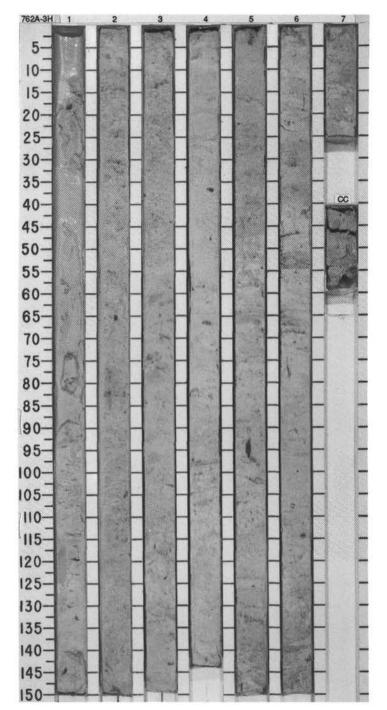
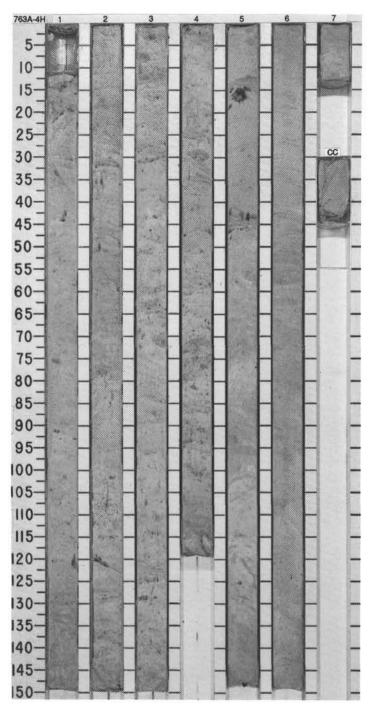

SITE 763 HOLE A CORE 1H CORED INTERVAL 0.0-4.9 mbsf

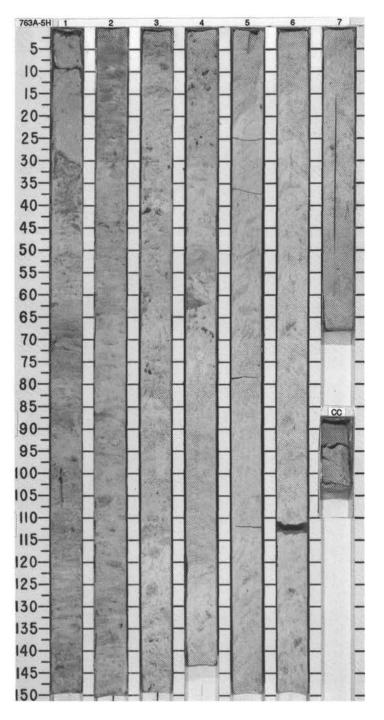
UNIT			CHA			5	IES					RB.	s	Γ	
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS, PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
QUATERNARY	A/G N22 - N23	A/G NN20 - NN21	Barren		Barren	Chron 1	● 20.5 V+1.565 V+1.525 24 30	T0C=0.06%		0.5			6	*	FORAMINIFER NANNOFOSSIL OOZE WITH CLAY Drilling disturbance is moderate. Major lithology: FORAMINIFER NANNOFOSSIL OOZE with CLAY, light gray (5Y 7/1) to light brownish gray (10YR 6/2), mottled, structureless. About 25 to 30% foraminifers and about 10 to 25% clay. Calcispheres (1%) are present in Section 3. Minor lithology: Nanofossil ocze with foraminifers and clay, pinkish gray (7.5YR 7/3 to 7.5YR 6/2), in Section 1, 0-30 cm. Transition toward the major lithology is gradual. SMEAR SLIDE SUMMARY (%): 1, 18 2, 73 3, 71 CC, 10 M D D M COMPOSITION: Calcispheres Tr Tr 1 Clay 20 15 25 10 Fish Tr — — — Fish Tr — — — Manotossits 69 60 45 55 Pyrite — — 5 Quartz — Tr — Spicules 1 — 1 Tr


SITE 763

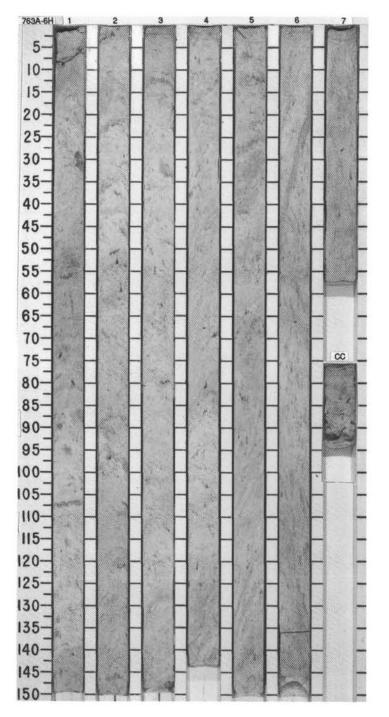
UNIT	BIO FOS	STR	CHA	ZON	TER	07	IE8				RB.	ES		
TIME-ROCK UI	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
			Barren				• 1.1.1 V-1.536	CaCO3-87.71%	1				*	NANNOFOSSIL OOZE WITH FORAMINIFERS AND FORAMINIFER NANNOFOSSIL OOZE Drilling disturbance is moderate to heavy. Major lithologies: NANNOFOSSIL OOZE with FORAMINIFERS and FORAMINIFER NANNOFOSSIL OOZI light gray (5Y 7/1) and white (5Y 8/1). The percentage of foraminifers estimated according the smear slides to be lower than the real percentage (estimated with binocular or washing) which is between than the real percentage (estimated with binocular or washing) which is between 20 and 30%. Some burrows are visible (especially in Section 5 A few thin drilling disturbed greenish gray diffuse layers are noticed.
		0 - NN21							2			2		SMEAR SLIDE SUMMARY (%): 1, 77 3, 33 6, 67 D D D COMPOSITION: Calcispheres 2 - 2
IRY	N23	NN20	invayinata				•	CaCO3-85.63%	з		! ! !	\$	*	Catay 3 - 5 Foraminiters 15 5 25 Mica Tr Tr Nannotossits 80 88 67 Pyrite 7 Radiolarians Tr Tr 1 Spicules Tr 1
QUATERNARY	N22 - 1		C. tuberosa - B.			Chron 1		×	4		- - - - -	1		
		0119					0-68.3 V-1.549	CaCO3-82.30% TOC=0.04%	5			* *		
								•	6				*	
	A/G	A/G			Barren				7 CC					



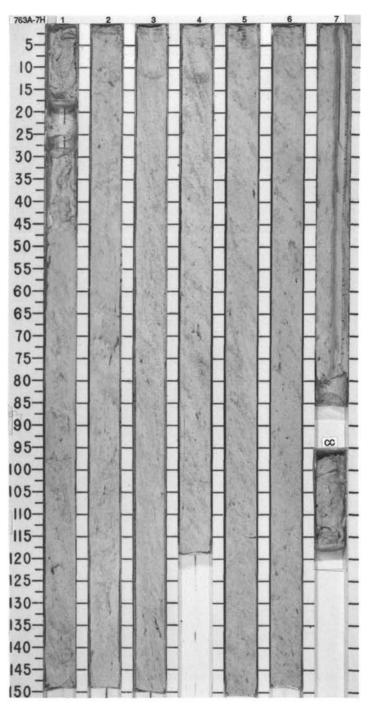
SITE	763	HOLE	Α	CORE	3H	CORED INTERVAL	14.4-23.9 mbsf
------	-----	------	---	------	----	----------------	----------------

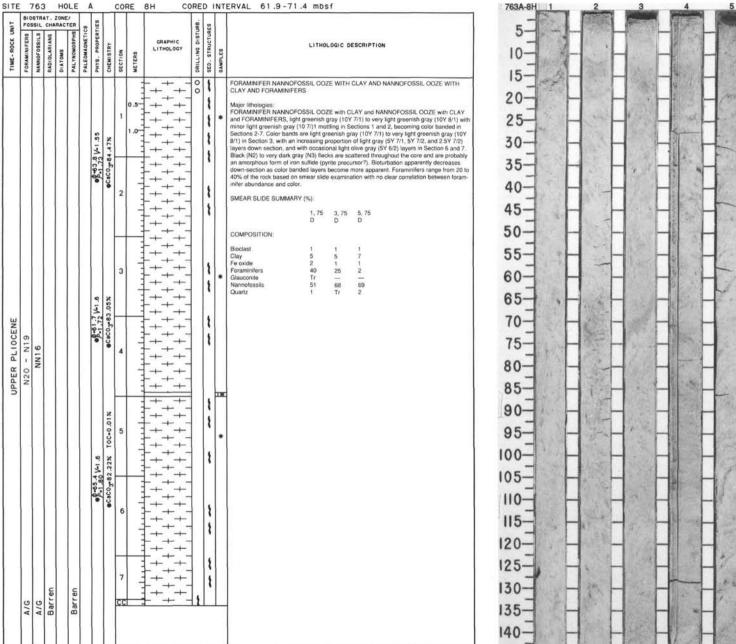

UNIT	BIO FOS	SIL	CHA	RAC	TER	S	TIES					URB.	ES .		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
			UPPER QUATERNARY				• \$-69.2 V-1.538		1	0.5		00000			FORAMINIFER NANNOFOSSIL OOZE WITH CLAY Upper core is soupy, remainder of core shows only minor drilling disturbance. Major tithology: FORAMINIFER NANNOFOSSIL OOZE WITH CLAY, light gray (5Y 7/1) to light greenish gray (5GY 7/1). The light greenish gray oozes have more clay and quartz, b they are not 10% of the smear sildes (although CaCO3 analyses suggest three > 10%, hence the name). Light greenish gray motiles (109 K2) are dispersed throughout the core Sections 2. 4, 5, and 6 have laminations of light greenish gray ooze enriched in clay and quartz alternating with the light gray coze. Boundaries burkeen laminations are gradations Patterns appear to be cyclic. Large scale cycles are superimposed on smaller cycles in
			QUATERNARY UP						2					*	Section 5. A distinct light olive gray (5Y 6/2) color boundary in Section 6, 52-55 cm. Surfac is mottled, suggesting bioturbation, but no distinct burrows are observed. SMEAR SLIDE SUMMARY (%): 2, 79 2, 114 4, 35 5, 32 6, 53 M D D M M COMPOSITION:
			MIXED QUA				P-1.55 V-1.542	CaC03*81.97%	3		+ + + + + + + + + + + + + + + + + + + +				$\begin{array}{cccccc} Accessory minerals & & 1 & & 1 & \\ Calcispheres & 1 & & & \\ Clay & 8 & & 2 & 2 & 1 \\ Fish & 2 & 1 & & & 1 \\ Foraminifers & 40 & 30 & 40 & 40 & 35 \\ Glass & 3 & & 2 & 1 & 1 \\ Nanofossils & 40 & 60 & 45 & 50 & 55 \\ Opaques & & 2 & & \\ Quartz & 2 & & 1 & 1 & 3 \\ Radioarians & 2 & 3 & 5 & 3 & 2 \\ Spicules & 2 & 3 & 5 & 2 & 2 \\ \end{array}$
QUATERNARY	N22	NN19							4					*	
							• 5-69.1 V-1.542	CaCO3-80.55% TOC-0.02%	5					*	
					u.		•	•	6					•	
	A/G	A/G			Barren				cc		t_++	1!			

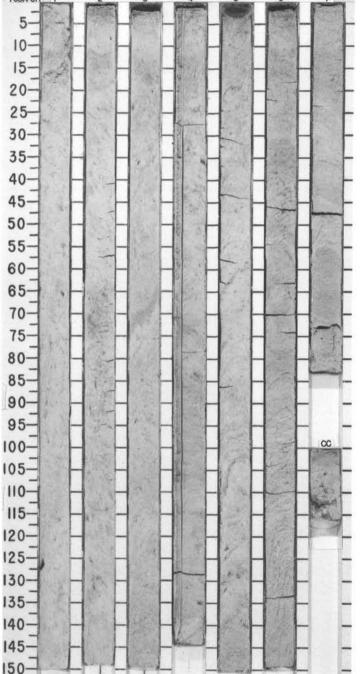
UNIT	BIO	STR	AT. CH	ZON	E/	s	E S				RB.	ES		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
							P-1 59 V-1 548	CaC03-78.14%	1	0.5 + + + + + + + + + + + + + + + + + + +			*	FORAMINIFER NANNOFOSSIL OOZE WITH CLAY Drilling disturbance is moderate. Major lithology: FORAMINIFER NANNOFOSSIL OOZE with CLAY, light gray (5Y 7/1). Percent of foraminifers is difficult to estimate (differences between smear slide estimates, sieving and binocular observation). They probably form around 25 to 40% decreasing in abundance in Sections 5, 6, 7, and CC. Some diffuse slightly more greenish (5G 6/1, 5GY 1, 5G 7/1) patches or disturbed on thick layers are present in Sections 5, 1, and CC. Some time slightly more greenish, parallel laminations appear in the upper part of Section 6. This greenish color may be due to an increase in clay content. Bioturbation is minor (Sections 3 and 5) to absent.
									2					SMEAR SLIDE SUMMARY (%): 1, 93 3, 62 5, 79 D D D COMPOSITION:
									3				*	Calcispheres 5 1 Clay 1 Fish 3 Foramilers 10 20 10 Nannolossis 84 69 84 Quartz 3 5 2 Radiolarians 1 1 Spicules 1
QUATERNARY	N22	NN19				on 1	-8-67.2 V-1.567	•CaCO3-83.80%				1		Spicules 1
οn						Chr	9.9	•Cad	4			1	06	
								K TOC=0.19%	5				*	
							• 9-68.2 V-1.574	CaCO3-82.72%	6			1		
						on 2	1		r cc					
	A/G	A/G	Barren		Barren	Chron								



TE	810		AT	ZONE				Π	COF	RE 5	н сс	Γ.	Γ	NT	ERVAL 33.4-42.9 mbsf
TIME-ROCK UNIT	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
										-	· + -	1			FORAMINIFER NANNOFOSSIL OOZE WITH CLAY
										0.5	+++	1			Moderate to severe drilling disturbance.
		NN19					\$-69.7 V-1.594	•CaCO ₃ =83.47%	1	1. 1.0 1	· + + · + + · + + - · + + -			*	Major ithology: FORAMINIFER NANNOFOSSIL OOZE with CLAY, light gray (5Y 7/1) to white (5Y 8/1). Light olive gray (5Y 6/2) motiles throughout. Section 3 appears to be tran tional between light gray ooze above and white ooze below. Slight alternation of color patterns may be cyclic. Foraminifers visible on the split core surface. Gray spots are drill grease or amorphous iron sulfide. Layers with higher clay contents are light greenish gra (10Y 8/2, 567 7/1), and occur as laminations and spots. Core may have been laminated
							V 69.	:03=B			· +				drilling has disrupted and distorted original bedding, particularly in Sections 5 and 6.
							0.0	• CaG		đ	· + -	1		*	SMEAR SLIDE SUMMARY (%): 1, 69 2, 52 3, 70 4, 75 5, 75 6, 67 7, 1
									2	E	+_+				
										-	+_+	1			COMPOSITION:
1						11				1	+ +	(i			Accessory minerals 1 1 1 1 1 1 1 Tr Calcite 1 Tr Tr
							B-67.5 V-1 .553	CaCO3=83.47%		-	+ +	li			Clay 10 2 2 2 4 10 3 Foraminiters 40 46 30 34 30 30 30
							2 41	3-83		1	+++	li	-		Glauconite Tr — — Tr Tr — Tr Tr — 1 1 Mica Tr Tr Tr T 1 1 1 1 Nannofossilis 46 50 67 60 63 56 65
							67	aco	3	1	+++-	Ľ		*	Nannotossiis 46 50 67 60 63 56 655 Opaques 1 Tr Tr Quartz 2 Tr Tr 2 1 2 1
							•	۲		1	+++-	1	1		
	1					0.0				1	+++-	11	Ľ		
ω I										1	+++-	1	1		
N E										1	+ +	li	\vdash		
PLIOCENE		8				3				1	+ +				
	N21	NN18				c			4	1	+ +	1	F	*	
UPPER		2				Chron				1	+ +	11		1	
d d						0				1	+ +			-	
										-	+ +	11	1		
										1	+ +	li	1		
									5	1	+ +	H	L	*	
							0			4	+ + +		1		
-1						60	1.54	1%		1	+ +	11	1	1	
							30.0	83.4	\vdash	-1	+ +		1		
							\$ -1 -1 -1 -546	CaCO3-83.47%		1	+++	li			
							•	•Ca	6		+++	li		*	
									ľ		+ +	H			
										1	+ +				
										1	+ +	ļļ			
										-	+ +	1			
									7	11	+_+	li		*	
									cc		+++				
			c		L.				Γ						
	0	A/G	Barren		Barren										
	A/G	A	8		B										



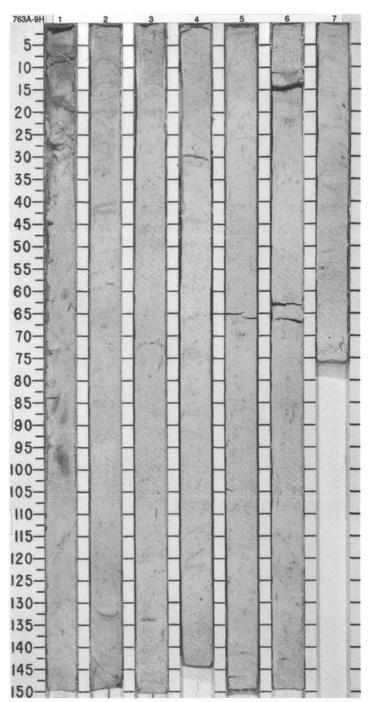

SITE 763


LIND	BIO FOS	STR	AT.	RAC	E/ TER	\$	IES					RB.	S		
I ME-KOCY ON	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	GRAPHI LITHOLO		DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
										++	+-	ļ		*	FORAMINIFER NANNOFOSSIL OOZE WITH CLAY AND NANNOFOSSIL OOZE WITH CLAY AND FORAMINIFERS
										0.5 + +	+]	1			The lower part of the core, Sections 5, 6, 7, and CC, is strongly disturbed by drilling.
			**				● = = = = = = = = = = = = = = = = = = =	•CaCO3-81.22%	1		+ + +		1		Major lithology: FORAMINIFER NANNOFOSSIL OOZE WITH CLAY and NANNOFOSSIL OOZE WITH CLAY AND FORAMINIFERS, light gray (10Y 7/1). The upper half of Section shows a slightly more greenish color (5Y 8/1 to 5Y 7/1), probably due to increased clay content. About 20 to 35% foraminifers. Calcispheres (1%, Sections 4 and 6) and spicules (2%, Section 4) are present.
							1.85	CO3-		1+	+]	!	٤		SMEAR SLIDE SUMMARY (%):
							9	•Ca		<u>[</u> + <u>]</u> -	+]	!		*	1, 32 2, 29 4, 68 6, 66 7, 27 D D D D D D
									2	1+	+	!	1		COMPOSITION:
										1 -1 +	+				Calcispheres 1 1 -
										<u>1</u> +	+	i			Clay 3 3 5 4 Fish 1 1 1 Foraminifers 28 20 30 35 35
											+	il	\$		Foraminifers 28 20 30 35 35 Glass — 1 — —
										{++	+	!	•		Glass 1 Glauconite 1 1 Mica Tr 1 Nannofossits 67 79 60 55 59 Opaques 1 1 Quartz 1 1 1 Radiolarians 1 1 1
1									3	+++-	+1				Nannotossils 67 79 60 55 59 Opaques 1 1 - 2 -
									3	+++-	+1	il	1		Opaques 1 1 2 Quartz 1 1 1 1 1 1 1 1 50/cules
							23			++++	1	il			Radiolarians 1 Spicules 2
1							5.1	\$63%	f 1	1 + +	-	1			TaxA formation of the
ш							· B-67.5 V-1 .553	CaCO3=86.63%	-	++++	+-				
L N							0-0	co3		+++-	+_	il			
PLIUCENE	-3.5	9					•	€C3		1+	+			5	
1	N21	NN16							4	1 + -	+	!		*	
EH		2									+7				
UPPER										+++-	+1	i			
2								- 9		++-	=	÷		-	
								×			-	!			
	53							TOC=0.05%		+++	-	11			
								-0-0	5]+	+_	1			
							9			1 1+	+_	3			
							1.5	2 2]+;-	+	Ł			
							\$-68.9 V-1.546	82.0	_	L_[+ ⁺ -	+7	1			
							68.	-£0			+1	1	1		
							•	CaC03-82.05%		+_+	-	1	8		
						1			6	+ +	-	3		*	
										1 3	+_	ł			
										++	+_	1			
										1+	+_	\$			
									-	1+	+-	\$			
									7]]++	+	3			
									cc		-1	1			
			S		L.										
	A/G	A/G	Barren		Barren										
	A	A	ñ		0										

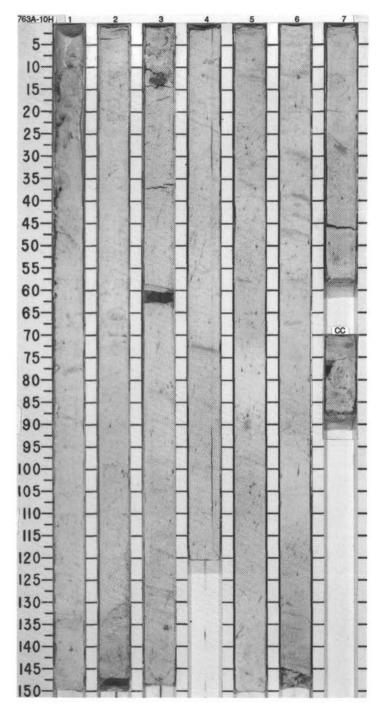
NANNOF DSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	Chron 2	PHYS. PROPERTIES	COCO3+82.80% CHEMISTRY	1 SECTION	GRAPHIC LITHOLOGY		T	* SAMPLES	FORAMINIFER NANNOFC Core is highly disturbed. Major lithology: FORAMINI 107 /11). Homogenous, m served, but vague disrupter cm, a 5 mm wide mottle co	FER NANI titled. No p	ZE WITH NOFOSS arimary o	IL OOZE r seconda st core w	WITH CLAY, I	ght gray (5Y / structures p ad. In Section	7/1 to pre- n 3, 60
				Chron		CaCO3+82.80%			0			Core is highly disturbed. Major lithology: FORAMINII 10Y 7/1). Homogenous, mo served, but vague disrupted	FER NANt titled. No p	NOFOSS primary o	IL OOZE r seconda st core w	WITH CLAY, II ry sedimentary as thinly bedde	ght gray (5Y / structures p ad. In Section	7/1 to pre- 1 3, 60
					B-64.8 V-1.564	CaCO3-82.80%	2				•	served, but vague disrupted	t laminatio	ins sugge	ist core w	as thinly bedde	ed. In Section	3,60
					B-64.8 V-1	CaC03-82	2					SMEAR SLIDE SUMMARY	195.1-	ur o na ga	iuconite.			
							2	1+++				SINCAN SEIDE SUMMAN	1, 93 D	3, 60 M	4, 93 D	6, 93 D		
								1++++	1			COMPOSITION: Accessory minerals	-	÷	1	-		
												Calcispheres Clay Fe oxide Fish	3	1	1 5 2 2	52 25 65 12		
				-								Foraminifers Glauconite Mica Nannofossils	25 2 	25 3 	25 	25 65		
				Chron 2A		p	3				•	Opaques Pteropod Quartz Zircon	2 - 2 1	2	2	1 2		
				Ð	-1 '28	4.72%						21000	2					
					B-65.2 V	caco_=8												
NN16						•	4											
									ľ		og TW							
						0.02%												
							5											
					4 V-1.5	F 79.80%	_											
					-2-20	CaCO.	6											
							0				•							
	c		c				7											
A/G	Barre		Barrei				cc											
		eu	eu	en	en In 16	en en 호흡66 ½ ½ . 59	en en କୁନିକିଶ୍ୟାଧୀ 59 କରେଡିକ୍ଟୀର 80% Toc-0.02%	en en en en en en en en en en en en en e	en en en en en en en en en en	en 2. 2. 0.023X 0.000,710,002X 0.000,710,000,700,700,700,700,700,700,700,	en en en en en en en en en en	en en en en en en en en en en	en en en en en en en en en en	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	en mil 6 en en en <td>en mile en en en<td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></td>	en mile en en en <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

NIT

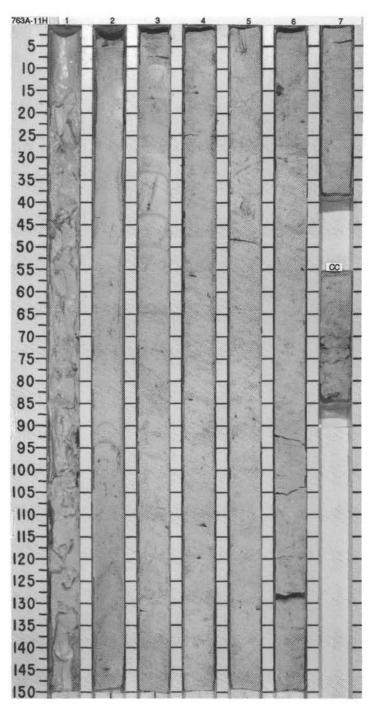
ROCK

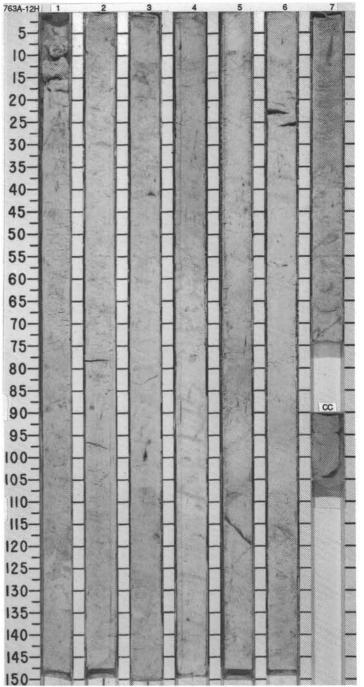

TIME-

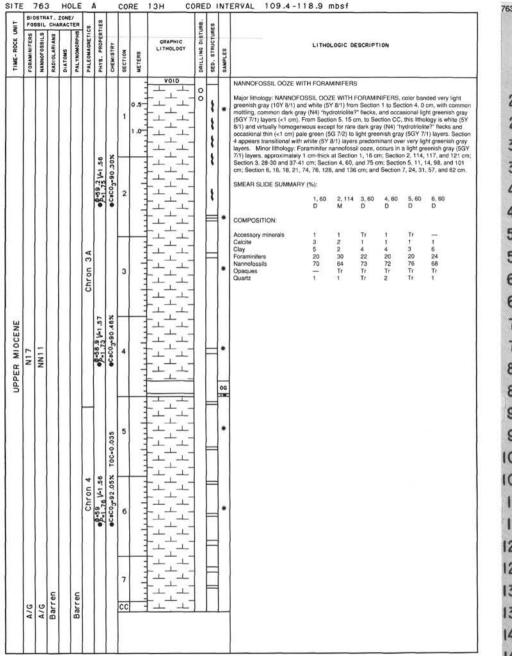
R PLIOCENE 0 - N19 NN16

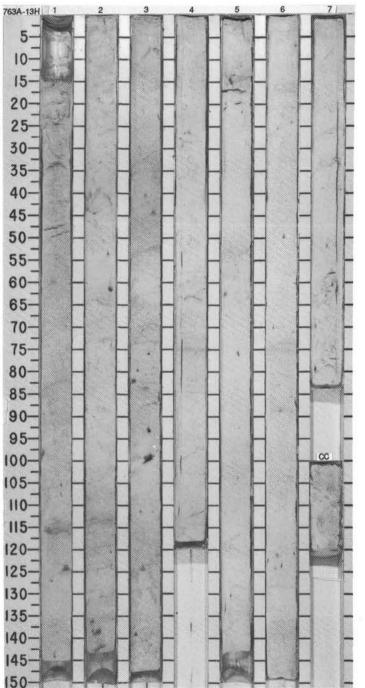

UPPER N20

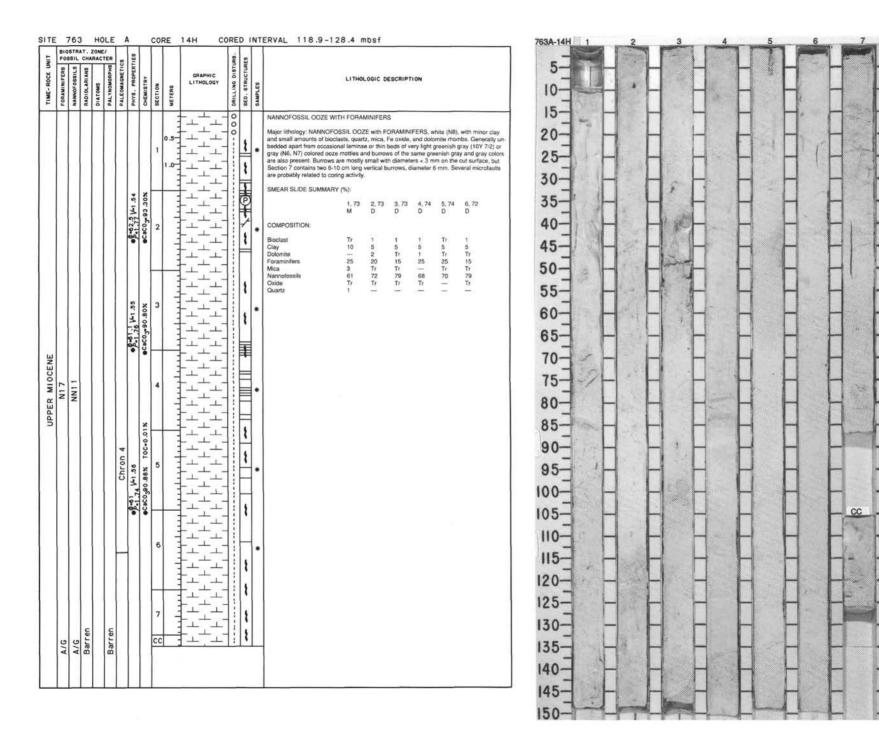
Le B NS

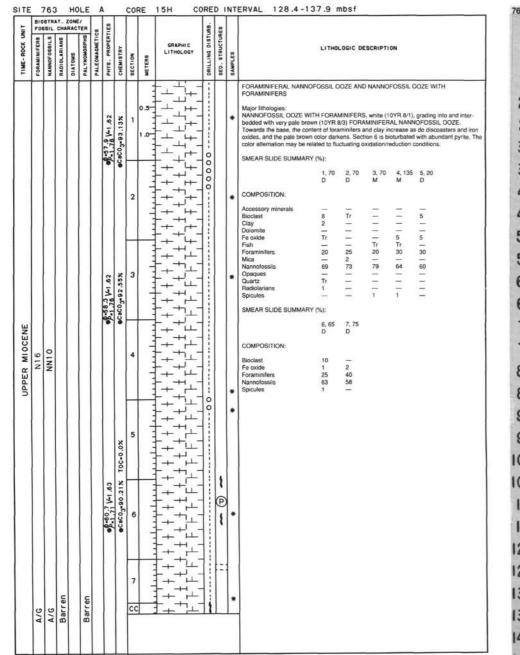

in the second	FO	SSIL	CHA	RAC	TER	03	ES					88.	8		
INC - NOCH OF	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
		Γ								-	- + -	00			FORAMINIFER NANNOFOSSIL OOZE WITH CLAY
									1	0.5	- + - - + + - + + - + +				Major tithology: FORAMINIFER NANNOFOSSIL OOZe with CLAY, very light gray (10Y 8-1) to white (5Y 81). Laminations of pale green (55 62) and fight gray (2.5Y 72) are observed throughout core, but no cyclic color pattern is present. Halo burrows, Section 2, 35 cm and 131 cm, Pale green and light gray laminations have higher clay content. Foraminifers visible on the split core surface. Minor burrowing.
											+++	1			Minor lithology: Pyrite, as disseminated mottles and wisps of (N5) gray, "hydrotrolifte?" observed throughout core. Gray zones also surround burrows. Disseminated pyrite is also observed infiling and replacing foraminiter tests in smare slides.
							\$-1-72 V-1.56	CaCO3=82.88%		-	+_+_	1	-		SMEAR SLIDE SUMMARY (%):
							12 V	03-8:		1	+++		-		2,72 3,72 5,70 7,70 D M D D
1							9 0	•CaC	2	1	- + +			*	COMPOSITION:
5															Clay — 5 4 3
											+++-	11			Fe oxide 1 - 1 -
									-	-	+ +				Fish 2 1 — 1 Foraminifers 25 25 25 30
												11			Glauconite 1 2 2
												11			Nannofossils 69 65 65 58 Opaques 5
2		1						8.1	3	- 2	+ + -				Quartz 1 2 3 3
										1	+ +	i.		1	
										-					
		in						1		1					
		5									+ +				
R N		NN1					\$ -1 -1 -2 - 1 -5 2	CaCO3-84.30%		-	+++	11			
B	50	1					5	4.3		1.5					
2	- N20						10	3-8	L.,		+ +				
		NN14					60-	5	4	- 8	+++				
OWER PLIOCENE	N19	ž				1		8		1	- + -		1:1		
ΝE	z									1	++-	11			
6										1	+ +				
-									-	-				190	
										1.1	+ +	11			
	1								5	1	+ +	11			
- 7	- 8		1		6			T0C=0.01%		- 8		11			
								0.0		-	- + -	11			
								ŝ			+ +	1:			
										- 3	- + -	11	-		
8							535	*0		-		1			
							\$ -1 -1 -2 -1 -5 35	CaCO3=85.80%			+++	1			
							20-	3-8		- 4	+++				
1						18	63	S	6			1			
1						13	99	C.S			+ + -	1 i			
		3					-	-		-	+ +	11			
5		INN1								1	- + -	11	12:		
		Z							-	-	+ + -				
											+ +	1			
									7	1	+++	11			
										1		11		1	
			Barren							-	+ +	11	1	٠	
	A/G	A/G	ari			()									
	A	A	8												
					1			5							

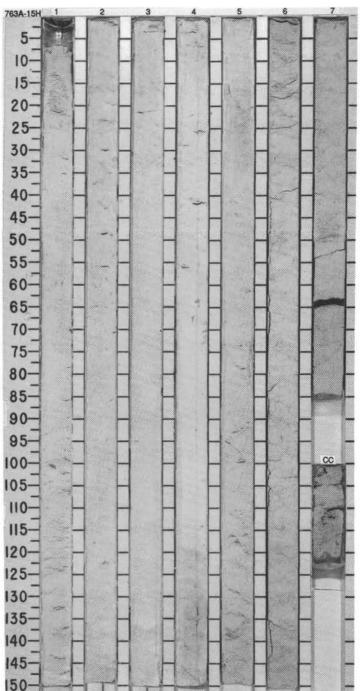

		STR				97	IES.				BB.	8		
IIME-ROCK OF	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
							● 2-1.76 V-1.55	GCaCO3*84.47%	1		000	*** ***	*	NANNOFOSSIL FORAMINIFER OOZE WITH CLAY AND FORAMINIFER NANNOFOSSIL OOZE WITH CLAY Major lithologies: NANNOFOSSIL FORAMINIFER OOZE with CLAY and FORAMINIFER NANNOFOSSIL OOZE with CLAY, color banded with white (5Y 8/1), very light greenish gray (10Y 8/1), and light gray (5Y 7/1, 2.5Y 7/2) layers, and a few thin (< 1 cm) pale green (5G 7/2) layers. Col bands are 20 cm-80 cm thick with white predominant from Sections 1 to Section 3, 97 cm, and very light greenish gray to light gray is predominant from Sections 1 to Section 3, 97 cm, C. Black (N2) to dark gray (N4) specks are common, scattered throughout, and a pyrite nodule (2 cm X 4 cm) containing calcareous foraminifer tests occurs in Section 3, 9-11 cm, Bioturbation and color motting occur locally. Foraminifers range from 30% to 55% and nannotossils from 37% to 55%. Thin (< 1 cm thick) layers of pale green (5G 7/2) foraminifer nannotossils from 37% to 55% and 1 light greenish gray (5G 7/1) to pale green (5G 7/2) layers occurring in Section 1, 76 cm, 84 cm, and 146 cm; Section 2, 72 cm; Section 3, 56 cm, 118 cm, 126 cm, and 130 cm; and Section 5, 27 cm, 37 cm, and 45 cm. SMEAR SLIDE SUMMARY (%):
												P		1,79 3,140 4,72 6,24 D D M D
LOWER PLIDGENE	N18	NN1 2					• \$*63.7 V+1.5	●CaCO3=87.2%	3	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$		* * *	*	COMPOSITION: Biolast 1 1 2 1 Biothe - Tr - - Clay 5 5 10 7 Fe Oxide 1 Tr 1 1 Fish Tr Tr Tr Tr Foraminifers 30 55 35 45 Glauconite - Tr - - Mica - T 1 1 Nanotossils 62 37 50 42 Quartz 1 2 1 3
							.56	30% T0C=0.04%	5			*		
			arren		Barren	Chron 2A	P-1.73 V-1	CaCO3"85.30%	6	+++++++++++++++++++++++++++++++++++++++		*	*	
	A/G	A/G	Bar		Bar	Chron 3			CC	<u> </u>	1	1	L	

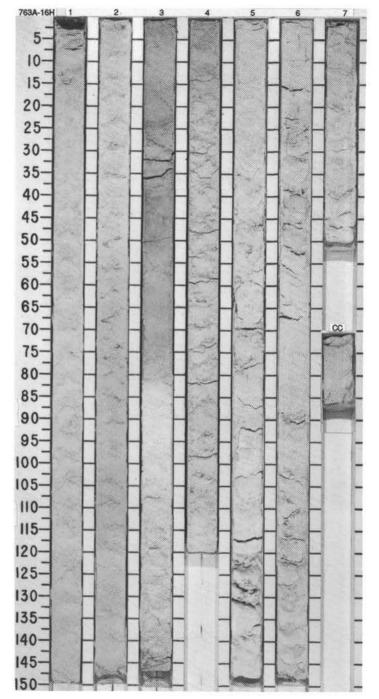


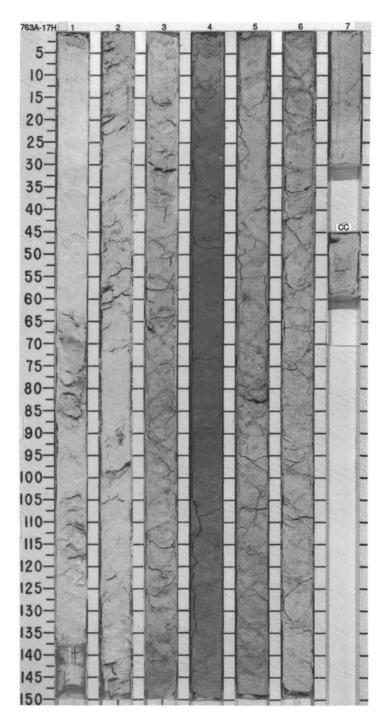

	B10	STRA	CHA	RACT	ER	50	SE					JRB.	S		
TIME-ROCK UNI	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PAL YNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
							\$=62.3 V-1.54	•CaCO ₃₌ 86.30%	1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		0000000000			FORAMINIFER NANNOFOSSIL OOZE AND FORAMINIFER NANNOFOSSIL OOZE W CLAY With the exception of Section 1 (soupy), coring disturbance is minor. Major tithologies: FORAMINIFER NANNOFOSSIL OOZE with CLAY, light gray (5Y 7/1), very light greenis gray (10% 8/1), and FORAMINIFER NANNOFOSSIL OOZE white (5Y 8/1) with minor, poorly defined color bands (0.5 mm thick) of light greenish gray (5QY 7/1) and slightly darker versions of the dominant colors. Darker intervals probably have higher clay conte Bioturbation is moderate in the less disturbed intervals. Amorphous iron sulfide throughout. Pyritized burrow (0.3 X >1 cm) with textured surface in Section 1 cm.
							• \$-62	•CaCO ₃	2	1-	+_+ +_+		1	*	2,80 2,124 3,80 4,75 5,80 6,75 D M D D D D
											+_+- +		1	*	COMPOSITION: Bioclast 2 1 Tr Tr 1 2
									3				# 22 22 #	*	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
UPPER MIOCENE	N1 7b -N18	NN12				Chron 3	P=1.73 V-1.55	CaCO3-90.13%	4		+ + + + + + + + + + + + + + + + + + +		****		
								K TOC=0.05%	5		+ + + + + + + + + + + + + + + + + + +		****	•	
							• == 1.74 V=1.56	CaCO3-88.63%	6		+ + + + +		***	*	
	A/G	A/G	Barren		Barren				7 CC		+ + + + + + + + +		11 1		

