36. CENOZOIC CALCAREOUS NANNOFOSSIL BIOSTRATIGRAPHY ON THE EXMOUTH PLATEAU, EASTERN INDIAN OCEAN¹

William G. Siesser² and Timothy J. Bralower³

ABSTRACT

Six sites (759–764) were drilled on the Exmouth Plateau during Ocean Drilling Program Leg 122. Nannofossilrich Cenozoic sediments were recovered at all six sites, reflecting the open-ocean conditions that prevailed over the Exmouth Plateau during the Cenozoic. Calcareous nannofossils are abundant, diverse (250 different species identified), and generally well preserved throughout the composite lower Paleocene to Quaternary section. The diversity and preservation of nannofossils permits a high degree of stratigraphic resolution at each site. Site 762 on the central part of the Exmouth Plateau contains an almost unbroken Cenozoic record (only Miocene Zones NN3, NN8, and NN10 are missing). This site may prove to be a useful Cenozoic biostratigraphic and biomagnetochronologic reference section for the eastern Indian Ocean.

INTRODUCTION

The Exmouth Plateau is a rifted and subsided fragment of continental crust lying off the coast of northwestern Australia (Fig. 1). The relatively thin cover of post-rift sediments over this plateau makes it an ideal location for study of the evolution of the plateau by drilling through the overburden to pre-rift rocks. The Exmouth Plateau has, moreover, consistently remained elevated above the calcite compensation depth during its post-rift history, a circumstance favorable for preservation of the carbonate record.

Six sites (759–764) were drilled on the Exmouth Plateau during Leg 122 of the Ocean Drilling Program (ODP). Two of the sites (762 and 763) are located on the central Exmouth Plateau; the remaining four are on a northern marginal horst named the Wombat Plateau (Fig. 1). Sedimentology, lithostratigraphy, and other details of these sites are described in detail in the Leg 122 *Initial Reports* (Haq, von Rad, O'Connell, et al., 1990).

Results of the Exmouth Plateau drilling have provided a much clearer understanding of the evolutionary development of this part of the Indian Ocean from the time of initial rifting (Triassic), through breakup and separation (Late Jurassic-Neocomian) and the development of a juvenile ocean (Aptian-Coniacian), to the establishment of mature ocean conditions (post-Coniacian).

Integrated geologic studies on the plateau rely on a refined stratigraphic framework for placing events in an accurate chronostratigraphic context. The purpose of this paper is to document the biostratigraphy of the major portion of the mature ocean phase, the Cenozoic, using calcareous nannofossils.

BIOSTRATIGRAPHY

Smear slides of core samples were examined using a light microscope. The appendix lists the calcareous nannofossil species found in the Cenozoic sediments on the Exmouth and Wombat plateaus.

Nannofossils are abundant in almost all Cenozoic samples examined and preservation ranges from moderately well preserved to very well preserved. Where range charts are given in the following sections, the relative abundances of individual species are indicated as follows: A = abundant, more than 10 specimens of a single species per field of view at a magnification of $1000\times$; C = common, 1 to 10 specimens per field of view; F = few, one specimen per 2–10 fields; R = rare, one specimen per 11–100 fields; and V = very rare, one specimen per 101–1000 fields (Tables 1–5).

Selected species (mostly those used in the biomagnetochronologic assessment) are illustrated in Plates 1–5. Smear slides and photographic negatives of these species are stored in the Micropaleontology Collection, Department of Geology, Vanderbilt University.

TAXONOMIC NOTES

The following notes on taxa are arranged in the general order the taxa are encountered in the cores, from oldest to youngest.

Prinsius spp. A number of small $(2-6 \ \mu m)$ species of Prinsius occur in Zones NP1 and NP2. Perch-Nielsen (1985) has recognized P. petalosus, P. dimorphosus, P. tenuiculum, P. africanus, and P. martinii. These small forms could not be resolved with consistency using the light microscope, so all have been included in the range-chart tables under the category "small Prinsius spp." P. bisulcus is a larger (>6 μm), distinctive form, which is listed separately in the tables.

Zygodiscus bramlettei/Z. herlynii. The distinction between these two species is based on the relative thickness of the coccolith wall and the relative size of the central openings. We found it difficult to make confident assignments to one species or the other, and have elected to combine the two forms into a single category in the range charts.

Ericsonia cava and *Coccolithus pelagicus*. Where both species occur together in the Paleocene, we have used *E. cava* for elliptical forms with a distinctive open central area that is usually about one-third the total width of the specimen. *C. pelagicus* looks somewhat similar at the start of its range, but has a smaller central opening, or contains a structural element in the central opening.

Dictyococcites callidus and Dictyococcites daviesii. We could not differentiate these two species using the light

¹ von Rad, U., Haq, B. U., et al., 1992. Proc. ODP, Sci. Results, 122: College Station, TX (Ocean Drilling Program).

 ² Department of Geology, Vanderbilt University, Nashville, TN 37235, U.S.A.
 ³ Department of Geology, Florida International University, Miami, FL

⁵ Department of Geology, Florida International University, Miami, FL 33199, U.S.A. (Current address: Department of Geology, University of North Carolina, Chapel Hill, NC 27599, U.S.A.)

Figure 1. Location map showing Leg 122 drill sites on the central Exmouth Plateau (Sites 762 and 763) and on the Wombat Plateau (Sites 759, 760, 761, and 764). Contours are in meters below sea level. Map is from Haq et al. (1988).

microscope; they are accordingly listed together under *D. callidus* s.l.

Blackites spinosus/B. tenuis. The majority of specimens of these species are found as tapering spines with the heads missing (only an occasional specimen is complete and can be definitely assigned to either B. spinosus or B. tenuis). All specimens are therefore listed as Blackites spinosus/B. tenuis on the range charts. Chiasmolithus altus. We found some variation in the shape of the central cross in this species in Zones NP22 and NP23. Some specimens have bars that meet at 90° angles (*C. altus* s.s.), but others have a slight curvature of one bar (see Pl. 1, Fig. 4). We believe this is merely intraspecific variation and have recorded both types under *C. altus* s.l. in the range charts.

Discoaster variabilis. Considerable variation exists in the size and angle of ray bifurcations of this species (thus the

Zone	Core, section, interval (cm)	Coccolithus pelagicus	Cyclicargolithus floridanus	Thoracosphaera deflandrei	Discoaster variabilis s.l.	Hayaster perplexus	Coronocyclus nitescens	Sphenolithus moriformis	Thoracosphaera saxea	Pontosphaera sp. B.	Discoaster kugleri	Discoaster exilis	Reticulofenestra pseudoumbilica	Calcidiscus leptoporus	Umbilicosphaera sibogae	Helicosphaera carteri	Scyphosphaera spp.	Sphenolithus abies/S. neoabies	Ceratolithus rugosus	Catinaster coalitus	Catinaster calyculus	Discoaster hamatus	Discoaster neohamatus	Discoaster calcaris	Discoaster brouweri	Discoaster challengeri	Discoaster surculus	Discoaster pentaradiatus	Discoaster neorectus	Discoaster bellus	Sphenolithus intercalaris
NP11 NP10 NP9 NP8 NP7	122-760A- 3H-5, 30- 32 3H-6, 63-65 3H-7, 71-72 3H-CC 4H-2, 90-92 4H-3, 90-92 4H-4, 90-92	R R R R R F F	0000000	R	F C F C C C C	R	R R R	R R F C C F C	R R	R R R R R	R	C F R	0000000	R R R R F F	R	R F F R	R R R F R	R R	F R R R F F F	F C	F C	V R C	F F R F	R F	C F R	R	R	R	V R R	R R	R

Table 1. Calcareous nannofossils in Hole 760A.

Table 2. Calcareous nannofossils in Hole 761B.

													_											_	_	_	_	_					_	_		_			
Zone	Core, section, interval (cm)	Markalius astroporus Thoracosphaera operculata	Thoracosphaera saxea	Thoracosphaera sp. A.	1 iacorygus signiotaes	Cruciplacolutuus prunus Cruciplacolithus edwardsii	Cruciplacolithus tenuis	Small Prinsius spp.	Ericsonia subpertusa	Zygodiscus bramlettei/Z. herlynii	Prinsius bisulcus	Chiasmolithus danicus	Neochiastozygus spp.	Ericsonia cava	Chiasmolithus bidens	Coccolithus pelagicus	Fasciculithus pileatus	Bomolithus elegans	Fasciculithus magnicordis	Fasciculithus tympaniformis	Toweius pertusus	Heliolithus kleinpelli	Chiasmolithus consuetus	Toweius eminens	Pontosphaera sp. A.	Discoaster mohleri	Zygodiscus piectopons	Ericsonia robusta	Fasciculithus involutus	Neochiastozygus chiastus	Heliolithus riedelii	Discoaster bramlettei	Zygrhablithus bijugatus	Cruciplacolithus latipons	Ellipsolithus distichus	Neochiastozygus junctus	Discoaster multiradiatus	Scapholithus rhombiformis	Fasciculithus hayi
NP9 NP7/8 NP6 NP5	122-761B- 16X-1, 134-136 16X-2, 134-136 16X-3, 134-136 16X-4, 134-136 16X-CC 17X-1, 134-136 17X-2, 134-136 17X-3, 134-136 17X-4, 100-101 17X-5, 134-136 17X-CC 18X-1, 99-101 18X-3, 99-101 18X-3, 99-101 18X-5, 90-101 18X-CC 19X-1, 100-101 19X-3, 100-101 19X-4, 100-101 19X-CC 20X-1, 118-119	R	R R R R R R R R R R R R R R R R R R R	1	RR		R RRRFFFFFFFFFFFFFFFF	V RRFFFRRRFFCCCCCCC	V RRRRRRRRFCCFCFFFCC	RRRFFFFFFFFFFFFFFFF	RRRRRR RRRRRRRR	V V R	R F R F R R R R R R R R	FC	RRRRRFFFFFCCCCFFFCR	AAAACCAAAAAAACCFFFFC	RFAFFR	R F R R F R R R R R R R R R R	R	AAACCCCCCFFFFFRR V	RR FCCRFRRRR	FFFRF	R FFRF RR F	CCCFFCCCCCCCFRR	R R R	R R R R	R R	R R R	VR FFCFFCCAF	R	v		FFF		R	R R	FRRR	v	RRR
NP3/4	20X-2, 99–100 20X-3, 100–102 20X-4, 100–101 20X-5, 100–102 20X-CC 21X-1, 100–101 21X-2, 100–101	R R R	R R F R R R R R R	R I	F I F I R I	R F F F R R	FFFFCRR	C C C C C C F F	00000000	FCCCCFF	R R R R R R R	R R R R R F	R R F	C A A A A C C	R R V R	FFFFRCC					R R V													v					

Table 2 (continued).

Zones	Core, section, interval (cm)	Thoracosphaera saxea	Coccolithus pelagicus	Cyclicargolithus floridanus	Discoaster druggii	Discoaster deftandrei	Triquetrorhabdulus challengeri	Triquetrorhabdulus carinatus	Hayaster perplexus	Coronocyclus nitescens	Sphenolithus conicus	Sphenolithus moriformis	Helicosphaera intermedia	Helicosphaera euphratis	Helicosphaera carteri	Sphenolithus belemnos	Sphenolithus heteromorphus	Sphenolithus grandis	Calcidiscus leptoporus	Pontosphaera sp. B.	Coccolithus eopelagicus	Sphenolithus capricornutus	Triquetrorhabdulus milowii
NN4/5	6H-5, 100-101		С	Α	_	С			R	F			R				С						
NN3	6H-6, 45–47 6H-CC	R	C C	A A	R R	C C		v v	R R	F F	F F	F C	R R		R	R V	F F	R	R				
NN2	7H-1, 100–101 7H-2, 45–47 7H-3, 100–101	R	C C F	A A A	V R R	C C C	V F R	R R F		F F F	F F C	C F	R R			C F		R R		R	v	с	v

species epithet). Bifurcations range from relatively small and narrow-angled to large, broadly bifurcate tips (e.g., Pl. 5, Fig. 12). The broad-tipped forms have been named *D. variabilis pansus* by Bukry and Percival (1971) and *D. pansus* by Bukry (1973). *Discoaster variabilis* s.s. and *D. pansus* appear to grade into one another in our samples, and we have therefore elected to list both end members and intermediate forms under *D. variabilis* s.l. in the range charts. Rhabdosphaera procera. This species is distinguished from R. claviger by the parallel sides of the spine of the former taxon. R. procera is small at the beginning of its range but becomes larger than R. claviger in the Pleistocene.

Sphenolithus abies/S. neoabies. We found it difficult to distinguish these two small species consistently and so have combined them where they occur together in the late Miocene interval.

