26. ¹⁰Be CONTENTS OF LATE CENOZOIC SEDIMENTS FROM SITES 720, 722, AND 728 IN THE WESTERN ARABIAN SEA¹

C. J. Beets,² G. T. Klaver,² D. Kroon,² K. van der Borg,³ and A.F.M. de Jong³

ABSTRACT

This paper is a comparative study of the variation in ¹⁰Be content of different late Cenozoic sedimentary environments recovered during ODP Leg 117. The Oman Margin site, Hole 728A, with overlying high-productivity cells, the pelagic Owen Ridge site, Hole 722A, and the Indus Fan site, Hole 720A, each display a specific ¹⁰Be distribution with time. Differences in scavenging intensity and upwelling in the water column, must account for the variations in the initial ¹⁰Be input into the sediments from Holes 728A and 722A, whereas differences in sediment character and sedimentation rate can explain the variances between Holes 722A, 728A, and 720A.

INTRODUCTION

The cosmogenic radionuclide ¹⁰Be (half-life 1.5 m.y.) is produced by spallation caused by cosmic rays in the Earth's atmosphere. It has been used for several purposes, among others: measuring accumulation rates and dating of deep-sea sediments (Arnold, 1956; Goel et al., 1957; Amin et al., 1966; Tanaka et al., 1977), determination of variations in production of ¹⁰Be because of changes in the cosmic-ray flux and the Earth's magnetic field (Somayajulu, 1977; Southon et al., 1987; Beer et al., 1988), as a tracer of erosion and sediment transport (Brown, 1987), and as an indicator of sediment incorporation in islandarc magmas (Tera et al., 1986).

The abundance of ¹⁰Be in sediment is controlled by several factors (Faure, 1986): the production rate of ¹⁰Be in the atmosphere, the magnetic latitude of the site, the pathway and mixing during its transport into the sediment, sediment accumulation rate, and the amount of time elapsed since deposition. Processes in the ocean, such as scavenging by particles and organisms, and upwelling control the residence time of ¹⁰Be in the surface layer, which eventually determines the ¹⁰Be content in deep-sea sediments.

ODP Leg 117 in the western Arabian Sea drilled the Oman margin with the overlying upwelling cells and oxygen minimum zone, the Owen Ridge with mainly pelagic carbonates, and the Indus Fan with terrigenous sediments (Prell, Niitsuma, et al., 1989) (Fig. 1). We sampled Hole 728A (1427.8 m water depth), Hole 722A (2027.8 m water depth), and Hole 720A (4037.5 m water depth) at large intervals.

The goals of this study were to determine how the different (paleo-)oceanographical and sedimentary settings of the three investigated holes would influence their ¹⁰Be content and distribution, and how the ages inferred from the ¹⁰Be content compared with the dates derived from the biostratigraphy and the magnetostratigraphy (Prell, Niitsuma, et al., 1989).

MATERIAL AND METHODS

Table 1 lists the samples from Holes 720A, 722A, and 728A, which were analyzed for ¹⁰Be content using the Utrecht tandem

accelerator. Sample preparation and experimental methods are as described in Van der Borg et al. (1987). The 12% uncertainty in the absolute value is not included, 2σ analytical errors are listed in Table 1.

The $CaCO_3$ content was determined with a coulometric CO_2 analyzer at the Free University.

The samples were chosen at large depth intervals, using the ages and sedimentation rates published in Prell, Niitsuma, et al. (1989). The sediments range from foraminiferal/nannofossil oozes to muddy sands.

RESULTS

The ¹⁰Be abundance (at/g) of the sediments is plotted vs. the depth below seafloor in the Holes 720A, 722A, and 728A (Fig. 2A). The highest ¹⁰Be concentration is found in the two topmost samples of the Indus Fan Site, Hole 720A. The topmost sample of Hole 722A has a higher ¹⁰Be content than that of Hole 728A, but the downcore trends in both holes are virtually the same. The distribution of ¹⁰Be in Hole 720A shows a much steeper negative gradient than those of Holes 722A and 728A.

Since ${}^{10}\text{Be}$ enters the ocean mainly in ionic form, and clay particles have been suggested to be the most effective scavengers of ${}^{10}\text{Be}$ (Southon et al., 1987) it seems fit to consider CaCO₃ as a dilutant. Hence the ${}^{10}\text{Be}$ abundance on a CaCO₃-free base gives a better approximation of its initial contents (Fig. 2B). Still the initial ${}^{10}\text{Be}$ content of Hole 722A is somewhat higher than that of Hole 728A, and decreases faster downcore than that of Hole 728A. The ${}^{10}\text{Be}$ distribution in Hole 720A shows a 10 times faster decrease compared to Holes 722A and 728A.