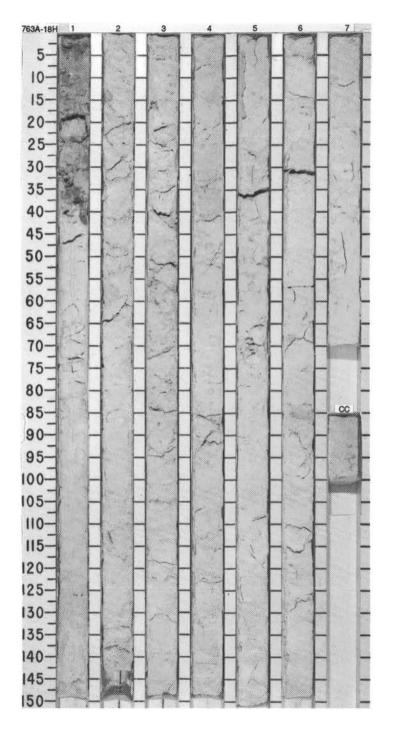


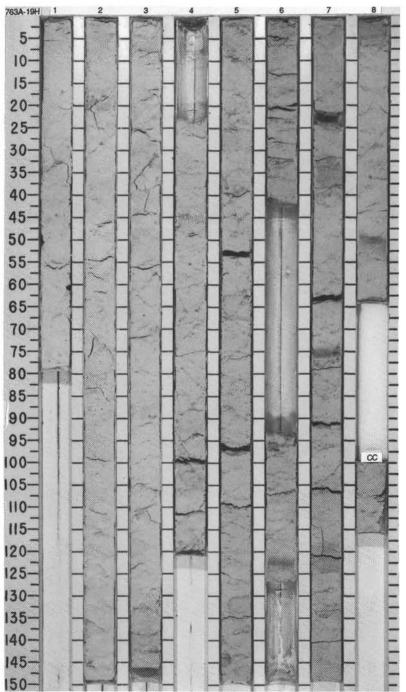

	FOS	STRA	T. 2	RACI	I ER	a.	8	1						
IIME-ROOM ONL	FORAMINIFERS		RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
											!			NANNOFOSSIL OOZE WITH FORAMINIFERS AND NANNOFOSSIL OOZE WITH CLAY AND FORAMINIFERS
									,	0.5	ļļ			The core is moderately to slightly disturbed by drilling.
														Major illihologies: NANNOFOSSIL OOZE with FORAMINIFERS and NANNOFOSSIL OOZE with CLAY and FORAMINIFERS, white (SY 8/1), and motiled light gray (SY 7/1) with light greenish gray shades (SG 7/1) and gray-light gray (NS-N6) blobs. Dark gray (N4) blobs and speckles, smeared out by wire-cutling, consist of very line-graned ino sulfide (pyther 7).
							B-1079 V-1.57	CaCO_788.96%	2					Minor lithology: Clayey nannolossil ooze with toraminifers, light gray (5Y 7/1) in Sections 1, 3, 4, and 5. In Soction 4, three 1 cm-thick layers are interbedded in the white nannolossil ooze with foraminifers. The boundaries between the two lithologies are gradational and mottled, by burrowing.
							9-9-	•CaC	2		!!		*	SMEAR SLIDE SUMMARY (%):
						5								1,73 2,73 5,80 7,40 D D M D
									\square		1	1		COMPOSITION:
												1221		Clay <u> </u>
						n 3			3	1-1		1		Forammers 20 10 20 15 Mica Tr Tr 2 Tr Nanotossils 80 90 48 85
						Chron			3	1		1		
						0				<u></u>	11	1		
						1							1	
R							1.55	¢17.		11-1-				
MIOCENE		_					B-61.9 V-1.	CaCO3-91.71%		19 - L		1		
	N1 7b	NN11					9-91	CaC	4			H	1	
UPPER	-	~					•	•				F		
B												T	1	
												1		
										1				
								3%	5					
								TOC=0.03%					Ē	
								Iõ				1		
						34	57	XC	H	┝╼┫╧╌╧╴	ł			
						Chron 3A	\$ 1.76 V-1.57	Cacog-85.13%						
						S	60.	acog	6		H			
								•		1 1				
										1	1			
									-		ł			
			1						7	1 =				
			C		e.								1*	
	A/G	A/G	Barren		Barren				CC		li			4
	A	A	8		m									
								1	1					

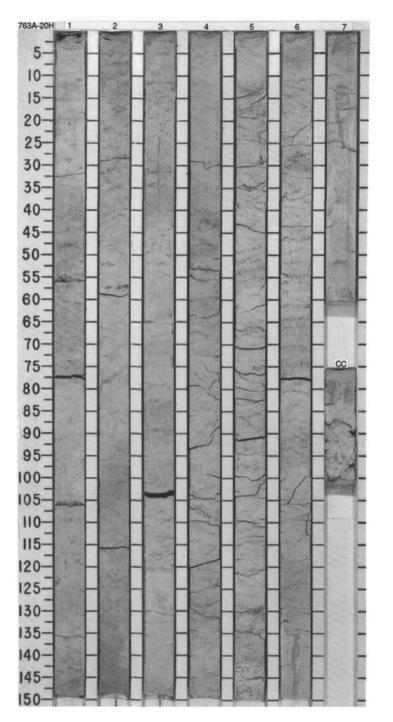


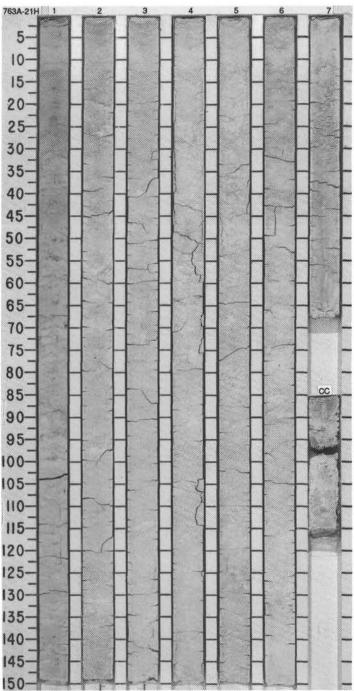




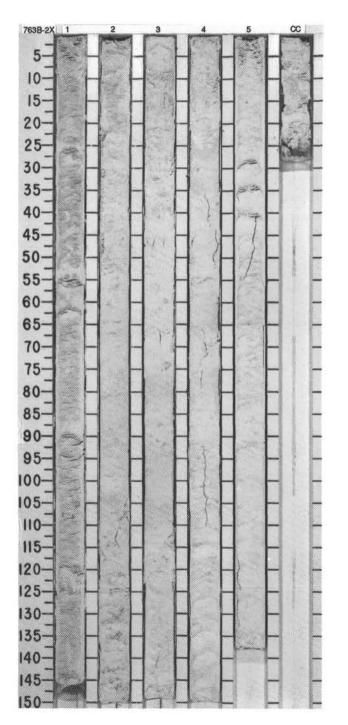

UNIT	810 F05	STR	CHA	RAC	TER	8	LIES				JRB.	ES		
	FORAMINIFERS	NANNOF OSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
ENE									1					NANNOFOSSIL OOZE WITH CLAY AND FORAMINIFERS, FORAMINIFER NANNOFOS- SIL OOZE WITH CLAY, AND FORAMINIFER NANNOFOSSIL OOZE Major lithologies: NANNOFOSSIL OOZE with CLAY and FORAMINIFERS and FORAMINIFER NANNOFOS SIL OOZE with CLAY, white (10YR 8/1) grading to very pale brown (10YR 7/3) in Section 3 above 80 cm. Below Section 3, 80 cm, color is again white (10YR 8/1 or 10Y 8/1). In Sectie 5, clay content has decreased to < 10%, so the lithology is a FORAMINIFER NANNOFOS- SIL OOZE. No sedimentary structures or mottling are visible. SMEAR SLIDE SUMMARY (%):
MIOCENE	N16	NN10					B-64.3 V-1.601	CaCO3-89.80%]			1,75 2,75 3,75 3,87 4,50 5,87 7,28 D D D D D D D D
UPPER		-					64.3	CO3-B	2		H		*	COMPOSITION:
ddn	l						•\$-	•Ca			ļį		ľ	Calcispheres Tr <th< td=""></th<>
								3	_	-1				Foraminifers 20 25 30 25 38 35 30 Nannofossiis 74 70 65 71 54 63 68 Opaques
	_								3				**	Quartz 1 Tr 1 1 3 2 Tr
\setminus							1							
V	N8	_					\$-63.8 V-1.70	CaC0_3-87.63%	4				•	
	1000]!		OG	
R MIOCENE								TOC=0.01%						
LOWER		4 - NN5					• 9-64.7 V-1.59	CaCO3-92.46%	5				*	
		NN4						•C2						
									6	$\begin{vmatrix} 1 + + \\ 1 + + \\ 1 + + + \end{vmatrix}$				
			ç		c				7					
	A/G	A/M	Barren		Barren			1000	cc	┝╼╡┊┿┊	-12			


-	BIO	STR	CHA	RACI	ER	s	TIES					URB.	SES		
11ME- RUCK O	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
		NN4/5					B = 61 .3 V-1 .6 2 3	•CaCO ₃ =89.55%	1	0.5 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		00000000	ø	*	NANNOFOSSIL OOZE/CHALK WITH CLAY AND FORAMINIFERS, FORAMINIFER NAN- NOFOSSIL OOZE/CHALK WITH CLAY, AND CLAYEY FORAMINIFER NANNOFOSSIL OOZE/CHALK Coring disturbance is moderate with minor drilling biscuits and fracturing. Major lithologies: NANNOFOSSIL OOZE/CHALK with CLAY and FORAMINIFERS, FORAMINIFER NANNO FOSSIL OOZE/CHALK, and FORAMINIFER NANNOFOSSIL OOZE/CHALK with CLAY, alternating light greenish gray (10Y 7/2, SGY 7/1) and white (SY 8/1). Core is structureless and disturbed by drilling. CLAYEY FORAMINIFER NANNOFOSSIL OOZE/CHALK, in Section 4, 20 120 cm, olive yellow (25 Y 6/6) to pale yellow (25 Y 7/4). Contacts between lithologies are gradational. Section 7 contains a contact between a light greenish gray (10 1) nannofossil chalk with foraminifers and clay and a white (5Y 8/1) foraminifer nannofossil chalk. Minor lithology: Pyrite, disseminated gray wisps at Section 1, 90 cm, and in Section 7. SMEAR SLIDE SUMMARY (%): 1, 49 2, 112 3, 85 4, 61 5, 75 6, 83 7, 27
NE							61.68	56.72%	3					*	COMPOSITION: Clay 2 5 15 20 15 20 25 Foraminifers 10 35 10 30 20 20 25 Mica Tr Tr Tr Tr Tr Tr Tr Nannofossils 88 60 75 50 65 60 70 Quartz Tr Tr Tr Tr Tr Tr
LOWER MIOCENE	N4 -N8	ENN3					B 58.2 V-1.68	CaCO3=66.72%	4	uture to the second			8	•	
		NN1/2					• • • • • • • • • • • • • • • • • • •	CaCO3-82.47% TOC-0.0%	6					*	
	A/G	A/M	Barren		Barren				7					*	

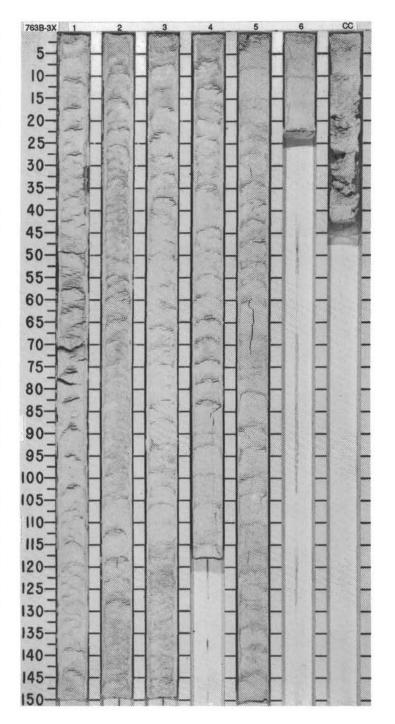

	BIC	STR	17.1	ZONE	1									
TIME-HOCK UNIT	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	RAC SMOTAID	PAL YNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	GRAPHIC LITHOLOG	DRILLING	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
	N4	1 - NN2					1	×	1		- + + + + + -		*	FORAMINIER NANNOFOSSIL OOZE/CHALK WITH CLAY Major lithology: FORAMINIFER NANNOFOSSIL OOZE/CHALK with CLAY, white (7.5YR I 0). Very light greenish gray (10Y 81-2; is partly dominant color in Section 2; Section 3, 0- 108 cm; and Section 4, 25-42 cm. Structureless. Minor lithologies: a. Clayey foraminifer nannofossil ooze/chaik, light reddish brown (5YR 6/4), as pieces and fragments in Section 1, 0-45 cm, probably derived from Core 122-763A-17H. b. Pyrite as grains and small nodules, in Section 6, 80-83 cm, and Section 7, 45-76 cm.
		INN					·	CaCO_89.05%	2		+ + + + + + + + + + + + + + + + + + + +			SMEAR SLIDE SUMMARY (%): 1,36 1,125 3,10 5,75 7,32 COMPOSITION: D D D D D Clay 1 2 1 2 4 Foraminilers 25 30 30 30 Namofossiis 70 66 67 64 62 Quartz 4 2 2 3 4
UPPER OLIGOCENE	- P22	NP25					€5-1-7 N-1.64	•caco3*88.30%	3		+++++++++++++++++++++++++++++++++++++++		*	Spicules Tr — T Tr
UPPE	P21 - P						P-65.4 1~1.62	CaCO3-89.96% TOC=0.03%	5				*	
	A/G	A/M	Barren		Barren		-0-5	0080	6 7 <u>CC</u>			e)*	


	BI	76	AT.	ZONE	E/					RE			Γ	Γ	ERVAL 166.4-175.9 mbsf
TIME-ROCK UNI	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
							.58	.21%	1	9 1 1	- + + + + + + + + + + + + + + + + + + +	ļ		*	FORAMINIFER NANNOFOSSIL OOZE/CHALK WITH CLAY Major lithology: FORAMINIFER NANNOFOSSIL OOZE/CHALK with CLAY, while (5Y 81), alternating with thinky laminated gray (N6) FORAMINIFER NANNOFOSSIL OOZE/CHALK with CLAY withich optrain a higher percentage of laay and disseminated puritie? (marca- site?). Gray layers are 1 to 8 cm thick. Most boundaries between thin gray layers and white layers are graduational. Distinct boundaries occur in Section 5, 62-88 cm; Section 6, 122-12 cm; Section 7, 74-76 cm; 116-122 cm; Section 8, 48-52 cm. Possible color cycles, 30-50 cm thick in 3, 5, 7, and 8.
							· 2 - 2 - 7 V-1.	CaCO3-88.21%			+ +++	T			Minor lithology: White foraminifer nannofossil ooze/chalk with quartz, white (SY B/1), in Section 8, 5-47 cm.
							•8-e	•Ca(2			i			SMEAR SLIDE SUMMARY (%): 1, 44 3, 68 4, 55 7, 77 8, 36
									2	1	+++++++++++++++++++++++++++++++++++++++	ļ			COMPOSITION:
										-		ļ			Clay 3 2 2 3 — Foraminiters 35 30 35 35 35
										1111	+'+	i			Narnotossils 60 65 60 57 55
									3			į		*	
								*		1	+ + + + + + + + + + + + + + + + + + + +	-			
INE							V-1.58	82.63			+ +++				
OLIGOCENE		4					-2-04-0 V-1	CaCO3=82.63%	4	1		-			
	P21	NP 24							1	1					
LOWER										1		i		OG IW	
-									5		+'+'+ []]]]]]		:=:		
								T0C=0.09%				-	==		
								TOC-		-		-			
		Ì					41.59	•CaCO3=77.39%				i			
							● \$=1.79 V-1	aco3=7	6		VOID				
										1	+ +	1	╞		
		H								-	V01D	ł			
											+++-		F		
									7	1				*	
		23								1	- =====================================		= =		
	0	A/M NP23	Barren						8	111			-		
_	A/G	A	Ba							-	+++	1	E	1	

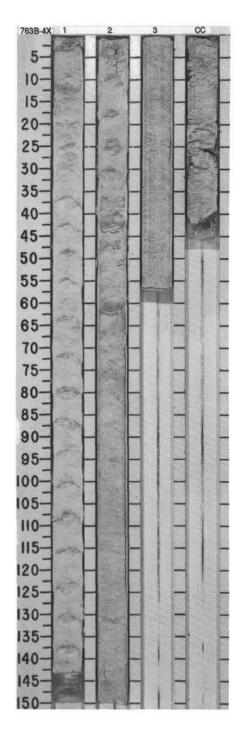
	810 F05	STRA	CHAP	RACT	ER	-	IES .					- Pu	s	
I ME-HOCK O	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	GRAPHIC LITHOLOG		DHITTING DISIC	SED. STRUCTURES	LITHOLOGIC DESCRIPTION
												ik	81 P	NANNOFOSSIL OOZE/CHALK WITH FORAMINIFERS WITH CLAY Major lithology: NANNOFOSSIL OOZE/CHALK WITH CLAY, alternation of white (5Y 8/1) and light greenish gray (10Y 7/2) in an interval of 10-140 cm. Moderately motified by
		NP 23					.59	88%	1		1111) ≈ (P)(P)	bioturbation. Pale yellow (5Y 7/3) laminations are present in Section 1, 11 cm and Section 55-75 cm. Cyclic color change is gradational throughout the core. Minor lithologies: a. Foraminfer nannofossil coze/chalk with clay, light greenish gray (10Y 7/2), is observed i
		NP					P-1.72 V-1.59	CaCO3=80.88%			111		₩	Section 3, 92-135 cm, lithologic contacts are gradational. b. Pyrite, very dark gray (5Y 3/1), grains and nodules (up to 4 mm in diameter) are scattered throughout the core, e.g. in Section 1, 106 cm, and Section 2, 56 cm.
									2				₽ ₩ *	SMEAR SLIDE SUMMARY (%): 1, 68 2, 59 3, 125 6, 53 D M M D
											1-1-1-		11	COMPOSITION: Clay 4 2 5 2 Foraminifers 10 20 25 15
									3		++++		Ŧ	Nannofossiis 85 63 67 83 Pyrite — 15 3 — Quartz 1 Tr — Tr
							V-1.62	82.72	3			K	Ð.	
LNE							\$-59.4 V-1.62	CaC03-82.72			1121		-	
OLIGUCENE	P18								4		1111		Ð	
LOWER													Ð	
		2						TOC=0.13%	5				Ð	
		NP 22					-						<u>8</u>	
							8-50.8 V-1.61	CaC03-84.22%						
								•Ca	6				Ð.	
											111		8	
			en		ua.				7					
	AIG	A/G	Barren		Barren				cc	L 1 [±] F	<u> </u>			

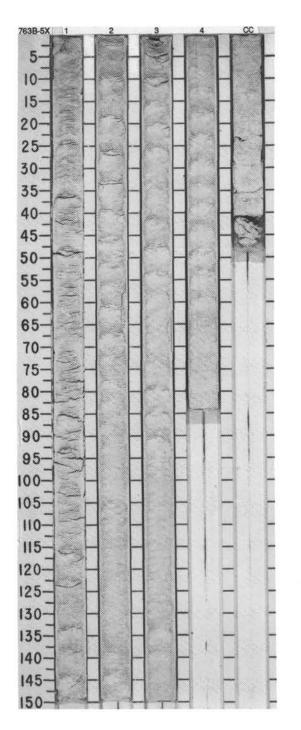


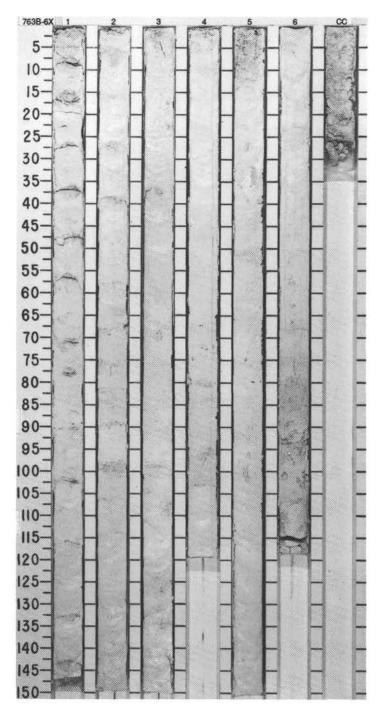
1	BIO FO	SSIL	AT.	RACT	50 I	0	ŝ					88.	8		
TIME-ROCK UNI	FORAMINIFERS	NAMNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	WETERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
		Γ								:		T	1		FORAMINIFER NANNOFOSSIL OOZE/CHALK WITH CLAY
										0.5		li	l.		Drilling disturbance is minor except in Section 7 and CC.
									1	1.0			1		Major lithology: FORAMINIFER NANNOFOSSIL OOZE/CHALK, Section 1 shows an upward gradation from white (5Y 811) toward light gray (5Y 71) then gray (5Y 611) and it is motified and partly bioturbated. Other sections are homogeneous and structureless, all white (5Y 811).
										1.3		!!			SMEAR SLIDE SUMMARY (%):
										-		1			1, 16 1, 139 2, 76 4, 76 6, 76 D D D D D
										1	+	1			COMPOSITION:
									2		+ +++++++++++++++++++++++++++++++++++++	1			Accessory minerals 1
											+	11			Clay 5 3 2 3 5 Foraminiters 25 30 25 25 30 Nannofossils 68 60 68 65 60
										-		1			Pyrite - 5 3 5 2 Quartz 2 2 2 2 2
										1		i			2426-33 342 91 1276 A311 64
									3			i			
	1			1					Ĭ	1		i			
							602	2%		-		li			
							\$-1.93 V-1.602	CaC03-87.22%			+ 44	li			
UPPER EOCENE	P18					100	-1.93	aco3-		- 6		li			
EOC	1.	51				-07			4	-		ł.			
ä	ā	NP21		1	1				ñ	1.3	4	ł		*	
ddf										-					
7									-						
								02%		Ē		1			
								TOC=0.02%	5	-	+ +	!!			
					1	1				- 3		!!			
								.21%			+ +	11			
							0.0	CaC03-90.21%		-	+	1			
						1	• 0-59.3	CaC		1		i			
									6			1i			
										4		li			
												li			
										-	+	1			
							1		7	1	+	1		1	
									0.0			11	1		
			-		_				cc	-		11			-
	A/G	0	Barren		Barren										
	A	A/G	Ba		B										

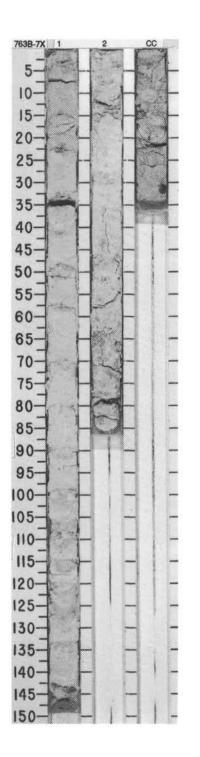


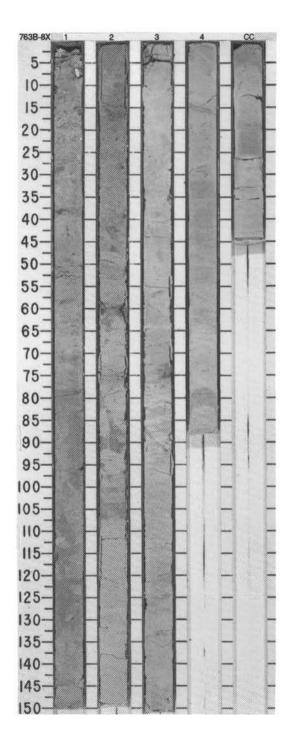
CORE 763B-1C NO RECOVERY

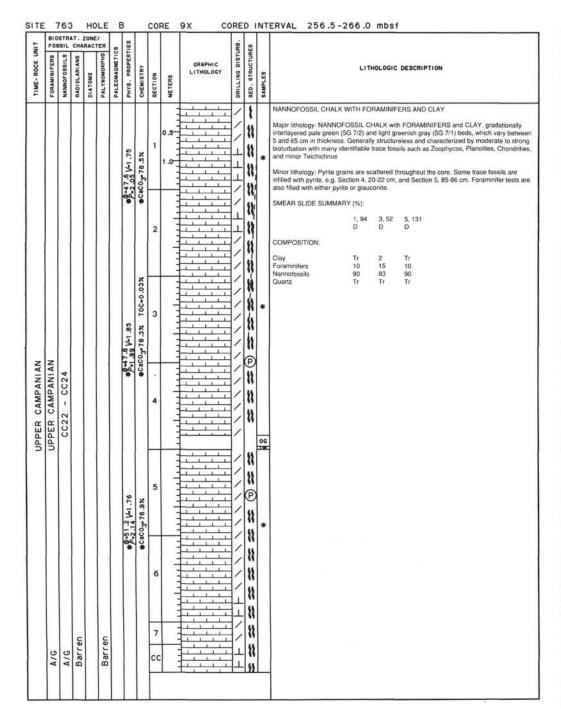

E	BIC	SSIL	AT.	ZON			50								
TIME-ROCK UNIT	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
		NP21					• 0-59.8 V-1.54	• CeCO_ 89.5%	1	0.5				*	NANNOFOSSIL OOZE/CHALK WITH FORAMINIFERS AND NANNOFOSSIL OOZE/ CHALK Major lithologies: NANNOFOSSIL OOZE/CHALK with FORAMINIFERS and NANNOFOSSIL OOZE/CHALK while (10YR 8/1), homogeneous. The upper section is slightly more foram-rich (10% versu 5% at base). There is little sign of bioturbation or sedimentary structures. Several sections have minor amorphous iron sulfide "smears". SMEAR SLIDE SUMMARY (%):
UPPER EOCENE	P17-P18	NP20					\$ -23.2 V-1.57		2				==:	•	1, 93 3, 92 5, 92 D D D COMPOSITION: Foraminiters 10 10 5 Nannofossils 86 85 91 Ostracod — 1 2 Shell debris — 1 2 Shell debris 4 4 —
	A/G	A/M	Barren		Barren		•	•	4 5 CC					•	

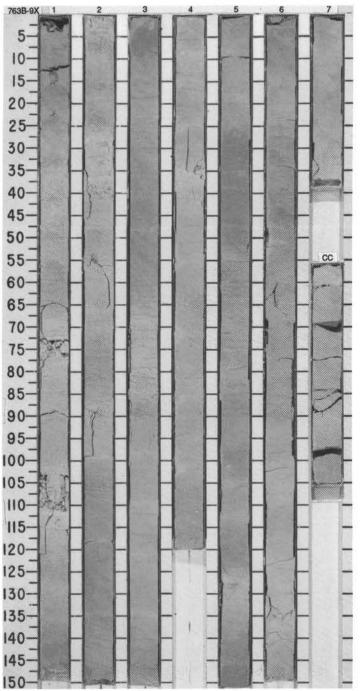

UNIT		STR				m	ES					88.	5		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
							● \$ -58.6 V-1.57	CaCO3=86.4%	1	0.5				*	NANNOFOSSIL OOZE/CHALK WITH CLAY The core is slightly disturbed by drilling. Major lithology: NANNOFOSSIL OOZE/CHALK, white (10Y 8/1), homogeneous, structure- less. Foraminifers are present in trace amounts, up to 1%. Mica is present in trace amount SMEAR SLIDE SUMMARY (%): 1, 86 2, 86 3, 86 4, 86
							•\$:	•CaC	2					*	D D D D COMPOSITION: Foraminiters 1 Tr 1 2 Mica Tr Tr Tr — Nannofossils 99 100 99 98
UPPER EOCENE	P16 - P17	NP20					57	T0C=0.0%	3					•	
							C = 2 - 2 - 2 - 1 - 5 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	CaC0387.8%	4	the second s				*	
							- 2-3-58:4 V-1.57	Cacog-89.7%	5 6 CC						
	A/G	A/G	Barren		Barren										

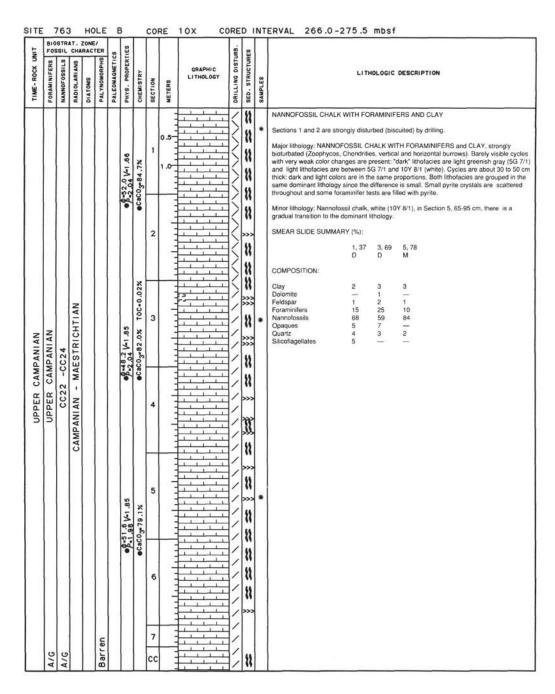

-		STR				5	Es					88.	8		
TIME-ROCK UNIT	FORAMINIFERS	NAMNOF OSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
ENE	6	NP20							1	0.5	┝╵┝╵┝╵┝╵┝╵┝ ┎╞┎╘╻╧┎╞┎╞╻╒╹╴			*	NANNOFOSSIL OOZE/CHALK WITH CLAY Drilling disturbance is strong (biscuited) in the upper half of the core, and moderate in the lower half. Major lithology: NANNOFOSSIL OOZE/CHALK, very light greenish gray (10Y 8/1). Homo- geneous, structureless except for some very diffuse laminations in the lower part of Sectio 2. About 3-5% foraminifers, ostracods are present (2%, Section 1). SMEAR SLIDE SUMMARY (%):
UPPER EOCENE	P15 - P1	NP 19 -						CaC03-87.7%	2						1,91 2,90 3,33 D D D COMPOSITION: - - Clay Tr Tr - Foraminifers 5 3 5 Nanofossils 93 95 95 Opaques - 2 - Ostraod 2 - Tr
	A/G	A/G	Barren		Barren		V=1.56 0=58.9	CaCO3=88.8% TOC=0.02%	з cc			1		*	

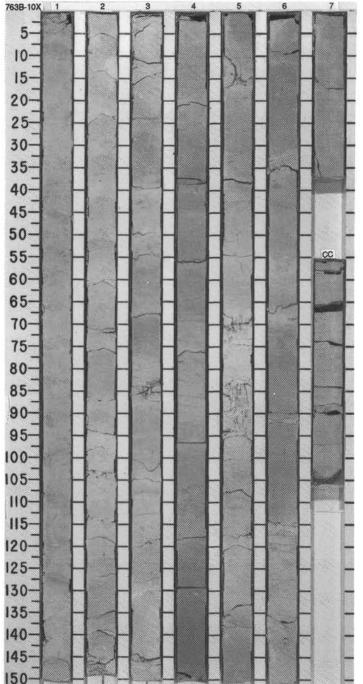

	FOS	STRA	CHA		ER	ICS	TIES					TURB.	RES		
IIME-HOCK	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
									1	0.5	ר, ⊢, ⊢, ⊢, ⊢,			•	NANNOFOSSIL OOZE/CHALK WITH CLAY The core is slightly disturbed by drilling. Major lithology: NANNOFOSSIL OOZE/CHALK with CLAY, homogeneous white (5Y 8/1 structureless. A few layers of stiff ooze are present in Section 4 and CC. Foraminifers ar present in amounts of 1-3%. Mica is present in trace amounts to 1%. SMEAR SLIDE SUMMARY (%):
E E	P14 - P15	NP18					• 0-57.6 V-1.57		2		12121212121212121212121212121212121212			*	1, 78 2, 78 3, 78 CC, 30 D D D D D COMPOSITION: Foraminiters 3 1 1 2 Mica - 1 1 Tr Nannotossils 97 98 98 98 Quartz - Tr
dD							B=55.5 V-1.58	CaCO3-87.1% TOC=0.01%	3		11111111111111111111111111111111111111			*	
	A/G	A/M	Barren		Barren		•		4 CC					*	

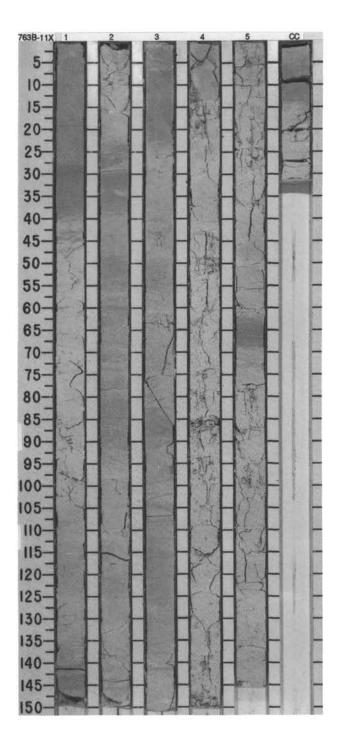

UNIT		SSIL					ES					188.	ES		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
									1	0.5				*	NANNOFOSSIL CHALK WITH CLAY Coring disturbance is minor. Major lithology: NANNOFOSSIL CHALK with CLAY, homogeneous white (5Y 8/1), alterni ing hard and soft layers, otherwise structureless. In Section 1 and 2, 10 cm-thick layers o hard and soft sediment alternate regularly. In Section 3, it is dominantly hard (80%). In Section 4 through CC about 50-60% of the sediments are hard, but the alternation is less regular than in Sections 1 and 2. Foraminifers are present in amounts of 4-10%. Mica is present in trace amounts to 1%.
							B-54.4 1-1.68	•CaC03-84.9%	2					*	SMEAR SLIDE SUMMARY (%): 1, 88 2, 69 4, 67 5, 80 D D D D D COMPOSITION: 7 7 7 10 8 5 4 Mica 7 7 7 1 <th1< th=""> 1 <th1< th=""></th1<></th1<>
EOCENE		NP16					-1.62	11% TOC=0.02%	3						Quartz Tr — —
MIDDLE EOCENE	P12	NP15 -					●9=56.6 V=1.62	CaC03=89.1%	4					*	
							7.2	•caco_3-88.1%	5					*	
		NP15					• 57.2	•CaC	6 CC						
	A/G	A/M	Barren		Barren										

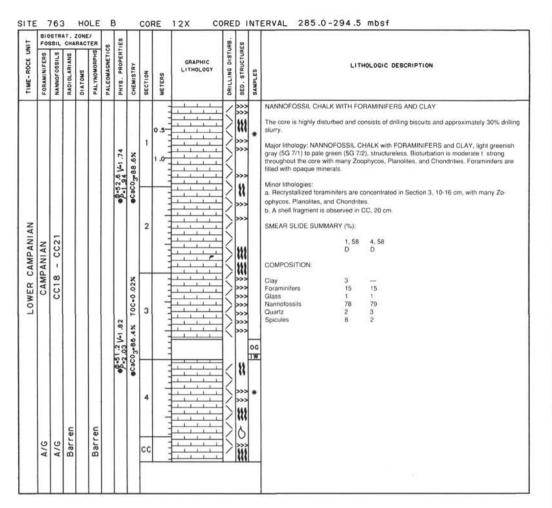


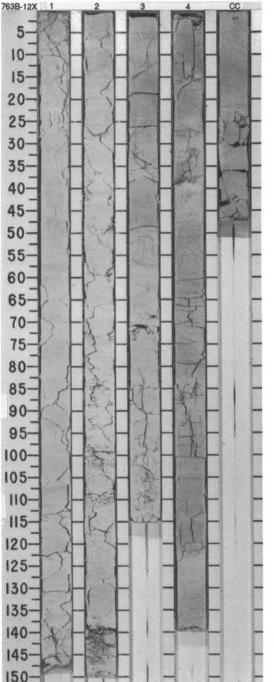

LINI			CHA			41	ES				a a					
TIME-ROCK UI	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	GRAPHIC LITHOLOG		SED STDIICTIBES	SAMPLES		LITH	IOLOGIC DESCRIPTION
MIDDLE EOCENE	P11	NP15					9.3 V-1.62	CaCO3-88.7% TOC=0.01%	1	0.5	<u>-++++++++++++++++++++++++++++++++++++</u>		*		urbed, espe MNIFERAL us. Contain:	
2	A/M	A/P	Barren		Barren		• 5-3 3	•CaC	2 CC		<u> </u>	(L) (L) (L) (L) (L) (L) (L) (L) (L) (L)	5	COMPOSITION: Accessory minerals Foraminifers Nanotossils Quanto Spicules		1 30 66 1 2

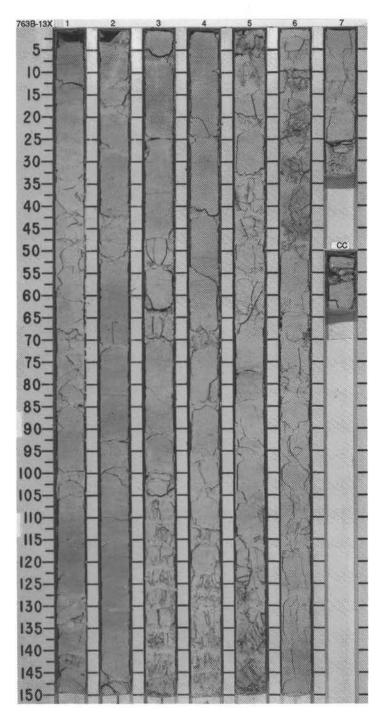


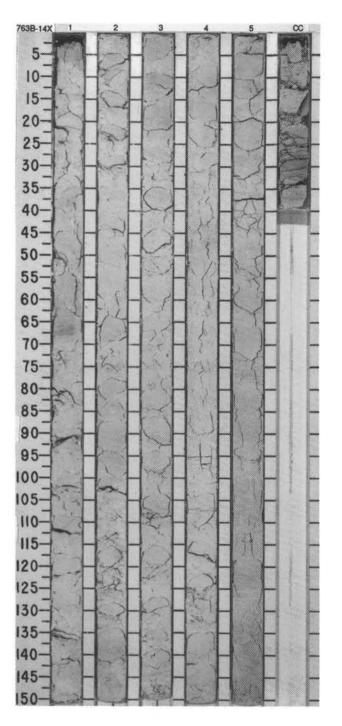

	FOS	SIL	СНА	RAC	TER	cs	TIES					URB.	RES		
11ME-ROCK	FORAMINIFERS	NANNOFOSBILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
						Prcaco3=80.6%)	V-1.84	60CaC03-66.8%	1	0.5			0==0=0=0	*	FORAMINIFER NANNOFOSSIL CHALK WITH CLAY AND CLAYEY FORAMINIFER NANNOFOSSIL CHALK Major lithologies: FORAMINIFER NANNOFOSSIL CHALK with CLAY and CLAYEY FORAMINIFER NANNO FOSSIL CHALK, shades of pale green (5G 7/2, 5G 6/2). Moderately to highly bioturbated. Zoophycos, Planolites, and large vertical burrows present, with more sand grains in burrow (Section 1 and Section 2, 83-87 cm), Shell fragments of Inoceramus dispersed throughout core as nodules and grains. Strong smell of hydrogen sulfide gas.
CAMPANIAN	CAMPANIAN	22 - CC24					● 0.4 ● 0.4	CaCO3=75.3%	2	and and and				*	Minor lithologies: a. Foraminifer nannolossil chalk with glauconite, and b. Sandy foraminifer nannolossil chalk with guartz, glauconite, and pyrite, both grayish green (5G 5/2) and pale green (5G 6/2) and dispersed throughout Sections 1 and 2. Sand zones appear to occur in burrows and are reworked material. Interpretation: Section 1 is a reworked Cretaceous-Tertiary interval. Preliminary age determinations indicate Paleocene to Maestrichtian age lossils are mixed in this section. SMEAR SLIDE SUMMARY (%):
UPPER	CA	CC					V-1.78	-72.6% TOC-0.27%	3	and and and				*	1.38 1,96 2,66 3,66 4,67 M D D D D D COMPOSITION:
	A/G	A/G	Barren		Barren		• 52.3	CaCO3-72	4 cc	tere conferen			6 11 6 11	*	Nannofossils 47 38 63 67 61 Pyrite <u>- 3 - 7r</u> 5 Quartz 5 10 5 5 5

