18. BIOSTRATIGRAPHY OF UPPER CRETACEOUS AND PALEOGENE CALCAREOUS NANNOFOSSILS FROM LEG 123, NORTHEASTERN INDIAN OCEAN¹

Michael J. Moran²

ABSTRACT

Two of five holes drilled at two separate sites during Leg 123 of the Ocean Drilling Program intersected thick and relatively complete sections of Upper Cretaceous–Paleogene nannofossiliferous sediments. Although dominated by turbidite deposition in the upper part, Hole 765C contains a thick and relatively complete Albian–Oligocene section, including a particularly thick Aptian interval, with abundant and fairly well-preserved nannofossils. Several unconformities are confidently interpreted in this section that span much of the Santonian, late Campanian, Maestrichtian, late Eocene, and early Oligocene. Hole 766A contains a thick and relatively complete Albian–lower Eocene section having generally abundant and well-preserved nannofossils. Several unconformities also have been identified in this section that span much of the Coniacian, early Campanian, Maestrichtian, and late Eocene through early Pliocene. The chronostratigraphic position and length of all these unconformities may have considerable significance for reconstructing the sedimentary history and for interpreting the paleoceanography of this region.

A particularly thick section of upper Paleocene-lower Eocene sediments, including a complete record across the Paleocene/Eocene boundary, also was cored in Hole 766A that contains abundant and diverse nannofossil assemblages. Although assemblages from this section were correlated successfully using a standard low-latitude zonation, difficulties were encountered that reduced biostratigraphic resolution. Several lines of evidence suggest a mid-latitude position for Site 766 during this time, including (1) high assemblage diversity characteristic of mid-latitude zones of upwelling and (2) absence of certain ecologically controlled markers found only in low latitudes.

INTRODUCTION

During Leg 123 of the Ocean Drilling Program, scientists drilled five holes at two separate sites in the northeastern Indian Ocean, adjacent to the northwestern shelf region of Australia, from September through October 1988 (Fig. 1). This cruise, which represented a combined effort with Leg 122 scientists, attempted to explore and better understand the paleoceanographic history of the northwestern margin of Australia from Exmouth to Scott plateaus. This margin is thought to represent one of the oldest continent/ocean boundaries on Earth (Ludden, Gradstein, et al., 1990). The primary objectives of Leg 123 involved determining events in the final stages of rifting of the Exmouth Plateau and determining when volcanic basement and early oceanic sediments in the Argo Abyssal Plain were formed. The presence of generally abundant and well-preserved calcareous nannofossil assemblages in much of the Upper Cretaceous through Paleogene sediments from these holes provided the impetus for this study, which has yielded an accurate and detailed temporal framework for ascertaining the nature and timing of post-rifting events and for reconstructing the paleoceanography of this area, as well as identifying unconformities for interpreting regional sedimentary history.

Site 765 is located in the southern Argo Abyssal Plain at $15^{\circ}58.41'S$ and $117^{\circ}34.495'E$ in a water depth of 5728.2 m (Fig. 1). This site is located over what was thought to be the oldest oceanic crust in the Indian Ocean. Four holes were drilled; in the first three, sedimentary sections were cored. Hole 765A was presumed to have missed the mud line during initial entry and was abandoned after the first core. Hole 765B was drilled to a total

depth of 386.3 m using both the advanced hydraulic piston corer (APC) and extended-core barrel (XCB) methods for maximum recovery. A Quaternary to middle Miocene section was recovered. Problems with recovery and penetration forced the scientists to drill a new hole (Hole 765C), which was begun at 350.2 mbsf using the rotary-core barrel (RCB) method. This hole was penetrated to a total depth of 964 mbsf, which included approximately 30 m of basaltic basement. Preliminary shipboard biostratigraphy indicated that this hole intersected a middle Miocene to Berriasian section (Ludden, Gradstein, et al., 1990). The Aptian-Oligocene portion of this sequence, which spanned Cores 123-765C-34R through -14R, is examined here.

Site 766 is located on the western limit of the Exmouth Plateau at 19°55.985'S and 110°27.130'E in a water depth of 3997.5 m (Fig. 1). This site is positioned over the foot of the continental slope above the Gascoyne Abyssal Plain. Hole 766A was drilled at this site using only the RCB method and was penetrated a total of 527 mbsf, 60.3 m of which consists of igneous material interpreted as basement. Shipboard biostratigraphy indicated the presence of a condensed Cenozoic section overlying a more complete Mesozoic section (Ludden, Gradstein, et al., 1990). The Albianlower Eocene portion, which spanned Cores 123-766A-21R through -3R, is examined here.

METHODS AND PROCEDURES

Upper Cretaceous–Paleogene sediments from holes drilled at Sites 765 and 766 were examined for calcareous-nannofossil biostratigraphic information. Standard smear slides made from raw sediment samples were analyzed using the light microscope. The results are presented in Tables 1 through 4. These tables graphically display information such as the abundance of nannofossils as a sedimentary component, relative abundance of individual nannofossil species, estimates of preservation of all nannofossil taxa, as well as stratigraphic distribution of nannofossil species and zonal assignment of samples.

¹ Gradstein, F. M., Ludden, J. N., et al., 1992. *Proc. ODP, Sci. Results*, 123: College Station, TX (Ocean Drilling Program).

⁴ Department of Geology, University of Papua New Guinea, Port Moresby, Papua New Guinea.

Figure 1. Location of sites drilled during Leg 123.

Letter designations in Tables 1 through 4 indicate the abundance of nannofossils as a sedimentary component and follow a method outlined by Watkins and Bowdler (1984). The criteria for letter designations are as follows:

- A = abundant (nannofossils >15% of sediment)
- C = common (nannofossils 5%-15% of sediment)
- F = few (nannofossils 1%-5% of sediment)
- R = rare (nannofossils < 1% of sediment)
- B = barren (no nannofossils in 100 fields of view at $1500 \times X$)

Letter designations in Tables 1 through 4 that indicate the relative abundance of individual nannofossil species follow a method proposed by Hay (1970) and modified by Watkins and Bowdler (1984). The criteria for these letter designations are as follows:

- A = abundant (1–10 specimens per field of view at $1500\times$)
- C = common (1 specimen per 2–10 fields of view at $1500 \times$)
- $F = \text{few} (1 \text{ specimen per } 11-100 \text{ fields of view at } 1500 \times)$
- R = rare (1 specimen per 101–1000 fields of view at $1500\times$)
- ? = questionable presence of this taxa

Letter designations in Tables 1 through 4 that indicate estimates of average preservational state of all nannofossil taxa follow a method used by Moran and Watkins (1988). An estimate of the average preservational state of all nannofossils encountered is necessary because preservation can vary widely, not only between specimens from different taxonomic units, but also between individual specimens within a particular taxonomic unit. The criteria for letter designations are as follows:

G = good (most specimens exhibit little or no secondary alteration)

- M = moderate (specimens exhibit significant secondary alteration in the form of overgrowth or dissolution but identification of species not impaired),
- P = poor (specimens exhibit profound secondary alteration and identification of species is impaired but still possible).

A designation of "M-P" indicates an estimated preservational state intermediate between the two end components.

The biostratigraphic zonation scheme and zonal code numbers used for correlation of Cretaceous material follows that of Sissingh (1977), with the modifications of additional subdivision by alternate biohorizons, as suggested by Perch-Nielsen (1979; 1985), for greater biostratigraphic resolution. Here, the zonal code numbers of Sissingh (1977) are preceded by the abbreviation CC. This zonation scheme has proven most accurate and effective for worldwide low-latitude correlation of Cretaceous sediments. The Cenozoic section is correlated using the zonation scheme and zonal code numbers of Okada and Bukry (1980) because this method yields the highest resolution and greatest accuracy for worldwide, low-latitude correlation.

RESULTS

Site 765

Shipboard sedimentologic evidence from the section drilled at Hole 765C indicated that the Aptian–Paleogene portion (part of lithologic Units III and IV; Cores 123-765C-34R through -14R) consists lithologically of dominant hemipelagic clays and claystones and minor calcareous turbidites as well as other redeposited calcareous sediment (Ludden, Gradstein, et al., 1990). As a result of the minor effect of turbidity currents in the deposition of sediments in this interval, nannofossils exhibit little evidence of reworking, as opposed to those found in the Neogene section, where turbidity currents are thought to dominate the depositional environment (Ludden, Gradstein, et al., 1990). In addition, nannofossil assemblages in the Upper Cretaceous–Paleogene interval of Hole 765C are fairly well preserved, high in diversity, and nannofossils are common to abundant as a sedimentary component (Tables 1 and 2). These factors, along with good recovery for this interval (55.9%) and a reasonably complete stratigraphic record, allowed for an accurate and high-resolution biostratigraphic correlation and for establishment of a useful temporal framework for this hole.

At the bottom of the studied interval, Sample 123-765C-34R-CC has been placed in Subzone CC7a (Chiastozygus litterarius Zone) based on the presence of C. litterarius and Rhagodiscus angustus and is Aptian in age (Fig. 2). Reworking of Jurassic material is evident with the presence of Parhabdolithus liasicus. Sample 123-765C-33R-CC is barren of nannofossils. Sediments between Sample 123-765C-33R-1, 62-63 cm, and -32R-3, 63-64 cm, have been placed in Subzone CC7b based on the presence of the previously mentioned species and are also of Albian-Aptian age. The Aptian/Albian boundary falls within Subzone CC7b (Chiastozygus litterarius Zone) and thus occurs within this interval. The subzonal designation CC7b was given based on the presence of Hayesites albiensis and Eprolithus floralis in the absence of Micrantholithus obtusus. Samples 123-765C-32R-2, 67-69 cm, and -32R-1, 64-65 cm, are barren of nannofossils. Sediments of Albian age continue in Samples 123-765C-31R-CC

through -26R-3, 118–119 cm, and were placed in Zone CC8 (*Prediscosphaera columnata* Zone) based on the presence of *P. columnata* and are of Albian age. A subdivision of Subzone CC8b occurs in Sample 123-765C-28R-CC based on the first appearance of *Tranolithus phacelosus*.