The apparent ages of the sediments can be calculated with the Law of Radioactivity:

$${}^{10}\text{Be} = {}^{10}\text{Be}_{i} e^{-1} t$$
 (1)

$$Ln^{10}Be = Ln^{10}Be_{i} - (l/a) h$$
 (2)

Where ¹⁰Be is the measured abundance of ¹⁰Be, ¹⁰Be_i is the initial contents during deposition of the sediment, 1 is the ¹⁰Be decay constant = $0.462 \times 10^{-6} \text{ y}^{-1}$, t is the time elapsed since deposition, a is the sedimentation rate, and h is the depth in the core.

In Figures 3A and 3B linear fits were matched on the measured ¹⁰Be concentrations, with which the apparent ages, using equation (2), were calculated (Table 2). Comparison with the ages of the sediments derived from biostratigraphy and magnetostratigraphy (Prell, Niitsuma, et al., 1989) shows that differences in the ages derived by the two methods are substantial;

¹ Prell, W. L., Niitsuma, N., et al., 1991. Proc. ODP, Sci. Results, 117: College Station, TX (Ocean Drilling Program).

² Geomarine Center, Institute of Earth Sciences, Vrije Universiteit, De Boelelaan 1085, 1007 MC Amsterdam, The Netherlands.

³ Robert J. van der Graaff Laboratorium, State University Utrecht, Box 80.000, 3508 TA Utrecht, The Netherlands.

Figure 1. Leg 117 Sites in the western Arabian Sea.

Hole, core, section	Depth (mbsf)	¹⁰ Be (10 ⁸ at/g)	2σ (10 ⁸)	CaCO ₃ % (CaCO ₃ -free)	¹⁰ Be (10 ⁸ at/g) 12.80
720A-1H-CC	9.4	4.80	0.11	62.4	
720A-2H-CC	19.0	4.79	0.04	13.4	5.53
720A-7K-CC	67.3	1.54	0.10	10.4	1.72
720A-16X-CC	154.4	0.78	0.19	12.4	0.89
720A-30X-CC	289.4	0.53	0.08	10.8	0.59
720A-40X-CC	385.2	0.17	0.03	8.8	0.19
722A-1H-CC	9.8	4.16	0.11	62.9	11.20
722A-11X-CC	105.9	0.68	0.04	82.5	3.89
722A-16X-CC	154.3	0.52	0.04	64.9	1.48
722A-26X-CC	251.0	0.24	0.03	52.9	0.51
728A-1H-CC	9.6	2.72	0.08	58.4	6.54
728A-4H-CC	38.0	2.14	0.06	55.4	4.80
728A-9H-CC	85.7	1.25	0.04	47.4	2.38
728A-17X-CC	162.8	0.54	0.04	65.3	1.56
728A-31X-CC	298.1	0.26	0.04	56.8	0.60

Table 1. Sample numbers, depth below seafloor, ^{10}Be concentrations (10⁸ at/g, 12% uncertainty not included), CaCO₃ wt%, and ^{10}Be on a CaCo₃-free basis (10⁸ at/g).

Hole 720A biostratigraphic and magnetostratigraphic ages show deviations from the ¹⁰Be ages of 20% up to > 300% throughout the core. Hole 722A biostratigraphic and magnetostratigraphic ages compare within 14%-21% with the ¹⁰Be ages, and, when corrected for CaCO₃ dilution, even within 1%-7.5% (Table 2). Hole 728A ages show a larger spread in accuracy, from 0%-52%, and there is no improvement after correction for the CaCO₃ contribution to the sediments (Table 2 and Fig. 3B).

The initial content of ¹⁰Be, corrected for radioactive decay, shown in Figure 4, fluctuates throughout the cores, except for Hole 720A which has an increasing ¹⁰Be input toward the present.