Zone	Core, section, interval (cm)	Thoracosphaera saxea	Coccolithus pelagicus	Reticulofenestra haqii/R. minutula/ R. minuta	Pontosphaera spp. Ceratolithus ruposus	Ceratolithus cristatus	Helicosphaera carteri	Calcidiscus leptoporus	Calcidiscus macintyrei	Discoaster brouweri	Discoaster pentaradiatus	Discoaster surculus	Discoaster asymmetricus	Discoaster variabilis s.i.	Discoaster tamalis	Discoaster decorus	Pontosphaera discopora	ocapnoutnus jossius Harrietae membreus	rayaster perptextas Scyphosphaera tubifera	Rhabdosphaera procera	Scyphosphaera apsteinii	Scyphosphaera pulcherrima	Scyphosphaera ventriosa	Scyphosphaera piriformis	Scyphosphaera conica	scypnosphaera procera	Scyphosphaera globulosa	ocyphosphaera geoman Scyphosphaera amphora	Scyphosphaera aranta	Scyphosphaera deflandrei	Scyphosphaera recurvata	Scyphosphaera kamptneri	Scyphosphaera porosa	ocypnospnaera campanuta Discosphaera tubifer	Scyphosphaera recta	Scyphosphaera turris	Scyphosphaera abelei	Scyphosphaera pacifica	Scyphosphaera gladstonensis	Scyphosphaera ampla	Cruciplacolithus tenuis Demidramiliania larunosa	r Seutocranumu acunosa Diamatae klaabahahaa	Discousser Diacostochae Rhabdosphaera claviger	Syracosphaera sp.	Helicosphaera wallichii	Gephyrocapsa oceanica	Gephyrocapsa caribbeanica Rhabdosphaera longistylis	Emiliania huxleyi
NN20/21	122-762- 1H-CC 1H-1, 110-112 1H-2, 110-112 1H-3, 110-112 1H-3, 110-112 1H-CC 2H-1, 100-101 2H-2, 100-101 2H-4, 100-101 2H-5, 100-101 2H-5, 100-101 2H-CC 3H-1, 99-100 2H 20, 100, 101	R R FFFFFR		CCCFFFFFFFFFF	R FF FF FF FF FF	R R R R R R R R R R R R V R V R V R V V R	CFFFCCCCCCCF	FFFFFFFFFCCC	V R R R R R R	R	v	20						FRFF FR FR	R	V R R R R R R R R	R R R	v	R	V R R	1	R R 1	R R I V I	۲ ۲	R R R	R R	R	P	v		v		v v	R			R F F F F F F F F F F F F F F F F F F F	REFECCAAAAA	FR RRR RRR RRRR	R R	R R R R V F	A A A A A C C F F F F F F	A F R R V R V R V R V	
NN17/18	3H-3, 100-101 3H-5, 100-101 3H-CC 4H-1, 100-101 4H-2, 100-101 4H-3, 100-101 4H-4, 100-101 4H-CC 5H-1, 100-101 5H-2, 100-101 5H-3, 100-101 5H-3, 100-101	F F F F F F R F R R R R R R R R	R R R R R	F F F A A A A A A C C A A	FFRRRRRRRRRRRRRRRR	v	000000000000000000000000000000000000000	CFFFFFRRCFFFC	R F R F	V RRCCCCC	R	FV				vv	F	R		R R R R R R R R R R F	R R R	V R R R R R R R	R R R R R R R R R R	R R R	R	R	R I	2	R	R	R	R	v	R	v	v		R	v	v		A A A A A A A A A A A A A A A A A A A	C C F F R R R R R R R	R	F	R F F	F F R	7
NN16	5H-6, 100-101 5H-CC 6H-1, 100-101 6H-2, 100-101 6H-3, 100-101 6H-5, 100-101 6H-CC	R F F F F F F	R	A A A A C A	F R F F F F F F F F F F F F F		CCFFFFC	C C F F F F C	F F R	C C C C C F F	R C C C C C F C	R R R R R R R	R R R R	R R R	R R R F R R	R	1	R R R	R	R R R R R R	R R R R	R R R R	R R R		R R	V R R R R	R R I	V R R	R	R	v v	1	R	v	v						F F J J	F F F F F F	R R R R R R					

Table 3. Calcareous nannofossils in Hole 762B.

604

W. G. SIESSER, T. J. BRALOWER

CENOZOIC CALCAREOUS NANNOFOSSILS

				1. Contraction of the second s								
Zone	Core, section, interval (cm)	Thoracosphaera saxea Coccolithus pelagicus Cyclicargolithus floridanus Calcidiscus leptoporus Reticulofenestra pseudoumbilica	Reticulofenestra haqii/R. minutula/ R. minuta Calcidiscus protoamulus Umbilicosphaera sibogae Thoracosphaera operculata Disconcear variabilis e 1	Disconster running su. Disconster brouwer Disconster pentaradiatus Disconster surculus Disconster surculus Disconster blackstockae	Discoaster quinqueramus Discoaster challengeri Sphenolühus abies/S. neoabies Triquetrorhabdulus rugosus Helicosphaera carteri	Pontosphaera spp. Pontosphaera sp. B. Scyphosphaera apsteinii Scyphosphaera intermedia	Scyphosphaera pulcherrima Scyphosphaera cylindrica Scyphosphaera recurvata Scyphosphaera conica Scyphosphaera recua	Scyphosphaera ampla Scyphosphaera procera Scyphosphaera globulosa Scyphosphaera amphora Scyphosphaera campanula	Scyphosphaera deflandrei Scyphosphaera lagena Scyphosphaera penna Scyphosphaera aranta Scyphosphaera oremesa Scyphosphaera ventriosa	Scyphosphaera apsteinii dilatata Scyphosphaera canescens Scyphosphaera kamptneri Scyphosphaera tubifera Scyphosphaera tubifera Ceratolithus armatus Discoaster decorus Amaurolithus delicatus	Amaurolithus primus Amaurolithus amplificus Amaurolithus tricomiculatus Amaurolithus bizzarus Pseudoemiliania lacunosa	Discoaster asymmetricus Rhabdosphaera procera Ceratolithus rugosus Ceratolithus acutus Scapholithus fossilis Discoastar tomalis
NN16	7H-1, 100-101 7H-3, 100-101 7H-5, 100-101 7H-6, 100, 101	R F R R R F P P	A F A F A F	C C R C C R C C R C C R	C C R C R C	F R R R F R R R F R	R R R R V	R R R R R R	VV R R	V V R	F F F	R R R R F R F F R R R R P P P
	7H-CC 8H-1, 100–101 8H-3, 100–101	R RV R RV R RV	A F A F A F	A C R A C R A C R C C	F C F C F C	F RR FRRR F R	R R F F R	R R R R R R	R R R R R R R R	R R R R R R	F R F	R R R R R R R R R R R
NN14/15	8H-4, 100–101 8H-5, 100–101 8H-6, 100–101 8H-CC	R RF R RF R RF R C	A F A F A F A F	CCR CCR FCR FCR	F C F C F C F C	F F RRR R RRR	R R RRVR	RR V R	R R R R R R	FRR R VRR	V	R R R R R R R F R
	9H-1, 100-101 9H-3, 100-101 9H-5, 100-101	R F C R F C F F C	A F A F A F	V F C R C C F C C F F C P	C C C C A C	R R F F R F P P	R R R R F R V R	R R R R P	R R R F F R R	V R R V R		R R R R R R
NN13	10H-1, 100–101 10H-3, 100–101 10H-5, 100–101	R FA R FA R RA	C F C F C	CAR CAR CA CCF	C F F C F	F R R R F V R R R	R F VR R F	R V R R	R R R R R R R R R	V R R R		R R R R R R
	10H-CC 11H-1, 100–101 11H-2, 100–101	FR RC RF VC RR C RR C	A VF A F C F	CCF CCF CRF CRF	C R C R F F R F R	R RR RRRR R RRR	R VR R R	FRRR		RR	RV	R V R R R
NN12	11H-4, 99–100 11H-6, 100–101 11H-CC	R R C R R R C R F C	C F A C A R F	FRF FRFV FRFCR	F R R C V F R C R	R R RVR RR R	R R R R R	F R R	R R R R R R	R R R	v	R R R R
NN11	12H-1, 125–127 12H-2, 100–102 12H-4, 139–141 12H-6, 101–102	RF RC F C RR RC RR C	CV H C H C R C	RFFR RRRR RRRRR RRRRR	C R F R F F R F R A R F R C R P	R R R R	RR	RF	RR	RR	R R R	
	12H-CC	F C	Ă C	RRFR	CRC F	RRR	RRV	RV	v	RR	RR	

Table 3 (continued).

Reticulofenestra pseudoumbilica Helicosphaera carteri Pontosphaera sp. B. Triquetrorhabdulus challengen Scyphosphaera deflandrei Sphenolithus abies/S. neoabies Triquetrorhabdulus rugosus Discoaster deflandrei Discoaster variabilis s.l. Triquetrorhabdulus carinatus Coccolithus pelagicus Cyclicargolithus floridanus Coccolithus eopelagicus Dictyococcites bisectus Zygrhablithus bijugatus Discoaster druggii Sphenolithus grandis Sphenolithus heteromorphus Sphenolithus pseudoradians Sphenolithus dissimilus Discoaster kugleri Discoaster exilis Triquetrorhabdulus milowii Helicosphaera perch-nielse Braarudosphaera bigelowii Helicosphaera intermedia Helicosphaera euphratis Calcidiscus protoannulus Sphenolithus predistentus Scyphosphaera intermedia Umbilicosphaera sibogae Sphenolithus ciperoensis Helicosphaera obliqua Helicosphaera granulata Scyphosphaera piriformis Scyphosphaera pulcherri Scyphosphaera cylindrica Scyphosphaera recurvata Scyphosphaera conica Scyphosphaera globulosa Scyphosphaera amphora Discoaster quinqueramus Amaurolithus primus Sphenolithus conicus Sphenolithus moriformis Discoaster pentaradiatus Scyphosphaera apsteinii Hayaster perplexus Coronocyclus nitescens Micrantholithus pinguis Sphenolithus belemnos Thoracosphaera saxea Calcidiscus leptoporus Scyphosphaera procera Scyphosphaera lagena Discoaster neohamatus Ericsonia subdisticha Scyphosphaera campa Scyphosphaera ampla Scyphosphaera tubifer Scyphosphaera recta Discoaster braarudii Catinaster calvculus Discoaster hamatus Discoaster surculus Catinaster coalitus calcaris Discoaster signus Discoaster chall Discoaster br Discoaster Discoaster Scyph Core, section, interval (cm) Zone 13H-1, 100-101 F 13H-2, 100-101 R R 13H-3, 100-101 R R 13H-4, 100-101 R R 13H-5, 100-101 R R 13H-6, 100-101 R R R R R R C C V F R C R CF RRRRR R R CR R R R R **NN11** R R C C F R C R F R R F F FVCRFRR RF FR R R F RR R NN9 R F R R F R F R R F F R V F FFFRCCCFFFF RRRRFV RCF VFRFR R R FR RR CR 13H-CC RF R FCR RVRV R R RR RR R 14H-1, 100–101 R F 14H-2, 18–20 R C C R R C F F F F R R R R R R R V V R R R R F 14H-2, 18-20 R C 14H-4, 18-20 R A 14H-5, 100-101 A 14H-6, 4-6 R A 15H-1, 88-90 R A 15H-2, 100-101 R A 15H-3, 88-90 R A 15H-4, 100-101 R A 15H-5, 88-90 R A CR V V R R R F R R NN6/7 R RR R R RR R V R R R R R V R R F R R F F V R V R V V R C NN4/5 C R F FR RRR R F C R F F R R R RR F V R F C F RR R R A R A 15H-6, 88-90 VF R 15H-CC F R R NN1/2 16H-1, 100-101 R A V FC VR RR R R R R R F R R R R 16H-3, 100–101 R A 16H-4, 100–101 R A RVFVR F R R R R R R F R R R R R R R R R R 16H-5, 100-101 R A R V R R R R R 16H-6, 100-101 R A R R R NP24/25 RARRR FFR F F 16H-CC R

Table 3 (continued).

Zone	Core, section, interval (cm)	Markalius astroporus Thoracosphaera saxea Coccolithus pelagicus Cyclicargolithus floridanus Reticulofenestra umbilica	Dictyococcites bisectus Zygrhablithus bijugatus Ericstonia formosa Chiasmolithus oamaruensis Dictyococcites callidus s.l.	Coccolithus eopelagicus Discoaster deflandrei Discoaster saipnnensis Discoaster harbadiensis Discoaster barbadiensis	Discoaster tanii Sphenolithus radians Sphenolithus moriformis Bramletteius serraculoides Helicocedeaseo commorto	Helicosphaera reticulata Thoracosphaera prolata Ericsonia subdisticha Coronocyclus nitescens Calcidiscus motoamulus	Sphenolithus conicus Braarudosphaera bigelowii Discolithina segmenta Isthmolithus recurvus Sphenolithus predistentus	Corannulus germanicus Helicosphaera intermedia Helicosphaera wilcoxonii Sphenolithus pseudoradians Hayella situliformis Helicosphaera euphratis	Trancospruent capatures Transversopontis pucheroides Micratholithus pinguis Scyphosphaera expansa Blackties spinosus/B. tenuis Blackties spinosus Blackties tenuis Canterithus minutus Pontosphaera enormis Helicosphaera enormis	Rhabdosphaera vitreus Pontosphaera vitreus Pertrachelina joidesa Chiasmolithus altus s.l. Braarudosphaera discula Scyphosphaera pana Helicosphaera plana Helicosphaera parch-nielseniae Sphenolithus distentus Sphenolithus ciperoensis	Sphenolithus dissimilus Triquetrorhabdulus carinatus Hayaster perplexus Discoaster variabilis s.l. Pontosphaera multipora Thoracosphaera sp. A.
NP24/25	17H-1, 100–102 17H-3, 100–102	F A F A V	F F R F R	R C R C V	C C	R R R	R R R	R	٤	R	R F V R F
	17H-4, 100–102 17H-5, 100–102	F A R F A	RF R CF	RF	F F V	R F F R	R F V F			R R R	F
	17H-6, 100–101 17H-CC	F A R A	FF R CCV	R C R F R	R F V F V	R	C F F C	RR	2	R	F
NP23	18H-1, 100–102 18H-3, 100–102	RFA	CC	FCV R	RRF	R	FFF			RR	RR
	18H-4, 101–102 18H-5, 100–102	FAV	C C	RCR	R	V R	R R P P		P		v
	18H-6, 101–102	RRAR	CCV	RF	R F F	R	R R	D D	R		P
NP22	19H-1, 100–101	RFAR	CCV	RFVFV	R R R R	F R	C F	R	R F F V	R R	K
	19H-2, 100–101 19H-3, 100–101	F A R F A R	СССС	R F R R	R R R H R R V H	F F R	C R C R	R	F F R F		
Sections.	19H-5,100-101 19H-6, 100-101	R F A F R F A F	C F V C R F R	R R R	R R R H	R F	F		RRR		
NP21 NP22	19H-CC 2X-1, 100-101	R F A R R C A R	CRR	V R R R	RRI	R	R R C R	R	R R F R R R F	R	R
	2X-2, 100-101	RCAR	CC		RRI	R R	C R	p		R	P
	2X-5, 100-101 2X-CC	RRAR	C C F R	RRV	RRI	RR	RRR	R.	R R R R F R	V R	, A
	3X-1, 100–101 3X-3, 100–101	RAC	C C F R	R R R	FVRVI	RRF	RRR	RR	RR F V	r K	
NP21	3X-4, 100–101 3X-CC	R FAC	C C F V C C F V R	R R R R R R	R RRI		R R R R	R R	R		
	4X-1, 100–101 4X-3, 100–101	R F A C R R A F	C C F C C F R	R R R R R F	F RRI F RRI	F	R		FR		
	4X-CC 5X-1 54-56	R A C R A C	CCFR	RFVF	F R R I	R R	R	V R RV	R		R
NP19/20	5X-2, 36-38 5X-CC	RFCC	CAFFR	R R R R R R R R R R R R R R R R R R R	R FRI		R	RR	R		
		1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		100 0 000							

