A. Gray-shaded contour image of the bathymetry of the eastern Indian Ocean, showing the Leg 121 drill sites. (Image preparation: G. D. Karner, N. W. Driscoll, and J. K. Weissel).
B. Gray-shaded contour image of filtered gravity anomalies over the eastern Indian Ocean, showing the Leg 121 drill sites. In making this image, wavelengths greater than 2000 km were filtered from free-air gravity anomalies obtained from Seasat and Geosat altimeter observations. Note that some contours have been suppressed in the interest of image clarity. (Image preparation: G. D. Karner, N. W. Driscoll, and J. K. Weissel).
PROCEEDINGS OF THE OCEAN DRILLING PROGRAM

VOLUME 121 INITIAL REPORTS

BROKEN RIDGE AND NINETEENTH RIDGE

Covering Leg 121 of the cruises of the Drilling Vessel JOIDES Resolution, Fremantle, Australia, to Port of Singapore, Singapore, Sites 752—758, 30 April to 28 June 1988

Participating Scientists

Elliott Taylor
Shipboard Staff Scientist

Prepared by the OCEAN DRILLING PROGRAM TEXAS A&M UNIVERSITY

Elsa Kapitan Mazzullo
Volume Editor

in cooperation with the NATIONAL SCIENCE FOUNDATION and JOINT OCEANOGRAPHIC INSTITUTIONS, INC.
Foreword
By the National Science Foundation

The scientists of the Ocean Drilling Program (ODP) have embarked on what could prove to be one of the most important earth science initiatives of the decade—an initiative rivaling in scope and impact the exploration of the frontiers of outer space. The program explores our planet's last frontier—the Earth's structure and history as it is revealed beneath the oceans. The scope of the program's scientific goals excites the imagination, challenges the intellect, and enhances the spirit of cooperation among peoples in countries around the world.

Between 1872 and 1876, HMS Challenger undertook the world's first major oceanographic expedition. That expedition greatly expanded man's knowledge of the world's oceans and revolutionized our ideas about planet Earth. From 1968 to 1983, another ship named Challenger logged more than 375,000 miles on 96 voyages across every ocean for the Deep Sea Drilling Project (DSDP), operated by Scripps Institution of Oceanography. Among the project's many remarkable discoveries were the confirmation of seafloor spreading and the establishment of the relative youth of the seafloor, thus verifying the dynamic and changing nature of the Earth's crust.

Today, the Ocean Drilling Program, which began in 1983, brings new resources to bear on scientific ocean drilling. A new drillship is in operation—the JOIDES Resolution—one of the world's most modern and best equipped drillships with enhanced capability for drilling and coring in polar areas and rough weather, expanded laboratory space, facilities for more scientists, and a major drill-hole logging program. The name of the ship was derived from the international scientific partnership that directs the program—the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES)—and from the flagship of Captain Cook's second voyage to the Pacific Ocean in the late 18th century. Texas A&M University is responsible for science operations in the program, and Lamont-Doherty Geological Observatory is responsible for the logging program.

The Ocean Drilling Program truly has international participation. In 1975, the International Phase of Ocean Drilling began with member nations—the U.S.A., U.S.S.R., the Federal Republic of Germany, Japan, the United Kingdom, and France—all providing funds and scientific guidance for the project. Today, ODP partners include the U.S.A., the Canada/Australia Consortium for the Ocean Drilling Program, France, the Federal Republic of Germany, Japan, the United Kingdom, and the European Science Foundation, which represents Sweden, Finland, Norway, Iceland, Denmark, Belgium, the Netherlands, Spain, Switzerland, Italy, Greece, and Turkey. The National Science Foundation, with funds contributed by the United States and international partners, supports the scientific operations and planning for the ODP through a contract with Joint Oceanographic Institutions, Inc. (JOI).