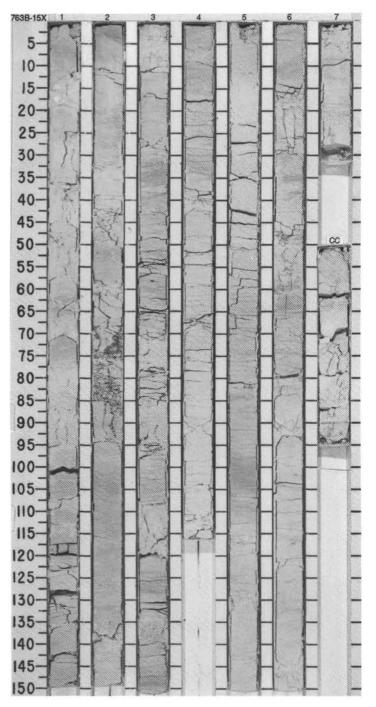


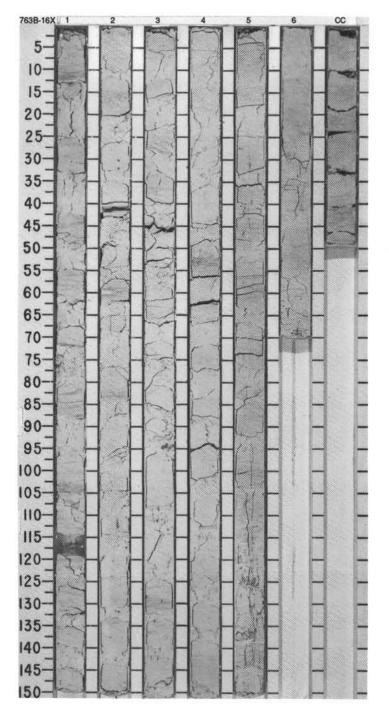


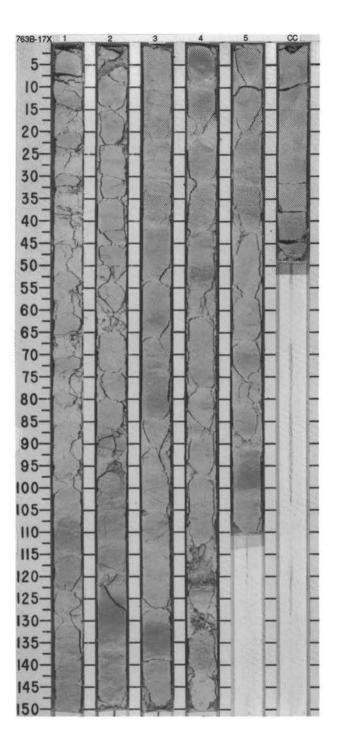


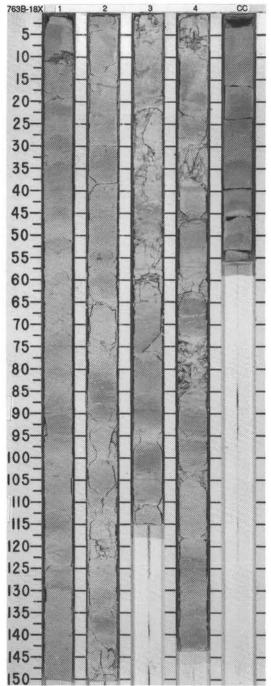

		STR			TER	-	IES .					JRB.	ES		
TIME- HOOP O	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
							\$-52.4 V-1.74	CaCO3-85.7%	1	0.5 1.0 1.1 1		トレノノ	****	*	FORAMINIFER NANNOFOSSIL CHALK WITH CLAY AND NANNOFOSSIL CHALK WIT FORAMINIFERS AND CLAY Major lithologies: FORAMINIFERS and CLAY, light greenish gray (SQY 7/1 and SQ 7/1), alternating and grading into white (SG 8/1) layers. Light greenish gray layers are bioturbated with comm horizontal burrows and , rare vertical burrows, and exhibit gradational color variations between SGY 7/1 and SG 7/1. White layers (SG 8/1) contain less clay, are heavily disturt (sisculed) by drilling, and the pieces are structureless except for Zoophycos burrows. C boundaries are generally gradational.
							•	•	2				11		SMEAR SLIDE SUMMARY (%): 1, 34 2, 9 4, 30 5, 67 D D D D COMPOSITION:
NIAN	NIAN	21						.04%		11111111			1		Accessory minerals 1 - - - Clay 2 - - 5 Dolomitie - 1 1 - Foraminifers 25 20 30 30 Glauconite - 1 Tr -
LOWER CAMPANIAN	UPPER CAMPANIAN	CC18 - CC:					91 V-1 .72	4% TOC=0	3			<u>⊥</u>	+ ***		Nanofossila 70 74 65 60 Opaques — 4 4 3 Quartz 2 — 2
L C	IN						0.49.0	CaC03-89	4			エンシント	*	*	
									5			>> >>	**	•	
	A/G	A/G	Barren		Barren				cc	111111		K	**		

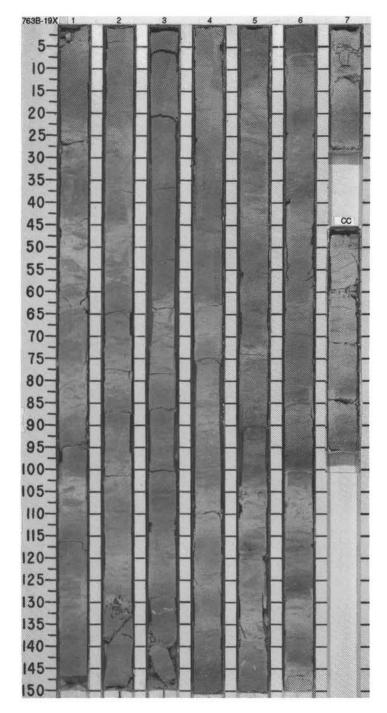


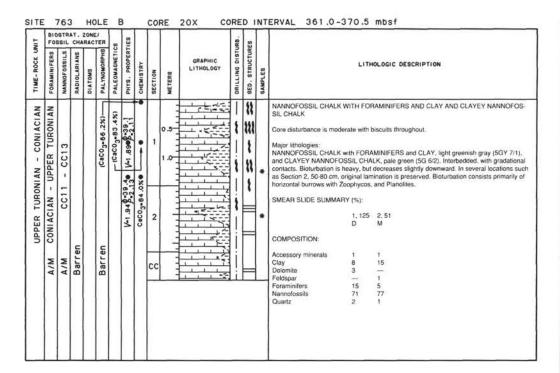

UNIT	810 F05	STR	CHAI	RAC	TER		SEL					JRB.	ES		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
							V-1.71		1	0.5				*	NANNOFOSSIL CHALK WITH FORAMINIFERS Slightly to extensively biscuited and fractured. The fracturing may have been exacerbated by gas escape. Major lithology: NANNOFOSSIL CHALK with FORAMINIFERS, very pale greenish gray (8 with 10 light greenish gray. Color zonation obvious in some sections, but in general is poor defined. Where present, occur throughout the core and are concentrated in burrows. Foram- infers make up 15-25% of the chalk, and other common components are clay and pyrile: traces of zeolite, quartz, sponge spicules, opaque minerals, dolomite mombs, ostracds, and bioclasts occur in some strata. Burrowing varies from intense to sight, and sub- horizontal burrows are more widespread than vertical burrows. Burrow diameter, on the ci surface, is 1-5 mm. Zoophytocs, 2-3 mm in diameter, is common in the upper half of the
							-8-48.2		2				**	•	core. Inoceramus prisms occur at Section 3, 103 and 111 cm. SMEAR SLIDE SUMMARY (%): 1,60 2,60 3,60 5,60 5,110
													**		D D D D D COMPOSITION:
								TOC=0.03%	3				11=0=	*	Accessory minerals 3 Bioclasts Tr Tr Clay 3 5 1 3 Dolomitie Tr Tr Tr Poraminifiers 15 20 20 25 21 Nannofossits 81 73 75 73 70 Opaques - Ostracods Tr Pyrite 1 2 Quartz Tr 1
UWER CAMPANIAN	CAMPANIAN	CC18 - CC21					3-48.6 •V=1.76	CaCO3=85.5%	4	and see the second		+	***		Spicules — — 2 — 1 Zeolite — Tr — 1 1
L(7 V-1.76	•CaC03-93.3%	5			M + + + + + M	1 22 22 22	*	
							-23.7 28.1 87	•CaCC	6			JWWJJJJ	*****		
			c		c				7			H HMH	1	>	
	A/G	A/G	Barren		Barren										

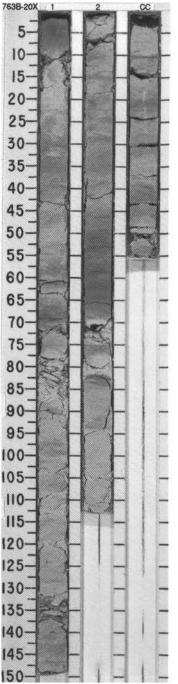

E		SSIL				_	ES					89.	5	Γ	
TIME-ROCK UNIT	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
IIAN	CAMPANIAN	CC18 - CC21 AANKO	RADIO	01470	bara		0.55.0 /41.76 0.55.1 /41.67 0.5.3.0 /41.69 PHVS.	6 0.000,00.9% TOC=0.01% 0.000,088.6%	1 2 3 4 5	0.5 1.0		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		*	FORAMINIFER NANNOFOSSIL CHALK Core is heavily disturbed by drilling, with approximately 50% drilling slurry. Major lithology: FORAMINIFER NANNOFOSSIL CHALK, white (5G 8/1) to light greenis gray (5G 7/1) with gradation between colors. Lighter colored pieces are generally structure seasons to zoophycos burrows and rear. [integraned pyrite filled burrows (Section 3, and 139 cm). Darker intervals are bioturbated with horizontal and vertical burrows and mit anastomosing pressure-solution surfaces (Section CC, 27-32 cm). SMEAR SLIDE SUMMARY (%): 1,65 2,65 4,95 5,121 COMPOSITION: D D D Clay 4 3 1 2 Poraminifers 35 35 35 35 Glauconite - - - - Nannofossils 57 58 60 58 0 Opaques 3 3 3 3 3 3 3
	A/G	A/G	Barren		Barren				cc			\geq	**		


	FOS	STRA	T. Z	RACT	ER	8	TIES					URB.	Sa								
	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS.	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LIT	HOLOGIC	DESCRI	PTION			
LOWER CAMPANIAN		CC18 - CC21					₽₽-49.2 V-2.06	CaCO3=84.1% T0C=89.6%	1	0.5		>>>>>//×	****	*	NANNOFOSSIL CHALK WITH FC AND FORAMINIFERS Coring disturbance varies from mil slurry and biscuiling. Major lithologies: NANNOFOSSIL CHALK with FOR minor bioturbation. NANNOFOSSI gray (5G 71), bioturbation is more laminae are present. The two litho contacts. The nannofossi chalk wi varies from 7 to 20 cm in tickness ers within it are more poorly prese foraminifers, and dark foraminifer t Small pyrite nodules are common	AMINIFE L CHALK obvious i ogies are th clay an and doe: ved. Dolc est infillin, and two a	ere fractu RS, white with CLA n this ma interbedi d foramir s not disp mite(?) ri g are abo re > 0.5 r	(5G 8/1) Y and FO terial and ded with b iffers, the verse as v hombs, c uut equally nm. Sma	a minor p , dominar DRAMINII I many an pooth sharp less com vell in sm alcite ove y common	ercentag ttly struct FERS ligit astomos o and gra mon litho aar slides growths i in both	e of drilling ureless, nt greenish ing thin dational elogy, s; foraminif on lithologies.
							•g-	•Ca(1		2	["		served on the cut surface suggest SMEAR SLIDE SUMMARY (%):	ng dissolu	ition or g	as.			
								×				1	1		1,47 D	2, 101 D	3, 33 D	4, 49 D	5, 57 D	6, 46 D	7, 22 D
	SANTONIAN						\$ 52.4 V-2.10	CaCO3=89.6% TOC=0.0%	3	the formulation		X / X I I I I I	≈ (P) ~ ~ ~ ~	*	COMPOSITION: Accessory minerals 1 Clay 5 Foraminiters 20 Inorganic calcite 2 Nannofossils 70 Opaques Tr Quartz 2	1 10 15 3 68 Tr 3	Tr 10 18 5 64 Tr 1	Tr 4 22 2 71 1	1 4 18 3 74 1	1 5 15 5 73 Tr	1 4 20 3 71 1
NH	CAMPANIAN - UPPER	CC16 - CC17					•	•	4	the second s			22 22 22	*							
2	LOWER CAMF								5				****	*							
							0-50.50 0-47.9 V-2.02	CaCO3-91.3%00CaCO3-91.3%	6			1////×	2 ~ Q ~ (P	*							
	A/M	A/M	Barren		Barren		V-2.02 9-50.5	CaCO3=91.3%	7 CC				10-0-	*							

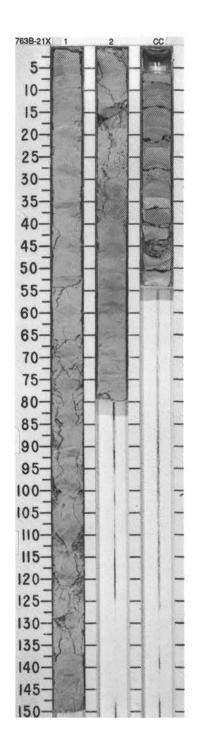

	BIO FOS	STR	CHAP	ONE	/		158					RB.	ŝ		
	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
T										-		K	1		NANNOFOSSIL CHALK AND NANNOFOSSIL CHALK WITH CLAY
									1	1.0		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	* * * * *	•	The core is intensely disturbed by drilling. Small drilling biscuits, 5-10 cm long, occur with drilling slurry intervals 5-10 cm long, so that the percentage of "real" sediment in the core ranges from 40 to 60%. Major lithologies: NANNOFOSSIL CHALK and NANNOFOSSIL CHALK with CLAY, greenish white (5G 8// intensely bioturbated throughout. Vertical and horizontal, burrows mimic layering, Zo- ophycos burrows in Section 5. Foraminifers are present in amounts of 2-10%. Mica is commonly present in trace amounts, and clay does not exceed 5%. Microstyloitle horizon
							2-48.3 V-1.90	•CaCO ₃ •89.2%	2	and and		xxxx			occur at regular intervals of 30-50 cm. They are clay-rich and darker in color than the surrounding chalk (light greenish gray, 56 7/1. and greenish gray, 56 6/1). Pyrite nodule 1-5 mm across, occur throughout the core and are concentrated in Section 2, 110-120 cm Two pyrite-filled vertical burrows, 10 cm long and 2 mm across, are present in Section 5 20-40 cm. SMEAR SLIDE SUMMARY (%):
							-g-4	• CBC				\geq	Ĭ	*	1, 84 2, 125 4, 16 5, 100 5, 103 D D M D
									-			K	e,		COMPOSITION:
NIVIN	z	15							3	dente		くくく	 P		Clay 5 5 5 80 7 Foraminifers 3 2 10 7 Mica Tr Tr Tr 1 Tr Nannolossils 92 93 85 19 86 Quartz Tr
LOWER SANIONIAN	SANTONIAN	CC14 - CC1					• 2.02	•CaCO3-89.1%	4				@@	*	
							P=43.9 V-1.89	•CaCO ₃ •87.4%	5	e contra da		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~) @	**	
	A/M	A/M	Barren		Barren		÷	•	6 CC			いい	- P P-)	


			CHA	RAC		0	ES					88.	2							
	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES		LITH	OLOGIC	DESCRI	PTION	
							41.92	9.6% TOC=0.0%	1	0.5				*	NANNOFOSSIL CHALK FOSSIL CHALK WITH CI Major ilthologies: NANNOFOSSIL CHALK gray (5G 7/1) to NANNOF drill-disturbed in Sections greenish gray (5GY 7/1), thick and lighter layers 15 core. Zoophycos burrows blebs (up to 1 X 1 cm), bt occur at Section 4, 120-1	AY OSSIL CF 1 and 2 w Color char -100 cm th are comm t is rare. C	MINIFEI ALK with inter- nick. Biol nick. Biol non. Very Greenish	RS and N h CLAY, g biscuit ma gradation urbation i fine-grain gray (5G	ANNOFO greenish al with da s modera ned pyrite 5/1) ellipt	SSIL CHALK, light green gray (5G 6/1): moderatel ng homogenized and ligh raker layers (5G 6/1) 2.3 te throughout most of this is concentrated in small icial blebs and wisby lam
							• 1-7 - 2 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	•CaCO3-89	2	and and and are			P == == ==	*	minerals. SMEAR SLIDE SUMMAP COMPOSITION: Calcite/Dolomite			3, 133 D	4, 122 D	5, 26 D
LOWER SANIONIAN	SANTO	CC14 - CC15							3					*	Calcareous fragments Clay Dolomite Foraminifers Nannofossiis Opaques Quartz Zeolite	- 4 2 20 40 	4 9 38 Tr	- 6 - 16 32 1 - Tr		2 38 1
							13	*	4				******	*						
	A/M	A/P	Barren		Barren		P-37.2 V-1.93	CaC03-76.2%	5 cc				***	*						

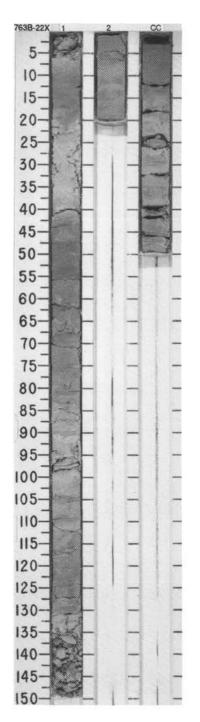

-		SSIL				Τ		ī	Т	Τ	-			Γ	
TIME-ROCK UNIT	FORAMINIFERS	1	RADIOLARIANS	DIATOMS	ORPHS	-1 2	DUVE BD/0FDTIFE		CHEMISTRY	NETERO	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
							-41.216- A.	P=2.06 V 2.05		0.		- H-////	*****		NANNOFOSSIL CHALK WITH FORAMINIFERS AND NANNOFOSSIL CHALK WITH CLAY Major lithologies: NANNOFOSSIL CHALK with FORAMINIFERS, white (5G 8/1) to light greenish gray (5G 7/ 1) to greenishgray (5G 6/1). Beds vary from 2 to 20 cm in thickness, and most contacts are gra- dational. Small sprite nodules are present throughout and are more common in the darker intervals. Small sprite nodules are present throughout and are more common in the darker intervals and may be due to gas ordissolution. Bioturbation is moderate number throughout. Dolomite (7) inhomb form a minor component and both foraminifers and nannofossils show calcite overgrowths.
LOWER SANTONIAN	SANTONIAN	CC14 - CC15					040.4171 OF	P=2.09 1	erero3-80 83	3		イ× インン× インイ× ×	*****	*	Minor lithology: Nannołossił chalk with foraminifers and clay, greenish gray (5G 6/1). Section CC, 20-26 cm, and possibly some of the other darker intervals in the core. SMEAR SLIDE SUMMARY (%): 1,93 2,99 3,59 4,10 CC, 22 D D D M CCMPOSITION: Accessory minerals 1 Tr 1 Tr 1 Clay 18 6 8 15 Foraminfers 6 12 12 12 Namolossiis 69 79 78 76 63 Quartz 2 1 2 1 2 1
	A/G	A/M	Barren		Barren		-041.6141 05		Catuge 74.0% 100=0.02%			× / × / × / / 土土	=======================================	*	



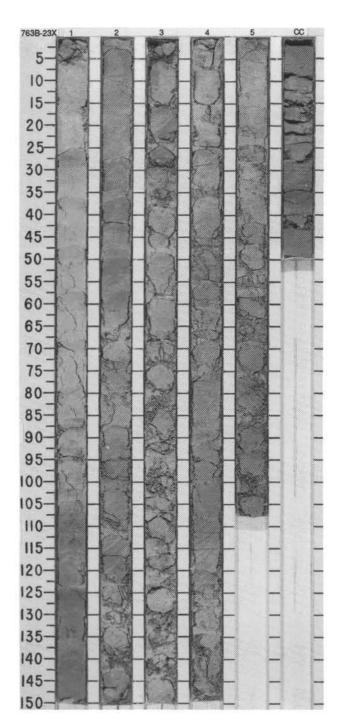
LIND		STRA			TER	cs	TIES					URB.	SES						
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES		LIT	IOLOGIC	DESCRI	PTION
LOWER SANTONIAN		CC14 - CC15					● 9-38.2 V-2.10	•CaC0 _{3*} 83.7%	1	1.0			8	*	AND CLAY The core is slightly disturb a narrow, fractured core is Major lithologies: NANNOFOSSIL CHALK with CHALK with FORAMINIFE white (5G 8/1, 5BG 8/1). L ences are suble. Color the lighter than darker laye Minor lithologies:	ed by dril included ith CLAY RS and ithologie: ottling is p rs.	ling, exce in consp , greenis CLAY, lig s are inter present th	apt for the icuous dr h gray (50 ht greeni rbedded. aroughout	DSSIL CHALK WITH FORAMINIFER interval in Section 4, 0-70 cm, where illing slurry. G 6/1, 5BG 6/1) and NANNOFOSSIL sh gray (GG 7/1, 5BG 7/1) to bluish Color changes are gradual and differ I. Foraminifers are more abundant in BG 7/1), forms the darker layers
							.g.	•C	2	and only			(P	*	within the core and has gr	adationa across, a Is occur	I contacts ire preser	with the nt and are	adjacent lithologies. concentrated in Section 2, 129-136
- 1	UPPER TURONIAN	CC13				-(CaCO ₃ =86.9%)	● 36.4 V-1.99	• • • • • • • • • • • • • • • • • • •	3)-(·······		COMPOSITION: Bioclast Clay Dolomite Foramic calcite Mica Nanofossits Pyrite Quartz	1, 73 D 	2, 72 D Tr 10 	5. 45 D 	6, 3 D 20 10
CON	CONIACIAN - UP	cc11 -					• 2-36.2 V-1.83	CaC03=82.4%	5	and the second sec			* * * * * *	*					
	A/G	A/M	Barren		Barren		-8-3	CaCO3=68.6% TOC=0.09%	6 7 CC					*					



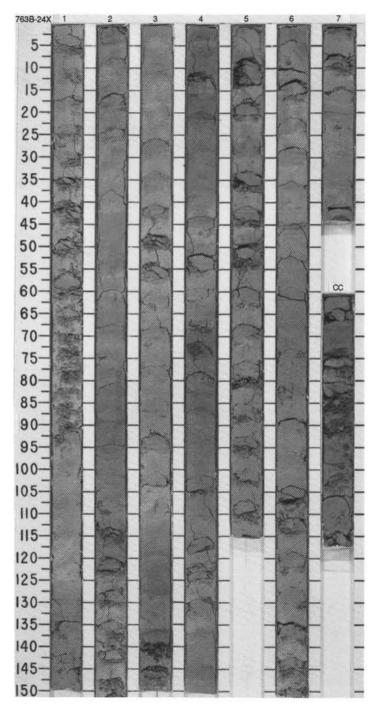
701

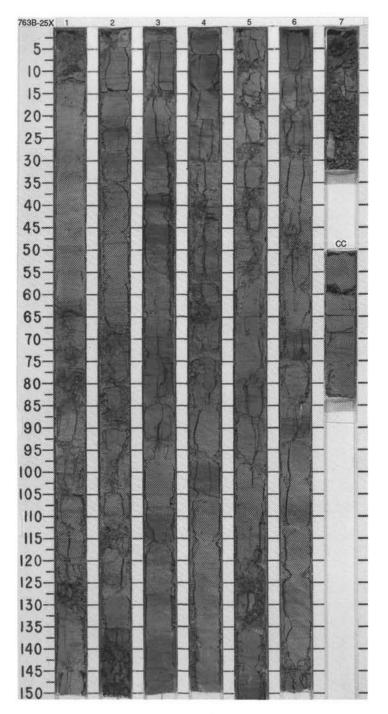


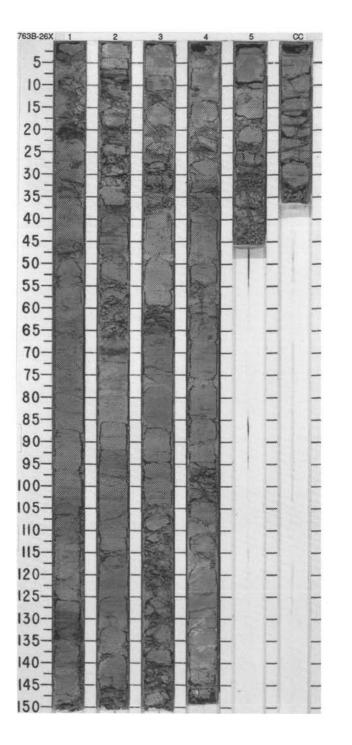
UNIT		STRA				01	158					RB.	ES		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
UPPER TURONIAN	TURNONIAN (H. helvetica)	CC11 - CC13					\$2.23 4-1.71 V-1.91 2-2.29	TOC=0.03%8 @CaC03=53.7% Ca	2			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	* * * * * * * *	*	NANNOFOSSIL CHALK WITH CLAY AND CLAYEY NANNOFOSSIL CHALK The core is heavily biscuited, with 40-50% drilling slurry. Major lithologies: NANNOFOSSIL CHALK with CLAY, light greenish gray (5G 7/1) and CLAYEY NANNOFOSSIL CHALK, greenish gray (5G 6/1). The strong disturbance of the (core drilling biscuits) has obliterated all evidence of possible cyclicity. Foraminifers are present bu minor. Very line pyrite crystals are scattered in Sections 2 and CC. SMEAR SLIDE SUMMARY (%): 1, 75 CC. 40 D D COMPOSITION: Carbonate grains - 7 5 Nannolossils 80 70 70 Opaques 3
	A/M	A/M	arren		Barren			CaC03=50.2%							

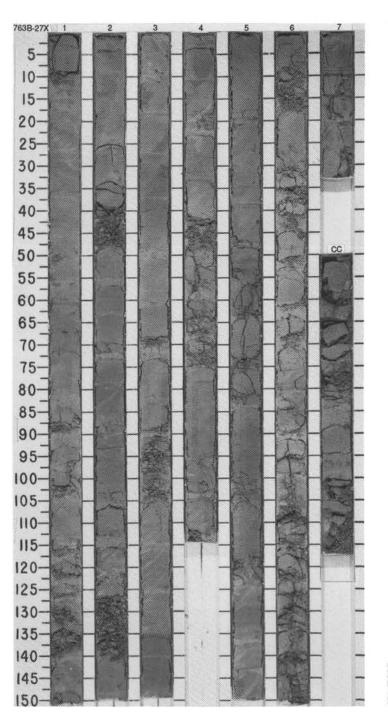


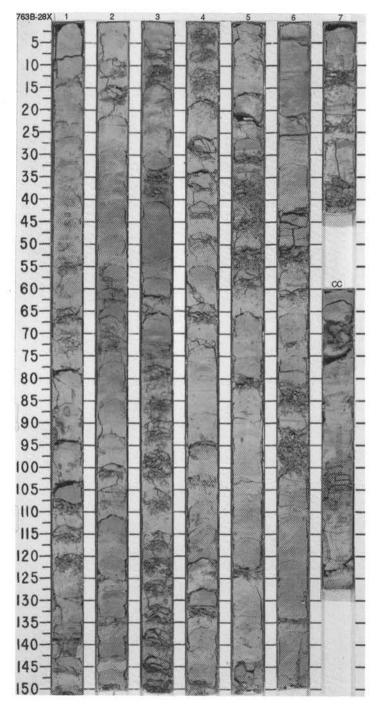
SITE 763


UNIT			CHAP			0	83					RB.	s		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
LOWER TURONIAN	A/M LOWER TURONIAN (W. archaeocretacea)	A/M CC11-CC13	LOWER TURONIAN / UPPER CENOMANIAN (0. somphedia)		Barren		• \$=43.3 V-1.74 \$=02.3	CaCO ₃	2	0.5		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	* * * * * *	*	NANNOFOSSIL CHALK WITH CLAY AND CLAYEY NANNOFOSSIL CHALK. Major lithologies: NANNOFOSSIL CHALK WITH CLAY and CLAYEY NANNOFOSSIL CHALK, slightly dark than the previous core (mixed light greenish gray [5G 7/1] to greenish gray [5G 6/1] to grayish green [5G 5/2]). Cyclicity in Section 1, with three darker intervals (grayish green dominant), separated by two lighter intervals (light greenish gray dominant), each about 20 cm thick. Contacts are gradiational, and all are bioturbated. The base of the core is more homogeneous (grayish green). Very line pyrite crystals are scattered throughout. SMEAR SLIDE SUMMARY (%): 1, 56 CC, 7 D D COMPOSITION: Carbonate grains 2 7 Clay 1 Tr Foraminifiers 2 3 Nannolosalis 78 75 Quartz — Tr


UNIT		STR/			TER	8	res					JRB.	SS		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
							V-1.88 2-40.4	CaCO3-61.3%	1	0.5		///////////////////////////////////////	* * * * *	*	CLAYEY NANNOFOSSIL CHALK AND NANNOFOSSIL CLAYSTONE The core is slightly to strongly disturbed by drilling. In Section 1, small drilling biscuits, 3- cm long are included in drilling slurpy intervals,7-10 cm long, so that the percentage of undisturbed rock in the section ranges from 30 to 40%. Major lithologies: CLAYEY NANNOFOSSIL CHALK, light greenish gray (5G 7/1), and NANNOFOSSIL CLAYEY NANNOFOSSIL CHALK, light greenish gray (5G 7/1), and NANNOFOSSIL CLAYEY NANNOFOSSIL Sprearin thrace amounts (up to 3%) in the most clay-rich lithologies. Scattered dolomite rhombs were noted. Both lithologies are intensely biotur- bated. Either vertical or hourizontal burrows are present, and these latter mimic layering.
								•	2	and one liter			* * * *	*	Burrows are filled with gray (5Y 5/1) claystone with nannofossils. Minor lithology: Quartzose, cemented very fine sandstone to siltstone, greenish gray (50 1), poorly sorted, 2 cm thick layer in Section 3, 28-30 cm. SMEAR SLIDE SUMMARY (%): 1, 49 2, 119 3, 28 4, 140 D D M M
CENOMANIAN	(R. cushmani)	CC9-CC10					•V~1.88		3				****	*	COMPOSITION: Clay 20 55 75 Delomite Tr Foraminiters 2 2 Tr Mica Tr Tr 2 3 Nannofossits 78 43 22 Quartz 98
UPPER	CENOMANIAN						6.9 V-1.75	CaCO3-59.1% TOC-0.20%	4			//////	******	*	
	UPPER CEI						0-46.9	•CaC	5 CC			ノノノーーノノノ	*****		
	C/G	A/G	Barren		Barren							14		-	

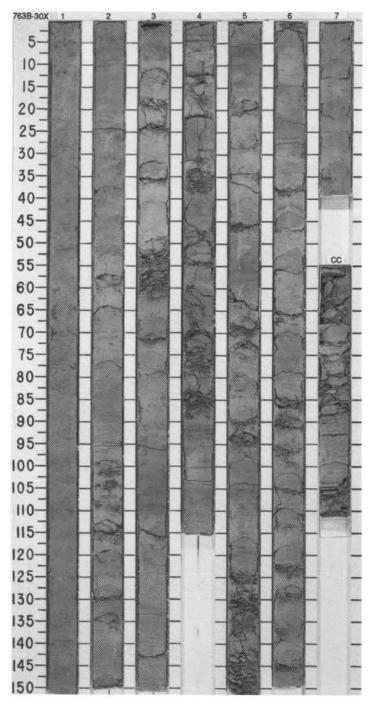

LIND	B10	STR	CHA	RAC	TER	97	SEL				JRB.	ES		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
							• P=1.82	CaCO3=51.2	1			*****	*	CLAYEY NANNOFOSSIL CHALK, CLAYEY NANNOFOSSIL CHALK WITH ZEOLITES, AND NANNOFOSSIL CLAYSTONE Core is highly disturbed and biscuited. Major lithologies: CLAYEY NANNOFOSSIL CHALK and CLAYEY NANNOFOSSIL CHALK with ZEOLITES (https://www.clayer.com/clayer.com
	ntiated								3					Clay 35 45 30 30 Foraminiters 10 5 10 3 Nannofossils 44 40 43 45 Quartz 3 5 2 2 Zeolite 8 5 15 15 Pyrite 5
CENOMANIAN	CENOMANIAN undifferentiated	CC9-CC10					- 2-57.0 V-1.65	•caco3=50.8%	4			****		
	CENON						5	3-45.5% TOC-0.31%	5				* 0G	
							-24.7	CaC03-45.	6					
	C/G	A/G	Barren		Barren				7 cc			**	•	


	FOS	SIL	CHAI	RACI	ER		IE8					88.	s		
11ME- RUCK OF	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
							eV-1.71		1	0.5		XXXXXX			NANNOFOSSIL CLAYSTONE WITH PYRITE AND ZEOLITES Major lithology: NANNOFOSSIL CLAYSTONE with PYRITE and ZEOLITES, greenish g (5G 61) and very dark greenish gray (10Y 3/1), 5-145 cm thick beds show gradational contacts. The darker beds contain more clay than the lighter beds and locally include parallel laminae, e.g. Section 6, 70-150 cm. Bioturbation is moderate to strong througho the core with many identifiable trace lossils such as Zoophycos, Planolites, Chondrites, Teichichnus. Minor lithologies: a. Claystone with chalk, very dark greenish gray (10Y 3/1), gradational contacts with oth
							•		2			シンシン			lithologies. In general <5 cm thick, identified on the basis of CaCO3 analyses. b. Pyrite grains occur throughout the core and a nodule occurs in Section 3, 36-38 cm. Belemnie fragment in Section 5, 85-67 cm. SMEAR SLIDE SUMMARY (%): 1, 40 3, 111 5, 61 6, 108 D D D D COMPOSITION:
CENOMANIAN	undifferentiated	-CC10			- CENOMANIAN		\$-1.86 V-1.69	•CaCO3-25.7%	3			シンシンシン			Clay 5 10 12 10 Fish - - - 2 Foraminters 10 5 3 7 Glauconite 2 2 2 - Nannofossils 57 52 64 56 Pyrite 6 10 7 7 Ouatz 1 - - - Silicoflagellates 1 - - - Zeolite 18 20 12 15
LOWER CEI		CC9-0			UPPER ALBIAN			•CaC0 ₃ =33.4%	4			ノンシンシン	****		
							● 51.4 V-1.74		5			ンシンシン		*	
								CaCO3=24.7% TOC-	6	-		ンシンシン		*	
	C/G	A/G	Barren		R/M				7			N/V	**		


UNIT		STR				-	ES.				RB.	ŝ		
ITME-ROCK U	FORAMINIFERS	NANNOF OSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	GRAPHIC LITHOLOG		SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
					(CaCO3=30.2% TOC=0.26%)	ICaCO3-25.7%1	0-56.3 P-1.71		1	0.5		1	*	NANNOFOSSIL CLAYSTONE WITH ZEOLITES Major lithology: NANNOFOSSIL CLAYSTONE with ZEOLITES, greenish gray (5GY 5/1 tr 5GY 6/1), dark greenish gray (5GY 4/1), and dark gray (N4). Bioturbation is common, with dominantly horizontal and minor vertical burrows. Zoophycos and Chondrites. Darker, ma- clay-rich layers, occur in 3 to 8 cm thick layers (about 2 to 3 per section) showing grad- tional contacts with the lighter colored sediments. Drilling disturbance is severe to mode ate. SMEAR SLIDE SUMMARY (%):
ANIAN		0			ų			CaCO3-43.0%aCO3-26.7%	2			14		1,130 2,112 4,85 M D D COMPOSITION:
LUWER CENUMANIAN		CC9-CC1					• 0=53.8	•CaC03-4	3					Opaques 2 7 2 Ouartz — Tr Tr Zeolite 9 9 9
TH ALDIAN									4			* * * *	•	
T UPPER	c								5 CC			1		
ł	Barren	A/G	Barren	Barren										


	BI0 FOS	STRA	T. 3	RACI	TER	60	53					88.	s		
TIME-ROCK UNI	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS, PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
								×	1	0.5		V H H H X H	Z-(P	*	NANNOFOSSIL CLAYSTONE WITH ZEOLITES Major lithology: NANNOFOSSIL CLAYSTONE with ZEOLITES, light greenish gray (5G 7) to greenish gray (5G 6/1). Bioturbated where preserved. Planolites common, Zoophycos common to rare. Disseminated pyrite (marcasite) throughout. Pyrite nodules common in Sections 4-6. Small belemnite, Section 5, 90 cm. SMEAR SLIDE SUMMARY (%): 1, 66 3, 145 5, 33 CC, 40
						rcac0_3=36.0%)	P-1.87	• • • CaCO ₃ =32.4%	2				Ľ		D D D D D Accessory minerals 3 2 3 3 Clay 29 25 25 30 Foraminifers 3 5 5 5 Glass — Tr — — Glauconite 5 3 1 2 Nannolossils 36 32 44 37 Opaques 5 10 7 10
ALBIAN	(P. buxtorfi)	-CC10					• 0=52.3 • 0=1.91		з			>>>×>>>	₽ Z (₽-==-(Spicules — 2 1 Zeolite 19 20 10 10
UPPER	UPPER ALBIAN	CC9 -					•	CaCO3=34.5% TOC=0.23%	4			/××///	P P	OG	
	0							CaCO	5			>>>>>	e+e+ 0	*	
									6	-		インンン	P P P		
	A/G	A/G	Barren		Barren				7 CC			ンンン	Z P O P		

	BIO FOS	STRA	T. ZO	NE/		S					JRB.	ES					
	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	L17	HOLOGIC	DESCRIP	TION
						10 10	r40.4%	1	0.5		ンンンン	***	*	is moderate to strong throughout Zoophycos, Planolites, Chondrite Minor lithologies: a. Calcareous claystone with zec b. Some pyrite grains are scatter	eenish gri the core v s, and Te lites, gree ed througt	ith many i chichnus, nish gray (, generally structureless. Bioturbatik dentifiable trace fossils such as 5G 6/1), in Section 1, 106 cm. re. Shell fragment in Section 4, 13
						• 0-52.6	•CaC03-40	2			シンン	>>> >>>		136 cm. and an Incoeramus shell SMEAR SLIDE SUMMARY (%): 1, 10 D TEXTURE:		5, 117 D	
							3.2%				ンン	***		Sand - Silt 30 Clay 70		1 39 60	
	buxtorfi)				(%2%)	(CaC03=41.7%)	•CaC03-38	3			×××××	= = !!		COMPOSITION: Bioclast Tr Carbonate — Clay 61 Foraminifers 7 Glauconite Tr Mica Tr Manolossils 20	1 54 15 Tr Tr	2 1 56 12 Tr Tr	3
ALDIAN	AN (P.	CC9-CC10			(CaC03=44.5%)	• 53.8 • 1.88	•	4			~~~~	***		Varihoussis 20 Pyrite 2 Quartz Tr Spicules — Zeolite 10	20 3 	20 1 	2
OFFER	UPPER ALBI	C					.2% TOC=0.28%	5			V/XXX///	Ø ** Ø **					
						-0-56.1 -0-1.91	7	6	and an all and a second second		V 1 / / × 1 1 -	****					
	A/G	A/G	Barren	R/M				7 CC			イン× イン	****	*				