CENOZOIC CALCAREOUS NANNOFOSSILS

Table 4. Calcareous nannofossils in Hole 762C.

							-															-				
Zone	Core, section, interval (cm)	Markalius astroporus	Thoracosphaera saxea	Coccolithus pelagicus	Cyclicargolithus floridanus	Reticulofenestra umbilica	Dictyococcites bisectus	Zygrhablithus bijugatus	Ericsonia formosa	Chiasmolithus oamaruensis	Dictyococcites callidus s.l.	Coccolithus eopelagicus	Discoaster deflandrei	Discoaster saipanensis	Discoaster nodifer	Discoaster barbadiensis	Discoaster tanii	Sphenolithus radians	Sphenolithus moriformis	Bramletteius serraculoides	Helicosphaera compacta	Helicosphaera reticulata	Thoracosphaera prolata	Ericsonia subdisticha	Coronocyclus nitescens	Calcidiscus protoannulus
NP22 NP21	2X-1, 100-101 2X-2, 100-101 2X-3, 100-101 2X, CC 3X-1, 100-101 3X-3, 100-101 3X-4, 100-101 3X, CC 4X-1, 100-101 4X-3, 100-101	R	R R R R R	C C F R F R F F F R	A A A A A A A A A A	R R F R C C C C C F C	000000000000	CCFCCCCCCC	V RFCFFFFF	V V V R	R R R	R R R R R R R R R R R R R	R R R R R R R R R	v v v	R R R F	V F	F R F	R V	R R R R R R R R R R R R R R R R R R R	F R R R V V R R R R R R	R F F R R R R F R	R R R R R R R		R R R	P	R
NP19/20	4X, CC 5X-1,54–56 5X-2, 36–38 5X, CC		R R	R R F F	A C C	CCCC	C C C C C	C A A	F F F	R R F R	R	R R R R	F R V	V R	F R R R	R R	F F R		F	R F R R	R R F R	R R R	v		R	

Reticulofenestra haqii/R. minuta/R. minutula. These three small species are also difficult to separate, so we have also listed them under a single category.

Thoracospheara sp. A. This species resembles *T. saxea* but has smaller crystal elements making up the test.

Pontosphaera sp. A. This is a large $(10-15 \ \mu\text{m})$, elliptical form that appears bright white between crossed nicols.

Pontosphaera sp. B. This large $(8-12 \mu m)$, thick form shows bright multicolors between crossed nicols.

ZONATION

Although we used Martini's (1971) biostratigraphic zonation in this study, some modifications to the standard scheme were necessary, owing to the rarity or absence of several marker species. The following paragraphs describe the zonational conventions we used and add some relevant stratigraphic comments.

Evolutionary first appearances are more sharply defined than extinctions, largely because upward reworking blurs true extinction horizons. In Tables 1–5, if the first occurrence of a zonal marker species was designated as "very rare," that level was still considered to be the evolutionary first occurrence and the zonal boundary was drawn below that level. If the last occurrence was "very rare," however, the boundary was usually drawn just below that level, especially if the relative abundance had dropped from "few" or "rare" (but consistently "rare") down to "very rare," then "absent." A few "very rare" to "rare" specimens are expected to be reworked above any extinction level.

Zone NP1–NP2 boundary. We used the first appearance of *Cruciplacolithus primus* to mark this boundary in our study. Romein (1979) described *C. edwardsii* as a form that evolved from *C. primus*, and which first appears somewhat later than *C. primus*. In Hole 762C, however, both species make their first appearance in the same sample, although with *C. primus* being much more common than *C. edwardsii* (Table 4). *Cruciplacolithus tenuis* s.s. first appears slightly above *C. primus* and *C. edwardsii* at Site 762.

Zone NP2–NP3/NP4 boundary. NP3 and NP4 are often combined, because *Ellipsolithus macellus* is almost always a rare form. The NP2–NP3/NP4 boundary is drawn at the level of the first appearance of definite *Chiasmolithus danicus* at Site 762. The zonal boundary drawn on Table 4 and Figure 4 is considered tentative, and could be slightly lower, because *C. danicus* is not always readily distinguishable from *Cruciplacolithus edwardsii*.

Zone NP3/4–NP4 boundary. An approximate lower boundary for NP4 is drawn based on the first appearance of the secondary marker species *Chiasmolithus bidens*, whose first occurrence is considered to be in NP4 (Romein, 1979; Perch-Nielsen, 1985).

Zone NP7/NP8. Zones NP7 and NP8 are combined because *Heliolithus riedelii*, whose first occurrence defines the NP7–NP8 boundary, is too rare to be useful in these cores.

Zone NP15–NP16 boundary. The taxon defining this boundary (*Rhabdosphaera gladius*) is absent here. We have therefore used the last occurrence of *Nannotetrina* spp. and the first occurrence of *Discoaster nodifer* to approximate the boundary (see Perch-Nielsen, 1985).

Zone NP16-NP17 boundary. The last occurrence of the marker species *Chiasmolithus solitus* is not reliable here owing to its rarity. We have used the last occurrences of *Reticulofenestra reticulata* (just below the boundary) and *Helicosphaera compacta* (just above the boundary) to approximate the true zonal boundary (Perch-Nielsen, 1985).

Zone NP19/NP20. These zones are combined because the marker species (*Sphenolithus pseudoradians*) that divides the zones is rare here; furthermore, the range of this species is now considered to be diachronous (Perch-Nielsen, 1985).

Zone NP24/NP25. Zones NP24 and NP25 are combined because the boundary marker, *Sphenolithus distentus*, is too rare to be reliable in these cores.

Zone NP24/NP25-NN1/NN2 boundary. The unreliability of the range of *Helicosphaera recta*, which is the official marker of the NP25-NN1 boundary, is well known (Perch-Nielsen, 1985). The boundary here is approximated by the last occurrence of *Dictyococcites bisecta* (Perch-Nielsen, 1985).

Zone NN1/NN2. These zones are combined because *Discoaster druggii* is rare and difficult to distinguish consistently when any calcitic overgrowth obscures the ray points.

												_							-														_	
Sphenolithus conicus Braanudoschaara hicalowii	Discolithina segmenta	Isthmolithus recurvus	Sphenolithus predistentus	Corannulus germanicus	Helicosphaera intermedia	Helicosphaera wilcoxonii	Sphenolithus pseudoradians	Hayella situliformis	Helicosphaera euphratis	Transversopontis pulcheroides	Micrantholithus pinguis	Scyphosphaera expansa	Blackites spinosus/B. tenuis	Blackites spinosus	Blackites tenuis	Lanternithus minutus	Pontosphaera enormis	Helicosphaera obliqua	Rhabdosphaera vitreus	Pontosphaera versa	Peritrachelina joidesa	Chiasmolithus altus s.l.	Braarudosphaera discula	Scyphosphaera apsteinii	Pontosphaera plana	Helicosphaera perch-nielseniae	Sphenolithus distentus	Sphenolithus ciperoensis	Sphenolithus dissimilus	Triquetrorhabdulus carinatus	Hayaster perplexus	Discoaster variabilis s.l.	Pontosphaera multipora	Thoracosphaera sp A.
CC R R R C R R R R R	R R	R R R R R R R	R R R R R	v	R	R R	R R R	R V	R	R R R R	R	v	R R R F F R R F R R R R R R R R R R R R	R R R R R	R	F R F F C	R	v	v	v	R R				R R R								R	R

Zone NN4/NN5. These zones are combined because of the absence of the NN4–NN5 boundary marker, *Helicosphaera ampliaperta*.

Zone NN6/NN7. These zones are combined because the boundary marker, *Discoaster kugleri*, is rare and occurs sporadically.

Zone NN14/NN15. These zones are combined because the boundary marker, *Amaurolithus tricorniculatus*, is too rare to be reliable.

Zone NN17/NN18. Zone NN17 is an exceptionally thin zone; the extinction of *Discoaster surculus* (base of NN17) occurs only slightly before the extinction of *D. pentaradiatus* (top of NN17) (Perch-Nielsen, 1985). We could not separate the extinction levels of these two species here, so the two zones are therefore combined.

Zone NN20/NN21. These zones are combined in this light microscope study because the first appearance of *Emiliania*

Table	4	(continued).	

Zone	Core, section, interval (cm)	Markalius astroporus	Thoracosphaera saxea	Coccolithus pelagicus	Chiasmolithus consuetus	Chiasmolithus grandis	Chiasmolithus expansus	Campylosphaera dela	Zygrhablithus bijugatus	Ericsonia formosa	Coronocyclus nitescens	Discoaster gemmeus	Discoaster gernanicus	Discoaster deflandrei	Discoaster saipanensis	Discoaster nodifer	Discoaster barbadiensis	Discoaster tanii	Sphenolithus radians	Sphenolithus moriformis	Sphenolithus furcatolithoides	Cyclicargolithus floridanus	Reticulofenestra umbilica	Reticulofenestra reticulata	Dictyococcites callidus s.l.	Bramletteius serraculoides	Helicosphaera compacta	Thoracosphaera prolata	Discoaster strictus	Ericsonia subdisticha	Calcidiscus protoannulus	Reticulofenestra dictyoda	Chiasmolithus oamaruensis	Dictyococcites bisectus	Coccolithus eopelagicus	Helicosphaera reticulata	Blackites spinosus/B. tenuis	Cyclococcolithus luminis	Chiasmolithus oamaruensis	Sphenolithus intercalaris	Discolithina segmenta	Isthmolithus recurvus	Clathrolithus ellipticus	Sphenolithus predistentus	Corannulus germanicus
NP19/20	6X-1, 100–101 6X-4, 100–101 6X, CC 7X-1, 100–101 7X-3, 100–101	R	R R R	FFFFF					CCCAC	FFFFC	R R			R	FCCCCC	R R R R	R F F R R	FFFFF		R R R R F		C C A A A	C F C R F	R		R R R R R R	F				R R			C C F A C	F R F R	R	R R F R R		F R F			R R R	R	R	R
NP18	7X-4, 100–101 7X, CC 8X-1, 100–101 8X-3, 100–101 8X, CC 9X-1, 67–68 9X, CC	R R R	R	FCFFFFF					CCAACCC	CCCFFFF		R R			CCCFCCF	R F R F F F R	RRFRFF	FFFCCCCC		F F R R F R		AAAAAA	FACFFFF	RRFRRR	R F R F R	RRFRFF	R	v		R	F R R	R R R		CCCCCFC	RRRRF	R R R R	R R R R F R R F R		R R R R R R R R	R	R				
NP17	10X-1, 105-106 10X-3, 105-106 10X, CC 11X-1, 99-100 11X-2, 99-100 11X-3, 99-100 11X-4, 99-100 11X-5, 99-100 11X-6, 99-100 11X, CC	R	R R R	FFCCCCCCCCC	R	FFRFFFFCFF	R	V R R	AACAAACCA	FFFFFCCCCC	R	V R	R	R	CCCFCCCCCC	RRRFFFFFFF	FFRFFFRRRR	C F F V R	V R R	R R R V R R	R	AACAAAAAAAA	FFFFFFF CF	FFRRRRRRF		FFFFFFFRR	R	R R F	R F R R R R R	R R R R R	R F F	R R F	R	CFCCCFFC	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	R	RRRRRRRRR	R						R R F R	