The information gained by the program leads to a better understanding of the Earth and its dynamic processes. Drilled sediment cores and logs reveal clues to past climatic history and tie into parallel studies of paleoclimates from glacial ice cores drilled on the continents. Understanding these sediment cores will enable scientists to complete the map of major geologically active regions of the Earth, and to identify processes that lead to dynamic change such as earthquakes, volcanic eruptions, and mountain and continental growth. We are far from being able to predict such changes accurately now; but with the new tools and understanding, the accuracy of such predictions can be improved. This better understanding of the Earth's system(s) will allow us to identify regions of potential mineral and energy resource development, an issue of worldwide human interest. The Ocean Drilling Program is not in itself aimed at finding resources, but the knowledge of the Earth's processes that is gained through such a basic research program will inevitably provide pieces of information required for such resource discovery and exploitation.

The program is fully under way in its aim to further the understanding of the Earth's dynamic systems. People of our planet will benefit directly and indirectly from this research in both their daily living and work activities. This multinational endeavor will perhaps foster other cooperative efforts in science or among societies. The Ocean Drilling Program has distinguished ancestors in the original Resolution and Challenger expeditions and the Deep Sea Drilling Project. The National Science Foundation is proud to be playing a leading role in this program, and we are looking forward to significant and innovative science for many years to come.

Erich Bloch
Director
National Science Foundation

Washington, D.C.
Foreword
By Joint Oceanographic Institutions, Inc.

This volume presents results from the Ocean Drilling Program (ODP), where scientists use a specially equipped ocean drilling ship to sample and measure the properties of the submerged part of the Earth's crust. These data are then synthesized with other information to yield new insights into earth processes.

These results address the scientific goals of the program, which include providing a global description of geological and geophysical structures and materials, studying in detail areas of major geophysical activity such as mid-ocean ridges and the associated hydrothermal circulations, and studying passive and active continental margins. In addition, the ODP data support the study of sea-level and ocean-circulation changes, the effects of the Earth's orbital variations on climate, and the study of processes and mechanisms of evolution from the biological records in the cores which are recovered from drilling.

The Ocean Drilling Program is a partnership of scientists and governments. Overall scientific policy and management guidance is provided by Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES), which consists of committees and panels made up of representatives of the participating institutions and other scientific and engineering experts. The JOIDES Executive Committee (EXCOM) provides general oversight; the JOIDES Planning Committee (PCOM) is the focal point for all scientific planning for the ODP and is key to the scientific success of the program.

The PCOM has a network of panels and working groups which screen drilling proposals, evaluate instrumentation and measurement techniques, and assess geophysical survey data and other safety and siting information. PCOM uses the recommendations of these panels and committees to select drilling targets, to specify the major scientific objectives of each two-month drilling segment or leg, and to provide the science operator with nominations for co-chief scientists. The science operator, Texas A&M University, in turn is responsible for planning the detailed ship's operations, actual drilling schedules, and final scientific rosters, which are developed in close cooperation with PCOM and the cognizant panels.

Many of the scientific goals can be met only with new technology. Thus the program has identified engineering goals, which include the ability to start a hole and to core on bare rock at mid-ocean ridge sites, to drill in high-temperature and corrosive regions typical of hydrothermal areas, and to core in high latitudes with minimum interference from high seas and sea ice. To meet these needs, the program operates a specially equipped drillship, the JOIDES Resolution, which contains laboratories and equipment that are state-of-the-art, and carries a major new logging program.

The ship, registered as SEDCO/BP 471 after her owners and her length in feet (144 meters), is 70 feet (21 meters) wide, and has a displacement of 16,595 long tons. Her derrick towers 200 feet (61 meters) above the waterline, and a computer-controlled dynamic-positioning system stabilizes the ship over a specific location while drilling in water depths up to 27,000 feet (8230 meters). The drilling system collects cores from beneath the seafloor with a derrick and drawworks that can handle 30,000 feet (9144 meters) of drill pipe. More than 12,000 square feet (1115 square meters) of space distributed throughout the ship is devoted to scientific laboratories and equipment. The ship sails with a scientific and technical crew of 50 and a ship's crew of 65.