The first appearance of *Eiffellithus turriseiffeli* in Sample 123-765C-26R-3, 32–33 cm, marks the base of Zone CC9 (*Eiffellithus turriseiffeli* Zone), which continues through Sample 123-765C-26R-3, 25–26 cm, and indicates an age of late Albian. The next productive samples (Sample 123-765C-25R-CC as well as 123-765C-25R-5, 35–36 cm) were placed in Zone CC11 (*Quadrum gartneri* Zone) based on the presence of *Q. gartneri*, *E. turriseiffeli*, and *E. floralis* and is early to middle Turonian in age. Because of sampling restrictions, the completeness of the Cenomanian section and the Cenomanian/Turonian boundary is uncertain; Zone CC10 may be present. However, the small amount of material between Samples 123-765C-26R-3, 25–26 cm, and -25R-CC (3.25 m) suggests a condensed or partially missing Cenomanian section.

The next available sample (Sample 123-765C-25R-3, 15-19 cm) contains *Eiffellithus eximius*, placing it within Zone CC12 (*Lucianorhabdus maleformis* Zone), and yielded an age of late Turonian–early Coniacian. Sediments of Coniacian age were also found in Sample 123-765C-25R-2, 48–49 cm, and were assigned to Zone CC13 (*Marthasterites furcatus* Zone) based on the presence of *M. furcatus*. Sediments in Samples 123-765C-25R-1, 33–35 cm, through -4R-4, 41–43 cm, were placed in Zone CC17

Exmouth Plateau

			Hole 765C	Hole 766A
	N. frequens	CC26		10R-2, 114 → 10R-3, 13
Maastrichtian	A. cymbiformis	CC25		
	R. levis	CC24		
	T. phacelosus	CC23	23R-3, 93 → 23R-4	10R, CC
	Q. trifidum	CC22		11R 12R-1, 114 → 12-2, 27
	Q. sissinghi	CC21		12R, CC
Campanian	C. aculeus	CC20	23R, CC	
8.1.1.1.1.1.1. 8 .1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	C. ovalis	CC19	24R-1, 36 → 24R-3, 95	13R-1, 38 → 13-2, 30
	A. parcus	CC18		
	C. obscurus	CC17	24R-4, 41 → 25R-1, 34	
	L. cayeuxii	CC16		400 0 00 440 4 40
Santonian	R. anthophorus	CC15		13H-3, 69 → 14H-1, 46
	M. decussata	CC14		
Coniacian	M. furcatus	CC13	25R-2, 48	14R-2, 23
	L. maleformis	CC12	25R-3, 17	14R-3, 23
Turonian	Q. gartneri	CC11	25R, CC	14R-4 → 14, CC
Cenomanian	M. decoratus	CC10		
	E. turriseiffelii	CC9	26R-3, 25 → 26R-3, 33	15R, CC → 17R-4, 82
Albian	P. columnata	CC8	26-3, 118 → 28R 29B → 31B	17R, CC → 21R
Aptian	C. litterarius	CC7	32R-3, 63 → 33R-1, 63 34B	

Argo Abyssal

Figure 2. Distribution of Cretaceous sediments from Leg 123 based on calcareous nannofossil biostratigraphy.

Table 1. Cretaceous calcareous nannofossils from Site 765.

Core, section, interval (cm)	Biostrati- graphic horizon/ zone	Preservation	Sedimentary abundance	Ahmuellerella octoradiata	Arkhangelskiella cymbiformis	Arkhangelskiella specillata	Aspidolithus bevieri	Aspidolithus constrictus	Aspidolithus parcus	Axopodorhabdus albianus	Biscutum castrorum	Biscutum constans	Biscutum magnum	Biscutum salebrosum	Calcicalathina oblongata	Calculites obscurus	Calolithus martelae	Ceratolithoides aculeus	Chiastozygus amphipons	Chiastozygus litterarius	Chiastozygus striatus	Chiastozygus tenuis	Coccolithus pelagicus	Corollithion achylosus	Corollithion kennedyi	Crepidolithus crassus	Crepidolithus impontus	Cretarhabdus conicus
123-765C-22R-4, 108-109 22R-5 22R-CC	CP1-CP2	M-P	R	:	:	*	т к		R	*	к к	5 -2	*	2	*	*	*	R		2	*	•	F	•	12 14	2 2	•	5) 10
23R-1 23R-2			Darren		*	* * *	* * *	se al al		*	e e e	• 10 12	1991 1997 1992	24	*	÷	* * *	÷		а ж		* * *	-		3 3 3	* * *	* * *	е е
23R-3, 94-95 23R-4, 93-95 23R-CC 24R-1, 36-37 24R-2, 118-119	CC22b CC22b CC20 CC19 CC19	M–P M–P M P	A C C A C	F F · R	R	F R F · F		C R R R	F F F C F	* * * *	R	· F F F	•	R F	• • • •	· F · F		F F F	法法法法	R R F	F F · F	• • • •		• • • •		$X \times X \times X$	• • • • •	F R
24R-3, 55-58 24R-4, 41-43 24R-CC 25R-1, 33-35 25R-2, 48, 49	CC19 CC17 CC17 CC17 CC17	P M–P M M		1000	* * * * *		R		F · R	• • •	R R	R			* * * *	FFFF	* * * * *	• • • •	* * * *	F F F	R	· · R	4 4 4 4	•		* * * *	• • • •	•
25R-2, 48-49 25R-3, 15-19 25R-4	CC12	M–P	A		* *	- 2		8		÷	*	R	-	3	*			•			×					×	*	
25R-5, 35–36 25R-CC 26R-1	CC11 CC11	M–P M	A A					1.0			* * * *	1 4 4 4			•		1 1 1 1	•			:	R	100	• • • •			* * *	•
26R-2 26R-3, 25–26 26R-3, 32–33 26R-3, 118–119 26R-4, 71–73	CC9 CC9 CC8b CC8b	M M M	A A A A			 A 21 (A 24) 		0 10 10 10 10 10		R R	R F F		R							R F F		R F	N 18 10 18 19		R R R		* * * * *	10 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 1
26R-5, 44–46 26R-CC 27R-1, 97–98 27R-2, 56–57 27R-CC	СС8b ?	M–P P	C Essentially barren Barren Barren Barren			1.00000		1.200.00			R							• • • •		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			A DESCRIPTION		• • • • •			1.
28R-1 28R-2, 109-110	CC8b	М-Р	F	:	•	1	•		• •	•	F	•	100	R		04 - X400	14	•		•	ŝ	R		•		÷	2	2
28R-3 28R-CC 29R-1	CC8b	М–Р	F	•		10 10 10	•	2 2 2		•	F	(*) (*) (*)	18 B B	10.10	Ř			•	•	Ř	•	•	• • •		•	••••	••••	•
29R-2 29R-3 29R-4 29R-5 29R-CC			Parran		100 10 10 10	1900 - N.		10 N N N N	1.	• • •	10.00		100 B 20 200	10000	•	0 01 01 040		• • • •		31 AN 18 AN	• • • •			Sec. 10. 10	0.000 t	• • • •	0.00000	14 1400 E
30R-1 30R-2 30R-3 30R-4 30R-5			barren			化化化化 医	•	医白色 医白色		* 120 5 5 7 * *	计分子计算机		5 5 6 5 6 10 H		* ** * * *	* * * * * *				* ** * * *							5 100000 V V	
30R-6 30R-CC 31R-1 31R-2 31R-3	СС7ь	M–P	С		* * * * *			* * * * *	* * * * *						* * * * *		• • • •	• • • •		* * * * *		* * * * *	• • • •		****	R		* * * * *
31R-4 31R-CC 32R-1, 64–65 32R-2, 67–69	CC8	М	C Barren Essentially barren		10 X X X X	• • •				• • • •	2 2 2 2			* * * *		* * * *	R R		R	R	* * *	• • • •	• • •	R	•	:	R	•
32R-3, 63-64 32R-CC	СС7ь	М–Р	F Barren	*	13 12	042 1941	а а	9 34	•		4) 4)	2040 2040	64 (*	×		•		•	R	× ×	•	80 81		70. 10.	•	•	× *	ас эк
33R-1, 62–63 33R-CC	CC7b(?)	Р	F Barren	*	0 8			с Ж	•	•	*	•	2 2 3	*	*	•	•	•		*	÷	•	185 1861		*	*	е. К	•
34R-CC	CC7a	G	F	×	λ.	365	•	×	1	R	R	(38);	3	×	×	÷	ĸ	30	•	F	R	÷		R	×	×	80	

Key to symbols: ? = implied presence; RE = Reworked; VR = Very rare; R = Rare; F = Few; C = Common; A = Abundant; VA = Very abundant; ? = Questionably present; . = Not present.