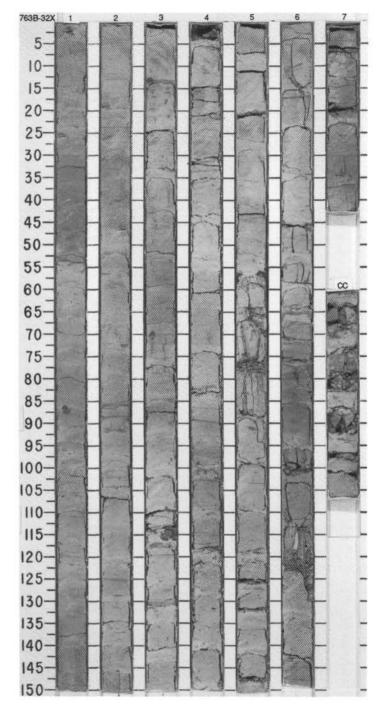


BI0 FOS	STR	T. Z	RACT	TER	0	ES					88.	2		
FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
								1	0.5		ンンンン	*****	*	CALCAREOUS CLAYSTONE Major lithology: CALCAREOUS CLAYSTONE, greenish gray (5G 6/1 and 5G 5/1), Moder- ately to highly bioturbated. Zoophycos, common, Planolites, abundant, and Chondrities an Teichlichnus rare. Fine laminations due to predominant horizontal burrowers. Disseminate prive (marcastie) grains in Section 3-6. Incorearmus fragments in Section 5, 141 cm; Section 6, 50, 53, 135, and 145 cm; Section 7, 37 cm; and CC, 32 cm. No cyclic pattern recognized, although slight color variations are observed in Sections 4 and 5. SMEAR SLIDE SUMMARY (%):
						• 21.5 V-1.64	•CaCO ₃ -38.8%	2			ノンシン			1,89 3,75 5,76 7,22 D D D D D TEXTURE: Silt 13 16 12 3 Clay 87 84 88 97 COMPOSITION: Bioclast 3 1 1 1
sted							*1	3			ンンンン	22 22 22 22 22 22		Bootast 3 1 1 - </td
 IAN undifferentiated	CC9-CC10					• 0-51.2	CaC03=44.7%	4			ンンンン	0-0-0-0%C		
ALBI							3X TOC-0.26X	5			ノンンンン	0	*	
						• 52.8 • - 1.86	CaC03=40.8%	6			ンシンン			
A/G	A/G	Barren		Barren				7 CC			いいい	6~**	*	

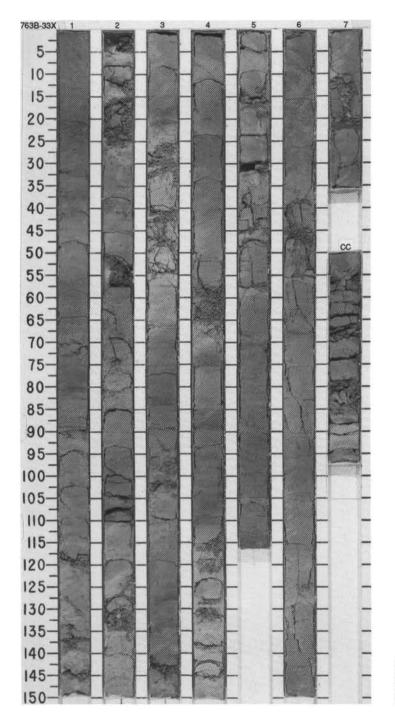


SITE 763

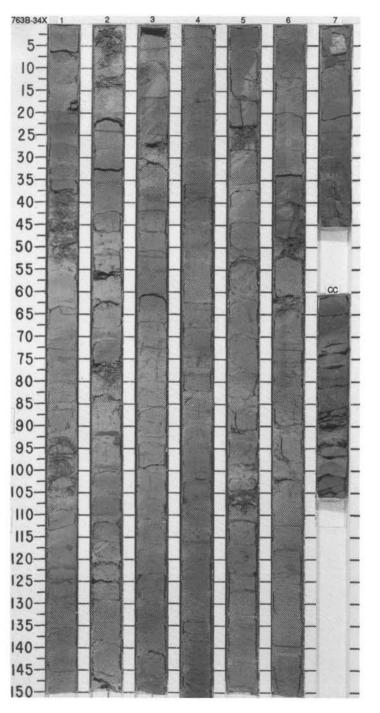
ITE	810	STR	AT. 2	ZONE	TER		1168	Γ	CO		30X CC		Γ	Γ	ERVAL 456.0-465.5 mbsf
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
ALBIAN		-cc10					- 0-51.5 	•CaCO ₃ =36.4%	1	0.5		1	₽ ₩ 28 8 8 8		NANNOFOSSIL CLAYSTONE WITH ZEOLITES Core is moderately disturbed with biscuiting and fracturing. Biscuits tend to fracture while the intrabiscuit slurry is "intact". Major lithology: NANNOFOSSIL CLAYSTONE with ZEOLITES, greenish gray (56 611, minor 56 711) with gray (N5 and N5) burrow tillings. Identifiable burrows include Zoophycos, Planolites, and Chondrites. Most burrows show excellent preservation. Slight evidence of parallel bedding. Incoeramus fragments, com- monly fragmented into power, are present. In smars slides, clinoptiolite forms as much a 20% of the rock, and dolomite rhombs and pyrite(?) hexahedrons are present. SMEAR SLIDE SUMMARY (%):
UPPER		- 600							2	the second se		Ĺ	1)== 5(@== 20=		1, 125 3, 84 5, 105 7, 20 D 2 10 D 2
	ated							TOC=0.17%	3			~ + + -	· P ≈ & ≈ & (P)	*	Accessory minerals 2 Bioclast 5 Carbonate grains 6 Clay 43 41 41 47 Dolomite 4 Foraminifers 5 5 3 3 Mica 2 2 Nannofosilis 26 26 28 27 Opaques 2 5 5 1 Quartz Tr 1 1 2 Zeoltre 13 15 18 20
MIDDLE ALBIAN	BIAN undifferentiated	cc8					● 50.0 V-1.76	CaCO3=36.9%	4	the second s		×		og	
	ALBI						V-1.77	2%	5			K			
							-0-48.6 V-	CaCO3- 40.2%	6	the second s			****		
									7 cc			XVXV	Į.	*	
	A/G	A/G	Barren		Barren										

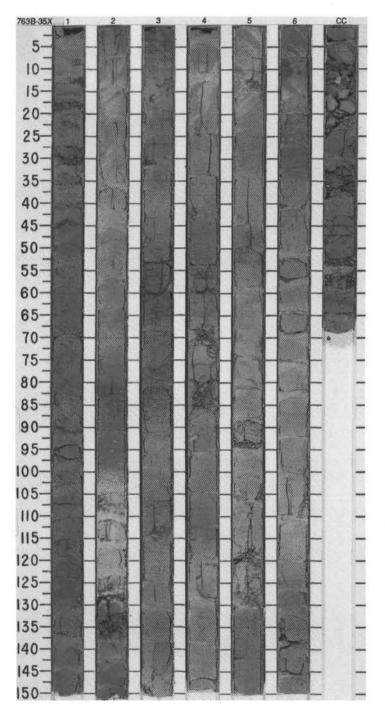


LIND	BIO	STR/	CHA	RACT	TER	50	IES					RB.	s								
TIME-ROCK UN	FORAMINIFERS	NANNOF OSSILS	RADIOLARIANS	DIATOMS	PAL YNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES		LITH	OLOGIC	DESCRI	TION		
						(CaCO3*28.9%)	V-1.72-9-50.6	.5xe	1	0.5		>>>++++	20 22 22 22 22 20 22 22 22 22 22 22 22 22 22 22 22 2		CALCAREOUS CLAYSTC Slightly to moderately dist Major lithology: CALCARE bioclasts and pyrite and sy various combinations. Pyr Section 5, 75 cm, and nod moderate and includes Zo vertical burrows.	OUS CLI The quart te is gene ules up to ophycos,	AYSTON z. dolom erally very 5 mm a Planolite	E, greeni ite rhomb y fine gra cross are is, and Cl	sh gray, is, glauco ined but also pre hondrities	onite, mus is coarse, sent. Biot s types ar	covite, and biotite , and silt-sized in purbation slight to ad less common
								CaCO3=31.5	2	and and and			≈ ≈ (<u>a</u>) ≈ ::		Minor lithology: Claystone nannolossiis, foraminifers, abraded prisms of Inocera SMEAR SLIDE SUMMAR TEXTURE:	zeolite, a mus, Sec	ind pyrite	and trac	es of qua	artz and m	nica. Bioclasts are
	ated		S						3	and confined			***	*	Silt Clay COMPOSITION: Biotlast Biotite Clay Dolomite Fe oxide Foraminifers	10 90 5 Tr 70 Tr 77 7	19 81 5 Tr 57 1 10	20 80 1 Tr 55 Tr 	15 85 1 60 - 10	26 74 1 51 Tr 10	10 90 60
MIUULE ALBIAN	IAN undifferentiated	CC8	OWER CRETACEOUS				• 2-52.0 V-1.73	•CaCO ₃ *29.2%	4	reation of each		ユーユーエノノ			Glauconite Mica Nannolossits Pyrite Quartz Fe oxides	10 1 7	Tr 1 15 3 Tr 8	Tr 1 20 3 	5 17 2 5	Tr 20 10 7r 8	Tr Tr 10 2 Tr 5
	ALBI						3 V-1 .76	CaCO3-26.7% TOC-0.22%	5	or of contacts				*							
							• \$=1.84 V-1.	•CaCO ₃	6				N=> Ø = Ø =	*							
	A/G	A/G			R/P				7 CC			1	1								

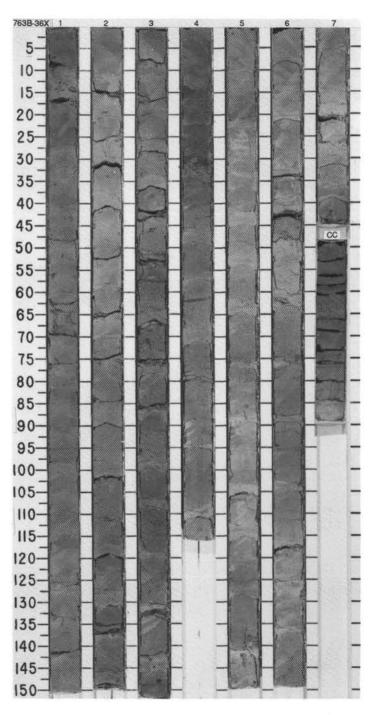


SITE 763

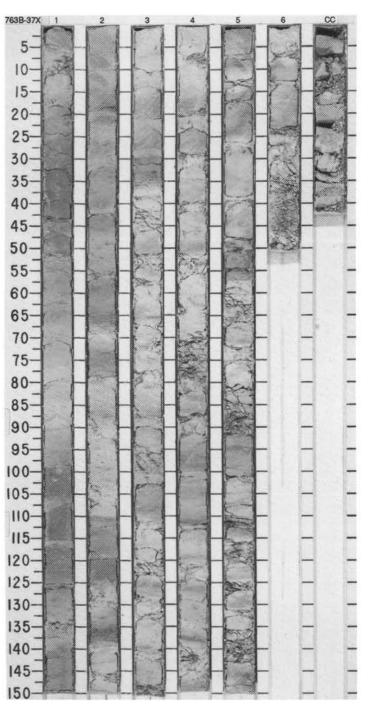

UNIT	810 F05	STR	CHA	RAC	TER		LIES					URB.	ES		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
							P. 1. 30 V-1 .81	•CaCog-41.7%	2	0.5			10-110 Q(P	*	CALCAREOUS CLAYSTONE WITH ZEOLITES. ZEOLITE CALCAREOUS CLAYSTONE AND CLAYEY CHALK Core is moderately disturbed by drilling with drill biscuits (3-15 cm thick) alternating with mixed inter-biscuit drilling slurry (2-5 cm thick). Major lithologies: CALCAREOUS CLAYSTONE with ZEOLITES and ZEOLITE CALCAREOUS CLAYSTON greenish gray (5G 61 to 5GY 617 with minor 5G 5/1), and CLAYEY CHALK, light greenis gray (5G 71 to 5GY 717) with minor gray (15-N8) to dark gray (1A) burrows. Gray (N5-N8 burrows, Chondrites and Planolites are abundant in Sections 1-4, with less common Zoophycos. In Sections 5-CC, burrows are less abundant with Zoophycos, Chrondrites, ai minor Planolites. Mottled sections with no identifiable trace fossils occur in some biscuits and increase in abundance in Sections 5-CC. Color banding with gradational boundaries occurs in Sections 6-7. Pyrite nodules and disseminated pyrite fill burrows up to 1 X 2 cm (on cut surface).
												44	Ø		1,40 2,82 3,47 5,37 6,32 D D D D D
ALBIAN	undifferentiated	8					/=1.87	CaCO3-46.5%	3			+ + + + + + +		*	TEXTURE: Silt - - 4 3 Clay 100 100 96 97 COMPOSITION: - - - Tr Biolite - - - Tr Calcite 1 Tr Tr Tr Glay 63 62 60 58 63
MIDDLE	ALBIAN Undi	CC8					P 1. 1. 92 V-1.87	T0C=0.13%	4				=x=-x(@)= -		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
								CaCO3=57.3%	5			44444	- (P) - >-	*	
							• 8-51.2 V-1.73	CaCO3-24.6%	6					*	
			c						7 CC			444 /			
	A/G	AIG	Barren		R/P										


TE	_	63			_	E	3	_	COF	RE	33X CC	RE	D	NT	ERVAL 484.5-494.0 mbsf
UNIT		STR			TER	00	1ES					JR8.	8		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
									1	0.5		>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	0=	*	CALCAREOUS CLAYSTONE WITH ZEOLITES AND CALCAREOUS CLAYSTONE Major lithologies: CALCAREOUS CLAYSTONE with ZEOLITES and CALCAREOUS CLAYSTONE, dom nartly greenish gray (5G 6/1 to 5Y 6/1, 5GY 5/1, 5GY 6/1) with minor light greenish gra (5GY 7/1), light gray (5Y 7/1), gray (5Y 6/1), and grayish green (5G 5/2). Burrows are common and gray (N5) with excellent structural preservation. Color variations are grad occurring over a 2 to 20 cm interval. Many are too subtle to be detected with the Munse charts. Inoceramus fragments are present in several intervals, commonly as finely grou powder. Pyrite nodules up to 1 cm across are present. Bihough most are < 1 mm acros
							B-52.4 V-1.74	CaCO3-35.0%	2	to be a construction of the second		× × × ×		*	SMEAR SLIDE SUMMARY (%): 1, 54 2, 79 4, 89 6, 61 CC, 12 D D D D D TEXTURE:
							•	•				HX H -	(D-30-0)		Silt 27 15 19 14 10 Clay 73 85 81 86 90 COMPOSITION: Accessory minerals — 2 — —
	tiated						6	TOC-0.07%	3			H H H H X H	- 3°-		Biotite 1 Tr Tr Tr Clay 50 65 56 60 68 Fish Tr Foraminifers 5 3 6 5 8 Glauconite Tr Tr Mica 1 2 2 2 Nannotossits 24 20 24 20 15 Pyrite 2 2 1 Tr
MIDDLE ALBIAN	LBIAN undifferentiated	CC8					● 1.1.1 V=1.7 V=1.79	CaCO3"29.1%	4			144××//4/	9==(A)== == == ==	*	Zeolite 14 7 10 8 7
	2 AL								5	and a set of a set		シンシート		06	
							• • • • • • • • • • • • • • • • • • •	•CaC03-34.2%	6				1001	*	
	C/G	A/G	Barren		Barren				7 CC				0 P	*	

FOS	SSIL	CHAR	ONE	ER	S	TIES					URB.	SES		
FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	GRAPH LITHOL	IC DGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
LOWER and MIDDLE ALBIAN 7 ALBIAN undifferentiated	A/G CC8	Barren		M/P		● \$15.0 \\/r iso	•CaCo ₃ -36.1% CaCo ₃ -49.0%	1 2 3 4 5 6 6 7 7 CCC					*	NANNOFOSSIL CLAYSTONE WITH ZEOLITES AND NANNOFOSSIL CLAYSTONE The core is intensely to slightly disturbed by drilling. Drilling biscuits are developed through out the core but longer, slightly fractured intervals occur in Soctions 4, 6, and 7. Major lithologies: NANNOFOSSIL CLAYSTONE with ZEOLITES and NANNOFOSSIL CLAYSTONE, domi- nantly greenish gray (56 6/1, 5G 5/1, 5GY 5/1), color variations are subtle and cyclic. Planotites, Chondrites, and minor Zoophycos burrows are present. Burrows are filed with greenish gray und dark gray (N4) claystone and gray (N5), purite rich daystone. In Sections 6, 7, and CC, bioturbation is less intense and parallel lamination is preserved. Laminae consist of alternating lighter and darker colors. Printe nodules are present throughout the core, commonly accompanied by line-grained pyrite disseminated in the sediment. SMEAR SLIDE SUMMARY (%): 1, 28 3, 57 6, 43 7, 29 D D M D TEXTURE: Sitt 12 20 10 2 Clay 88 09 90 98 COMPOSITION: Accessory minerals — — — — 2 Carbonate grains 5 5 5 — — Clay 40 36 54 41 Foraminifers 7 3 3 — — Minci Tr — Nannofossits 25 35 20 40 Opaques 10 10 5 2 Quartz 3 2 3 3 Spoules — — — 2 Zeolite 10 8 10 10

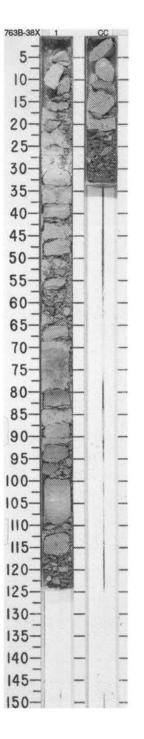


OSTI	CHAT.	RACI	TER	-	IES					RB.	S		
NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
							1	0.5		~~~~~	1 1		NANNOFOSSIL CLAYSTONE Major lithology: NANNOFOSSIL CLAYSTONE, dark to light greenish gray (5GY 5/1 to 5G 1). Calcareous components are dominantly nannofossils with few foraminifers. Other components are zeolites, opaques (mostly pyrite), and dolomile. Core disturbance is moderate with biscutting, but most sections are intact. The core shows no obvious trends except alternating clay-carbonate rich intervals. Some have original laminations present b most are heavily bioturbated. Minor lithology: Clayey chaik, light greenish gray (5GY 7/1), gradational boundaries, in
						•CaCO3=59.5%	2			11 FFV	1 1 1 2 Q P	*	Section 2, 102-127 cm. SMEAR SLIDE SUMMARY (%): 2, 117 3, 57 5, 44 6, 24 M D D D TEXTURE: Silt 10 10 10 10 Clay 90 90 90 90 90
CC8					V=1.83	33.7%	з				- P.	*	COMPOSITION: Carbonate grains 18 4 — 1 Clay 25 45 60 45 Foraminifers — 3 Tr — Mica Tr Tr Tr Tr Nannofossils 55 40 30 35 Opaques 2 2 2 7 Quartz — 1 Tr Tr Zeolite — 5 8 12
CC					• \$-49.5	• caco3-	4				* * * * *		Dolomite Tr Tr Tr Tr
					7.1 V-1.84	03"27.2% TOC-0.05%	5			ユーインシーー)==(P		
	en		en		1:g.	•CaC	6			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2		
	CC8 (Variable CC8)	CC8 NANKOF OSSILLS RADIOLOGICARILAS	CC8 (4.444) 71454 714578 714578 714578 714578 714578 714578 714578 714578 714578 71487 714	CC8 NANKOF OSILIS RADIOLARIANS RADIOLARIANS PLATYPOMORPIS	CC8 Indexed and the control of the c	CC8 CC8 NANKOF 0651L4 7165 NANKOF 0651L4 7165 PAL THOMOF 0651L4 7165 PAL THOMOF 01A TOMS 7165 PAL THOMOF 7165	CC8 NANNOF GESILS 1185 RADIOLARIANS RADIOLARIANS RADIOLARIANS Introma Introma RECONDARIANS Introma Introma RECONDARIANS	CC8 ANNUOF CESILS ANNUOF CESILS A	CC8 CC8 AMMN0F0651L3 AMMN0F	CC08 Record 21.2.X 10C-0.05X Record 23.2.X 10C-0.05X Record 23.2.X 10C-0.05X Record 23.2.X 10C-0.05X Record 23.2.X 10C-0.05X Record 24.2.X 1	СС8 СС8 СС8 СС8 СС9 СС9 СС9 СС9	ССВ ССВ ССВ ССВ ССВ ССВ ССВ ССВ	CC08 CC08 MANNOF OSSILL MAN

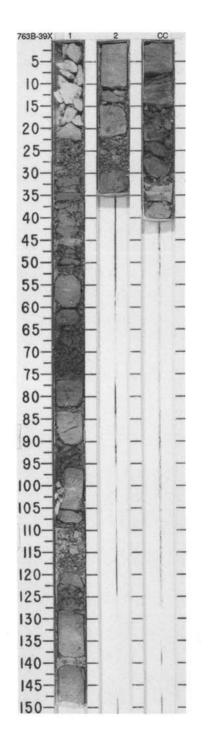


SITE 763

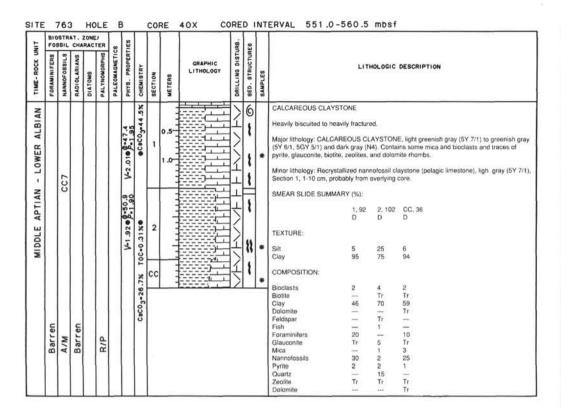
-	BIO	STR	CHA	RAC	TER	0	ES					RB.	22		
	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
							0=51.1 P=1.90	CaCO3-34.2%	1	0.5			@@~~~~	*	NANNOFOSSIL CLAYSTONE WITH ZEOLITES Major lithology: NANNOFOSSIL CLAYSTONE with ZEOLITES, greenish gray (5G 5/1 4 5G 6/1) to dark greenish gray (5G 4/1). Minor cyclic color patterns in Sections 2, 4, 5, a but may be result of drilling. Minor bioturbation throughout. Flattened Planoites commo Zoophycos common to rare (Section 3, 60 cm, Section 4, 60 cm), Chondrites rare (Sec 4, 100-105 cm), shell debris (Inoceramus) Section 3, 50 cm, Section 5, 95 cm, and Sec 6, 94-150 cm. Belemnite in core catcher, 25-27 cm. Darker greenish gray areas contain more clay.
									2			エノノノ	2 2		SMEAR SLIDE SUMMARY (%): 1,40 2,72 3,113 4,26 5,73 6,24 D D D D D D D TEXTURE:
												11/1	- 66		Silt 10 10 14 15 15 10 Clay 90 90 86 85 85 90 COMPOSITION:
	ated						OP-2.10 V-1.71	CaCO3*26.9%	з			、ノノーーーー	6	•	Accessory minerals 2 2 2 Clay 53 42 40 48 40 48 Foraminiters 10 5 5 3 5 5 Nannofossits 20 40 35 30 33 30 Pyrite Tr Tr 2 5 3 3 0 Quartz 2 3 3 2 2 2 Zeolite 15 10 15 10
LUWER ALDIAN	N undifferentiated	CC8						TOC=0.07%	4	or horse from		1111	*	*	
	ALBIAN						•	CaC03-45.8%	5			11/1/1/	****	*	
							D=40.4 V-1.43	CaCO3-43.4%	6			//////	****	*	
	A/G	A/G	Barren		Barren			•CaCO.	7 CC			/////			

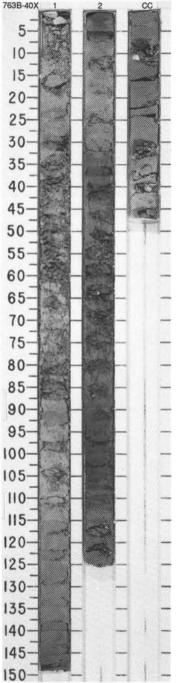


LINO		STR			TER	8	TIES					URB.	KES.		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
							P=42.6 V-1.96	CaCo3-39.4%	1	0.5		+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	6	*	NANNOFOSSIL CLAYSTONE WITH ZEOLITES AND CLAYEY CHALK WITH ZEOLITES Major lithologies: NANNOFOSSIL CLAYSTONE with ZEOLITES, greenish gray (5G 6/1, 5BG 6/1), and CLAYEY CHALK with ZEOLITES, light greenish gray (5G 7/1). Cyclic sedimentation patte throughout Section 5 with couplets 15-60 cm thick. Darker shades of greenish gray have more clay content. Moderately to highly bioturbated. Planolites abundant. Zoophycos rare (Section 3, 40 and 124 cm). Teichichnus, Section 4, 41-44 cm, and Chordrites, rare. Vertical branching burrow, Section 4, 34-37 cm. Most burrows oriented parallel to bedding Belemnite, Section 4, 4 cm. Pyrite grains. Section 3, 144 cm, Section 4, 60 cm.
									2				2 2 222 222 222		SMEAR SLIDE SUMMARY (%): 1,83 3,33 5,97 D D D TEXTURE: Sand
ALBIAN	- APTIAN	cc8	umbilicata (Albian)				• 2.00 V-1.89	•CaCO3=74.7%	3					•	COMPOSITION: Clay 50 49 50 Foraminifers 2 3 2 Glauconite - - 3 Nannofossilis 36 35 30 Opaques - - 2 Quartz 2 3 3 Zeolite 10 10 10
LOWER	ALBIAN	S	A. UM.				• 0-38.5 V-2.00	CaCO3=64.0% TOC=0.07%	4						
		CC7					\$0-38 P-2	•CaCC	5	and and and and			****		
	R/G	A/P	C/P		Barren				6 CC			シェン	1		

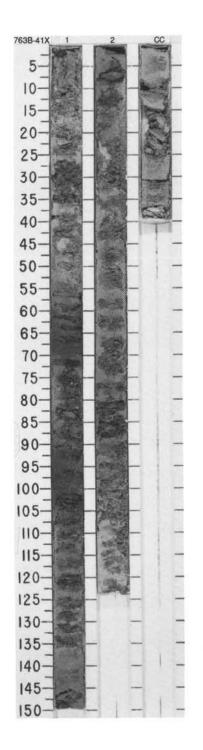


SITE 763

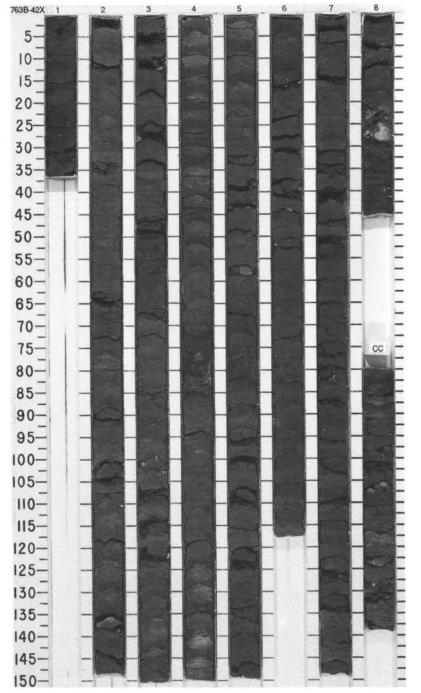

LIND			CHAP			8	IES					JRB.	ES				
TIME-ROCK U	FORAMINIFERS	NANNOF OSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	i.	LITH	DLOGIC DESCRIPTION
AL	F/M ALBIAN - APTIAN	A/G CC7	LOWER CRETACEOUS		Barren	(CaCO3=29.9%)	V-1.86@_48.3	CaCO3=53.5% TOC=0.14%	1	0.5		XXXXXX	*	*	WITH GLAUCONITE Major lithologies: LIMESTONE WITH GLAUCON gray (537 Y1), nearly structure NOFOSSIL SILTY CLAYSTON few thin (1 to 2 cm), laminae. SMEAR SLIDE SUMMARY (%)	NITE eless NE Wi 5): 79	AND CLAY AND NANNOFOSSIL SILTY CLAYSTONE AND CLAY, greenish gray (5GY 6/1) to light greenish . Some chalky, transitionalintervals are present. NAN- TH GLAUCONITE, greenish gray (5GY 6/1), includes 1, 103 D 48 20 2 8



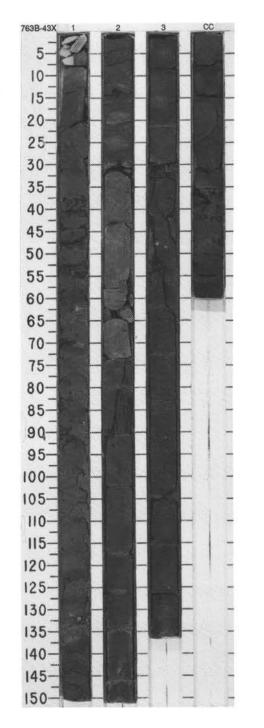
			T.Z			60	Es					RB.	Sa					
FORMINIECDO		NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES		LITH	IOLOGIC	DESCRIPTION
			ALBIAN		ICaCO3=44.0%)	L	•		1	0.5		-××××××//×/	******	*	(5GY 6/1) to dark greenish change, but there is no cyc	NOFOS: gray (5E clic patter ray (N4)	ated by dr SIL CLAY G 4/1). B m. Mino to light gr	
ALBIAN - APTIAN			BERRIASIAN - MIDDLE				V=2.70 0=26.7	CaCO3-16.2% TOC-	cc			Ž			TEXTURE: Sand Sitt Clay COMPOSITION: Accessory minerals Carbonate, recrystallized Clay Foraminfers Glauconite Nannofossiis Opaques Quartz	D 10 90 Tr -73 5 2 15 2 3	M 10 90 	D 10 10 80 55 5 2 39 2 2 2
	A/6	A/M			A/G													



SITE 763

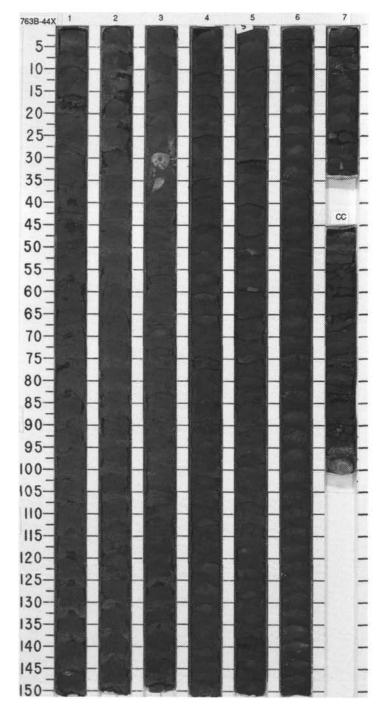


			T.Z			s	IES					88.	55						
	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES		LIT	HOLOGIC	DESCRIPTION	
			CEOUS			Γ	06		1	0.5		XXXX	×	*	CLAYSTONE WITH SILT WITH SILT AND SAND Core is almost completely				
		CC7	CRETACEO			TOC=0.16%)	V=2.21 2-40.1	CaCO3=17.4%		1.0	(-)	××××	×	*		SIL CLAY: 4/1) pyrite	STONE w and glau	ith SILT and SAN conite are commo	3 6/1, 5G 5/1). Section 2 and ID, greenish gray (5G 5/1) an on in smear slides. Shell
			OWER (ICaCO3=0.8%		CaCO		Teres 1		××			SMEAR SLIDE SUMMAR	1, 66 D	1, 83 D	2, 87 D	
			Lo			(CaCO ₃		.5%	2			××			TEXTURE:	100			
								CaC03-41				××			Sand Silt Clay	5 10 85	5 10 85	20 10 70	
l								•Ca(cc	-		×		L	COMPOSITION:				
	ren				Barren										Clay Foraminifers Glauconite Biotite	45 3 5	38 3 5 2	34 3 8	
	Barr	C/P	A/P		Bar										Nannofossils Opaques Pyrite	28 10	35 10	25 	
				1											Quartz Zeolite	3	2 5	15 5	

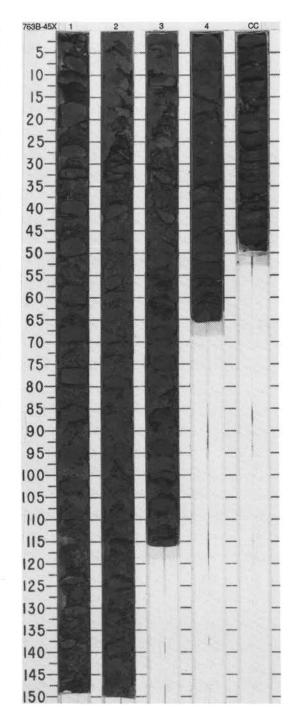


SITE 763

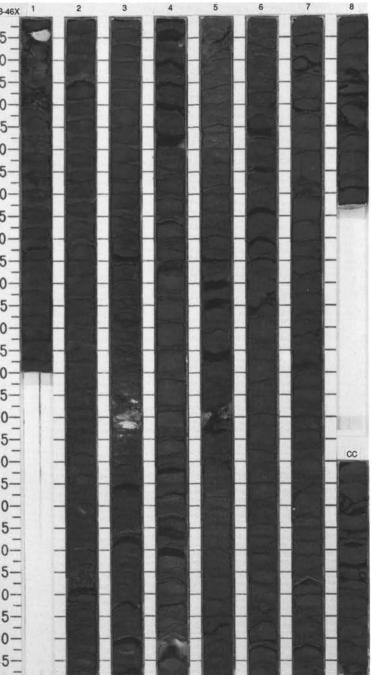
CK UNIT	810 F05	SIL	AT. CHA	ZONE	TER				CO		GRAPHIC	DISTURB.	Γ	Г	ERVAL 570.0-579.5 mbsf
TIME-ROCK	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPH	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	LITHOLOGY	DRILLING	SED. STRUCTURES	SAMPLES	
							297	3-0.4%	1	0.5	VOID		¢	*	CLAYSTONE WITH SILT, QUARTZ SILTSTONE WITH CLAY AND ZEOLITES, SILT CLAYSTONE WITH QUARTZ AND ZEOLITES, SANDY CLAYEY SILTSTONE WITH QUARTZ, FELDSPAR, AND ZEOLITES Core is highly disturbed by drilling and contains an extra section due to gas expansion Major lithologies: CLAYSTONE with SILT, dark greenish gray (5BG 4/1), interbedded with QUARTZ SILTSTONE, SILTY CLAYSTONE, and SANDY CLAYEY SILTSTONE, dark greenish (5BG 4/1), (See smear sildes for additional modiliers). Where preserved, fragments is
			p				P-47.2	•CaC03-0	2			ンンンン	**	*	sand and silt laminations. Minor horizontal bioturbation, Planolites is common. Pyrite a glauconite disseminated throughout core. Calcareous zone, Section 4, 73-80 cm. Calc ous nodule, Section 8, 25-30 cm. Gas expansion fractures throughout. Interpretation: Angular sand-size quartz, tektispar mixed with silts and clays and angul glauconite laminations suggest current activity and transport of coarser grained material deposition site. The angularity suggests a near source or possibly reworking of underly units. SMEAR SLIDE SUMMARY (%):
APTIAN ?			undiffer entiated		0. operculata		V-1.46	.9% TOC=0.20%	3	the second s		シンシン	101		1,23 2,82 4,141 5,11 8,40 CC,54 D D D D D D D TEXTURE: Sand 10 10 30 20 25 Silt 17 75 70 35 50 45 Clay 83 15 20 35 30 30 COMPOSITION:
LOWER AP1			ER CRETACEOUS		4. testudinaria -		• 0.46.7 V	CaC03-15.9%	4			ノノノノノノ	2	*	Altered grains - - - - - 20 Bioclast Tr - - - - - - 20 Bioclast Tr 2 2 Tr Tr Tr Clay Clay 83 15 20 35 30 30 Fieldspar - 30 20 15 20 10 Fields Tr - - - - - - Glauconite 2 3 10 10 8 3 Mica - - 3 3 - 2 Quartz 5 36 36 25 30 33 Zeeltie 7 7 10 Tr Tr
			LOWER		W				5			ノノノノノノ	****	*	
								CaC03-1	6			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2		
									7			>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	* * * *	OG TW	
	Barren	Barren	C/P		R/P				8			KXXX	.0		



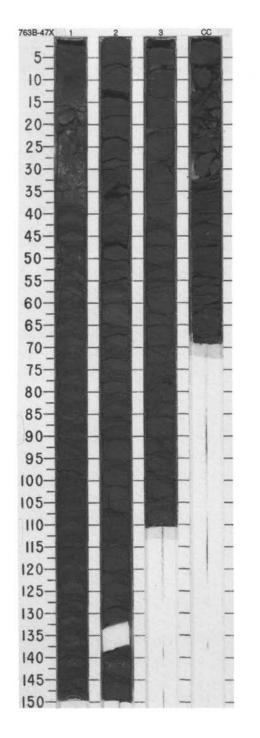
UNIT		STR		RACI	ER	s	TIES				URB.	ES .						
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES		LITI	IOLOGIC	DESCRI	PTION
								×80.			1	E		SILTY CLAYSTONE WIT LITES AND NANNOFOS		AND ZEC	LITES A	ND CLAYSTONE WITH SILT, ZEO-
					ata		-	TOC=0	1	0.5		01		alternating with 5-12 cm t drill slurry comprises <10	hick interv	ais of ho		y drilling with 2-5 cm thick biscuits ad drill slurry: below Section 2, 73 cm,
_					operculat		-29 V-5.01	CaC03*86.7%				PS		LITES, AND NANNOFOS horizontal compacted bur	SILS, gra rows and	y (N4) to patches	dark gra of silt- to	ND CLAYSTONE WITH SILT, ZEO- y (N3), bioturbated with mostly sand-sized carbonate grains (shell
APTIAN					- 0.		• \$.2	• CaC	2		1110111111	*	•	disturbed by bioturbation primary sedimentary strue mudstone, gray (N5 to N6 2, 30-73 cm, with sharp d	occur (Se ctures. Py 5), recryst rilling bou	ction 3, 0 rite infillin allized an ndaries a	-15 cm), g of burn d contain it its top a	ocally, faint parallel laminations but bioturbation has obscured most ows occur. Minor lithology: Carbonate ing 3-8% glauconite, occurs in Section and base, and at Section 1, 0-7 cm,
LOWER					testudinaria		2.00	34%0				11		grading down from 7 to 2 Recrystallization has obsi SMEAR SLIDE SUMMAR	cured any			carbonate and silty claystone with zeolin nentary structures.
					estuc		.90 2-43.20	T0C=0.	-			S@ 19 ==			1, 85 D	2, 25 D	3, 16 D	CC, 76 D
					M. te		1-1	.6% T				11		TEXTURE:				
					<			8.6	3	5.	-	Ø		Sand	12	1	8	14
								.e		D. [-	שן		Silt Clay	40 48	15 84	23 69	40 46
								CaCO3=8.			3	18		COMPOSITION:	40	04	05	40
											-	P		Calcareous fragments	1	3	5	
										1		r		Clay	49	62	56	49
									CC		-1			Dolomite	Tr	-	<u> </u>	-
	Barren	Barren	5 10										*	Fe oxide Feldspar	Tr 5		4	2
	E	12			(0									Feldspar Fish	Tr	Tr	4 Tr	0
	a	B		0.1	C/G									Glass	11			Tr
	1.00	^m			0									Glauconite	4	1	8	5
														Mica		-	1	1
														Nannotossils	2	16	10	-
														Opaques	7	5	-	4
														Quartz	10	1	6	10
				11				1						Zeolite	22	12	12	23