DISCUSSION

The variations in the distribution of ¹⁰Be in the sediments of the three holes are probably related to the different sedimentary environments. The initial ¹⁰Be concentration in the sediments, corrected for radioactive decay vs. sediment accumulation rate illustrates this (Fig. 5). The sediments from the pelagic Owen Ridge Hole 722A, which are rich in biogenic CaCO₃ (Table 1: 52.9%-82.5%) show a positive correlation between sedimentation rate and ¹⁰Be concentration (Fig. 5). The samples with the highest sediment accumulation rate have the lowest CaCO₃%, therefore, this correlation probably exists due to higher input of

Figure 2. A. ¹⁰Be content vs. depth in Holes 720A, 722A, and 728A. B. ¹⁰Be content on a CaCO₃-free base vs. depth.

clay minerals which are more efficient carriers of ¹⁰Be (Southon et al., 1987).

Hole 728A lacks any correlation between initial ¹⁰Be contents and sediment accumulation rate, maybe because of redistribution of the ¹⁰Be by the overlying upwelling cells (Faure, 1986) and delivering of ¹⁰Be from several sources.

The abrupt decrease in ¹⁰Be content, below 20 mbsf in Hole 720A can be explained by the change in sediment type; the upper 17.2 m consist of pelagic nannofossil ooze, Sample 720A-1H-CC and partially Sample 720A-2H-CC (Table 1), with a high initial ¹⁰Be content. The underlying clastic sediments are all of turbiditic origin with very high sedimentation rates (up to 94.4 cm/k.y.) and of a mud to sandy composition, with a low initial ¹⁰Be content.

The ages derived from the ¹⁰Be content for pelagic Hole 722A agree well with those inferred from the biostratigraphy and magnetostratigraphy (Prell, Niitsuma, et al., 1989). This indicates that the original precipitated ¹⁰Be atoms did not undergo important redistribution in the water column or in the sediments. On the other hand the ¹⁰Be ages for the Holes 728A and 720A show large discrepancies with the magnetostratigraphic and biostratigraphic ages. In the case of the hemipelagic Hole 728A this can have several causes: as already indicated in the above, Site 728 is overlain by an zone of intensive upwelling and an oxygen minimum zone. Whether or not "boundary scavenging" (Anderson et al., 1990) plays a role in the ¹⁰Be distribution is not clear. However, we do not find as distinct a difference between the margin site (728) and the more open ocean sites (722 and 720) as Anderson et al. (1990) did.

CONCLUSIONS

In this study we find that in one of the holes, Hole 722A, the initial ¹⁰Be content increases with increasing sediment accumulation rate due to higher input of clays. In Hole 728A no dis-

Figure 3. A. Ln of ¹⁰Be content vs. depth; regression lines through the data points of each hole, and corresponding correlation coefficient. **B.** Ln of ¹⁰Be content corrected for CaCO₃ wt%, vs. depth; regression lines through the data points of each hole, and corresponding correlation coefficient.

tinct relation between sediment accumulation rate and ¹⁰Be content is visible. Hole 720A shows a negative correlation between the sediment accumulation rate and the ¹⁰Be content because of a high input of terrigenous sediments. This confirms the influences of both the origin of the sediment and the sedimentation rate on the distribution of ¹⁰Be in the sediments. In Holes 722A and 728A the ¹⁰Be abundances were determined over a time interval of 7.5 m.y. and 6.5 m.y., respectively. The calculated ages differ from the biostratigraphic and magnetostratigraphic ages by 14%–21% in Hole 722A and by 0%–52% in Hole 728A.

ACKNOWLEDGMENTS

We acknowledge Jan E. Van Hinte and Paul M. Saager for critically reading the manuscript. The manuscript benefitted from the comments of two anonymous reviewers. C.J.B., G.T.K., and D.K. have been supported by the Netherlands organization for Scientific Research (NWO); grants 751.356.018 and 751.356.020. This is publication 46 of the Geomarine Center Amsterdam.

REFERENCES

Amin, B. S., Kharkar, D. P., and Lal, D., 1966. Cosmogenic ¹⁰Be and ²6Al in marine sediments. *Deep-Sea Research*, 13:805-824.