Core, section, interval (cm)	Biostrati- graphic horizon/ zone	Preservation	Sedimentary abundance	Cretarhabdus crenulata	Cretarhabdus loriei	Cribrosphaerella ehrenbergi	Crucicribrum striatum	5 Cruciplacolithus tenuis	Cyclagelosphaera deflandrei	Cyclagelosphaera margereli	Cyclagelosphaera rotaclypeata	Cylindralithus serratus	Eiffellithus eximius	Eiffellithus gorkae	Eiffellithus turriseiffeli	Ellipsagelosphaera britannica	Ellipsagelosphaera fossacincta	Eprolithus antiquus	Eprolithus floralis	Ericsonia robusta	Flabellites biforaminis	Gartnerago nanum	Gartnerago obliquum	Gephyrorhabdus coronadventis	Glaukolithus diplogrammus	Haqius circumradiatus	Hayesites albiensis	Helenea staurolithina
123-765C-22R-4, 108–109 22R-5 22R-CC 23R-1	CP1-CP2	M–P	R Barren		****	* * * *	• • • •	R		* * * *	\cdot \cdot \cdot	• • •	* * * *			20 20 20 20	* * *	* * * *	R	R		* * * *	• • •	26 26 26 26 26	•		•	•
23R-2 23R-3, 94–95 23R-4, 93–95 23R-CC 24R-1, 36–37 24R-2, 118–119	CC22b CC22b CC20 CC19 CC19	M–P M–P M P	A C C A C	· · · c	* * * * *	A C C F F	* * * * *	* * * * * *	•	* * * *	R	· F F F · F	C F F F	R R	F F F	• • • • •	* * * *	\cdot \cdot \cdot \cdot \cdot \cdot \cdot	R	•		R R	R F	· R R R	F F C R	R R R	* * * * *	* * * * *
24R-3, 55–58 24R-4, 41–43 24R-CC 25R-1, 33–35 25R-2, 48–49	CC19 CC17 CC17 CC17 CC13	P M-P M M P	C A A C	F	* * * *	R F	* * * *				* * * *	R	F F F F	R · R	F	* * * * *	* * * *	* * * * *	R F F C		Ř	* * * *	F · F · R	* * * * *	R	R R	* * * * *	••••••
25R-3, 15–19 25R-4 25R-5, 35–36 25R-CC 26R-1	CC12 CC11 CC11	M–P M–P M	A A A	F · C R			* * * * *		• • • •		****		F		· F F				C C C			* * * * *	R	* * * * *	F	R · F R		* * * * *
26R-2 26R-3, 25–26 26R-3, 32–33 26R-3, 118–119 26R-4, 71–73	СС9 СС9 СС8ь СС8ь	M M M	A A A A	C F F F	R		1040 A A A C	10 10 10 10 10 10 10 10 10 10 10 10 10 1		10 10 10 10 10 10 10 10 10 10 10 10 10 1		* * * * *			· F R	* * * * *	· F ·		· C C F C		* * * * *		N N N N N	10 10 10 10 10 10 10 10 10 10 10 10 10 1	· F F	· R R R R	* * * * *	R R R
26R-5, 44–46 26R-CC 27R-1, 97–98 27R-2, 56–57 27R-CC	CC8b ?	M–P P	C Essentially barren Barren Barren Barren		0.0000000				R	1 (1)(1) (1)				• • • •					C R ·					A R R MUNI		R		*****
28R-1 28R-2, 109–110 28R-3	CC8b	M–P	F	F	F	•		1.00				•	100	•		F	•	R	F		4	•	1. 1.	1	241) 241) 251)	2	9 9 9	•
28R-CC 29R-1	СС8ь	M–P	F	R	F	: : :	· F	•	•••••••••••••••••••••••••••••••••••••••	2 2 2	•	5 5 8		•	ा २ २	Ř	F	Ř	R	•	5 7 7	•		1.12	• •		•	
29R-2 29R-3 29R-4 29R-5 29R-CC			Barren	10110101	1 N N N 199			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1. 1. 1. 1. 1.	• • • •		1. 1. 1. 1. 1.	• • • •	1.1.1.1.1.1.1.1			1	• • • •	1.11.11.11.11.11.11.11.11.11.11.11.11.1			1.0.000	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	••••			• • • • •
30R-1 30R-2 30R-3 30R-4 30R-5									1 10 10 10 10 10 10 10 10 10 10 10 10 10			* * * * * * *					* * * * *	A & A & A & W	•									
30R-6 30R-CC 31R-1 31R-2 31R-3	СС7ь	M–P	С	* * * *	F	* * * * *	计 化 化 化			* * * * *	* * * * *				* * * * *	F ·	F	F	F ·	法法法法		* * * * *				****	•	
31R-4 31R-CC 32R-1, 64–65 32R-2, 67–69	CC8	М	C Barren Essentially barren	* * * *		**	10 10 10 10			* * *	* * * *	5) 50 50 80 80	10 A A A		* * *	F ·	· F ·	· F ·	R ·	20 20 24		* * * *		R	F ·	* * *	• • • •	* * * *
32R-3, 63-64 32R-CC	CC7b	M-P	F Barren	34 34	R ,	•	ю •2	883) 2003	14 17		•	ю К	к. К	а. Э	а ж	F .	F	F	R	54 18	F	•	к 1	R ·	R	ж і ж	R ·	P
33R-CC 34R-CC	CC76(?)	G	F Barren F	13 14 14	F	* * *	6 6 8		3 3 3	к	•	* * *	94) 94) 94)	•	:	* * *	R	R	K	0 0 0	:	*	ы н. н.	(*) (*) (*)	24 24 24	R	к	к

Core, section, interval (cm)	Biostrati- graphic horizon/ zone	Preservation	Sedimentary abundance	Helicolithus trabeculatus	Lithastrinus grilli	Lithastrinus moratus	Lithastrinus septenarius	Lithraphidites carniolensis	Lucianorhabdus cayeuxii	Lucianorhabdus maleformis	Manivitella pemmatiodea	Markalius inversus	Marthasterites furcatus	Microrhabdulus decoratus	Microstaurus chiastius	Micula decussata	Micula praemurus	Micula quadrata	Micula swastica	Parhabdolithus embergeri	Placozygus fibuliformis	Placozygus sigmoides	Prediscosphaera columnata	Prediscosphaera cretacea	Prediscosphaera grandis	Prediscophaera konjoi	Quadrum gartneri	Quadrum gothicum
123-765C-22R-4, 108-109 22R-5	CP1–CP2	M–P	R	•	1	12)	а	•	•	5	•	F		R	•	R	320	17	8	:	•	R	•	R	•	•	•	*
22R-CC 23R-1 23R-2			Barren	N N N N	10.00	4 9 4	3 3 3	•	•			0 9 9	2 X X	•	* * *	1	•		*	*	10 10 10 10	•	•	3		× × ×	•	(*) (*) (*)
23R-3, 94–95 23R-4, 93–95 23R-CC 24R-1, 36–37 24R-2, 118–119	CC22b CC22b CC20 CC19 CC19	M–P M–P M M P	A C C A C	F · R	R R F F			F F R	R R · R	Ř · ·	R R F R F		* * * * *	C F F F	* * * *	C C C C C C C C	R R ·	R	R R ·	R	• • • •	R F	• • • •	F F F F F	R · R	R R	· F ·	F F R
24R-3, 55-58 24R-4, 41-43 24R-CC 25R-1, 33-35 25R-2, 48-49	CC19 CC17 CC17 CC17 CC17	P M–P M M	C A A A	R R R	F F ·		FFCF	R	F ? F	R	R R F F	5 0 X 0	· c c · c	F F F F	* * * *	F C C C		* * * * *	***	· F R	*	R	· C F F F F	F F F	* * *	\cdot \cdot \cdot \cdot \cdot	R · F F C	
25R-2, 48-49 25R-3, 15-19 25R-4	CC12	M–P	A	1 1 2 2	10 10 10	•	R			е 2	F	34 13		•		40 40	040 (340) (340)	а Э	14 14 14	F	F	R	F	3		•	F	
25R-5, 35–36 25R-CC 26R-1	CC11 CC11	M–P M	A A	R	•	F	34 34 33	• • •	•	2 2 2	ċ	54 54 54	9 9 9 9 9	•	9 14 14		240) 240) 241)	24 24 24	2	F F		ċ	F F	F	а 2 2		F F	(4) (4) (4)
26R-2 26R-3, 25–26 26R-3, 32–33 26R-3, 118–119 26R-4, 71–73	CC9 CC9 CC8b CC8b	M M M M	A A A	1 N N N N N	10 14 14 14 14 14 14 14 14 14 14 14 14 14	R	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		10140 40 40 ¥0	1 1 1 1 10	· R F F F	1 1 1 1 10 10	0.00 8 8 20		· C F R R	1000 E. F. K. K.	• • • •			· F F C F	· F ·	R	· F F C R				* * * * *	
26R-5, 44–46 26R-CC 27R-1, 97–98 27R-2, 56–57 27R-CC	CC8b ?	M–P P	C Essentially barren Barren Barren Barren	A A RUNA A K	1. 1. INTER 1	•••••		1. 1. 101101 P	* * ****** **	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	F		14 15 15 15 15 15 15		R	5 G. 12 SAULT -	• • • • •		1. 18 18 18 18 18 18 18 18 18 18 18 18 18	R			F					
28R-1 28R-2, 109–110 28R-3	CC8b	M–P	F	100	• •	• •	1			÷	F		1000	•	R		•	4		F	-		Ŕ	2. C. 100	1.00	•	•	•
28R-CC 29R-1	CC8b	M–P	F	2) 20 20 20		•	3 2 2	F	* *	5) 52 52	R	े ट	10	•	F	•	2 20 30		8	0 0 8	2 2 2	0.00 1.00 1.00	F		0 0 3	5. 5.	•	
29R-2 29R-3 29R-4 29R-5 29R-CC			Barren	1000								5 6 6 6 M	N 15 15 18 18			10. 2 2 2 2	• • • •	1.1.1.1.1.1.1	* * * * *	* * * * *		• • • •	0.0102 ST 41			1 A 10100		• • • •
30R-1 30R-2 30R-3 30R-4 30R-5				2 2 2 3 3 2 3 4 3 5 2 4			***		****	10 10 10 10 10 10			* * * * *	• • • •	• • • •		• • • •		****			• • • •		* * * *	• • • •	***	• • • • •	• • • •
30R-6 30R-CC 31R-1 31R-2 31R-3	СС7ь	М–Р	С	* * * * *	5 2 2 2 2 2 2	\cdot \cdot \cdot \cdot		F ·	* * * * *		R · ·	17 11 12 12 12 12 12 12 12 12 12 12 12 12	* * * * *	• • • •	* * * * *				* * * * *	F ·	10 10 10 10 10 10 10 10 10 10 10 10 10		* * * * *	• • • •	\cdot \cdot \cdot \cdot \cdot	* * * * *		
31R-4 31R-CC 32R-1, 64–65 32R-2, 67–69	CC8	М	C Barren Essentially barren	* * * *	2 2 2 2 2	•••••••••••••••••••••••••••••••••••••••	2 2 2 2	F	* * * *		• • • •	•	* * * *	• • •	Ř ·	10 X X X	•	2 2 2 2	• • • •	R	R R	F	R R	• • •	• • • •	x > x > x	• • • •	
32R-3, 63–64 32R-CC	CC76	M-P	F Barren	2 2	2 (8)	a a	а ж		•	22 - 60	R ,	a a	а х	÷	F ,	•	ан. См.	ж а	*	ĸ	÷	sins circs	64 28	÷	×	ж е	•2 10	•
33R-1, 62–63 33R-CC 34R-CC	CC7b(?) CC7a	P G	F Barren F	2 2 2		a . 	35 35 34	R · F	* * *	4 4 4	•	04 04 04	3 3 3	• • •	•	10 - 10 - 10	•	3 3 3	* * *	F · F	к к к		2 2 3	* * *	•	R R R	•	•