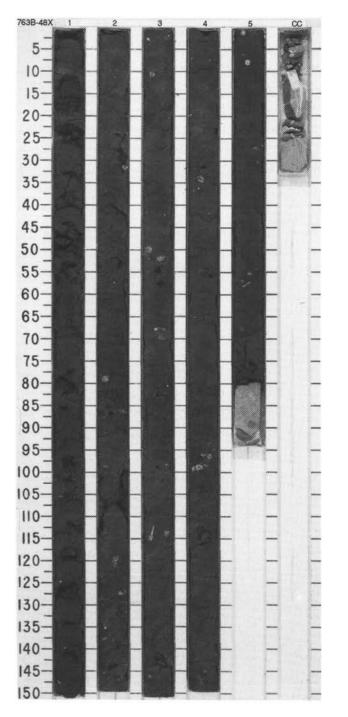
SITE 763


UNIT	BI0 F05	STR	CHAI	RACT	ER	-	IEB					JRB.	Sa							
TIME-ROCK U	FORAMINIFERS	NANNOFOBSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES		LITH	OLOGIĆ	DESCRI	PTION	
								30%		1111		44	1 +		FRAGMENTS		D CLAYS	STONE V	VITH ZEO	LITES AND CALCAREOU
								T0C=0.30%		0.5	8888	1		*	The core is intensely bisc	uited.				
							.60	1000	1	1.0	FEEE	H	1			partly ma	ssive and	d slightly I	bioturbate	d. Ammonite shell debris is
							1-1-	×0.		3	EHEHE	Ī	1	3	present in Section 7, 5-10 much as 10-12%. These	pellets giv	e a whitis	sh color t	o the cut s	surface of the core and,
							· 2-42.9 V-1	CaC03-4.0%	_		HE HE H	1		1	fragments, black (N3), co					with zeolites and calcareou 6 through CC.
							9-9-	e CaC		-	EEEE	4	1		Minor lithologies: a. Carbonate nodules, gr	au /5¥ 5/1	\ compo	sed of ca	licite dolo	mite applior siderite are
									2		EHHH	L	1			B6 cm. And	other frag	ment, 2 i	cm wide, g	gray (5Y 6/1) at Section 1,
									-	=	HEHER	L	Ŧ		fractures. Cement in fract b. Pyrite is present as sm	ures is fib	rous.			
										-	EHEHE	1	e		SMEAR SLIDE SUMMAR					
										-	FERE	+	i			1, 59	2,67	3, 31	4, 123	CC, 29
					operculata					111		I	1	1.		D	D	м	D	D
					ercu			×		1		L	1.15		TEXTURE:					
_	N				do			.54	3	-	EEEE	+	1		Silt Clay	37 63	39 61	-	44 56	80 80
APTIAN	ALBIAN				0			T0C=0.54%		-	EHEHE	İ	+		COMPOSITION:					
APT	- AL	-			1		.56	100		1		L	t		Biotite Calcareous fragments	Tr 3	Tr 1	100	Tr 10	Tr 12
č		CC7			e		\$ 48.6 V-1	CaCO3=6.2%			EHEHE	4	1		Clay Feldspar	61	58	_	52 Tr	77 Tr
LOWER	APTIAN				inar		-1.9	aco3		1	HEHE	H	1		Glauconite Mica	Tr 2	Tr 1	_	Tr	Te
-	AP				testudinaria		•	•	4		EHHH	I	P		Nannotossils Opagues	3	5		8	3
					tes					1	EEEE	1	1		Plant Pyrite	2	1 3	_	1	2
					W.					1		H	t	*	Quartz Zeolite	2 26	1 28		Tr 28	Tr 5
												t	:							
										-	EEEE	I	1							
								8%	5	1	EHEHE	1								
								TOC=0.58%		3	EEEE	H								
								100		1	EHEH	L	-							
							-1.60	XO		-	EEEE	I	E							
							P=1.98 V-1.60	CaC03-6.0%		-	EHEHE	1	E							
							9-4	CaC		-	HEHE	4	E							
							•		6		EHEHE	İ	C	4						
										-	EEHE	1	0	X						
												1	PP	N N						
			c						7	-	EEEE	H	P	1						
	R/G	C/G	Barrer		C/G				cc	-		İ	F							
	R.	U	8		U				LCC.			1	R	* 1						

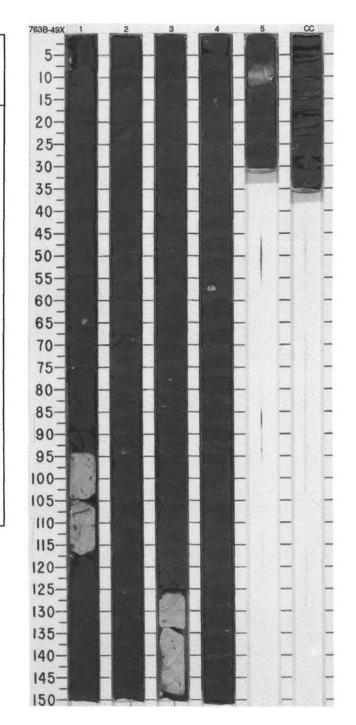
TIME-ROCK UNIT		NANNOFOSSILS 2		SWOLVIG		PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	L.	THOLOGIC	DESCRI	PTION
2	FOR	NAN	RAC	DIA	operculata PAL	-	V-1.620 -1.95 PHY	T0C=1.04%		0.5			280 280	* SAN	Major lithology: CLAYSTONE w and pyrite, and traces of nannot levels, finely disseminated calca apparent and burrowing is rare o surface.	ith SILT, bla fossils, biod areous biod consisting o	ick (N2), o asts, bioti asts are v	ne-third of recovery being actual rock contains 5-10% zeolites, some quartz te, glauconite, and muscovite. At som Sible in hand specimen. No bedding less than 2 mm in diameter on cut
LOWER APTIAN	2	CC7			testudinaria - 0. ope			CaCO3=3.4%	2			>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	2	*	SMEAR SLIDE SUMMARY (%) 1,8 D TEXTURE: Silt 16 Clay 84 COMPOSITION: Bioclasts — Biotlet 1		4, 52 D 18 82 1 2	9 91
					M. testu		B-46.9 V-1.30	3-1.8% TOC-1.33%	3	and contract		>>>>、		OG	blotte i Glay 84 Glauconite Tr Mica — Nannofossils 3 Pyrite 2 Quartz Tr Zeolite 10	1 88 Tr 1 3 3 5	2 83 Tr 1 3 2 5	91 Tr Tr Tr 2 1 5
	R/M	R/P	Barren		C/M		-B-40	CaC03-1.	4 cc			くンンン	ø	*				



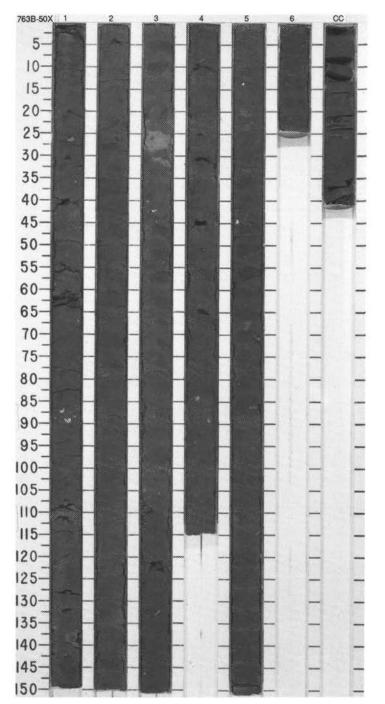
UNIT	B101	STRA	T . Z	ONE	1		SB	Ť	1	46X C0		1	Γ	ERVAL 608.0-617						763B-46X	
TIME-ROCK UN	FORAMINIFERS	mI	IANS	DIATOMS	PAL YNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES		LITHOL	.0GIC	DESCRII	PTION		5- 10-	
									0.5		+ + -	_	*	SILTY CLAYSTONE, SILTY CL SILT The core is intensely biscuited.		ONE V	/ITH ZEC	OLITES,	AND CLAYSTONE WITH	15- 20-	
								1	1.0					Major lithologies: CLAYSTONE and CLAYSTONI dark gray (5Y 3/1), very faintly claystone may contain zeolites	laminat	ed, loc	ally mas	sive and	slightly bioturbated. The	25-	
								F			1			(trace amounts to 1%), plus act opaques totaling 6-7%. Locally, 10-12%. These pellets give a w nae.	cessory , non-ca	miner arbona	als such te pellets	as biotite s are pres	 glauconite, pyrite and sent, in amounts as much a 	30-	
								2						Minor lithologies: a. Calcite-cemented sandstone b. "Waxy" clay, sepiolite?, in Se	ection 3	ction 1 , 85-9	, 1-6 cm, 5 cm,			40-	
											+++++++++++++++++++++++++++++++++++++++			SMEAR SLIDE SUMMARY (%) 1 D	44 3	8, 91 M	4, 97 D	5, 28 D	7, 34 D	45- 50-	
					operculata		ALL		1		1 1 1			TEXTURE: Silt 28 Clay 72	1	00	27 73	10 90	13 87	55-	
APTIAN					N.		.46 TOC-1 774				ユ ユ ユ		*	COMPOSITION: Altered grains 10 Bioclast —			- Tr	Tr		60- - 65-	
LOWER A	2	CC7			naria -		- 1-7 36 V-1	ver Enne			+			Biotite 1 Clay 72 Feldspar 5 Fish —	1	00	1 73 —	Tr 90 	87 	70-	
LC					testudinaria			4			1		*	Glauconite 3 Mica 1 Ptant Tr Pyrite 3 Ouartz 5			1 3 3 7	Tr Tr 4 5	1 1 5 3	75- 80-	
					м.			-			444			Zeolite -			12	-	3	85-	-
									5		444		*							90- 95-	-
							100-01	× 10.0=00			++-	1								100-	-
							~ 1					F								105-	-
								KI DEDON	5			1								110- 115-	-
								$\left \right $			444	12								120-	-
								-	, -		444	12	*					4		130-	_
												1								135-	-
			ren					8	+											140 <u>-</u> 145 <u>-</u>	-
_	R/P	R/M	Barren		C/M			с	с						_					150-	12



SITE 763 HOLE B CORE 47X CORED INTERV	AL 617.5-622.5 mbsf
---------------------------------------	---------------------


UNIT		STR				8	IES					RB.	s					
TIME-ROCK UN	FORAMINIFERS	NANNOFOSBILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES		LITH	OLOGIC	DESCRIPTION
APTIAN		CC7 CC7	ANGINIAN - APTIAN		- 0. operculata		-2-3-6 V-1.60	TOC=0.96%	1	0.5		シンシンシンシン	*	*	Major lithologies: CLAYSTONE WITH QUAF gray (2.5Y 3/0), with speci- intervals occurs throughou Several intervals have abu slightly darker with depth, I SMEAR SLIDE SUMMARY TEXTURE:	TZ and led (pyri t. Scatter ndant sit out no ot	PYRITE . tel surfaci red macro risized an her trends 2, 116 D	CC, 47 D
LOWER			UPPER VALAN		M. testudinaria		• 8-51.2 V-1.49	.3% TOC+0.82%®	3 cc			シンシンシンシン		*	Sand Sitt Clay COMPOSITION: Accessory minerals Carbonate grains Clay Dolomite Fish Glauconite Mica Nannolossils Pyrite Quartz Spicules	10 90 5560 5520	5 30 65 5 5 1 7 7 8 5 10 20	
	Barren	C/M			C/M			CaCO3=3.3				/	Θ	*	Zeolite	-	1	-

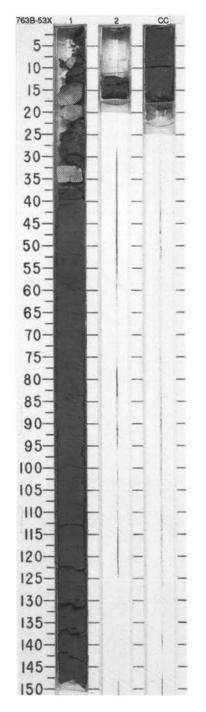
UNIT		STR			TER	s	TIE8				URB.	Es		
TIME-HOCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
									1			6 88		SILTY CLAYSTONE WITH QUARTZ, GLAUCONITE. AND PYRITE AND CLAYEY SILTSTONE WITH SAND, PYRITE AND GLAUCONITE The core is badly disturbed by drilling. Major lithologies: SILTY CLAYSTONE with QUARTZ, GLAUCONITE, and PYRITE, and CLAYEY SILTSTON with SAND, PYRITE, and GLAUCONITE, dark gray, with glauconite grains and local conce trations of pyrite. Sections 2-CC are beleneit-rich. Beleneithes are preserved whole and as fragments. There may be extensive original lamination, even some cross-lamination, but th majority is structureless. The core is coarser grained than those above.
VIAN			APTIAN		E. torynum)				2		7/	1 2 2 2 2		Minor lithology: Limestone, gray (SY 6/1), with calcite veins, has undergone complete recrystallization, includes about 10-15% glauconite as sand-sized (?) pellets. SMEAR SLIDE SUMMARY (%): 2,5 2,82 4,56 5,18 M D D D
OWER VALANGINIAN			VALAGINIAN -		AN (3			88		TEXTURE: Sand 1 10 3 3 Sitt 40 60 25 40 Clay 50 30 72 57 COMPOSITION: Accessory minerals 5
LO			UPPER V		ER VALANGINIAN			TOC=1.23%	4			88 8	*	Clay 57 40 59 52 Fish Tr Glauconite Tr Mica 3 3 10 5 Nannolossils Tr Tr 2 2 Pyrite 10 12 10 0 Quartz 10 25 12 14 Zeolite 10 8 5
		NK3	ALANGINIAN		LOWER		45.3	•CaC03-0.8%	5			2000	*	
		Z	VAL				V-4.66 9-2.7 0 9-45	.6% TOC=0.5%0	cc			P		
	Barren	R/P			C/M			CaCO3-69.						



				RAC	TER	07	IIE8					JRB.	ES ES		
	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	ME TERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
							\$-2.61 V-4.55	CaCO3=74.5%0T0C=0.38%	1	0.5		ンンンン	6		SANDY SILT CLAYSTONE WITH QUARTZ AND GLAUCONITE, SANDY SILTY CLAY- STONE WITH QUARTZ AND SERICITE. AND SANDY SILTY CLAYSTONE Major lihologies: SANDY SILTY CLAYSTONE with QUARTZ and GLAUCONITE. SANDY SILTY CLAY- STONE with QUARTZ and SERICITE and SANDY SILTY CLAYSTONE, dark gray (5Y 4// to black (5Y 2.51). Highly disturbed by drilling. Broken shells dispersed throughout. Beleminite: Section 1, 65 cm. Section 2, 95 cm. Section 3, 75-80 cm.; Section 4, 60 cm; and Section 5.9 cm. Pyrite dispersed throughout. Glauconite visible with naked eye, rounded, and pelleted. Quartz and other sand and silt size minerals angular in shape. Sericite abundant in Section 4.
LOWER VALANGINIAN	3	NK3			CaCO3=69.4% TOC=0.6%)	(86. 0.4 V-0. 99)		2.1% TOC=0.76%	3			>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	ବର ଜୁନ୍ତି ବ ଜୁନ୍ତି	•	Minor lithology: Recrystallized glauconitic limestone, light gray (10VR 7/1) sparsely tossiliterous, in Section 1, 94-117 cm; Section 3, 126-150 cm; and Section 5, 8-12 cm. SMEAR SLIDE SUMMARY (%):
	R/P	R/P	Barren		CIM E. torynum		V=1.62 0-38.5	CaCO3=1.0% TOC=1.16%0	4 5 CC			~>>>>>>	6000	*	

SITE 763

UNIT		STR				5	IES.					IRB.	ŝ		
I WE-ROCK O	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
							• 6-41.3	CaCO2.7% TOC-0.9%	1	0.5		ンンンン	6 6 0	*	SANDY SILTY CLAYSTONE WITH QUARTZ AND GLAUCONITE, SANDY SILTY CLAY- STONE WITH QUARTZ, SANDY CLAYEY SILTSTONE WITH QUARTZ, AND SILTY CLAYSTONE WITH SAND Highly disturbed by drilling. Major lithologies: SANDY SILTY CLAYSTONE with QUARTZ and GLAUCONITE, SANDY SILTY CLAY- STONE WITH QUARTZ, SANDY CLAYEY SILTSTONE with QUARTZ, and SILTY CLAY- STONE with SAND, dark gray (5Y 4(1)) to black (5Y 2.5/1). Pyrite disseminated throughout core and increases in abundance in Sections 4 and 5. Sand-size glauconite grains
VALANGINIAN					torynum			•	2			シンシン	6		(rounded) abundant in Sections 1-4 and decreases through Sections 5, 6, and CC. Belem nite fossils, Section 1, 26 cm, 60-62 cm, 84 cm; Section 3, 42 cm; Section 4, 18 cm, 90, and 94 cm; Section 5, 44 cm. Mytilus? pelecypod shell, Section 4, 83-85 cm. Minor lithology; Calcareous concretions, light gray (SY 7/1), chalky and recrystallized in par in Section 1, 135-138 cm; Section 3, 20-30 cm, 105-109 cm. Interpretation: The abundance of sand-size particles decreases with depth. Upper four sections have equal amounts of sand, siti, and clay. Sections 5, 6, and CC have less sand and glauconite. Sand and sit particles are angular.
AN - LOWER VAL	2				reticulatum - E. to				3	and and and		ンンンン	0 6 0		SMEAR SLIDE SUMMARY (%): 1, 75 3, 119 4, 69 5, 100 CC, 28 D D D D D D TEXTURE: Sand 25 30 30 25 20 Sitt 35 35 35 35 35 25 20 Sitt 35 35 35 35 35 26 20
DEKKIASIA					B. re			02%	4			ンシン	0 200	*	COMPOSITION: Accessory minerals 2 Bioclasts 3 2 Clay 40 44 40 37 Feldspar 10 10 10 10 Glauconite 15 10 3 5 3 Mica 5 5 5 7 7 Pyrite 10 10 5 5 10 Quartz 20 25 25 20 25 Hock fragment 5 5 5
					-	T0C=1.01%	• 9-39.1 • 9-2.25	• CaCO3-2.0% TOC-1.02%	5			ンシンン	SO (P) (P) (P)	*	Zircon — — — 1
	R/M	Barren	Barren		C/P	Cacour1.7%		•	6 CC			5	Ø	*	

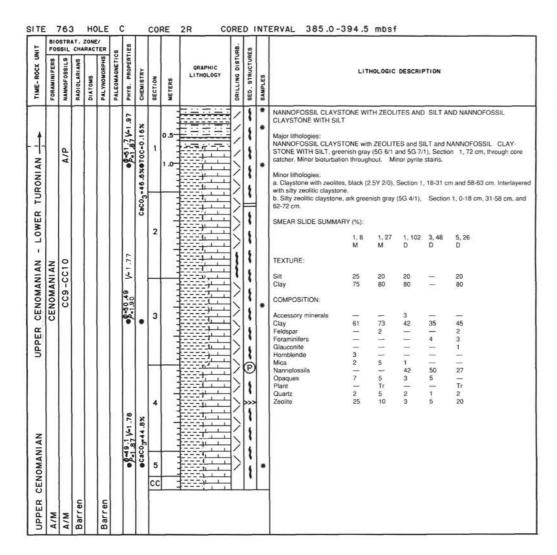


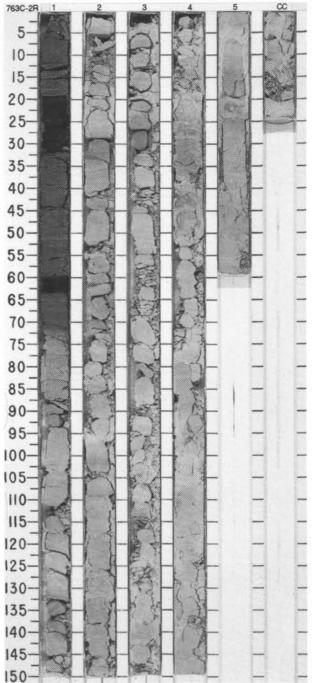
		STR					LIE8			6. 8		JRB.	53					
	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	L	I THOL	OGIC	DESCRIPTION
								.1% TOC=0.81%	1	0.5		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>@</u>	•	FELDSPAR AND QUART Moderately to severely biscuited Major lithologies CLAYEY SILTSTONE WITH FE FELDSPAR AND QUARTZ, bia weakly laminated. Pyrite through eral levels; intact Marcenaria like	d ELDSP ck (5Y hout in e shell	AR and 2.5/2), sizes in Is lie in	ID QUARTZ AND SILTY CLAYSTONE WI D QUARTZ and SILTY CLAYSTONE with gradational lithologies. Structureless to ve up to 2 cm. Pelecybod fragments occur at s bedding in Section 5, 10 cm. One small pict
VALANGINIAN					torynum		• \$-38.5	CaCO3-1.	2			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	e e		ot belemnite is present in Sectio Minor lithology: Claystone with SMEAR SLIDE SUMMARY (%) 1, 5 D TEXTURE:	silt, bla	ick (5Y	2.5/2), in CC, CC, 62 M
- LUWER	2	NK3			reticulatum - E.			T0C=0.75%	3	and the street of the street		<	- 00 &		Sand	94 04	5 55 40 2 3 40	22 78 1 78
DERNIASIAN					B. r		•	CaC03-1.3%	4			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- ତବ୍ଦତ ତ		Feidspar 10 Glauconite Tr Heavy minerals 2 Inorganic calcite 2 Mica 4 Plant 2 Pyrite 5 Quartz 25 Rock fragment 5	1 2 2 5	2	2
									5			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	D D D D D D D D D D D D D D D D D D D					
	R/M	R/P	Barren		C/M				cc					*				

CORE 763B-52X NO RECOVERY

763B-51X 1	2	3	4	5	CC
5-			-	- 23-	
10-		2.		-	
15-	-	-	-		- 33-
20-	- 634-			-	-
25-					
30-	-153-	-		183	-222-
35-	-231-	13	122		-
40-			5		-
45-				-63	-
50-	-		1st		
55-	- 22			- 23	-
60-					
65-		12			
70-					
75-				-	
80-					
85-		1			
90-				100	
95-					
100-					
105-			100		_
115-			177		
120-			-	_	
125-					_
130-	-154	-	-		
135-	-34		-15	-	
140-		-			
145-	-		-	-	- 3
150-			-		

				RACI		00	IES					88.	8				
	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	9	LIT	HOLOGIC DESCRIPTION
t	1									-					SILTY CLAYSTONE WITH	SAND	AND SILTY/SANDY CARBONATE MUDSTONE
NEINIONETHA							\$-5.37•	0.57%		0.5			P		Drilling disturbance appear structures.	s to hav	re mixed components and to have destroyed sedimentar
							88 8	T0C=0	1	1		K	P	*	Major lithologies.	AND d	ark gray (5Y 4/1 to N4) to very dark gray (5Y 3/1to N3).
					F		V-3.68	100		1.0		1	P		with abundant quartz grain	s and co	ommon disseminated pyrite (silt to fine sand-sized) and
i					inu.		-	6.5%		1	Kees:	\geq	P		cm, contains a much lower	proport	ns generally less than 5 mm diameter). Section 1, 36-1 ion of sand grains than Section 1, 117-150 cm, and
					torynum			CaCO3=66.	2	-	VOID		-				vals all appear to be disturbed by drilling. SILTY/SAND prownish gray (2.5Y 6/2), occurs in four pieces in Sectio
			1	2.1				acc	cc	1			5				n, shows a gradation from calcareous silty sandstone o onate mudstone. This lithology is massive and structure
		NK3			- 1			Ĩ									angular quartz grains and some sand-sized glauconite
		2			reticulatum -										SMEAR SLIDE SUMMARY	(%):	
					ulai											1.77	1. 143
2					tici											D	D
					re										TEXTURE:		
					Β.										Sand	10	17
															Silt Clay	25 65	35 48
															COMPOSITION:	170	
	5		ren												Calcite/Dolomite	2	2
	Barr	R/M	arr	C/M											Carbonate grains	25	35
	۳I	۳I	8	O	- 0										Clay	55	39
		_ 1													Epidote	Tr 5	7
															Feldspar Glauconite	4	1
-					. 11										Mica	1	5
															Nannofossils	Tr	Tr
															Opaques	3	
															Plant	2	1
															Pyrite	6	10
															Quartz	10	15
1	- 1	1		1 1	1 1		1 1	11							Zeolite	2	

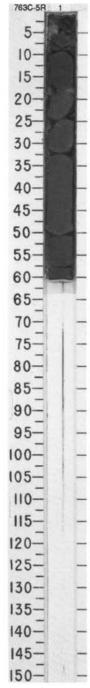



FORAMINIFERS	BIL	SNVI	ACTE	PALYNOMORPHS N	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LITHOLO	GIC DESCRIPTION
	NK3		ı	reticulatum - E. torynum		V-4.16 9-8.2	X T00	1	1.0			- & @ & @	*	STONE Little drilling disturbance apart from mini- core rotation, Major lithologies: SILTY CLAYSTONE with QUARTZ and (57 31). Disseminated pyrite, with grain massive, no distinct burrow types. LIME and probably pelagic with calcite veins, bated with burrows 0.5-1 cm across. Minor lithology:	LAYEY SILTSTONE WITH QUARTZ, AND LIME- pr biscuiting and some pseudo-laminations caused by CLAYEY SILTSTONE with QUARTZ, very dark gray s up to 3 mm in diameter, is common. Bedding is STONE, dark fuller gray (5Y 32), linely recrystalized vein diameters from 0 to 2 cm. Moderately biotur- eldspar, very dark gray (5Y 3/1), Section 1, 104-125
R/M ?	R/P	Barren		C/W a										1, 72 1, D M TEXTURE: Sand Sand	64 36 2 3 3
														Quartz 20 35 Rock fragment 5 Sericite Tr Zeolite Tr	25

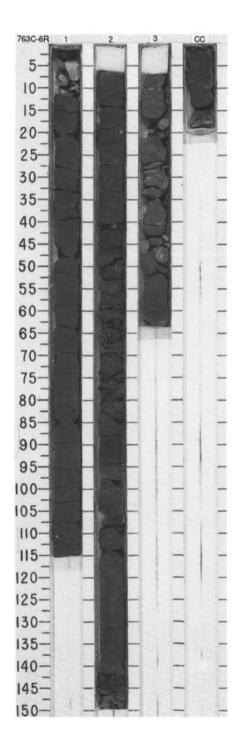
763B-54X	1	CC	
5-			
10-		_	_
15-		_	
20-		-	_
25-			_
30-		- 1	
35-		_	_
40-		-	
45-		-	
50-		-	
55-		-	-
60-		- 1	-
65-		-	
70-		-	
75-		-	
80-		-	
85-			
90-		-	
95-		- 1	-
100-		- 1	-
105-		-	
110-			
115_		-	-
120-		-	-
125-			
130-			-
135-		-	-
140-		-	-
145-		-	
150-			

SITE 763

CORE 763C-1C NO RECOVERY



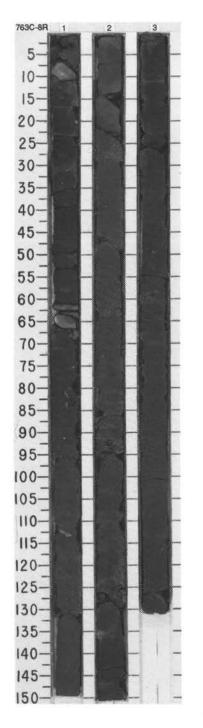
CORE 763C-3C NO RECOVERY


				RACI			Es					RB.	S					
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES		LITH	OLOGIC	DESCRIPTION
SIAN					tum		V=3.38 P=2.74	CaCO3-65.1 X.	1				00	*#*	Major lithologies: SILTY CLAYSTONE with LIZED PELAGIC LIMESTO preserved. Calcareous cor 31 cm. Pyrite and angula	SAND, ve DNE, ligh poretion ar quartz,	ery dark ç t gray (5' at 25 cm feldspar	
BERRIA		NK3			reticulatum		K-3	0							SMEAR SLIDE AND THI	1, 25 M	1, 42 D	1, 57 D
		NK													TEXTURE:	м	D	U
UPPER					Β										Sand Silt	_		10 25
- 1	~														Clay COMPOSITION:	-	-	65
															Calcite Carbonate recrystallized		50 	-
															Chert Clay	\equiv	30	3 49
	-		e												Feldspar Glass	3	\equiv	10 3
	R/M	R/M	Barren		C/P									3	Mica	5	-	5
	8	æ	8		U										Opaques (pyrite) Quartz	10 10	5 15	10 15
- 1														- 4	Chert	IV.	15	3

763C-4R 1 5-10-15-20-25-30-35-40-45-50-55-60-65-70-75-80-85-90-95-100-105-110-115-120-125-130-135-140-145-150--

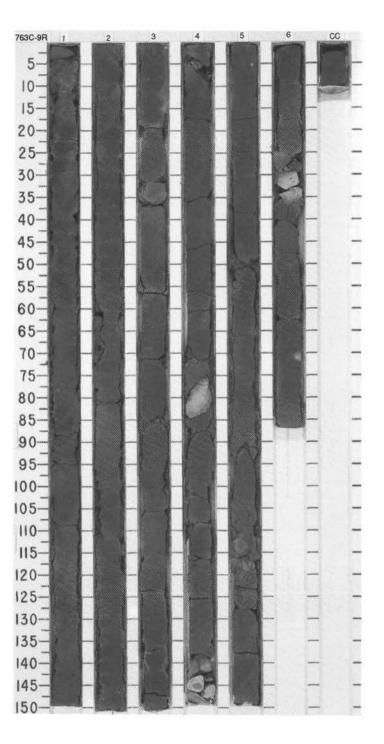
			ZON			SE			l a		B.	s		
CADAMINISEDS	PUKAMINIFEKS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	ME TERS	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
UPPER BERRIASIAN D/M-D 2 VALANGINIAN		en		C/P B. reticulatum		V-1.67@2319	CaCO3=2.0% TOC=0.96%	1	1 and			(e)		SILTY CLAYSTONE WITH SAND, QUARTZ, AND FELDSPAR Drill disturbance is moderate. Major linbiology: SILTY CLAYSTONE with SAND, QUARTZ, and FELDSPAR, dark olive gr (5Y 32), Structureless, with disseminated pyrite (sill to very fine sand-sized) and two dusters of pyrite grains up to 2 mm diameter. Primary sedimentary structures are intact. Feldspars are moderately altered feldspar. SMEAR SLIDE SUMMARY (%): 1, 53 D TEXTURE: Sand 15 Silt 30 Clay 55 COMPOSITION: Calcite/Dolomite 8 calcareous fragments 3 Clay 47 Feldspar 11 Glauconite 1 Mica 4 Opaques 8 Plant 2 Ouartz 16

IIIO		STR	CHA			\$	IES					JRB.	ES							
IIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES		LITY	10L0GIC	DESCRIP	TION	
					Г	-	-	7		1		1	E		SILTY CLAYSTONE A	ND CLAYE	SILTST	ONE		
					TOC=0.84%)		.67			1		1	Ð		The core is moderately	disturbed b	y drilling.			
					ŵ,	8	5			0.5-	$\exists \exists \exists \exists \exists$	1	Ð	*						
					•	TOC=0.37%)	· 2-39		1	1		1.			Major lithologies:		58.02.02.02.			1
					8	0	39		1		+=+=+	1			SILTY CLAYSTONE a					
	0.1				1	:	00	+		1.0-		1	Ð	1						s are present. Fine-grained
					x	10	•	•							bioturbated, the coarse					commonly aminated nd
					¢,									OG	Giordi Galea, trie Coarse	i graniou se	unnern is	masoive		nualeu.
					2	ŝ	00					1.0	-	IW	Minor lithologies:					
					CaCO3=0.8%	(CaCO ₃ =73.3%	.57 V-4.78		1	-	H = H = H	1	P		a.Calcite-cemented, qu	artzose, cal	careous :	sandstone	with gla	uconite, gray (5Y 5/1) and
					S I	5	I			1		1.								ion 3, 40-52, and CC, 16-
					2	o	T					1-	(P)							ayey sandstone/siltstone a
						Sec.	5.0		1.1	1	+=+=+	1	T	*	then claystone. In Sect					
						5	20		2	-		1.	11		in the sand in Section			CC. 0-16	cm, cynr	idrical macrofossil is pres
							•	•		1			6		in the sand in Section	2, 105-110 0	m.			
								4		-		L		-	SMEAR SLIDE SUMM	ARY (%):				
			1			-		~	1	1	27272	1		*						
2							41			1.1	+=+=+		11			1, 52	2.51	2, 112	3, 30	CC, 8
1	z				~		80		-			1	Ø			D	D	D	D	D
2	4	N			5		P-2.17			1		ᄂ		È	and the second se					
	LANGINIAN	X	- 1		reticulatum		-	TOC=0.73%	3			L	S	*	TEXTURE:					
BERKIASIAN	0	z			S			5	-	1		1.	1		Sand	5		40	5	30
μ,	2	1			0			0		-		H-	14		Silt	60	34	35	49	30
0	3	_			10		1	2	CC			Li.		*	Clay	35	66	25	46	40
5	VAI	K													COMPOSITION:					
UPPEK	~				Β			CaCO3=3.1%							Dissists	Tr		-		
2								en la							Bioclasts Carbonate	1	Tr	Tr	1	1
								03						- 1	Clay	32	66	25	46	40
								8							Feldspar	30	10	27	11	10
								0							Foraminiters	-	Tr			-
					5.1										Glauconite	Tr	_	Tr	1	1
															Illite		100		3	
															Mica	5	3		3	3
			6.0												Plant	2	1	1	2	1
															Pyrite	7 22	5	7	8	10
			-												Quartz Rock fragment	6	10	30	11 5	27 5
	4		en		6.1										Zeolite	0	5	10	2	Tr
	R/M	R/P	Barr		C/P															2.2
	2	2	8		2				1 - I											

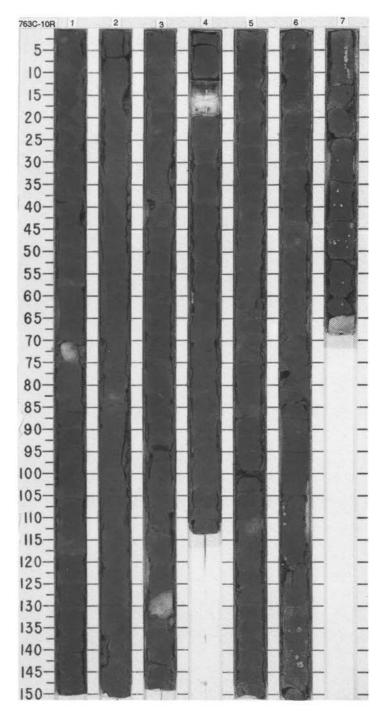


SITE 763

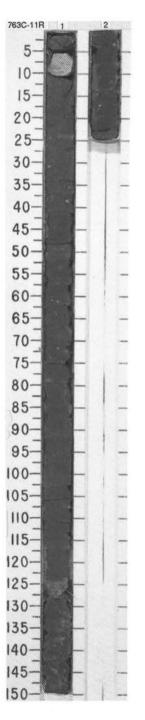
	SSIL			TER		SEL					URB.	8							
FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES		LITH	IOLOGIC	DESCRI	PTION	
	A/P						.6%@T0C=1.07%	1	0.5 1.0			@@@==@	*##	SILTY CLAYSTONE WITH SU QUARTZ Major lithologies: SILT CLAYSTONE with SANI dark gray (57 3/1), structurele mm) giving a sense of paralle sand-sized, disseminated grai nodules up to 1 cm diameter. Minor lithologies:	D and iss or I lami	QUART2 bioturbat nations. F	Z and SIL ed with o Pyrite is o	TY CLAY	STONE with QUARTZ,very mall, horizontal blebs (<1 X 3 troughout, as silt to fine
	- NK2			reticulatum			CaCO3=1.6	2				- 0==0 0==	*	a. Calcite-cemented sandstom moderately to poorly sorted or occurs as 3 pieces (up to 5 cm b. Siderite or carbonate muds 2 cm, in Section 1, 27-28 cm, SMEAR SLIDE AND THIN SI	ntainii n diar tone, ECTIC , 5	ng a 1 X 4 neter) in light gray	4 m, light Section 1 m(2.5Y	gray (2.5 1, 10-24 c 7/2), occu):	Y 7/2) claystone rip-up clast, m.
	NK1			B. reti				2			1			TEXTURE: Sand 11 Silt 2: Clay 6:	5	1	1 12	15 35 50	5 29 66
R/M-P	Barren	Barren		C/P										COMPOSITION: Calcite/Dolomite 6 Carbonate grains 4 Cement — Clay 5 Feldspar 6 Glauconite — Mica 2 Nannofossils T Opaques 5 Plant 2 Quartz 11 Rock fragment 7	7 				2 3 60 5 1 1 7 5 3 3 13 8


763C-7R	1		2	
5-		-1		
10-	1			-
15-	~	-	-	
20-	K	-1		-
25-			1.4	-
30-		-8		-
35-				-
40-		-8		-
45-		-1		
50-		-	1	
55-		-8		
60-				-
65-		-1	1	-
70-				
75-				
80-			- 1	
85-			1	-
90-	5 .			-
95_				
100-				-
105_				
110_				
115_				-
120-			-	-
125-				-
130-			-	-
135-			-	1
140-				
145-				-
150-	-			and and a

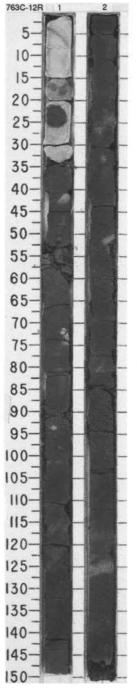
			CHA		TER	83	TIES					URB.	Sa					
	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES		LITH	DLOGIC	DESCRIPTION
Τ						I	.24	1		:	2 H H H H H	L	E	*	SILTY CLAYSTONE AND CLA	AYSTO	ONE WIT	TH SILT
						T0C-1.92%)	V-3 .83 -8-11.	.67%.	1	0.5			Ø 1 2	*	1) and gray (5Y 4/1). Siderite i nodules (e.g. Section 2, 140 c	YSTO is pres	NE WITI ent and as sider	H SILT, black (5Y 2.5/2), very dark gray (5Y locally abundant, in the form of incipient te-rich halos around burrows. Pyrite nodules
	2	2			B. reticulatum	(CaCO_=1.9%	\$23 01 V-1.6	CaCO3-66.4% TOC-0	2					•	spheriultic structure and a cub mollusc shell debris is present locally slightly bioturbated, but Section 2, 39 cm), a crystalline Minor lithology:Calcite-cement Section 1, 5-10 cm and 60-72 SMEAR SLIDE SUMMARY (%	kic crys t but ra t with l e varie ted, qu cm. Ti 6): .9	tal habit re. The lamination ty of clay artz san	the core. Some of the nodules display a . Pyrite nodules are 0.51 cm across. Rare, th clastione contains faint parallel-laminae and ns still preserved. In some smear sildes (e.g. (?illite-mica) is observed. distone, slightly bioturbated, occurs as blocks tone is cut by calcite-filled veins. 2, 39 D
								.2% TOC=1.57%	3	and and and and		111111	4 ++ ++		Silt — Clay — COMPOSITION: Biotite —	00	41 59 Tr Tr 59	11 89
	R/P	R/P	Barren		C/P			CaCO3=3							Fe oxide — Fish — Glauconite — Mica — Mica — Nannolossiis — Plant — Pyrite — Quartz — Siderite —		1 Tr Tr 1 Tr 3 5 30 Tr	Tr Tr Tr 1 4 6