Logging is a major part of the overall operation. The program provides a full suite of geochemical and geophysical measurements for every hole deeper than 1300 feet (400 meters). For each such hole, there are lowerings of basic oil-industry tools: nuclear, sonic, and electrical. In addition, a borehole televizor is available for imaging the well-bore wall, a 12-channel logging tool provides accurate velocity and elastic property measurements as well as sonic waveforms for spectral analysis of energy propagation near the well bore, and a vertical seismic profiler records reflectors from below the total depth of the hole.

Texas A&M University serves as science operator for the Ocean Drilling Program. In this capacity, they operate and staff the drillship to collect cores from JOIDES-designated sites from around the world. The science operator also ensures that adequate scientific analyses are performed on the cores by maintaining the shipboard scientific laboratories and by providing logistical and technical support for shipboard scientific teams. Onshore, Texas A&M manages scientific activities after each leg, is curator for the cores, distributes samples, and coordinates the editing and publication of the scientific results. Lamont-Doherty Geological Observatory (LDGO) of Columbia University manages the program's logging operations, which include processing the data and provision of assistance to scientists in data analysis. The ODP Data Bank, a repository for geophysical data, is also managed by LDGO. Core samples from ODP and the previous Deep Sea Drilling Project are stored for future investigation at three sites: ODP Pacific and Indian Ocean cores at Texas A&M University, ODP and DSDP Atlantic and Antarctic cores at Lamont-Doherty Geological Observatory, and DSDP Pacific and Indian Ocean cores at Scripps Institution of Oceanography.

International oversight and coordination are provided by the ODP Council, a governmental consultative body of partner country representatives, chaired by the United States, which periodically reviews the general progress of the program and discusses financial plans and other management issues. Joint Oceanographic Institutions, Inc., a nonprofit consortium of U.S. oceanographic institutions, serves as the National Science Foundation's prime contractor and manages the ODP. JOI is responsible for seeing that the scientific objectives and plans are translated into scientific operations consistent with JOIDES recommendations and budgetary constraints.

Scientific achievements of the ODP already include new data on early seafloor spreading and how continents separate and their margins evolve. We have new insight into glacial cycles and the fluctuations of currents throughout geological time. Technical achievements include the first bare-rock coring, and logging data more accurate and complete than ever before. JOI is pleased to have played a facilitating role in the Ocean Drilling Program.

D. James Baker
President
Joint Oceanographic Institutions, Inc.
Washington, D.C.
OCEAN DRILLING PROGRAM

MEMBER ORGANIZATIONS OF THE JOINT OCEANOGRAPHIC INSTITUTIONS FOR DEEP EARTH SAMPLING (JOIDES):

University of California at San Diego, Scripps Institution of Oceanography
Columbia University, Lamont-Doherty Geological Observatory
University of Hawaii, Hawaii Institute of Geophysics
University of Miami, Rosenstiel School of Marine and Atmospheric Science
Oregon State University, College of Oceanography
University of Rhode Island, Graduate School of Oceanography
Texas A&M University, College of Geosciences
University of Texas at Austin, Institute for Geophysics
University of Washington, College of Ocean and Fishery Sciences
Woods Hole Oceanographic Institution
Canada/Australia Consortium for the Ocean Drilling Program, Department of Energy, Mines and Resources (Canada) and Department of Primary Industries and Energy (Australia)
European Science Foundation Consortium for Ocean Drilling, Belgium, Denmark, Finland, Iceland, Italy, Greece, the Netherlands, Norway, Spain, Sweden, Switzerland, and Turkey
Federal Republic of Germany, Bundesanstalt für Geowissenschaften und Rohstoffe
France, Institut Français de Recherche pour l'Exploitation de la Mer
Japan, University of Tokyo, Ocean Research Institute
United Kingdom, Natural Environment Research Council

OPERATING INSTITUTION
College of Geosciences
Texas A&M University
College Station, Texas
Melvin Friedman, Principal Investigator

OCEAN DRILLING PROGRAM
Philip D. Rabinowitz
Director
Louis E. Garrison
Deputy Director
Richard G. McPherson
Administrator
Audrey W. Meyer, Manager
Science Operations
Barry W. Harding, Manager
Engineering and Drilling Operations
Russell B. Merrill, Curator and Manager
Science Services
Robert E. Olivas, Manager
Technical and Logistics Support