							-																	
Zone	Core, section, interval (cm)	Markalius astroporus	Thoracosphaera saxea	Neochiastozygus spp.	Ericsonia cava	Coccolithus pelagicus	Chiasmolithus consuetus	Chiasmolithus solitus	Chiasmolithus grandis	Chiasmolithus expansus	Zygrhablithus bijugatus	Discoaster salisburgensis	Discoaster gemmeus	Discoaster lodoensis	Discoaster germanicus	Discoasteroides kuepperi	Discoaster deflandrei	Discoaster sublodoensis	Tribrachiatus orthostylus	Sphenolithus radians	Neococcolithes dubius	Clathrolithus ellipticus	Coronocyclus nitescens	Reticulofenestra dictyoda
NP17 NP16	12X-1, 100-101 12X-5, 100-101 12X-6, 100-101 12X, CC 13X-1, 99-100 13X-2, 99-100		R R R			000000	R		CCFFCC		C A A A A A		R F		F R		R			R R F R R			FFRRR	RR
NP15	13X, CC 14X-1, 100-101 14X-3, 100-101 14X-5, 100-101 14X-6, 100-101 14X, CC 15X-1, 100-101 15X-2, 100-101 15X, CC 15X, 1 99-100	V	R F F R R			CFCCCCCFFR		R R C R R R R R	RCFFFFCCCF	R F R	C A A C A A C A A		F			F	R R R			R R R		R	FF RRRFRRF	K R R R R R R R R R R R R R R R R R R R
NP14	16X-1, 99-100 16X-3, 99-100 16X, CC 17X-1, 99-100 17X-4, 104-105 17X-5, 99-100 17X, CC 18X-1, 100-101 18X-2, 100-101 18X-3, 100-101	v	R F R R	R R		R F C F F F F F F F F F C	v	R R F R	F F R R R F C F F	R R F R	A A C C C C A A A A	v		R R R R R R R R		R R R R R R	R R R	F F F R F R R		R R R R R R F R R R R R R R R R R R R R		R R	r R F F F F F F F C	R C C R R R R R R R R
NP13 NP12	18X-5, 100-101 18X-6, 100-101 18X, CC 19X-1, 100-101 19X-2, 100-101 19X-3, 100-101 19X, CC	v	R R R		F F	CCCCCCR	R R		C F F R R F	C C F	A A A A A	v		0000000		R R F R R F R R	R	R	R R	R F R R R	R	R	F R R R R R R	FRFFFFR

huxleyi can only be determined accurately using the electron microscope.

Figures 2 to 7 show the biostratigraphic zonation (Martini, 1971) for individual sites. Species used for recognizing each zonal boundary are described in detail in Haq, von Rad, O'Connell, et al. (1990) and will not be repeated here. Remarks on the biostratigraphy of each site are given in the following paragraphs. Site 762 may be considered an important reference section for the eastern Indian Ocean because of its stratigraphic continuity. The nannofossil assemblage at Site 762 is therefore described in considerably greater detail than the other sites.

Site 759

Two holes were drilled at this site: 759A and 759B (16°57.24–.25'S, 115°33.61–.63'E; 2092 m water depth). There was no core recovery at Hole 759A. Hole 759B was rotary-cored to a depth of 308 meters below sea floor (mbsf), penetrating 40.5 m of Cenozoic sediments.

The interval from the top of Core 122-759B-3R to Section 122-759B-4R-4, 25 cm, is Quaternary in age (Zones NN19–NN21). A hiatus exists at this level, with the underlying sediments from Sections 122-759B-4R-4, 26 cm, through 122-759B-5R-CC assignable to lower Miocene Zones NN4/NN5. Core 122-759B-5R rests unconformably on Triassic rocks.

Site 760

Two holes were drilled at Site 760: 760A and 760B (16°55.32'S, 115°32.48'E; 1970 m water depth). Hole 760A was cored using the advanced piston corer (APC) to a depth of 83.7 mbsf (the base of the Tertiary), then continued to a depth of 284.9 mbsf using the extended core barrel (XCB).

Figure 2 shows the zonation of Cenozoic sediments in Hole 760A. The sequence ranges from upper Pleistocene (NN20/ NN21) to lower Eocene (NP10/NP11). Several hiatuses occur as shown by the missing zonal intervals NP21–NP22 (uppermost Eocene–lower Oligocene), NN4 (lower Miocene), NN12–NN15 (upper Miocene–lower Pliocene), and NN17– NN18 (upper Pliocene). Zones NN8 and NN10 are missing at our almost complete "standard" Cenozoic Site 762, but are present here in Hole 760A; Table 1 is a checklist of species occurring across this interval.

Site 761

Three holes were drilled at this site: 761A, 761B, and 761C (16°44.22–.26'S, 115°32.09–.10'E; 2168 m water depth). Only one core (Quaternary) was taken at Hole 761A. Hole 761B was APC-cored to a depth of 89.7 mbsf (middle Eocene), then XCB-cored to a depth of 286.7 mbsf (Triassic); the Cretaceous/Tertiary (K/T) boundary was encountered at 175.7 mbsf. Hole 761C was rotary-cored and two additional cores

Toweius gammation	Ericsonia subdisticha	Blackites spinosus/B. tenuis	Braarudosphaera bigelowii	Campylosphaera dela	Sphenolithus moriformis	Ericsonia formosa	Discoaster barbadiensis	Chiphragmalithus sp.	Cyclicargolithus floridanus	Chiphragmalithus acanthodes	Helicosphaera lophota	Coccolithus eopelagicus	Triquetrorhabdulus inversus	Discoaster strictus	Ericsonia fenestrata	Discoaster saipanensis	Reticulofenestra umbilica	Nannotetrina fulgens	Chiasmolithus gigas	Cruciplacolithus staurion	Sphenolithus furcatolithoides	Rhabdosphaera inflata	Bramletteius serraculoides	Thoracosphaera heimi	Thoracosphaera prolata	Nannotetrina cristata	Sphenolithus spiniger	Discoaster nodifer	Helicosphaera compacta	Reticulofenestra reticulata	Pontosphaera plana	
R R R R R F F F R	R R RRRRR RRRRR RR RRRRR	R R R R R R R	V V R	RRRRRFFFRRRRRR RR FRFFRRCC	R R R R R R R V	CC FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	FFFFFRFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	R	A A A A A A A A A C C C C A A A A A A A	RVRRR FRRR F	R R R R	FF FF FF V R R R R R R V	RFFFFF CCCFFFFFC FFCR	R	R F	FRRF R R R R F F R	C C F F C C R R F F F F F F F R R	R R R	R C C F	R V	FFFFFFFFF FFFFF R F F F R R	R R	R R R R R R R R R R R R R R R R R R R	R	R R R	v v	FRR	R R F R R	RR	R F R	R	
v	R		R	F R		F F																										

(122-761C-2R and -3R) were taken across the K/T boundary in this hole.

Table 4 (continued).

The Cenozoic sequence at Hole 761B has a number of missing intervals. Hiatuses occur at the K/T boundary (NP1), in the lower Eocene (NP10–NP13), from the middle Eocene to the upper Oligocene (NP17–NP24), in the upper Miocene to lower Pliocene (NN9 (in part) to NN10 and NN12 to NN15), and in the upper Pliocene (NN17 to NN18) (Fig. 3). Hole 761C recovered a thin NP1 zonal interval, which is missing at Hole 761B.

The Paleocene at this site contains an assemblage of radiolarians suitable for establishing a Paleocene radiolarian zonation (Blome, this volume). This was an important discovery, since the Paleocene is currently unzoned by radiolarians. We have included a calcareous nannofossil range chart for the important Paleocene interval (Table 2), which also provides complementary data for the radiolarian zonation. We also include a range chart (Table 2) for the upper part of the lower Miocene (Zones NN2–NN4/NN5), since Zone NN3 is missing in our standard section at Site 762.

Site 762

Three holes were drilled at Site 762: 762A, 762B, and 762C (19°53.23–.24'S, 112°15.24–.26'E; 1360 m water depth). At Hole 762A, a single core of Quaternary age was recovered. Hole 762B was APC-cored to a depth of 175.4 mbsf (lower

Oligocene). Hole 762C was XCB-cored to a depth of 940 mbsf (Lower Cretaceous). The K/T boundary was penetrated at 554.5 mbsf.

Holes 762B and 762C together form one of the most complete Cenozoic sequences ever recovered at a single site (Fig. 4). Only a few calcareous nannofossil zones are missing, and these are exclusively in the Miocene (NN3, NN8, and NN10). Tables 3 and 4 are detailed range charts and biozonation of the Cenozoic at Site 762. Figure 5 plots the first occurrence and last occurrence of biochronologically important species against core positions and biozones at Site 762. The continuity of the section and good preservation of the taxa offered an opportunity to perform a rigorous biomagnetochronologic analysis of the nannofossils at Site 762 by integrating biostratigraphy and magnetostratigraphy. The first stage of this study, a late Miocene–Quaternary biomagnetochronologic synthesis, is presented elsewhere (Siesser et al., chapter 40, this volume).

Site 763

Three holes were drilled at this site: 763A, 763B, and 763C (20°35.19–.21'S, 112°12.50–.52'E; 1368 m water depth). Hole 763A was APC-cored to a depth of 194.9 mbsf (upper Eocene). Hole 763B was XCB-drilled to a depth of 653.5 mbsf (Lower Cretaceous). The K/T boundary occurs at 247.0 mbsf in Hole 763B.

																	_							
Zone	Core, section, interval (cm)	Thoracosphaera saxea	Biantholithus sparsus	Neochiastozygus spp.	Fasciculithus tympaniformis	Neochiastozygus junctus	Ericsonia cava	Coccolithus pelagicus	Chiasmolithus bidens	Chiasmolithus consuetus	Discoaster salisburgensis	Discoaster binodosus	Discoaster multiradiatus	Zygodiscus plectopons	Lophodolithus nascens	Zygrhablithus bijugatus	Tribrachiatus contortus	Tribrachiatus bramlettei	Calcidiscus protoannulus	Heliolithus riedelii	Chiasmolithus solitus	Discoaster nobilis	Tribrachiatus orthostylus	Sphenolithus radians
NP12	20X-1, 100–101 20X-3, 100–101 20X, CC 21X-1, 100–101 21X, CC 22X-1, 101–102 22X-1, 101–102	R					F R F F C F	F R C C C C C		R R R	R F R R	R R			R R	A A A A A			F		R R		F F R F R R R	R C F R R
	22X-5, 100-102 22X-5, 100-102 22X-6, 100-101 22X, CC	R R F		R			F C C F	C C C F		R	F R R	R F			D	C C A			D			D	R F C	R R P
NP11	23X-1, 100-101 23X-3, 95-96 23X, CC 24X-1, 100-101 24X, CC 25X-1, 100-101	R R R R R	v	R R R-V			F C F R R	F F F C F	R	R R-F R R	R F F F F C F	R R R	R	R F R	C F F	A A A A A		v	R R		R	R R R F R	R F F R	R F F R R
	25X-3, 100–101 25X-4, 100–101 25X, CC	R		R	V R		F R R	R R R	R F	R R R	C F F		R		R	C C C	V R		v	V		F F F	R	R
NP10	26X-1, 100-102 26X-3, 100-101 26X-4, 100-101	R			R R R	R	A A A	A R R	F F	F R	C F F		V R		R R	A A A				v R	F F	R		
	26X-5, 100–101 26X, CC				V R		A	R A	F	F	C C	R	C C			A C	R	F			8	R		

Figure 6 shows the Cenozoic zonation at Site 763. The entire Paleocene, the lower Eocene, and part of the middle Eocene (Zones NP1–NP14) are missing at this site. In addition, Zones NP17 (middle Eocene), NN6–NN9 (middle to upper Miocene), and NN17 (upper Pliocene) are missing. A range chart of species across the NP25–NN4/NN5 interval is given in Table 5 in order to investigate further the Zone NN3 interval missing in our standard section at Site 762.

Site 764

Two holes were drilled at this site: 764A and 764B (16°33.96'S, 115°27.43'E; 2697 m water depth). Hole 764A was rotary-cored to a depth of 169 mbsf. A thin (41.5-m-thick) Cenozoic sequence unconformably overlies Maestrichtian sediments at this site. The lowermost Cenozoic section (122-764A-5R-3) contains a mixed Eocene-Oligocene assemblage (Fig. 7). Overlying this mixed assemblage is an apparently complete sequence ranging from NP24 (upper Oligocene) to NN4/NN5 (lower to middle Miocene). A major lower-middle Miocene-Quaternary hiatus separates Section 122-764A-1R-7 (NN4/NN5) from Section 122-764A-1R-6 (NN19)

SUMMARY

Two sites located on the central part of the Exmouth Plateau and four sites located on a northern marginal spur, the Wombat Plateau were drilled during Leg 122. Cenozoic sediments containing abundant, diverse, and generally well-preserved nannofossils were recovered at all sites. Each site was amenable to detailed zonation using Martini's (1971) tropicaltemperate calcareous nannofossil zonation. Species assemblages suggest generally temperate-tropical conditions throughout the Cenozoic. Minor hiatuses occur throughout the Cenozoic section. Site 762, however, contains an almost complete Cenozoic section, missing only short intervals in the Miocene. This site may prove to be a useful biostratigraphic and biomagnetochronologic reference section for the eastern Indian Ocean.

ACKNOWLEDGMENTS

This work was supported by a grant to W. G. Siesser from the NSF/JOI United States Science Program. The U.S. Science Program associated with the Ocean Drilling Program is sponsored by the National Science Foundation and the Joint Oceanographic Institutions, Inc. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the National Science Foundation, the Joint Oceanographic Institutions, Inc., or Texas A&M University.

