY

Introduction

The sedimentary sequences recovered by rotary drilling at both Sites 712 and 713, located only 1.6 nmi apart, show similar lithologies and microfossil contents. These sequences can be described from top to bottom as follows:

1. At Sites 712 and 713, the upper 57.5 m and 30.5 m of the sediment column, respectively, consist of a foraminifer-nanno-fossil ooze of Pleistocene through middle Miocene age, which grades downhole into a semi-indurated chalk.

2. At Site 712, a 48-m thick sequence (57.5-105.5 mbsf), largely unrecovered, is tentatively identified as an unconsolidated section of coarse carbonate sands and limestone rubble of presumably late Oligocene age.

3. A 9.8-m thick sequence (105.5-115.3 mbsf) at Site 712 and a 76.5-m thick sequence (30.5-107.0 mbsf) at Site 713 consist of a complexly interbedded section of fine-grained chalk and volcanic ashes of middle Eocene age.

Figure 7. A typical example of microfaulting observed in the interbedded nannofossil chalk and volcanic-ash sequence of Unit III (115-713A-11R-2, 43-53 cm).

Calcareous nannofossils are abundant throughout the sediments recovered. Preservation is generally moderately good, with various degrees of recrystallization coupled with slight dissolution. In a few intervals, poor preservation is recorded by extensive overgrowth of discoasters.

Planktonic foraminifers are abundant throughout the Neogene; they are well preserved in the Pliocene-Pleistocene and moderately well preserved in the Miocene. In Oligocene sediments, planktonic foraminiferal faunas show mixed assemblages, including reworked Eocene faunas and contamination by Pliocene forms displaced by drilling disturbance. Middle Eocene planktonic foraminiferal faunas are poorly preserved.

Moderately well-preserved benthic foraminifers are present throughout the sedimentary sequence. These assemblages are typical of deep-water faunas.

Siliceous microfossils are present in upper Neogene sediments. Radiolarians are well to moderately well preserved, being common in the Pliocene and decreasing in abundance in the upper Miocene. Diatoms are common to few in that interval and are generally moderately to poorly preserved. The remainder of the sequence is almost barren of siliceous fossils except for an interval in the middle Eocene of Site 713 which yielded rare and poorly preserved radiolarians.

Figure 8. Multiple microfaults record several phases of deformation in Unit III sediments in this example (115-713A-11R-2, 18-42 cm).

A biostratigraphic summary for Sites 712 and 713 is presented in Figures 9 and 10.

Calcareous Nannofossils

Hole 712A

Although we recovered Pleistocene to middle Eocene assemblages, major hiatuses were observed at Hole 712A. The intervals represented by these hiatuses include a major portion of the Pleistocene (CN14) as well as intervals within the upper Miocene (CN7), the upper middle Miocene (CN5), the lower Miocene to uppermost Oligocene (CN3-CP19b), and the lower Oligocene to upper middle Eocene (CP18-CP14b). Nannofossils are generally moderately well preserved, with varying degrees of recrystallization coupled with slight dissolution. Due to the heavy recrystallization, however, identification is difficult in occasional intervals within the Neogene sequence.

Pleistocene

We did not recognize Pleistocene calcareous nannofossils in this sequence except at the very top of Core 115-712A-1R, where *Gephyrocapsa oceanica* occurs together with abundant late Pliocene calcareous nannofossils. Because the underlying sample (115-712A-1R-1, 70 cm) contains a noncontaminated upper Pliocene assemblage, the Pleistocene sequence was estimated to be less than 70 cm thick at Hole 712A.

Pliocene

Cores 115-712A-1R and -2R are Pliocene in age. The upper two sections of Core 115-712A-1R contain a poorly preserved assemblage assignable to upper Pliocene Zone CN12. In Sample 115-712A-1R-2, 70 cm, we observed the last occurrence (LO) of Sphenolithus abies (3.45 Ma).

The LO of *Reticulofenestra pseudoumbilica* (3.56 Ma) occurs in the underlying Sample 115-712A-1R-3, 50 cm. The first occurrences (FO) of *Ceratolithus rugosus* (base of Subzone CN10c) and *Ceratolithus acutus* (base of Subzone CN10b) were observed in Sample 115-712A-2R-5, 75 cm, and Section 115-712A-2R, CC, respectively. We located the Miocene/Pliocene boundary between this section and Sample 115-712A-3R-1, 75 cm, where we observed the LO of *Discoaster quinqueramus*.

Miocene

Cores 115-712A-3R to -6R yielded Miocene assemblages. Nannofossils are moderately well preserved in this sequence, except for the occasional interval in which extensive overgrowth of discoasters was observed.

The assemblage observed in the interval between Samples 115-712A-3R-1, 75 cm, and 115-712A-4R-2, 80 cm, is assigned to upper Miocene Subzone CN9b. Three ceratolith species, *Amaurolithus delicatus, A. primus*, and *A. tricorniculatus*, associated with abundant *Discoaster berggrenii* and *D. quinqueramus*, were observed in this assemblage. Calcareous nannofossils are well preserved in this interval, and the assemblage is quite diversified.

Sample 115-712A-4R-2, 93 cm, and two samples taken from Section 115-712A-5R-1 (at intervals of 40-41 cm and 130-131 cm) yielded common *Discoaster neohamatus*, but no *D. quinqueramus*. This assemblage is assigned to Zone CN8 (NN10), and a hiatus spanning the lower part of Zone CN9b to the upper part of CN8 is possible in Section 115-712A-4R-2.

Sample 115-712A-5R-2, 40-41 cm, and Section 115-712A-5R, CC, are assignable to Zones CN7 and CN6, respectively. We assigned Core 115-712A-6R to the early-middle Miocene Zone CN4 (NN5). Since the entire interval representing Zone CN5 (10.8-13.2 Ma) is missing, another hiatus is inferred between Cores 115-712A-5R and -6R.

Figure 9. Biostratigraphic summary for Site 712. Black bars represent recovery in Hole 712A.

Cores 115-712A-7R and -9R were empty, while Core 115-712A-8R recovered only three limestone pebbles in the core catcher. They were all barren of nannofossils.

Oligocene

Core 115-712A-10R recovered only a small amount of sediment in the core catcher, and Core 115-712A-11R recovered 2.3 m of sediment. These materials can be assigned to the upper Oligocene Subzone CP19a. *Sphenolithus ciperoensis* was not abundant but was consistently present in these cores.

Eocene

We assigned the entire portion of sediment recovered in Core 115-712A-12R to the upper middle Eocene Subzone CP14b. Thus, another hiatus encompassing the late Eocene to early Oligocene is inferred at Site 712. The nannoflora contains abundant *Coccolithus pelagicus* and *Discoaster floridanus*. Other major components of the assemblage include *Bramletteius serraculoides, Discoaster barbadiensis, Sphenolithus spiniger, S. furcatulithoides*, and *Reticulofenestra samodurovii*. The oldest sediment recovered in Hole 712A is of middle Eocene age (42.3–46.0 Ma).

Hole 713A

Pleistocene through late Miocene and middle Eocene assemblages were recovered at Site 713A. Except in the Pleistocene, where the preservation is good, nannofossils are moderately well preserved throughout the sequence. Moderate recrystallization is ubiquitous, and dissolution is negligible.

The LO of *Chiasmolithus gigas* (47.0 Ma) was observed in a thin sediment layer intercalated within basalt flows which underlie the sediment column. Future radiometric dating of the two basalt flows which enclose this layer will provide essential data for the dating of this event.

Pleistocene

Because of the heavy disturbance caused by rotary drilling, we did not examine any samples from Section 115-713A-1R-1. The interval between Section 115-713A-1R, CC, and Sample 115-713A-2R-2, 40-41 cm, yielded abundant *Gephyrocapsa oceanica* and *Pseudoemiliania lacunosa*, and was assigned to Subzone CN14a. Sample 115-713A-2R-3, 40-41 cm, contained no *G. oceanica*, but *Discoaster brouweri* occurred in abundance. The Pliocene/Pleistocene boundary, therefore, is likely to be located within the lower part of Section 115-713A-2R-2. Reworked

Figure 10. Biostratigraphic summary for Site 713. Black bars represent recovery in Hole 713A.

Pliocene forms are abundant in the few investigated samples of the Pleistocene sequence.

Pliocene

The LO of *Reticulofenestra pseudoumbilica*, which approximates the lower/upper Pliocene boundary, was detected in Section 115-713A-2R, CC. The interval between Samples 115-713A-2R-3, 50 cm, and 115-713A-2R-6, 50 cm, was assigned to the upper Pliocene Zone CN12.

We located the Miocene/Pliocene boundary between Sample 115-713A-3R-6, 75 cm (the FO of *Ceratolithus acutus*) and Section 115-713A-3R, CC (the LO of *Discoaster quinqueramus*). The interval between the latter sample and Section 115-713A-2R, CC, is assigned, therefore, to Zones CN10 and CN11. We observed the FO of *Ceratolithus rugosus* (base of Subzone CN10b) in Sample 115-713A-3R-6, 75 cm.

Thus, the upper Pliocene is represented by approximately 6 m of sediments, whereas the lower Pliocene is represented by approximately 9 m of sediments.

Miocene

Core 115-713A-4R yielded an assemblage indicative of late Miocene Subzone CN9b. Calcareous nannofossils are well preserved in this interval, and solution-susceptible forms such as *Scyphosphaera* spp. and *Helicosphaera* spp. were frequently observed with no visible sign of dissolution.

Eocene

Eocene assemblages were recovered from Cores 115-713A-5R through -21R. Nannofossils are moderately well preserved in this sequence with slight to moderate recrystallization.

We assigned the interval between Sections 115-713A-5R-1 and 115-713A-8R-3 to the upper middle Eocene Zone CP14, and the LO of *Chiasmolithus solitus* in Sample 115-713A-7R-3, 55-56 cm, marks the top of Subzone CP14a. As was observed in previous sites of Leg 115, the relative abundance of *Reticulofenestra umbilica* varies greatly between samples, and the thickness of Subzone CP14a is unproportionally thin compared with that of Subzone CP14b.

The sequence between Sections 115-713A-8R-4 and 115-713A-12R-2 can be referred to Subzone CP13c. The assemblage in this interval is dominated by *Cyclicargolithus floridanus*, and the major components of the flora are similar to those observed at Sites 707, 709, and 711.

We recovered the first samples of basalt between Sections 115-713A-12R, CC, and 115-713A-15R-5. Below this layer of basalt, a sequence of fossiliferous pyroclastic sediment was recovered between Sections 115-713A-15R-5 and 115-713A-17R, CC. The assemblage observed in the interval between Sample 115-713A-15R-5, 130 cm, and Section 115-713A-15R, CC, can be assigned to Subzone CP13c, the same subzone assigned to the sediment directly overlying the basalt.

The LO of *Chiasmolithus gigas* (47.0 Ma) was observed in Sample 115-713A-16R-1, 17-18 cm, and the sedimentary sequence between this sample and the bottom of Core 115-713A-17R is assignable to the middle Eocene Subzone CP13b (47.0-48.8 Ma). Heavily overgrown *Nannotetrina* spp. were a common member of the flora, and we also noticed rare occurrences of *Nannotetrina alata*.

From Core 115-713A-18R to the deepest core of this hole (115-713A-22R), basalt was again drilled and partially recovered. As we observed at Sites 706 and 707, small pieces of fossiliferous sediment, baked into the basalt, were again recovered. Samples 115-713A-20R-4, 112-113 cm, and 115-713A-21R-2, 143-144 cm, yielded heavily overgrown *C. gigas*, enabling assignment of the assemblage to Subzone CP13b. Sphenoliths and large species of placoliths such as *Coccolithus eopelagicus* and Chiasmolithus grandis were heavily overgrown, but smaller species such as Campylosphaera dela, Helicosphaera seminulum, and Pontosphaera plana were relatively free from recrystallization.

The age of the igneous activity at this site is well established by nannofossil biostratigraphy: the main activity occurred between 47 and 48.8 Ma, and the last episode of activity occurred between 46 and 47 Ma.

Planktonic Foraminifers

Neogene

Site 712

Planktonic foraminifers are abundant throughout the Neogene, being well preserved in the Pliocene interval and moderately well preserved in the Miocene.

Sections 115-712A-1R, CC, through 115-712A-3R, CC, are assigned to the lower Pliocene zonal interval N19–N18. Sections 115-712A-1R, CC, and 115-712A-2R, CC, contain common *Globorotalia tumida* and *G. limbata* and rare *G. plesiotumida*. The common occurrence of *Dentoglobigerina altispira* and *Sphaeroidinellopsis* spp. in these samples indicates an age older than 3 Ma for the uppermost Section 115-712A-1R, CC. The assemblage in Section 115-712A-3R, CC, is similar to those in Sections 115-712A-1R, CC, and 115-712A-2R, CC. The species *G. tumida*, however, is rare and shows primitive forms, which places this sample in the lower part of the zonal interval in the basal Pliocene.

Section 115-712A-4R, CC, is assigned to the upper Miocene interval N16–N17. The assemblage in this sample is dominated by the two solution-resistant forms *Globoquadrina venezuelana* and *Sphaeroidinellopsis* spp. and contains rare specimens of the menardiform complex *Globorotalia limbata-plesiotumida-mero-tumida*. We did not find species of *Pulleniatina*, which may have been eliminated by dissolution. Section 115-712A-5R, CC, is assigned to Zone N14 based on the co-occurrence of *Paragloborotalia siakensis*, *P. mayeri*, and *Globigerina nepenthes*. Section 115-712A-6R, CC, is assigned to the zonal interval N8–N9 based on the presence of *Globigerinoides sicanus*.

Site 713

Planktonic foraminifers are abundant throughout the Neogene sequence, being, as at Site 712, well preserved in the Pliocene-Pleistocene and moderately well preserved in the Miocene (Sections 115-712A-3R, CC, and 115-712A-4R, CC).

Section 115-713A-1R, CC, belongs to Zone N22 based on the presence of rare *Globorotalia truncatulinoides*. The co-occurrence of the latter species with *Globigerinoides fistulosus* (also rare) places this sample in the lower part of the zone between 1.6 and 1.9 Ma. Section 115-713A-2R, CC, belongs to the lower Pliocene interval N19-N18. It contains common *Globoratalia limbata* and *Dentoglobigerina altispira* and rare *Sphaeroidinellopsis* spp. The presence of the latter two species indicates an age older than 3 Ma for this sample. Sections 115-713A-3R, CC, and 115-713A-4R, CC, belong to the upper Miocene Zone N17b based on the presence of rare *Globorotalia plesiotumida* and rare *Pulleniatina primalis*.

Paleogene

Paleogene planktonic foraminifers were recovered in middle Eocene–Oligocene levels of both Sites 712 and 713. Because Oligocene sediments contain a melange of Pliocene through middle Eocene planktonic foraminifers in a matrix of drill-damaged carbonate fragments, the samples were not studied in detail.

Middle Eocene samples (Sections 115-712A-11R-1 to 115-712A-12R, CC, and Section 115-713A-5R, CC, to Sample 115713A-17R-2, 118 cm) contained poorly preserved planktonic foraminiferal faunas in more or less indurated volcanic sediments. The characteristic green minerals in this sediment indicate submarine volcanism. In the few samples where whole planktonic specimens could be retrieved, a solution-resistant fauna dominated by the *Globigerinatheka conglobata* group also included *Acarinina densa, Morozovella aragonensis, M. acuta, Subbotina eocaena*, and *S. gortanii*. This fauna belongs to middle Eocene Zone P11, probably the top of the zone. The only well-preserved fauna from Site 713 (Sample 115-713A-17R-2, 118 cm) was assignable, instead, to Zone P10 because of the lack of *Globigerinatheka semiinvoluta* in a fauna dominated by morozovellids and the *G. subconglobata* group, but lacking the large subbotinids typical in Zone P11 above.

Benthic Foraminifers

Moderately well-preserved, deep-water benthic foraminifers were present in the majority of Pliocene- through Eocene-age cores recovered at Sites 712 and 713. In the middle Eocene just above basement (Cores 115-713A-9R through -15R), foraminifers were difficult to separate from the volcanic ash and glass, and few were recovered intact. In one level (Sample 115-713A-17R-2, 118 cm), a good benthic fauna was recovered and could be used to estimate that the site lay at deep water depths (> ~ 1800 m) in the early middle Eocene.

Miocene-Pliocene

The early Pliocene through late Miocene (Zone CN12-CN9b) portion of the record at Site 713 was found in Cores 115-713A-1R through -3R). Although the sediments were coarse grained and occasionally formed a slurry, *in-situ* faunas were delimitable and at least one emigration episode of abyssal benthic foraminifers was recognized. The early Pliocene deep-water fauna at Sites 712 and 713, an association of *Melonis pompilioides* and *Uvigerina proboscidea–Globocassidulina subglobosa*, also included *Uvigerina auberiana*, the poreless morph of *Cibicides wuellerstorfi*, *Cibicidoides kullenbergi*, *Bulimina rostrata*, *Melonis affinis*, *Stilostomella subspinosa*, and *Ehrenbergina spinosissima*.

Miliolids, represented by the quinqueloculinids, were infrequent and cibicidids were rare. Brizalinids entered the faunas for most of the late Miocene; species included *Brizalina subaenariensis* and *B. pusilla*. The ehrenberginids were more common in the Pliocene; the globocassidulinids, in the late Miocene. Occasional large nodosariid fragments were present but not consistently. The most common agglutinant is *Martinottiella petrosa*. The austral species, *Hopkinsina mioindex*, is present throughout the sequence.

This fauna is in sharp contrast to the late Miocene-early Pliocene deep-water fauna at Site 709, a *Favocassidulina favus-Gyroidinoides soldanii* assemblage accompanied by a large component of the tropical, intermediate-water Car Nicobar fauna (Srinivasan and Sharma, 1980), including *Chrysalogonium equisetiformis, Nodosaria skobrina, Orthomorphina setosa, Triloculina lucernula*, and *Cibicidoides cicatricosus*. At Site 709, faunas were composed of much larger individuals of each species and were much higher in diversity and benthic number.

Contrasts between the two deep-water faunas and their geographic locations suggest that bottom conditions were significantly different at Sites 709 and 712/713. The faunal composition at Sites 712/713 is typical of deep-water faunas, in general. The presence of the hispid uvigerinids in low numbers suggests low rates of sediment accumulation and oxidizing conditions (Boersma, 1984). The influx of brizalinids in the late Miocene suggests slightly lower oxygen conditions (Douglas and Heitman, 1979) than at Site 709.

Early-Middle Miocene

Benthic foraminifers were rare in the poorly preserved middle Miocene sediments at Site 712 (Cores 115-712A-5R and -6R). Deep-water faunas were dominated by generalists and rotaloid forms including Oridorsalis umbonatus, Globocassidulina subglobosa, Gyroidinoides girardana, Cibicidoides kullenbergi, and C. havanensis. The most common buliminid was Bulimina consanguinea and the stilostomellid, Stilostomella subspinosa. No uvigerinids were found in these faunas. Chunks of micritized carbonate and a few shallower-water benthic foraminifers in these samples suggest moderate sediment redeposition.

Paleogene

Oligocene sediments are badly preserved, and at Site 712 whole specimens exist in a finer-grained matrix of angular carbonate particles produced during drilling. Some samples (e.g., Sample 115-712A-11R-1, 0 cm) contain a mixture of Pliocene through Eocene planktonic foraminifers apparently emplaced both through reworking and by the drilling process.

We recovered Eocene-age samples at Site 713 where sediments were composed largely of ash, glass, and other volcanic debris. In most samples above basement, the benthic foraminifers were dissolved. The poorly preserved faunas just above basement (Section 115-713A-11R-2) contained a small, probably deep- or deepintermediate-water fauna, including pullenids and lenticulinids similar to the deep-water form, *Lenticulina vortex*. The presence of one very large upper bathyal, flat lenticulinid suggests downdepth sediment redeposition.

At one level within basement, a well-preserved foraminiferal ooze was recovered (Sample 115-713A-17R-2, 118 cm). The fauna includes *Globocassidulina subglobosa*, *Anomalinoides acuta*, *A. aragonensis*, *Cibicidoides subspiratus*, *Heterolepa grimsdalei*, *Nutallides truempyi*, *Bulimina semicostata*, and *Hanzawaia ammophila*, the *H. cushmani* morph. This fauna is similar to that at Site 709C in the middle Eocene and is indicative of moderately deep water (Tjalsma and Lohmann, 1983).

Radiolarians

Site 712

Identifiable radiolarians at Site 712 are present only within the upper Neogene cores. We made the following zonal assignments on the basis of shipboard sample analysis.

Section 115-712A-1R, CC, may be assigned to the Spongaster pentas Zone of early Pliocene age. Radiolarians are common and well preserved. Diagnostic taxa include Phormostichoartus doliolum, P. fistula, Lychnodyctium audax, Stichocorys peregrina, and Didymocyrtis avita.

We assigned Section 115-712A-2R, CC, to the *Stichocorys* peregrina Zone of early Pliocene age. Radiolarians are common and moderately preserved. Diagnostic taxa include *Solenosphaera* omnitubus, *Didymocyrtis penultima*, and *Stichocorys peregrina*.

The Didymocyrtis penultima Zone of late Miocene age occurs in Section 115-712A-3R, CC. Radiolarians are few and moderately preserved. Diagnostic taxa include Stichocorys delmontensis, Solenosphaera omnitubus, Didymocyrtis penultima, Dendrospyris bursa, and Siphostichartus corona.

Section 115-712A-4R, CC, may be assigned to the *Didymocyrtis antepenultima* Zone of late Miocene age. Radiolarians are rare and only moderately preserved, with sponge spicules dominating the coarse fraction. Diagnostic radiolarian taxa include *Didymocyrtis antepenultima, Diartus hughesi, Stichocorys johnsoni*, and *S. delmontensis*.

Sections 115-712A-5R, CC, and 115-712A-6R, CC, are barren of radiolarians. Sections 115-712A-7R, CC, through 115712A-10R, CC, were empty. Sections 115-712A-11R, CC, and 115-712A-12R, CC, are also barren of radiolarians.

Site 713

Identifiable radiolarians are present within two stratigraphic intervals at Site 713: the late Neogene and the middle Eocene. We made the following zonal assignments:

Section 115-713A-1R, CC, may be assigned to the Anthocyrtidium angulare Zone of Quaternary age. Radiolarians are few and moderately preserved. Diagnostic taxa include Anthocyrtidium angulare, A. ophirense, A. zanguebaricum, Theocorythium trachelium, and Didymocyrtis tetrathalamus.

Section 115-713A-2R, CC, may be assigned to the Spongaster pentas Zone of early Pliocene age. Radiolarians are common and well preserved. Diagnostic taxa include Phormostichoartus doliolum, P. fistula, Anthocyrtidium michelinae, Stichocorys peregrina, and Lychnodyctium audax.

We assigned Samples 115-713A-3R-4, 70-75 cm, through Section 115-713A-4R, CC, to the *Didymocyrtis penultima* Zone of late Miocene age. Radiolarians are common and well preserved. Diagnostic taxa include *Didymocyrtis penultima*, *Stichocorys* delmontensis, S. johnsoni, Phormostichoartus doliolum, Anthocyrtidium michelinae, A. jenghisi, A. pliocenica, and Dendrospyris bursa.

Samples 115-713A-5R-2, 70-75 cm, through Section 115-713A-5R, CC, are barren of radiolarians.

The *Thyrsocyrtis triacantha* Zone of middle Eocene age occurs in Samples 115-713A-6R-2, 70–75 cm, through Section 115-713A-10R, CC. Radiolarians are rare and poorly preserved in the upper part of this interval and improve significantly in both abundance and preservation downward. Diagnostic taxa include *Podocyrtis papalis, P. phyxis, Thyrsocyrtis triacantha, T. rhizodon, Eusyringium fistuligerum, E. lagena, Sethochytris babylonis, Dictyoprora amphora, D. mongolfieri, Calocyclas hispida*, and *Phormocyrtis striata striata*.

Samples 115-713A-11R-3, 70-75 cm, may be assigned to the *Dictyoprora mongolfieri* Zone of middle Eocene age. Radiolarians are common and well preserved. Diagnostic taxa include *Dictyoprora mongolfieri*, *Eusyringium lagena*, *Thyrsocyrtis tensa*, *Lithocyclia ocellus*, and *Podocyrtis sinuosa*.

Diatoms

Site 712

Of the 12 cores recovered at Site 712, diatoms are present in the three uppermost core-catcher samples of early Pliocene-late Miocene ages.

Section 115-712A-1R, CC, contains a well-preserved and diversified assemblage, which includes such age-diagnostic species as *Nitzschia jouseae*, *N. reinholdii*, *Thalassiosira convexa* var. *aspinosa*, and *T. oestrupii*, referring the sample to the early Pliocene *N. jouseae* Zone.

The diatom assemblage of Section 115-712A-2R, CC, is less diversified and more poorly preserved. It contains *T. convexa* var. *aspinosa* but lacks *N. jouseae*, *Nitszchia miocenica*, and *Thalassiosira miocenica*, placing the sample in the upper part of the early Pliocene-late Miocene *T. convexa* Zone.

Diatoms are fairly common but moderately to poorly preserved in Section 115-712A-3R, CC. The flora includes *T. convexa* var. *aspinosa* and *N. miocenica*, which places the sample in the lower part of the *T. convexa* Zone. No diatoms are present in core-catcher samples below Section 115-712A-3R-3, CC.