				iissinghi	rifidum	tes anthophorus	tes levis	angustiforata	neocomiana	us angustus	us asper	us irregularis	us wisei	ninens(?)	s gabalus	s minimus	s phacelosus	a matalosa	a stradneri	ia barnesae	ia biporta	lotus erectus	lotus pseudanthophorus	lotus theta
Core, section, interval (cm)	Biostrati- graphic horizon/ zone	Preservation	Sedimentary abundance	Quadrum .	Quadrum 1	Reinhardti	Reinhardti	Retecapsa	Retecapsa	Rhagodisc	Rhagodisc	Rucinolith	Rucinolith	Toweius er	Tranolithu	Tranolithu	Tranolithu	Vagalapill	Vekshinell	Watznauer	Watznauen	Zeugrhaba	Zeugrhaba	Zeugrhaba
123-765C-22R-4, 108-109 22R-5 22R-CC 23R-1 23R-2	CP1-CP2	M–P	R Barren	1. 1. 1000			R		• • • •	• • • •		1. 1. 1. 1.		R			1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		1.0.00	R	•••••	1. 1. 1. 1. 1.	R	
23R-3, 94–95 23R-4, 93–95 23R-CC 24R-1, 36–37 24R-2, 118–119	CC22b CC22b CC20 CC19 CC19	M–P M–P M M P	A C C A C	R	F F ·	C F C F	C F	F C F F		• • • •	R					F R R	· F F F	R	R F	A C C A C	R R		• • • • •	
24R-3, 55–58 24R-4, 41–43 24R-CC 25R-1, 33–35 25R-2, 48–49	CC19 CC17 CC17 CC17 CC17 CC13	P M–P M M P	C A A A C	* * * *	* * * * *	F F F F		F C C F	*	* * * *	\sim \sim \sim \sim	10 10 10 10 10 10 10 10 10 10 10 10 10 1	****		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\frac{1}{2}$ $\frac{1}$	R F F	$(\bullet, \bullet, \bullet, \bullet)$		C A C C	F	R F	• • • •	R F R
25R-3, 15–19 25R-4 25R-5, 35–36 25R-CC 26R-1	CC12 CC11 CC11	M-P M-P M	A A A	• • • •	* * * * *	* * * * *		* * * * *		* * * * *	F	• • • •			* * * *	*****	F F F			C A A	F · · F	10 × × × ×	F	R
26R-2 26R-3, 25-26 26R-3, 32-33 26R-3, 118-119 26R-4, 71-73	СС9 СС9 СС8ь СС8ь	M M M M	A A A A	• • • •	*****	10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1	• • • •	* * * * * *		R	$x \times x \times z$	•		* * * * *	R F R		C F R			A A A A	R · F F	10 10 10 10 10 10 10 10 10	F	R C C F
26R-5, 44–46 26R-CC 27R-1, 97–98 27R-2, 56–57 27R-CC	СС8Ь ?	M–P P	C Essentially barren Barren Barren Barren			• • • • •				x + x + x	* * * * *	•		* * * * *	• • • •	•	• • • •		• • • •	C F ·	с			*
28R-1 28R-2, 109–110 28R-3 28R-CC	СС8Ь СС8Ь	M–P M–P	F	* * * *	2 2 2 2	5.5.5.4	a a a	* * * *	•	F	R	•	R R	* * * *	R	* * *	F	R R	• • •	À Â Ċ	F	R		R · F
29R-1 29R-2 29R-3 29R-4 29R-5 29R-5			Barren														•							14 17 14 14 14 14 14 14 14 14 14 14 14 14 14 14 1
30R-1 30R-2 30R-3 30R-4 30R-5			barren	10 11 11 11 11 11 11 11 11 11 11 11 11 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			10 10 10 10 10 10 10 10 10 10 10 10 10 1				5	5 2 3 3 3 3020		1004 A A A (4		• • • • • •			10 N N N N N	THE R R R OF		0.00 E E E E	
30R-6 30R-CC 31R-1 31R-2 31R-3	СС7ь	M–P	с	2 C (1992 B)	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	• • • •			14 24 24 18 19 19 19 19 19 19 19 19 19 19 19 19 19	1 201000 H W	F			• • • •	a anata a ao		•••••	1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1	* * * * *	ċ	F	• • • •	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
31R-4 31R-CC 32R-1, 64-65 32R-2, 67-69 32R-3, 63-64	СС8 СС7ь	M M-P	C Barren Essentially barren F	1000 N N N	• • • •			R · ·	1 (* 14 (* 4) R	R	F	R			2, 21, 21, 21, 22, 22			· F ·	· F ·	C · F C	F	\cdot \cdot \cdot \cdot	0 00 00 0 0	
32R-CC 33R-1, 62–63 33R-CC 34R-CC	CC7b(?) CC7a	P G	Barren F Barren F	1 1 2 2 3 3 F	••••			••••	R	R	· · R	•	S & (*0.30)	• • • •	1. 1. 1. 1.	$(\bullet, \bullet) \in \bullet$	1 1 1000	F		ċ ċ	14 (C. 15) 15	R	3 8 (0000)	••••

Table 2. Paleogene calcareous nannofossils from Site 765.

Core, section, interval (cm)	Biostrati- graphic horizon/ zone	Preservation	Sedimentary abundance	Ahmuellerella octoradiata	Arkhangelskiella cymbiformis	Arkhangelskiella specillata	Aspidolithus constrictus	Aspidolithus parcus	Axopodorhabdus albianus	Biantholithus sparsus	Biscutum castrorum	Biscutum constans	Biscutum coronum	Biscutum magnum	Braarudosphaera hockwoldensis	Bukrylithus ambiguus	Calcicalathina oblongata	Calolithus martelae	Ceratolithoides aculeus	Chiastozygus amphipons	Chiastozygus litterarius	Chiastozygus platyrhethus	Chiastozygus striatus	Chiastozygus tenuis	Corollithion achylosus	Cretarhabdus angustiforata	Cretarhabdus conicus	Cretarhabdus crenulata
$\begin{array}{c} 123-766C-10R-2, 68-69\\ 10R-2, 141-142\\ 10R-CC\\ 11R-1, 99-100\\ 11R-3, 98-99\\ 11R-4, 98-99\\ 11R-5, 99-100\\ 11R-6, 99-100\\ 11R-CC\\ 12R-1, 114-115\\ 12R-2, 27-28\\ 12R-1, 114-115\\ 12R-2, 27-28\\ 12R-CC\\ 13R-1, 38-39\\ 13R-2, 29-30\\ 13R-3, 68-69\\ 13R-CC\\ 14R-1, 46-47\\ 14R-2, 22-23\\ 14R-3, 23-24\\ 14R-4, 27-28\\ 14R-2, 22-23\\ 14R-3, 23-24\\ 14R-2, 22-23\\ 14R-3, 23-24\\ 14R-4, 27-28\\ 14R-2, 22-23\\ 16R-5, 129-131\\ 16R-5, 129-131\\ 16R-5, 129-131\\ 16R-5, 129-131\\ 16R-5, 129-131\\ 16R-4, 129-131\\ 16R-5, 129-131\\ 16R-5, 129-131\\ 16R-4, 129-131\\ 16R-5, 129-131\\ 16R-5, 129-131\\ 16R-4, 129-131\\ 16R-4, 129-131\\ 16R-5, 129-131\\ 16R-2C\\ 17R-1\\ 17R-2\\ 17R-3\\ 17R-4, 80-82\\ 17R-5\\ 17R-6\\ 17R-CC\\ 18R-1, 75-76\\ 18R-2, 26-27\\ 18R-3, 92-93\\ 18R-4, 137-138\\ 18R-5, 6-7\\ 18R-CC\\ 19R-1, 106-108\\ 19R-2, 12-13\\ 19R-4, 145-146\\ 19R-5, 33-34\\ 19R-CC\\ 20R-1, 43-44\\ 20R-2, 47-48\\ 20R-3, 67-68\\ 20R-4, 21-22\\ 20R-CC\\ 21R-1\\ 21R-C\\ 10R-3, 13-14\\ 148-146\\ 148-$	1a -CC16	M M P M M P M M P M P M P M P M P M P P M P M P P M P P M P P M P P M P P M P P M P P M P P M P P M P P M	CACCAACAACACCACCCFFCC AAAAAAAA A AAAAAFAAA ACCCACAA A		RC . RF FR F	· · R · F F F F F F F F F F F F F F F F	"不是不是"的""""。""""",""""""""。"""""""""""""""""""""""""""""""	R FFFFFCRCFCCF	· · · · · · · · · · · · · · · · · · ·	FR	· · · · · · · · · · · · · · · · · · ·	· · · · FFFF · FRF · · R · R · · · · · ·	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	. The set of the set	· · · · · · · · · · · · · · · · · · ·	\cdots	. A set of the set of	· · · · · · · · · · · · · · · · · · ·	医胆酸素 医子宫 医白垩合 网络白垩色的复数 医白垩白 化合合合合 化合合合合 化合合合合合合合合合合合合合合合合合合合合合合合	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	R RRR	· · · · · · · · · · · · · · · · · · ·	R · · · · · R · · · · · F · · · · · · ·	· · FCCCC · CCCCCCCCCCCCC · · · · · · ·