- Anderson, R. F., Lao, Y., Broecker, W. S., Trumbore, S. E., Hofmann, H. J., and Woelfli, W., 1990. Boundary scavenging in the Pacific Ocean: a comparison of ¹⁰Be and ²31Pa. *Earth Planet. Sci. Lett.*, 96:287-304.
- Arnold, J. R., 1956. Beryllium-10 produced by cosmic rays. Science, 124:584–585.
- Beer, J., Siegenthaler, U., Bonani, G., Finkel, R. C., Oeschger, H., Suter, M., and Woelfli, W., 1988. Information on past solar activity and geomagnetism from ¹⁰Be in the Camp Century ice core. *Nature*, 331:675–679.
- Brown, L., 1987. ¹⁰Be as a tracer of erosion and sediment transport. Chem. Geol., 65:189–196.
- Faure, G., 1986. Principles of Isotope Geology. New York (John Wiley and Sons).
- Goel, P. S., Kharkar, D. P., Lal, D., Narsappaya, N., Peters, B., and Yatirajam, V., 1957. The beryllium-10 concentration in deep-sea sediments. *Deep-Sea Research*, 4:202–210.
- Measures, C. I., and Edmond, J. M., 1982. Beryllium in the water column of the Central North Pacific. *Nature*, 297:51–53.
- Prell, W. L, Niitsuma, N., et al., 1989. Proc. ODP, Init. Repts., 117: College Station, TX (Ocean Drilling Program).
- Somayajulu, B.L.K., 1977. Analysis of causes for the beryllium-10 variations in deep sea sediments. Geochim. Cosmochim. Acta 41:909– 913.
- Southon, J. R., Ku, T. L., Nelson, D. E., Reyss, J.L., Duplessy, J. C., and Vogel, J. S., 1987. ¹⁰Be in a deep-sea core: implications regarding ¹⁰Be production changes over the past 420 ka. *Earth Planet. Sci. Lett.*, 85:356-364.
- Tanaka, S., Inoue, T., and Imamura, M., 1977. The ¹⁰Be method of dating marine sediments-comparison with the paleomagnetic method. *Earth Planet. Sci. Lett.*, 37:55-60.
- Tera, F., Brown, L., Morris, J., and Sacks, I. S., 1986. Sediment incorporation in island-arc magmas: Inferences from ¹⁰Be. Geochim. Cosmochim. Acta, 50:535-550.
- Van der Borg, K., Alderliesten, C., Houston, C. M., de Jong, A.F.M., and van Zwol, N. A., 1987. Accelerator mass spectrometry with ¹⁴C and ¹⁰Be in Utrecht. In Siegbahn, Kai (Ed.), Nuclear Instruments and Methods in Physics Research.

Date of initial receipt: 20 October 1989 Date of acceptance: 25 June 1990 Ms 117B-164

Table 2. Sample numbers, magnetostratigraphic/biostratigraphic ages, calculated ages, initial ¹⁰Be content (corrected for decay), and sediment accumulation rates.

Hole, core, section	Age ^a (Ma)	Age ^b (Ma)	Age ^c (Ma)	¹⁰ Be _i (10 ⁸ at/g) ^d	Sediment accumulation rate (m/m.y.)
720A-1H-CC	0.22	0.17	0.19	5.31	42.7
720A-2H-CC	0.29	0.34	0.39	5.48	137
720A-7X-CC	0.64	1.20	1.39	2.07	137
720A-16X-CC	0.86	2.74	3.19	1.16	512
720A-30X-CC		5.14	_		
720A-40X-CC	<u></u>	6.84	-	-	
722A-IH-CC	0.28	0.24	0.29	4.73	37.7
722A-IIX-CC	3.37	2.65	3.12	3.23	27.7
722A-16X-CC	4.83	3.87	4.54	4.84	42.3
722A-26X-CC	7.29	6.29	7.38	6.96	48.2
728A-IH-CC	0.17	0.17	0.18	2.94	64.7
728A-4H-CC	0.93	0.69	0.70	3.29	35.0
728A-9H-CC	3.20	1.54	1.57	5.48	23.3
728A-17X-CC	4.35	2.93	2.98	4.03	87.6
728A-31X-CC	6.40	5.37	5.46	5.00	27.8

^a Ages interpolated from the biostratigraphy and magnetostratigraphy of Holes 720A, 722A, and 728A.

^b Ages calculated with equations (1) and (2) derived from the linear regressions in Figure 3A.

^c Ages calculated with equations (1) and (2) derived from the linear regressions in Figure 3B, CaCO₃-free.

Figure 3B, CaCO₃-free. d ${}^{10}\text{Be}_i$ is the initial content of ${}^{10}\text{Be}$, corrected for decay, using bio-/magneto-stratigraphic age.

Figure 4. Initial, decay-corrected, ¹⁰Be content vs. depth.

Figure 5. ¹⁰Be content vs. sediment accumulation rate.