LOGGING OPERATOR
Borehole Research Group
Lamont-Doherty Geological Observatory
Columbia University
Palisades, New York
Roger N. Anderson, Head

PRIME CONTRACTOR
Joint Oceanographic Institutions, Inc.
Washington, D.C.
Thomas E. Pyle
Director, Ocean Drilling Programs
PARTICIPANTS ABOARD JOIDES RESOLUTION FOR LEG 121

John W. Peirce
Co-Chief Scientist
Petco Canada
P.O. Box 2844
Calgary, Alberta T2P 3E3
Canada

Jeffrey K. Weissel
Co-Chief Scientist
Lamont-Doherty Geological Observatory
Columbia University
Palisades, New York 10964

Elliott Taylor
ODP Staff Scientist/Physical-Properties Specialist
Ocean Drilling Program
Texas A&M University
1000 Discovery Drive
College Station, Texas 77840

Jonathan Dehn
Sedimentologist
Institut für Mineralogie
Ruhr-Universität Bochum
Postfach 102148
D-44780 Bochum-Querenberg
Federal Republic of Germany

Neal Driscoll
Sedimentologist
Lamont-Doherty Geological Observatory
Columbia University
Palisades, New York 10964

John Farrell
Sedimentologist
Department of Geological Sciences
Brown University
Providence, Rhode Island 02912-1846

Elisabeth Fourtanier
Paleontologist (diatoms)
Laboratoire d'Etude des Diatomees
Ecole Normale Superieure
92260 Fontenay-Aux-Roses
France

Frederick A. Frey
Igneous Petrologist
Department of Earth, Atmospheric and Planetary Sciences
M.I.T.
42 Carleton Street
Cambridge, Massachusetts 02139

Paul D. Gamson
Paleontologist (foraminifers)
Department of Earth Sciences
Open University
Milton Keynes
Buckinghamshire MK7 6AA
United Kingdom

Jeffrey S. Gee
Paleomagnetist
Scripps Institution of Oceanography
University of California, San Diego
La Jolla, California 92037

Ian L. Gibson
Igneous Petrologist
Department of Earth Sciences
University of Waterloo
Waterloo, Ontario N2L 3G1
Canada

Thomas R. Janecek
Sedimentologist
Lamont-Doherty Geological Observatory
Columbia University
Palisades, New York 10964
(current address:
Ocean Drilling Program
Texas A&M University
1000 Discovery Drive
College Station, Texas 77840)

Chris Klootwijk
Paleomagnetist
Bureau of Mineral Resources, Geology and Geophysics
P.O. Box 378
Canberra, A.C.T. 2601
Australia

James R. Lawrence
Inorganic Geochemist
Department of Geosciences
University of Houston
4800 Calhoun
Houston, Texas 77004

Ralf Littke
Organic Geochemist
Institute of Petroleum and Organic Geochemistry
KFA Jülich, P.O. Box 1913
5170 Jülich
Federal Republic of Germany

Jerry S. Newman
Physical-Properties Specialist
Institute for Geophysics
University of Texas at Austin
8701 Mopac Boulevard
Austin, Texas 78759-8345
(current address:
GECO Geophysical Company
1325 S. Dairy Ashford
Houston, Texas 77077)

Ritsuo Nomura
Paleontologist (foraminifers)
Department of Earth Sciences
Shimane University
Matsue, Shimane Prefecture 690
Japan
Robert M. Owen
Sedimentologist
Department of Geological Sciences
University of Michigan
Ann Arbor, Michigan 48109-1063

James J. Pospichal
Paleontologist (nannofossils)
Department of Geology
Florida State University
Tallahassee, Florida 32306

David K. Rea
Sedimentologist
Department of Geological Sciences
University of Michigan
Ann Arbor, Michigan 48109-1063

Purtyasti Resiwati
Paleontologist (nannofossils)
Department of Geology
University of Nebraska
Lincoln, Nebraska 68588-0340