Key to symbols: RE = Reworked; R = Rare; F = Few; C = Common; A = Abundant; VA = Very abundant; ? = Questionable presence; . = Not present.

Core, section, interval (cm)	Biostrati- graphic horizon/ zone	Preservation	Sedimentary abundance	Cretarhabdus loriei	Cribrosphaerella ehrenbergi	Crucicribrum striatum	Cruciellipsis cuvillieri	Cruciplacolithus edwardsii	Cyclagelosphaera alta	Cyclagelosphaera reinhardtii	Cyclagelosphaera rotaclypeata	Cylindralithus crassus	Cylindralithus serratus	Eiffellithus eximius	Eiffellithus eximius (transitional)	Eiffellithus gorkae	Eiffellithus turriseiffeli	Ellipsagelosphaera britannica	Ellipsagelosphaera fossacincta	Eprolithus floralis	Flabellites biforaminis	Gartnerago nanum	Gartnerago obliquum	Gephyrorhabdus coronadventis	Glaukolithus diplogrammus	Haqius circumradiatus	Helicolithus trabeculatus	Kamptnerius magnificus
$\begin{array}{c} 123-766C-10R-2, 68-69\\ 10R-2, 141-142\\ 10R-CC\\ 11R-1, 99-100\\ 11R-2, 99-100\\ 11R-2, 99-100\\ 11R-4, 98-99\\ 11R-5, 99-100\\ 11R-CC\\ 12R-1, 114-115\\ 12R-2, 27-28\\ 12R-CC\\ 13R-1, 38-39\\ 13R-2, 29-30\\ 13R-3, 68-69\\ 13R-CC\\ 14R-1, 46-47\\ 14R-2, 22-23\\ 14R-3, 23-24\\ 14R-3, 23-24\\ 14R-3, 23-24\\ 14R-4, 27-28\\ 14R-3, 23-24\\ 14R-4, 27-28\\ 14R-2, 22-23\\ 14R-3, 23-24\\ 14R-4, 27-28\\ 14R-5, 129-131\\ 15R-2\\ 15R-1\\ 15R-2\\ 15R-1\\ 15R-2\\ 15R-3\\ 15R-4\\ 15R-5\\ 15R-CC\\ 16R-1, 129-131\\ 16R-2, 129-131\\ 16R-3, 129-131\\ 16R-4, 129-131\\ 16R-5, 129-131\\ 16R-4, 129-131\\ 16R-5, 129-131\\ 16R-5, 129-131\\ 16R-6, 129-131\\ 16R-2C\\ 17R-1\\ 17R-2\\ 17R-3\\ 17R-4, 80-82\\ 17R-5\\ 17R-6\\ 17R-CC\\ 18R-1, 75-76\\ 18R-2, 26-27\\ 18R-3, 92-93\\ 18R-4, 137-138\\ 18R-5, 6-7\\ 18R-CC\\ 19R-1, 106-108\\ 19R-2, 12-13\\ 19R-3, 72-73\\ 19R-4, 145-146\\ 19R-5, 33-34\\ 19R-CC\\ 20R-1, 43-44\\ 20R-2, 47-48\\ 20R-3, 67-68\\ 20R-4, 21-22\\ 20R-CC\\ 21R-1\\ 21R-2\\ 21R-CC\\ 10R-3, 13-14\\ \hline \end{array}$	1a -CC16	M M-P P M M-P M M M-P M M M-P M M M-P M M M-P M M M M-P M M M M M M M M M M M M M M M M M M M	CACCAACAACACCACCCFFCC AAAAAAAA A AAAAAAFAAA ACCCCACAA A	· · · · · · · · · · · · · · · · · · ·	·FFCCCCCCACCFRFF · · · · · · · · · · · · · · · · · ·	·······································	· · · · · · · · · · · · · · · · · · ·	P	\mathbf{F} is a second sec			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	the second structure ${f R}$ and the second structure of the second structur	·F···FFFF.F···························	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · FRR · · · RR · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · R · · · · · · · · · · · · · · · · ·

Core, section, interval (cm)	Biostrati- graphic horizon/ zone	Preservation	Sedimentary abundance	Lithastrinus grilli	Lithastrinus septenarius	Lithraphidites carniolensis	Lithraphidites quadratus	Lucianorhabdus cayeuxii	Lucianorhabdus maleformis	Manivitella gronosa	Manivitella pemmatiodea	Markalius inversus	Marthasterites furcatus	Microrhabdulus decoratus	Microstaurus chiastius	Micula concava	Micula decussata	Micula murus	Micula praemurus	Micula sp. cf. murus	Micula swastica	Neocrepidolithus cohenii	Parhabdolithus embergeri	Placozygus fibuliformis	Placozygus sigmoides	Prediscosphaera columnata	Prediscosphaera cretacea	Prediscosphaera grandis
$\begin{array}{c} 125-766C-10K-2, 68-69\\ 10R-2, 141-142\\ 10R-CC\\ 11R-1, 99-100\\ 11R-2, 99-100\\ 11R-3, 98-99\\ 11R-4, 98-99\\ 11R-4, 98-99\\ 11R-5, 99-100\\ 11R-CC\\ 12R-1, 114-115\\ 12R-2, 27-28\\ 12R-CC\\ 13R-1, 38-39\\ 13R-2, 29-30\\ 13R-3, 68-69\\ 13R-CC\\ 14R-1, 46-47\\ 14R-2, 22-23\\ 14R-3, 23-24\\ 14R-4, 27-28\\ 14R-2, 22-23\\ 14R-3, 23-24\\ 14R-4, 27-28\\ 14R-CC\\ 15R-1\\ 15R-2\\ 15R-3\\ 15R-4\\ 15R-5\\ 15R-CC\\ 16R-1, 129-131\\ 16R-2, 129-131\\ 16R-2, 129-131\\ 16R-2, 129-131\\ 16R-3, 129-131\\ 16R-5, 129-131\\ 16R-6, 129-131\\ 16R-6, 129-131\\ 16R-6, 129-131\\ 16R-6, 129-131\\ 16R-6, 129-131\\ 16R-CC\\ 17R-1\\ 17R-2\\ 17R-3\\ 17R-4, 80-82\\ 17R-5\\ 17R-6\\ 17R-CC\\ 18R-1, 75-76\\ 18R-2, 26-27\\ 18R-3, 92-93\\ 18R-4, 137-138\\ 18R-5, 6-7\\ 18R-CC\\ 19R-1, 106-108\\ 19R-2, 12-13\\ 19R-3, 72-73\\ 19R-4, 145-146\\ 19R-5, 33-34\\ 19R-CC\\ 20R-1, 43-44\\ 20R-2, 47-48\\ 20R-3, 67-68\\ 20R-4, 21-22\\ 20R-CC\\ 21R-1\\ 21R-2\\ 21R-CC\\ 10R-3, 13-14\\ \end{array}$	1a -CC16	M – P M – M M M – M M M – M M M – M	LACCAACAACACCACCCFFCC AAAAAAAA A AAAAAFAAA ACCCACAA A	· · · · · · · · · · · · · · · · · · ·		·FFFCCCCFFCFCFCFCCCFFFFFF·····RRF·F·R···FFCFC·FCCCCCFCFCCCCC····	\mathbf{R} , and \mathbf{r} , \mathbf{R} , and \mathbf{r} , and \mathbf{r} , and \mathbf{r} , and \mathbf{r} ,	\cdot	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· R F · R F F R R · R R R R · F F F F F			· . F . F F F F F F F R F . R R R	····	\cdot \cdot \cdot \cdot \cdot $FFCF$ \cdot C \cdot F \cdot FF \cdot	RACCACCCCCCCCCCCF · · · · · · · · · · · · · ·	κ F · · · · · · · · · · · · · · · · · · ·		\cdot	R · FRRRR · F · R	新 化氯化化合物 化氯化化合物 化合物化合物 化合物化合物 医水子的 化合物化合物 化合物化合物化合物化合物化合物 化合物化合物化合物	· · · · · · · · · · · · · · · · · · ·	$\cdots \cdots $	A . FEFF	· · · · FFFFF · FFFF · CFFFCFCCCC · · · ·	KCFFFC FCFCFC F	F . F F F F F F F F F