Site 713

Of the 11 cores recovered above the first basalt flow in Hole 713A, diatoms are present only in the four uppermost corecatcher samples of early Pleistocene to late Miocene ages. Furthermore, a few valve fragments are present in two core-catcher samples of middle Eocene age.

Section 115-713A-1R, CC, contains a very poorly preserved assemblage, which is referred to the *Nitzschia reinholdii* Zone based on the silicoflagellate *Mesocena quadrangula*.

The diatom flora of Section 115-713A-2R, CC, is poorly preserved, with only a few specimens of the age-diagnostic *N. jouseae* present. We did not observe *Rhizosolenia praebergonii* and therefore referred the sample to the *N. jouseae* Zone.

Sections 115-713A-3R, CC, and 115-713A-4R, CC, yielded diatom floras which are diversified and moderately preserved. Section 115-713A-3R, CC, is placed in the *Thalassiosira convexa* Zone based on the presence of *T. miocenica*. Section 114-713A-4R, CC, contains *Nitzschia cylindrica*, *N. miocenica*, *N. marina*, and *Rhizosolenia praepaleacea*, placing the sample in the lower part of the *N. miocenica* Zone. A few fragments of mainly neritic, and presumably middle Eocene, diatoms of the genera *Triceratium* sp. and *Melosira* sp. are present in Sections 115-713A-7R, CC, and 115-713A-8R, CC. The remainder of the Eocene core-catcher samples are barren of diatoms.

PALEOMAGNETICS

Introduction

Because the sediments recovered at Sites 712 and 713 were rotary cored, they are likely to be highly disturbed. Consequently, our study of their paleomagnetic signature consisted of an analysis of several discrete sediment samples taken from the least disturbed intervals. The basement sections recovered at Site 713 do not appear to be unduly disturbed; unfortunately, these rocks were too highly magnetized to be measured with the passthrough magnetometer system.

Results

Sediments

Three sediment samples taken from the Eocene chalk in Core 115-712A-12R yielded poor results when subjected to progressive alternating-field (AF) demagnetization. The Zijderveld orthogonal projection diagram shown in Figure 11 (top) represents the best result obtained from this core. In this sample, there appears to be one or two relatively stable magnetization components, although these are not well isolated. For the most part, the demagnetization sequence is dominated by inconsistent magnetization directions, especially near the origin. Although the more stable initial portion of the demagnetization curve is not defined very well, these data (and data for the two samples not shown) suggest the presence of a component which points upward at a shallow angle.

The three chalk samples taken at Site 713 also give unstable results, as shown in Figure 11 (bottom). This sample, taken from the lowermost sediments overlying the basalts (Core 115-713A-11R), shows perhaps two components: the lower coercivity component is quite shallow (near 0°), while the higher coercivity component points upward at about 40°. A shallow component is also isolated in the progressive demagnetization of two sediment samples from Section 115-713A-12R-1 (at 76-78 cm and at 40-42 cm); however, the moderately steep component of Sample 115-713A-11R-2, 76-78 cm, does not appear clearly defined in Core 115-713A-12R.

We sampled 4 ash layers in sediments just above basement as well as 8 ash layers in those sediments found between the 2 basalt sequences. Of the 12 ash samples, we measured 7, and all showed relatively stable directions with positive inclinations. Typical results from one of these ash layers (Sample 115-713A-17R-4, 26-28 cm) shows a moderately shallow downward (presumably reversed polarity) component of magnetization (Fig. 12).

Sample 115-712A-12R-1, 114-116 cm

Sample 115-713A-11R-2, 76-78 cm

Figure 11. Zijderveld orthogonal projection diagram for chalk sediment samples. Open circles represent projection onto the vertical plane, closed circles represent projection onto the horizontal plane. Progressive demagnetization is by alternating-field (AF) treatment. No consistency in the declination of these rotary-drilled samples is expected.

Sample 115-713A-17R-4, 26-28 cm

Figure 12. Zijderveld diagram for a sample from volcanic ash found in sediments between two basaltic sequences at Site 713. Demagnetization was achieved by AF treatment. Plotting conventions as in Figure 11.

Basalts

In contrast to the relatively weak and unstable magnetized sediments, the basalt samples show uniformly good magnetic behavior. The Zijderveld demagnetization diagrams for 6 typical basalt samples are shown in Figure 13. These 6, as well as 29 others measured, display stable and consistent directions. Most show shallow downward directions (presumably indicating reversed polarity), but 3 give moderately shallow upward (i.e., normal polarity) directions. The apparent normal polarity of these 3 samples may, however, be caused by errors in sample orientation. Sample 115-713-18R-2, 9-11 cm, for instance, shows a negative inclination (-28.4°), while Sample 115-713-18R-1, 136-138 cm, from the same unit shows a positive inclination (10.5°). Orientation problems are suspected also for the 2 other negative inclinations measured, since the natural remanent magnetization (NRM) of all other samples from the same units shows consistently positive inclinations (reverse polarity).

The paleomagnetic analysis of the basalt samples shows that AF treatment of 5–15 mT typically removes a low-coercivity component, and that subsequent demagnetization displays a univectorial decay to the origin. The results of principal component analysis for this higher-coercivity component are given in Table 2. Inclinations from the 27 basalt units combined with the 7 ash layer results give an average inclination of 24.0° (SD = 10.2°).

Discussion

Since the basement rocks produce far more convincing paleomagnetic directions, we will consider these first. The strong and stable remanence displayed in the high-coercivity component found in the basalt samples suggests that this is, in fact, a primary thermoremanent magnetization. The lower-coercivity component may be caused by viscous acquisition in the presentday field or, alternatively, may well be some form of drilling remanence. The large variation of the inclinations determined from the basalt and ash layers makes it difficult to assume that the directions are primary and that the scatter represents the normal secular variation of the field. If so, the maximum likelihood estimate of inclination (I = 24.4° , N = 34, kappa (κ) = 29.2, alpha 95 = 4.6°) might not be a good representation of the time-averaged field. This inclination corresponds to a paleolatitude of $12.8^{\circ} \pm 2.6^{\circ}$.

As the few chalk-sediment results appear to be of poor quality, these do not offer a reliable addition to the basalt and ash layer data. The shallow upward component found in the chalk samples could be a normal polarity primary field. In that case, the sediments would tend to support the basalt/ash results. It is more likely, however, that this shallow upward direction is simply a result of the present-day field.

Magnetic Susceptibility

Site 712

We measured magnetic susceptibility at intervals of 10 cm on all sections of cores recovered from Hole 712A. The rotarydrilled sequence obtained from this hole was both highly fragmented and also contaminated by drilling artifacts (probably pipe rust, although particles of rust were not observed during the course of susceptibility measurements). Contamination was suspected in the uppermost 10-20 cm of at least 3 out of the 10 cores in which sediment was recovered from this hole (Cores 115-712A-2R, -3R, and -4R). Susceptibility values, other than those attributable to contamination, were very low ($< 5 \times 10^{-6}$ cgs) throughout the sequence of upper Oligocene to lower Pliocene foraminifer-nannofossil oozes and chalks, and clay-bearing foraminifer-nannofossil oozes. However, in the underlying volcanic-ash-rich limestones and foraminifer-bearing nannofossil chalks of middle Eocene to late Oligocene age, susceptibility values were generally much higher (between 1.5 and 9 \times 10⁻¹ cgs) and more variable. The results of susceptibility measurements made at Site 712 are not reproduced here.

Site 713

Magnetic susceptibility measurements were made at intervals of 10 cm on all sections of cores recovered from Hole 713A, to a depth of 101 mbsf (Cores 115-713A-1R through -12R). Susceptibility measurements were also made on the basaltic lava flow and basement rocks cored below 101 mbsf, but the results of these measurements are reported elsewhere (see "Basement Rocks," this chapter). Measurements were made with a Bartington Instruments' susceptibility meter (Model MS1) and a passthrough sensor-coil of 80-mm inner diameter (Model MS2C). The results of susceptibility measurements made on the sedimentary sequence overlying the basaltic lava flow at approximately 101 mbsf are shown in Figure 14.

Figure 13. Zijderveld diagrams for six basalt samples showing typical behavior. All demagnetization is by AF treatment. Plotting conventions as in Figure 11.

Pipe-rust contamination of the cores did not occur at Site 713. The rotary-drilled sedimentary sequence obtained from Hole 713A was, like that of Hole 712A, fragmented due to lack of recovery in the volcanic-ash-rich nannofossil oozes and chalks, and clay-bearing oozes and chalks of Eocene age (30–101 mbsf), but was complete in the foraminifer-nannofossil oozes and nannofossil-bearing foraminifer oozes of late Miocene (11–30 mbsf), early Pliocene (1.6–11.2 mbsf), and Pleistocene (0–1.6 mbsf) age. Susceptibility values in the late Miocene to Pleistocene sequence of extremely pure, carbonate-rich foraminifer-nannofossil oozes are uniformly low (generally < 5×10^{-6} cgs), unlike those of the Eocene sequence of volcanic-ash-rich chalks, which are much higher and more variable (between 2 and 25 × 10^{-5} cgs).

The disparity between the susceptibility values of the two main sedimentary lithologic units of Hole 713A is most probably due to the high proportion of primary titanomagnetite normally present in volcanic ashes (e.g., Kennett, 1981). Although the Eocene volcanic-ash-rich chalks exhibit susceptibility values which are an order of magnitude higher than those of the overlying upper Miocene to Pleistocene oozes, they are themselves an order of magnitude less than the susceptibility values of the underlying basaltic lava flow and basement rocks.

SEDIMENTATION RATES

Although Sites 712 and 713 are located only 1.6 nmi apart, the geologic setting, as shown by seismic profiles at both sites, is quite different. The basement between the two sites is offset, presumably by faulting. Site 712 is located in a grabenlike structure where a strong reflector marks the Oligocene rubble interval; this interval is not present at Site 713. The sedimentationrate history at the two sites reflects this difference in geologic setting. We constructed sedimentation-rate curves for both sites

Table 2. Directions of primary component of magnetization in basalt samples from Site 713 as determined from principal component analysis.

Sample interval (cm)	Number of samples	MAD	Inclination (degrees)	Intensity (mA/m)	Hard rock unit
115-713A-					
12R-2, 27-29	7	3.6	34.7	0.024	Α
13R-1, 112-114 (Piece 10D)	6	2.5	24.9	13.721	1
13R-2, 91-93 (Piece 13A)	9	1.0	21.1	11.935	1
14R-2, 86-88 (Piece 4)	4	1.0	28.0	5.674	3
15R-2, 16-18 (Piece 1B)	4	9.1	12.2	2.210	3
15R-4, 29-31 (Piece 1)	8	1.9	4.8	2.220	3
15R-4, 121-123 (Piece 6)	6	0.7	43.1	11.742	4
15R-4, 140-142 (Piece 6)	5	0.8	22.7	17.762	4
15R-5, 18-20 (Piece 2)	9	0.6	23.1	31.576	5
15R-6, 55-57 (Piece 4)	4	0.5	26.2	58.219	5
16R-2, 117-119	11	3.8	25.4	0.013	A
16R-4, 134-136	6	4.4	18.1	0.020	Α
16R-5, 31-33	6	2.2	56.3	0.060	Α
17R-1, 11-13	6	5.6	33.8	0.022	A
17R-2, 38-40	3	5.8	27.2	0.097	A
17R-4, 26-28	3	5.5	37.0	0.063	A
18R-1, 80-82 (Piece 7)	7	1.2	42.5	2.254	6
18R-1, 136-138 (Piece 13)	6	1.0	10.5	5.075	7
18R-2, 9-11 (Piece 2)	4	10.2	-28.4	1.085	7
19R-1, 29-31 (Piece 4C)	10	0.6	16.8	3.957	8
19R-1, 62-64 (Piece 6)	7	0.6	36.1	6.139	8
19R-1, 123-125 (Piece 12)	6	0.6	29.4	4.806	10
19R-2, 37-39 (Piece 3B)	4	1.3	2.2	6.947	10
19R-3, 52-54 (Piece 3)	4	1.2	18.9	7.430	11
20R-2, 24-26 (Piece 2B)	4	1.3	- 29.6	6.641	12
20R-2, 122-124 (Piece 6C)	2	0	28.5	3.651	13
20R-3, 36-38 (Piece 6A)	7	0.6	31.5	10.901	14
20R-3, 86-88 (Piece 4B3)	5	1.2	18.5	4.423	15
20R-3, 108-110 (Piece 7A1)	4	1.1	20.1	7,142	16
20R-4, 46-48 (Piece 3B3)	5	1.7	5.7	8,180	18
20R-5, 77-79 (Piece 5C)	5	1.2	35.5	4.924	20
20R-5, 113-115 (Piece 6B)	9	1.1	23.0	6.286	21
20R-6, 12-14 (Piece 1C)	7	0.7	21.4	4,802	22
20R-6, 48-50 (Piece 11)	3	1.7	-12.4	10.558	23
21R-1, 6-8 (Piece 1A)	10	1.0	25.4	5.535	25
21R-1, 44-46 (Piece 3B)	8	0.4	23.1	9.353	26
21R-1, 82-84 (Piece 4C)	6	0.8	5.0	6.665	27
21R-2, 4-6 (Piece 1)	6	0.9	19.3	6.090	28
21R-2, 107-109 (Piece 5E)	5	0.9	11.0	5.062	31
21R-3, 79-81 (Piece 4A)	5	0.9	18.3	3.092	33
21R-4, 104-106 (Piece 15)	5	0.8	30.5	2,605	34
22R-1, 26-28 (Piece 4)	3	2.8	9.2	2.885	35

Note: MAD = mean angular deviation of fit, A = volcanic ash.

(Figs. 15 and 16) based on the biostratigraphic datums given in Table 3.

At Sites 712 and 713, sediments younger than about 3.0 and 1.6 Ma, respectively, are missing. After 6.5 Ma, calcareous oozes accumulated at an average rate of 9.2 m/m.y. at Site 712, and at a rate of 5.5 m/m.y. at Site 713.

A major hiatus spanning almost 36 m.y. (6.5–42.3 Ma) occurred at Site 713; during that time interval, however, sediments accumulated at least intermittently at Site 712. At the latter site, two hiatuses of shorter duration were documented between 6.5 and 8.2 Ma and between 10.8 and 13.2 Ma, and one longer hiatus between 30.2 and 42.3 Ma. Lack of data between 48.1 and 105.7 mbsf (where sediments apparently consist of coarse sand and limestone rubble, but where recovery was poor) precludes the estimation of sedimentation rate changes and the identification of possible additional hiatuses. Assuming a constant sedimentation rate within this time interval allows us to place the Oligocene/Miocene boundary at 80 mbsf.

The 10-m thick sequence of chalk and ash layers recovered in the bottom of Hole 712A accumulated between 42.3 and 46 Ma—that is, during the time span of nannofossil Subzone CP14a. A minimum sedimentation rate of 3.6 m/m.y. is obtained if we assume that sediments at 105.7 mbsf lie in uppermost Subzone CP14a and that the bottom of the hole at 115.3 mbsf is in lowermost Subzone CP14a. However, the rate for that

Figure 14. Whole-core magnetic susceptibility profile of the sedimentary sequence overlying the uppermost basaltic lava flow in Hole 713A.

interval could be higher, as is the case at Site 713. During that time interval (42.3-46 Ma) at Site 713, chalk and ash layers accumulated at a rate of 7.4 m/m.y.

GEOCHEMISTRY

Interstitial Water Studies

Interstitial water samples were collected from five depths in Hole 712A through Core 115-712-6R and from eight depths in Hole 713A. In Hole 713A the deepest sample was taken from sediment intercalated with the two basaltic units at a depth of 150.2 mbsf. These data are presented in Table 4 and Figures 17 and 18.

Calcium and Magnesium

Although similar sediments were encountered at both Sites 712 and 713, substantially different patterns of Ca^{2+} and Mg^{2+} concentrations were encountered. In Hole 712A, little change in the Ca^{2+} and Mg^{2+} gradients was observed over the upper 50 mbsf (Fig. 19). The nonconservative behavior of these elements suggests either contamination by normal seawater or the occurrence of significant reactions within the sediments.

In contrast, at Hole 713A a conservative relationship was observed between magnesium and calcium over the same depth interval, with a Ca^{2+}/Mg^{2+} gradient typical of sites overlying basaltic basement. The Ca^{2+} gradient of 0.073 mmol/L/m was the highest observed during Leg 115 (Fig. 20); the gradient over the upper 100 m was 0.032 mmol/L/m. An interesting feature of the downhole gradient in Hole 713A is the change in Ca^{2+} and Mg^{2+} gradients between 100 and 157 mbsf (Fig. 18). This change in gradient coincides with samples taken on either side of a basalt unit and, hence, reflects either alteration within the

Figure 15. Sedimentation rates at Site 712 based on biostratigraphic datums listed in Table 3.

sediment itself or a change in the diffusion coefficient with increasing depth, as postulated by McDuff (1981). In spite of the conservative nature of the Ca^{2+} and Mg^{2+} gradients, their magnitude strongly suggests that reactions involving the dissolution of feldspars and the formation of clay minerals are occurring within the sediments.

Alkalinity and Sulfate

Although alkalinity exhibits a small increase in the first core of Hole 713A (Fig. 18), there is a gradual decrease with increasing depth, reaching the lowest values measured during Leg 115. The alkalinity low of 1.10 mmol/L was encountered at a depth of 150 mbsf in sediments located between the two basaltic units (see "Lithostratigraphy" and "Basement Rocks" sections, this chapter). The reduction in alkalinity occurs in spite of the fact that the concentration of sulfate, which also decreases over the same depth interval, would normally be expected to increase the alkalinity. In addition, reactions such as those represented below, which can account for the addition of Ca^{2+} to the pore fluids by the alteration of plagioclase, tend to leave alkalinity unaffected:

$$CaAl_2Si_2O_8 + H^+ + HCO_3^- + H_2O = Ca^{2+} + 2HCO_3^- + Al_2Si_2O_5(OH)_4$$
(1)

Therefore, in order to account for the decrease in alkalinity, some precipitation of $CaCO_3$ must be taking place near the basalt-sediment interface. The reaction in eq. (1) utilizes H⁺ ions and therefore can account for the increase we observed in pH from 7.5 at 33.45 mbsf to 8.1 at 150.22 mbsf.

Figure 16. Sedimentation rates at Site 713 based on biostratigraphic daturns listed in Table 4.

Taking into consideration the changes in pH, alkalinity, and calcium concentrations, we calculated that the saturation index (SI) of calcite, as defined by eq. (2),

$$SI = IAP/K_{Sp}$$
 (2)

where IAP = ion activity product and K_{Sp} = solubility product of calcite, actually increases from 0.261 to 0.607 between 33.45 and 150.22 mbsf. (These calculations have not been corrected for any change in alkalinity and/or pH as a result of the squeezing artifacts identified from the use of the downhole water sampler—see "Geochemistry" section, "Site 709" chapter, this volume—or changes in the solubility constant of calcite as a result of pressure.)

In contrast, Hole 712A exhibits practically no variation in alkalinity and sulfate in the cores examined (Fig. 17). This lack of variation may be caused by contamination, diagenetic reactions within the sediments, or water movement (convection) through the sediment (see "Lithostratigraphy" and "Physical Properties" sections, this chapter).

Silica

The concentration of silica rises rapidly to 605 μ mol/L at 31.50 mbsf at Site 712 (Fig. 17). Although the concentration of silica in the bottom waters is not known, the gradient observed in the upper three cores indicates that the samples from this hole are not contaminated by seawater, particularly in light of the absence of any variation in alkalinity, calcium, and magnesium.

At Site 713, concentrations of silica rise to values as high as 775 μ mol/L, but toward the basaltic interface they fall rapidly

Table 3. Biostratigraphic datum levels, Holes 712A and 713A.

	Species events	Depth (mbsf)	Age (Ma)
Hole 712	A:		
10	D altioning (E)	0.04	2.0
10	D. unispira (F)	0.0.4	2.9
10	S abias (N)	2225	2.45
10	B. pseudoumbiling (N)	2.2-3.3	2.56
10	R. pseudoumonicu (N)	0.4.10.4	4.2
FO	S. Omnituous (K)	9.4-19.4	4.5
FO	N. Jousede (D)	9.4-19.0	4.5
FO	C. Pugosus (N)	10.1-19.00	4.0
10	D. quinqueramus (N)	19.0-19.75	5.0
FO	G. tumiaa (F)	28.6-38.3	5.4
TO	S. deimontensis/peregrina (R)	19.0-28.6	0.4
FO	A. primus (N)	30.9-31.03	0.5
LO	D. hughesi (R)	28.6-38.3	7.0
FO	G. plesiotumida (F)	28.6-38.3	8.0
FO	D. berggrenii (N)	30.9-31.03	8.2
FO	C. coalitus (N)	47.9-48.3	10.8
LO	S. heteromorphus (N)	47.9-48.3	13.2
FO	S. ciperoensis (N)	105.7-115.3	30.2
	below top CP14a (N)	115.3	42.3
	above base CP14a (N)	115.3	46.0
Hole 713	A:		
FO	G. oceanica (N)	3.6-4.4	1.6
FO	G. truncatulinoides (F)	1.6-11.2	1.9
FO	P. doliolus (D)	1.6-11.2	1.8
LO	S. peregrina (R)	6.8-11.2	2.6
LO	D. altispira (F)	1.6-11.2	2.9
LO	Sphaeroidinellopsis (F)	1.6-11.2	3.0
LO	R. pseudoumbilica (N)	9.6-11.2	3.56
FO	N. jouseae (D)	11.2-20.8	4.5
FO	C. rugosus (N)	19.4-20.0	4.6
LO	D. quinqueramus (N)	19.4-20.0	5.0
	S. delmontensis/S. peregrina (R)	11.2-16.4	6.4
FO	A. delicatus (N)	30.5-30.9	6.5
1.1	within Zone CP14a	30.9	40.0
LO	C. solitus (N)	51.7-53.2	42.3
FO	R. umbilica (N)	62.8-64.3	44.4
LO	C. gigas (N)	136.2-136.4	47.0
FO	T triacantha (R)	88 4-92 1	48.0

Note: FO = first occurrence, LO = last occurrence, N = nannofossil, F = foraminifer, D = diatom, and R = radiolarian.

Table 4. Interstitial water analyses, Holes 712A and 713A.

to 279 μ mol/L. Such values are likely to be below bottom-water concentrations. The decrease in silica suggests that reactions involving the precipitation of silica are taking place near the basalt unit.

X-ray Mineralogy, Carbonate, and Organic Carbon Content

The carbonate content of samples taken from Sites 712 and 713 is shown in Table 5. The sediments of middle Miocene age and younger contain in excess of 90% low-magnesium calcite. At Site 712, this interval extends to Core 115-712A-11R in sediments of Oligocene age. Below this interval, in Eocene sediments, the carbonate content decreases, ranging between <1.0% and 75%.

The same change occurs at much shallower sub-bottom depths at Site 713, where middle Eocene sediments were intersected at the bottom of Core 115-713A-5R. The main noncarbonate materials present in these intervals are volcanic ash, clays, plagioclase, and quartz, all of which appear to have been extensively bioturbated and worked into the carbonate sediments (see "Lithostratigraphy" section, this chapter).

Organic carbon analyses are shown in Table 6. Although concentrations reach values as high as 1.11%, they are generally below detection limits.

BASEMENT ROCKS

Introduction

Rotary coring (in which each "core" represents ~ 9.5 m of drill penetration) at Site 713 encountered basaltic rocks in the intervals from 107 to 133.8 mbsf and from 155.3 to 191.7 mbsf (bottom of the hole). Cores 115-713A-16R and 115-713A-17R (136.2-155.2 mbsf) contained tuffaceous sedimentary rocks. The average recovery rate for cores composed mostly of basalt was 49.9% (Fig. 21). This section summarizes the description of basalts recovered based on lithostratigraphy, vesicularity, grain size, alteration, and phenocryst type and abundance as compiled on visual core and thin-section description forms.

The subdivision into 35 units was made during the course of the visual core description and was based primarily on the rec-

Sample interval (cm)	Depth (mbsf)	Ca (mmol/L)	Mg (mmol/L)	Cl (mmol/L)	Al (mmol/L)	pН	Salinity (‰)	Si (µmol/L)	SO ₄ (mmol/L)
Seawater	0	11.07	55.35	565.4	2.47	8.5	35.0	0	29.15
115-712A-									
1R-5, 145-150	7.45	11.10	54.10	552.0	2.90	7.8	35.2	449	28.55
2R-4, 145-150	15.48	11.18	53.78	554.9	3.03	7.7	35.2	594	28.12
3R-3, 140-150	23.40	11.10	54.02	571.1	3.05	7.7	35.2	655	28.11
4R-2, 140-150	31.50	11.37	55.24	575.8	2.98	7.8	35.8	605	28.60
6R-2, 140-150	50.80	12.25	53.76	560.6	3.01	7.8	35.2	615	28.31
Seawater	0	11.07	55.35	565.4	2.47	8.5	35.2	0	29.15
115-713A-									
2R-4, 145-150	7.55	11.74	54.56	574.9	3.07	7.8	35.0	497	28.51
3R-4, 145-150	17.15	12.13	54.11	569.2	3.00	7.7	35.5	577	28.17
4R-4, 145-150	26.75	12.12	53.06	560.6	2.91	7.7	35.0	756	27.44
5R-2, 145-150	33.45	12.49	52.06	564.4	2.77	7.5	35.0	775	27.72
6R-2, 145-150	43.05	12.82	52.15	573.9	2.63	7.5	35.0	743	28.24
9R-1, 145-150	70.55	14.23	51.74	569.2	2.54	7.7	35.2	554	27.80
12R-1, 147-150	99.57	14.84	50.09	561.5	1.78	8.0	35.0	630	27.22
17R-3, 150-155	150.22	21.56	40.25	574.9	1.10	8.1	34.8	279	26.19
		21120	10120	21112		011	0.110		

Figure 17. Summary of interstitial water analyses, Hole 712A, as a function of sub-bottom depth. Surface seawater is plotted at 0 mbsf.