REFERENCES

- Bukry, D., 1973. Coccolith stratigraphy, eastern equatorial Pacific, Leg 16, Deep Sea Drilling Project. *In* van Andel, T. H., Heath, G. R., et al., *Init. Repts. DSDP*, 16: Washington (U.S. Govt. Printing Office), 653–711.
- Bukry, D., and Percival, S. F., 1971. New Tertiary calcareous nannofossils. *Tulane Stud. Geol. Paleontol.*, 8:123–146.
- Haq, B. U., von Rad, U., O'Connell, S., et al., 1990. Proc. ODP, Init. Repts., 122: College Station, TX (Ocean Drilling Program).
- Haq, B. U., von Rad, U., and the ODP Leg 122 Scientific Party, 1988. ODP Leg 122 looks at Exmouth Plateau. Geotimes, 33:10–13.
- Martini, E., 1971. Standard Tertiary and Quaternary calcareous nannoplankton zonation. In Farinacci, A. (Ed.), Proc. 2nd Planktonic Conf. Roma: Rome (Ed. Technosci.), 2:739–785.

Reticulofenestra dictyoda	Pontosphaera spp.	Pontosphaera sp. A.	Toweius gammation	Cruciplacolithus cribellum	Transversopontis duocavus	Transversopontis pulcheroides	Campylosphaera eodela	Discoaster robustus	Ericsonia subdisticha	Transversopontis zigzag	Transversopontis pulcher	Braarudosphaera bigelowii	Transversopontis fimbriatus	Transversopontis obliquipons	Chiphragmalithus calathus	Ericsonia formosa	Neococcolithes dubius	Discoaster delicatus	Rhabdosphaera perlongus	Discoaster lodoensis	Discoaster germanicus	Chiasmolithus grandis	Clathrolithus ellipticus	Discoasteroides kuepperi	Discoaster deflandrei	Coronocyclus nitescens	Campylosphaera dela	Chiasmolithus expansus	Sphenolithus moriformis	Discoaster wemmelensis	Micrantholithus pinguis
F F R F C	R						v					с				F F F F				C C C C F F	R	R F R F	R	R R R F R R		R R R	R R F R	R R	R	R	v
C C C C C C C F C A F	R F	R R R	R V	R R R	R R V	R	R R R R R R	v	R R	R	R R R	F R R	R	R R R	R R R	F F V R R	R	v	R R R	F R C	R	R R	R	R	R		R R				
F		R R R					R							v																	
	R R	R R					R																								

Perch-Nielsen, K., 1985. Cenozoic calcareous nannofossils. In Bolli, H. M., Saunders, J. B., and Perch-Nielsen, K. (Eds.), Plankton Stratigraphy: Cambridge (Cambridge Univ. Press), 427–554.
Romein, A.J.T., 1979. Lineages in early Paleogene calcareous nannoplankton. Utrecht Micropaleontol. Bull., 22:1–231.

Date of initial receipt: 6 April 1990 Date of acceptance: 4 March 1991 Ms 122B-162

APPENDIX

Cenozoic Calcareous Nannofossils in Exmouth Plateau Sediments

Listed in alphabetical order of species epithets:

- Scyphosphaera abelei Rade (1975)
- Sphenolithus abies Deflandre in Deflandre and Fert (1954)
- Chiphragmalithus acanthodes Bramlette and Sullivan (1961)
- Ceratolithus acutus Gartner and Bukry (1974)
- Discoaster adamanteus Bramlette and Wilcoxon (1967)
- Chiasmolithus altus Bukry and Percival (1971)
- Scyphosphaera amphora Deflandre (1942) Scyphosphaera ampla Kamptner (1955)
- (1955)
- Amaurolithus amplificus (Bukry and Percival) Gartner and Bukry (1975)
- Markalius apertus Perch-Nielsen (1979)
- Scyphosphaera apsteinii dilatata Gaarder (1970)
- Scyphosphaera apsteinii Lohmann (1902)
- Scyphosphaera aranta Kamptner (1967)
- Ceratolithus armatus Müller (1974)
- Markalius astroporus (Stradner) Hay and Mohler (1967)
- Discoaster asymmetricus Gartner (1969) Discoaster barbadiensis Tan (1927)
- Sphenolithus belemnos Bramlette and Wilcoxon (1967)
- Discoaster bellus Bukry and Percival (1971)
- construction of the start of the start (1971)

Chiasmolithus bidens (Bramlette and Sullivan) Hay and Mohler (1967) Braarudosphaera bigelowii (Gran and Braarud) Deflandre (1947)

Zygrahablithus bijugatus (Deflandre) Deflandre (1959)

Fasciculithus billii Perch-Nielsen (1971)

Discoaster binodosus Martini (1958)

- Dictyococcites bisectus (Hay, Mohler and Wade) Bukry and Percival (1971)
- Prinsius bisulcus (Stradner) Hay and Mohler (1967)
- Amaurolithus bizzarus (Bukry) Gartner and Bukry (1975)
- Lapideacassis blackii Perch-Nielsen in Perch-Nielsen and Franz (1977)
- Discoaster blackstockae Bukry (1973)
- Discoaster braarudii Bukry (1971)
- Discoaster bramlettei (Bukry and Percival) Romein (1979)
- Tribrachiatus bramlettei (Bronnimann and Stradner) Proto Decima et al. (1975)
- Zygodiscus bramlettei Perch-Nielsen (1981)
- Discoaster brouweri Tan 1927 emend. Bramlette and Riedel (1954)
- Chiphragmalithus calathus Bramlette and Sullivan (1961)
- Discoaster calcaris Gartner (1967)
- Dictyococcites callidus Perch-Nielsen (1971)
- Catinaster calyculus Martini and Bramlette (1963)
- Scyphosphaera campanula Deflandre (1942)
- Scyphosphaera canescens Kamptner (1955)
- Sphenolithus capricornutus Bukry and Percival (1971) Gephyrocapsa caribbeanica Boudreaux and Hay (1969)
- Triquetrorhabdulus carinatus Martini (1965)
- Helicosphaera carteri (Wallich) Kamptner (1954)
- Ericsonia cava (Hay and Mohler) Perch-Nielsen (1969)
- Discoaster challengeri Bramlette and Riedel (1954)
- Triquetrorhabdulus challengeri Perch-Nielsen (1977)
- Neochiastozyus chiastus (Bramlette and Sullivan) Perch-Nielsen (1971)
- Sphenolithus ciperoensis Bramlette and Wilcoxon (1967)
- Rhabdosphaera claviger in Murray and Blackman (1898)

Zone	Core, section, interval (cm)	Thoracosphaera sp. A.	Thoracosphaera operculata	Thoracosphaera saxea	Biantholithus sparsus	Placozygus sigmoides	Cruciplacolithus tenuis	Ericsonia subpertusa	Discoaster bramlettei/Z. herlym	Neochiastozygus chiastus	Ericsonia cava	Prinsius bisulcus	Chiasmolithus bidens	Bomolithus elegans	Ellipsolithus distichus	Chiasmolithus consuetus	Discoaster mohleri	Pontosphaera sp. A.	Zygodiscus plectopons	Coccolithus pelagicus	Heliolithus riedelii	Neococcolithes protenus	Fasciculithus involutus	Neochiastozygus junctus	Discoaster salisburgensis	Semihololithus kerabyi	Tribrachiatus contortus	Lophodolithus nascens	Discoaster binodosus	Discoaster multiradiatus	Zygrhablithus bijugatus	Sphenolithus conicus	Tribrachiatus bramlettei	Discoaster bramlettei	Toweius eminens	Fasciculithus tympaniformis	Ericsonia robusta	Campylosphaera eodela	Calcidiscus protoannulus
NP10	27X-1, 99–100 27X-2, 100–101 27X-3, 99–100			R R R		R		R R R	R R R	F	A A A		F F F		R	R R R	R	R R	R	A C C		R	F		C C C		R	R R	R	C C C	C A A	R	R			R F		R R	
NP9	27X-4, 100–101 27X, CC 28X-1, 100–101 28X, CC	R R	F	R R R	v		R	R	R R		C C		FFFF	R R	R	RFRF	R R R	R		F F F C			R F	R	C C	R				CCCC	A A C C	R		R	V C C	R R A A		R	v
NP7/8	29X-1, 100–101 29X-2, 100–101 29X-3, 100–101			R			R	F F F					R R F	R R R	F	R R F	R R F	R		F R R	R		C F F								R			R R	A A A	A A A	R R		
	762C-29X, CC						R	F				F	С	R	R	С	F	R		F															A	Α			

Table 4 (continued).

																												_			_				
Zone	Core, section, interval (cm)	Markalius astroporus	Thoracosphaera operculata	Thoracosphaera saxea	Thoracosphaera sp. A.	Biantholithus sparsus	Placozygus sigmoides	Cruciplacolithus primus	Small Prinsius spp.	Cruciplacolithus tenuis	Ericsonia subpertusa	Chiasmolithus danicus	Zygodiscus bramlettei/Z. herlynii	Neochiastozygus spp.	Ericsonia cava	Prinsius bisulcus	Chiasmolithus bidens	Fasciculithus ulii	Fasciculithus pileatus	Bomolithus elegans	Markalius apertus	Coccolithus pelagicus	Fasciculithus tympaniformis	Heliolithus kleinpelli	Toweius pertusus	Ellipsolithus distichus	Neochiastozygus perfectus	Chiasmolithus consuetus	Discoaster mohleri	Pontosphaera sp. A	Zygodiscus plectopons	Ericsonia robusta	Fasciculithus involutus	Fasciculithus billii	Toweius eminens
NP7/8	30X-1, 100-101 30X-3, 100-101 30X, CC			R	R		R R		R	R	R R		R	F	R	R	F F R			R R		R F F	C A A	v	R			F F R	C C C	R R	R	R			C F C
NP6	31X-1, 100-101 31X-3, 100-101 31X-5, 100-101 31X, CC 32X-1, 97-98 32X-2, 103-104 32X, CC			R R R R R R F R	R		R R R		R R C	R R R	F F R F R F F		R R R	F R	R	R R	F R R R			R		RRRFFFF	ACCCCCC	CFFFFF	R F	v v		R F R R				R	R		FFFFRR
NP5	33X-1, 109-110 33X-2, 109-110 33X-3, 109-110 33X-4, 107-108 33X-5, 95-96 33X, CC 34X-1, 100-101 34X-2, 100, 101		R R	RRRRR			R		CCCRRFCC	RRFF FFF	FFFFFFF		R R R R R R	R R R	R R R	R R R F F R P	RRFFFFR		V R R P	R R		FFFFFRR	FFCCCACA		R R R R R R R R R R	v v	R	R R R					R		V R
NP4	34X-2, 100-101 34X-5, 100-101 34X-5, 100-101 34X, CC 35X-1, 99-100 35X-2, 12-14 35X-2, 100-101 35X, CC 36X-1, 6-7	R R	R R	R F F F F R F R F R	F	R	R R R R R R		CCCCCCCFC	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	R F R R R F F F C	R R R R	R R R R R R	R R	R R F F R	RCCFFFFFF	RRFRFRRR	v	RFCFCCR	R R R R R	v	R F R F R F R R F R R R R R	A C R R										R		
NP3/4	762C-36X, CC	v	R					R	с	с	F	R	R			С						R													

												-							
Zone	Core, section, interval (cm)	Markalius astroporus	Thoracosphaera operculata	Thoracosphaera saxea	Thoracosphaera sp. A.	Biantholithus sparsus	Placozygus sigmoides	Cruciplacolithus primus	Cruciptacolithus edwardsii	Cruciplacolithus latipons	Cruciplacolithus tenuis	Ericsonia subpertusa	Chiasmolithus danicus	Zygodiscus bramlettei/Z. herlynii	Small Prinsius spp.	Neochiastozygus spp.	Ericsonia cava	Prinsius bisulcus	Lapideacassis blackii
NP3/4	37X-1, 99–100 37X-3, 99–100 37X, CC 38X-1, 100–101 38X-5, 100–101 38X, CC 39X-1, 79–81 39X-3, 79–81 39X-5, 79–81 39X, CC 40X-1, 79–81 40X-2, 79–81	R R R R	RRFRRRRFCFFC	FRFRRFFCCACCC	F		R R R R R R F F R	R R R R R R R R R	R F R F R	R	FRRF RRFFFRVV	F R F R F R R	R R F F C F F F R R R V	FCRFF FF RFFRR	CCCCACCCCCCCCC	R F R R	R	F R R R	
NP2	40X-3, 79-81 40X-5, 79-81 40X, CC 41X-1, 80-82 41X-2, 100-101 41X-3, 101-102 41X-4, 81-82	R R R R R R R	C C C F F F F	C C C C F R R R R	R F R	R R R	R F F R R	R R R R R R F F	RFFFFF		R V V	R R R R	-	V R R R R	A C C A C C C			R R V	v
NP1	41X-5, 81-82 41X-CC 42X-1, 79-81 42X-3, 79-81 42X-4, 79-80 42X-5, 7-8 42X-6, 91-92 762C-42X, CC	R R R R R R F F	R R R R R F F R	R R R C F	R R R	F R R R	R F F C R	F F C C C C	C F R R R		R				C C R				

Table 5. Calcareous nannofossils in Hole 763A.