									-			_	_	_				_	_			_		-	_						
Core, section, interval (cm)	Biostrati- graphic horizon/ zone	Preservation	Sedimentary abundance	Prediscosphaera honjoi	Prediscosphaera spinosa	Quadrum gartneri	Quadrum gothicum	Quadrum sissinghi	Quadrum trifidum	Radiolithus planus	Reinhardtites anthophorus	Reinhardtites levis	Rhagodiscus angustus	Rhagodiscus asper	Rucinolithus irregularis	Rucinolithus wisei	Scampanella cornuta	Stephanolithion laffittei	Tetrapodorhabdus coptensis	Tetrapodorhabdus decorus	Tranolithus exiguus	Tranolithus gabalus	Tranolithus phacelosus	Vagalapilla matalosa	Vekshinella stradneri	Watznaueria barnesae	Watznaueria biporta	Watznaueria supracretacea	Zeugrhabdotus erectus	Zeugrhabdotus pseudanthophorus	Zeugrhabdotus theta
$\begin{array}{c} 123-766\text{C}-10\text{R}-2, 68-69\\ 10\text{R}-2, 141-142\\ 10\text{R}-\text{CC}\\ 11\text{R}-1, 99-100\\ 11\text{R}-3, 98-99\\ 11\text{R}-4, 98-99\\ 11\text{R}-5, 99-100\\ 11\text{R}-6, 99-100\\ 11\text{R}-6, 99-100\\ 11\text{R}-CC\\ 12\text{R}-1, 114-115\\ 12\text{R}-2, 27-28\\ 12\text{R}-\text{CC}\\ 13\text{R}-1, 38-39\\ 13\text{R}-2, 29-30\\ 13\text{R}-3, 68-69\\ 13\text{R}-\text{CC}\\ 14\text{R}-1, 46-47\\ 14\text{R}-2, 22-23\\ 14\text{R}-3, 23-24\\ 14\text{R}-4, 27-28\\ 14\text{R}-2, 22-23\\ 14\text{R}-3, 23-24\\ 14\text{R}-4, 27-28\\ 14\text{R}-2, 22-23\\ 14\text{R}-3, 23-24\\ 14\text{R}-2, 22-23\\ 15\text{R}-3\\ 15\text{R}-2\\ 15\text{R}-1\\ 15\text{R}-2\\ 15\text{R}-1\\ 15\text{R}-2\\ 15\text{R}-3\\ 15\text{R}-CC\\ 16\text{R}-1, 129-131\\ 16\text{R}-2, 129-131\\ 16\text{R}-2, 129-131\\ 16\text{R}-3, 129-131\\ 16\text{R}-4, 129-131\\ 16\text{R}-6, 129-131\\ 16\text{R}-6, 129-131\\ 16\text{R}-6, 129-131\\ 16\text{R}-6, 129-131\\ 16\text{R}-6, 129-131\\ 16\text{R}-2, 129-131\\ 16\text{R}-2, 129-131\\ 16\text{R}-2, 129-131\\ 16\text{R}-2, 129-131\\ 16\text{R}-2, 129-131\\ 16\text{R}-3, 129-131\\ 16\text{R}-4, 129-131\\ 16\text{R}-5, 129-131\\ 16\text{R}-6, 129-131\\ 16\text{R}-2, 26-27\\ 18\text{R}-1, 75-76\\ 18\text{R}-2, 26-27\\ 18\text{R}-3, 92-93\\ 18\text{R}-4, 137-138\\ 18\text{R}-5, 6-7\\ 18\text{R}-2, 26-27\\ 18\text{R}-3, 92-93\\ 18\text{R}-4, 145-146\\ 19\text{R}-5, 33-34\\ 19\text{R}-\text{CC}\\ 20\text{R}-1, 43-44\\ 20\text{R}-2, 47-48\\ 20\text{R}-3, 67-68\\ 20\text{R}-4, 21-22\\ 20\text{R}-168\\ 20\text{R}-168\\ 20\text{R}-4, 21-22\\ 20\text{R}-168\\ 20\text{R}-168\\ 20$	1a 16 -CC16	$ \begin{array}{c} M \\ M \\ -P \\ M \\ -P \\ P \\ M \\ -P \\ M \\ $	CACCAACAAACACCACCCFFCC AAAAAAAA A AAAAAAFAAA ACCCACAA	FRFR F R R R	\mathbf{R} , \mathbf{R} , \mathbf{R} , \mathbf{R} , \mathbf{R} , \mathbf{F} , \mathbf{F} , \mathbf{F} , \mathbf{F} , \mathbf{R} , \mathbf	· · · · F F F F F F F F F F F C C F F F F	· · R · F F F F R R · · · · · · · · · ·	· · · R · FF · FF FFF · · · · · · · · ·	\cdot , \mathbf{R} , \cdot , $\mathbf{F}\mathbf{F}\mathbf{F}\mathbf{F}\mathbf{F}\mathbf{F}$, \cdot , , , , \cdot , \cdot , \cdot , \cdot , , , , , , , , , , , , , , , , , , ,	· · · · · · · · · · · · · · · · · · ·	· · · FF FF FF FF FC CC C F · R · · · · · · · · · · · · · · · · ·	· . FFFCCCCCFFFFF .?	· · · · · · · · · · · · · · · · · · ·	FC · · · F · · · F · FFFFF · F · F · · · · · F · · FFFFF · · · · F · · C · C	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	and the state of the ${f R}$ and ${f R}$	· · R · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		. We conside the second state of the state of the state of the state of ${f R}$. The second state of the s	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		RCCCCA AAAAA CACCA AAAFAAA · · · · AAAACAAA · · · A · · AAAAAAACAA AACCC AAAA · · ·	·F·····F····F·FFFFFFFF················	······································	$\cdots \cdots $	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
101-14		-1-1-	1	L **		A	.4		· ·						*				(* *) 	•	٠					0		28	1.00	100	•

Table 3. Cretaceous calcareous nannofossils from Site 766.

Core, section, interval (cm)	Biostrati- graphic horizon/ zone	Preservation	Sedimentary abundance	Apsidolithus parcus	Biantholithus sparsus	Biscutum constans	Blackites spinosus	Braarudosphaera bigelowi	Bramletteius serraculoides	Calcidiscus macintyrei	Calcidiscus protoannulus	Campylosphaera eodela	Ceratolithoides aculeus	Chiasmolithus altus	Chiasmolithus bidens	Chiasmolithus californicus	Chiasmolithus consuetus	Chiasmolithus danicus	Chiasmolithus eograndis	Chiasmolithus expansus	Chiasmolithus grandis	Chiasmolithus oamaruensis	Chiasmolithus solitus	Chiasmolithus titus	Chiphragmalithus acanthodes	Coccolithus eopelagicus	Coccolithus pelagicus	Coccolithus pliopelagicus
123-765C-14R-CC	CN1c	G	C	8		23	×	*		R	×	*	*		÷	*	*	÷	*	20		\mathbf{x}				×	R	
16R-1, 132–133 16R-2, 36–37 16R-3, 71–72	CP19b CP19b CP19b	M M M	A A A	* * *	•		* *	R R	R R R		· F F	•	* * * *	• • • •		R R			* * *	* * *	* * *		• • • •	* * *			·CCCC	F R
16R-4, 146–148 16R-CC 17R-1, 70–71	СР19ь	M–G	Barren A Barren	-*	•	8 8 5	•	Ŕ	*	•	F	•	8 8 9	÷	•	*	*	•		*	*	*	•	*	*		ċ	•
17R-2, 79-80 17R-3, 31-32	CP19a CP19a	M-P M-P	AC	2	1	- 8	- 10	Ċ	0	- 40	F	8	2	*	ŝ	- 22	8	*	8	- 8	*	- 20	*	R		F	C	
17R-4, 86–87 17R-CC 18R-1, 39–40 18R-2, 134–136 18R-3, 24–26	CP19a CP19a CP19a CP16b CP16b	M M M M	A A A A	R			R	F R R R	· · · · · ·		FFFFF		2 2 X 2 X 2	R		R		* * * * *			· · R R			· · · F		R R F F	C C C A A	
18R-4, 27–29 18R-5, 17–19 18R-CC 19R-1, 11–13 19R-1, 105–106	CP16b CP16b CP16b CP16b CP16b CP16b	M M G M M	A A A C A	R			R R F F	R R R R R	R R R		F F F F F		1997 N. N. 1998	1 A A A A A A					10 N N N N N		R · · R	R · · · F		F R ·		C F · F F	A A C C C	
19R-1, 128–129 19R-2, 58–59 19R-2, 105–109 19R-2, 120–121 19R-2, 148–149	CP16b CP15b CP15b CP12a CP12a	M-G M M-G M-P M-G	A F A C A	1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			F	R	F	1. 14 14 14 14 14 14 14 14 14 14 14 14 14	F · F · R	R	San a san a	0 14240 42 42 4		A 100000 10 10 10	R	0 14 04 04 14 14 14 14 14 14 14 14 14 14 14 14 14	R	1 20000 P	R	F	R			F	C C A C C	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
19R-3, 112–113 19R-CC 20R-1, 24–25 20R-2, 47–48 20R-CC	CP12a CP11 CP11 CP9b	M M M–P	A Barren A A C						2.1.1.1.1.1.1.1.1			· F R		900 N N N	R	R	· F F		· F	R	F		 B - 0.000 K 	 0.000000 	· F F	· F	A C C C C	
21R-1, 16–17 21R-CC 22R-1, 149–150 22R-2, 01–02 22R-2, 02, 03	CP9a CP6 CP5 CP4	M–P M M	C Barren C C	R R			10 10 10 10 10 10 10 10	• • • •		•		1 1 1 1 1 1	1.10.10.10.10		· F F F	F	0 342 A 42 A	· F F	8 19 19 19 19 19 19 19 19 19 19 19 19 19	2 20 0 20 0		1 1 1 1 1 1 1 1		 M. M. M. M. M. 	1 11 11 11 11 11 11 11 11 11 11 11 11 1	2, 22, 22, 24, 25	F C C C	1 24 24 C
22R-3, 02-03 22R-4, 19-20 22R-4, 108-109 22R-5 22R-CC 23R-1	CP3 CP2-CP3	M–P M–P	F R Barren	R	к	к	** ** ** **	•	* * * * * *	* * * * * *	* * * * * *	0 2 2 2 2 2 2 2 2	R	* * * * * *	r		2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		AKCNN S	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	* * * * * *		* * * * * * *	* * * * * *			F F · ·	
23R-2					t.	t			10	1			10		*		*	•			5		1				ł	

Key to symbols: RE = Reworked; R = Rare; F = Few; C = Common; A = Abundant; VA = Very abundant; ? = Questionable presence; . = Not present.