Figure 18. Summary of interstitial water analyses, Hole 713A, as a function of sub-bottom depth. Surface seawater is plotted at 0 mbsf.

ognition of lithologic contrasts between core segments and on the presence of sedimentary intercalations or tachylytic margins in the basalt core (Fig. 22). Chilled margins may, however, represent within-flow boundaries or the chilled margins to pillows in a single flow unit. On the other hand, the incomplete core recovery means that evidence of some flow boundaries may have been lost and that portions of distinct flow units which are similar to the eye may be lumped erroneously into one unit. Such errors may be revealed by subsequent petrographic, petrochemical, or physical property measurements. We have noted such

Figure 19. Calcium and magnesium concentrations, Site 712.

Figure 20. Calcium and magnesium concentrations, Site 713.

anomalies in the original subdivision, when we recognized them, in the text.

Macroscopic Characteristics

Unit 1

This unit, represented by 18 cm in Section 115-713A-12R, CC, and by 3.05 m of recovered core in Core 115-713A-13R, is composed of highly vesicular plagioclase-phyric basalt. Vesicles are evenly distributed and less than 3 mm in diameter. The term "hawaiitic" basalt was used for the rock on the visual description forms because of the low color index.

Table	5. Car	bonat	e con	ntent o	of sampl	es
from	Holes	712A	and	713A.		

Sample interval (cm)	Depth (mbsf)	Carbonate (wt%)
115-712A-		
1R-2, 60-64	2.10	93.71
1R-4, 62-64	5.12	94.95
1R-6, 62-64	8.12	94.1
2R-3, 60-62	13.00	93.49
2R-5, 59-61	16.12	95.3
3R-1, 60-62	19.60	92.85
3R-3, 60-62	22.60	93.61
3R-5, 24-27	25.24	93.2
4R-1, 60-62	29.20	93.86
4R-3, 23-25	31.83	93.34
5R-1, 60-62	38.90	92.79
5R-2, 60-62	40.40	93.64
6R-2, 60-62	50.00	97.02
11R-1, 10-13	96.20	99.05
11R-1, 60-62	96.70	99.65
11R-3, 24-26	98.08	98.72
12R-2, 101-103	108.08	71.59
12R-2, 103-105	108.10	81.99
12R-2, 105-107	108.12	75.71
12R-2, 107-109	108.14	76.84
12R-2, 110-112	108.17	95.27
115-713A-		
2R-5, 99-101	8.59	96.78
3R-2, 60-62	13.30	95.17
3R-4, 15-17	15.85	93.59
3R-6, 96-98	19.66	93.32
4R-2, 138-140	23.68	93.8
4R-5, 51-53	27.31	94.5
4R-7, 32-34	30.12	93.73
5R-3, 105-107	34.55	60.12
6R-1, 67-69	40.77	76.67
6R-1, 140-142	41.50	89.74
6R-5, 27-30	46.37	76.48
7R-3, 60-62	53.30	70.75
7R-5, 60-62	56.30	67.59
8R-2, 103-106	61.93	84.48
8R-4, 23-25	64.13	58.42
9R-2, 120-122	71.80	15.52
10R-1, 71-73	79.41	77.98
10R-2, 15-17	80.35	0.05
11R-1, 10-13	88.50	0.2
11R-1, 113-116	89.53	57.41

Unit 2

A single piece of "trachybasalt" (7 cm long) at the bottom of Core 115-713A-13R contained fewer vesicles than Unit 1 and was assigned to Unit 2. It could represent the chilled contact of Unit 1 or Unit 3.

Unit 3

Unit 3 is represented by all of Core 115-713A-14R (4.35 m recovered) and by 5.3 m of the 6.92 m in Core 115-713A-15R. It shows lower vesicularity than Unit 1. Most parts of the core are slightly altered, medium-grained clinopyroxene-plagioclasephyric basalt with clots of plagioclase \pm clinopyroxene crystals. We identified olivine only in the lowermost part of the unit in Core 115-713A-15R. The segment of the unit represented in Core 115-713A-15R is distinctly coarser grained than that in Core 115-713A-14R and may constitute a separate unit.

Units 4 and 5

These units, represented by 0.51 and 1.11 m (respectively) of basalt at the base of Core 115-713A-15R, resemble the above units in having phenocrysts of plagioclase, clinopyroxene, and olivine. A glassy piece of core containing a thin sediment layer

Table	6.	Percent	organic	carbon,
Sites 7	12	and 713.	070	

Sample	Danth	Organic
(cm)	(mbsf)	(%)
115-712A-		
1R-2, 60-64	2.1	0.03
1R-4, 62-64	5.12	0
2R-3, 60-62	13.0	0
2R-5, 59-61	16.12	0
3R-1, 60-62	19.60	0
3R-3, 60-62	22.60	0
4R-1, 60-62	29.20	0
4R-3, 23-25	31.83	0.02
5R-2, 60-62	40.40	0
6R-2, 60-62	50.00	0.04
11R-3, 24-26	98.08	0
12R-2, 110-112	108.17	0
12R-2, 101-103	108.08	1.11
115-713A-		
2R-5, 99-101	8.59	0
3R-2, 60-62	13.30	0.08
3R-4, 15-17	15.85	0
4R-2, 138-140	23.68	0
4R-7, 32-34	30.12	0
5R-3, 105-107	34.55	0.21
6R-5, 27-30	46.37	0
7R-3, 60-62	53.30	0
8R-2, 103-106	61.93	0
9R-2, 120-122	71.80	0
10R-2, 15-17	80.35	0.01
11R-1, 113-116	89.53	0.07

Figure 21. Summary of the amount of basement recovered in Site 713 cores. Note that each numbered "core" represents about 9.5-10.0 m of drill penetration, but that actual core recovery is variable. Overall average recovery at Site 713 was 49.9%.

separates the two units. Both show higher vesicularity in their upper portions. A section of tuffaceous sedimentary rock (13.0 m recovered) composed of all material recovered in Cores 115-713A-16R and -17R and the top 10 cm of Core 115-713A-18R underlies Unit 5.

Units 6 through 10

Units 6 through 10 are represented by 1.80 m of basalt recovered in Core 115-713A-18R and by 3.07 m out of 3.57 m recovered in Core 115-713A-19R. The olivine-bearing, clinopyroxene plagioclase basalts (hawaiites?) are separated by glassy chilled margins and appear slightly altered and only slightly vesicular. Macroscopically, they resemble the upper basalt Units 4 and 5.

Unit 11

The lower 50 cm of basalt recovered from Core 115-713A-19R and the upper 28 cm recovered from Core 115-713A-20R were assigned to Unit 11. The unit resembles Units 5 through 10 but is distinguished by an absence of olivine phenocrysts.

Units 12 through 29

The total recovered length of these units is 10.27 m recovered in Cores 115-713A-20R and -21R. Each unit consists of moderately altered olivine, clinopyroxene, and plagioclase phyric basalt separated by glassy contacts which may represent boundaries between pillows in a single subaqueous lava flow.

Unit 30

We assigned a 0.33-m (recovered length) portion of Core 115-713A-21R which has a higher percentage of clinopyroxene than overlying units to Unit 30.

Units 31 through 35

These units are represented by 3.52 m of basalt recovered in Cores 115-713A-21R and -22R. They resemble Units 12 through 29, but Unit 35 appears to have a slightly higher plagioclase percentage.

Microscopic Characteristics

Modal phenocryst compositions of Site 713 basalts are illustrated in Figure 22. Some of the Hole 713A basement rocks were thought to be "hawaiites" or "trachytes" based on visual core examination; on the other hand, microscopically they contain large percentages of mafic phases (clinopyroxene and opaque minerals) in the ground mass and should be termed "basalts."

Fresh olivine only occurs in the clear brown glass at the chilled margins of units. Olivine is apparently always altered in the interiors. Variolitic pyroxene grains occur in some quenched glassy samples.

All basalts from the site contain plagioclase phenocrysts (< 5 mm in length). These sometimes show a bimodal size distribution, with most of the larger grains containing dusty inclusions of undetermined composition and displaying reverse and oscillatory zoning. Smaller phenocrysts are characterized by normal zoning and an absence of dusty inclusions.

Clinopyroxene phenocrysts from this site, like those from Site 706, often display strong sector and normal zoning. Sector zoning is rare in Site 707 pyroxenes. However, some Site 706 pyroxenes tend to be slightly brownish in color whereas Site 707 and 713 pyroxenes are relatively colorless.

Discussion

In general, two points suggest the submarine eruption of all the lavas cored in Hole 713A: (1) lava flows are interbedded with marine sediments, and (2) designated units show obvious chilled contacts, especially in the lower half of the hole. However, basalts recovered in the upper portions of the hole (Cores 115-713A-13R through -15R) are distinct from those below the sedimentary section (i.e., Cores 115-713A-18R through -22R). The upper lava units (Units 1 and 3 especially) appear much thicker than units below, suggesting eruption subaerially or in

Figure 22. Graphic summary of the petrographic characteristics of basalts from Hole 713A. Alteration percentages appear in first column as percent clay minerals. Vesicle percentages are given in second column. The columns for plagioclase, clinopyroxene, and olivine refer to the modal percentages of those particular phenocrysts. In most cases, olivine has been altered to clay minerals.

very shallow water. Alternatively, it may merely reflect a larger volume (or rate) of submarine lava production. The highly vesicular nature of basalts from Unit 1 is consistent with a shallower eruption depth for these rocks. However, sedimentary rocks between flow units contain benthic foraminifers of interpreted deep-water origin (1000-2000 m; see "Biostratigraphy" section,

this chapter). This conclusion appears at odds with the abundance of vesicles in the flows.

Magnetic susceptibility data (Fig. 23) indicate that two distinct units are represented by the core segments recovered in Cores 115-713A-14R and -15R, though no major lithologic differences were observed and the bulk of both cores were assigned

Figure 23. Plot of the magnetic susceptibility of 713A basalts. Note the contrast in average susceptibility of basalt in Cores 115-713A-14R (117.2-126.7 mbsf) and -15R (126.7-136.2 mbsf), which indicates that they represent distinct petrologic "units." No difference was noted in the visual core description, however, and both were assigned to Unit III.

to Unit 3. However, microscopic examination indicates a greater modal abundance of iron-titanium oxides in Core 115-713A-15R. The rather constant (and relatively low) magnetic susceptibility of basalts from the lower half of the hole supports the hypothesis that glassy boundaries between units are not flow boundaries but pillow margins in a single lava flow.

Sedimentary rocks overlying and intercalated with the basaltic lavas contain a number of ash layers with fresh glass. The number of ash layers increases toward the contact with the upper basalt units in both the overlying and underlying sedimentary layers, suggesting that the same volcanic activity produced both the lavas and the ashes. However, the presence of green pyroxene phenocrysts, probably of aegirine augite composition, suggests that some of the ashes have a much more evolved chemical composition than the associated basalts and that they probably have strong alkaline affinities.

Shipboard major element and trace element analyses (Table 7) show that basalts from above the sedimentary break (Units 1-5) can be distinguished from the lower basalts (Units 6-35) by, for example, higher titanium dioxide, barium, zirconium, chromium, and nickel concentrations. This implies that the upper basalts are slightly more alkaline than the lower basalts.

Although the phenocryst and groundmass phases are similar for Sites 706, 707, and 713 basalts, clinopyroxenes from Sites 707 and 713 do not show the brownish color characteristic of titaniferous pyroxenes from sialic magmas seen in Site 706 basalts. This suggests that Site 707 and 713 magmas are less alkaline than those from Site 706. These indications are confirmed by shipboard geochemical data (Table 7) showing that Site 707 and 713 basalts are similar to one another and much more similar in terms of their titanium dioxide contents, for example, to ocean floor basalts than are the Site 706 basalts.

PHYSICAL PROPERTIES

Site 712

We drilled a total of 115.3 m at Site 712 using rotary techniques, but only 41.6 m of sediments were recovered. These consisted mainly of homogeneous foraminifer-bearing nannofossil oozes showing increasing lithification downhole. The upper 57.5 m of the sequence is composed of a foraminifer-nannofossil ooze and foraminifer-nannofossil chalk. The chalk became increasingly fractured and biscuited with increasing depth and finally reverted into soft ooze (drilling paste?). The lack of recovery from 57.5 to 96 mbsf was followed by recovery of drilling rubble, consisting of carbonate sands and limestone rubble. A highly bioturbated series of sediments were recovered below 105 mbsf, which included foraminifer-bearing nannofossil chalk with interbedded volcanic-ash layers, partly clay-rich chalks, and clay-bearing nannofossil chalk. Signs of significant drilling disturbance were present in most of the recovered sediments. No basement rocks were recovered at this site.

The following physical properties measurements were determined: index properties, compressional- (V_p) and shear-wave velocities (V_s) , shear strength, and thermal conductivity. The number of discrete measurements taken was limited by the poor recovery and drilling disturbance. Furthermore, the low rigidity of the soupy ooze and the brittleness of the chalk meant that it was difficult to obtain representative V_p , V_s , and shear strength measurements even on less disturbed samples. No whole-core logging was possible at Sites 712 and 713 because the *P*-wave logger and GRAPE were being transferred at the time to a vertical logging arrangement.

Index Properties

The results of index property measurements are given in Table 8 and Figure 24. The variation in the index properties reflects the different amounts of consolidation and disturbance in the recovered sediments at Site 712. The uppermost part of Hole 712A is dominated by highly porous, "soupy" nannofossil ooze. The porosity gradually decreases from 69.82% to 60.41% from the seafloor to 25.24 mbsf. This decrease is accompanied by an increase of wet-bulk density from 1.56 to 1.73 g/cm3. Between 20 and 40 mbsf, within the more cohesive nannofossil ooze, the index properties are approximately constant but are scattered due to differing degrees of drilling disturbance. The data at 40.40 mbsf were taken on "undisturbed chalk," and the measurement at 50.00 mbsf was made in the remolded nannofossil ooze. The index property measurements of samples from the drilling rubble at about 100 mbsf are also included in Figure 24 and Table 8. The carbonate contents of samples on which index properties were determined are plotted in Figure 25.

Compressional-Wave Velocity and Acoustic Impedance

The "soupy" ooze and brittle chalk recovered at Site 712 were unsuitable for use in the Hamilton Frame. Therefore, only a few measurements of the compressional-wave velocity (V_p) were made. The results are shown in Figure 26 and Table 9. From about 1500 to 1636 m/s, V_p increases steadily with depth. The acoustic impedances calculated from wet-bulk density and V_p data are also shown in Figure 26. The low impedances of 2300–2400 g/cm² × s × 10² in the uppermost 10 m are followed by a slight increase to 2600 g/cm² × s × 10². The impedance then appears to increase linearly with depth, although the sample spacing is too wide to resolve lithologic changes.

Shear-Wave Velocity and Shear Strength

The shear-wave velocities (V_s) shown in Figure 27 and Table 10 are scattered over the range of 65–110 m/s. Nannofossil chalk and underlying drilling rubble prohibited any further measurements. There is no obvious correlation of the V_s with shear strength.

The shear strength measurements at Site 712 (Fig. 27 and Table 11) clearly show the gradual consolidation of the nannofossil ooze to chalk. The strength of the ooze gradually increases from the cohesionless "soup" within the top few meters, to an average of approximately 50 kPa for the semicompacted ooze between 25 and 40 mbsf. The shear strength then drops dramatically to 4.7 kPa for the brittle chalk at 50.37 mbsf. This low experimental measurement was due to cracking and failure of the chalk on insertion of the blade. The lithification of the sediments caused breakage as soon as torsional stress was applied to the vane.

Thermal Conductivity

The results for thermal conductivity at Site 712 are shown in Table 12 and Figure 28. The thermal conductivity shows a large and steady increase from the surface to 20.10 mbsf. The interval from 20 to 28 mbsf was selected for a very detailed survey of thermal conductivity to study the variability at very short depth intervals. A fair amount of small-scale variability was present, with isolated "extreme" values also observed. Below this depth, core conditions and recovery led to fewer measurements with no significant trend. The lowermost measurements show the high degree of variability which we found characteristic of these partially consolidated sediments.

Summary

The sediments recovered at Site 712 are characterized by varying states of cohesion, compaction, and drilling disturbance in what is primarily nannofossil ooze. The excessive disturbance was due to coring with the rotary technique. There was a gradual increase of consolidation of the nannofossil ooze with depth. This increase affected all physical property measurements at Site 712. We detected the transition from soupy to more cohesive ooze by variations in the wet-bulk density and porosity and, in particular, by the shear strength. The compressional-wave velocity and acoustic impedance rose linearly with increasing compaction within the ooze. The shear-wave velocity measurements were too scattered to make any comparisons with other physical properties.

Site 713

Site 713 was drilled to a depth of 192 mbsf using the RCB system. A total of 115 m of cored material was recovered: 68 m of sediments and 47 m of underlying basement rocks. Soft sediments were highly disturbed and consisted of foraminifer-nannofossil ooze grading into foraminifer-bearing nannofossil (sometimes clay-bearing) ooze at around 38 mbsf. Harder foraminifer-bearing chalks in a disturbed oozelike drilling paste were recovered from 38 mbsf to about 50 mbsf. A complex, highly bioturbated series of interbedded ashes and impure foraminiferbearing nannofossil chalk was intersected at this depth. This series was well consolidated and generally undisturbed; it extended downward to 107 mbsf, where the first basalts were recovered. We distinguished 35 different flow units (see "Basement Rocks" section, this chapter). Over 10 m of alternating nannofossil and micrite chalks with interbedded ashes were recovered between flow units 6 and 7.

Sediments

Index Properties

The index properties results for the sediments from Site 713 are shown in Figure 29 and Table 8. Changes in wet-bulk density, water content, and porosity are due mainly to variations in the lithology and degree of drilling disturbance, while the grain density is generally insensitive to local disturbance and degree of consolidation.

The wet-bulk density data are highly scattered between the seafloor and 38 mbsf. The data between 10 and 38 mbsf were obtained on highly disturbed foraminifer-nannofossil ooze. The scatter for the data between 38 and 50 mbsf is due to variations in clay content and disturbance of the semiconsolidated nannofossil chalk. The carbonate content varies significantly in the sedimentary section (Fig. 30 and Table 8), and in sections of low carbonate content the sediment becomes rich in clay. The remainder of the index properties data were collected on the consolidated, ash-bearing, impure nannofossil chalk. All the index properties show a fair amount of scatter in this interval, but a trend of decreasing porosity, water content, and grain density and increasing wet-bulk density is apparent.

Compressional-Wave Velocity and Acoustic Impedance

The compressional-wave velocity (V_p) and wet-bulk density measurements taken on the same discrete sediment samples from Site 713 are shown in Figure 31 and Table 9. The density is approximately constant with an average of 1.6 g/cm³. However, V_p and acoustic impedance show a strong increase with depth. There is an increase in V_p at depths greater than 40 mbsf, from 1550 m/s in the soft foraminifer-nannofossil ooze, to 1600 and 1700 m/s in the harder foraminifer-bearing chalks. Within the impure chalk, V_p remains constant to a depth of 65 mbsf. At greater depths micritic chalk is present, causing a steady increase in V_p due to a combination of increased ash content and lithification. The impedance and V_p profiles (Fig. 31) are similar as the density is relatively constant.

Shear Strength

A few shear strength measurements were taken in the highly disturbed soft foraminifer-nannofossil ooze at Site 713. These data are presented in Table 11 and Figure 32.

Thermal Conductivity

The thermal conductivity results for Site 713 are shown in Table 12 and in Figure 33. The surficial sediments at this site have a surprisingly high conductivity, greater than 1.6 $W \cdot m^{-1}$. K⁻¹, but this rapidly decreases over the next 10 m. (We have seen this pattern in several of the sites.) Thermal conductivity in the depth range of 10-38 mbsf is high (about 1.3 $W \cdot m^{-1} \cdot K^{-1}$) and variable. This is the combined result of real lithologic variation and drilling disturbances. Below 38 mbsf, in the chalks and ash layers, the conductivity is $1.1-1.2 \text{ W} \cdot \text{m}^{-1} \cdot \text{K}^{-1}$ and is much less variable. The measurements just above the basalt, from 100 to 107 mbsf, show an increase from 1.1 to 1.3 W \cdot m⁻¹·K⁻¹. Surprisingly, this trend continues within the uppermost basalt layer, reaching 1.6 W·m⁻¹·K⁻¹ at 132 mbsf. The trend within the basalt is probably related to a decrease in porosity with depth. It may be only a coincidence that it happens to agree roughly with the trend in the chalks above the basalt, but, as the basalt was approached, the proportion of ash in the sediment increased steadily.

We encountered interbedded chalks from 135 to 150 mbsf; their conductivity was slightly higher than the chalks above the basalt layer, but still only about 1.2 W \cdot m⁻¹·K⁻¹. The lower ba-

Table 7. Basalt major and trace element chemistry, Site 713.

Core, Section Interval (cm)	13R-1 63-69	13R-3 16-20	14R-2 68-71	15R-4 7-13	15R-4 143-146	15R-5 90-94	18R-1 73-75	18R-1 145-148	19R-1 27-29	19R-1 91-93	19R-1 116-118	19R-3 13-15
wt%:												
SiO ₂	49.57	49.32	49.71	49.36	49.07	49.60	49.45	49.49	49.90	50.47	49.29	49.49
TiO ₂	1.40	1.31	1.38	1.31	1.52	1.58	0.98	1.03	1.02	1.19	0.99	0.98
Al ₂ O ₃	15.35	14.51	15.90	14.13	13.58	13.76	15.29	15.93	16.14	17.75	15.37	15.12
Fe ₂ O ₃	12.07	12.85	11.64	13.27	14.71	14.43	11.86	10.16	9.95	8.99	11.25	11.74
MnO	0.19	0.18	0.17	0.19	0.25	0.23	0.18	0.16	0.16	0.12	0.18	0.19
MgO	6.46	7.11	6.91	8.58	5.64	6.38	7.13	7.61	7.78	8.36	6.97	7.27
CaO	13.10	12.01	12.14	11.32	12.11	12.03	13.05	13.21	12.92	9.91	13.41	13.17
Na ₂ O	2.24	2.08	2.41	2.18	2.29	2.23	2.05	2.14	2.05	2.83	1.97	2.04
K ₂ Õ	0.26	0.34	0.18	0.15	0.77	0.32	0.41	0.10	0.06	0.44	0.30	0.32
P2O5	0.11	0.10	0.11	0.08	0.13	0.14	0.06	0.06	0.06	0.08	0.06	0.07
Total	100.75	99.81	100.55	100.57	100.07	100.70	100.46	99.89	100.04	100.14	99.79	100.39
Ignition loss	0.55	0	0.98	0.22	1.12	0.50	0.47	1.25	0.43	0	0.80	0.15
ppm:												
Nb	6.0	6.5	7.1	4.6	7.5	6.9	3.7	3.2	3.3	4.0	3.7	4.2
Zr	90.7	85.5	95.6	73.1	102.8	104.2	51.1	52.7	54.3	61.3	51.9	51.7
Y	35.9	33.2	36.1	32.5	41.4	41.4	25.2	24.3	23.6	21.9	27.7	27.6
Sr	105.0	98.8	118.4	91.8	96.4	98.1	99.9	106.6	110.7	115.3	99.3	99.7
Rb	4.3	9.2	3.4	2.7	23.6	11.4	9.4	0	0.5	1.8	5.9	5.9
Zn	100.6	89.4	104.7	84.1	110.9	111.2	80.2	81.2	84.4	84.2	79.7	82.3
Cu	193.4	147.6	194.9	187.1	63.4	248.0	92.8	153.7	159.0	176.7	162.8	111.1
Ni	92.3	61.0	77.0	85.8	52.6	92.1	60.9	76.8	78.1	82.5	72.1	63.4
Cr	202.3	217.0	183.8	221.7	134.8	145.6	130.5	126.3	119.7	145.2	124.6	129.4
v	391.4	359.3	355.7	372.6	418.3	441.9	311.9	335.8	337.2	397.2	324.3	310.5
Ce	9.8	7.8	9.0	7.4	9.8	11.8	1.1	6.7	6.6	3.2	4.7	1.0
Ba	40.2	47.6	52.1	47.5	50.3	59.5	33.8	19.9	21.1	34.5	27.3	33.0

salts were more altered than the upper ones (i.e., more vein filling). The conductivity of the basalts from 155 to 170 mbsf was very high, ranging from 1.7 to 2.4 $W \cdot m^{-1} \cdot K^{-1}$. The lowermost samples, below 175 mbsf, had values ranging from 1.4 to 1.7 $W \cdot m^{-1} \cdot K^{-1}$. The lower values here were in the more fractured samples.