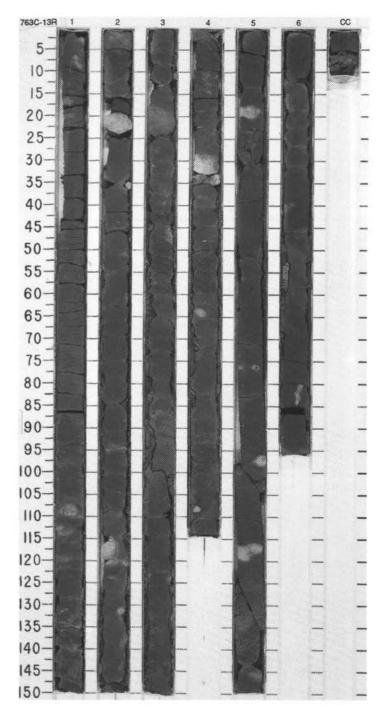

SITE 763

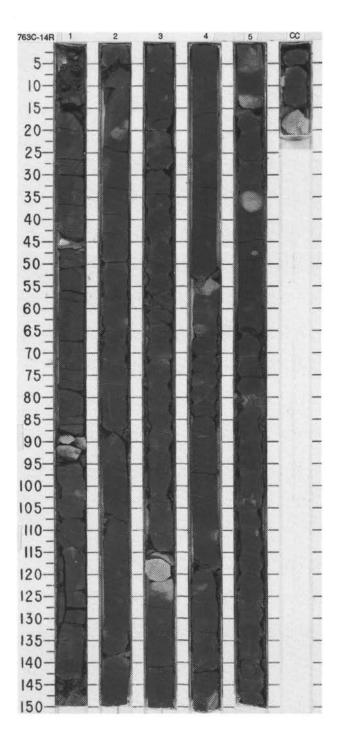
LIND		STR			TER	s	TIES				URB.	SES		
ITME-ROCK O	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
								T0C=1.04%	1			* & * & * &	*	SILTY CLAYSTONE WITH QUARTZ, AUTHIGENIC CARBONATE, AND PYRITE AND CLAYEY SILTSTONE WITH QUARTZ, AUTHIGENIC CARBONATE, AND PYRITE Major lithologies: SILTY CLAYSTONE with QUARTZ, AUTHIGENIC CARBONATE, and PYRITE and CLAYEY SILTSTONE with QUARTZ, AUTHIGENIC CARBONATE, and PYRITE black (5Y 2.5/1) to gray (5Y 5/1). Belemnites. molluscan debris, glauconite, pyrite, and plant remains are visible in some hand specimens.Dominantly subhorizontal, but some vertica burrows, <2 mm diameter on the cut surface, are common. Minor lithology: Carbonate (siderite?) concretions, dark gray (5Y 4/1) to olive gray (5Y replace the sity claystone in some intervals. They are brecciated, and finely and coarsel burrowed.
							B-36.2 V-1.56	•CaCO3=3.8%	2			0 = 0 0	•	SMEAR SLIDE SUMMARY (%): 1, 7 2, 37 3, 110 4, 118 5, 80 6, 42 D D D D D D TEXTURE Sand 1 8 1 5 5 5
								T0C=0.67%	3			0 = 0 =	•	Sain 1 9 5 5 50 Clay 60 42 60 30 40 45 COMPOSITION:
BERKIASIAN					37%)	(V=4 .09) _	2-41.46 08-39.1		4		~~ + + / / /	00=00		Peruspant 5 5 7 7 7 15 5 Tr Mica - 2 - 2 2 Opaques(pynte) 5 5 10 10 15 15 Quartz 15 25 18 15 20 20 Plant debris 2 3 5 5 5 2
UPPEK					m (caco3=65.5% Toc=0.37%)-	-	V-1.678-41.40		5			○○○	*	
	en	en	en		B. reticulatum			CaCC	6			© ₽ ₩	*	
	Barren	Barren	Barren		C/P									

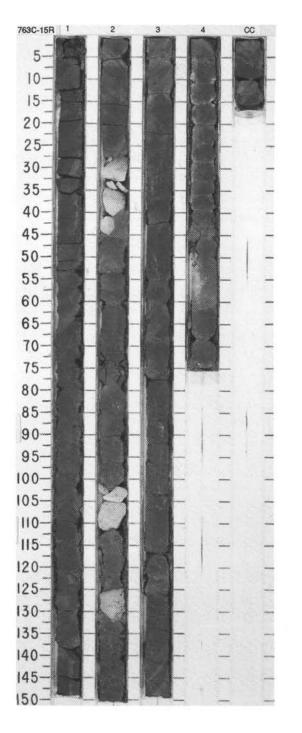


SITE 763

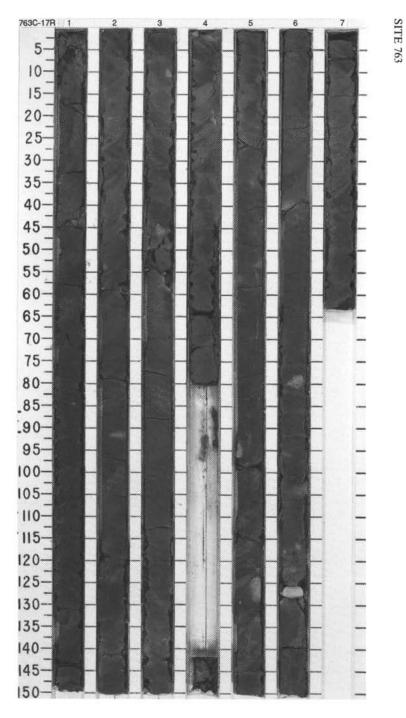

		STRA				50	IES	6	đ			AB.	ES							
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES		LITH	OLOGIC	DESCRI	PTION	
								T0C=0.84%	1	0.5		ノノノノノノノー	- (0) ==	*	SILTY CLAYSTONE Drilling disturbance is weak to Major lithology: SILTY CLAY burrows which may give a lar upper part of the core (20-30 glauconite may also be prese in diameter, are scattered in 1 Minor lithologies: a. Carbonate (siderite), olive commonly associated with st 1.3. and 7b.	STONE minated %, Sec ant (Sec the low gray (5	, dark oli l appeara tions 1 to tion 7). I er part (S Y 5/2), w	ance (e.g. o 4). Authi Numerous Sections 6	. Section igenic mi s pyrite n s and 7). e, gradat	 Quartz is abundant in the ca-illite is abundant and odules, approximately 1 cm ional contacts is present,
						and the second se	P=41.3	•CeC03=3.8%	2	linter			*		b. Silty claystone with sand, or minor laminae. SMEAR SLIDE SUMMARY (*		ve gray (4, 85	5Y 3/2), v 5, 110	6, 93	idant horizontal burrows and
UPPER BERRIASIAN					osum – B. reticulatum		● 2.10 ● 2.10	CaCO3=4.7% TOC=0.80%	3				(0)	*	COMPOSITION: Carbonate, authigenic 7 Clay 5 COMPOSITION: Carbonate, authigenic 7 Clay 5 Feldspar - Glauconite - Mica - Pyrite 8	5 10 15	5 30 60 5 60 	M 	5 35 60 	15 25 60
MIDDLE - 1					D. lobispinosum		\$-21.59 V-1.65	CaCO3*4.1% TOC*0.78%	5				≀ ₩ ₽							
	Barren	Barren	Barren		C/P		• \$13.5 V-3.46 •	1.4% TOC=0.43%	6				- @ @ @ - @	*						


1		STR				05	ES					RB.	S			
TIME-ROCK UNIT	FORAMINIFERS	NANNOF OSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LITHOLO	GIC DESCRIPTION
MIDDLE - UPPER BERRIASIAN	R/M ?	Barren	Barren		C/P D. lobispinosum - B. reficulatum		• 1-7 2-2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	CaCo3*0.85 T0C*0.89%	1	0.5		>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	(0) == ()==()==()	*	overall a sitty claystone with sections be bioturbated but this best seen where sid found. Some sections contain macroloss nite is present but not abundant. Pyrheis 1.5 cm in size. The core is broken into p obvious trends occur within theore or w Minor lithology: Siderite claystone, light. gradational contacts in Section 1, 5-10 a 40% recrystallized carbonate. SMEAR SLIDE SUMMARY (%):	SILTY QUARTZ CLAYSTONE, dark gray (5Y 4/1), iccoming siderifized. The entire core appears to be pertized and extensive Chordrites traces are- sis including bivalves and shell fragments. Glauco- sommon throughout the core in aggregations up to ieces by drilling but otherwise well-preserved. No with the underlying cores. olive gray (5Y 6/2), bioturbated, both sharp and and 124-128 cm. Contains concentrations of up to 124 2, 11 D 5 30 65 5 7 Tr 58 2 5


2			
2			05
	NK1 - NK2		NANNOFOSSILS 0 5
D. lobis	lobispinosum - B. reticulatum		
	×9.95.05		PALEOMAGNETICS
	V-1.61 0-38.50	V-5.418-0.20	PHYS. PROPERTIES
	CaCO3"2.2% TOC=0.80%		CHEMISTRY
	2	1	SECTION
	1.0	0.5	METERS
			GRAPHIC LITHOLOGY
	シンシンシン	ンシン	DRILLING DISTURB.
	S=&=-0-	0-2	SED. STRUCTURES
	*	#	SAMPLES
Clay - Feldspar 1 Mica - Opaques 9 Pyrite - Quartz 5	the base of Section 2. Glauco over the last few cores (Core SANDSTONE, light gray (SY features other than minor bio Minor lithology: Siderite con structures. Concretions range gradational boundaries. Their SMEAR SLIDE AND THIN SI	low silt and sand content. Sid average about 1 m apart and	
 	onite in s 122- 7/1), 3 oclasts acretion e from r locati	k gray derite s i can b	LITH
5 85 3 2 5	n Section 763C-10I 30 cm inte (?bivalve ns, pale o approxim ion is sho	(5Y 4/1), seems mo	IOLOGIC
90 5 5	2, 0-50 c R to 12R erval of q s). live (5Y 6 vately 1-3 wn in the	bioturbat ire preva	DESCRI
7 75 3 5 10	I large (3-5 mm) quartz grains are in m. Siderife may show a minorincrease to CALCITE-CEMENTED QUARTZ uartz-cemented sandstone with few 3/3), with well-preserved bioturbation , em in width and have both sharp and sedimentary structures column.	ed, sideritized claystone with relatively lent in the bioturbated intervals which ace of siderite nodules. In other	PTION


			CHA		TER	50	IES					JRB.	ES		
TIME-ROCK UNIT	FORAMINIFERS	NANNOF OSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
MIDDLE - UPPER BERRIASIAN	FOR	NJK – NK 1 NAM	RAD	DIAT	D. lobispinosum - B. reticulatum	PALE	• 8-36.8 /41.76 • 8-16.9 /43.37 • 8-34.5 /41.64 PHYS	CaCO, 62.6X@TOC=0.27X CaCO, 8.3X@TOC=0.74X	1 2 3	0.5				* * SAW	SILTY CLAYSTONE AND CLAYSTONE WITH SAND AND SILT Major lithology: SILTY CLAYSTONE and CLAYSTONE with SAND and SILT, dark olive gray (SY 3/2 to 5Y 3/2), strongly bioturbated. Burrows are mainly of Chondrities-type and are difficult to see in the dominant lithology where they are mainly horizontal due to stron compaction. Glauconite is present and may be abundant insome intervals (e.g. top of Sections 2 and 3). Shell fragments are rare. Minor lithology: a. Carbonate (siderite?) nodules, brown (SY 7/3), are common. They show numerous sma burrows (chordrities-type) well-preserved and not compacted. This suggests a differentia ompaction between the nodules and the dominant lithology, and thus an early diagenesis for the nodules. b. Sandy claystone with silt, very dark gray (SY 3/1), weakly laminated, in CC, 0-7 cm. SMEAR SLIDE SUMMARY (%): 1, 67 3, 58 6, 41 CC, 5 D D M D TEXTURE: Sand 15 5 3 25 Silt 20 25 10 10 ComPOSITION: Accessory minerals 5 — 5 Ray 65 70 87 65 Idag 4 — — — Mica 4 — — — Nota <t< td=""></t<>
	Barren	R/P	Barren		C/P			CaCO.=3.7%@TOC=0.90%	5 6 CC	in in in in in in in in in in in in in i			- 200-	*	

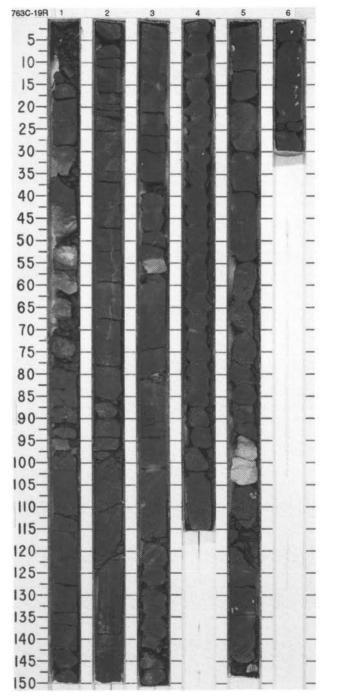
ITE	810	STR/	T. 2	ONE	LE	0			CO	RE	14R CC			INT	ERVAL 723.1-732.6 mbsf
TIME-ROCK UNIT	FORAMINIFERS	NANNOFOSSILS T	RADIOLARIANS	BIATOMS	PAL YNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	NETERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
							.6	•CaCO3=5.0% TOC=0.90%	1	0.5	u n n n n n n n n n n n n n n n n n n n		\$ (s) ~ 0	*	CLAYSTONE WITH SILT AND SAND AND SANDY CLAYSTONE WITH SILT Major lithologies: CLAYSTONE with SILT and SAND, and SANDY CLAYSTONE with SILT, very dark gray (5Y 3/1), homogeneous. Bioturbation minor to moderate. Ammonite at Section 1, 89 cm. Pyrite and shell fragments occur throughout. Minor glauconite. No primary sedimentary structures. Minor litology: Paie yolow (5Y 7/3) sideritic concretions and layers. Concretions are highly bioturbated an have transitional boundaries with surrounding claystones.
N	AN				latum		• 0-50.1		2				S		SMEAR SLIDE SUMMARY (%): 1, 20 3, 80 5, 37 5, 142 D D M D TEXTURE:
UPPER BERRIASIAN	AN - BERRIASIAN				um - B. reticulatum		-7 V=3.79	3-65.4% TOC-0.27%	3	and the second second		4	S S S 	*	Sand 20 25 Silt 15 20 20 Clay 65 60 55 COMPOSITION: 55 5 Accessory minerals 5 5 5 Feldspar 2 4 Glauconite 3 1 3
MIDDLE - UP	7 VALANGINIAN				D. Iobispinosum		p 43.1 0 0 13.7			1		1			Clay 65 60 55 Feldspar 2 4 Glauconite 3 1 3 Mica 5 5 Pyrite 10 10 7 Quartz 10 20 3 25 Siderite 97
							94	CaCO3=4.0% TOC=0.97%0	4			4444	() == () () = () =		
								Ca	5				¥ © © © © ₩	*	
	R/P	Barren	Barren		C/P				cc				\$	*	


UNIT		STR			TER	ce	TIES				URB.	SES						
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES		LITH	OLOGIC	DESCRI	PTION
								.3% TOC=0.76%	1	0.5	X H H H H	ØHØ©=		WITH SAND AND SILT Major lithologies: SANDY CLAYSTONE with (5Y 3/1), poorly sorted ai locally distinct. Grain size	h SILT, SI nd weakly decrease:	LTY CLA to mode s down c	YSTONI rately bio ore. Sma	NE WITH SAND, AND CLAYSTON E with SAND and SILT, very dark g sturbated. Parallel laminations are ill shell fragments are commonly sent throughout the core.
BERRIASIAN					latum		• 0-36.6					≈ ~S(0)			s of burro	ws. Para	llel lamin	ow strong bioturbation with lations are also locally distinct in
- UPPER BEI	2				n - B. reticulatum		• 0-38.9 • -2.17	.8%@T0C=0.87%	2		ノーンー	- 200		SMEAR SLIDE AND THI	N SECTIO): 4, 63 D
MIUULE					lobispinosum		•	CaC03-2.8%	3		~	Ø	*	Sand Silt Clay COMPOSITION:	30 15 55		20 25 55	10 15 75
					D. 1							6000		Accessory minerals Calcite Clay Dolomite Feldspar Glauconite	2 55 5 3	15 69 5 	3 55 5 2	2 75 3
									4 CC			# ⊗	*	Mica Opaques Plant Pyrite Quartz	5 10 20	1 3 2 2 2	 10 25	5 15
	R/G	Barren	Barren		C/P													

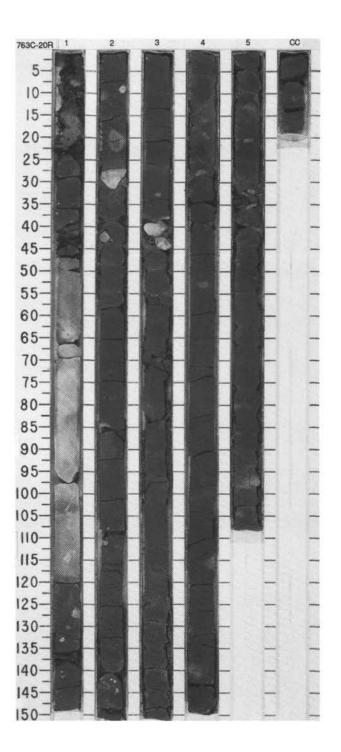
TIME-ROCK UNIT FORAMINIFERS H. T. TURSON NANNOFOSSILS 194	ARACTER SHERON	AGNETIC	CHEMISTRY	SECTION	GRAPHIC LITHOLOG	DRILLIN		LITHOLOGIC DESCRIPTION	763C-16R 1 2 3 4 5 6 5- 10- 10-
		5.7.3	.21 3-6.1 TOC-0.60%	3	0.5- 0-		®*	SILTY CLAYSTONE AND CLAYSTONE WITH SAND AND SILT Major lihologies: SILTY CLAYSTONE and CLAYSTONE with SAND and SILT, very dark gray (10Y 3/1), weakly to moderaftely bioturbated with some Chrondrites and minor Planolites burrows, and locally show weak lamination.Many small shell fragments and some pyrite and glauconite grains are present throughout the core. Minor lihologies: a. Siderite nodules and/or layers (2-10 cm thick), pale yellow (5Y 7/3), intercalated. In Secton 6, 122-132 cm, the siderite layers show normal grading and contain some medium- sized sand grains at the base. Strong bioturbation is distinct in the siderite nodules and/or side sand grains at the base. Strong bioturbation is distinct in the siderite nodules and/or side sand grains at the base. Strong bioturbation is distinct in the siderite nodules and/or side sand grains at the base. Strong bioturbation is distinct in the siderite nodules and/or side sand grains at the base. Strong bioturbation is distinct with the siderite houldes and/or side sand grains at the base. Strong bioturbation is distinct with the siderite houldes and/or side sand grains at the base. Strong bioturbation is distinct with siderite houldes and/or sider base sider base sider base sider base.	
		1%7	• ×06'	2		ユノンユユ)&@ !! @&	layers. b. Some pyrite nodules (1-10 mm in diameter) in Sections 1, 2, 4, and 7. c. A plant fragment (coal) is intercalated in Section 3, 117 cm. SMEAR SLIDE SUMMARY (%): 1, 10 3, 138 5, 37 6, 125 D D M D	35
AN	ilatum	4 TOC=0.9	8%0T0C-0	3			11 11 11 10 00	TEXTURE: Sand 7 - 10 - Sit 28 - 15 - Clay 65 - 75 - COMPOSITION: - - - Accessory minerals 5 - 2 -	
UPPER BERRIASIAN NIAN - BERRIASIAN NJK - NK1	m - B. reticulatum	14		4			* •	Carbonate grains 2 - 5 - Clay 65 - 75 - Foldspar - - 5 - Mica 5 - - - Pyrite 5 - - - Quartz 15 3 10 3 Siderite 97 97 97	65- 70- 75- 75-
MIDDLE - UPPEI VALANGINIAN NJK -	D. lobispinosum		S.				= == (3 =0)=		80- 85- 90- -
			CaCO3-2	5			© ≋ ≋	5 E	95
		-27.4.12.	2X010C-0.787	6		シェン	≻ <u>:</u> © ≈ ©⊗∢		
			Cacog-4	7			<u>9</u> 8 8 8		125
R/G R/M Barren	C/P			cc			I	-	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

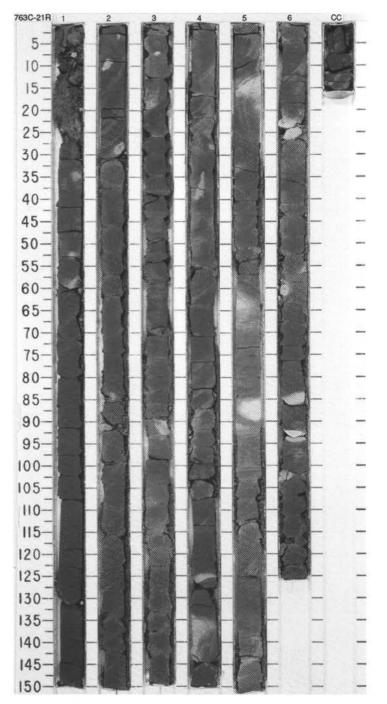
CC

UNIT		STR				0	IES				RB.	2		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
							8 V-1.3	-6.3% TOC-0.79%	1			(i) (i)	•	SILTY QUARTZ CLAYSTONE WITH SAND Drilling disturbance moderate to minor. Major lithology: SILTY QUARTZ CLAYSTONE with SAND, very dark gray (5Y 3/1). Pyrite grains dispersed throughout, but minor in abundance. Small fragile shell fragments throughout core. Bioturbation minor to moderate, especially noticeable around siderite burrows, zones, and concretions. Sand size quartz grains visible with naked eye. Minor lithology: Pale yellow (5Y 7/3) siderite concretions, motiles found throughout the con Location of tsideritic concretions zones shown in the sedimentary structures column on barrel sheet. Interpretation: Sideritic zones are highly bioturbated suggesting that biogenic activity may be involved in the production of siderite motiles, with concretions and nodules following. Sideritic zones may also indicate sedimentation rates.
							● 38.6 V-1	× • • • • • • • • • • • • •	2			0		SMEAR SLIDE SUMMARY (%): 1, 79 3, 80 5, 81 6, 80 D D D M TEXTURE:
ER BERRIASIAN	2				- B. reticulatum		B=46.4 V-1.31	CaCO3-12.9% TOC-0.90%	3			(0) (0) = (0) (0)	*	Sand 20 20 25 Sift 25 30 30 Clay 55 50 45 COMPOSITION:
MIDDLE - UPPER		2			. Iobispinosum			•	4	VOID	Š	(0)(0)	0	Plant 2 2 3 Ouartz 30 25 30 3 Rock fragment 5 Sidente 95 95
2					0				5		ドナナナナナナナ バノノノノX	(0) (0) (0) (0)) *	
									6			(m)-(m)-(m)-	*	
	R/G	R/M	Barren		C/P				7			1		

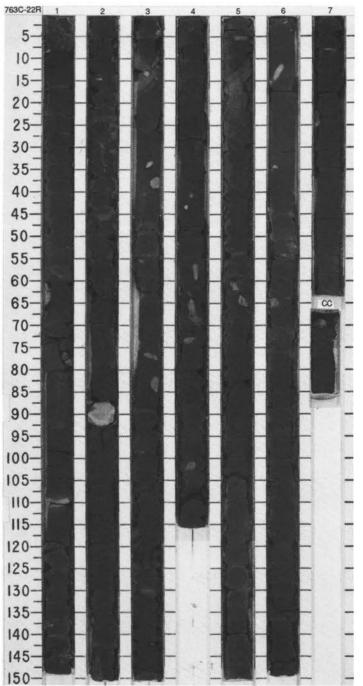


UNIT		STR				60	IES					RB.	SS		
TIME-ROCK UP	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
							\$ 35.5 \$ 22.18	CaCO3=4.9% TOC=0.63%9	1	1.0		1	- 00-00	*	SILTY CLAYSTONE WITH QUARTZ SAND AND SILTY CLAYSTONE Minimal drilling disturbance. Major lithologies: SILTY CLAYSTONE with QUARTZ SAND and SILTY CLAYSTONE, very dark gray (5Y 3) 1). Sections 4-6 contain gray (5Y 5'1) carbonate-tich motifes. Quartz sand is subangular and as coarse as 4 mm. Coarse sand occurs as dispersed grains in Section 1, 120-150 c Section 4; Section 5, 0-40 cm; and Section 6, 0-10 cm. Shell fragments are common (including a belemnite in Section 5, 45 cm). Glauconite is rare except in Section 6, 0-18 cc Other Fine burrows are widespread and some are pyrite-filled. The burrows are particu- larly evident in carbonate motifes and concretions. In Sections 4-6 the motifes are gray (5 3'1). There is no evidence of bedding.
								TOC=0.63% CaCO	2	- transfer		1	-0-0	*	Minor lithology:Carbonate concretions, light olive gray (5Y 6/2) to gray (5Y 5/1), in Section 1-3. Interpretation: The very mixed grain size suggests mass transport down the delta front. SMEAR SLIDE SUMMARY (%):
BERRIASIAN		-			. reticulatum		\$ 36.6 V-1.45		3			111 4/1	-0-00-0		1,65 2,80 4,80 6,80 D D D D D TEXTURE: Sand 15 25 25 20 Sait 30 30 25 30 Clay 55 45 50 50 COMPOSITION: </td
MIDDLE - UPPER 1	2	NJK - NK1			lobispinosum - B		\$ -35.4 V-1.39	š	4			1141111	000-	*	Accessory minerals — 3 3 — Clay 52 42 56 49 Feldspar — 10 5 5 Hypersthene 1 1 — 1 Kyanite 1 — - - Biotite 5 3 2 2 Muscovite Tr 3 3 - Plant 3 1 - 1 Plant 3 1 3 1 Pyrite — — - 8 Quartz 30 30 20 25
E					D. I			-3.	5			111111-	0-00-0		Authigenic carbonate — — 5
									6	fam.from		1111111	-00-0	*	
	R/M	R/G	Barren		F/P				cc	+		K	Ø		

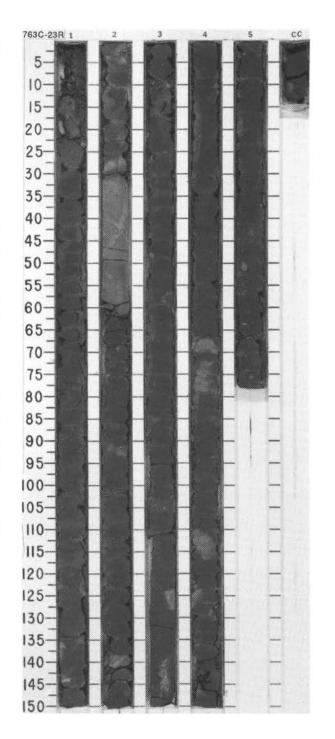



SITE 763

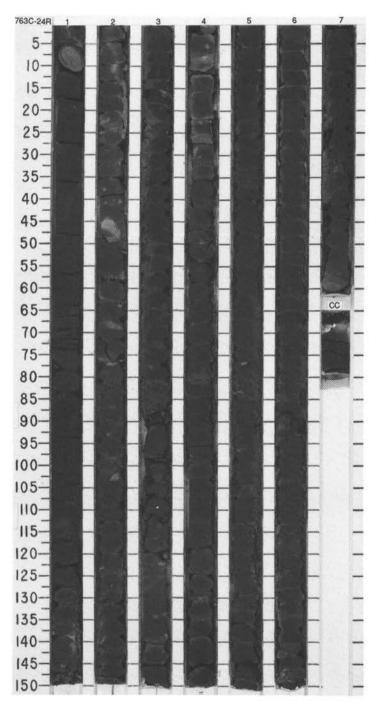
		STR					ŝ					ė	\$		
	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
						9.7% TOC=0.33%)	V-3.4 0 -11.3		1			ンエエ	0 - C	•	SANDY SILTY CLAYSTONE WITH QUARTZ Major lithology: SANDY SILTY CLAYSTONE with QUARTZ, very dark gray (5Y 3/1) to dark gray (5Y 4/1 to N4); occurs with several facies types: 1) Structureless to bioturbated, finer-grained intervals of silty claystone (with sand?) are one facies type, and contain pyrith nodules (1 em diameter up to 2 X 3 cm) occupying burrows. Siderite nodules with diffuse boundaries are present. This facies occurs in Section 3, 114-150, and Section 5, 107 to 6, 31 cm. 2) Poorly graded intervals contain common glaucontile pellets at the base, and pas upward into faintly laminated and slightly fissile intervals with minor to absent glauconite pellets, and are overlain by structureless or bioturbated, liner-grained intervals (Section 1, 7-94 cm; Section 2, 0-99 cm, Section 4, 0-15 cm; and Section 5, 20-5 cm). Section 2, 0-
DERRIACIAN		1				ICaCO3-49.7%		2.4% TOC-0.81%	2				++	*	99 cm has a faulted base (indicated by slickensides at 99 cm), and overlies at 0.5 m-thick graded? bed without glauconite pellets in Section 2, 99 cm to 3, 54 cm). Minor lithologies: a. Siderite (?) to iron-poor calcium carbonate nodules, grayish brown (2.5Y 5/2), light brownish gray (2.5Y 6/2) to gray (N6), occur as 1 cm thick nodules to 12 cm thick layers with matrix-supported glauconite pellets and minor siliciclastic grains, in Section 1, 35-41 and 69-77 cm, Section 3, 78-80 cm; and Section 5, 95-107 cm. Burrows are sidentized. b. Calcareous silix claystone, mottled dark gray (5Y 4/1) to light gray (N5, 2.5Y 7/2), partially calcified and sideritized, in Section 1,41-69 cm.
	6	NJK -NK1					• 0-38.3		3	بيبيليبيبالينيب			<u>@</u>	*	SMEAR SLIDE SUMMARY (%): 1, 114 2, 75 3, 65 5, 62 D D D D TEXTURE: Sand 25 25 30 30 Silt 30 30 30 30 30 Clay 45 45 40 35
							37 2.16	•CaCO3-2.00% TOC-0.79%	4	يتبيها بتينا بيتي)	OG	COMPOSITION: Accessory minerals 3 Biotite 2 2 Clay 52 52 48 31 Foldspar 10 10 5 Foraminfers 1 Mica 3 5 2 3 Muscovite 2 Namofossis 1 1 1 5 5 5
							• 0=37	•Ca	5		*****			*	Nambussia 1 1 - 10 Other - - - 10 Plant 1 2 2 Quartz 20 20 30 Rock fragment - 5 - Zircon - 1 -
	F/G	F/M			C/P				6	3					



5			CHAI	ACT		60	SEL				BB.	BS							
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES		LITH	OLOGIC	DESCRI	PTION	
E - UPPER BERRIASIAN	CRETACEOUS	NJK - NK1	RAD	DIAT	D. lobispinosum - B. reticulatum		B 24.1 V-1.75 B 2.17 V-1.74 V-5.10 0.4 PHY	XI	1		- / / / / / / / / / / / / / / / / / / /	ତା <u>୦୦୦୦୦୦୦୦</u> ଏଥି ଅନ୍ତ ଅନ୍ତ ଅନ୍ତ ଅନ୍ତ ଅନ୍ତ	* * *	SILTY CLAYSTONE. SILT The core is slightly to mode Major lithologies: SILTY CLAYSTONE, SILT 3/1), gradational contacts, commonly massive or slight (1-1.5 mm tubes). The side some of the clain Laminatou ment (pseudolamination). The the sediment. Minor lithologies: a. Calcite-comented mediu gray (SY 3/1). Average gras sandstone becomes progr clay) and tiner-grained (cla b. Clayey limestone, in Sec partly sideritized, and inten c. Siderite, nodules, sideriti across, are common with s b. Clayey limestone, in Sec partly sideritized, and inten c. Siderite, nodules, sideriti across, are common with s sassociated with pyrite, olive shown in sedimentary struc SMEAR SLIDE SUMMARY TEXTURE: Sand Silt Clay COMPOSITION: Accessory minerals Bioclast Biotte Carbonate, authigenic Clay FedSpar Foraminifers Glauconite Heavy minerals Hypersthene	erately di STONE v distinct lit ity lamina, met and megraine in size of essively r yey sitst tion 2, 30 sely biot isely b	with CLA hologic l ated. Loc les comi rived fro ed mollu d quartz the san icher in c one), anc 0-35 cm urbated, w filling nitent up 1, olive g	y, and C boundarie cally, ther monly pre- m compa ssc fragm sandstor d is 300 r clay (clay d grades an Sectio s and sic to 75%.	LAYSTO es are not es are not eserve su ction of h eents (?an ne, in Sec microns. I ey sands downwar on 3, 37-4 derite-rich Some of	NE with SILT, dark gray (5 present. Sediments are rivials of increased burrow chourows. It is possible ti orizontally burrowed sedi- amonites) occur throughou tion 1, 45-100 cm, very d from 100-120 cm, the tone and sandstone with d to sitty claystone. 2 cm, in blocks, probably blebs and bands, 1-5 cm he siderite nodules are
			en						cc			S 1		Nannofossils Plant Pyrite Quartz Sericite	2 3 10 8	1 5 4	1 3 5 7 1	3 10 25	Tr 5 7 10

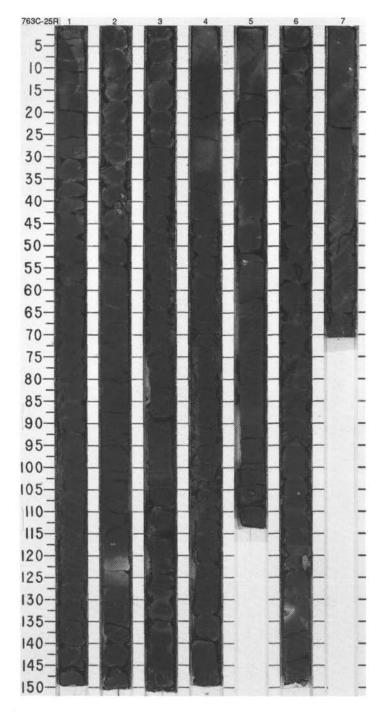


K UNIT	FOS	SIL	CHA SN		TER	ETICS	PERTIES				GRAPHIC	ISTURB.	TURES								
TIME-ROCK	FORAMINIFERS	NANNOFOSSILS	RADI OLARI ANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES		LITHO	LOGIC	DESCRI	PTION		
							.73			-		0			SILTY CLAYSTONE AND CLA	AYSTO	NE WIT	TH SILT			
							V-1.7	*		0.5			S		The core is slightly to moderate	ely dist	turbed b	y drilling			
							241	0.6	1				S		Major lithologies: SILTY CLAYSTONE and CLA	VSTO			erv derk r	ray ISV	2/1) dominant
							-B-32.1	TOC		1.0-		1	S	*	massive, minor laminae. Burro CC. Possibly, some of the faint	w struc	ctures (*	1-1.5 mm	tubes), n	ore abu	indant in Sectio
							•	9%9				Ľ	S		horizontally burrowed sedimen	nt (pseu	udolamir	nation).	5101103 00	inven on	r compaction of
								3-8	H	-		1	5		Minor lithology: Siderite nodule						
								CaCO3=8.5%@T0C=0.68%				1	9	1	bands, 1-5 cm across, olive (5' content up to 30% In one of the	ese sid	eritized	zones (S	Section 6.	65 cm) a	an unusually
								0		14		H		*	abundant amount of highly crys					was tou	nd.
							2		2	1	VVVVVV		8				2,45	3, 88		5.5	6,65
1							6.1-	8%		-			P	1	D.		2,45 D	3, 88 M	3, 131 D	5, 5 D	6,65 M
							• \$-2.24 V-1.82	CaCO3=6.1%@TOC=0.66%		3		1			TEXTURE:						
_			VAL ANGINI AN		8		9-3	TOC		-		T	1		Sand - Silt 13		44	1	44	-	-
AN			SIN		atu		•	1 % 0		1.5		1;	6		Clay 87		56		56	49 51	70 30
BERRIASI			AN		reticulatum			3-6	3	1		1	3		COMPOSITION:						
RR			AL		eti			CaCO		1					Accessory minerals Tr		Tr	-	Tr	-	-
					в.					1		1			Biotite Tr Clay 87		Tr 56	-	56	Tr 50	30
Ш			UPPER		1							1		*	Feldspar 1 Fish -	£ 8	3		3 Tr	2	1
UPPE					Ę					-			1		Glauconite		Tr	Ξ	Tr	Tr	34
7			-		lobispinosum					14		1	:		Mica Tr Opaques —		5	-	3 Tr	3	Tr —
щ			IAN		nid				4	1		li	!		Plant Tr Pyrite Tr		3 3	\mathbb{Z}	3 5	2 4	Tr Tr
MIDDL			IAS		pis					1.4			1		Quartz 2 Siderite 10		20	-	20 10	34 5	5 30
Σ		1	BERRIASIAN		D. 10			-0.65		-				OG							
1			B		9			TOC=0.	+	-		1		1W *							
							1.55	×		-		1	1								
							\$ 35.6 V-1	CaCO3-4.3%	5	14		1	Ð								
							-35.	aco		1		1	1								
							۴	•		-		+	1								
										2		Ē	1								
							0.0			-		1	1								
							V-1.75 2-23	TOC=0.60%		1			1								
							.75	-00	6				1	*							
							1-	×				1	15								
								4.1.				1	1								
								CaC03=1.4%		-		1	1								
								Ca	7	ļ		H	1								
		6.9							1	1			11								
	Barren	en							CC	-			Ľ.								
	La	Barren	R/P		F/P																

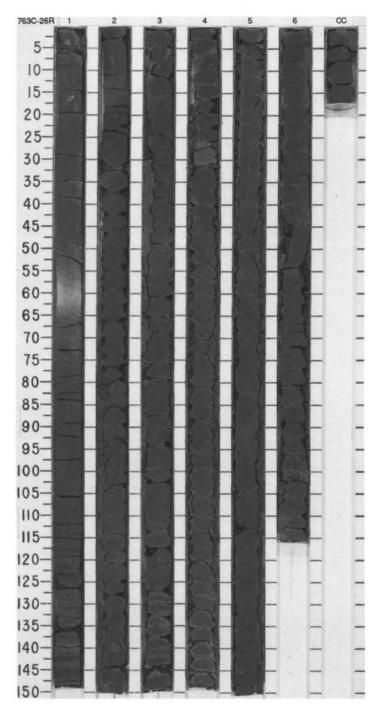


SITE 763

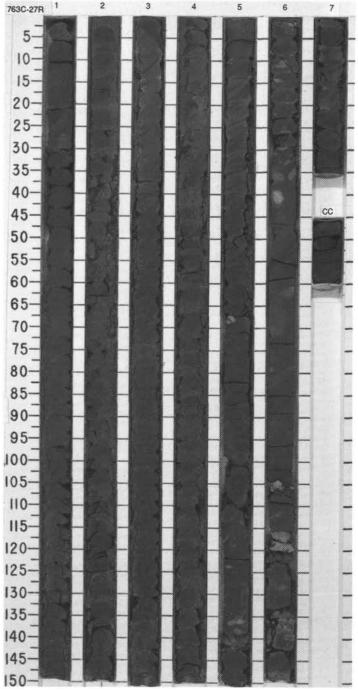
TE	_	STR.		 DLE				CO	RE 23R C	1.			RVAL 808.6-818.1 mbsf	
TIME-ROCK UNIT		NANNOFOSSILS			PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LITHOLOGIC	DESCRIPTION
						67 V-4.06	•CaCo ₃ =5.7% ToC=0.78%	1	••••••••••••••••••••••••••••••••••••••	ンンンンン	Semission = 0 ≤ 0 − 0	*	SILTY CLAYSTONE WITH QUARTZ AND CI QUARTZ Core is moderately fractured, most biscuits ar Major lithologies: SILTY CLAYSTONE with QUARTZ and CLA' QUARTZ, dark gray (SY 4/1) to dark olive gra glauconitic. The core shows 10 cm to 1 m va 32-59% sill), and glauconite content. Large b region surrounding them. Crinkly structures (c	re <5 cm long. YEY SILTSTONE with FELDSPAR and ay (5Y 3/2), burrowed, sideritzed, with min arability in color, grain size (1 to 5% sand a jurrows are commonly sideritized as is the
DERKIASIAN					 _	\$-24		2		5	S ≡ C (0)		burrow casts. Pyrite is present but is not comm Minor lithologies: a. Calcite-cemented sandstone, gray (NS) to i contacts are harp but not original. Fine-graine normal grading. Upper 5 cm show Chondrites sandstone origin.	mon. bluish gray (58 5/1), in Section 2, 30-60 c edquartz and glauconite dominate, slight
UPPEK BER	2			reticulatum	TOC=0.03%)-	.56 P-2.21	•			X	1		subsione origin. b. Siderite nodules, burrows, and enriched lay SMEAR SLIDE SUMMARY (%): 1, 70 2, 70	yers, pale olive (5Y 6/4).
MIUULE - UL				lobispinosum - B. retic	ICaCO3=31.9% TO	.66 V-1	.6% TOC=0.77%	з		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\$ - \$ -	•	D D TEXTURE: Sand 5 3 Sill 32 42 Clay 63 55 COMPOSITION:	1 3 59 35 40 62
				D. lobispin		-231V-1	2.0	4			S == (0 - S)		Bioclasts Tr 2 Biotite 1 2 Carbonate, authigenic 2 3 Clay 61 52 Fe oxide — — Feldspar 2 3 Glauconite 1 2	3 Tr - 2 38 61 - 1 15 10 1 2
						• 0=30.1	.0% • TOC=0.91%	5		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6-6		Mica 5 5 Plant 3 3 Pyrite 5 8 Quartz 15 18 Rock fragment 5 2	8 5 3 2 7 4 20 10 5 3
	R/M	Barren	Barren	F/P		V- 1.66	CaC03 =1.0	cc		×	Ø	*		