Zone	Core, section, interval (cm)	Dictyococcites bisectus	Cyclicargolithus floridanus	Sphenolithus heteromorphus	Coccolithus pelagicus	Coronocyclus nitescens	Pontosphaera sp. B.	Sphenolithus moriformis	Umbilicosphaera sibogae	Thoracosphaera saxea	Helicosphaera carteri	Scyphosphaera spp.	Calcidiscus leptoporus	Discoaster druggii	Discoaster adamanteus	Thoracosphaera deflandrei	Triquetrorhabdulus milowii	Reticulofenestra pseudoumbilica	Braarudosphaera bigelowii	Micrantholithus pinguis	Hayaster perplexus	Coccolithus eopelagicus	Triquetrorhabdulus carinatus	Helicosphaera perch-nielseniae	Sphenolithus conicus	Sphenolithus dissimilus	Sphenolithus belemnos	Coccolithus radiatus	Helicosphaera intermedia	Helicosphaera euphratis	Helicosphaera obliqua	Sphenolithus predistentus	Zygrhablithus bijugatus	Triquetrorhabdulus challengeri	Sphenolithus ciperoensis	Sphenolithus grandis
	122-763A-																																			
NN4/5	16H-3, 88-89 16H-4, 99-100 16H-5, 99-100 16H-CC		C C C A	F C F F	R R R	F F R F	R R	F F C C	R R R	F R F	F F	R R	R R R		R	CCCCC	v	R V	R C	R	R	R	v													
NN3	17H-2, 74–76 17H-3, 99–100	v	ACC	v	RR	R	R	F	R		F		n		R	CCC			C	R	R	D	v	R	R	R R	R R	R	D				v			
e martine a	17H-5, 99–100 17H-6, 99–100	R	C A		R R	F F		Г С F	R	R			R	R	R	cc			RR		R	R	R			F	ĸ		K				R	v		
NN1/2	17H-CC 18H-1, 100-101	v	A		R R	FR	RR	R F		R					R R	C C	R		R		R	RF	FR		R		R		R	R	R	v	R R	R		P
NP25	18H-2, 99–101 18H-4, 99–101	C	A A		R R	R F	R	F C							R	C C			R			R	F										С		R	F

W. G. SIESSER, T. J. BRALOWER

Catinaster coalitus Martini and Bramlette (1963) Scyphosphaera cohenii Boudreaux and Hay (1969) Helicosphaera compacta Bramlette and Wilcoxon (1967) Heliorthus concinnus (Martini) Hay and Mohler (1967) Neochiastozygus concinnus (Martini) Perch-Nielsen (1971) Scyphosphaera conica Kamptner (1955) Sphenolithus conicus Bukry (1971) Chiasmolithus consuetus (Bramlette and Sullivan) Hay and Mohler (1967)Tribrachiatus contortus (Stradner) Bukry (1972) Cruciplacolithus cribellum (Bramlette and Sullivan) Romein (1979) Nannotetrina cristata (Martini) Perch-Nielsen (1971) Ceratolithus cristatus Kamptner (1950) Scyphosphaera cylindrica Kamptner (1955) Chiasmolithus danicus (Brotzen) Hay and Mohler (1967) Dictyococcites daviesii (Haq) Perch-Nielsen (1971) Discoaster decorus (Bukry) Bukry (1973) Discoaster deflandrei Bramlette and Riedel (1954) Scyphosphaera deflandrei Müller (1974) Thoracosphaera deflandrei Kamptner (1956) Amaurolithus delicatus Gartner and Bukry (1975) Campylosphaera dela (Bramlette and Sullivan) Hay and Mohler (1967) Discoaster delicatus Bramlette and Sullivan (1961) Reticulofenestra dictyoda (Deflandre and Fert) Stradner in Stradner and Edwards (1968) Pontosphaera discopora Schiller (1925) Braarudosphaera discula Bramlette and Riedel (1954) Sphenolithus dissimilus Bukry and Percival (1971) Sphenolithus distentus (Martini) Bramlette and Wilcoxon (1967) Ellipsolithus distichus (Bramlette and Sullivan) Sullivan (1964) Discoaster distinctus Martini (1958) Discoaster druggii Bramlette and Wilcoxon (1967) Neococcolithes dubius (Deflandre) Black (1967) Transversopontis duocavus (Bramlette and Sullivan) Locker (1973) Cruciplacolithus edwardsii Romein (1979) Bomolithus elegans Roth (1973) Clathrolithus ellipticus Deflandre in Deflandre and Fert (1954) Toweius eminens (Bramlette and Sullivan) Perch-Nielsen (1971) Pontosphaera enormis (Locker) Perch-Nielsen (1984) Campylosphaera eodela Bukry and Percival (1971) Coccolithus eopelagicus (Bramlette and Riedel) Bramlette and Sullivan in Bramlette and Wilcoxon (1967) Helicosphaera euphratis Hag (1966) Discoaster exilis Martini and Bramlette (1963) Scyphosphaera expansa Bukry and Percival (1971) Chiasmolithus expansus (Bramlette and Sullivan) Gartner (1970) Ericsonia fenestrata (Deflandre and Fert) Stradner in Stradner and Edwards (1968) Transversopontis fimbriatus (Bramlette and Sullivan) Locker (1968) Cyclicargolithus floridanus (Roth and Hay) Bukry (1971) Ericsonia formosa (Kamptner) Haq (1971) Discoaster formosus Martini and Worsely (1971) Scapholithus fossilis Deflandre in Delfandre and Fert (1954) Nannotetrina fulgens (Stradner) Achutan and Stradner (1969) Sphenolithus furcatolithoides Locker (1967) Toweius gammation (Bramlette and Sullivan) Romein (1979) Discoaster gemmeus Stradner (1961) Corannulus germanicus Stradner (1962) Discoaster germanicus Martini (1958) Chiasmolithus gigas (Bramlette and Sullivan) Radomski (1968) Scyphosphaera gladstonensis Rade (1975) Scyphosphaera globulata Bukry and Percival (1971) Scyphosphaera globulosa Kamptner (1955) Chiasmolithus grandis (Bramlette and Riedel) Gartner (1970) Sphenolithus grandis Haq and Berggren (1978) Helicosphaera granulata Bukry and Percival (1971) Discoaster hamatus Martini and Bramlette (1963) Reticulofenestra hagii Backman (1978) Fasciculithus hayi Haq (1971) Thoracosphaera heimi (Lohmann) Kamptner (1920) Zygodiscus herlynii Sullivan (1964) Sphenolithus heteromorphus Deflandre (1953) Emiliania huxleyi (Lohmann) Hay and Mohler in Hay et al. (1967)

Rhabdosphaera inflata Bramlette and Sullivan (1961) Discoaster intercalaris Bukry (1971) Sphenolithus intercalaris Martini (1976) Helicosphaera intermedia Martini (1965) Scyphosphaera intermedia Deflandre (1942) Markalius inversus (Deflandre) Bramlette and Martini (1964) Triquetrorhabdulus inversus Bukry and Bramlette (1969) Fasciculithus involutus Bramlette and Sullivan (1961) Peritrachelina joidesa Bukry and Bramlette (1968) Neochiastozygus junctus (Bramlette and Sullivan) Perch-Nielsen (1971)Scyphosphaera kamptneri Müller (1974) Semihololithus kerabyi Perch-Nielsen (1971) Heliolithus kleinpelli Sullivan (1964) Discoasteroides kuepperi (Stradner) Bramlette and Sullivan (1961) Discoaster kugleri Martini and Bramlette (1963) Pseudoemiliania lacunosa (Kamptner) Gartner (1969) Scyphosphaera lagena Kamptner (1955) Cruciplacolithus latipons Romein (1970) Calcidiscus leptoporus (Murray and Blackman) Loeblich and Tappan (1978)Discoaster lodoensis Bramlette and Riedel (1961) Rhabdosphaera longistylis Schiller (1925) Helicosphaera lophota Bramlette and Sullivan (1961) Cyclococcolithus luminis Sullivan (1965) Ellipsolithus macellus (Bramlette and Sullivan) Sullivan (1964) Calcidiscus macintyrei (Bukry and Bramlette) Loeblich and Tappan (1978)Fasciculithus magnicordis Romein (1979) Prinsius martinii (Perch-Nielsen) Hag (1971) Triquetrorhabdulus milowii Bukry (1971) Reticulofenestra minuta Roth (1970) Reticulofenestra minutula (Gartner) Haq and Berggren (1978) Lanternithus minutus Stradner (1962) Discoaster mohleri Bukry and Percival (1971) Sphenolithus moriformis (Bronnimann and Stradner) Bramlette and Wilcoxon (1967) Pontosphaera multipora (Kamptner) Roth (1970) Discoaster multiradiatus Bramlette and Riedel (1954) Lophodolithus nascens Bramlette and Sullivan (1961) Sphenolithus neoabies Bukry and Bramlette (1969) Discoaster neohamatus Bukry and Bramlette (1969) Discoaster neorectus Bukry (1971) Coronocyclus nitescens (Kamptner) Bramlette and Wilcoxon (1967) Discoaster nobilis Martini (1961) Discoaster nodifer (Bramlette and Riedel) Bukry (1973) Chiasmolithus oamaruensis (Deflandre) Hay, Mohler and Wade 1966) Helicosphaera obliqua Bramlette and Wilcoxon (1967) Transversopontis obliguipons (Deflandre) Hay, Mohler and Wade (1966) Gephyrocapsa oceanica Kamptner (1943) Thoracosphaera operculata Bramlette and Martini (1964) Scyphosphaera oremesa Kamptner (1967) Tribrachiatus orthostylus Shamrai (1963) Scyphosphaera pacifica Rade (1975) Coccolithus pelagicus (Wallich) Schiller (1930) Scyphosphaera penna Kamptner (1955) Discoaster pentaradiatus Tan 1927 emend. Bramlette and Riedel (1954)Helicosphaera perch-nielseniae Haq (1971) Neochiastozygus perfectus Perch-Nielsen (1971) Rhabdosphaera perlongus (Deflandre) in Grasse (1952) Hayaster perplexus (Bramlette and Riedel) Bukry (1973) Toweius pertusus (Sullivan) Romein (1979) Fasciculithus pileatus Bukry (1973) Micrantholithus pinguis Bramlette and Sullivan (1961) Scyphosphaera piriformis Kamptner (1955) Pontosphaera plana (Bramlette and Sullivan) Haq (1971) Zygodiscus plectopons Bramlette and Sullivan (1961) Scyphosphaera porosa Kamptner (1967) Sphenolithus predistentus Bramlette and Wilcoxon (1967)

Amaurolithus primus (Bukry and Percival) Gartner and Bukry (1975) Cruciplacolithus primus Perch-Nielsen (1977) Rhabdosphaera procera Martini (1969)

Scyphosphaera procera Kamptner (1955)

Thoracosphaera prolata Bukry and Bramlette (1969)

Neococcolithes protenus (Bramlette and Sullivan) Black (1967)

Calcidiscus protoannulus (Gartner) Loeblich and Tappan (1978)

Sphenolithus pseudoradians Bramlette and Wilcoxon (1967)

Reticulofenestra pseudoumbilica (Gartner) Gartner (1969)

Transversopontis pulcher (Deflandre) Hay, Mohler and Wade (1966)

Transversopontis pulcheroides (Sullivan) Baldi-Beke (1971)

Scyphosphaera pulcherrima Deflandre (1942)

Pontosphaera punctosa (Bramlette and Sullivan) Perch-Nielsen (1984)

Discoaster quinqueramus Gartner (1969)

Sphenolithus radians Deflandre (1952)

Coccolithus radiatus Kamptner (1955)

Scyphosphaera recta (Deflandre) Kamptner (1955)

Scyphosphaera recurvata Deflandre (1942)

Isthmolithus recurvus Deflandre in Deflandre and Fert (1954)

Helicosphaera reticulata Bramlette and Wilcoxon (1967)

Reticulofenestra reticulata (Gartner and Smith) Roth and Thierstein (1967)

Scapholithus rhombiformis Hay and Mohler (1967)

Heliolithus riedelii Bramlette and Sullivan (1961)

Ericsonia robusta (Bramlette and Sullivan) Perch-Nielsen (1977)

Discoaster robustus Haq (1969)

Ceratolithus rugosus Bukry and Bramlette (1968)

Triquetrorhabdulus rugosus Bramlette and Wilcoxon (1967)

Discoaster saipanensis Bramlette and Riedel (1954)

Discoaster salisburgensis Stradner (1961)

Thoracosphaera saxea Stradner (1961)

Discolithina segmenta Bukry and Percival (1971)

Bramletteius serraculoides Gartner (1969)

Umbilicosphaera sibogae (Weber-van Bosse) Gaarder (1970) Placozygus sigmoides (Bramlette and Sullivan) Romein (1979) Discoaster signus Bukry (1971)

Hayella situliformis Gartner (1969)

Chiasmolithus solitus (Bramlette and Sullivan) Locker (1968)

Biantholithus sparsus Bramlette and Martini (1964)

Sphenolithus spiniger Bukry (1971)

Blackites spinosus (Deflandre and Fert) Hay and Towe (1962) Cruciplacolithus staurion (Bramlette and Sullivan) Gartner (1971)

Discoaster strictus Stradner (1961)

Ericsonia subdisticha (Roth and Hay) Roth in Baumann and Roth (1969)

Discoaster sublodoensis Bramlette and Sullivan (1961)

Ericsonia subpertusa Hay and Mohler (1967)

Discoaster surculus Martini and Bramlette (1963)

Discoaster tamalis Kamptner (1967)

Discoaster tanii Bramlette and Riedel (1954)

Ceratolithus telesmus Norris (1965)