(*Calculites obscurus* Zone) based on the presence of *C. obscurus*, *Reinhardtites anthophorus*, and *M. furcatus* and are late Santonian/early Campanian in age. The stratigraphic gap between Samples 123-765C-25R-2, 48–49 cm, and -25R-1, 33–35 cm, suggests a significant decrease in sedimentation rate (highly condensed section) or the presence of an unconformity or unconformities in this interval. Good recovery in Core 123-765C-25R (71.6%, Ludden, Gradstein, et al., 1990) supports this interpretation because this suggests that little material was lost because of drilling.

Material between Samples 123-765C-24R-3, 55–58 cm, and 123-765-24R-1, 36–37 cm, was placed in Zone CC19 (*Calculites ovalis* Zone) based on the presence of *Aspidolithus parcus*, *R. anthophorus*, *C. obscurus*, and the last appearance of *M. furcatus*

in Sample 123-765C-24R-4, 41–43 cm. This zonal assignment indicates an age of middle Campanian. Considering the relative length of Zone CC18 (*Aspidolithus parcus* Zone), a condensed section or unconformity may exist between Samples 123-765C-24R-4, 41–43 cm, and -24R-3, 55–58 cm (slightly more than 1.5 m). Fairly good recovery in Core 123-765C-24R (58.9%, Ludden, Gradstein, et al., 1990)) supports this interpretation. Middle Campanian sediments also were found in Sample 123-765C-23R-CC, which was placed in Zone CC20 (*Ceratolithoides aculeus* Zone) based on the presence of *C. aculeus*. Samples 123-765C-23R-4, 93–95 cm, and -23R-3, 94–95 cm, were placed in Subzone CC22b (*Quadrum trifidum* Zone) based on the presence of *Q. trifidum* and are late Campanian in age. The lack of Zone CC21 suggests

Core, section, interval (cm)	Biostrati- graphic horizon/ zone	Preservation	Sedimentary abundance	Coronocyclus nitescens	Cretarhabdus crenulatus	Cribrocentrum reticulatum	Cribrosphaerella ehrenbergi	Cruciplacolithus cribellum	Cruciplacolithus frequens	Cruciplacolithus primus	Cruciplacolithus tenuis	Cyclagelosphaera alta	Cyclagelosphaera reinhardti	Cyclicargolithus abisectus	Cyclicargolithus floridanus	Dictyococcites antarcticus	Dictyococcites bisectus	Dictyococcites callidus	Dictyococcites daviesi	Discoaster adamanteus	Discoaster barbadiensis	Discoaster calculosus	Discoaster deflandrei	Dicoaster diastypus	Discoaster druggi	Discoaster gemmeus	Discoaster kuepperi	Discoaster lodoensis
123-765C-14R-CC	CN1c	G	C	F				280	35	(\mathbf{e})	878	300	120	3.03	С	R			28	100		R	С	120	С	2	18	
16R-1, 132–133 16R-2, 36–37 16R-3, 71–72	CP19b CP19b CP19b	M M M	A A A A	· F F F	• • • •	••••••		• • • •	• • •	• • • •	* * * *	•	•	Ċ F F	A A A	•	Ċ C C			F F	R R R	•	A C A		•	•	•	
16R-4, 146–148 16R-CC	CP19b	M–G	Barren A	F		а	9	а. А	3	•		•	•	·F		v	F		*	R	(**) (**)	300) 0000	Å					
17R-1, 70-71	CP10a	MD	Barren	÷			1	33.1		•			32	ċ	Å	30	ċ	1.00	000	Ė	240	993	à	2003		191	390	3.00
17R-2, 79-80 17R-3, 31-32	CP19a CP19a	M–P	ĉ	R		Ŕ		4		4	1			c	A	•	c	•	2.00 (10)	R	Ř		A	2.00 2.00	•			•
17R-4, 86–87	CP19a CP19a	M	A	F	•	R	-30	90	-	a)	\sim	÷	•	F	A		F		5 8 3	F	302		F		10	(9)	$\langle (\bullet) \rangle$	(*)
18R-1, 39–40	CP19a CP19a	M	Â	F			4		:	:	4	a.		C	A	•	г		•	F			ċ		•	3.40 140	270 192	
18R-2, 134–136 18R-3, 24–26	CP16b CP16b	M M	A	F	64. G	R	R		4	4		4	a.,	4	A	-	CA		F		R R		C C	2002) 7000		530 720	588) 520	23 4 32 2020
18R-4, 27–29	CP16b	М	A	R	a	R		а.			4		4	:e:	A		A						С		1.			1.
18R-5, 17–19 18R-CC	CP16b CP16b	M	A	Č.	a	4	R	ā.	4	24	a.	4	•	64.) 	A		C	ċ	F		R	343 222	F	2003) 2003	3 8 3) 1001	580 101	R	200) 1000
19R-1, 11–13	CP16b	M	Ċ	R	14						4	-			A		C	ĩ			P		F					
19R-1, 103–100	CP16b	M–G	A	F	1	1	3	1	1		1	1		1	A	•	c	े. २२		г	R		c					
19R-2, 58-59	CP15b	M	F	1	8	P	8	4	4	4	4		3 4 1	a	C	41	C	2	2		R		F	80	si	8	(a)	 (i)
19R-2, 103–109 19R-2, 120–121	CP13b CP12a	M-O M-P	C	r		ĸ.			1			:	:	1	C	:			;	;	c	÷	C		an G		ċ	ċ
19R-2, 148-149	CP12a	M–G	A		·				•	•		•		3	C	٠	3	30	4	٠	C	•	С		٠		F	C
19R-3, 112–113 19R-CC	CP12a	М	A Barren		1			F	1	0.010			10.0	:	F ,	1	•	4	1	:	C .	:	4	4		ĸ	ĸ	
20R-1, 24-25 20R-2, 47-48	CP11 CP11	M	A	D							1		3	1				9	4		F		F	F	•		C	CF
20R-22, 47-48 20R-CC	CP9b	M-P	c	, K	1	3	2	2.2	3		2	F	а Э	2	2	2	15 24	52 24	1	1	c	3		C	•	•		
21R-1, 16-17	CP9a	M-P	C	4	14	4	14	4	•		F	i.	R	8	4	3	•		4		4	•		ia.	6	4		a.
22R-1, 149–150	CP6	М	C	1		1	1	2	Ŕ	1	F	1	Ŕ	1	F	1	1	1	1			1	3		1		1	-
22R-2, 01-02 22R-3, 02-03	CP5	M	C		R		P	2	R	p	F	p		Ģ.,	8	•	э.	2	G	•	3	31	9				•	•
22R-4, 19-20	CP3	M–P	F		R	37 13		2			F		· .		31) 37			20. 14		31 24	2			1				
22R-4, 108-109	CP2-CP3	M-P	R	1			32	83 193		2	R	ŝ										2						•
22R-CC			Barren		2 (2	23 (3	32 (2	3 3	3		2 2	2 14	3 3	1	2	2	ा अ	81 81		а. Э	े स	1	81) 2		2			
23R-1					3	18	9	8	37	()	Q.	e;	at.	9	2	2	1	1	1	аł	9	сł	2	2	2	it.	2	2
23R-2				•				1	1				1	3	2	2	2	9		2	1	2	1	r.	2	1		3

another condensed section/unconformity between Samples 123-765C-23R-CC and -23R-4, 93-95 cm. Good recovery in Core 123-765C-23R(70.6%, Ludden, Gradstein, et al., 1990) supports this interpretation.

Distinction of Maestrichtian material and the Cretaceous/Tertiary boundary was difficult in sediments from Hole 765C because of the absence of nannofossils in much of the sampled material and because of restrictions on sampling of critical boundary material (Cores 123-765C-23R and -22R). An age of early Paleogene was found in Sample 123-765C-22R-4, 108–109 cm, which was placed in undifferentiated Zones CP2–CP3 (*Chiasmolithus danicus–Ellipsolithus macellus* Zones) based on the presence of *Cruciplacolithus tenuis* and *Toweius eminens* (Fig. 3). Extensive reworking of Late Cretaceous nannofossils occurs in this sample. Early Paleocene material also can be found in Sample 123-765C- 22R-4, 19–20 cm, which was tentatively placed in Zone CP3 and in Sample 123-765C-22R-3, 2–3 cm, which was placed in Zone CP4 (*Fasciculithus tympaniformis* Zone) based on the presence of *F. tympaniformis*. Late Paleocene material was found in Samples 123-765C-22R-2, 1–2 cm, and 123-765C-22R-1, 149–150 cm, which were placed in Zones CP5 (*Heliolithus kleinpelli* Zone) and CP6 (*Discoaster mohleri* Zone), respectively, based on the presence of both *H. kleinpelli* and *D. mohleri*.