Basement

Basaltic lavas and hard nannofossil chalks were recovered from the basement. Only V_p , wet-bulk density, and thermal conductivity measurements were taken on these rocks. These data are shown in Figures 33 and 34 and in Tables 12 and 13. There are obvious "steps" in these data due to the lithology change from basalt to chalk at 134 mbsf, then to basalt again at 155 mbsf.

The wet-bulk density of the basalts is constant, rarely deviating from an average of about 2.85 g/cm³. The density of the chalk is about 1.7 g/cm³. The V_p measurements show a fair amount of scatter within the basalts. However, the experimental error in V_p measurements was determined at less than 2% (approximately 100 m/s). There is a sharp increase in V_p from 3000 to 5000 m/s at the top of the two series of basalt flow units: at 110 mbsf and at 167 mbsf. The velocity and impedance are constant throughout the remainder of the basalt series.

Summary

The recovered rotary-drilled cores from Site 713 can be divided into four categories based upon physical properties measurements:

1. Highly disturbed soft oozes and clay-bearing oozes with shear strengths of less than 30 kPa, scattered porosities between 60% and 80%, scattered thermal conductivities of around 1.3 $W \cdot m^{-1} \cdot K^{-1}$, and constant V_p of 1550 m/s.

2. Stiff, cemented, impure ash-chalk, similar to the overlying oozes in porosity and thermal conductivity, but too cohesive for shear strength measurements, and with a V_p increasing with depth from 1550 to 2600 m/s.

3. Chalks from between flow units 6 and 7, with constant density of about 1.7 g/cm³, thermal conductivity of 1.2 W \cdot m⁻¹ \cdot K⁻¹, and V_p between 2100 and 2600 m/s.

4. Basalt Units 1 to 35, showing sharp increases in V_p from below 3500 to above 5500 m/s between Units 1 and 3, and also between Units 7 and 9, V_p ranging from 5000 to 6000 m/s for other units, with high thermal conductivities of 1.4–2.4 W·m⁻¹ ·K⁻¹, and constant densities of 2.85 g/cm³.

The strong differences in density and V_p between rocks from categories 2, 3, and 4 give a steplike impedance profile. The magnitude of the impedance contrasts allows good definition of seismic reflectors.

SEISMIC STRATIGRAPHY

Sites 712 and 713 are located on the northern margin of the Chagos Bank, in water depths of 2892.4 m and 2909.8 m, respectively. The Chagos Bank forms the southern terminus of a continuous line of shallow carbonate banks and islands which stretch northward and intersect the western margin of India near Bombay. This ridge is believed to have been formed by volcanic activity over the Réunion hotspot as the Indian plate moved northward in early Tertiary time (see "Background and Objectives" section, this chapter).

The Chagos Bank was connected earlier in time with the Mascarene Plateau at the northern margin of the Nazareth Bank (in the region of Site 706). These two elevated blocks were separated from 35 Ma to the present by seafloor spreading on the Central Indian Ridge (McKenzie and Sclater, 1971). There is also a distinct break in topography between the Chagos Bank and the Maldive Islands, next in line to the north. This may represent a temporary lull in hotspot activity, a period of rapid northward plate motion, or a brief failed attempt at rifting.

Table 7 (continued).

20R-1 77-82	20R-2 142-147	20R-3 51-54	20R-3 73-77	20R-3 112-115	20R-3 137-139	20R-4 35-37	20R-4 140-145	20R-5 24-28	20R-5 127-130	21R-3 55-57	22R-1 20-23
49,99	49.59	49.14	49.03	49.76	49.59	49.89	49.38	49.41	49.59	49.61	49.76
1.06	0.99	1.00	0.97	1.12	1.06	0.98	0.98	0.99	1.01	0.98	0.98
16.54	15.87	15.87	15.31	14.65	14.25	15.81	15.26	15.54	15.43	15.04	15.27
9.52	10.55	10.43	11.20	12.58	12.17	10.84	11.52	10.88	10.83	11.55	11.43
0.16	0.19	0.19	0.20	0.19	0.19	0.18	0.20	0.19	0.19	0.20	0.20
8.19	7.77	7.38	7.37	8.01	7.70	7.70	7.20	7.68	7.79	7.51	7.54
12.39	13.20	13.38	13.92	11.47	12.56	13.23	13.66	13.21	13.01	13.29	13.29
2.19	1.95	2.16	2.09	2.37	2.03	2.01	1.90	1.94	1.94	1.93	1.86
0.10	0.06	0.10	0.18	0.34	0.37	0.06	0.21	0.06	0.06	0.05	0.05
0.06	0.05	0.06	0.06	0.07	0.06	0.05	0.06	0.06	0.05	0.05	0.05
100.20	100.20	99.71	100.33	100.56	99.95	100.75	100.37	99.96	99.90	100.21	100.43
1.40	1.45	0.81	0.83	0.52	0.79	0.33	0.30	0.71	0.71	0.33	0.28
3.8	4.6	3.6	4.0	4.3	4.4	3.9	3.9	3.9	4.0	3.5	4.1
54.5	51.6	52.3	51.0	56.6	56.0	50.2	51.7	52.1	52.5	51.3	50.9
22.4	25.1	25.9	25.9	29.0	26.6	24.5	26.4	25.3	25.2	25.4	25.9
108.7	105.6	105.0	101.4	97.8	95.5	103.1	101.0	102.6	102.9	99.0	99.4
0.3	1.0	0.9	3.3	7.4	11.3	0.5	4.5	1.0	0.5	1.1	0.8
82.6	81.7	82.2	79.3	91.8	85.7	79.8	80.3	79.1	82.8	76.8	77.6
61.6	153.2	151.5	181.8	248.1	45.6	151.7	139.0	152.1	155.3	154.2	151.2
77.2	76.1	89.0	89.4	62.9	64.4	72.6	87.0	71.9	73.2	70.7	68.9
122.5	110.2	121.6	121.8	84.9	98.2	111.6	129.1	108.6	118.4	106.1	104.5
353.7	331.7	326.9	327.2	359.8	341.2	324.4	314.2	327.4	326.2	320.7	315.6
2.4	2.3	4.5	4.4	4.5	8.3	4.2	4.1	2.5	5.0	1.4	0.2
29.0	22.1	24.0	30.0	25.7	23.7	28.5	20.1	21.9	30.3	22.4	20.5

The region around these sites slopes gently to the north and west and is bounded 25 nmi to the east by a steep 3000-m scarp, presumably related to an ancient interval of transform faulting (Fig. 35). We used seismic reflection profiles Wilkes 1731 and Vema 29-02 to determine the most suitable position for detailed surveying by the *JOIDES Resolution*. Our surveys included 3.5and 12-kHz depth recorders and magnetometer profiles, as well as the usual 80 in.³ water-gun seismic reflection profile. Along a north-south line, the basement reflector appears as a series of discrete steps beneath 100-200 m of sediments (Fig. 36). This morphology is probably due to small-scale (100-m offset) normal faulting.

We observed in detail two or three distinct reflectors at Site 712 (Fig. 37). The first occurs at about 0.05 s (two-way traveltime) below the sediment-water interface. This corresponds to thin chert layers encountered within otherwise uniform nannofossil oozes at 40 mbsf. A somewhat stronger reflector occurs at about 0.08 s and is probably the top of a zone of silicified chalks in which core recovery was particularly poor. The basement reflector occurs at 0.18 s. We had to abandon drilling at this site because of hole instability. Loose calcareous sands below the chalks caved into the hole, threatening loss of the BHA.

At Site 713, 1.6 nmi to the north of Site 712, no distinct reflectors are seen above the basement, which occurs at 0.11 s. The total sedimentary section here is 106 m of carbonate ooze and chalks containing numerous volcanic-ash beds toward the base.

REFERENCES

- Boersma, A., 1984. Handbook of Common Tertiary Uvigerina: New York (Microclimates Press).
- Courtillot, V., Besse, J., Vandamme, D., Montigny, R., Jaeger, J.-J., and Cappetta, H., 1986. Deccan flood basalts at the Cretaceous-Tertiary boundary? *Earth Planet. Sci. Lett.*, 80:361–374.
- Douglas, R. G., and Heitman, H., 1979. Slope and basin benthic foraminifera of the California borderland. *In* Doyle, L., and Pilkey, O.

(Eds.), *Geology of Continental Slopes*, Spec. Publ. Econ. Paleontol. Mineral., 27:231-246.

- Duncan, R. A., 1978. Geochronology of basalts from the Ninetyeast Ridge and continental dispersion in the eastern Indian Ocean. J. Volcanol. Geotherm. Res., 4:283-305.
- _____, 1981. Hotspots in the southern oceans—an absolute frame of reference for motion of the Gondwana continents. *Tectonophysics*, 74:29-42.
- Emerick, C. M., 1985. Age-progressive volcanism in the Comores Archipelago and northern Madagascar [Ph.D. dissert.]. Oregon State University, Corvallis.
- Kennett, J. P., 1981. Marine tephrochronology. In Emiliani, C. (Ed.), The Sea (Vol. 7): New York (Wiley), 1373-1436.
- McDuff, R. E., 1981. Major cation gradients in DSDP interstitial waters: the role of diffusive exchange between seawater and upper oceanic crust. Geochim. Cosmochim. Acta, 45:1705-1713.
- McKenzie, D. P., and Sclater, J. G., 1971. The evolution of the Indian Ocean since the Late Cretaceous. *Geophys. J. R. Astron. Soc.*, 25: 437-528.
- Morgan, W. J., 1981. Hotspot tracks and the opening of the Atlantic and Indian Oceans. *In Emiliani*, C. (Ed.), *The Sea* (Vol. 7): New York (Wiley), 443-487.
- Schlich, R., 1982. The Indian Ocean: aseismic ridges, spreading centers, and oceanic ridges. In Nairn, A.E.M., and Stehli, F. G. (Eds.), The Ocean Basins and Margins (Vol. 6): New York (Plenum), 51-147.
- Sclater, J. G., Abbott, D., and Thiede, J., 1977. Paleobathymetry and sediments of the Indian Ocean. In Heirtzler, J., et al. (Eds.), Indian Ocean Geology and Biostratigraphy: Washington (American Geophysical Union), 25-59.
- Srinivasan, M. S., and Sharma, V., 1980. Schwager's Car Nicobar Foraminifera in the Reports of the Novara Expedition—A Revision. New Delhi (Today and Tomorrow Publ.).
- Tjalsma, R. C., and Lohmann, G. P., 1983. Paleocene-Eocene bathyal and abyssal benthic foraminifera from the Atlantic Ocean, Spec. Publ. 4: New York (Micropaleontology Press).

Ms 115A-111

Section interval	Depth	Water content	Porosity	Wet-bulk density	Dry-bulk density	Grain density	Carbonate content
115 7124	(most)	(70)	(70)	(g/cm ⁻)	(g/cm ⁻)	(g/cm/)	(wt 70)
115-/12A-							
1R-2, 62	2.12	46.15	69.82	1.56	0.84	2.73	93.71
1R-4, 62	5.12	46.10	70.85	1.57	0.85	2.87	94.95
1R-6, 62	8.12	44.25	68.21	1.57	0.88	2.73	94.10
2R-3, 60	13.00	40.14	65.90	1.68	1.00	2.92	93.49
2R-5, 59	16.12	37.04	61.78	1.71	1.08	2.78	95.30
3R-1, 60	19.60	39.77	64.77	1.69	1.02	2.82	92.85
3R-3, 60	22.60	39.98	65.27	1.67	1.00	2.86	93.61
3R-5, 24	25.24	36.18	60.41	1.73	1.10	2.73	93.20
4R-1, 60	29.20	39.15	63.11	1.70	1.03	2.69	93.34
4R-3, 23	31.83	46.16	69.85	1.58	0.85	2.73	93.34
5R-1, 60	38.90	44.66	69.65	1.63	0.90	2.88	92.79
5R-2, 60	40.40	44.82	70.49	1.58	0.87	2.98	93.64
6R-2, 60	50.00	29.76	52.53	1.75	1.23	2.65	97.02
11R-1, 10	96.20	30.01	54.68	1.86	1.30	2.85	99.05
11R-1, 60	96.70	40.03	64.80	1.93	1.16	2.79	99.65
11R-3, 24	98.08	30.32	53.66	1.89	1.32	2.70	98.72
12R-2, 101	108.21	39.70	65.00	1.70	1.03	2.86	71.59
12R-2, 103	108.23	38.70	63.40	1.71	1.05	2.78	81.99
12R-2, 105	108.25	38.90	62.90	1.80	1.10	2.70	75.71
12R-2, 107	108.27	37.00	61.90	1.75	1.10	2.80	76.84
12R-2, 110	108.30	37.00	61.90	1.75	1.10	2.80	95.27
115-713A-							
2R-2. 77	3.87	47.13	71.38	1.57	0.83	2.83	_
2R-5, 99	8.59	46.33	69.41	1.55	0.83	2.66	96.78
3R-2, 60	13.30	35.49	59.09	1.84	1.19	2.66	95.17
3R-4, 15	15.85	37.14	62.67	1.75	1.10	2.88	93.59
3R-6, 96	19.66	40.53	64.76	1.63	0.97	2.73	93.32
4R-2, 138	23.68	37.53	62.25	1.71	1.07	2.78	93.80
4R-5, 51	27.31	36.03	60.48	1.75	1.12	2.75	94.50
4R-7, 32	30.12	37.11	68.54	1.76	1.10	3.75	93.73
5R-3, 105	34.55	45.42	69.60	1.56	0.85	2.78	60.12
6R-1, 67	40.77	51.67	74.69	1.51	0.73	2.79	76.67
6R-1, 140	41.50	39.60	65.08	1.70	1.02	2.88	89.74
6R-5, 27	46.37	44.63	69.44	1.62	0.90	2.85	76.48
7R-3, 60	53.30	44.19	67.84	1.61	0.90	2.69	70.75
7R-5, 62	56.32	35.63	61.64	1.40	0.90	2.94	62.90
8R-2, 103	61.93	40.28	65.22	1.68	1.01	2.81	84.48
8R-4, 23	64.13	48.22	70.55	1.60	0.83	2.60	58.42
9R-2, 120	71.80	46.27	70.14	1.62	0.87	2.76	15.52
10R-1, 71	79.41	34.90	59.22	1.77	1.15	2.74	77.98
10R-2, 15	80.35	40.72	62.46	1.64	0.97	2.45	0.05
11R-4, 20	93.10	—	_	1.84	-	_	_

Table 8. Index-properties data, Sites 712 and 713.

Figure 24. Index properties (wet-bulk density, water content, porosity, and grain density) at Site 712.

Figure 25. Carbonate content of samples for which the index properties were measured at Site 712.

Figure 26. Compressional-wave velocity (V_p) and acoustic impedance at Site 712.

Table 10. Sheadata, Site 712.	elocity	Table 11. Mostrength data,713.	
Section interval (cm)	Depth V _s (mbsf) (m/s)		Section
115-712A-			(cm)
1R-2, 48	1.98	65	115-712A-
1R-4, 37	4.87	99	110 11011
1R-6, 50	8.00	87	1R-2, 60
2R-3, 54	12.94	106	1R-4, 60
2R-5, 67	16.20	69	1R-6, 78
3R-2, 53	21.03	66	2R-3, 82
3R-4, 54	24.04	110	2R-5, 103
4R-2, 78	30.88	110	3R-2, 58
5R-2, 93	40.73	63	3R-4, 66
			4R-2, 61
			5R-2, 98
			6R-2, 97

Section		
interval	Depth	Peak
(cm)	(mbsf)	(kPa)
115-712A-		
1R-2, 60	2.10	2.4
1R-4, 60	5.10	2.3
1R-6, 78	8.28	19.0
2R-3, 82	13.22	17.8
2R-5, 103	16.56	28.4
3R-2, 58	21.08	21.3
3R-4, 66	24.16	54.5
4R-2, 61	30.71	51.0
5R-2, 98	40.78	52.2
6R-2, 97	50.37	4.7
115-713A-		
2R-5, 81	8.41	2.6
3R-2, 86	13.56	16.4
3R-6, 86	19.56	8.8
4R-5, 63	27.43	16.1
4R-7, 30	30.10	27.0
6R-1, 138	41.48	11.1

Table 9. Compressional-wave velocity and acoustic impedance data, Holes 712A and 713A.

Section interval (cm)	Depth (mbsf)	V _p (m/s)	Acoustic impedance (g/cm ² ·s·10 ⁴)
115-712A-			
1R-2, 62	2.12	1540	24.02
1R-4, 62	5.12	1514	23.76
1R-6, 62	8.12	1495	23.47
2R-3, 60	13.00	1532	25.73
2R-5, 59	16.12	1534	26.23
3R-3, 60	22.60	1532	25.58
3R-5, 24	25.24	1552	26.84
4R-1, 60	29.20	1530	26.01
6R-2, 60	50.00	1569	27.45
11R-1, 98	97.08	1636	31.57
115-713A-			
3R-6, 88	19.58	1546	25.19
4R-5, 51	27.31	1556	27.23
5R-3, 104	34.54	1687	26.31
6R-1, 67	40.77	1619	24.44
6R-1, 141	41.51	1532	26.04
6R-5, 27	46.37	1688	27.34
7R-3, 60	53.30	1672	26.92
7R-5, 60	56.30	1671	23.39
8R-2, 103	61.93	1648	27.68
8R-4, 23	64.13	1645	26.32
9R-2, 119	71.79	1818	29.45
10R-1, 71	79.41	1790	31.68
10R-2, 62	80.82	2094	34.34
11R-1, 13	88.53	2219	0
11R-2, 35	90.25	2425	0
12R-1, 39	98.49	1846	0
12R-2, 150	101.10	2592	0

Figure 27. Shear-wave velocity (V_s) and shear strength at Site 712.

Table 12. Thermal conductivity data, Sites 712 and 713.

Section interval (cm)	Depth (mbsf)	Thermal conductivity $(W \cdot m^{-1} \cdot K^{-1})$	Section interval (cm)	Depth (mbsf)	Thermal conductivity (W·m ⁻¹ ·K ⁻¹)
115-712A-	<u></u>		115-713A- (Cont.)	SAL 14	
1R-1.80	0.80	0.941	3R-3 80	15.00	1.310
1R-2, 80	2.30	1.218	3R-4, 60	16.30	1.459
1R-3, 80	3.80	1.095	3R-5, 50	17.70	1.410
1R-4, 80	5.30	1.157	3R-5, 100	18.20	1.098
1R-5, 80	6.80	1.145	3R-6, 50	19.20	1.009
1R-0, 80 1R-7, 20	0.30	1.230	38-6, 100	20.50	1.104
2R-1, 80	10.20	1.254	4R-1, 80	21.60	1.292
2R-2, 80	11.70	1.337	4R-2, 50	22.80	1.214
2R-3, 80	13.20	1.268	4R-3, 50	24.30	1.107
2R-4, 80	14.83	1.326	4R-3, 50	24.30	1.107
3R-1, 10	19.10	1.504	4R-3, 100	24.80	1.534
3R-1, 40	19.40	1.115	48-4, 80	27.30	1.515
3R-1, 80	19.80	1.255	4R-5, 100	27.80	0.967
3R-1, 110	20.10	1.869	4R-6, 80	29.10	1.362
3R-1, 120	20.20	1.252	4R-7, 30	30.10	1.346
3R-1, 130	20.30	1.546	5R-2, 50	32.50	1.253
3R-1, 140	20.40	1.464	5R-2, 100	33.00	1.464
3R-2, 10	20.60	1.420	5R-3, 50	34.00	1.149
38-2, 20	21.30	1.4/0	5R-5, 100 6R-1 34-40	40 44	1 190
3R-2, 90	21.40	1.289	6R-4, 13-20	44.73	1.200
3R-2, 100	21.50	1.576	6R-4, 116-122	45.76	1.160
3R-2, 112	21.62	1.410	6R-5, 48-58	46.58	1.010
3R-2, 120	21.70	1.314	7R-1, 41-50	50.11	1.060
3R-2, 130	21.80	1.466	7R-2, 136-142	52.56	1.180
3R-2, 140	21.90	1.317	7R-3, 30-37	53.00	1.110
3R-3, 10	22.10	1.309	7R-5 35-44	56.05	1.040
3R-3, 30	22.30	1.313	8R-1, 44-50	59.84	1.070
3R-3, 40	22.40	1.846	8R-2, 24-32	61.14	1.080
3R-3, 50	22.50	1.301	8R-3, 53-60	62.93	1.110
3R-3, 60	22.60	1.359	9R-1, 20-30	69.30	1.170
3R-3, 70	22.70	1.335	9R-2, 69-75	71.29	1.330
3R-3, 80	22.80	1.336	9R, CC, 1-10	72.06	1.140
3R-3, 90 3R-3, 110	22.90	1.307	10R-1, 2-14	18.72	1.220
3R-4 10	23.60	1.286	10R CC 1-11	81.71	1.150
3R-4, 20	23.70	1.447	11R-1, 14-21	88.54	1.060
3R-4, 30	23.80	1.368	11R-2, 4-16	89.94	1.140
3R-4, 50	24.00	1.330	11R-3, 114-121	92.54	1.120
3R-4, 60	24.10	1.251	11R-4, 38-44	93.28	1.080
3R-4, 70	24.20	1.347	12R-1, 92-105	99.02	1.090
3R-4, 80 3R-4, 90	24.30	1.387	12R-2, 89-90	100.49	1.180
3R-4, 100	24.50	1.102	13R-1, 72-80	108.42	1.320
3R-4, 110	24.60	1.331	13R-2, 16-25	109.29	1.360
3R-4, 120	24.70	1.232	13R-3, 14-20	110.73	1.450
3R-4, 130	24.80	1.212	14R-1, 58-70	117.78	1.470
3R-4, 140	24.90	1.292	14R-2, 1–10	118.68	1.400
3K-5, 12 3P 5 25	25.12	1.326	14R-3, 107-115	120.86	1.450
4R-1 80	29.40	1.359	14R-4, 47-39 15R-1 81-89	127.51	1.660
4R-2, 80	30.90	1.472	15R-2, 123-133	129.43	1.650
4R-3, 40	32.00	1.143	15R-3, 58-75	130.28	1.560
5R-1, 75	39.05	1.243	15R-4, 47-64	131.67	1.600
5R-2, 80	40.60	1.210	15R-5, 26-37	132.96	1.660
5R-3, 10 6P.1 115	41.40	1.224	15R-5, 120-140	135.40	1.170
6R-2, 80	50.20	1.060	16R-0, 02-/1	136.55	1.090
6R-3, 25	51.15	1.389	16R-2, 72-80	138.21	1.100
11R-1, 50	96.60	1.377	16R-3, 66-79	139.66	1.180
11R-1, 80	96.90	1.574	16R-4, 76-83	141.16	1.090
11R-1, 120	97.30	0.871	16R-5, 39-48	142.27	1.210
11R-2, 12	97.72	1.598	17R-1, 79-88	146.49	1.090
11R-3, 25	98.09	1.327	17R-2, 85-98	148.05	1.220
12R-1, /5-80 12R-2, 60, 74	106.45	1.260	17R-3, 108-119	149.80	1.160
12R-2, 09-74	108.97	1.180	18R-1, 118-130	156.38	1.820
12R-3, 46-51	109.03	1.590	19R-1, 6-14	164.46	1.770
12R-3, 115-120	109.72	1.360	19R-2, 114-124	167.04	1.930
			19R-3, 24-30	167.64	2.410
15-713A-			20R-1, 51-60	174.41	2.070
2R-1 80	2 40	1.653	20R-2, 80-87	176.20	1.370
2R-2, 80	3.90	1.503	20R-3, 64-70	177.54	1.540
2R-3, 80	5.40	1.509	208-4, 1-10	1/0.21	1.510
2R-3, 114	5.74	1.365	20R-6, 81-88	182.01	1,650
2R-4, 50	6.60	0.904	21R-1, 100-110	184.30	1.420
2R-4, 100	7.10	0.746	21R-2, 116-123	185.46	1.660
2R-5, 50	8.10	0.662	21R-3, 65-73	186.95	1.720
2R-5, 100 2R-6, 50	8.60	1.212	21R-4, 98-108	188.78	1.620
3R-1 80	12.00	1 189	22R-1, 8-15	190.28	1,780
3R-2, 50	13.20	1.338			

Figure 28. Thermal conductivity at Site 712.

Figure 29. Index properties (wet-bulk density, water content, porosity, and grain density) at Site 713.

Figure 30. Carbonate content of samples for which the index properties were measured at Site 713.

Figure 31. Compressional-wave velocity (V_p) , computed acoustic impedance, and wet-bulk density in the sedimentary section at Site 713.

Figure 32. Shear strength at Site 713.

Figure 33. Thermal conductivity at Site 713.

Figure 34. Compressional wave-velocity (V_p) , acoustic impedance, and wet-bulk density of basalts and interbedded nannofossil chalks at Site 713.

Table 13. Compressional-wave velocity, wet-bulk density, and acoustic impedance of the basement section at Site 713.