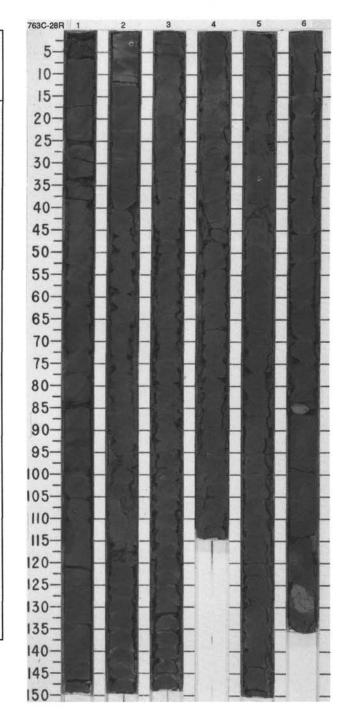


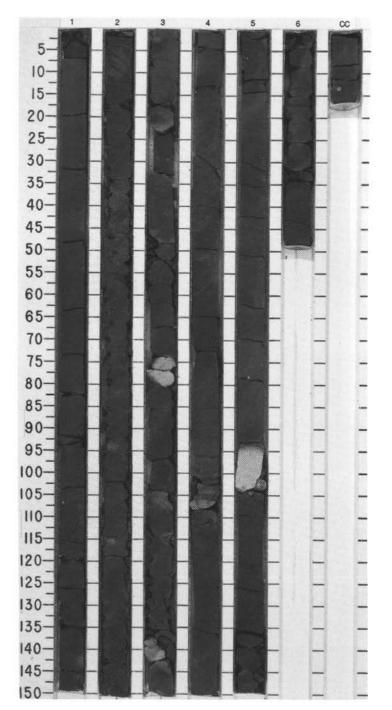
UNIT			AT. CHA				IES				RB	-		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION			SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
							• 2.58 V-1.86	CaCO3=25.5% TOC=0.75%	1	0.5		0	*	SILTY CLAYSTONE AND CLAYSTONE WITH SILT. Major lithologies: SILTY CLAYSTONE and CLAYSTONE with SILT, very dark gray (5Y 3/1). Bioturbation not obvious but may exist (Chondrites). Gastropod shell fragments are present. Minor lithologies: a.Calcile-cemented quartz sandstone in Section 1, 5-10 cm, moderately sorted. b. Carbonate (siderite?) nodules, olive gray (5Y 5/2), are common in Section 2 and rare Sections 3, 4, and 5. Carbonate in nodules prevents compaction of sediment.
							•¢.	●Ca	2			(u)=		SMEAR SLIDE SUMMARY (%): 1, 102 3, 65 5, 35 7, 18 D D D D D TEXTURE: Sand 5 10 5 5 Sin 20 30 15 15
CH BERKIASIAN					- B. reticulatum		.8	TOC+0.94%	3				*	Clay 75 60 80 80 COMPOSITION: - 2 3 Accessory minerals - 2 3 Clay 75 60 80 80 Feldspar - 5 - 2 3 Glauconite - 3 - - 2 Mica 3 - - 2 2 Pore space 2 - - 2 2 Pyrite 5 5 3 - - 2 Quartz 15 25 15 13 - - -
MIUULE - UPPER	6				D. Iobispinosum		P-2.23 V-1.	•CaCO ₃ =3.8%	4			-0		
							1.82	9% TOC=0.84%	5			1	•	
							P=2.21 V-1.82	CaCO3=2.9%	6			ø		
	R/M-G	Barren	Barren		F/P				7 CC			1	•	

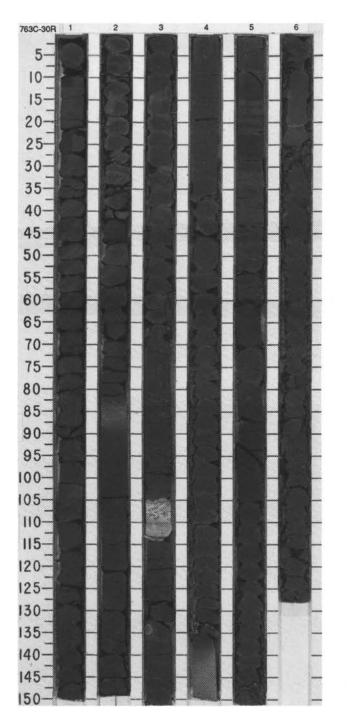


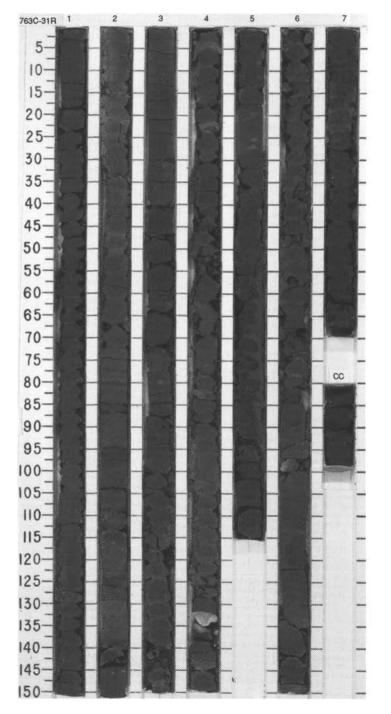
SITE 763

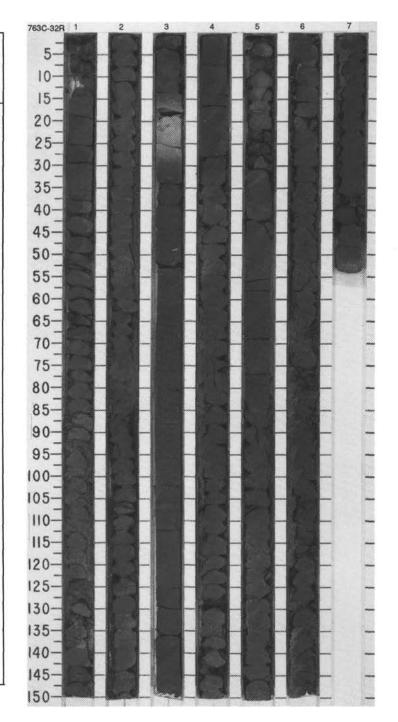

TE	810	SSIL	AT.	ZONE				Γ	COI	RE 25R		Γ.			ERVAL 827.6-837.1 mbsf
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	GF LIT 883 JIJW	APHIC HOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
									1			シンシンシン	80 - 0-8	•	CLAYSTONE WITH SILT AND SILTY CLAYSTONE Core is moderately to highly fractured. Major lithologies: CLAYSTONE with SILT and SILTY CLAYSTONE, dark gray (5Y 4/1), homogeneous, wit minor alternations in silt content, bioturbation, pyrite, siderite, and color. Two macrofossil (one is a belemnite) and less than five major sideritic burrows are present. There are als tew pyrite nodules, but pyrite "specks" are abundant. Glauconite is also rare. Clay minera near the base are dominated by lilite.
							• P-2.7 V-2.77		2			シンシン	≈-@@-=		SMEAR SLIDE SUMMARY (%): I 1,110 3,122 6,136 7,62 D D D D D TEXTURE: Sand 5 5 7 5 Silt 30 20 20 10 Clay 65 75 73 85
R DERRIASIAN							•P=2.33 V-1.84		з			ンシンシン	0	•	COMPOSITION: Accessory minerals 2 2 2 - Clay 65 75 73 85 Feldspar 3 3 2 - Glauconite 2 1 - 1 Mica - - 3 - Pyrite 3 5 3 2 Quartz 25 15 17 12
MIUULE - ULLE	2				reticulatum		•		4			シンシンシン	~ @ ~ @ ~ .		
					lobispinosum - B. ret		V=1.86	1.9% TOC-1.32%	5			ノンシンシ	- 0-0-		
					D. 100.		0.1-0 V-1.86	CaCo3-1.9%	6			ンシンン	20 (5)	*	
	R/M	Barren	Barren		F/P				7			1	11 SO	*	

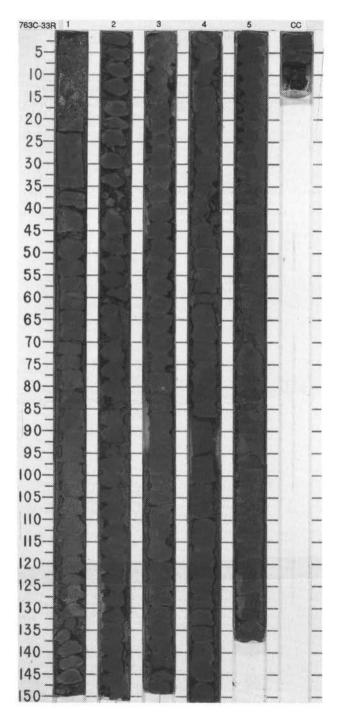

TE F	810	STR	NT.	ZONE				Γ	co	RE	26R C		Γ		ERVAL 837.1-846.6 mbsf
TIME-ROCK UNIT	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
	1					Г		ħ		1	ESES	1	Ş		SILTY CLAYSTONE
						8	-15			0.5		$\left \right\rangle$	1	*	Core is composed mainly of drilling biscuits.
						TOC=0.33%)	V-5.1108-15.	•	1	1.0		K	1		Major lithology: SILTY CLAYSTONE, very dark gray (5Y 3/1), moderately bioturbated to many small burrows arranged parallel to bedding which show weak lamination. Many molluscan shell fragments and pyrite grains are present throughout the core.
						ICaCO3-58.66% T	-	1%	_				101		Minor lithologies: a. Siderite layer, olive gray (5Y 4/2), with gradational contacts in Section 1, 54-68 cm. Siderite burrows are observed in Section 1, 4-20 cm. b. Small pyrite hodules (1-2 mm in diameter) and a pyrite burrow in Section 3, 25-26 cr and 85-90 cm, respectively. A pyrite layer (1-2 mm thick) in Section 4, 31-32 cm. c. Montmorillonitic claystone of volcanic ash origin, intercalated in Section 4, 128-131
						5		TOC-1 .01%	2		FEEE	\rangle	Ø		SMEAR SLIDE SUMMARY (%):
			ų į					TOC.			<u> </u>	K	11		1, 32 2, 141 4, 27 4, 29 5, 78 D D M M D
							39				EBEE	K	8		TEXTURE:
							ž	3.3	\vdash		ERER	12	11	*	Sand 10 5 - 5 10
z							37.6	C03			EEEE		Ö		Silt 35 25 50 10 30
AIS							· \$-37.6	CaCO3=3.3%		-	#333	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	Q		Clay 55 70 50 85 60
A									3		EBEE	K	1		COMPOSITION:
BERRIASIAN					5						EBES.	K	Ø		Accessory minerals 3 Biotite 2
					reticulatum						ERER	1	11		Carbonate - 10 5
۲ ۳					CU					2	Esse	$\langle \cdot \rangle$	11	1	Clay 59 49 55 Feldspar 3 10 2 2 5
UPPEF			ι.		eti			1		1	ESES.	1	15		Mica 5 4 7 Montmorillinite 90
					1						8282	1	P	**	Nannofossils 2 1
1			1		Β.					1	FEEE				Pyrite 5 5 - 5 5 Plant debris 5
DLE					- un:		.33	×	4			5	8		Plant debris 5 Quartz 16 15 4
MIDDL					inos		1	4.2			FEEE	1	51		
					Iobispinosum		· \$-35.7 V-1 .33	• CaCO3-4.2%	-			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ø		
					101		•	•			2833 B		Ø		
					0				5	1			Ø	1	
						1			1		H EEEE	K	11	*	
										-	₽≘≘≘	$\langle \rangle$			
													*		
										-	HEEE		Ø		
											E = = =	K	18		
											EBEE	K	18		
							1		6		EBBB	1	Ø		
											EBBB		E		
					1				cc		EBEB	1	12		
	en	en	e			1			100	-		1	144	-	
	Barren	Barren	Barren		R/P										
	6	6	0	1	100	1	1		1						

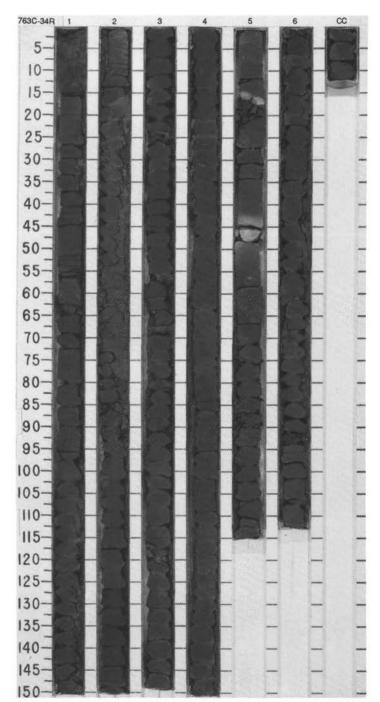

NTISUBUL Note of the second	No. SILTY CLAYSTONE AND CLAYSTONE WITH SILT Magin thiologies: SILTY CLAYSTONE and CLAYSTONE with SILT, very dark gray (5Y 31), structureless or ance of horizontal lumination. SILTY CLAYSTONE and CLAYSTONE with SILT, very dark gray (5Y 31), structureless or ance of horizontal lumination. Normality visite small horizontal burrows, which when compacted gives an appear- ance of horizontal lumination. Auge thiologies: SILTY CLAYSTONE and CLAYSTONE with SILT, very dark gray (5Y 31), structureless or ance of horizontal lumination. Auge thiologies: SILTY CLAYSTONE and CLAYSTONE and CLAYSTONE with SILT, very dark gray (5Y 31), structureless or ance of horizontal lumination. Auge thiologies: SILTY CLAYSTONE and CLAYSTONE and CLAYSTONE with silt. Auge thiologies: SILTY CLAYSTONE and CLAYSTONE and CLAYSTONE with silt. Auge thiologies: SILTY CLAYSTONE and CLAYSTONE and CLAYSTONE with silt. Auge thiologies: SILTY CLAYSTONE and CLAY	NUT SILTY CLAYSTONE AND CLAYSTONE WITH SILT Mage: theologies: SILTY CLAYSTONE and CLAYSTONE with SILT, very dark gray (5Y 31), structureless or ance of horizontal lumination. SILTY CLAYSTONE and CLAYSTONE with SILT, very dark gray (5Y 31), structureless or ance of horizontal lumination. SILTY CLAYSTONE and CLAYSTONE with SILT, very dark gray (5Y 31), structureless or ance of horizontal lumination. SILTY CLAYSTONE and CLAYSTONE with SILT, very dark gray (5Y 31), structureless or ance of horizontal lumination. SILTY CLAYSTONE and CLAYSTONE with SILT, very dark gray (5Y 31), structureless or ance of horizontal lumination. SILTY CLAYSTONE and CLAYSTONE with SILT, very dark gray (5Y 31), structureless or ance of horizontal lumination. SILTY CLAYSTONE and CLAYSTONE with silt, very dark gray (5Y 31), structureless or ance of horizontal lumination. D CLAPONATE layer in Section 6, 104-106 cm. based and its party respectively. SILTY CLAYSTONE and CLAYSTONE with claystone is blotur- bated and its party respectively. SILTY CLAYSTONE and CLAYSTONE with claystone is blotur- bated and its party respectively. SILTY CLAYSTONE and CLAYSTONE and CLAYSTONE and CLAYSTONE and CLAYSTONE D D D M USD BIOLINE SILTY CLAYSTONE and CLAYSTONE and CLAYSTONE and CLAYSTONE and CLAYSTONE and CLAYSTONE and claystone is blotur- bated and its party respectively. SILTY CLAYSTONE and claystone is blotur- bated and its party respectively. SILTY CLAYSTONE and CLAYSTONE and claystone is blotur- bated and its party respectively. SILTY CLAYSTONE and CLAYSTONE	E	BIC	76	AT.	ZON	DLE			Π		RE	27R CC	<u>.</u>	Г		ERVAL 846.6-856.1 mbsf
Minor ithologies: a. Carbonate (ciderite?) nodules, light olive gray (5Y 6/2), diffuse, in Sections 5 and 6, associated with bioturbation (large burrows and Chondrites). Sharp boundaries occur in two nodules at Section 5, 104-105 cm. Its lower boundary with claystone is biotur- bated and it is parity recrystalized to calcite. SMEAR SLIDE SUMMARY (%): 1, 66 3, 85 5, 92 5, 139 D D D M TEXTURE: Sand 5 5 5 - Clay 85 65 76 - Clay 85 65 - Clay 85 65 76 - Clay 85 75 - Clay	Nore thoologies: 1.0 More thoologies: 1.0 More thoologies: 1.0 Indextores and Chondrites): Sharp boundaries occur in two norms and Chondrites): Sharp boundaries occur in two norms and Chondrites): 0	Note: Note: <th< th=""><th>TIME-ROCK UNIT</th><th>-</th><th>-</th><th></th><th></th><th>-</th><th>PALEOMAGNETICS</th><th>PHYS. PROPERTIES</th><th>CHEMISTRY</th><th>SECTION</th><th>METERS</th><th>GRAPHIC LITHOLOGY</th><th>DRILLING DISTURB</th><th>SED. STRUCTURES</th><th>SAMPLES</th><th>LITHOLOGIC DESCRIPTION</th></th<>	TIME-ROCK UNIT	-	-			-	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
Note: Section 1 Section 2	Test and and it is pairly necrystalized to clucke. SMEAR SLIDE SUMMARY (%): 1,66 0 0 <	Image: State and if it putty recystatized in cactors Image: State and if it putty recystatized in cactors Image: State and if it putty recystatized in cactors Image: State and if it putty recystatized in cactors Image: State and if it putty recystatized in cactors Image: State and it is putty recystatized in cactors Image: State and it is putty recystatized in cactors Image: State and its putty recystatized in cactors Image: State and its putty recystatized in cactors Image: State and its putty recystatized in cactors Image: State and its putty recystatized in cactors Image: State and its putty recystatized in cactors Image: State and its putty recystatized in cactors Image: State and its putty recystatized in cactors Image: State and its putty recystatized in cactors Image: State and its putty recystatized in cactors Image: State and its putty recystatized in cactors Image: State and its putty recystatized in cactors Image: State and its putty recystatized in cactors Image: State and its putty recystatized in cactors Image: State and its putty recystatized in cactors Image: State and its putty recystatized in cactors Image: State and its putty recystatized in cactors Image: State and its putty recystatized in cactors Image: State and its putty recystatized in cactors Image: State and its putty recystatized								V-1.38 9-35.6	X	1			_	Ø	•	Major lithologies: SILTY CLAYSTONE and CLAYSTONE with SILT, very dark gray (5Y 3/1), structureless or showing barely visible small horizontal burrows, which when compacted gives an appear- ance of horizontal lamination. Minor lithologies: a. Carbonate (siderite?) nodules, light olive gray (5Y 6/2), diffuse, in Sections 5 and 6, associated with bioturbation (large burrows and Chondrites). Sharp boundaries occur in two
NODE D D D D M NODE D D D D M NO D D D M D NO D D D D D D NO D D D D D D D MICA D D D D D D D Mica D D D D D D D D Mica D D <td>Image: Construction of the second</td> <td>D D D M TEXTURE: Sand 5 5 5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>CaC</td> <td>2</td> <td></td> <td></td> <td>1×</td> <td></td> <td></td> <td> b. Carbonate layer in Section 6, 104-106 cm. Its lower boundary with claystone is biotur- bated and it is partly recrystallized to calcite. SMEAR SLIDE SUMMARY (%): </td>	Image: Construction of the second	D D D M TEXTURE: Sand 5 5 5									CaC	2			1×			 b. Carbonate layer in Section 6, 104-106 cm. Its lower boundary with claystone is biotur- bated and it is partly recrystallized to calcite. SMEAR SLIDE SUMMARY (%):
NISSTURATION Clay 85 65 80 Clay 85 65 80 Composition: Clay 85 65 80 Composition: Clay 85 65 76 Outro Wite 2 -2 Outro Wite 97 Siderite 97	MIDDLE - UDPERATA MIDDLE - UDPE	MODE E - UDE E BERRIAGIAN Composition: Com									TOC=0.96%				1	2 2 2		D D D M TEXTURE: Sand 5 5 5
	D. lobispinosum - B. fe 9.232.8 V1.38 9.232.8 V1.38 0.000-00	$D. \ lobispinosum - B. \ r_{1}$								• 0-33.8 0-2.24	CaCO3=6.0%	3			-	1	*	Clay 85 65 80 COMPOSITION:
	D. lobispinosum - B. fe 9. 23.38 VI.38 9.23.28 VI.38 0.00-00	$D. \ lobispinosum - B. \ r_{1}$	י ש					iculatum			4%	4			ススノンス	***		Pyrite 2 — 2 — Ouartz 10 25 14 3 Sidenite — 97
								- B.		33.8 V-1.38	1C03=2.1% TOC=0.8	5			シーーーー	1 1	*	


TE	810	STRA	AT. :	ZONE					COR		28R C0			Γ	ERVAL 856.1-856.6 mbsf
TIME-ROCK UNIT	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
							• 9-34.3 V-1.34	CaCO3-9.6% TOC-1.11%	1	0.5			ତ୍ତି ବ୍ୟୁ	*	CLAYSTONE WITH SILT AND CLAYSTONE WITH SILT AND SAND Major lithologies: CLAYSTONE with SILT and CLAYSTONE with SILT AND SAND, very dark gray (5Y 3/ Minor pyrite grains and small broken shells scattered throughout. Pyrite nodules, Section 1, 70 and 75 cm. Belemnites, Section 2, 3 cm; Section 3, 85 and 100-101 cm; Section 33 cm. Minor bioturbation, but may be masked by dark structureless nature of rocks. Fil laminations observed in Section 6, 100-125 cm. Minor lithology: Carbonate (siderite?) nodules, light gray 5Y 7/1), Section 6, 85-87 cm at 126-130 cm. Highly bioturbated. Gradational boundary and internally zoned.
							• 6-3-	•CaCC	2				1		SMEAR SLIDE SUMMARY (%): 1, 18 3, 77 5, 61 6, 120 D D D D TEXTURE: Sand 5 5 10 5 Silt 15 20 10 10
R BERRIASIAN							● -33.8 P-2.26	•CaC03=2.3% T0C=1.00%	3			<u> </u>	0001	•	Clay 80 75 80 85 COMPOSITION: Accessory minerals 2 - - 1 Clay 80 75 78 80 Foldspar 3 5 3 - Glauconite - 2 2 - Mica - - 3 3 1 Plant - - 2 2 - Mica - - 3 5 3
MIDDLE - UPPER					- B. reticulatum			•0	4			KXXX	6	OG	Quartz 10 15 12 10 Hypersthene — — 1
					D. Iobispinosum			T0C=0.98%	5				6	*	
	Barren	Barren	Barren		C/P		• \$-35.9 V-1.95	CaC03-3.4%	6				A - 00	*	

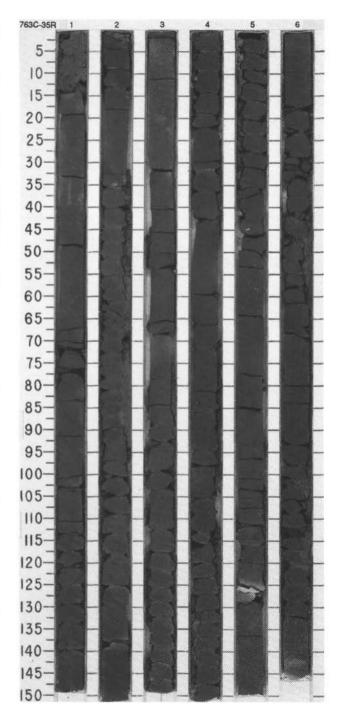

ITE	810	STR	AT. 2	ZONE					co		29R C0			Γ	ERVAL 865.6-875.				
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES		THOLOGI	DESCRI	PTION	
						TOC=0.89%)	V-1.550 -34.7]	1	0.5		H	Ø#\$\$Ø		SILTY CLAYSTONE WITH QUA Major lithologies: SILTY CLAYSTONE WITH QUA (SY 3/1), weakly to moderately show parallel laminations and co fragments are present in Section Minor lithologies:	RTZ and ioturbated intain man 5, 80 cm,	SILTY CLA with many y shell frag and CC, 1	YSTONE small h ments an 4 cm.	with SAND, very dark gray orizontal burrows which d pyrite grains. Belemnite
IAN						ICaCO3=1.9%	1.76	2% TOC=0.83%	2			1 1 1 1 1 1 1 1 1 1 1 1 1 1	60==00		a. Siderite nodules (2-5 cm in di present throughout the core. Sid observed in Section 1, 35 cm; Se b.Bentonite layer (7 cm thick), di in Section 4, 102-109 cm. c. Small pyrite nodules (1-2 cm ii also observed in Section 3, 148- 108-112 cm; and Section 6, 15-1 SMEAR SLIDE SUMMARY (%):	erite burro ection 4, 8 ark bluish n diameter 150 cm; S 17 cm.	ws, 1 mm i cm; and S gray (5B 4/) are prese	n diamete ection 6, 3 1), sugget ent in Sect	er and 7-10 mm long, are 35-45 cm. sting volcanic ash origin (?) tion 3- 6. Pyrite burrows are
- UPPER BERRIASIAN	2	2			reticulatum		\$2.29 W1.76	CaCO-1.2%	3		*******	1		*	1, 5- D TEXTURE: Sand 10 Silt 35 Clay 55 COMPOSITION: Accessory minerals —	4 3,42 D 20 35 45 3	4, 102 M	4, 105 M	6,37 D 10 35 55
MIDDLE					Iobispinosum - B. I			T0C=0.29%	4	77		4444		*	Biotite — Carbonate 3 Ciay 544 Feldspar 10 Muscovite 5 Pyrite 5 Volcanics — Plant 3 Quartz 20 Zircon —	2 45 10 5 8 2 25	5 90 1 5 1	5 90 1 1 1 2	5 46 10 3 5 - 3 25
					D.		•	•CaCO3=67.1%	5	-									
	R/G	R/P	Barren		C/P				6 CC	-			P 6	*					


		SIL	CHA		ER	cs	TIES				URB.	SES								
	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES		LITH	OLOGIC	DESCRI	PTION		
										1888	<		1	SILTY CLAYSTONE WI	TH SAND A	ND SILT	TY CLAY	STONE		
								-1.26%	1		~~~~~	1	*	Major lithologies: SILTY CLAYSTONE wit (5Y 2.5/1). Pyrite grains tary structures minor to silty laminations. Section Minor lithologies: a. Calcareous sideritic c	and sparse absent, pa n 2, 142-148 concretions a	broken : artly mas cm. and zone	shells (m ked by co is, light gi	nollusc) thr blor and ur ray (5Y 7/2	oughout. iiform tex ?) to dark	Biogenic sedime ture of rock. Son
							.82	TOC=1.			R			Section 2, 82-88 cm; Se bioturbated. b. Pelagic limestone, lig						53322333345 0 1966473
							1-1	1.8%		1000	기	P		Teichichnus, Zoophycos	s, clay intrac	lasts, an	d pyritize	d burrows		j 0000100100,
							\$-37.2	CaCO3=1.	2	-		-	*	SMEAR SLIDE AND TH			2.3			
							-	•C.		Ess	1	in a	•		1, 70 D	2,86 M	3, 83 D	3, 103 M	4, 54 D	6, 99 D
									1.5	12222	1	=		TEXTURE:						
									-	-1222	-			Sand	20	_	9	_	13	8
										12222		222		Silt Clay	27 53	_	35 56	-	32 55	30 62
NEIGEINNAG									3		+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	1		COMPOSITION:	55		00		20	
									1	1000	L	1.1	*							5
5											1	S	#	Accessory minerals Altered grains	14	2	2	Ξ.	5	-
_	1				ε		11	×	11	1 1 2 2 2 2 3		Ø		Calcite/Dolomite	7	20	~		1	
4	~		1		reticulatum			TOC=0.99%	Ĺ.,			õ		Carbonate grains Carbonate	_				-	21
2 C	۳				u/a			9		- <u>-</u>		~		Clay	49	Ξ	55	65	48	43 5
E I					10			8		- F HEE	1-1			Feldspar Fish	4	Ξ.	4 Tr	_	6	5
-	- 1		1		et		28			-188 B B B B	1	1	*	Glauconite	1	1	2		Tr	
							V-1.75	CaCO3=4.9%	4	18282	1	•	.	Mica	Tr	\square	Tr	-	3	
	- 1				Β		20	1		1 = = = = = = = = = = = = = = = = = = =	1	\$		Nannofossils Opaques	4	_		_	3	
1					1		.2	03		1 1 2 3 3 3 3		P		Plant	3	1	2	-	3	3
1					E		• \$-38.7	Ca		<u>+</u> =∺=				Pyrite Quartz	5 12	6	7 10		6 11	4
					SC		•	•			1-8	**		Rock fragment		-	5	-		-
J	. 1				i,					EHEH	<u>]</u> _	P		Siderite		68		30		
					Sp					1+=+=	1	ĩ		Tourmaline Zeolite	=	Tr	-	30		2
					lobispinosum					<u>+==</u> =	1	١		Zircon	Tr			-		
					10				5		1	Ø								
					0.		1.1				1	Ø								
					-			×		-F===	1	Ø								
								×90.						080						
								5			1	1								
			10					TOC-1.		<u> </u>	1/1	8								
								1.00			KE	u.								
								8.%			1									
							00.4		6	12222	1/									
							400	3		1.2222										
							• 0-34.8	CaCO3-4					*							
		C.	S				1	آ ا	-	1 4 5 2 5	4	_								
	R/G	Barren	arren		F/P															

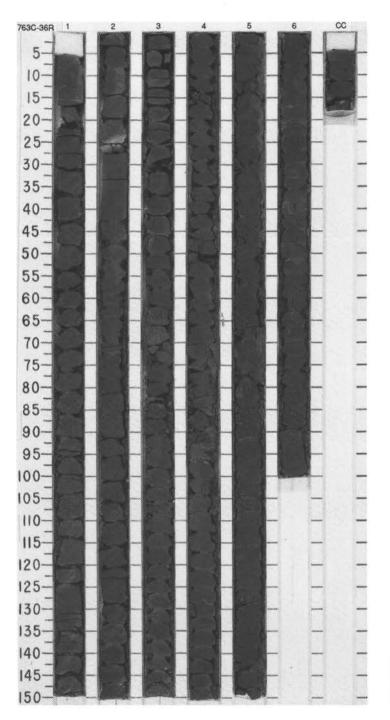

5	BIOS FOS	SIL	T	RAC	TER		ES				88.	9		
TIME-ROCK UNI	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
MIDDLE BERRIASIAN	LOWER CRETACEOUS VALANGINIAN - BERRIASIAN			ō	D. lobispinosum – B. reticulatum		\$ \$ 20.5 W2.02 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	0C=0.93% @CaC03=2.7% T0C=0.98% @CaC03=2.2% T0C=1.01%	3 3 4 5 7 CCC		P + · · · P + P + P + P + P + · · · · ·		8 * * * * 06 06 1W *	SILTY CLAYSTONE AND SILTY CLAYSTONE WITH QUARTZ SAND Core is moderately to highly fragmented and biscuited. Major lithologies: SILTY CLAYSTONE and SILTY CLAYSTONE with QUARTZ SAND, dark gray (5Y 4/1) very dark gray (5Y 3/1), in hand specimen, scattered, very fine molluscan fragments occ at some levels in all sections. Fine burrows, both prythe filled and plain, are common in Section 5, but rare elsewhere and are generally associated with shell debris. Minor lithology: Carbonate concretions, gray (5Y 5/1), replace the silty claystone at two Levels; they are line-grained and do not contain burrows. SMEAR SLIDE SUMMARY (%): 1, 79, 3, 80, 5, 28, 7, 26 D, D, D, D, D, D, D, D, TEXTURE: Sand 20, 10, 5, 10, Sith 35, 35, 35, 35, ComPOSITION: Accessory minerais 3, 3, Carbonate 3, 3, 3, 4, Clay 45, 48, 55, 55, 55, Foldspar 5, 5, 5, 5, 3, Glaucontile Tr Hypersthere 1, Tr Mica 1, Mica 1, Mica 1, Mica 1, Mica 1, Mica 1, Mica 1, Nannofossits 2, 1, 1, - Opaques 5, - 5, 3, Other 15, 12, 5, 10, Plant 3, 3, 3, 4, Pyrite - 5, Quartz 15, 20, 20, 15, Rock fragment 3,
	F/M	Barren	Barren		C/P									


UNIT	BIO FOS	STR	AT. CHA	RAC	TER	5	LIES					JRB.	SB		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
									1	0.5		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	୭୦୦୦ ବ୍ୟ	*	QUARTZ SILTY CLAYSTONE AND SILTY CLAYSTONE WITH QUARTZ SAND Core contains both highly (3-4 cm thick) and moderately (5-20 cm thick) biscuited interva Individual biscuits have slightly fissile boundaries. Major lithologies: QUARTZ SILTY CLAYSTONE, and SILTY CLAYSTONE with QUARTZ SAND, very da gray (N3 to 5Y 3/1) to dark gray (N4), generally structureless. Biscuits are internally homogeneous and structureless for the most part and very dark gray (N3) to black (N2). Non-biscuited intervals are 25 cm to 1.2 m thick and contain silt to fine sand-sized white (10YR 8/1 to 8/2) carbonate grains (probably bioclastic debris).
									2				Ø	*	Minor tithology: Sideritic sandy sittstone to sandy sittstone with siderite cement, light grap (2.5Y 77): to olive gray (2.5Y 77); in Societion 3, 15-32 cm, with diffuse boundaries above and below. Pyrite-carbonate mixtures (up to 1 om X 2 cm) occur as irregular-shaped patches in the upper part of this bed and the lower part (24-28 cm) is burrowed. Normally graded sit to sand-sized quartz, carbonate, and rare glauconite grains occur in this bed. SMEAR SLIDE SUMMARY (%):
								TOC=0.97%					-==		1, 35 2, 89 3, 108 4, 23 5, 66 D D D D D TEXTURE:
IAN							\$ 31.9 V-1.84		3				() 0 0 0 0 0 	*	Sand 8 5 3 15 8 Silt 35 40 25 35 30 Clay 57 55 72 50 62 COMPOSITION:
MIDDLE BERRIASIAN	2				B. reticulatum		/-1.89	.0% TOC=1 .05%	4				ବ୍ଦ୍ ବ୍ ବ୍	•	Accessory minerals 3 2 3 3 Carbonate 3 2 5 3 Carbonate 3 2 5 3 Clay 45 52 57 55 52 Feldspar 3 3 2 3 3 Glauconite - - 1 1 Hypersthene - - 1 1 Muscovite Nannolossils Tr Tr - - - - - Opaques - 5 5 - 5 5 - Other 10 10 - 3 10 Piant -
					D. lobispinosum -		-B-32.7	CaCO3-8.0%	5				Ø	•	Rock fragment 3 3 2 3 —
							.9		6	the second second		シンシン			
	F/M	Barren	Barren		E/P		V-1.93 • 0-34.9		7						

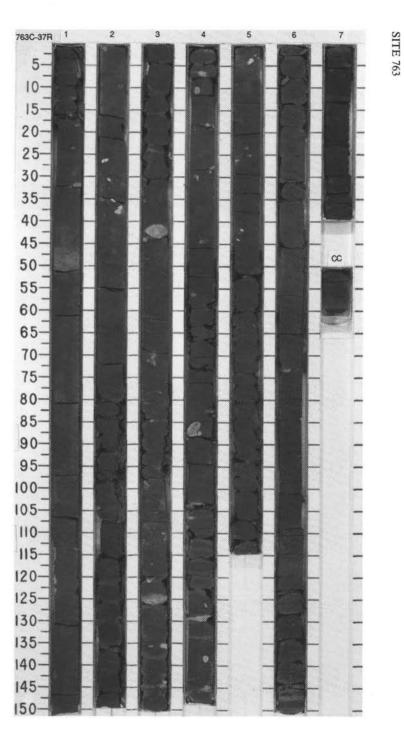
INN			CHA			0	168					JRB.	S						
11ME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LIT	HOLOGIC	DESCRI	PTION	
								TOC=0.96%	1	0.5		+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	8	*	SILTY CLAYSTONE Core is highly biscuited. Major lithology: SILTY CLAYSTO bated. Sediments are probablyew evident except for pyritized zones tally biourbated sediment. Fine-gy Sections 3 and 4. Fine-grained py and 2-10%, respectively. Plant m tered thin-shelled mollusc fragme	ensively t Laminati rained pyr ite and sin aterial is c ints occur	ioturbated on derives ite enrichr derite occi ommonly in Section	d through s largely fi ments are ur in the s present in ns 1, 2, ar	but the core, but it is bare rom compaction of horizo present in burrow fillings vediment in amounts of 2- n amounts of 7-10%. Scat dd 4.
RRIASIAN							\$-33.5 V-1.89	CaCog-4.2% TOC	2	******				•	Minor lithology: Siderlik or sideri present in Section 3, 2 and 80 cm SMEAR SLIDE SUMMARY (%): 1, 49 D TEXTURE:		3, 49 D	s, light oli 4, 49 D	ve gray (5Y 6/2), are 5, 49 D
MIDDLE BERRI	2				reticulatum			TOC=1.48%	3			+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	9 - 9 - 1	*	Silt 37 Clay 63 COMPOSITION: Accessory minerals — Biotat — Biotat Tr Clay 63 Feldspar — Fish —	36 64 Tr 	52 48 — — Tr 48 2 Tr	46 54 	27 73 Tr 73
					lobispinosum - B.		• 2.23 V-1.77	€CaCO3=2.5%	4				00000	•	Fish — Foraminifes — Glauconite Tr Heavy minerals — Mica 2 Nannofossis — Opaques 1 Plant 7 Pyrite 5 Ouartz 20 Sidente 2 Zeolite —	Tr Tr Tr 2 10 5 16 3	Tr Tr 4 7 2 30 7 -	Tr Tr Tr Tr Tr - 7 10 30	Tr 2 3 2 15 5
					D.				5			+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	P	*					
	R/M	Barren	Barren		R/P														