Blackites tenuis (Bramlette and Sullivan) Bybell (1975)

Cruciplacolithus tenuis (Stradner) Hay and Mohler in Hay et al. (1967)

Amaurolithus tricorniculatus (Gartner) Gartner and Bukry (1975)

Discosphaera tubifer (Murray and Blackman) Ostenfeld (1900)

Scyphosphaera tubifera Kamptner (1955)

Scyphosphaera turris Kamptner (1955)

Fasciculithus tympaniformis Hay and Mohler in Hay et al. (1967) Fasciculithus ulii Perch-Nielsen (1971)

Reticulofenestra umbilica (Levin) Martini and Ritzkowski (1968) Discoaster variabilis Martini and Bramlette (1963)

Scyphosphaera ventriosa Martini (1968)

Pontosphaera versa (Bramlette and Sullivan) Sherwood (1974) Rhabdosphaera vitreus Deflandre in Deflandre and Fert (1954)

Helicosphaera wallichii (Lohmann) Boudreaux and Hay (1964)

Discoaster wemmelensis Achutan and Stradner (1969)

Helicosphaera wilcoxonii Gartner (1971)

Transversopontis zigzag Roth and Hay in Hay et al. (1967)

HOLE 7	'60A	
--------	------	--

	CORE- SECTION	NANNO ZONE	SERIES
111	1H-1 TO 1H-4	NN 20-21	
2H	1H-5 TO 2H-6	NN 19	PLEISTOCENE
	28-7	NN 16	U PLICCENE
<u> </u>	2H-CC	NN 11	U. MIOCENE
	3H-1 TO 3H-3	NN 16	U. PLIOCENE
ЗH	3H-4 TO 3H-5	NN 11	·
	3H-6	NN 10	
<u> </u>	SH-7 TO SH-CO	1414 9	O. MICOLINE
	4H-1 TO 4H-3	NN 8	
4H	4H-4 TO 4H-5	NN 7	
	4H-6 TO 5H-1	NN 6	M. MIOCENE
5H	5H-2 TO 5H-6	NN 5	
	5H-CC TO 6H-1	NN 3	
6H	6H-2 TO 6H-CC	NN 2	L. MIOCENE
	7H-1	NN 1	
7H	7H-2 TO 7H-5	NP 25	U. OLIGOCENE
	7H-6 TO 8H-1	NP 24	
	8H-2 TO 8H-4	NP 23	L. OLIGOCENE
8H	8H-4 TO 9H-1	NP 20	U. EOCENE
0 LI	9H-2 TO 9H-4	???	LM. EOCENE
911	9H-5 TO 9H-6	NP 10-11 +NC?	L EOCENE+ CRETACEOUS

Figure 2. Calcareous nannofossil zonation (Martini, 1971) of Hole 760A, Wombat Plateau.

	HC	LE 761	В		но	LE 761E	3
	CORE- SECTION	NANNO ZONE	SERIES		CORE- SECTION	NANNO ZONE	SERIES
1H				12X	\bigvee	\bigvee	
2H	1Н-1 ТО ЗН-СС	NN 19 TO NN 21	PLEISTOCENE	13X	\wedge	\wedge	?
зн				14X	14X-1 TO 14X-3 14X-3 TO 14X-CC	NP 15 NP 14	M. EOCENE
	4H-1 TO 4H-2	NN 16	U. PLIOCENE		\sim		
4H	4H-3 TO 4H-6	NN 11	U. MIOCENE	15X	\times	Х	?
-	4H-7 TO 5H-2	NN 8					
5H	5H-3 TO 5H-4	NN 7	MINOSENE	16X	16X-1 TO 16X-4	NP 9	
	5H-5 TO 5H-6	NN 6	M. MIOCENE		101 00 70 171 1	ND 7.0	
6H	5H-7 TO 6H-5	NN 4-5	n manalaman	17X	17X-2 TO 17X-5	NP 6	U. PALEOCENE
1	6H-6 TO 6H-CC	NN 3	L. MIOCENE				
	7H-1 TO 7H-2	NN 2					
7H	7H-3 TO 7H-4	NN 1		18X	17X-6 TO 19X-3	NP 5	
	7H-5 TO 8H-1	NP 25	U. OLIGOCENE		11 10 10 10 10		
8H	8H-1 TO 8H-CC	NP 16	1	19X			
9Н	9H-1 TO 9H-CC	NP 15-16	M FOCENE	20X	19X-4 TO 21X-2	NP 3-4	L. PALEOCENE
10H			W. LOOLINE	218	21X-3 TO 21X-4	NP 2	
		and a stream		LIA	21X-4 TO 21X-CC	CC 26	U. CRET.
11X	10H-1 TO 11X-CC	NP 15		L			

Figure 3. Calcareous nannofossil zonation (Martini, 1971) of Hole 761B, Wombat Plateau.

HOLE 7	62	в
--------	----	---

HOLE 762C

SERIES

L. OLIGOCENE

U. EOCENE

M. EOCENE

L. EOCENE

HOLE 762C

	CORE- SECTION	NANNO ZONE	SERIES		CORE- SECTION	NANNO ZONE
1H	1H-CC	NN 20-21		2X		
2H			PLEISTOCENE	зх	2X-2 TO 5X-1	NP 21
зн	2H-1 TO 4H-3	NN 19		4X		
4H	4H-4 TO 5H-2	NN 17-18		5X		
5H	414 10 5112	111 17-10		6X	5X-2 TO 7X-3	NP 19-20
6H	5H-3 TO 8H-1	NN 16	U. PLIUGENE	7X		
7H				8X	7X-4 TO 9X-CC	NP 18
8H	8H-3 TO 8H-CC	NN 14-15		9X		A1274 102800
9H				10X		
10H	9H-1 TO 11H-2	NN 13	L. PLIOCENE	11X	10X-1 TO 12X-5	NP 17
11H	11H-3 TO 11H-CC	NN 12		12X		
12H	12H-1 TO 13H-2	NN 11		13X	12X-6 TO 13X-CC	NP 16
13H	13H-3 TO 13H-CC	NN 9		14X		
14H	14H-1 TO 14H-5	NN 6-7	M. MIOCENE	15X	14X-1 TO 16X-3	NP 15
15H	14H-6 TO 15H-4	NN 4-5	1	16X		
16H	15H-5 TO 16H-5	NN 1-2	L. MIOCENE	17X	100 00 10 100 0	
17H	16H-6 TO 17H-4	NP 24-25	U. OLIGOCENE	18X	162-00 10 162-5	INP 14
181	17H-5 TO 18H-4	NP 23		104	18X-6 TO 19X-2	NP 13
19H	18H-5 TO 19H-5	NP 22	L. OLIGOCENE	20X		
	19H-5 TO 19H-CC	NP 21		20/	19X-3 TO 22X-CC	NP 12

	CORE- SECTION	NANNO ZONE	SERIES
23X			
24X	23X-1 TO 25X-3	NP 11	
25X			
26X	25X-4 TO 27X-3	NP 10	L. EOCENE
27X			
28X	27X-4 TO 28X-CC	NP 9	
29X	202 1 TO 202 CO		
30X	297-1 10 307-00	INF 7-0	
31X			
32X	31X-1 TO 32X-CC	NP 6	U. PALLOULINE
33X			
34X	33X-1 TO 35X-1	NP 5	
35X	35X-2 TO 36X-1	NP 4	
36X			
37X			
38X	36X-CC TO 40X-2	NP 3-4	
39X			L. PALEOCENE
40X			
41X	40X-3 TO 42X-5	NP 2	
42X	101 0 10 101	10.1	
1011	42A-6 10 43X-1		
43X	43X-1,31cm -	CC 26	MAEST.

Figure 4. Calcareous nannofossil zonation (Martini, 1971) of Holes 762B and 762C, central Exmouth Plateau.

22X

Figure 5. First occurrences (FO) and last occurrences (LO) of biochronologically important Cenozoic calcareous nannofossil species at Site 762 plotted against core position and against Martini's (1971) nannofossil zonation. Lack of a horizontal line at the end of a vertical range bar indicates that the precise FO/LO of that species is less confidently documented.

Core	Transversopontis pulcheroides	Peritrachelina joidesa	Ericsonia formosa	Isthmolithus recurvus	Chiasmolithus altus	Lanternithus minutus	Bramlettelus serraculoides	Blackites spinosus/B.tenuis	Helicosphaera reticulata	Reticulofenestra umbilica	Triquetrorhabdulus carinatus	Helicosphaera compacta	Discoaster nodifer	Discoaster tanii	Sphenolithus predistentus	Sphenolithus ciperoensis	Sphenolithus dissimilus	Hayaster perplexus	Dictyococcites bisectus	Triquetrorhabdulus milowii	Coccolithus eopelagicus	Triquetrorhabdulus challengeri	Zygrhablithus bijugatus	Sphenolithus belemnos	Discoaster variabilis	Discoaster exilis	Reticulofenestra pseudoumbilica	Sphenolithus heteromorphus	Triquetrorhabdulus rugosus	Discoaster deflandrei	Discoaster brouweri	Discoaster calcaris	Coronocyclus nitescens	Cyclicargolithus floridanus	Sphenolithus moriformis	Discoaster quinqueramus	Sphenolithus ables/S.neoables
2H NN 3H 19																																					
4H 5H 6H 7H																		1							Ī						Ī						Ŧ
8H NN 14/15 9H NN 13 10H																													т								
11H NN 12H NN 12H NN 13H NN 14H NN																														ľ		I	1	T		Γ	
15H NN 15H 4/5 NN 16H 1/2 17H 24/25		-													-	I	Ι		Т	Ι	T	I	T	т	T	T	T	T	-								
NP 18 H 23 19 H 22 2x NP 2x NP 21	Т		Ŧ	Ī	l	Ī	Ī	Ī	Ī	Ī	1	I	Ī																								

Figure 5 (continued).

CENOZOIC	TENIOTOIO
CALCAREOUS	CATCABENTIC
INAININOFUSSILA	NIA NINIOEOCOTI O

Figure 5 (continued).

Core NP/NN Zone	Placozygus sigmoides	Cruciplacontrius edwardsin Cruciplacolithus primus	Cruciplacolithus tenuis	Ericsonia suppertusa Chiasmollthus danicus	Ericsonia cava	Coccolithus pelagicus Chiasmolithus bidens	Fasciculithus pileatus Bomolithus elegans	Fasciculithus tympaniformis	Toweius pertusus	Pasciculitrus involutus	Criasmontnus consuetus Heliolithus kleinnelli	Discoaster mohleri	Zygodiscus plectopons	Zygrhablithus bijugatus	Discoaster multiradiatus	Toweius eminens	Campylosphaera eodela	Discoaster salisburgensis	Calcidiscus protoannulus	Tribrachiatus contortus	Tribrachiatus bramlettei	Discoaster binodosus	Chiasmolithus solitus	Lophodolithus nascens	Tribrachiatus orthostylus	Reticulofenestra dictyoda	Sphenolithus radians	Toweius gammation	Rhabdosphaera perlongus	Ericsonia formosa	Campylosphaera dela
23x NP 24x 11 25x 26x NP 10 27x NP 28x 9 29x NP 30x 7/8 31x NP 32x 6 31x NP 32x 6 33x 35x NP 36x 37x NP 36x 37x NP 36x 37x NP 36x 37x NP 36x 37x NP 36x 37x NP							I									T				I	L									1	1

W. G. SIESSER, T. J. BRALOWER

Figure 5 (continued).

CENOZOIC CALCAREOUS NANNOFOSSILS

HOLE 763A

CORE-

NANNO

SERIES

HOLE 763B

NANNO

ZONE

CORE-SECTION

SERIES/STAGE

	SECTION	ZONE	SERIES					
ІН	1H-CC TO 2H-3	NN 20-21						
2H			PLEISTOCENE					
ЗH	2H-3 TO 5H-1	NN 19						
4H								
5H	5H-2 TO 5H-CC	NN 18						
6H			U. PLIOCENE					
7H	6H-1 TO 8H-CC	NN 16						
8H								
٩Η	9H-1 TO 9H-5	NN 14-15						
	9H-6 TO 9H-CC	NN 13						
10H	10H-1 TO 11H-CC	NN 12	L. PLIOCENE					
11H								
12H								
13H	12H-1 TO 14H-CC	NN 11						
14H			U. MICCEIVE					
15H	15H-1 TO 16H-3	NN 10						
16H	16H-3 TO 17H-1	NN 4-5	M. MIOCENE					
17H	17H-2 TO 17H-4	NN 3						
	17H-5 TO 18H-2	NN 1-2	L. WIOCENE					
18H	18H-4 TO18H-CC	NP 25						
19H	19H-2 TO 19H-4	NP 24	5. 52 50 51 12					
	19H-6 TO 20H-2	NP 23						
20H	20H-6	NP 22	L. OLIGOCENE					
21H	20H-CC TO 2X-1	NP 21	L. OLIGOCENE - U. EOCENE					

2X	2X-1	NP21						
ЗX	2X-2 TO 3X-CC	NP 20						
4X	4X-1 TO 4X-CC	NP 19-20	U. EOCENE					
5X	5X-1 TO 5X-CC	NP 18						
6X	6X-1 TO 6X-5	NP15-16	M FOOFNE					
7X	6X-CC TO 7X-CC	NP 15	M. EOCENE					
8X	8X-1 TO 10X-CC		U. CAMPANIAN					

Figure 6. Calcareous nannofossil zonation (Martini, 1971) of Holes 763A and 763B, Wombat Plateau.