Section interval (cm)	Depth (mbsf)	V _p (m/s)	Wet-bulk density (g/cm ³)	Acoustic impedance (g/cm ² ·s·10 ⁵)
115-713A-				
13R-1, 18	107.88	4474	2.67	11.90
13R-1, 59	108.29	3705	2.57	10.18
13R-1, 112	108.82	4446	2.76	12.27
13R-2, 29	109.42	4847	2.74	13.28
13R-2, 34	109.47	4681	2.82	13.20
13R-2, 91	110.04	4918	2.68	13.18
14R-1, 48	117.68	5410	2.90	15.68
14R-2, 69	119.36	4650	2.77	12.88
14R-3, 80	120.59	5121	2.90	14.85
14R-4, 8	121.31	5248	2.88	15.11
15R-1, 73	127.43	5201	2.88	14.97
15R-3, 46	130.16	5062	2.84	14.37
15R-5, 18	132.88	4696	2.76	12.96
16R-2, 117	138.66	2165	1.70	3.68
16R-3, 73	139.73	2248	1.61	3.61
16R-4, 134	141.74	2291	1.69	3.87
17R-1, 11	145.81	2434	1.79	4.35
17R-2, 38	147.58	2625	1.86	4.88
17R-4, 26	150.53	2212	1.82	4.02
17R-4, 122	151.49	2104	1.80	3.78
18R-1, 24	155.44	3224	2.95	9.51
19R-1, 62	165.02	3291	2.93	9.64
19R-1, 123	165.63	5882	2.92	17.17
19R-2, 8	165.98	5222	2.87	14.98
19R-2, 37	166.27	3127	2.86	8.94
19R-2, 54	166.44	3441	2.88	9.91
19R-3, 25	167.65	5942	2.98	17.70
19R-3, 52	167.92	3115	2.99	9.31
20R-1, 15	174.05	5909	2.98	17.60
20R-1, 43	174.33	5061	2.89	14.62
20R-1, 96	174.86	5232	2.92	15.27
20R-1, 139	175.29	5376	2.87	15.42
20R-2, 24	175.64	5464	2.87	15.68
20R-3, 36	177.26	5359	2.98	15.96
20R-4, 46	178.66	5601	2.95	16.52
20R-5, 31	180.01	5627	3.08	17.33
20R-6, 12	181.30	5240	2.92	15.30
21R-1, 45	183.75	5590	2.92	16.32
21R-2, 67	185.47	4855	2.96	14.37
21R-3, 134	187.64	5746	2.98	17.12
22R-1, 26	190.46	5356	2.95	15.80

Figure 35. Bathymetry and seismic lines in the region of Sites 712 and 713 at the northern margin of the Chagos Bank.

Figure 36. The JOIDES Resolution single-channel seismic (SCS), water-gun reflection profile over Sites 712 and 713. The clear basement reflector steps up to the north between the sites, but generally it slopes down in a series of ~ 100 -m offsets. Sediment thickness varies between 100 and 200 m.

Figure 37. Detailed seismic stratigraphy at Sites 712 and 713 reveals several distinct reflectors; at 0.05, 0.08, and 0.18 s (twoway traveltimes). From the JOIDES Resolution single-channel seismic (SCS), water-gun reflection profile.
SITE		712	2	но	LE	A	12		CO	RE	1R C0	RE	D	NT	ERVAL 2892.4-2901.8 mbsl: 0.0-9.4 mbsf
T	BIO	SSIL	AT.	ZONE	TER	67	531					88.	50		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTURE	SAMPLES	LITHOLOGIC DESCRIPTION
ш		16)								-	- + -	1	1		FORAMINIFER-NANNOFOSSIL OOZE
J. PLIOCEN		N 12 (NN							1	0.5				*	Major lithology: Foraminifer-nannofossil ooze, very pale brown (10YR 7/3, 8/3) to white (10YR 8/1, 8/2), weakly bioturbation mottled. Much of core is slightly to moderately disturbed. SMEAR SLIDE SUMMARY (%):
2		ľ									[+_+_	3	Ŧ		1, 80 5, 80 D D
									2	conductor.			***		TEXTURE: 30 Sand 40 30 Silt 10 20 Clay 50 50
												1			Quartz Tr Tr
									2	diam.		\$	1		Mica Tr — Clay 15 5 Foraminifers 40 40 Nannofossiis 45 53 Radiolarians Tr 1 Sponge spicules — 1
_		(12)	e							confirm			1		
OWER PLIOCENE	N 19 - N 18	CN 11 (NN 13 - NN	igaster pentas zon	V. jouseae zone					4	and and and			****		
Ľ		CN 106 -	Spon	1					5	national mark	+++++++++++++++++++++++++++++++++++++++	• • • •	1	*	
									6	- Interface -				TWC	
	AG	AM	CG	CM					7						

	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	RACI	TER	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
LOWER PLIOCENE	N 19 - N 18	CN10b CN 10c - CN 11 (NN 13 - NN 15)	Stichocorys peregrina	T, CONVEX8 ZONE					1 2 3 4 5				*	FORAMINIFER-NANNOFOSSIL OOZE and FORAMINIFER-BEARING NANNOFOSSIL OOZE Major Ilithology: Foraminifer-nannofossil ooze, white (10YR 8/2) to very pale brown (10YR 7/3), weakly color mottled; grading downcore to foraminifer-bearing nannofossil ooze, white (N9), homogeneous, with scattered pyrite stains and a few thin, faint light gray (5Y 7/1) horizons where indicated in Sections 4, 5, and 6. Note: Section 3 was cut 13 cm too long, thus confusing true sub- bottom depths in deeper sections. True section breaks are therefore plotted with dashed lines. SMEAR SLIDE SUMMARY (%): 1, 80 3, 80 D D TEXTURE: Sand 30 20 Silt 15 10 Clay 55 70 COMPOSITION: 10 10 Quartz Tr Tr Foraminifers 35 20 Nannofossils 55 69 Dalomite — 1 Radiolarians 2 3 Sponge spicules Tr 2

TIN	BIO FO	SSIL	CHA	RACT	ER	cs	TIES					URB.	RES		
TIME-ROCK L	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETI	PHYS. PROPER	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTU	SAMPLES	LITHOLOGIC DESCRIPTION
		AM							1	0.5				*	FORAMINIFER-BEARING NANNOFOSSIL OOZE Major lithology: Foraminifer-bearing nannofossil ooze, white (N9) to very light gray (N8, 5Y 8/1), homogeneous, with numerous faint ligh yellowish gray (5Y 7/1) to light gray (N7) horizons as indicated in Sections 3 and 4. Pyrite stains were also observed in Section 4, 50–100 cm. SMEAR SLIDE SUMMARY (%):
CENE		(11)	ima	ха					2						1,80 3,42 D D TEXTURE: D Sand 20 15 Silt 10 20 Clay 70 65 COMPOSITION: E E
UPPER MIO	N 18	CN 9D INN	D. penult	T. CONVE					3			1		*	Quartz — Tr Clay 5 8 Volcanic glass Tr 1 Foraminifers 20 15 Nannofossils 69 65 Diatoms Tr 6 Radiolarians 3 5 Sponge spicules 3 Tr Fish remains Tr —
									4					OG	
	AG	AM	CM	CM					5	_	 				

NI T	BI0 FOS	SSIL	CHA	RACT	ER	\$9	IES					URB.	ŝ		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERI	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
UPPER MIOCENE	N 17 - N 16	CN 8 (NN 10) CN 9b (NN 11)	D. antepenultima						1 2 3	0.5				*	FORAMINIFER-BEARING NANNOFOSSIL OOZE Major lithology: Foraminifer-bearing nannofossil ooze, grayish white (N8) to very light greenish gray (5G 8/1), homogeneous, with numerous faint light yellowish gray (5Y 7/1) to light gray (N7) horizons as indicated in Sections 1 and 2. Core disturbance in Section 1 has deformed these slightly darker horizons. Thin turbidite consisting of a slightly coarser, white (10YR 8/2) foraminifer-nannofossil ooze, with sharp base at Section 2, 95 cm. SMEAR SLIDE SUMMARY (%): 1, 80 D TEXTURE: Sand 15 Silt 20 Clay 65 COMPOSITION: Clay 5 Volcanic glass Tr Foraminifers 15 Nannofossils 65 Numerice 1
	AM	CM	RM	RP											Radiolarians 8 Sponge spicules 6

5
Ξ
H
ŝ
4
12
3
-
S

712A-5R 1

5

10

15

20-

25

30-

35

40-

45

50-

55-

60-

65

70

75-

80-

85-

90-

95

100-

05-

110-

115-

120-

125-

130-

135-

140

145-

150

SITE		712	2	но	LE	. ,	1		COF	RE	8R 0	ORE	D	NT	ERVAL 2959.6-2969.2 mbsl; 67.2-76.8 mbsf
NIT	FO	SSIL	АТ. СНА	ZONE	TER	57	531					.BB.	ES		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
		Barren		Barren					cc	4		11			 CALCAREOUS WACKESTONE and PACKSTONE PEBBLES Recovered material consists of three limestone pebbles in the CC: a. Wackestone, one specimen (4×2×2 cm), white (N9), with preserved bryozoans and moldic porosity. b. Packstone, two specimens (2×1×1 cm each), white (N9), with unidentifiable grains; both have moldic porosity, but one specimen shows sparry infilling of molds.
	A BII FO Sta	9F	2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3					'EF	COL	RE	1 OR (CORE, DISTURE,	CTURES	INT	ERVAL 2979.8-2988.5 mbsl: 86.4-96.1 mbsf

7	FUS	SIL	CHA	RAU	IEH	60	1					5	ŭ		
TIME-ROCK UI	FORAMINIFERS	NANNOF OSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPER'	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
UPPER OLIGOCENE	Barren	CM CP 19a (NP 24)	Barren						cc		. 1 1 1	N I			FORAMINIFER-BEARING NANNOFOSSIL CHALK CC contains several pebble-sized pleces of white (N9) foraminifer- bearing nannofossil chalk, and a single small fragment of well-lithified foraminifer grainstone.

712A-8R CC 712A-10R CC 5-5 10-10 15-15-20-20-25-25-÷ 30-30-F 35-35--40-40r 45-45-F 50-50--55-55--60-60--65-65--70-70--75-75--80-80-1 85-85--90-90-95-95-100-100-105-۲ 105-110-110-17 115ť 115-120-120-F 125-125r 130-130t 135-135 ť 140-140-145--145-150-150-1 15

-

1

F

-

-

÷

-

4

H

H

H

÷

NI T	BIO FOS	STR	CHA	CONE/	R	IFS .					JRB.	SS		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Contraction of the	DUVE DDOPED	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DIST	SED, STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
-I GOCENE	GOCENE mixed	(NP 24)		ren				1	0.5		× × × × × ×			LIMESTONE RUBBLE Recovered material consists entirely of a drilling rubble made up of small angular to subrounded recrystallized limestone pebbles.
UPPER 0	EOCENE & OL	CP CP 19a		Bar				2		VOID	×			
								3	-		×			

SITES 712/713

111	BIO	SSIL	CHA	RACT	ER	8	IES					RB.	SI		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
		AM							1	0.5		11111	******		Interbedded FORAMINIFER-BEARING NANNOFOSSIL CHALK and VOLCANIC ASH Major lithology: Foraminifer-bearing nannofossil chalk and mafic volcanic ash layers, complexly interbedded and heavily bioturbated. Pure chalk layers are white (10YR 8/2), light gray (10YR 7/2), to very pale brown (10YR 8/3), while concentrated ash layers are grayish brown (2.5Y 5/2), very dark gray (N3), to very dark grayish brown (2.5Y 3/2). Chalk layers containing variable proportions of dispersed ash typically range in color from gray (6Y 5/1), light olive brown (2.5Y 5/4), to light brownish gray (2.5Y 6/2). Volcanic ash makes up an estimated 25–30%
MIDDLE EOCENE	P 11	CP 14b (NP 17)		Barren					2			11111	1=1=1-	* **	of the core by volume. Minor lithology: Clay-bearing nannofossil chalk, distinctive light yellowish brown (10YR 6/4), moderately bioturbated. This lithology occurs rarely as thin lenses in Section 1, 85-90 cm, Section 2, 25-27 and 103-105 cm, and Section 3, 55-58 cm. Several normal microfaults were observed in Section 2, centered on about 18, 63, and 142 cm. Note: Section 1 was cut short by mistake and sediments in Sections 1
										- I		1	2 2		and 2 are actually continuous. SMEAR SLIDE SUMMARY (%):
									3			1	2 2		2, 56 2, 93 2, 104 3, 113 3, 118 M D D M D TEXTURE:
	СР	AN								1		/	i	*	Sand 10 15 5 Silt 70 5 5 90 15 Clay 20 80 90 5 85
							- 2								COMPOSITION:
															Quartz - - Tr Tr -<
0															Radiolarians If — — 4 Sponge spicules — 5 — 2 Calcispheres — — — 1

ī	FOS	SIL	CHA	RACI	ER	0	LIE8					URB.	ES		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERI	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
YLEISIUCENE	AG N 22	AG CN 14a (NN 19)	FM A. angulare	RP N. reinholdii					1 2 3	0.5		······································	1	*	FORAMINIFER-NANNOFOSSIL OOZE Section 1, 0-70 cm: Badly disturbed by drilling, this interval consists of a coarse, artificially-graded foraminiferal sand (ooze), light gray (10YR 7/2) in color. Major lithology: Foraminifer-nannofossil ooze, very pale brown (10YR 8/2) to light gray (10YR 7/2), moderately disturbed, with faint distorted mottling. Section 1, 70-152 cm. SMEAR SLIDE SUMMARY (%): 1, 120 D TEXTURE: Sand 35 Silt 15 Clay 50 COMPOSITION: Volcanic glass Tr Accessory minerals: Opaques Tr Foraminifers 45 Nannofossils 55 Radiolarians Tr Sponge spicules Tr

713A-1R	1
5-	
10-	1
15-	
20-	
25-	
30-	
25	100
35-	The state
40-	
45-	
50-	12/2-
55-	-
60-	193-
65-	
70-	-
75-	
80-	-
85-	1250 -
90-	-
95-	-
100-	
105-	-
110-	-
115-	
120-	
125-	
130-	
135-	50
140-	and a
145-	
150-	CALCULATION OF THE PARTY OF THE
	Charles -

SITE		13		HOL	E	A	-	CO	RE	2R CC	RE	D	NTI	RVAL 2911.4-2921.0 mbsl; 1.6-11.2 mbsf
L.	FO	STR	CHA	RACTE	ER of	ŝ					JRB.	ŝ		
TIME-ROCK UI	FORAMINIFERS	NANNOF OSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED, STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
									:	- + -	1			FORAMINIFER-NANNOFOSSIL OOZE
щ		(6)						1	0.5		1		•	Major lithology: Foraminifer-nannofossil ooze, white (10YR 8/2) to light gray (10YR 7/2), homogeneous but irregularly mottled. Core is badly disturbed in Section 1, 0-60 cm.
CEN		N							1.0	+ +				SMEAR SLIDE SUMMARY (%):
ST0		() e								+++	1			1, 71 3, 73 5, 74 D D D
Ē		14								<u>+</u> ++				TEXTURE:
đ		CN							-	+++				Sand 30 30 35 Silt 10 10 10
								2		+ +				Clay 60 60 55
		Σ							-	+++				COMPOSITION:
-		MA				Ľ				↓+_+_				Volcanic glass — — Tr Dolomite Tr — —
		A							1	<u> </u> +_+				Foraminifers 30 30 35 Nannofossils 70 70 65
										+++-				Radiolarians Tr Tr Tr Sponge spicules Tr Tr —
								3		+++-			*	
									1	↓+_+_				
										+++				
								-		+++				
		18								+++-				
ENE	0	NN				1			1 -	+++-				
00	-	+	tas	eae				1		+_+ 				
PL	1	16	Den	ons					1	+++-				
ш	18	CNN	s.	~						+ +			TW	
ddf	z	12				1				+++-				
2		CN							1	<u>+++</u> -				
								5		+++			*	
										+++-				
1										+++-				
								\vdash		<u>+++</u> +-				
								6		<u>_+_+</u>				
	5	5	(1)	0				0		+++-				
	AA	AN	S	5						+ +				

NIT	BIC	STR	CHA	ZONE	ER	53	LIES	8				URB.	tE S		
TIME-ROCK U	FORAMINIFERS	NANNOF OSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERI	CHEMISTRY CaC	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
									1	0.5				*	FORAMINIFER-NANNOFOSSIL OOZE Major lithology: Foraminifer-nannofossil ooze, white (10YR 8/2) to ligf gray (10YR 7/2), faintly mottled, with much of the core disturbed. Degree of consolidation ranges widely from firmer (undisturbed) ooze in Section 1 to very soft and soupy (disturbed) ooze in Sections 3, 4, and 5.
											++++				SMEAR SLIDE SUMMARY (%):
				8							+ + +				1, 70 4, 70 6, 70 D D D
		115)		convex	1				2						Sand 30 30 30 Silt 10 10 10 Claw 60 60 60
ш		- ND		٦.							+ + + -				COMPOSITION:
CEN		12	вш						_	-	 	1			Clay 5 5 — Volcanic class — Tr —
PL10	1 7 b	(NN	JULT								[+_+]	1			Foraminifers 30 30 30 Nannofossils 65 65 68
LOWER F	z	- CN 11	D. pei						3	1					Diatoms — 1 Radiolarians Tr — Tr Sponge spicules Tr Tr 1
		CN 10													
									4					*	
										-	<u></u>	•		1.00	
										-	+++	00		00	
									5		+ + - + _+ -	0			
										-	+ +	0			
		W									+ + +				
ENE		A									+++-				
MIOC									6		+++-+++++++++++++++++++++++++++++++++	Ì		٠	
PER		4 9b													
- UF		- CN							-		$\begin{array}{c} + + + - \\ + + + - \end{array}$	1			
+	W	W	W	N					-	-	++++	Į.			

F
E
1
12
5
2
ŝ

SITE	7	13	6	но	LE	A	1	_	co	RE	4R C0	RE	D	NT	RVAL 2930.6-2940.3 mbsi; 20.8-30.5 mbsf
NIT	FOS	STRA	CHAI	RACI	ER	ŝ	TIES					URB.	RES		
TIME-ROCK U	FORAMINIFERS	NANNOF OSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETI	PHYS. PROPER	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
															FORAMINIFER-BEARING NANNOFOSSIL OOZE
									1	0.5		1		*	Major lithology: Foraminifer-bearing nannofossil ooze, homogeneous, white (N9) except for light gray to grayish white (N7, N8) vertical streaks and irregular patches, suggesting flow-in and considerable disturbance throughout much of the core.
															SMEAR SLIDE SUMMARY (%):
									F	-		1			1, 78 4, 89 D D
												15		1	TEXTURE:
									2			1			Sand 20 20 Silt 20 20
								1		1		1			Clay 60 60
										3		11			Composition:
										-		1			Volcanic glass — Tr Foraminifers 20 25
										1		15			Nannofossils 75 70 Diatoms — Tr
									3			1			Radiolarians Tr Tr Sponge spicules Tr Tr
1										1					
NE		2	9	ø						3					
OCE	0	- 7	It im	enic					\vdash	-		15			
ž	-	UN I	nuə	100				L		1		1			
PER	z	96	д.	1. m					4			1			
d D		S	7	<			1							*	
												ł			
									L	-		Ľ		hw	
												1			
	1							1	5	-		12			
												15			
							1	1		1		12			
			l						L		<u>+</u>	1			
											<u>+</u>	1			
											<u></u>	12			
									6			1			
												1			
											<u> </u>	15			
	-	-							1			1			
	AN	AN	CG	AG					ľ						

SITE		713	3	HO	LE	4	4	_	CO	RE	5R CC	RE	D	INT	ERVAL 2940.3-2949.9 mbsl; 30.5-40.1 mbsf
NIT	BIC	STR	AT. CHA	ZONE	TER	57	LIES					URB.	ES		
TIME-ROCK U	FORAMINIFERS	NANNOFORSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETI	PHYS. PROPER	CHEMISTRY	SECTION	ME TER8	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
MIDDLE EOCENE	CP P 11	AM CP 14b (NP 17) AM	Barren	Barren					1	0.5			222 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	* *	$ \begin{array}{c} CLAY-BEARING \ FORAMINIFER-BEARING \ NANNOFOSSIL \ OOZE \ and \ CLAY-BEARING \ FORAMINIFER-BEARING \ NANNOFOSSIL \ CHALK \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$

NIT	B10 F0	SSIL	CHA	ZONE	E/ TER	cs	TIES					URB.	SES		
TIME-ROCK U	FORAMINIFERS	NANNOF OSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETH	PHYS. PROPER	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
		AM							1	0.5 1.0 1.1 1.1 1.1 1.1 1.1 1.1		1111			Interbedded FORAMINIFER-BEARING NANNOFOSSIL CHALK and VOLCANIC ASH Major lithology: Foraminifer-bearing nannofossil chalk and mafic volcanic ash layers, complexly interbedded and heavily bioturbated. Chalk layers range from white and very pale brown (10YR 8/2, 8/3, 7/3) to light gray (2.5Y 7/2) and light brownish gray (2.5Y 6/2), with colors depending on mixture of ash and chalk. Ash layers vary from black (N2) and grayish brown (2.5Y 5/2) to light brownish gray (2.5Y 6/2), depending on degree of alteration and disseminish gray (2.5Y 6/2), depending on degree of alteration and disseministion. Section 1, 94–150 cm, Section 2, and Section 3, 0–63 cm, contain a highly disturbed drilling paste consisting of a chaotic mixture of nannofossil ooza, ash, and numerous fragments of indurated chalk. N stratigraphic continuity. Minor lithology: Nannofossil-bearing clay, very pale brown to light yellowish brown (10YR 7/3, 6/4), three thin layers in Section 3 between 68-90 rd
MIDDLE EOCENE	P 11	CP 14b (NP 17)	T. triacantha	Barren					3			/-//	**	IW OG	be-su cm. Thin, graded sequence (turbidite?) in Section 4, 55-59 cm. SMEAR SLIDE SUMMARY (%): 4, 110 D TEXTURE: Sand 6 Silt 4
									4		$ \begin{array}{c} u_{11} w_{12} = u_{12} & w_{11} w_{12} = u_{12} & w_{11} w_{12} & w$	/ イ/ イ/ / -	****	*	Clay 90 COMPOSITION: Quartz Tr Clay 5 Volcanic glass Tr Foraminifers Tr Nannofossils 89 Radiolarians 4 Sponge spicules 2
	P	AM	W						5			イイン	11		

SITE		713	3	HO	LE	4	1		CO	RE	7R C	ORE	DI	NT	ERVAL 2959.5-2969.2 mbsl; 49.7-59.4 mbsf
E	BIO FO	SSIL	AT.	ZONE	E/		E S					38.	60		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETICS	PHYS. PROPERTI	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTUR	SED. STRUCTURE	SAMPLES	LITHOLOGIC DESCRIPTION
MIDDLE EOCENE	CP	AM CP 14a (NP16) CP 14b (NP 17)	CG T. triacantha	Barren					1 2 3 4 5 6	0.5	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	***************************************	* *	Interbedded NANNOFOSSIL CHALK, FORAMINIFER-BEARING NANNOFOSSIL CHALK, and VOLCANIC ASH Major lithology: Nannofossil chalk, foraminifer-bearing nannofossil chalk, and mafic volcanic ash layers, complexity interbedded and heavily bioturbated. Chalk layers range from white and very pale brow (10YR 8/2, 8/3, 7/3) to light gray (2.5Y 7/2) and light brownish gray (2.5Y 8/2), depending on mixture of ash and chalk. Concentrated ash layers vary in color from black (N2) and olive (5Y 4/3) to dark brown (7.5YR 4/2). A number of ash layers are either graded, cross-stratified, or show parallel laminations on a mm scale. Minor lithology: Sponge splcule-bearing clayey nannofossil chalk, very pale brown (10YR 7/4), present as thin layers in Section 3, 64–67, 71–73, 118–121, and 134–139 cm. A reverse microfault was observed, offsetting lithologies in Section 1, 25–30 cm. SMEAR SLIDE SUMMARY (%): Sand 50 5 10 5 Silt 30 22 10 80 Clay 20 70 80 15 COMPOSITION: Feldspar 5 - 5 - 5 Nannofossils - 50 85 5 Diatoms - Tr Radiolarians 10 4 5 - Sponge splcules 13 15 5 - Calcispheres - 1

SITE	810	713 05TR	3 AT.	HC				<u> </u>	COI	RE	8R C(DRE	D	NT	ERVAL 2969.2-2978.9 mbsl; 59.4-69.1 mbsf
TIME-ROCK UNIT	FORAMINIFERS 0	NANNOFOSSILS	RADIOLARIANS	SWOLVIG	TER	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
IDDLE EOCENE	P 11	P 14a (NP 16) AM	T. triacantha	IDDLE EOCENE					1	0.5	0.8 10 2 11 10 2 10 2 10 2 2 2 11 0 0 2 11 2 0 2 11 0 0 2 11 2 0.0 1 2 0 11 10 0 0 11 2 0 11 0 2 11 2 0 2 11 0 0 2 11 2 1 2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	**********		Interbedded NANNOFOSSIL CHALK and VOLCANIC ASH Major lithology: Nannofossil chalk and mafic volcanic ash, complexily interbedded and heavily bioturbated. Chalk layers range from white and very pale brown (10YR 8/2, 8/3, 7/3) to light gray (2.5Y 7/2) and light brownish gray (2.5Y 6/2), with color depending on the mixture of ash and chalk. Ash layers are typically black (N2) and dark gray or very dark gray (5Y 4/1, 3/1) to dark olive gray (5Y 3/2), and range in grain size from fine to coarse sand. Section 3, 93–150 cm, is moderately fractured, with large chalk fragments in a matrix of highly disturbed drilling paste. SMEAR SLIDE SUMMARY (%): 3, 60 D TEXTURE: Sand 15 Silt 10
N	CP	AM CP13c C	CG	RP					3			~~~~ + + / / /		*	Clay 75 COMPOSITION: Quartz Tr Feldspar Tr Clay 5 Volcanic glass 8 Foraminifers 1 Nannofossils 73 Radiolarians 8 Sponge spicules 5