Andrew D. Saunders
Igneous Petrologist
Department of Geology
University of Leicester
University Road
Leicester LE1 7RH
United Kingdom

Jan Smit
Paleontologist (foraminifers)
Geological Institute
Free University
P.O. Box 7161
NL-1007 MC Amsterdam
Netherlands

Guy M. Smith
Paleomagnetist
Department of Earth and Atmospheric Sciences
St. Louis University
P.O. Box 8099, Laclede Station
St. Louis, Missouri 63156

Kensaku Tamaki
Physical Properties Specialist
Ocean Research Institute
University of Tokyo
1-15-1 Minamidai Nakano-Ku
Tokyo 164
Japan

Dominique Weis
Igneous Petrologist
Laboratoire Associés de Géologie-Pétrologie-Géochronologie
Université Libre de Bruxelles
Avenue Franklin Roosevelt 50
B-1050 Bruxelles
Belgium

Craig Wilkinson
LDGO Logging Scientist
Lamont-Doherty Geological Observatory
Columbia University
Palisades, New York 10964

SEDCO OFFICIALS
Captain Edwin G. Oonk
Master of the Drilling Vessel
Underseas Drilling, Inc.
707 Texas Avenue South, Suite 103D
College Station, Texas 77840-1917

Jack Tarbutton
Drilling Superintendent
Underseas Drilling, Inc.
707 Texas Avenue South, Suite 103D
College Station, Texas 77840-1917

ODP ENGINEERING AND OPERATIONS PERSONNEL
David Huey
Operations Superintendent
Mark Robinson
Special Tools Engineer

ODP TECHNICAL AND LOGISTICS PERSONNEL
Dan Bontempo
Marine Technician
Jim Briggs
Electronics Technician
Stacey Cervantes
Photographer
Valerie Clark
Chemistry Technician
Alison Craig
Yeo person
Roy T. Davis
Marine Technician
Bettina Domeyer
X-ray Technician
Burney Hamlin
Computer System Manager
John R. Eastlund
Laboratory Officer
Burney Hamlin
Marine Technician
Kazushi (“Kuro”) Kuroki
Electronics Technician
Dwight E. Mossman
Marine Technician
Mark (“Trapper”) Neschleba
Chemistry Technician
Katie Sigler Tauxe
John Tauxe
Bob Wilcox
Sherry Williams
Katie Sigler Tauxe
John Tauxe
Bob Wilcox
Sherry Williams
Dawn J. Wright

xvi
Ocean Drilling Program Publications Staff

Publications Supervisor
William D. Rose

Chief Editor
Norman J. Stewart

Editors
- Eva M. Barbu
- Elsa Kapitan Mazzullo
- Sondra K. Stewart
- William R. Winkler

Chief Production Editor
Jennifer Pattison Hall

Production Editors
- Susan Collinsworth
- Jaime A. Gracia

Publications Coordinator
- Lona Haskins Dearmont
- Janalisa Braziel Soltis

Hole Summary Coordinator
- Laura J. Young

Publications Distribution Specialist
- Fabiola Muñoz Byrne

Senior Photographer
- John W. Beck

Photographer
- Roy T. Davis

Chief Illustrator
- Karen O. Benson

Illustrators
- Garnet D. Gaither
- Larry R. Lewis
- Pamela C. Vesterby
- Mathias Zebrowski

Compositor
- Mary E. Betz

Production Assistants
- Gudelia ("Gigi") Delgado
- Lisa L. Tirey
TABLE OF CONTENTS