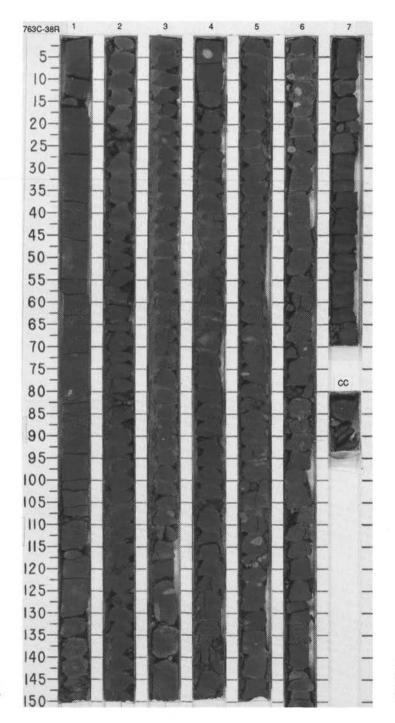


Important Construction Important Important <thimportant< th=""> <thimportant< th=""> <</thimportant<></thimportant<>	
	bated olor contras I. Fine-grain ectively. Pla s occurs lentalium sh
	ction 5, 56
	ow fillings, i
A/G Barr	

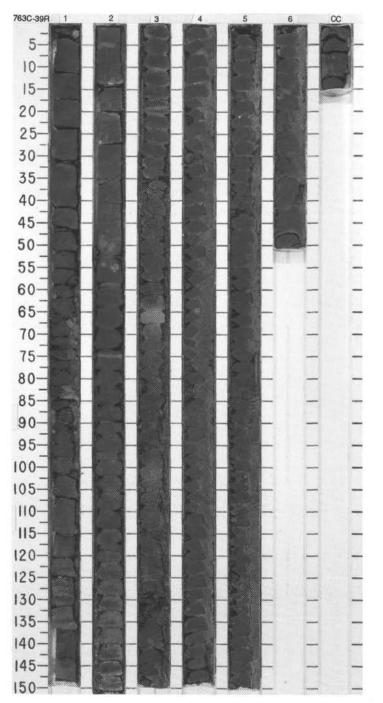


SITE 763


LIN N	BI0 FOS	SBIL	CHA	RAC	TER	s	SEL					URB.	ES					
TIME-ROCK UNIT	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES		LITH	IOLOGIC	DESCRIPTION
											1888				SILTY CLAYSTONE AND	CLAYST	ONE WI	TH SILT
							V-1.91 9-28.70	CaCO3=3.5% TOC-1.11%0	1	0.5 1.1 1.1 1.1 1.1		200 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	S IN S	*	alternates between lighter a ous and others more sideri size appears correlated to ate-rich are less biscuited).	and dark tic. Seve amount Many ir	er gray d ral interv of biscui itervals o	SILT, very dark gray (5Y 3/1). The core laystone with lighter intervals more calcare- als appear to fine upward, and coarser grain ting and carbonate content (coarser, carbon- ontain shell ragments while a few contain crinkly walls. Pyrite is common infilling burrow
1								aco3		111			80		SMEAR SLIDE SUMMARY			
- 8								°					0			1, 38 D	2, 82 D	3, 22 D
							_		2					*	TEXTURE			
							\$ 30.2 V-1.86	CaCO3-8.00%							Sand	-	5	5
			0				27 V	3-8					X		Silt Clay	33 67	10 85	30 65
			PYRITIZED				9-30	CaC					100		COMPOSITION:			
AN			RIT				•	•		‡	:===:		₿	*	Accessory minerals	Tr	— 3	-
AS			ΡY						3	E	<u> </u>		Ø		Biotite Carbonate	Tr 3		 65
BERRIASIAN			1								:===:		Ø		Clay Feldspar	67 4	85 - 1	5
BE			IAN		tum					17	EEE				Fish Glauconite	Tr Tr	1	
щ	~	~	AS		elu'					Ŧ	HH H H H				Mica Plant	4	1	2
MIDDLE			BERRIASIAN		reticulatum					1	EEE		0~00		Pyrite Quartz	4 16	3 10	5 20
×						1				1	HEE HE		Ø					
			-		- B.				4]	EEE		S S S S S S S S S S S S S S S S S S S					
			TITHONIAN		lobispinosum					1 =	HE HE H		Ø					
			NOF		nos					E	HEE		Ð					
1			Ē		spi			TOC=1.16%	-		EEE		1					
			-		IOD			5		1	12221		P					
					9.		90		5	1	18281							
					1		\$-29.9 V-1.90	×6.	5	1 3	:===:		Po					
							9.9	03-2		17			S					
								CaCO3-2.9%			EEEE		9 P					
													Ĩ					
													11					
									6	1	EHE		Ö					
										***			1					
- 1	F/M	R/G	C/P		R/P						1883		Ð					


UNIT	BIO	763	CHA	ZONE	TER	Γ	RTIES CO		COR		36R CC	DISTURB.	1	Г	RVAL 932.1-941.6 mbsf
TIME-ROCK 1	FORAMINIFERS	NANNOFOSSILS	RADI OLARI ANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
									1	0.5				*	CLAYSTONE WITH SILT AND CLAYSTONE WITH SILT AND SAND Core is extensively biscuited. Major lithologies: CLAYSTONE with SILT, very dark gray (5Y 3/1), dominantly structu less, locally bioturbated and laminated, in Sections 1, 2 and 3. CLAYSTONE WITH S AND SAND, very dark gray (5Y 3/1) in Sections 5 and 6. Sediments are probably exte sively bioturbated throughout the core, but bioturbation is barely evidem contrasting color. Lamination largely derives from compaction of horizontally bioturbate sediment. Thin-shelled molluse fragments are scattered throughout the core. A piece wood, 1 cm across is present in Section 1, 16 cm.
								.37%	2				6	*	Minor lithology: Siderite nodules, burrow fillings and layers, light olive gray (5Y 6/2). SMEAR SLIDE SUMMARY (%): 1,98 2,127 3,145 5,9 6,40 D D D D D TEXTURE:
BERRIASIAN							-0-28.5 V-1.85	•CaC03*3.5% TOC=1.37%	3			- + - + - +	1	1111 11111	Sand 5 5 6 10 15 Silt 15 20 20 15 15 Clay 80 75 74 75 70 COMPOSITION: - - 2 1 Accessory minerals - - 2 1 Clay 80 75 74 75 70 Feldspar 3 4 2 5 4 Glauconite - 3 - 2
MIDDLE	6				n - B. reticulatum			33%	4			+++++++	Ø (6)		Mica 4 3 3 3 3 3 Plant - 2 1 - 2 Plant 3 3 3 2 Plant 3 3 3 2 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 3 3 10 10 15 12 18 3 3 3 3 3 3 3 3 3 3 3 3 3 3
					D. Iobispinosum		• 30.7 V-1.93	CaCO3-2.8% TOC-1.33%	5			+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$		*	
							V=2.08 9=27.0	TOC	6 CC				* * * *	-	
	R/M	Barren	Barren		F/P		×	CaC03=2.2%							

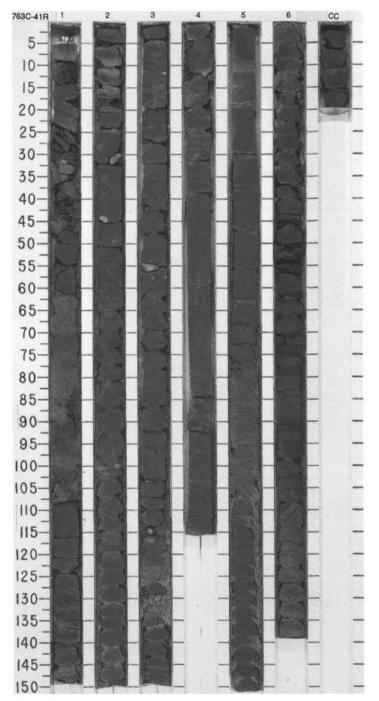
TIME-ROCK UNIT	BIO	STR	3 HOLE							RE 37R	e o		2		ERVAL 941.6-951.1 mbsf		
	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	GRAPHIC LITHOLOG		SED STOUGTUBES		SAMPLES	LITHOLOGIC DESCRIPTION		
		2					• 27.5 V-1.91	CaCO3-1.9%@TOC=0.79%	1	0.5		Contraction of the contraction o	-	•	CLAYSTONE WITH SILT AND SILTY CLAYSTONE Major lithologies: CLAYSTONE with SILT and SILTY CLAYSTONE, dark gray (5Y 4/1), fairly homogeneo Scattered throughout are fossils (belemnites, bivalves), siderite nodules and burrows, py and ubiquitous bioturbation. The core seems to alternate in color and siti content but th are no major variations, Section 7 has a small coal fragment and Section 2 a coarse qui granule (4 mm). Minor lithology: Sandysitly claystone turbidite, gray (5Y 6/1 to 5Y 5/1), most grains have turned to clay (originally feldspars?), in Section 1, 43-52 cm		
MIDDLE BERRIASIAN							• 27.6 V-1.96	- CaCO3-1.93	2					*	SMEAR SLIDE SUMMARY (%): 1, 68 2, 116 3, 100 6, 88 D D D TEXTURE: Sand 5 3 5 5 Sit 25 14 15 20		
					"		\$-26.7 V-1.95	caco ₃ -1.6%@T0C=0.67%	з			- (m)	0100	*	Clay 70 83 80 75 COMPOSITION: - - 2 2 3 Accessory minerals 2 2 2 3 Carbonate grains - - - 2 Clay 70 83 80 75 Feldspar 5 - 4 3 Glauconite 1 - - 2 Mica 3 3 2 2 Plant - 2 - -		
					m - B. reticulatum			CaC03"1.65	4			· + / / + / / /	2		Pyrife 3 2 2 3 Ouartz 16 8 10 10		
					F/P D. lobispinosum		• \$-21.1 1×2.06	TOC=0.89%	5			(W)		IW			
								•CaCO ₃ =2.6%	6			+ 1/ / 1 +) *			
	R/M	R/P	Barren						7				5				



UNIT	BIO	STR	CHAI	RACT	TER	5	1158	1			RB.	ES		
TIME-ROCK U	FORAMINIFERS	NANNOF 0931LS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
							• 23.5 V-1.96	CaCO3=4.3%@TOC=0.82%	1			20 0 - 0 X	*	SILTY CLAYSTONE WITH QUARTZ AND CLAYSTONE WITH QUARTZ SILT Major lithologies: SILTY CLAYSTONE QUARTZ and CLAYSTONE with SILT, very dark gray (5Y 3/1). Fin sity laminations preserved in some pieces (Section 1, 73-77 cm, and Section 4, 92-96 cm Pyrite and rareshell tragments observed throughout. Bioturbation minor to moderate. Intense bioturbation in sideritic motifies and concretions. Belemnite, Section 4, 52 cm, out place. Minor lithology: Calcareous sideritic (?) concretions and burrows, light gray \(2.5Y 7/2) abundant in Sections 3, 5, and 6. Concentric growth patterns, claystone intraclasts, and
								aco3-4 .			1	ĩ		numerous biogenic structures are present in the zones, burrows, and concretions. Good sequence of sideritic motifies to burrows to concretions observed. SMEAR SLIDE SUMMARY (%):
								0	2			0		1, 12 1, 81 2, 116 4, 49 6, 92 D M D D D
											}	1	*	TEXTURE: Sand 5 7 3
												6		Silt 30 25 27 15 Clay 65 68 70 85
							V=1.87	2.7%	3			P(0)-23(0) (0)		COMPOSITION: Carbonate - 83 - 2 - Clay 50 10 54 63 76
_							• 2.28 V-1.8	CaC03=2.7%			ł	(S) ₩		Dolomite
ASIAN								•				5		Dolomite Tr Feldspar 3 1 3 3 Glass 2 Glauconite 3 3 3 Mica 2 2 Opaques 10 15 10 5 Plant 5 5 3 3 Quartz 25 7 10 15 10
BERRIASIAN	2								4		i	6	*	Quartz 25 7 10 15 10 Spicules 1 -
MIDDLE							-1.69	*6			1			
W							\$ 30.3 V-1.69	•CaCO3=3.9%			•	6		
							•	•	5			(1) (1) (1)		
					sata		2.02	28%				1		
					. delicata		- 2.31.7 V-2.02	CaCO3-4.08%			1	S		
					с.		00	•0	6			(S) (S) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	*	
									_			01		
			-						7					
	R/M	Barren	Barren		C/P				CC		1	<u> </u>		

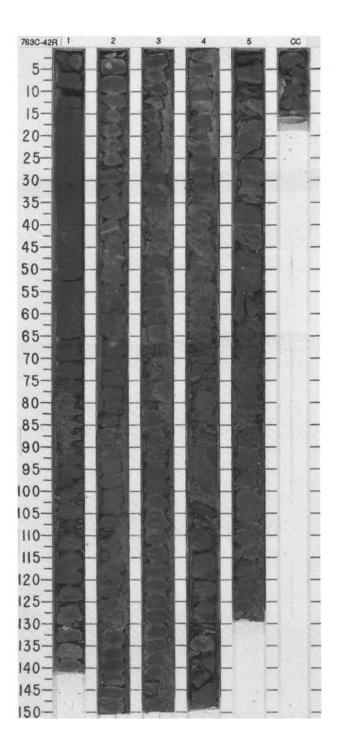
SITE 763

LIND		STR					IES				RB.	Sa						
ITME-HOCK O	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES		LITH	OLOGIC	DESCRI	PTION
									1			11 0 - (S) -		generally structureless, but i pyrite grains common throu fragment is observed in Sec Minor lithologies:	d SILT ocally ir ghout th tion 5, 8	and SILT ncludes v le core. I 18 cm.	TY CLAY: weak lam Bioturbati	AYSTONE STONE, very dark gray (SY 3/1), ination. Small shell fragments and ion is weak to moderate. Belemnite , are intercalated in Section 2, 73-76
							• 0-36.8 P=2.32	•CaC03=3.5%	2	-	4	1 11 10		cm, and Section 3, 63-67 an 10-15 and 90-92 cm; Section 5. Small pyrite nodules (1-2 36-40 and 85-92 cm; and Se diameter and 3-5 mm long) 100 cm. SMEAR SLIDE SUMMARY	d 98-10 n 2, 12- cm in di action 4, are also	03 cm. S 13, 25-3 ameter) 40-47 a	identic bu 5, and 48 are obse and 141-1	urrows are also observed in Section -60 cm; and Section 5, 20-22 cm, rued in Section 2, 6-7 cm; Section 3 145 cm. Small pyrite burrows (1mm i tion 4, 40-45 cm, and Section 5, 95- 6, 15 D
BERRIASIAN							3.8	CaC03=3.95 TOC=1.04%	3			19(1)(1)(1)	**	Silt Clay COMPOSITION: Accessory minerals Clay	10 15 75	- 3 97 		
MIDDLE BE	2				C. delicata		0-33.8	•CaC	4			-(P) (P)		Glauconite Mica Plant Pyrite	5 3 2 14	2 1 - 1	1 - 4 95	5 2 3 2 3 13
							• 0-33.1 0-2.19	CaCO3-4.7%	5			10110						
	R/M	Barren	Barren		C/P		•	•	6 CC			000						



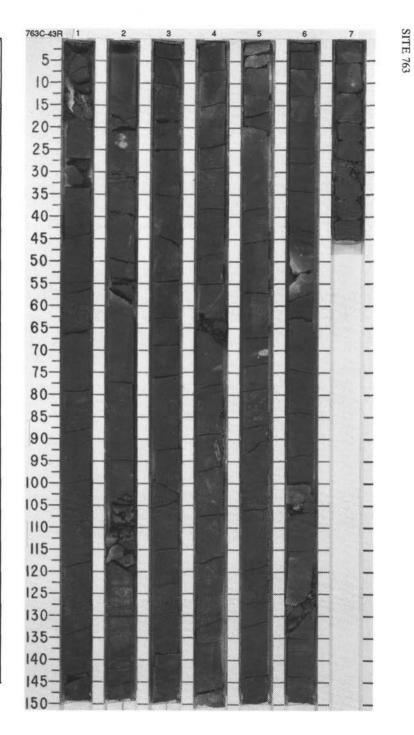
UNIT			AT . 3				ES								_
TIME-ROCK UN	FORAMINIFERS	NAMNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	Contraction Priorition	SED. STRUCTURES		LITHOLOGIC DESCRIPTION	5 10- 15
MIDDLE BERRIASIAN	2				C. delicata		• \$-2.28 V-1.82	•CsC03-4.0%	1				*	SILTY CLAYSTONE AND CLAYSTONE WITH SILT Major lithologies: SILTY CLAYSTONE and CLAYSTONE with SILT, very dark gray (5Y 3/1). The core consists of wo sections. In both sections, sitly claystone is predominant although intricately intermingied with claystone with silt. Fossil fragments (including belemnite), pyrite nodules or burrow fills, slight bioturbation, and poorly defined faminations are observable. SMEAR SLIDE SUMMARY (%): 1, 83 2, 95 M D TEXTURE: Sand 5 5 Sitt 30 15 Clay 65 80 COMPOSITION:	15- 20- 25- 30- 35- 40- 45- 50-
	R/M	Barren	Barren		C/P									Accessory minerals 5 Clay 65 80 Feldspar 5 3 Glauconite 1 Mica 5 3 Plant 2 Pyrite 3 Quartz 20 8	55- 60- 65- 70-

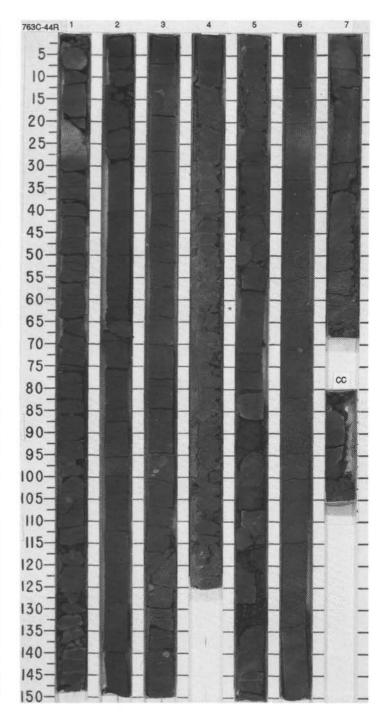
763C-40R	1	2	2
5-			-
10-		-	-
15-	_		
20-	2		_
25-			_
30-	<u></u>		
35-			
40-			
45-	-		
50-	-		
55-			
60-			
65-	-		
70-		~	
75-			-
80-	-		
85-	-		
90-			_
95-			_
100-			
105-			-
110-			
115_		1	
120-			
125-			
130-			-
135-			
140-	-		
145-		-	-
150-		-	-


SITE 763

LIND	BIO	STR	CHA	ZONE	E/ TER	60	IES				IRB.	sa		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
									1	0.5 1.0	ンンンン	e 1		SILTY CLAYSTONE WITH QUARTZ Major lithology: SILTY CLAYSTONE with QUARTZ, very dark gray (5Y 3/1) to black (5Y 2.5/1). Bioturbati moderate to minor. Small sitly laminations or partings (e.g. core catcher, 8-10 cm, 18-20 cm). Pyrite nodules, in Section 1, 62 cm, Section 3, 22 cm. Scattered shells in Section 5, upper 86 cm. Mollusc shell fragments (pelecypod), Section 6, 54 cm. Minor lithology: Calcareous sideritized (?) burrows and concretions, gray (5Y 7/2). Burrow are 1.5 X 2 cm with concentric growth (Section 3, 115 cm). Motties observed in sideritize
								•CaC03-3.7%	2		>>>>//>////////////////////////////////	(0)-(0)-==		zones. SMEAR SLIDE SUMMARY (%): 1, 112 3, 36 5, 60 6, 65 D D D D TEXTURE: Sand 3 7 3 3 Silt 30 40 35 40 Clay 67 53 62 57
BERRIASIAN			12		delicata		.57		3		~ ~ ~ ~ ~ ~ ~ ~ ~	1101 (De 11		COMPOSITION: Carbonate 3 2 Clay 65 42 55 47 Feldspar 3 5 3 3 Gamet 1 Glass Tr 3 Glauconite 4 3 4 3 Mica 2 2 2 Opaques 7 10
MIDDLE BI					C. de		P=23.9 V=1 .5	CaC03-4.4%	4		11111	1 23	06	Plant 5 3 7 5 Pyrite 8 6 — Outz 0 27 Rock fragment 1 — — — — —
									5		44-0//	1		
							B-33.0 V-1.66	•CaC03-2.5%	6			1022	*	
	R/M	Barren	Barren		C/P				cc		1		=	

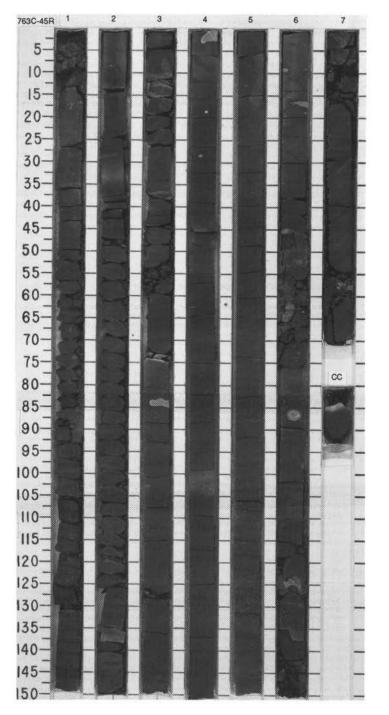
SITE 763

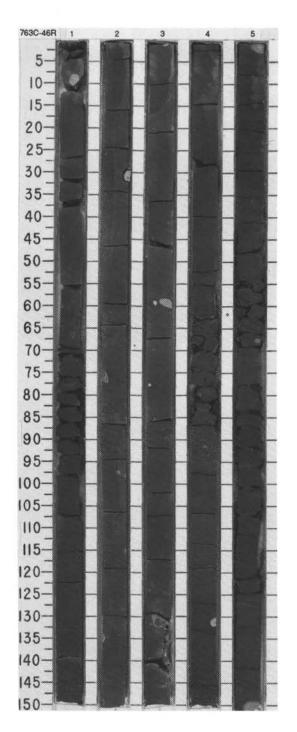

LIND			CHA		TER	s	TIES				URB.	Sa		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
			0.110				V-1.63 0-31.60	CaCO3=2.7%	1			6868	*	SILTY CLAYSTONE The core consists mainly of 2-3 cm thick drilling biscuits. Major lithology: SILTY CLAYSTONE, very dark gray (5Y 3/1), weakly bioturbated with many pyrite grains throughout the core. Siderific horizontia burrows, pale yellow (5Y 8/3), are common. Mine laminations are locally observed in Section 2, 36-150 cm, and Section 5, 60-70 cm. Sma molluscan shell fragments are also contained in the core. Some belemite fragments are observed at Section 1, 6 and 75 cm, and Section 3, 8 and 28 cm. SMEAR SLIDE SUMMARY (%):
									2			* * *		1,59 3,100 5,39 D D D D TEXTURE: Sand 5 5 - Silt 30 35 40 Clay 65 60 60
MIDDLE BERRIASIAN	2				C. delicata		• \$-40.0	CaCO3=2.5%	3		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1	•	COMPOSITION: Accessory minerals 2 3 Boilte Carbonate 3 2 2 Carbonate 3 2 2 Carbonate 3 2 2 Gamet 1 1 Glauconite 3 Mica 3
W								.6% TOC=1.04%	4			Ø Ø #		Opaques — 5 3 Other 10 10 5 Plant 3 3 3 Pyrite 3 — — Quartz 20 15 10 Zeolite — — — Zircon — — 1
		-					• • 30.2		5			#Ø#	*	
	R/P	Barren	Barren		F/P									


SITE 763

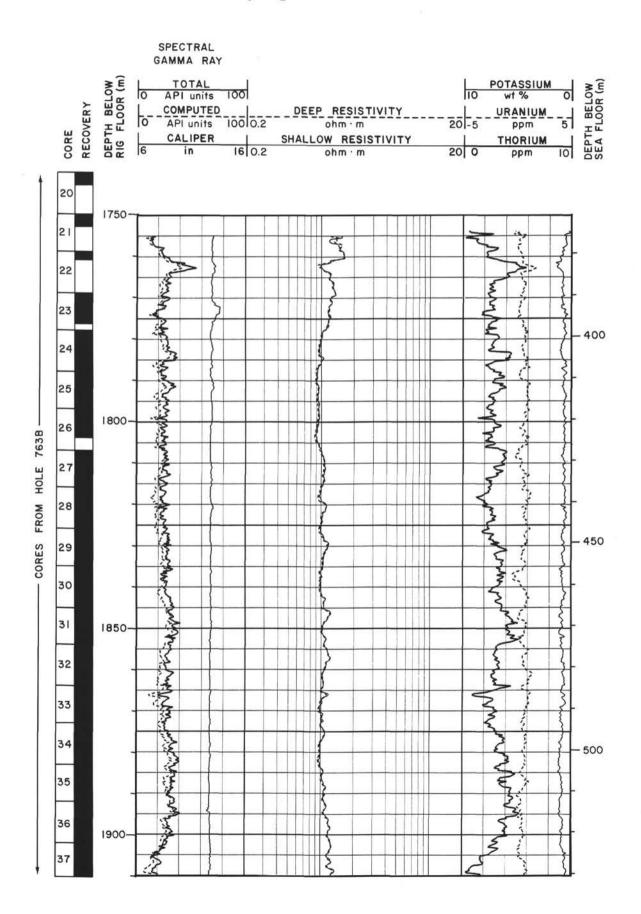
775

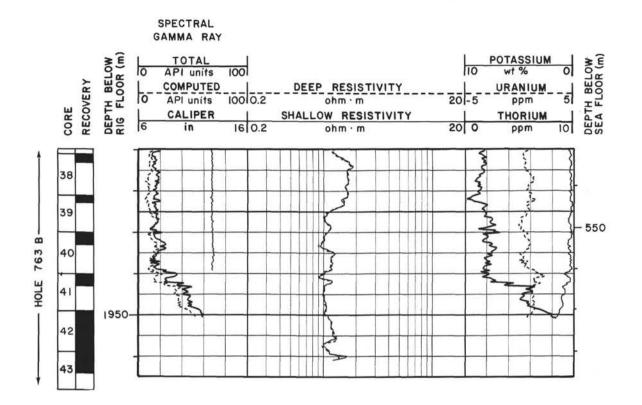
NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	C 2.32 V-1.78	COCO-1.9% CHEMISTRY	L SECTION	0 0 0 NETERS	LIT	HOLOGY	1/1/1/1 DRILLING DISTURE	- 0 - structures	* SAMPLES	gray (5Y 3/1). Scattered	D SILTY C trilling distu CLAYSTO d shells, py	LAYSTO urbance. NE and S	SILTY CL	I QUART	NE with QUARTZ, very dar
					• F-2.32 V-1.78	CaCO3-1.9%	1	0.5			-//////	@	*	Core shows only minor of Major lithologies: SILTY gray (5Y 3/1). Scattered	frilling distu CLAYSTO d shells, py	urbance. NE and S	SILTY CL	AYSTON	NE with QUARTZ, very dat urrows present. Belemnito
					· B-30.2 V-1.	CaCO3-1.9%	2							cm. Wispy (faint) lamin laminations appear to ha	ations and we more si	; Section parting s it. Lamin	4, 90-95 urfaces p ations ma	cm (side resent th ty be a re	eritized); and Section 5, 11 troughout. Texturally thes result of biogenic activity.
							*	3			111	· (© == ≣		medium gray (5Y 6/1) to cm; Section 6, 45-60 cm transitional boundaries. SMEAR SLIDE AND TH	light gray and 114-1 IN SECTIC	(5Y 7/2) I 25 cm. S 0N SUMM	.ayers, S ideritized MARY (%	ection 4, intervals	inna fionain an 1976. Tunar 1974 and 1974 ann a
						.83X	_				1111	© ≈		TEXTURE: Sand	1, 80 D 2	2, 80 D	4,80 D 3	5, 1 M	5, 80 D
						4.3% TOC=0.83%	з	land on			1111	11 22		Silt Clay COMPOSITION: Altered grains	28 70	33 62	32 65 5	-	30 65 3
			. delicata		P-28.94	•CaC03-4.3%					1111	2		Bioclast Biotite Carbonate Clay Fe oxide Feldspar Foraminifers	Tr Tr 3 70 Tr 7	1 2 61 10	3 1 60 8	15 75 —	Tr 1 9 58
			0				4	to the set			1111	6	•	Glauconite Hypersthene Mica Opaques Plant Pyrite		Tr 2 		32	Tr 3
					4-2.16	.6%					111		#	Quartz Rock fragment	8 2	2	3	5	<u></u>
					\$-29.3	CaCO3-4	5				1111	6 -	*						
							6				11	***							
c	c						7				111	3 							
	Barren	Barren Barren	Barren Barren	Barren Barren F/P		Barren Barren F/P ●● 23.3 142.16		6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	69-29-34 M2.16 62-23-34 M2.16 62-23-34 M2.16 6 22-23-34 M2.16 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 7		2 9 9 9 9 111111 9 9 9 9 111111 111111 111111111111111111111111111111111111	2 9 €.239.3 W2.16 4 9 9 111111 111111 1111111 111111 111111 1111111 111111 111111 1111111 111111 111111 1111111 111111 111111 1111111 111111 111111 1111111 111111 111111 1111111 111111 111111 1111111 111111 1111111 111111111111111111111111111111111111				

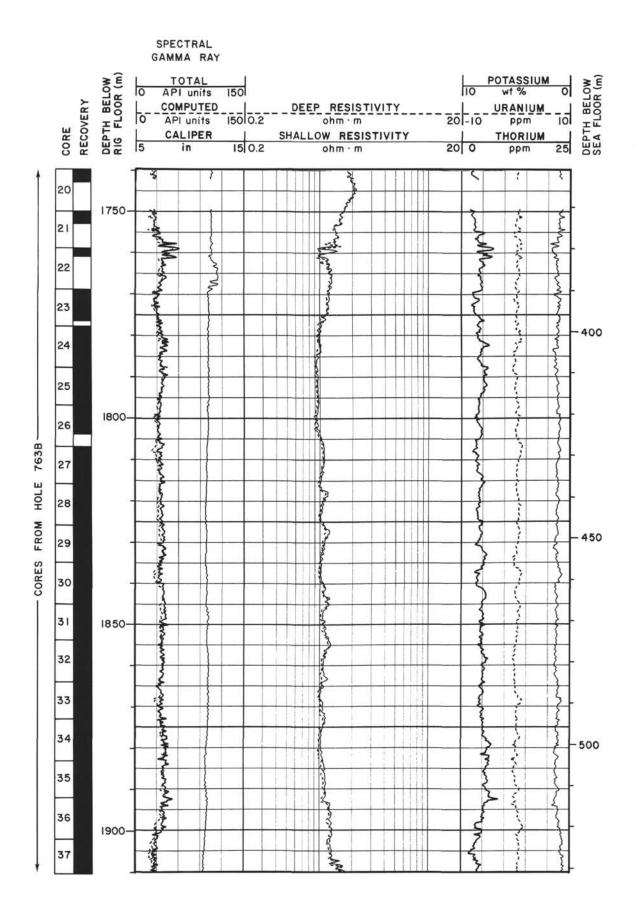

UNIT		STRA				8	IES				RB.	Sa	Τ	
IIME-ROCK OF	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURB		SAMPLES	LITHOLOGIC DESCRIPTION
									1					SILTY CLAYSTONE AND SILTY CLAYSTONE WITH SAND Major lithologies: SILTY CLAYSTONE and SILTY CLAYSTONE with SAND, very dark gray (5Y 3/1), weakly to moderately bioturbated and contains some weak lamination. Pyrite grains are present throughout the core. Beleminite fragment is observed in Section 1, 116-118 cm. Minor lithologies: a Siderlite horizontal burrows, 1-2 cm in diameter, are present in Section 1, 104-106 cm; Section 2, 82 and 143 cm; Section 3, 10-145 cm; Section 6, 38-82 cm; and Section 7, 60 61 cm.
							S-2.27 V-1.81	CaC03=4.5%	2			10-0-		b. Sideritic layers, pale yellow (5Y 8/3), in Section 1, 18-28 cm (with minor synsedimentary deformation), and Section 6, 17-27 cm. c. Small pyrite nodules (about 1mm indiameter) an pyrite burrows are present in Section 4, 40-43 cm, and Section 5, 100-105 cm, respectivel SMEAR SLIDE SUMMARY (%): 1,60 3,70 5,79 7,41 D D D D TEXTURE:
BERKIASIAN	2				delicata		-2-28.5 V-2.08	•CaCO ₃ =2.2%	3			1 1 0 11 11	*	Sand 8 10 15 5 Siti 35 35 30 Clay 57 55 50 65 COMPOSITION: - 3 3 3 Carbonate 2 - 2 3 Clay 56 56 56 56 56 56 50 65 50 55 55 50 65 50 65 50 55 55 55 50 65 65
MIDULE BI	3				C. del			•	4	1 1		1 10 10	k	Glass 3 Glauconite 2 Mica 3 2 Muscovite 5 Opaques 5 5 Other 10 10 10 Plant 3 2 3 3 Pyrite 5 5 Quartz 20 15 10 Zircon 1
							12.21	.2%	5			10 10 0	*	
							\$-27.1 V-2.21	•CaC03-5.2%	6			~ ~ ~ ~		
	F/G	Barren	Barren		F/P				7				*	

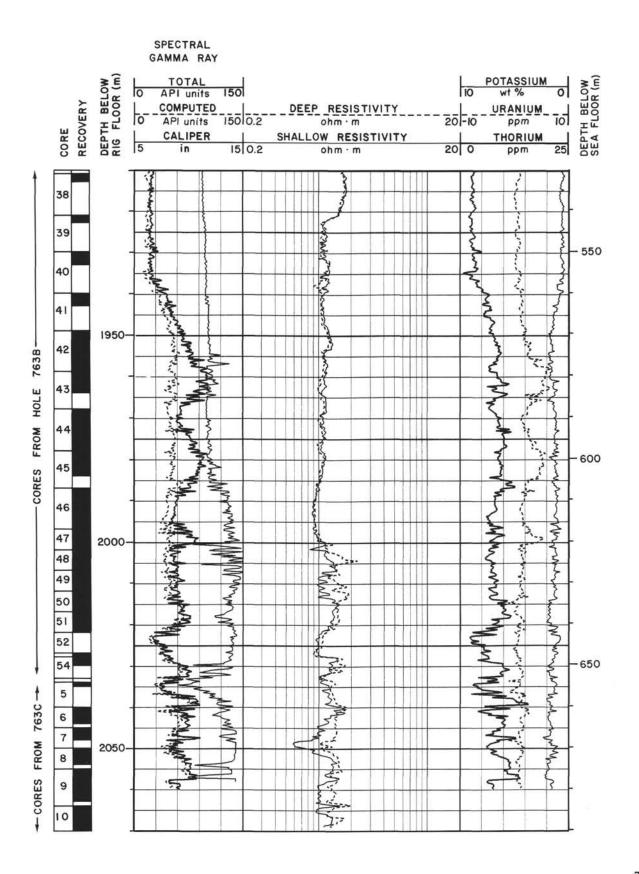

SITE 763

777

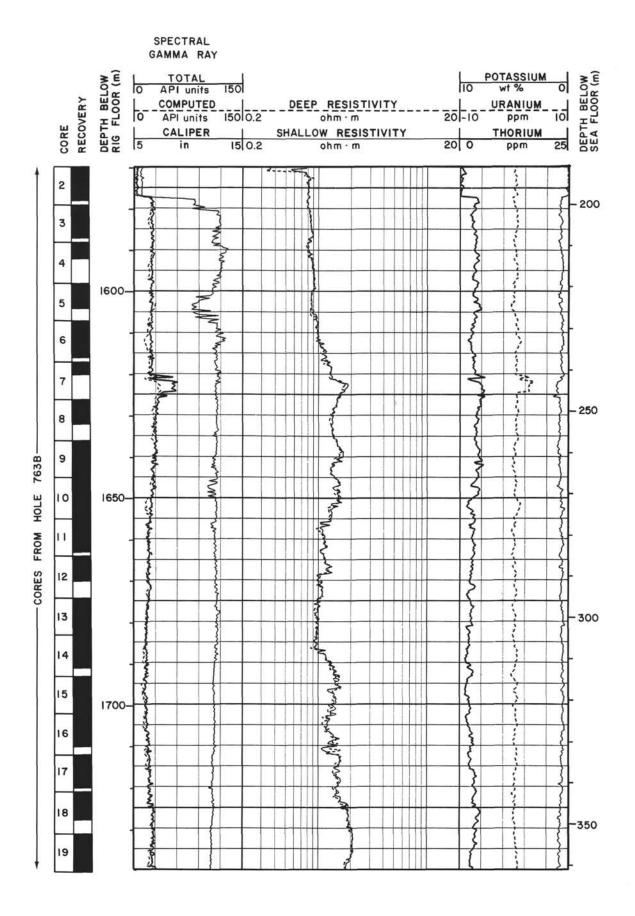

UNIT		STR				~	IES.				RB.	ŝ						
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS, PROPERTIES	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES		LITH	OLOGIC	DESCRIF	PTION
									1	0.5	>	00000	*	feldspar and altered grains debris and fine pyritized bu ate burrows and concretion formed around burrows ear	UARTZ, which w rrows oc s with 1- ly in diag	VERY D ere proba cur togeti 2 cm diau genesis a	ably most her at ma meters ar s shelly p	AY (5Y 3/1). Contains common ly feldspar. Finely disseminated shell ny levels. Pale olive (5Y 6/3) carbon e common. The concretions probably artings are bent around them. One elemnite is present at Section 5. 127
							● 2.28 V=1.82	•CaCO3-2.3%	2			ø		om. Minor lithology:	one, oliv	e (5Y 5/3		a 2, 30-34 cm, and Section 4, 100-10
BERRIASIAN					delicata		B-27.7 V-2.14		3		>	0 0000		TEXTURE: Sand Silt Clay COMPOSITION: Accessory minerals Altered Grains	10 35 55 2	10 30 60	5 35 60 3	-
MIUULE DER	2	6			C. deli		\$.2 .2	•CaC	4			0	*	Biotite Carbonate Clay Foraminifers Glass Glauconite Hypersthene Mica Muscovite Opaques Other	1 654 2 35 8	3 57 1 3 3 5		
									5			-0 0		Other Plant Quartz Sidente	8 3 15 	2 20	10 3 15 	3 5 85
							P=24.5 V=2.15	•CaC03*2.3%	6			0000-000						
	F/G		Barren						7			-0000						191 1


UNIT		STR				91	IES				JRB.	ES		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALYNOMORPHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	GRAP LITHO SUJ	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
							2.17	2%	1	0.5		9	•	CLAYSTONE WITH SALT AND SILTY CLAYSTONE Core shows only minor drilling disturbance. Major lithologies: CLAYSTONE with SILT and minor SILTY CLAYSTONE, homogeneous very dark gray (5 3/1). Crude parallel tamination derives from compaction of horizontally burrowed sediment ("pseudo-tamination"). Large sideritic(?) burrows, 13 cm in diameter, are common through the core. Thin-shelled mollusc debris is present, but rare. SMEAR SLIDE SUMMARY (%):
							• 25.9 V-2.17	CaC03-4.2%	2			() () () () () () () () () () () () () (•	1, 161 2, 82 3, 127 5, 22 D D D D TEXTURE: Silt 17 15 16 32 Clay 83 85 84 68 COMPOSITION: Composition Composition Composition Composition
MIDDLE BERRIASIAN	2	2			C. delicata				3			() () () () () () () () () () () () () (*	Accessory minerals Tr Tr Altered grains 5 5 5 5 Biotite Tr Tr Clay 83 83 84 68 Feldspar 1 1 2 4 Fish Tr Glauconite Tr Tr Tr Tr Mica 1 1 2 3
×							B-26.8 V-2.15	•CaCO3=5.2%	4			00		
			ç						5		444) () ()	*	
	F/M	R/P	Barren		F/P									


Summary Log for Site 763B



Summary Log for Site 763B (continued)



Summary Log for Site 763C

Summary Log for Site 763C (continued)