LIN NI	FOS	STR	CHA	RAC	TER	69	IES					JRB.	ŝ					
TIME-ROCK UI	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	BECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	u	ITHOL	OGIC DI	ESCRIPTION
EOCENE	1	(NP 15) AM	cantha	ren .					1	0.5	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11111	****	**	Interbedded MICRITE CH. Major lithology: Micriti and heavily bioturbate unrecognizable beginni (10YR 8/2) to very pale black (N2). Chaik with y gray (5Y 6/1). Minor lithology: Claye)	IALK a te cha d. Fin hing w brown varyin varyin	and VC ilk and e carbo lith this n (10YF ng prop rite cha	VICANIC ASH volcanic ash, complexly interbedded onate making up chalk is mostly s core. Chalk layers range from white 8/3), and ash layers are typically ortions of admixed ash is mostly alk, very pale brown (10YR 7/4), in
MIDDLE	ď	CP 13c	T. tria	Bari					2			1111	*** / ***		thin (1 cm) layers in Sei 122 cm. A reverse microfault wi <i>Zoophycos</i> -type burrow	vas ob: w is pr Y (%):	served reserve	at Section 2, 80 cm, and a d in Section 2, 100-101 cm.
	СР	AM	SG					1	cc	-		/	#	Ĺ	1, D TEXTURE:	, 100	1, 107 D	2, 118 M
															Sand 10 Silt 15 Clay 75	0 5 5	5 15 80	15 70 15
															Feldspar — Clay — Volcanic glass — Micrite 75 Foraminifers 55 Radiolarians 55 Radiolarians 55 Sponge spicules 10 Calcareous			15 80 5

SITES 712/713

EIN FO	OSSIL	CH	ZONE	/ 'ER	cs	TIES					URB.	RES		
TIME-ROCK L	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETI	PHYS. PROPER	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
MIDDLE EOCENE CP P 11	AM CP 13C (NP 15) AM	CM T. triacantha	Barren					1 2 cc	0.5	$\begin{array}{c} (y_{1}) = (y_{2}) =$	~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	***************************************	*	Interbedded MICRITE CHALK and VOLCANIC ASH Major lithology: Micrite chalk and volcanic ash, complexly interbedde, and heavily bioturbated. Chalk layers above Section 2, 40 cm, are while (N9, 10/N8 8/1, 8/2), very pale brown (10/N7 7/3), and light gray to light brownish gray (52 Y 7/2, 6(2), Ash layers are black (N9) to dark gray (5Y 4/1), with mixtures of ash and chalk mostly gray (5Y 5/1, 6/1). Below Section 2, 40 cm, both sediments and ash have an olive green tint to them, suggesting a possible redox transition. Chalk is light olive gray to pale olive (5Y 7/2, 6(2, 6/3), and ashes are mostly dark greenish gray (5GY 4/1). Minor lithology: Trachytic volcanic ash, dark gray (5Y 4/1), silt to very fine sand size grains, unconsolidated and very fresh in appearance, in Section 2, 13-41 cm. Below this major ash horizon, sediments all have a greenish hue as described above. A normal microfault is observed in Section 1, 32-35 cm. SMEAR SLIDE SUMMARY (%): 1, 10 2, 25 2, 48 M M TEXTURE: Sand 10 80 Sitt 20 10 Clay 70 10 Quartz Tr Tr Clay 65 5 10 Volcanic glass 292 85 Accessory minerals: Micro and a seconic as a seconic a

NIT	BI0 FO	SSIL	AT.	ZONE	E/ TER	ce	TIES					URB.	RES	Γ					
TIME-ROCK L	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETI	PHYS. PROPER	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTU	SAMPLES		LITH	DLOGIC D	ESCRIPT	10N
		AM							1	0.5		1//////	******	* *	Interbedded MICRITE Major lithology: M interbedded and h clay-bearing, and r greenish gray (5GY layers are black (N in some cases are laminations. Thick, 0-23 cm, and from	CHALI icrite cl eavily b ange in 6/1), wi 2) and c normal , concer Section	K and VC nalk and loturbati color fri th trace lark gray by grade trated a 13, 132 c	DLCANI volcani ad. Chal om light amount (5Y 4/1 d or sho ash laye cm, to S	C ASH k layers, complexily k layers are occasionally greenish gray (5GY 7/1) to ts of glauconite present. Ash) to dark green (5G 4/1), and w very fine parallel rs are found in Section 1, ection 4, 44 cm.
EOCENE	-	VP 15)	olfieri	en					2			1111	++=-		Microfaults are cor Zoophycos burrow	mmonly In Sect IARY (%	preserv ion 2, 72 o):	ed in Se -73 cm.	ctions 1 and 2, as is a large
DLE	d	13c (1	mong.	Barr						1.1.1.1		1	22.		TEXTURE:	1, 1 M	1, 80 D	1, 131 M	4, 41 M
MIC		СР	0						_			111			Sand Silt Clay COMPOSITION:	20 50 30	5 5 90	15 70 15	10 75 15
									3			111-	1 22		Quartz Feldspar Clay Volcanic glass Accessory minerals:		Tr 	10 	3 83
	FР	RG	CG						4	1 1 1				*	Opaques Glauconite Pyroxene Foraminifers Nannofossils	2 Tr 30	Tr 1 5	5 2 1	7
															Radiolarians Sponge spicules Micrite Calcispheres	5 3 -	5 3 76 Tr	1111	5 2

SITES 712/713

÷	FOS	STR	CHA	RACT	ER	ø	IES					RB.	S		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
MIDDLE EOCENE		AM CP 13c (NP 15)	Barren	Barren					2 cc	0.5	$ \begin{array}{c} \begin{array}{c} & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ \end{array} \\ \begin{array}{c} & & & & & & & \\ \end{array} \\ \begin{array}{c} & & & & & & \\ \end{array} \\ \begin{array}{c} & & & & & \\ \end{array} \end{array} \\ \begin{array}{c} & & & & & \\ \end{array} \end{array} \\ \begin{array}{c} & & & & & \\ \end{array} \end{array} \\ \begin{array}{c} & & & & & \\ \end{array} \end{array} \\ \begin{array}{c} & & & & & \\ \end{array} \end{array} \\ \begin{array}{c} & & & & & \\ \end{array} \end{array} \\ \begin{array}{c} & & & & & \\ \end{array} \end{array} \\ \begin{array}{c} & & & & & \\ \end{array} \end{array} \\ \begin{array}{c} & & & & & \\ \end{array} \end{array} \\ \begin{array}{c} & & & & & \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} & & & & & \\ \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} & & & & & \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \end{array} \\ \begin{array}{c} & & & & & \\ \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} $ \\ \begin{array}{c} & & & & & \\ \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \end{array} \\ \begin{array}{c} & & & & \\ \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \bigg \\ \end{array} \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \bigg \bigg \bigg \\ \end{array} \\ \end{array} \\ \end{array} \\ \bigg \bigg \\ \\ \end{array} \\ \end{array} \bigg \bigg \bigg \\ \\ \end{array} \\ \end{array} \\ \end{array} \bigg \bigg \\ \\ \end{array} \\ \end{array} \\ \bigg \bigg \bigg \bigg \bigg \\ \\ \end{array} \bigg \\ \bigg \bigg \bigg \bigg \\ \\ \end{array} \\ \end{array} \\ \bigg \bigg \bigg \\ \\ \end{array} \bigg \bigg \bigg \bigg \\ \\ \end{array} \\ \end{array} \bigg \bigg \bigg \bigg \bigg \bigg \bigg \bigg \\ \\ \end{array} \\ \end{array} \\ \bigg \bigg \bigg \bigg \\ \end{array} \\ \end{array} \\ \end{array} \bigg \bigg \\ \end{array} \\ \end{array} \\ \end{array} \\ \bigg \bigg \bigg \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \bigg	ミンシンシンシンシン	*******	23%2	Interbedded MICRITE CHALK and VOLCANIC ASH Major lithology: Micrite chalk and volcanic ash layers, complexly interbedded and moderately to heavily bioturbated. Chalk layers are typically a mixture of greenish gray (5GY 71, 61) to light greenish gray (5GY 71), while ash layers range from black (N2), when concentrated, to dark greenish gray (5GY 4(1), when more altered and disseminated. Microtautiting is evident in Section 1, 30–60 cm, and in Section 2, 90–100 cm. CC: only basalt recovered (see visual core description).

115-713A-13R-1

UNIT 1 (CONTINUED): HIGHLY VESICULAR PLAGIOCLASE-PHYRIC HAWAIITIC BASALT

Pieces 1-13

Continuous with 115-713A-12R-CC, Unit 1

PHENOCRYSTS: Plagioclase, subhedral, <1 mm. GROUNDMASS: Fine grained, rich in plagioclase. Plagioclase >>> mafic phases. COLOR: Gray (N4).

VESICLES: Homogenous distribution, round to ellipsoid, <3 mm. Partly rimmed by gray zeolite-like minerals, especially in Pieces 11C and 11D.

ALTERATION: Slightly altered to fresh.

115-713A-13R-2

UNIT 1 (CONTINUED): HIGHLY VESICULAR PLAGIOCLASE-PHYRIC HAWAIITIC BASALT

Pieces 1-18

Continuous with 115-713A-13R-1, Unit 1

115-713A-14R-1

UNIT 3: FINE-GRAINED PLAGIOCLASE BASALT

Pieces 1-5D

PHENOCRYSTS: Plagioclase - 1-3 mm, laths and rounded.

Olivine - 0.5-1.0 mm.

Pyroxene - 0.5-1.0 mm.

GROUNDMASS: Microcrystalline to fine grained.

VESICLES: Rare, round.

ALTERATION: Varies from slight to moderate. Alteration is more pervasive near veins and fractures. Altered olivine near top of unit. Celadonite sometimes fills voids.

VEINS/FRACTURES: <1%, filled with calcite and clay, most <1 mm thick. Clay is found in fractures and volds.

Piece 3A: Calcite-filled veln.

Piece 3B: Clay-filled veins.

Pieces 4A and 5A: Veins, filled with calcite and clay minerals.

VOIDS: Rare, sometimes filled with sulfide, irregular, coated with spheres of green clay(?).

115-713A-14R-3

UNIT 3 (CONTINUED): FINE-GRAINED PLAGIOCLASE BASALT

Pieces 1A-8

Continuous with 115-713A-14R-2, Unit 3

VEINS/FRACTURES: Piece 1C: Vein, 5 mm wide, filled with soft, blue-green dessicated clay, calcite, and black needles. Piece 7: Small veins.

VOIDS: Piece 2A: Void filled with calcite and rhodochrosite.

UNIT 3 (CONTINUED): FINE-GRAINED PLAGIOCLASE BASALT

Pieces 1-5

Continuous with 115-713A-14R-3, Unit 3

VESICLES: Piece 3: Vug or vesicle filled with olive brown (2.5Y 4/4) clay mineral. ALTERATION: Piece 1, lower part: Wide 0.5 cm band of highly altered basalt (dark in color) surrounds veins.

VEINS/FRACTURES: Piece 1, bottom: Sinuous, 1 mm wide calcite-filled veins, surrounded with highly altered basalt.

i.	BIO	STR	CHA	ZONE/ RACTER		s	Γ	Γ			RB.	s			1000
TIME-ROCK UN	FORAMINIFERS	NANNOF OSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTURE	SAMPLES	LITHOLOGIC DESCRIPTION	
		-						1	0.5	$ \begin{array}{c} & \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \right) \right) \\ \left(\left(\left(\left(\left(\right) \right) \right) \right) \\ \left($				Interbedded FORAMINIFER-BEARING NANNOFOSSIL CHALK, VOLCANIC ASH-BEARING CLAY, and VOLCANIC ASH Section 1 to Section 5, 112 cm, contain basalt (see visual core descriptions). Major lithology: Foraminifer-bearing nannofossil chalk, volcanic ash- bearing clay, and volcanic ash, complexly Interbedded with separate lithologies, moderately to highly mixed through bioturbation. Chalk layers are light gray (5Y 7/1) to light greenish gray (5Y 7/1), while concentrated ash layers are black (N2) to dark gray (N4). Ash-bearing clay layers and clay-bearing ash layers range from gray (5Y 5/1) and greenish gray (5GY 5/1) to grayish olive green (5GY 3/2).	
MIDDLE EOCENE			Barren	Barren				3	alara contra chara						
		NP 15)						5		A C L A C L	1111	~ 22			
	P11	M CP 13c (h						6			11111111	****			

115-713A-15R-1

UNIT 3 (CONTINUED): FINE-GRAINED PLAGIOCLASE BASALT

Pieces 1-4E

Continuous with 115-713A-14R-4, Unit 3

VEINS/FRACTURES: Piece 3A: Fracture filled with clay. Piece 4A: Fracture filled with clay, sulfide, and pyrite. Pieces 4D and 4E: Vein between pieces.

115-713A-15R-2

UNIT 3 (CONTINUED): FINE-GRAINED PLAGIOCLASE BASALT

Continuous with 115-713A-15R-1, Unit 3

GROUNDMASS: Base of Piece 1B and top of Piece 2A: Textural change. Piece 3C: Coarse xenoliths.

E.	BI	BIOSTRAT. ZONE/ FOSSIL CHARACTER										RB.	50					
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERTI	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTURE	SAMPLES	LITHOLOGIC DESCRIPTION			
MIDDLE EOCENE	P11	CP 13b (NP 15) AM	Barren	Barren					1	0.5		1111111111	*****		Interbedded FORAMINIFER-BEARING NANNOFOSSIL CHALK, VOLCANIC ASH-BEARING CLAY, and VOLCANIC ASH Major lithology: Foraminifer-bearing nannofossil chalk, volcanic ash- bearing clay, and volcanic ash, complexly interbedded with separate lithologies moderately to highly mixed through bloturbation. Chalk layers are light gray (5Y 7/1) to light greenish gray (5GY 7/1), while concentrated ash layers are black (N2, N3) to dark gray (N4). Ash- bearing clay layers range from gray (5Y 5/1) and greenish gray (5GY 5/1 to gravish olive green (5GY 3/2). Fine carbonate is usually of			
									2		$ \begin{array}{c} \begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array} \end{array} \begin{array}{c} & & & \\ & & & \\ \end{array} \end{array} \begin{array}{c} & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & \\ \end{array} \begin{array}{c} & & & \\ \end{array} \end{array} \begin{array}{c} & & & \\ & & \\ \end{array} \begin{array}{c} & & & \\ \end{array} \end{array} \begin{array}{c} & & & \\ & & \\ \end{array} \begin{array}{c} & & & \\ \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \begin{array}{c} & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} $ \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \end{array} \end{array} \begin{array}{c} & & \\ & \\ \end{array} \end{array} \end{array} \end{array} \begin{array}{c} & & \\ \end{array} \end{array} \end{array} \end{array} \begin{array}{c} & & \\ \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array}	111111111	****		to grayish olive green (5GY 3/2). Fine carbonate is usually of nannofossil origin, but a small proportion is unidentifiable (micrite). Microtectonic features such as microfaulting, shearing, and soft sediment deformation were observed in Sections 2, 3, and 4. SMEAR SLIDE SUMMARY (%): 3, 134, 4, 96			
									3			11/1/1/1/1	*****		M D TEXTURE: 0 Sand 40 25 Silt 20 30 Clay 40 45 COMPOSITION:			
												11111111		*	Clay 35 5 Volcanic glass 50 Accessory minerals: Micrite 8 Foraminifers 30 Nannofossils 5 64 Radiolarians 2			
									4	hardand		1111111111		*	Sponge spicules ir ir Calcispheres — 1			
		CM							5			11/1/1/	**					

SITE		713	3	HO	LE	A	4		CO	RE	17R CC	DRE	DI	NT	ERVAL 3055.5-30	065.	0 mb	sl; 14	45.7-155.2 mbsf
5	BIO FOR	STR	AT. CHA	. ZONE/ HARACTER			ES					RB.	S						
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERTI	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTURE	SAMPLES	LITHOLOGIC DESCRIPTION				
	P10								1	0.5		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	*****	*	Interbedded FORAMINI VOLCANIC ASH-BEARI Major lithology: Fora bearing clay, and volc separate lithologies r Chalk layers are light while ash layers are t bearing clay layers ra to grayish olive green	erbedded FORAMINIFER-BEJ ILCANIC ASH-BEARING CLA' Major lithology: Foraminifer- bearing clay, and volcanic as separate lithologies moderatu Chalk layers are light gray (5' while ash layers are typically bearing clay layers range fror to grayish olive green (5GY 3'	EARIN AY, and r-bearin ash, all ately to 5Y 7/1) ly blac om gra 3/2).	ARING NANNOFOSSIL CHALK, Y, and VOLCANIC ASH bearing nannofossil chalk, volcanic ash- h, all complexly interbedded with ely to highly mixed through bioturbation. Y 7/1) to light greenish gray (SGY 7/1), black (N2, N3) to dark gray (N4). Ash- m gray (SY 5/1) and greenish gray (SGY 5/1) 2).	
DCENE		P 15)		-					2			1 1111111		• *	A volcanic ash turbidite occurs in Section 2, 25–45 cm. Ash in the turbidite is very coarse sand at base and graded upward, with a sharp basal contact and fine parallel laminations in the middle of the interval. Microfaulting, shearing, soft sediment deformation, and fracture-filling are common features, particularly in Sections 3 and 4.				
MIDDLE EC	P10	CP 13b (N	Barrer	Barrer					з			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			SMEAR SLIDE SUMMAN TEXTURE: Sand Sill Clay COMPOSITION:	RY (%) 1, 139 M 20 30 50	2, 43 M 60 20 20	2, 99 D 20 30 50	4, 126 D 40 20 40
		(3)							4			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	****	*	Quartz Clay Volcanic glass Accessory minerals: Pyrite Foraminifers Nannofossils Calcispheres	2 63 25 2 8		2 8 7r 17 54 1	Tr 20 65
	H	L							cc	-		×	1						

115-713A-19R-2

UNIT 10 (CONTINUED): PLAGIOCLASE-PHYRIC HAWAIITE

Pieces 1-4H

Continuous with 115-713A-19R-1, Unit 10

GROUNDMASS: Progressive coarsening away from junction seen at 115-713A-19R-1, Piece 11, is evident when Piece 1 of this section is compared with 115-713A-19R-1 pieces.

115-713A-20R-2

UNIT 12 (CONTINUED): FELDSPAR-PHYRIC BASALT/HAWAIITE

Pieces 1A-2E

Continuous with 115-713A-20R-1, Unit 12

CONTACTS: Strongly chilled contact against 115-713A-20R-2, Unit 12, seen at base of Piece 2E.

UNIT 13: PLAGIOCLASE-PHYRIC BASALT/HAWAIITE

Pieces 3-6F

CONTACTS: Strongly chilled (glassy) contact against 115-713A-20R-2, Unit 12, top of Piece 3. Intra-flow pillow junction(?) in Pieces 6A-6C, marked by celadonite + calcite zone as wide as 3 cm.

PHENOCRYSTS: Plagioclase – Subhedral, fresh, as large as 3 mm, 15%. Olivine – Rare (≈1%), with fresh parts.

GROUNDMASS: Plagioclase, olivine, clinopyroxene, and magnetite(?).

TEXTURE: Porphyritic, with intersertal matrix texture.

VESICLES: Rare, spherical, infilled with celadonite(?).

ALTERATION: Moderate (≈20%) alteration to celadonite(?) + calcite.

115-713A-21R-4

UNIT 34 (CONTINUED): PLAGIOCLASE-PYROXENE BASALT

Pieces 1A-15

Continuous with 115-713A-21R-3, Unit 34

ALTERATION: Pieces 4A, 4B, and 4C have 10 cm area that is more altered than the rest of Unit 34. VEINS/FRACTURES: Pieces 14 and 15: Sulfides in some cracks.

ROCK NAME: Highly olivine-bearing plagioclase clinopyroxene phyric basalt WHERE SAMPLED: Middle of Unit 1

TEXTURE: Subophitic, highly porphyritic GRAIN SIZE: Fine

GRAIN SIZE: Fine		OBSERVER: MRF						
PRIMARY MINERALOGY	PERCENT PRESENT	PERCENT ORIGINAL	SIZE RANGE (mm)	APPROX. COMPO- SITION	MORPHOLOGY	COMMENTS		
PHENOCRYSTS								
Olivine		<1						
Plagioclase	5	5	0.5-2.0	An 62	Subhedral	Glomerocrysts up to 4 mm.		
Clinopyroxene	10	11	0.2–1.0	Augite	Subhedral- euhedral	Subophitic		
GROUNDMASS								
Plagioclase	15	17	0.1-0.5		Subhedral	1.5 to 1.10 width:length ratios		
Clinopyroxene	39	41	0.1-0.2	Augite	Subhedral	no to the mannenger taket.		
Oxides	1	1	< 0.1		Subhedral			
Glass/ fine groundr	nass —	25						
SECONDARY	PERCENT	REPLACING/ FILLING				COMMENTS		
Clavs	10	Groundmass?	?					
Carbonate	5	Vesicles	Calcite	(
Chlorite	15	Glass or groundmass						
VESICI ES/			SIZE					
CAVITIES	PERCENT	LOCATION	(mm)	FILLING	SHAPE	COMMENTS		
Vesicles	5		4	Calcite clas	· · · · · · ·	Vasicles also filled with a mixture of oxide laths and		
¥ 6510105	5		4	Galcite, Clay		microcrystalline mass.		

115-713A-13R-3 (Piece 3, 16-18 cm)

ROCK NAME: Sparsely clinopyroxene plagioclase phyric basalt WHERE SAMPLED: Only piece of Unit 2. Bottom-most piece in core. TEXTURE: Sparsely porphyritic

GRAIN SIZE: Fine			OBSERVER: MRF						
PRIMARY MINERALOGY	PERCENT PRESENT	PERCENT	SIZE RANGE (mm)	APPROX. COMPO- SITION	MORPHOLOGY	COMMENTS			
PHENOCRYSTS									
Plagioclase	2	2	1–2	An 64	Subhedral, equant to slightly elongated				
Clinopyroxene	1	1	0.1-0.5	Augite	Subhedral	Often in clusters with plag.			
Spinel	1	1	0.1	Magnetite	Subhedral- euhedral	, ,			
GROUNDMASS									
Plagioclase	25	25	0.1-0.5		Subhedral, laths				
Clinopyroxene	35	40	0.1-0.2		Subhedral- anhedral				
Oxides	1	1	0.05-0.10	Magnetite	Subhedral-				
Fine-grained groundmass	—	30			euhedral				
SECONDARY MINERALOGY	PERCENT	REPLACING FILLING	/			COMMENTS			
Chlorite	30	Cpx, fine ground	mass						
Clays	5	Срх	Cela	adonite. Possibl groundmass. T	ly replaces primary his area is rimmed	ol. One quarter of the slide has slightly more celadonite in by sulfides.			
Sulfides tr Groundmass				Possibly sphalerite, dark brown in thin section.					

VESICLES/ CAVITIES	PERCENT	LOCATION	SIZE RANGE (mm)	FILLING	SHAPE	COMMENTS
Vesicles	1	Even	1	Clay	Round	Clays are zoned, red iddingsite, celadonite, chlorite from the edge of the vesicle inwards.