VOLUME 121—INITIAL REPORTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACKNOWLEDGMENTS</td>
<td>1</td>
</tr>
<tr>
<td>SECTION 1: INTRODUCTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>LEG 121 BACKGROUND AND OBJECTIVES</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>EXPLANATORY NOTES</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>BROKEN RIDGE UNDERWAY GEOPHYSICS</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>STRATIGRAPHIC AND TECTONIC EVOLUTION OF BROKEN RIDGE FROM</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>SEISMIC STRATIGRAPHY AND LEG 121 DRILLING</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N. W. Driscoll, G. D. Karner, J. K. Weissel, and the Shipboard</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scientific Party</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>NINETYEAST RIDGE UNDERWAY GEOPHYSICS</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>SECTION 2: SITE REPORTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>SITE 752</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>SITE 753</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>SITE 754</td>
<td>191</td>
</tr>
<tr>
<td></td>
<td>Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>SITE 755</td>
<td>237</td>
</tr>
<tr>
<td></td>
<td>Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>SITE 756</td>
<td>259</td>
</tr>
<tr>
<td></td>
<td>Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>SITE 757</td>
<td>305</td>
</tr>
<tr>
<td></td>
<td>Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>SITE 758</td>
<td>359</td>
</tr>
<tr>
<td></td>
<td>Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>SECTION 3: SITE SUMMARY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>BROKEN RIDGE SUMMARY</td>
<td>457</td>
</tr>
<tr>
<td></td>
<td>Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>CRETACEOUS/TERTIARY BOUNDARY SUMMARY</td>
<td>507</td>
</tr>
<tr>
<td></td>
<td>Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>NINETYEAST RIDGE SUMMARY</td>
<td>517</td>
</tr>
<tr>
<td></td>
<td>Shipboard Scientific Party</td>
<td></td>
</tr>
</tbody>
</table>
SECTION 4: CORES

Core description forms and core photos for:

SITE 752 .. 541
Shipboard Scientific Party

SITE 753 .. 589
Shipboard Scientific Party

SITE 754 .. 597
Shipboard Scientific Party

SITE 755 .. 635
Shipboard Scientific Party

SITE 756 .. 653
Shipboard Scientific Party

SITE 757 .. 721
Shipboard Scientific Party

SITE 758 .. 815
Shipboard Scientific Party

SECTION 5: POLICY

JOIDES ADVISORY GROUPS .. 993

SAMPLE-DISTRIBUTION POLICY .. 999

BACKPOCKET FOLDOUTS

INITIAL REPORTS VOLUME 121: CHAPTER 5: FIGURE 5. JOIDES RESOLUTION SEISMIC LINE ACROSS SITE 756. DATA WERE REPROCESSED POST-Cruise.

INITIAL REPORTS VOLUME 121: CHAPTER 5: FIGURE 12. JOIDES RESOLUTION SEISMIC LINE ACROSS SITE 757. DATA WERE REPROCESSED POST-Cruise.

INITIAL REPORTS VOLUME 121: CHAPTER 5: FIGURE 17. JOIDES RESOLUTION SEISMIC LINE ACROSS SITE 758. DATA WERE REPROCESSED POST-Cruise.

INITIAL REPORTS VOLUME 121: CHAPTER 12: FIGURE 41. CORRELATION OF THE HOLOCENE TO MIOCENE-PLIOCENE APC-CORED SEQUENCES OF HOLES 758A AND 758B.
ACKNOWLEDGMENTS

ODP Leg 121 set forth to address questions concerning the tectonic and environmental histories of the eastern Indian Ocean. Understanding rifting mechanisms and lithospheric flexure at Broken Ridge, the origin of Ninetyeast Ridge, and the history of the converging Indian-Eurasian plates were key tectonic problems for our sampling and logging efforts. Understanding changes in ocean and atmospheric circulation from the sedimentary record were also fundamental to our program. The studies and material from Leg 121 form an important complement to research associated with ODP Legs 115, 116, 117, 119, and 120.

The initial results of our cruise are reported herein, a product of the cooperative efforts of scientists, technicians, engineers, and crew aboard the JOIDES Resolution. Particular appreciation is extended to Captain Gerard Kuster, Dave Huey, the ODP cruise operations manager, and the SEDCO drilling personnel. The professional assistance provided by the ODP Administration, Logistics, and Publications groups has helped us tremendously toward reaching our objectives.

Leg 121 came to fruition thanks to the guidance from numerous researchers in their proposal statements to ODP. Our gratitude is extended to members of the Indian Ocean Regional Panel and the JOIDES Planning Committee for dedicating ODP resources to our quest.