	CORE- SECTION	NANNO ZONE	SERIES						
	1R-1	NN 20-21							
1R	1R-2 TO 1R-6	NN 19	PLEISTOCENE						
		120203-00100	M. MIOCENE						
2R	1R-7 TO 2R-CC	NN 4-5							
	3R-1 TO 3R-3	NN 3	L. MIOCENE						
3R	3R-4	NN1-2	1						
	3R-5 TO 3R-CC	NP 25							
4R	4R-CC	NP 24	U. OLIGOCENE						
50	5R-3,10cm	mixed Olig-Eoc	OLIGO. TO EOCENE						
51	5R-3, 55cm	CC 25	U. MAEST.						

HOLE 764A

Figure 7. Calcareous nannofossil zonation (Martini, 1971) of Hole 764A, Wombat Plateau.

CENOZOIC CALCAREOUS NANNOFOSSILS

Plate 1. Cenozoic calcareous nannofossils. XN = cross-polarized light; PC = phase contrast. Magnifications approximate. 1. Sphenolithus abies, XN, ×1500. Sample 122-762B-9H-5, 100-101 cm. 2. Chiphragmalithus acanthodes, PC, ×1800. Sample 122-762C-18X-1, 100-101 cm. 3. Ceratolithus acutus, XN, ×2000. Sample 122-762B-1H-CC. 4. Chiasmolithus altus s.l., PC, ×1900. Sample 122-762B-19H-1, 100-101 cm. 5. Amaurolithus amplificus, PC, ×2000. Sample 122-762B-12H-CC. 6. Discoaster asymmetricus, PC, ×1600. Sample 122-762B-7H-3, 100-101 cm. 7. Discoaster barbadiensis, PC, ×1600. Sample 122-762C-7X-CC. 8. Sphenolithus belemnos, XN, ×2000. Sample 122-762B-15H-6, 88-90 cm. 9. Chiasmolithus bidens, PC, ×1700. Sample 122-762C-27X-1, 99-100 cm. 10. Zygrahablithus bijugatus, XN, ×1600, Sample 122-762C-2X-3, 100-101 cm. 11. Discoaster binodosus, PC, ×1800, Sample 122-762C-22X-CC. 12. Dictyococcites bisectus, XN, ×1600. Sample 122-762C-7X-CC. 13. Discoaster blackstockae, PC, ×1200. Sample 122-762B-12H-1, 125-127 cm. 14. Tribrachiatus bramlettei, PC, ×1800. Sample 122-762C-27X-1, 99-100 cm. 15. Discoaster brouweri, PC, ×1300. Sample 122-762B-8H-1, 100-101 cm. 16. Chiphragmalithus calathus, PC, ×1800. Sample 122-762C-22X-CC. 17. Dictyococcites callidus s.l., XN, ×1500. Sample 122-762C-3X-3, 100-101 cm. 18. Catinaster calyculus, PC, ×2900. Sample 122-762B-13H-3, 100-101 cm. 19. Gephyrocapsa caribbeanica, XN, ×2200. Sample 122-762B-1H-1, 100-112 cm. 20. Triquetrorhabdulus carinatus, XN, ×900. Sample 122-762C-17H-1, 100-102 cm. 21. Ericsonia cava, XN ×1400. Sample 122-762C-35X-2 100-101 cm. 22. Triquetrorhabdulus challengeri, PC, ×1000. Sample 122-763A-17H-CC. 23. Sphenolithus ciperoensis, XN, ×2400. Sample 122-762B-17H-3, 100-102 cm. 24. Rhabdosphaera claviger, PC, ×2000. Sample 122-762B-1H-1, 100-112 cm. 25. Catinaster coalitus, PC, ×2000, Sample 122-762B-13H-CC.

W. G. SIESSER, T. J. BRALOWER

Plate 2. Cenozoic calcareous nannofossils. XN = cross-polarized light; PC = phase contrast. Magnifications approximate. 1. Helicosphaera compacta, XN, ×1600. Sample 122-762C-7X-CC. 2. Chiasmolithus consuetus, XN, ×1200. Sample 122-762C-29X-CC. 3. Tribrachiatus contortus, PC, ×1400. Sample 122-762C-27X-3, 99-100 cm. 4. Chiasmolithus danicus, XN, ×2000. Sample 122-762C-38X-5, 100-101 cm. 5. Discoaster decorus, PC, ×1400. Sample 122-762B-8H-1, 100-101 cm. 6. Discoaster deflandrei, PC, ×1400. Sample 122-762C-4X-CC. 7. Amaurolithus delicatus, PC, ×1800. Sample 122-762B-12H-CC. 8. Campylosphaera dela, XN, ×1800. Sample 122-762C-19X-1, 100-101 cm. 9. Reticulofenestra dictyoda, XN, ×1500. Sample 122-762C-14X-3, 100-101 cm. 10. Sphenolithus dissimilus, XN, ×1500. Sample 122-762B-16H-3, 100-101 cm. 11. Cruciplacolithus edwardsii, XN, ×1800. Sample 122-762C-40X-CC. 12. Bomolithus elegans, XN, ×1800. Sample 122-762C-34X-CC. 13. Clathrolithus ellipticus, PC, ×1000. Sample 122-762C-22X-5, 100-102 cm. 14. Toweius eminens, PC, ×2200. Sample 122-762C-30X-1, 100-101 cm. 15. Campylosphaera eodela, XN, ×2400. Sample 122-762C-27X-1, 99-100 cm. 16. Coccolithus eopelagicus, XN, ×900. Sample 122-762C-7X-CC. 17. Discoaster exilis, PC ×1250. Sample 122-762B-13H-3 100-101 cm. 18. Chiasmolithus expansus, PC, ×1000, Sample 122-762C-18X-5, 100-101 cm. 19. Cyclicargolithus floridanus, XN, ×1300. Sample 122-762C-18X-5, 100-101 cm. 20. Ericsonia formosa, XN, ×1400. Sample 122-762C-7X-CC. 21. Nannotetrina fulgens, PC, ×1450. Sample 122-762C-16X-3, 99-100 cm. 22. Sphenolithus furcatolithoides, XN, ×2000. Sample 122-762C-14X-5, 100-101 cm. 23. Toweius gammation, XN, ×1800. Sample 122-762C-18X-5, 100-101 cm. 24. Corannulus germanicus, PC, ×2100. Sample 122-762B-18H-CC. 25. Discoaster germanicus, PC, ×1800. Sample 122-762C-22X-5, 100-102 cm.

CENOZOIC CALCAREOUS NANNOFOSSILS

Plate 3. Cenozoic calcareous nannofossils. XN = cross-polarized light; PC = phase contrast. Magnifications approximate. 1. Chiasmolithus gigas, PC, ×1000. Sample 122-762C-14X-CC. 2. Chiasmolithus grandis, PC, ×1100. Sample 122-762C-11X-3, 99-100 cm. 3. Discoaster hamatus, PC, ×1100. Sample 122-762B-13H-3, 100-101 cm. 4. Sphenolithus heteromorphus, XN, ×1600. Sample 122-762B-15H-1, 88-90 cm. 5. Emiliania huxleyi, XN, ×1900. Sample 122-762B-1H-1, 110-112 cm. 6. Rhabdosphaera inflata, XN, ×1200. Sample 122-762C-17X-5, 99-100 cm. 7. Triquetrorhabdulus inversus, XN, ×1100. Sample 122-762C-14X-3, 100-101 cm. 8. Fasciculithus involutus, XN, ×1100. Sample 122-762C-29X-1, 100-101 cm. 9. Peritrachelina joidesa, PC, ×2100. Sample 122-762B-18H-CC. 10. Heliolithus kleinpelli, XN, ×900. Sample 122-762C-31X-1, 100-101 cm. 11. Discoasteroides kuepperi, PC, ×2100. Sample 122-762C-18X-5, 100-101 cm. 12. Pseudoemiliania lacunosa, XN, ×2000. Sample 122-762B-3H-1, 99-100 cm. 13. Discoaster lodoensis, PC, ×1800. Sample 122-762C-18X-CC. 14. Rhabdosphaera longistylus, XN, ×850. Sample 122-762B-5H-5, 100-101 cm. 15. Triquetrorhabdulus milowii, XN, ×1600. Sample 122-762B-16H-5, 100-101 cm. 16. Lanternithus minutus, XN, ×1800. Sample 122-762C-2X-3, 100-101 cm. 17. Discoaster mohleri, PC, ×1500. Sample 122-762C-30X-1, 100-101 cm. 18. Sphenolithus moriformis, XN, ×1400. Sample 122-762C-17H-1, 100-102 cm. 19. Discoaster multiradiatus, PC, ×1300. Sample 122-762C-27X-1, 99-100 cm. 20. Lophodolithus nascens, XN, ×1800. Sample 122-762C-23X-CC. 21. Discoaster neohamatus, PC, ×1400. Sample 122-762B-13H-3, 100-101 cm. 22. Coronocyclus nitescens, XN, ×1800. Sample 122-762C-18X-5, 100-102 cm. 23. Discoaster nodifer, PC, ×1350. Sample 122-762C-4X-CC. 24. Chiasmolithus oamaruensis, PC, ×1300. Sample 122-762C-7X-CC. 25. Gephyrocapsa oceanica, XN, ×2200. Sample 122-762B-1H-1, 110-112 cm.

Plate 4. Cenozoic calcareous nannofossils. XN = cross-polarized light; PC = phase contrast. Magnifications approximate. 1. Tribrachiatus orthostylus, PC, ×1500. Sample 122-762C-22X-CC. 2. Coccolithus pelagicus, XN, ×1600. Sample 122-762C-3X-3, 100-101 cm. 3. Discoaster pentaradiatus, PC, ×1800. Sample 122-762B-8H-1, 100-101 cm. 4. Rhabdosphaera perlongus, PC, ×1500. Sample 122-762C-23X-3, 95-96 cm. 5. Hayaster perplexus, PC, ×1300. Sample 122-762B-16H-5, 100-101 cm. 6. Toweius pertusus, PC, ×2300. Sample 122-762C-36X-1, 6-7 cm. 7. Fasciculithus pileatus, XN, ×1750. Sample 122-762C-34X,-CC. 8. Sphenolithus predistentus, XN, ×2200. Sample 122-762B-18H-CC. 9. Amaurolithus primus, PC, ×2000. Sample 122-762B-12H-CC. 10. Cruciplacolithus primus, XN, ×2000. Sample 122-762C-42X-5, 7-8 cm. 11. Rhabdosphaera procera, PC, ×1900. Sample 122-762B-7H-3, 100-101 cm. 12. Thoracosphaera prolata, PC, ×800. Sample 122-762C-13X-CC. 13. Reticulofenestra pseudoumbilica, XN, ×1800. Sample 122-762B-13H-3, 100-101 cm. 14. Transversopontis pulcheroides, XN, ×1450. Sample 122-762C-3X-3, 100-101 cm. 15. Discoaster guingueramus, PC, ×1200. Sample 122-762B-12H-CC. 16. Sphenolithus radians, XN, ×1500. Sample 122-762C-20X-CC. 17. Isthmolithus recurvus, PC, ×1900. Sample 122-762C-4X-1, 100-101 cm. 18. Helicosphaera reticulata, PC, ×1500. Sample 122-762B-19H-1, 100-101 cm. 19. Reticulofenestra reticulata, XN, ×2000. Sample 122-762C-7X-CC. 20. Ceratolithus rugosus, XN, ×1200. Sample 122-762B-9H-5, 100-101 cm. 21. Triquetrorhabdulus rugosus, PC, ×1900. Sample 122-762B-13H-3, 100-101 cm. 22. Discoaster saipanensis, PC, ×1400. Sample 122-762C-7X-CC. 23. Discoaster salisburgensis, PC, ×1250. Sample 122-762C-27X-3, 99-100 cm. 24. Bramletteius serraculoides, XN, ×1500. Sample 122-762C-17H-1, 100-102 cm. 25. Chiasmolithus solitus, PC, ×1800. Sample 122-762C-14X-3, 100-101 cm.

CENOZOIC CALCAREOUS NANNOFOSSILS

Plate 5. Cenozoic calcareous nannofossils. XN = cross-polarized light; PC = phase contrast. Magnifications approximate. 1. Blackites spinosus, XN, ×1900. Sample 122-762C-2X-3, 100-101 cm. 2. Discoaster sublodoensis, PC, ×1500. Sample 122-762C-18X-1, 100-101 cm. 3. Ericsonia subpertusa, XN, ×1600. Sample 122-762C-36X-1, 6-7 cm. 4. Discoaster surculus, PC, ×1100. Sample 122-762B-11H-CC. 5. Discoaster tamalis, PC, ×1900. Sample 122-762B-7H-3, 100-101 cm. 6. Discoaster tamii, PC, ×1650. Sample 122-762C-7X-CC. 7. Ceratolithus telesmus, XN, ×850. Sample 122-762B-1H-1, 110-112 cm. 8. Cruciplacolithus tenuis, XN, ×1500. Sample 122-762C-39X-5, 79-81 cm. 9. Amaurolithus tricorniculatus, PC, ×2000. Sample 122-762B-12H-1, 125-127 cm. 10. Fasciculithus tympaniformis, XN, ×2000. Sample 122-762C-31X-1, 100-101 cm. 11. Reticulofenestra umbilica, XN, ×1400. Sample 122-762C-7X-CC. 12. Discoaster variabilis, s.l., PC, ×1200. Sample 122-762B-11H-CC.