115-713A-14R-2 (Piece 3, 70-71 cm)

ROCK NAME: Highly plagioclase clinopyroxene phyric basalt WHERE SAMPLED: Unit 3, middle of flow

TEXTURE: Subophitic, highly porphyritic

GRAIN SIZE: Fine to medium

OBSERVER: MRF

PRIMARY MINERALOGY	PERCENT PRESENT	PERCENT ORIGINAL	SIZE RANGE (mm)	APPROX. COMPO- SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Plagioclase	21	21	0.5-2.0	An 55	Laths	2-mm phenocrysts are equant, strongly zoned at rims
Clinopyroxene	41	41	0.5-1	Augite	Subhedral	Subophitic intergrowths.
Spinel	2	2	0.4-0.4	Magnetite	Euhedral	Skeletal. Could be alteration product, replacing groundmass.
GROUNDMASS						
Glass	_	29				Beplaced by chlorite.
Plagioclase	—	5				Replaced by chlorite.
Clinopyroxene	_	2				Replaced by chlorite.
SECONDARY	DEDCENT	REPLACING	/			COMMENTS
MINERALOGI	PERCENT	FILLING				COMMENTS
Chlorite	33	Plag, glass, a	augite			
Carbonate	1	Cavities	Calc	ite?		
Sulfides	2	Voids	Dark	brown, anhedr	al. Sphalerite(?).	
VESICLES/ CAVITIES	PERCENT	LOCATION	SIZE RANGE (mm)	FILLING	SHAPE	
Cavities	2	Even	1–2	Magnetite, sulfide, calcite, clay	Irregular	

115-713A-15R-4 (Piece 1, 44-46 cm)

ROCK NAME: Highly plagioclase clinopyroxene phyric basalt WHERE SAMPLED: Unit 2, 50 cm above Unit 3 TEXTURE: Intersertal, highly porphyritic GRAIN SIZE: Fine

PRIMARY MINERALOGY	PERCENT	PERCENT	SIZE RANGE (mm)	APPROX. COMPO- SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Plagioclase Clinopyroxene Spinel	10 40 5	10 40 5	0.1/ 0/1.5 0.1-0.5 0.05-0.50	An 65 Augite Magnetite	Subhedral Subhedral Euhedral, skeletal	Equant grains tend to be larger. Glomerocrysts with plagioclase. Intergrown with plag and cpx.
SECONDARY	PERCENT	REPLACING	ā/			
Chlorite Sulfides	45 tr	Groundmas Voids	S			
VESICLES/ CAVITIES	PERCENT	LOCATION	SIZE RANGE (mm)	FILLING	SHAPE	
Voids	1		1–3	Clay	Irregular	

OBSERVER: MRF

THIN SECTION DESCRIPTION

ROCK NAME: Highly plagioclase clinopyroxene phyric basalt WHERE SAMPLED: Unit 3 TEXTURE: Highly porphyritic, subophitic GRAIN SIZE: Medium

SIZE APPROX. PRIMARY PERCENT PERCENT RANGE COMPO-MINERALOGY PRESENT ORIGINAL SITION MORPHOLOGY COMMENTS (mm) PHENOCRYSTS Plagioclase 35 35 51 An 50-60 Subhedral, Conspicuous zoning. laths Clinopyroxene 40 40 0.5 (ave) Equant, Subophitic. Megacrysts; one up to 1 cm, subhedralpoikilitically enclosing plag. anhedral Titanomagnetite <5 50.5 Occurs interstitial, and in association with <5 Equant, subskeletal glassy/clay material. GROUNDMASS Glass 20 SECONDARY **REPLACING**/ MINERALOGY PERCENT FILLING COMMENTS Clays Glass Replaces original interstitial glass. Often encloses titanomagnetite. 20

OBSERVER: RBH

ROCK NAME: Highly plagioclase clinopyroxene phyric basalt

WHERE SAMPLED: Unit 3

TEXTURE: Highly porphyritic

GRAIN SIZE: Fine					OBSERVER: YT		
PRIMARY MINERALOGY	PERCENT PRESENT	PERCENT	SIZE RANGE (mm)	APPROX. COMPO- SITION	MORPHOLOGY	COMMENTS	
PHENOCRYSTS							
Olivine		3	0.1-0.5	A - 00/01	Euhedral	Completely altered to brown clay.	
Clinopyroxene	7	7	0.2-0.5	Augite	Euhedral Euhedral- subhedral	Zoned	
GROUNDMASS							
Plagioclase	21	44	< 0.2		Subhedral		
Opaques	7	7	< 0.2	Magnetite(?)	Subneural		
Glass	-	11			Euhedral	Completely altered to green clay.	
SECONDARY	percent	REPLACING/ FILLING				COMMENTS	
Clavs	3	OI	Iddir	nasite(?), Brow	n		
Clays	11	Vesicles, Glass	Gree	en. Alteration p	roducts from groun	dmass, interstitial glass.	
Clays	23	Plag	Unid	entified fine cla	ay.		
VESICLES/	DEDOELT		SIZE				
CAVITIES	PERCENT	LOCATION	(mm)	FILLING	SHAPE		
Vesicles	5	Even	< 0.5	Green clay	Round		

THIN SECTION DESCRIPTION

115-713A-15R-4 (Piece 4, 103-105 cm)

ROCK NAME: Moderately olivine clinopyroxene plagioclase phyric basalt

WHERE SAMPLED: Unit 3

TEXTURE: Porphyritic, hyaline

GRAIN SIZE: Fine					OBSERVER: A	NB
PRIMARY MINERALOGY	PERCENT PRESENT	PERCENT	SIZE RANGE (mm)	APPROX. COMPO- SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Olivine	—	1	< 0.5		Subhedral	Completely altered to red/brown iddingsite.
Plagioclase	7	7	<1	≈An 50	Euhedral	Quench forms common. Glass inclusions parallel to c-axis.
Clinopyroxene	3	3		Augite	Anhedral	Fresh. Often in glomerocrysts with plag.
GROUNDMASS						
Glass	89	89				Black. Partially oxidized.
SECONDARY MINERALOGY	PERCENT	REPLACING/ FILLING				COMMENTS
Clays	1	OI	Red/	brown iddings	ite.	
VESICLES/ CAVITIES	PERCENT	LOCATION	SIZE RANGE (mm)	FILLING	SHAPE	COMMENTS
Vesicles	12	Even	<3	Calcite	Irregular	Generally rimmed with calcite. Sometimes filled with

calcite.

ROCK NAME: Highly olivine plagioclase clinopyroxene phyric basalt WHERE SAMPLED: Unit 4, near contact

TEXTURE: Cleany highly parahyritig

TEATORE: Glassy,	nighty porphyr	ILIC							
GRAIN SIZE: Micro	crystalline								
PRIMARY MINERALOGY	PERCENT PRESENT	PERCENT	SIZE RANGE (mm)	APPROX. COMPO- SITION	MORPHOLOGY		COMMENTS		
PHENOCRYSTS									
Olivine Plagioclase Clinopyroxene	(?) 5 10	1 5 10	0.1-0.3 0.2-1.0 0.1-0.3	An 65 Augite					
GROUNDMASS									
Glass	73	73				Microcrystalline.			
Spinel	1	1	0.005-0.020	Magnetite					
Sulfides	Tr								
SECONDARY	PERCENT	REPLACING/ FILLING				COMMENTS			
Chlorite	10	Voids							
Clays	1	ol	Idding	gsite.					
VESICLES	PERCENT	LOCATION	SIZE RANGE (mm)	FILLING	SHAPE				
Cavities	5		0.1-2.0	Clay	Irregular				

THIN SECTION DESCRIPTION

ROCK NAME: Highly olivine-bearing clinopyroxene plagioclase phyric basalt WHERE SAMPLED: Unit 4 TEXTURE: Highly porphyritic, hyalocrystalline **GRAIN SIZE:** Fine

SIZE APPROX. PRIMARY PERCENT PERCENT COMPO-RANGE MINERALOGY PRESENT ORIGINAL SITION MORPHOLOGY COMMENTS (mm) PHENOCRYSTS Olivine Subhedral Completely altered to carbonate. tr Plagioclase 15 15 An 45(?) Subhedral Slightly altered to sericite. Tendency to show flow <1 alignment. Clinopyroxene 5 5 < 0.8 Augite Subhedral Colorless. Often in glomerocrysts with plagioclase. GROUNDMASS Plagioclase 10 10 Subhedral < 0.2 Titanomagnetite More abundant than in typical basalt. Subhedral 5 5 < 0.2 Interstitial. Altered to microcrystalline and cryptocrystalline Glass 65 pale brown and green clays (celadonite?). SECONDARY REPLACING/ MINERALOGY PERCENT FILLING COMMENTS Clays 65 Glass Predominately pale gray/brown smectite(?). Less abundant green celadonite(?).

OBSERVER: ANB

COMMENTS: One large (1 cm diameter) "xenolith" of cpx + plag; large cpx poikilocrysts enclose large euhedral plag (An 45). Rock in general looks somewhat evolved, almost mugearitic.

115-713A-15R-4 (Piece 6A, 143-145 cm)

115-713A-15R-5 (Piece 2, 3-7 cm)

ROCK NAME: Moderately olivine plagioclase clinopyroxene phyric basalt

WHERE SAMPLED: Unit 5

TEXTURE: Moderately porphyritic, hyaline

GRAIN SIZE: Fine **OBSERVER:** ANB SIZE APPROX. PRIMARY PERCENT PERCENT RANGE COMPO-COMMENTS MINERALOGY MORPHOLOGY PRESENT ORIGINAL (mm) SITION PHENOCRYSTS Olivine 3 <1.5 Subhedral Totally altered to brown iddingsite. 37 Plagioclase 3 < 0.6 Augite Anhedral Colorless. Fresh. Clinopyroxene 7 <2 Euhedral Fresh. Quench overgrowths. GROUNDMASS Glass 80 80 Brown glass. Partially altered to oxides. SECONDARY **REPLACING**/ MINERALOGY PERCENT COMMENTS FILLING Clays 7 Fractures Microcrystalline pale green clay + calcite in fractures throughout the glass. Clays 3 OI Brown iddingsite. SIZE

VESICLES/			RANGE			
CAVITIES	PERCENT	LOCATION	(mm)	FILLING	SHAPE	COMMENTS
Vesicles	5	Even	<3	Smectite, calcite	Irregular, spherical	Generally not completely filled.

COMMENTS: Glomerocrysts of plag + cpx relatively common; contain grains in the same size range as phenocrysts.

< 0.2

THIN SECTION DESCRIPTION

115-713A-15R-5 (Piece 5, 89-91 cm)

ROCK NAME: Highly olivine-bearing clinopyroxene plagioclase phyric basalt

WHERE SAMPLED: Unit 5

TEXTURE: Highly porphyritic, hyalocrystalline

1

Even

GRAIN SIZE: Fine

Vesicles

PRIMARY MINERALOGY	PERCENT	PERCENT	SIZE RANGE (mm)	APPROX. COMPO- SITION	MORPHOLOGY	COMMENTS		
PHENOCRYSTS								
Olivine		tr	<1		Subhedral	Completely altered to carbonate.		
Plagioclase	25	25	0.2-1.0		Subhedral- euhedral			
Clinopyroxene	5	5	< 0.8	Augite	Subhedral	Zoned. Colorless augite.		
GROUNDMASS								
Olivine	_	2	< 0.5		Subhedral	Completely altered to carbonate.		
Clinopyroxene	10	10	< 0.2	Augite	Anhedral	Colorless.		
Plagioclase	10	10	< 0.2		Subhedral			
Magnetite	2	2	< 0.1	Titano- magnetite	Subhedral			
Glass	_	46	1			Interstitial. Completely altered.		
SECONDARY MINERALOGY	PERCENT	REPLACING/ FILLING				COMMENTS		
Clays Carbonate	40 8	Glass Glass, ol	Brown smectites after glass in groundmass. Alteration phase in groundmass.					
VESICLES/ CAVITIES	PERCENT	LOCATION	SIZE RANGE (mm)	FILLING	SHAPE	COMMENTS		

OBSERVER: ANB

ROCK NAME: Highly olivine clinopyroxene plagioclase phyric basalt WHERE SAMPLED: Unit 6

TEXTURE: Highly porphyritic, hyalocrystalline

GRAIN SIZE: Fine

PRIMARY MINERALOGY	PERCENT	PERCENT	SIZE RANGE (mm)	APPROX. COMPO- SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Olivine	-	2	<1		Subhedral	Completely altered to green serpentine + calcite.
Plagioclase	15	15	<2		Euhedral- subhedral	Fresh glass inclusions in larger crystals. Strong normal and oscillatory zoning common.
Clinopyroxene	3	3	< 0.8	Augite	Subhedral	Colored.
GROUNDMASS						
Clinopyroxene	1	1	< 0.1	Augite	Subhedral	Colorless.
Plagioclase	2	2	< 0.1	eg.ie	Subhedral	Quench forms dominate.
Spinel	1	1	< 0.02	Magnetite	Anhedral	Quench or alteration product of glass.
Glass	_	76		9		Totally altered to brown smectites(?).
SECONDARY MINERALOGY	PERCENT	REPLACING/ FILLING				COMMENTS
Clavs	76	Glass				
Carbonate	Tr	OI				
Serpentine	2	OI	Ass	ociated with ca	lcite in altered ol.	
VESICLES/			SIZE	1		
CAVITIES	PERCENT	LOCATION	(mm)	FILLING	SHAPE	COMMENTS
Vesicles	1	Even	< 0.5		Spherical	Filled by radially disposed siderite(?).

OBSERVER: ANB

THIN SECTION DESCRIPTION

115-713A-18R-1 (Piece 14, 145-148 cm)

ROCK NAME: Highly olivine clinopyroxene plagioclase phyric basalt WHERE SAMPLED: Unit 7 TEXTURE: Highly porphyritic, hyaline GRAIN SIZE: Fine

PRIMARY MINERALOGY	PERCENT PRESENT	PERCENT	SIZE RANGE (mm)	APPROX. COMPO- SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Olivine	—	1	<1		Subhedral	Totally altered to carbonate.
Plagioclase	15	15	<3		Euhedral- subhedral	Fresh. Quench forms present.
Clinopyroxene	7	7	<1	Augite	Subhedral	Colorless.
GROUNDMASS						
Glass	-	76				
Titanomagnetite	1	1	< 0.1		Subhedral	Possibly quench product in glass.
SECONDARY	PERCENT	REPLACING/ FILLING				COMMENTS
Clays	76	Glass	Calcit	e? Cryptocrys	stalline grav clavs(?).	
Carbonate	1	OI	Calcit	e?		

OBSERVER: ANB

COMMENTS: Whole aspect of rock suggests differentiated character.

115-713A-18R-2 (Piece 5, 35-39 cm)

ROCK NAME: Highly olivine clinopyroxene plagioclase phyric basalt

WHERE SAMPLED: Unit 8

TEXTURE: Highly porphyritic, hyalocrystalline

GRAIN SIZE: Fine

OBSERVER: ANB

PRIMARY MINERALOGY	PERCENT PRESENT	PERCENT	SIZE RANGE (mm)	APPROX. COMPO- SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Olivine		1	< 0.8		Subhedral	Totally altered to carbonate.
Plagioclase	10	10	<1.5		Subhedral	Strongly normally zoned.
Clinopyroxene	5	5	<1	Augite	Anhedral	Colorless.
GROUNDMASS						(4)
Glass	_	65				
Clinopyroxene	5	5	< 0.2	Augite	Anhedral	
Plagioclase	10	10	< 0.2	9	Subhedral	Fresh.
Oxides	2	2	< 0.2	Titano- magnetite	Subhedral	
SECONDARY MINERALOGY	PERCENT	REPLACING/ FILLING				COMMENTS
Clays	65	Glass	Pale oliv	ve green-brow	vn smectite.	
VESICLES/	PERCENT		SIZE RANGE	FILLING	SHADE	
Vesieles	LINCLINI	ECOATION	(1111)	1 ILLING	SHAPE	
vesicies	<<1	Even	< 0.5	Smectite	Spherical	

115-713A-19R-1 (Piece 4, 27-29 cm)

ROCK NAME: Highly olivine clinopyroxene plagioclase phyric basalt WHERE SAMPLED: Unit 8 TEXTURE: Highly porphyritic, glassy CRAIN SIZE: Fine to medium

GRAIN SIZE: Fine t	to medium			r			
PRIMARY MINERALOGY	PERCENT PRESENT	PERCENT ORIGINAL	SIZE RANGE (mm)	APPROX. COMPO- SITION	MORPHOLOGY	COMMENTS	×
PHENOCRYSTS							
Olivine Plagioclase Clinopyroxene	<1 15 5	1 15 5	0.2 0.2–4.0 0.2–0.7	An 50 Augite	Euhedral Euhedral Subhedral	In fresh glass, fresh ol is present. Larger crystal shows oscillatory zoning. Larger crystal shows hourglass structure.	
GROUNDMASS							
Glass	5	71				Devitrified into unidentifiable fine-grained minerals.	
SECONDARY	PERCENT	REPLACING/ FILLING				COMMENTS	
Clays Clays Carbonate	3 1 5	Vesicles Ol Vesicles,	Green Brown	i clay. i clay (iddings	site?).		
Devitrified glass	66	Glass	Fine r	minerals (devi	trification products	and quench products).	
VESICLES/ CAVITIES	PERCENT	LOCATION	SIZE RANGE (mm)	FILLING	SHAPE	COMMENTS	
Vesicles	7	Even	<2	Carbonate, green clay	Round, irregular	Larger one is round.	

COMMENTS: Fresh ol.

THIN SECTION DESCRIPTION

ROCK NAME: Highly clinopyroxene plagioclase phyric basalt WHERE SAMPLED: Unit 8

TEXTURE: Seriate, highly porphyritic

GRAIN SIZE: Medium to fine

OBSERVER:	RBH

PRIMARY MINERALOGY	PERCENT	PERCENT	SIZE RANGE (mm)	APPROX. COMPO- SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Plagioclase	20	20	0.1-1.0		Subhedral, laths	Glomerocrysts. Feathery laths present.
Clinopyroxene	13	13	< 0.05		Subhedral, granules	Equant grains, and granules in matrix.
GROUNDMASS						
Glass	-	33				Partially quenched with feathery crystals of plag, cpx, and opaque granules.
Plagioclase	17	17	0.05		Feathery, laths	, , , ,
Clinopyroxene	11	11	0.01		Granules	
Titanomagnetite	5	5	0.01			Mostly subequant, skeletal; dendritic form rare.
SECONDARY MINERALOGY	PERCENT	REPLACING/ FILLING				COMMENTS
Clavs	33	Glass	Altera	tion of glassy	material, residual fr	rom quench.
Carbonate	<1	Vesicles	, and the	and or glade)	material, reoladar i	
Zeolites	<1	Vesicles				
VESICLES/ CAVITIES	PERCENT	LOCATION	SIZE RANGE (mm)	FILLING	SHAPE	COMMENTS

Vesicles are filled with calcite or with radiating zeolites.

Vesicles

1

115-713A-19R-1 (Piece 12, 116-118 cm)

ROCK NAME: Highly olivine clinopyroxene plagioclase phyric basalt WHERE SAMPLED: Unit 9

WHERE SAMPLED: Unit 9

TEXTURE: Highly porphyritic

GRAIN SIZE: Mediu	m to fine				OBSERVER: RBH			
PRIMARY MINERALOGY	PERCENT PRESENT	PERCENT	SIZE RANGE (mm)	APPROX. COMPO- SITION	MORPHOLOGY	COMMENTS		
PHENOCRYSTS								
Olivine	—	>2	< 0.6			Completely altered to clay and/or calcite.		
Plagioclase	10	10	<1.0		Subhedral, laths	Often in glomerocrysts, sometimes with cpx.		
Clinopyroxene	10	10	<1.0		Equant, subhedral			
GROUNDMASS								
Glass		25				Now aligned, devitrified, especially around rare vesicles.		
Clinopyroxene	25	25	< 0.05		Granules	Devitrification product?		
Plagioclase	25	25	< 0.1		Laths	Fine laths, somewhat feathery.		
Opaques	3	3	0.05		Subequant, subhedral			
SECONDARY MINERALOGY	PERCENT	REPLACING/ FILLING				COMMENTS		
Clavs	27	Glass, ol						
Carbonate	<1	OI	Calcit	e partially rep	placing ol.			

COMMENTS: Section unpolished.

THIN SECTION DESCRIPTION

ROCK NAME: Highly olivine clinopyroxene plagioclase phyric basalt

WHERE SAMPLED: Unit 10

TEXTURE: Highly porphyritic

GRAIN SIZE: Fine to medium

OBSERVER: YT

PRIMARY MINERALOGY	PERCENT PRESENT	PERCENT	SIZE RANGE (mm)	APPROX. COMPO- SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Olivine		1	0.3	Ap 50	Euhedral	Completely altered to carbonate.
1 lagiociaso	10	10	0.2-2.0	All 50	subhedral	Zoneu. Large crystals are reverse zoneu.
Clinopyroxene	7	7	0.2-0.7	Augite	Subhedral	Larger crystal shows honeycomb structure.
GROUNDMASS						
Plagioclase	7	7	< 0.2		Subhedral	
Clinopyroxene	3	3	< 0.2	Augite	Subhedral	
Opaques	з	3	< 0.1	Magnetite		
Glass	_	66		(?)	Euhedral	Completely devitrified.
SECONDARY MINERALOGY	PERCENT	REPLACING/ FILLING				COMMENTS
Clays Carbonate	66 4	Glass Ol, vesicles	Unic	lentifiable fine-	grained clay or dev	itrified glass.
VESICI ES/			SIZE			
CAVITIES	PERCENT	LOCATION	(mm)	FILLING	SHAPE	
Vesicles	3	Even	<1	Carbonate	Round	

COMMENTS: Larger plag crystals (>1.5 mm) always show reverse zoning.

115-713A-19R-3 (Piece 2A, 12-15 cm)

Filled with yellow-green clay, celadonite(?).

ROCK NAME: Highly clinopyroxene plagioclase phyric basalt WHERE SAMPLED: Unit 11 TEXTURE: Highly porphyritic, hyaline

Even

1

< 0.8

Clay

Vesicles

GRAIN SIZE: Fine			OBSERVER: ANB						
PRIMARY MINERALOGY	PERCENT PRESENT	PERCENT	SIZE RANGE (mm)	APPROX. COMPO- SITION	MORPHOLOGY	COMMENTS			
PHENOCRYSTS									
Plagioclase	15	15	<2		Euhedral- subhedral	Normal and oscillatory zoning prominent.			
Clinopyroxene	7	7	<1	Augite	Subhedral	Colorless. Zoned.			
GROUNDMASS									
Titanomagnetite	2	2	< 0.05		Anhedral	Alteration product or quench from glass.			
Glass		76				Totally altered to clay.			
SECONDARY MINERALOGY	PERCENT	REPLACING/ FILLING				COMMENTS			
Clays	76	Glass	Crypto	ocrystalline gr	ray clay (± calcite?	?) after glass.			
VESICLES/ CAVITIES	PERCENT	LOCATION	SIZE RANGE (mm)	FILLING	SHAPE	COMMENTS			

Spherical

ROCK NAME: Highly olivine-bearing clinopyroxene plagioclase phyric basalt WHERE SAMPLED: Top of Unit 12 TEXTURE: Highly porphyritic **GRAIN SIZE:** Medium to cryptocrystalline

GRAIN SIZE: Mediu	im to cryptocr	ystalline			OBSERVER: ANB			
PRIMARY MINERALOGY	PERCENT PRESENT	PERCENT	SIZE RANGI (mm)	APPROX. COMPO- SITION	MORPHOLOGY	COMMENTS		
PHENOCRYSTS								
Olivine Plagioclase	 15	Tr 15	<0.3 <1.5		Subhedral Subhedral	Completely altered to calcite + brown iddingsite. Glass inclusions in larger crystals. Glomerocrysts with cpx are common		
Clinopyroxene	3	3	<1	Augite	Subhedral	Colorless.		
GROUNDMASS								
Plagioclase	1	1	< 0.1		Subhedral	Quench terminations.		
Spinel	1	1	< 0.01	Magnetite(?)				
Glass	-	80			Anhedral	Probably quench or formed during devitrification. Strong quench/devitrification texture. Variolitic. spinifex(???).		
SECONDARY MINERALOGY	PERCENT	REPLACING/ FILLING				COMMENTS		
Clays Iddingsite	80 Tr	Glass	Cry	ptocrystalline b	rown smectites.			
Carbonate	Tr	OI	Calo	cite.				
VESICLES/			SIZE					
CAVITIES	PERCENT	LOCATION	(mm)	FILLING	SHAPE	COMMENTS		
Vesicles	5	Even	<1	Various	Irregular	Vesicles filled with calcite, celadonite, or microcrystalline radial zeolites.		

THIN SECTION DESCRIPTION

115-713A-20R-1 (Piece 5A, 77-79 cm)

ROCK NAME: Highly olivine clinopyroxene plagioclase phyric basalt

WHERE SAMPLED: Unit 12 TEXTURE: Highly porphyritic, hyalocrystalline

<1

Even

GRAIN SIZE: Fine

Vesicles

PRIMARY MINERALOGY	PERCENT	PERCENT	SIZE RANGE (mm)	APPROX. COMPO- SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Olivine Plagioclase	10	1 10	<2 <1.5	An 52	Subhedral Subhedral	Totally altered to brown smectite(?) + calcite. Grade into groundmass size range. Glass inclusions in
Clinopyroxene	5	5	<1	Augite	Subhedral	Colorless.
GROUNDMASS						
Olivine	_	Tr	< 0.05		Subbedral	Totally altered to brown smectite(?) + calcite
Clinopyroxene	5	5	< 0.1	Augite	Anhedral	Interstitial grains between plag crystals.
Plagioclase	20	20	<0.2	riagito	Subbedral	interetinai grane settieen plag erjetaisi
Spinel	2	2	<0.1	Titano- nagnetite(?)	Subhedral	
Glass	—	57				Interstitial. Altered completely to brown smectites(?).
SECONDARY	PERCENT	REPLACING/ FILLING				COMMENTS
Clays	1	OI	Brown	n smectite(?).		
Clays	57	Glass	Pale	brown smecti	te(?).	
Carbonate	Tr	OI	Assoc	ciated with sn	nectite(?) clays.	
VESICLES/	DEDOENT	LOCATION	SIZE	511 1 1010	0114.05	

Spherical

calcite.

Calcite

<1

OBSERVER: ANB

ROCK NAME: Highly olivine clinopyroxene plagioclase phyric basalt WHERE SAMPLED: Unit 12, 50 cm below top of the unit TEXTURE: Intersertal, highly porphyritic

GRAIN SIZE: Fine

PRIMARY MINERALOGY	PERCENT PRESENT	PERCENT	SIZE RANGE . (mm)	APPROX. COMPO- SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Olivine	—	4	0.1-0.3		Euhedral	Replaced by clay, carbonate, and sulfide.
Plagioclase	13	13	0.2-2.0	An 65	Subhedral	Cumulate? Intergrowths of plag and augite at 120° intersections.
Clinopyroxene	13	13	0.2-1.0	Augite	Subhedral	
GROUNDMASS						
Plagioclase	33	33	0.05-0.20	An 60	Subhedral- anhedral	
Clinopyroxene	33	33	0.05-0.20	Augite	Subhedral- anhedral	
Spinel	4	4	0.005- 0.050	Magnetite	Skeletal	Quench texture.
SECONDARY		REPLACING	G/			
MINERALOGY	PERCENT	FILLING				
Chlorite	3	OI				
Carbonate	<1	OI				
Sulfide	<1	OI				
VESICLES/	PERCENT		SIZE RANGE	FILLING	SHAPE	
Vacialas		LUGATION	. ()	Class	Davind	
vesicies	< 1		3	Clay	Round	

OBSERVER: MRF

THIN SECTION DESCRIPTION

ROCK NAME: Highly olivine clinopyroxene plagioclase phyric basalt

WHERE SAMPLED: Unit 12

TEXTURE: Microporphyritic

GRAIN SIZE: Fine to glassy

SIZE APPROX. PRIMARY PERCENT PERCENT RANGE COMPO-MINERALOGY COMMENTS MORPHOLOGY PRESENT ORIGINAL (mm) SITION PHENOCRYSTS Olivine 0.6 Euhedral 1 1 Plagioclase 10 10 <4 Euhedral Some glomerocrysts. Clinopyroxene 5 5 <1 Euhedralsubhedral GROUNDMASS Glassy margins are fresh. Devitrified glass and quenched Glass 31 84 areas are altered to clay. SECONDARY REPLACING/ MINERALOGY PERCENT FILLING COMMENTS Clays 53 Glass Brownish clay replacing quenched groundmass.

OBSERVER: RBH

COMMENTS: Conspicuous textural gradient from glass which is clear and unaltered to feathery quench texture. Titanomagnetite is absent in glass, ubiquitous (fine-grained crystals) in quenched areas. Alteration to brown clay.

115-713A-20R-2 (Piece 2B, 37-39 cm)

ROCK NAME: Highly olivine clinopyroxene plagioclase phyric basalt WHERE SAMPLED: Unit 13 TEXTURE: Highly porphyritic, glassy **GRAIN SIZE:** Fine

PRIMARY MINERALOGY	PERCENT PRESENT	PERCENT	SIZE RANGE (mm)	APPROX. COMPO- SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Olivine Plagioclase	10	3 10	0.1–0.3 0.2–1.0	Fo 70(?) An 55	Euhedral Euhedral– subhedral	Fresh in fresh glass. Zoned normally.
Clinopyroxene GROUNDMASS	6	6	0.2-0.6	Augite	Subhedral	Hourglass structure.
Glass		81				Fresh glass + quenched cpx + devitrified, altered glass.
SECONDARY MINERALOGY	PERCENT	REPLACING/ FILLING				COMMENTS
Clays Clays	3 81	OI Glass	Iddingsite(?). Cpx + alteration and devitrification minerals.			

OBSERVER: YT

COMMENTS: Fresh ol and glass.

THIN SECTION DESCRIPTION

ROCK NAME: Highly olivine clinopyroxene plagioclase phyric basalt

WHERE SAMPLED: Unit 13

TEXTURE: Highly porphyritic

GRAIN SIZE: Fine to medium

OBSERVER: YT SIZE APPROX. PRIMARY PERCENT PERCENT RANGE COMPO-MINERALOGY COMMENTS PRESENT ORIGINAL (mm) SITION MORPHOLOGY PHENOCRYSTS Olivine 5 0.2-0.5 Euhedral-Completely altered to pale brown clay. _ subhedral Plagioclase 15 15 0.2-2.0 An 60 Euhedral-No oscillatory zoning. subhedral Clinopyroxene 7 7 0.2-0.8 Euhedral-Augite subhedral GROUNDMASS Plagioclase 20 20 < 0.2 Subhedral Augite Clinopyroxene 73 73 < 0.2 Subhedral Opaque < 0.1 Magnetite(?) Euhedralsubhedral Glass 41 _ SECONDARY REPLACING/ PERCENT MINERALOGY FILLING COMMENTS Clays OI, vesicles Alteration products. 7 41 Clays Glass Fine-grained crystals. Alteration and devitrification products. SIZE VESICLES/

A FOLFOLFOL			HANGE			
CAVITIES	PERCENT	LOCATION	(mm)	FILLING	SHAPE	COMMENTS
Vesicles	2	Even	<1	Clay	Round	Filled by pale brown clay.

115-713A-20R-2 (Piece 6F, 145-147 cm)

ROCK NAME: Highly olivine clinopyroxene plagioclase phyric basalt WHERE SAMPLED: Unit 14

TEXTURE: Highly porphyritic

GRAIN SIZE: Fine				ВН			
PRIMARY MINERALOGY	PERCENT PRESENT	PERCENT	SIZE RANGE (mm)	APPROX. COMPO- SITION	MORPHOLOGY	COMMENTS	
PHENOCRYSTS							
Olivine	1000	3					
Plagioclase	10	10	<1		Subhedral,	Glomerocrysts up to several mm across.	
Clinopyroxene	5	5	0.5		Subequant granules	Mostly as isolated granular crystals.	
GROUNDMASS							
Plagioclase	21	20	0.1		Needles		
Clinopyroxene	16	20	0.05		Granules		
Opaques	< 1	<1				Almost devoid of Fe-Ti oxide.	
SECONDARY MINERALOGY	PERCENT	REPLACING/ FILLING				COMMENTS	
Clays Sulfides	47 1	Glass, cpx Vesicles	As alt	eration of gla	iss and cpx in grou	ndmass.	

COMMENTS: This section contains almost no titanomagnetite.

THIN SECTION DESCRIPTION

ROCK NAME: Highly olivine-bearing clinopyroxene plagioclase phyric basalt WHERE SAMPLED: Unit 15 TEXTURE: Highly porphyritic, glassy

GRAIN SIZE: Fine

OBSERVER: YT

PRIMARY MINERALOGY	PERCENT	PERCENT ORIGINAL	SIZE RANGE (mm)	APPROX. COMPO- SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Olivine	-	<1	< 0.1		Euhedral	Tiny fresh ol can be found in fresh glass.
Plagioclase	10	10	0.2-3.0	≈An 55	Euhedral- subhedral	Bimodal crystal sizes.
Clinopyroxene	5	5	0.2-0.5	Augite	Euhedral- subhedral	Hourglass extinction.
GROUNDMASS						
Glass	-	85				In chilled margin, fresh glass can be observed. Most of the groundmass consists of devitrified and altered glass with some quenched cpx.
SECONDARY MINERALOGY	PERCENT	REPLACING/ FILLING				COMMENTS
Clays	85	Glass	Aggr	egates of que	nch cpx + alteratio	on products and devitrification products.
			SIZE			

VESICLES/			RANGE		
CAVITIES	PERCENT	LOCATION	(mm)	FILLING	SHAPE
Vesicles	<1	Even	з	Carbonate	Round

COMMENTS: Fresh ol.

THIN SECTION DESCRIPTION

115-713A-20R-3 (Piece 4A, 73-74 cm)

ROCK NAME: Highly olivine clinopyroxene plagioclase phyric basalt

WHERE SAMPLED: TEXTURE: Highly porphyritic

GRAIN SIZE: Fine to medium

PRIMARY MINERALOGY	PERCENT	PERCENT	SIZE RANGE (mm)	APPROX. COMPO- SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Olivine	—	5	0.2-0.5		Euhedral- subhedral	Completely altered to carbonate.
Plagioclase	15	15	0.2-2.0	An 50	Euhedral- subhedral	Normally zoned.
Clinopyroxene	7	7	0.2-0.7	Augite	Subhedral- euhedral	
GROUNDMASS						
Plagioclase	20	20	< 0.2		Euhedral- subhedral	
Clinopyroxene	10	10	< 0.2	Augite	Subhedral	
Opaque	3	3	< 0.1	Magnetite(?)		
				inagrictito(1)	Euhedral	
Glass	\sim	45				Completely altered to clays + carbonate.
SECONDARY MINERALOGY	PERCENT	REPLACING/ FILLING				COMMENTS
Clays Carbonate	45	Glass	Altera	tion products f	ormed from glass.	
			SIZE			

OBSERVER: YT

VESICLES/			SIZE		
CAVITIES	PERCENT	LOCATION	(mm)	FILLING	SHAPE
Vesicles	2	Even	<1	Carbonate	Round

X

ROCK NAME: Moderately olivine-bearing plagioclase clinopyroxene phyric basalt

WHERE SAMPLED: Unit 16

TEXTURE: Moderately porphyritic (microporphyritic)

GRAIN SIZE: Fine					OBSERVER: RB	н
PRIMARY MINERALOGY	PERCENT PRESENT	PERCENT	SIZE RANGE (mm)	APPROX. COMPO- SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Olivine	-	<1				
Plagioclase	4	4	1		Thin laths	
Clinopyroxene	5	5	0.6		Equant, subhedral	Serrated crystal edges, possibly resorbed.
GROUNDMASS						
Fe-Ti Oxides	2	2	0.02		Subequant, skeletal	In matrix, very fine-grained.
Glass	—	57				
Plagioclase	15	15			Needles	Thin, needle-like crystals.
Clinopyroxene	15	15			Granular	Fine granules.
SECONDARY MINERALOGY	PERCENT	REPLACING/ FILLING			54	COMMENTS
Clays	59	Glass, ol, vesicles	Repla	cing glass ar	nd ol in groundmass.	Also lines vesicles.
VESICLES/			SIZE			
CAVITIES	PERCENT	LOCATION	(mm)	FILLING	SHAPE	COMMENTS
Vesicles	2		<14	Zeolite		Lined with green celadonite and filled with fibrous zeolite.
	A					

THIN SECTION DESCRIPTION

115-713A-20R-3 (Piece 7B, 137-138 cm)

ROCK NAME: Moderately olivine clinopyroxene plagioclase phyric basalt WHERE SAMPLED: Unit 17 TEXTURE: Moderately porphyritic to microporphyritic GRAIN SIZE: Fine

PRIMARY MINERALOGY	PERCENT PRESENT	PERCENT	SIZE RANGE (mm)	APPROX. COMPO- SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Olivine	-	1			Fuhedral	Well-formed crystals, completely altered to iddingsite.
Plagioclase	5	5	<1		Tabular,	Fresh.
					laths,	
12001	235	223			euhedral	
Clinopyroxene	3	3	< 0.5		Equant,	Fresh.
					euhedral	
GROUNDMASS						
Glass		5				
Plagioclase	40	40				
Clinopyroxene	40	40				
Fe-Ti oxides	3	3	< 0.05		Skeletal	
					onorona	
SECONDARY		REPLACING/				
MINERALOGY	PERCENT	FILLING				COMMENTS
Clays	8	OI,	Repla	cing highly a	Itered glass adjacer	nt to rim at one end of the thin section.
1010000000000		glass	Also a	as scattered	glassy patches in th	he groundmass.
Celadonite	1		In alte	ration band	at one end of the th	nin section. Bright green.

OBSERVER: RBH

115-713A-20R-4 (Piece 3A, 35-37 cm)

ROCK NAME: Highly olivine clinopyroxene plagioclase phyric basalt WHERE SAMPLED: Unit 18

TEXTURE: Highly porphyritic, glassy

GRAIN SIZE: Fine

OBSERVER: YT SIZE APPROX. PRIMARY PERCENT PERCENT RANGE COMPO-MORPHOLOGY COMMENTS MINERALOGY PRESENT ORIGINAL (mm) SITION PHENOCRYSTS Olivine 0.3 Euhedral Altered to clay. 1 Plagioclase 10 10 0.2-5.0 An 50 Euhedral-Bimodal crystal sizes. subhedral Clinopyroxene 5 5 0.2-0.5 Augite Subhedraleuhedral GROUNDMASS Replaced by devitrification + alteration products. In a 74 Glass narrow zone, fresh glass can be observed. SECONDARY REPLACING/ MINERALOGY PERCENT FILLING COMMENTS Clays 1 OI Iddingsite. Clays 10 Vesicles Clays 74 Glass Alteration + devitrification products. SIZE VESICLES/ RANGE PERCENT COMMENTS CAVITIES LOCATION (mm) FILLING SHAPE Vesicles 10 Even <1 Clays Irregular Both green and brown clays present.

THIN SECTION DESCRIPTION

ROCK NAME: Highly olivine clinopyroxene plagioclase phyric basalt

WHERE SAMPLED: Unit 18

TEXTURE: Highly porphyritic

GRAIN SIZE: Fine

OBSERVER: YT

PRIMARY MINERALOGY	PERCENT	PERCENT	SIZE RANGE (mm)	APPROX. COMPO- SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Olivine	_	5	0.2-0.5		Euhedral-	Completely altered to pale brown clay.
Plagioclase	15	15	0.3-2.0	An 60	Euhedral-	Bimodal crystal sizes: 1 mm and <7 mm.
Clinopyroxene	10	10	0.2-0.6	Augite	Subhedral	Sometimes forms glomerocrysts with plag.
GROUNDMASS						
Plagioclase	10	10	< 0.2		Subhedral	
Clinopyroxene	5	5	< 0.2	Augite(?)	Subhedral	
Opaque	1	1	< 0.1	Magnetite(?)		
				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Euhedral	
Glass	-	54				Completely altered to clay.
SECONDARY MINERALOGY	PERCENT	REPLACING/ FILLING				COMMENTS
Clavs	5	01	Iddi	nasite(?)		
Clays	54	Glass	Alte	ration products	from glass.	
VESICI ES/			SIZE			
CAVITIES	PERCENT	LOCATION	(mm)	FILLING	SHAPE	COMMENTS
Vesicles	1	Even	0.3		Round	A few vesicles are partially filled with carbonate.

Vesicles

<1

THIN SECTION DESCRIPTION

ROCK NAME: Highly olivine-bearing clinopyroxene plagioclase phyric basalt

WHERE SAMPLED: Unit 19

TEXTURE: Highly porphyritic

GRAIN SIZE: Fine					OBSERVER: Y	т
PRIMARY MINERALOGY	PERCENT PRESENT	PERCENT	SIZE RANGE (mm)	APPROX. COMPO- SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Olivine	_	<1	0.2		Euhedral	Altered to iddingsite.
Plagioclase	10	10	0.2-5.0	≈An 50	Euhedral- subhedral	Bimodal crystal sizes. Larger ones sometimes contain dusty inclusions.
Clinopyroxene	5	5	0.2-0.5	Augite	Subhedral	
GROUNDMASS						
Plagioclase	1	1	< 0.2		Subhedral- euhedral	
Clinopyroxene	<1	<1	< 0.2		Subhedral	
Opaque	2	2	< 0.1	Magnetite(?)		
					Euhedral	
Glass	_	82				Altered and devitrified.
SECONDARY MINERALOGY	PERCENT	REPLACING/ FILLING				COMMENTS
Clavs	82	Glass	Unid	entifiable alter	ation + devitrification	on products
	01	Gidoo	Unit			
VESICLES/ CAVITIES	PERCENT	LOCATION	SIZE RANGE (mm)	FILLING	SHAPE	COMMENTS

Round

Only a few.

0.4

Carbonate
ROCK NAME: Highly olivine clinopyroxene plagioclase phyric basalt WHERE SAMPLED: Unit 20

TEXTURE: Highly porphyritic, hyalocrystalline

G

GRAIN SIZE: Fine					OBSERVER: ANB			
PRIMARY MINERALOGY	PERCENT	PERCENT ORIGINAL	SIZE RANGE (mm)	APPROX. COMPO- SITION	MORPHOLOGY	COMMENTS		
PHENOCRYSTS								
Olivine		1	< 1.5		Subhedral	Completely altered to brown smectite + calcite.		
Plagioclase	10	10	<3		Euhedral- subhedral	Strong normal and oscillatory zoning.		
Clinopyroxene	3	3	<1	Augite	Subhedral	Colorless. Large crystals show strong marginal zoning.		
GROUNDMASS								
Olivine		Tr	< 0.1		Subhedral	Altered to brown smectite + calcite.		
Clinopyroxene	2	2	< 0.1	Augite	Anhedral	Colorless.		
Plagioclase	10	10	< 0.2	27. 	Subhedral			
Spinel	2	2	< 0.1	Titano-	Anhedral	Alteration or quench product of glass.		
Glass		72	m	agnetite		Totally altered to cryptocrystalling clay + calcite		
Cild33	1210	12				Totally alleled to cryptocrystalline citay + calcite.		
SECONDARY MINERALOGY	PERCENT	REPLACING/ FILLING				COMMENTS		
Clays Calcite	72	Glass	Intima Relativ	te association	between clays and not determinable.	d calcite.		
Clays	1	01	Assoc	iated with trac	e amounts of calci	ite.		
VESICLES/ CAVITIES	PERCENT	LOCATION	SIZE RANGE (mm)	FILLING	SHAPE			
Vesicles	Tr		21 8					

COMMENTS: Trace amounts of pyrite infilling vesicles. Occasional coarse glomerocrysts of strongly zoned plag and augite.

ROCK NAME: Highly olivine clinopyroxene plagioclase phyric basalt WHERE SAMPLED: Unit 21 TEXTURE: Highly porphyritic, glassy GRAIN SIZE: Fine

GRAIN SIZE: Fine				т			
PRIMARY MINERALOGY	PERCENT PRESENT	PERCENT ORIGINAL	SIZE RANGE (mm)	APPROX. COMPO- SITION	MORPHOLOGY	COMMENTS	
PHENOCRYSTS							
Olivine Plagioclase	10	3 10	0.2–0.4 0.2–4.0	An 50	Euhedral Euhedral– subhedral	Fresh ol observed in fresh glass. Bimodal crystal sizes.	
Clinopyroxene	7	7	0.2-0.7	Augite	Subhedral- euhedral		
GROUNDMASS							
Glass	—	80				Fresh in a narrow zone.	
SECONDARY MINERALOGY	PERCENT	REPLACING/ FILLING				COMMENTS	
Clays Clays	3 80	OI Glass	Idding Altera	site(?). tion + devitr	ification + quench	products (cpx).	
COMMENTS: Fresh	olivine.		1				

Completely altered. Vein: serpentine + chlorite + zeolite(?). Fresh glass, as described above.

ROCK NAME: Highly olivine clinopyroxene plagioclase phyric basalt WHERE SAMPLED: Top of Unit 22 TEXTURE: Highly porphyritic, hyalocrystalline

GRAIN SIZE: Fine **OBSERVER:** ANB APPROX. SIZE PRIMARY PERCENT PERCENT RANGE COMPO-MINERALOGY PRESENT ORIGINAL SITION MORPHOLOGY COMMENTS (mm) PHENOCRYSTS Completely altered to yellow-brown smectite(?). Strong oscillatory zoning common. Olivine <1 Subhedral Plagioclase 20 20 An 52 <3 Euhedralsubhedral Clinopyroxene 7 7 Colorless. Strongly zoned. <1 Augite Euhedralsubhedral GROUNDMASS Olivine < 0.1 1 Subhedral Completely altered to yellow-brown smectite(?). Clinopyroxene Plagioclase 4 4 < 0.1 Augite Anhedral Subhedral Colorless. Quench forms common. 13 13 < 0.1 Spinel 3 3 < 0.05 Subhedral Possibly titanomagnetite. Glass 51 Completely altered and partially devitrified. SECONDARY REPLACING/ MINERALOGY PERCENT COMMENTS FILLING Clays Gray cryptocrystalline clay. 52 Glass, vesicles Clays 1 OI Yellow-brown smectite(?). SIZE VESICLES/ RANGE CAVITIES PERCENT LOCATION FILLING (mm) SHAPE COMMENTS Vesicles Even Lined with brown smectite. Rarely filled with devitrified 1 <1 Clay, opaques Spherical residual glass containing elongate titanomagnetite crystals + smectite. Haloes of elongate titanomagnetite around vesicles common.

COMMENTS: General aspect of rock is feldspar-rich, with sub-fluidal alignment of crystals. May be a hawaiite.

SITES 712/713

THIN SECTION DESCRIPTION

ROCK NAME: Highly olivine clinopyroxene plagioclase phyric basalt WHERE SAMPLED: Unit 23 TEXTURE: Highly porphyritic, glassy **GRAIN SIZE:** Fine

PRIMARY MINERALOGY	PERCENT	PERCENT	SIZE RANGE (mm)	APPROX. COMPO- SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Olivine	-	3	0.2-0.3		Euhedral	Fresh crystals occur in fresh glass. Other crystals are altered
Plagioclase	10	10	0.2–5	An 55(?)	Euhedral-	Bimodal crystal sizes.
Clinopyroxene	7	7	0.2-0.5	Augite	Subhedral- euhedral	
GROUNDMASS						
Glass	-	73				Composed of quench cpx + alteration and devitrification products + opaques. In the top of this section, fresh glass occurs.
SECONDARY MINERALOGY	PERCENT	REPLACING/ FILLING				COMMENTS
Clays Clays	10 73	OI, vesicles Glass	Perc	entage include	es clay and quench	ed cpx. Cpx predominates in some areas.

OBSERVER: YT

VESICLES/ CAVITIES	PERCENT	LOCATION	SIZE RANGE (mm)	FILLING	SHAPE	COMMENTS
Vesicles	7	Even	<2	Clay	Irregular	Filled by clay which appears to be the same clay replacing ol.
COMMENTS: Ero	ab al			- Radial quenc	hed cpx + clay	

COMMENTS: Fresh ol.

THIN SECTION DESCRIPTION

115-713A-21R-2 (Piece 6C, 130-132 cm)

ROCK NAME: Highly olivine-bearing clinopyroxene plagioclase phyric basalt

Glass -

WHERE SAMPLED: Unit 32, pillow basalt rim

TEXTURE: Holohyaline, highly porphyritic

GRAIN SIZE: Microcrystalline

PRIMARY MINERALOGY	PERCENT PRESENT	PERCENT	SIZE RANGE (mm)	APPROX. COMPO- SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Olivine	Tr	<1	0.1-1.0		Euhedral	Altered and replaced by clay.
Plagioclase	5	5	<2.5	An 62	Subhedral- anhedral	Large crystals subhedral. Small crystals anhedral.
Clinopyroxene	5	5	0.1-1.0	Augite	Subhedral	Intergrown with plag.
GROUNDMASS						
Glass	70	90				Mostly microcrystalline quench phases.
SECONDARY MINERALOGY	PERCENT	REPLACING/ FILLING				COMMENTS
Clays Sulfide	20 Tr	Glass, ol	In alte	eration rim of	pillow.	

OBSERVER: MRF

115-713A-21R-3 (Piece 2C, 60-62 cm)

ROCK NAME: Highly olivine clinopyroxene plagioclase phyric basalt WHERE SAMPLED: Unit 33, center of unit

TEXTURE: Intersertal, highly porphyritic

GRAIN SIZE: Fine

OBSERVER: MRF APPROX. COMPO-SIZE PRIMARY PERCENT PERCENT RANGE MINERALOGY COMMENTS PRESENT ORIGINAL SITION MORPHOLOGY (mm) PHENOCRYSTS Olivine 1 0.1-0.3 Euhedral Altered to iddingsite. Plagioclase 30 30 0.1-2.0 An 62 Clinopyroxene 20 20 0.1-0.3 Augite GROUNDMASS Plagioclase 0.01-0.10 10 10 15 Clinopyroxene 15 3 Spinel 0.01-0.05 Magnetite Groundmass 21 Replaced by clays. SECONDARY **REPLACING**/ PERCENT MINERALOGY FILLING COMMENTS Chlorite Groundmass 21 Iddingsite. Clays 1 OI SIZE VESICLES/ CAVITIES RANGE PERCENT LOCATION FILLING SHAPE (mm) Vesicles 0.1-0.2 1 Clay Round

THIN SECTION DESCRIPTION

ROCK NAME: Highly clinopyroxene plagioclase phyric basalt

WHERE SAMPLED: Unit 35, bottommost unit in core

TEXTURE: Interstitial

GRAIN SIZE: Fine

PRIMARY MINERALOGY	PERCENT PRESENT	PERCENT ORIGINAL	SIZE RANGI (mm)	APPROX. COMPO- SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Plagioclase	5	5	0.3–3.0	An 62	Subhedral	Equant crystals in glomerocrysts, L = 3 mm. Small grains are lath-like
Clinopyroxene	5	5	0.1-0.5	Augite	Subhedral	
GROUNDMASS						
Plagioclase	26	26	0.1-1.0		Laths	L:W = 5:1
Clinopyroxene	51	51				
Spinel	3	3	0.05	Magnetite	Skeletal	Quench texture. Crosses.
SECONDARY MINERALOGY	PERCENT					

OBSERVER: MRF

MINERALOGY	PERCENT	FILLING
Clays	10	Voids, vesicles, groundmass

VESICLES/ CAVITIES	PERCENT	LOCATION	SIZE RANGE (mm)	FILLING	SHAPE	COMMENTS
Vesicles, voids	1	Band	0.1-0.2	Clay, ± pyrite	Round	Form a band through the center of the thin section.

115-713A-22R-1 (Piece 4, 23-24 cm)