Eocene sediment first occurs in Sample 123-765C-21R-1, 16– 17 cm, and was placed in Subzone CP9a (*Tribrachiatus contortus* Subzone) based on the presence of *Discoaster diastypus*. Poor recovery in Core 23-765C-21R-1 (6.8%, Ludden, Gradstein, et al., 1990) and an intervening barren sample (Sample 123-765C-21R-CC) suggest that Zones CC7 (*Discoaster nobilis* Zone) and CC8 (*Discoaster multiradiatus* Zone) may be present between

Core, section, interval (cm)	Biostrati- graphic horizon/ zone	Preservation	Sedimentary abundance	Discoaster mohleri	Discoaster multiradiatus	Discoaster nobilis	Discoaster nodifer	Discoaster robustus	Discoaster saipanensis	Discoaster subdeflandrei	Discoaster sublodoensis	Discoaster tani	Discoaster toralus	Discoaster wemmelensis	Eiffellithus turriseiffeli	Ellipsagelosphaera britannica	Ellipsolithus lajollaensis	Ellipsolithus macellus	Eprolithus floralis	Ericsonia fenestrata	Ericsonia formosa	Ericsonia obruta	Ericsonia robusta	Ericsonia subdisticha	Fasciculithus bobii	Fasciculithus thomasi	Fasciculithus tympaniformis	Hayaster perplexus
123-765C-14R-CC	CN1c	G	С	×	×							32	F			3	3	3		R		•	э.	•	38	×	\sim	۰.
15R-CC 16R-1, 132–133 16R-2, 36–37 16R-3, 71–72	CP19b CP19b CP19b	M M M	A A A A		•		R	•	R R R			R				3 3 3 3		0 X 0 X	1.1	C F F	R R R	* * * *	3 2 2 2 2	R		****	2	* * *
16R-4, 146–148 16R-CC	CP19b	M–G	Barren A	•	•	•	*	•	R		4	:	* *	4.4	-	•	2	-		ċ	R	а а	а а		а а	a R	34 52	54 54
17R-1, 70-71 17R-2, 79-80 17R-3, 31-32	CP19a CP19a	M-P M-P	A C	•	•	•		•	R	•		R			Ŕ	÷	è			Ċ F	R	į	1.0		-	100		F
17R-4, 86–87 17R-CC 18R-1, 39–40 18R-2, 134–136 18R-3, 24–26	CP19a CP19a CP19a CP16b CP16b	M M M M	A A A A A					• • • •	· · · · · · · · · ·		• • • • • •	· · · F					8 8 0000 V			C F F F	R F F		1 10 10 10 10 10 10 10 10 10 10 10 10 10	· R F F	2000 C 10 C	5 10 10 10 10 10 10 10 10 10 10 10 10 10	R	F
18R-4, 27-29 18R-5, 17-19 18R-CC 19R-1, 11-13 19R-1, 105-106	CP16b CP16b CP16b CP16b CP16b CP16b	M M G M M	A A A C A		R R	• • • •	· · · F		R R · R	F		F F F				1 14 14 16 16 1		1.0000000000000000000000000000000000000		F F F F	C C R F F	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	× 0.00000	C F R F F		1 1 1 1 1 1 1 1 1		2 10 10 10 10 10 10 10 10 10 10 10 10 10
19R-1, 128-129 19R-2, 58-59 19R-2, 105-109 19R-2, 120-121 19R-2, 148-149	CP16b CP15b CP15b CP12a CP12a	M-G M-G M-P M-G	A F A C A		* * * * *	•	F C	• • • • •	C		· · F	F								F · · F	F F C F C			C F ·			R	
19R-3, 112–113 19R-CC 20R-1, 24–25 20R-2, 47–48 20R-CC	CP12a CP11 CP11 CP0b	M M M	A Barren A A	• • • •	··FFFF		•	F F	•	• • •	F ·	• • • •		R	•••••	* * *	R R	•	• • • •	?	C · F	F F	· · · ·	• • • •			R	
21R-1, 16–17 21R-CC 22R-1, 149–150 22R-2, 01–02 22R-3, 02–03	CP98 CP9a CP6 CP5 CP4	M-P M-P M M	C Barren C C A	F · F	F	F		• • • • •	•	* * * * *			* * * * * *			• • • • •		R R R	• • • •		R	* * * * *	F · · F R		F	· · · R	C · C C F	*
22R-4, 19-20 22R-4, 108-109 22R-5 22R-CC 23R-1	CP3 CP2–CP3	М–Р М–Р	F R Barren					• • •	•		* * * * *	• • • •		* * * * *		R	* * * *	* * * * *	R				R · ·			* * * * *	* * * * *	****
23R-2				÷	٠			×	×	×	×	×			×	×	×	×	•							×	×	÷

Samples 123-765C-22R-1, 149–150 cm, and -21R-1, 16–17 cm. However, the presence of a condensed section/unconformity in this interval cannot be ruled out.

The presence of *Tribrachiatus orthostylus* and last appearance of *F. tympaniformis* indicates Subzone CP9b (*Discoaster binodosus* Subzone) and an age of early Eocene for Sample 123-765C-20R-CC. Samples 123-765C-20R-2, 47–48 cm, and 20R-1, 24–25 cm, were placed in Zone CP11 (*Discoaster lodoensis* Zone) based on the presence of *D. lodoensis* and are early Eocene in age. Poor recovery in Core 123-765C-20R (25.9%, Ludden, Gradstein, et al., 1990) may be responsible for the absence of Zone CP10.

Sediments between Samples 123-765C-19R-3, 112-113 cm, through -19R-2, 120-121 cm, were placed in Subzone CP12a (*Discoasteroides kuepperi* Subzone) based on the presence of *Discoaster sublodoensis* and are early Eocene in age. Samples

123-765C-19R-2, 105–109 cm, and -19R-2, 58–59 cm, were placed in Subzone CP15b (*Isthmolithus recurvus* Subzone) based on the presence of *I. recurvus*. A significant unconformity exists between Samples 123-765C-19R-2, 120–121 cm, and 123-765C-19R, 105–109 cm, as indicated by the absence of most of the late Eocene (Zones CP13 and CP14 and Subzone CP15a). Fairly good recovery in Core 123-765C-19R (47.9%, Ludden, Gradstein, et al., 1990) supports this interpretation. According to Berggren et al. (1985) this hiatus should span at least 12 Ma.

Early Oligocene sediments were first found in Sample 123-765C-19R-1, 128-129 cm, and continues through Sample 123-765C-18R-2, 134-136 cm. This interval was placed in Subzone CP16b (*Ericsonia formosa* Subzone) based on the presence of *E. formosa* and *I. recurvus*. The next available sample (Sample 123-765C-18R-1, 39-40 cm) was placed in Subzone CP19a (*Cy*-

				-										-					-									
Core, section, interval (cm)	Biostrati- graphic horizon/ zone	Preservation	Sedimentary abundance	Hayella situliformis	Helicopontosphaera bramlettei	Helicopontosphaera compacta	Helicopontosphaera euphratis	Helicopontosphaera intermedia	Helicopontosphaera inversa	Helicopontosphaera kamptneri	Helicopontosphaera mediterranea	Helicopontosphaera obliqua	Helicopontosphaera perch-nielseniae	Helicopontosphaera recta	Helicopontosphaera reticulata	Helicopontosphaera salebrosa	Helicopontosphaera seminulum	Helicopontosphaera wilcoxoni	Heliolithus kleinpelli	Heliolithus riedeli	Holodiscolithus solidus	Isthmolithus recurvus	Lanternithus minutus	Lophodolithus acutus	Markalius inversus	Micrantholithus pinguis	Microrhabdulus decoratus	Micula decussata
123-765C-14R-CC	CN1c	G	C		2	4	F			R	4		÷	*	15		÷	×					÷	×	¥	2		*
15R-CC 16R-1, 132–133 16R-2, 36–37 16R-3, 71–72 16R-4, 146–148 16R-CC	СР19b СР19b СР19b СР19b	M M M-G	Barren A A A Barren A	R R		R R R	· F F F · F	· F F F · F			R R	R R ·		· F F F · C	R	14 14 14 14 14 14 14 14 14 14 14 14 14 1		1.			34 14 CACOLO 14 14	R · ·	R R	10 00 0000000 00 00	a a prove a c	5 6 06000 10 00		24 24 000000 (A S4
17R-1, 70-71 17R-2 79-80	CP19a	M_P	Barren	15	*		Ė	P	\sim		•	÷	•	ċ	÷	٠	•	•	•	1	ŕ		1	1		R	1	•
17R-3, 31–32	CP19a	M–P	c	2	- 12 - 10	- 20	4		8	- 2	-		*	F	- 5: - 5:	10 10			*	े. इ.		- N - N	Ř	1	10 10		10 10	- 2
17R-4, 86–87 17R-CC 18R-1, 39–40 18R-2, 134–136 18R-3, 24–26	CP19a CP19a CP19a CP16b CP16b	M M M M	A A A A	R		R · F C	F F ·	R R R	A N B BUNK		100000	F R R		C F F F	· · F F		1 10 10 10 10 10 10 10 10 10 10 10 10 10					R R	R · F · F			R		
18R-4, 27–29 18R-5, 17–19 18R-CC 19R-1, 11–13 19R-1, 105–106	CP16b CP16b CP16b CP16b CP16b CP16b	M M G M M	A A C A	F R R	F F	F F F F	R R F F	· F F R	* * * * * *			R	F R	R R R · F	F F C F F	· F ·	R	F F			A	R	C C C C C C F		A & 0.00000 0		1.	R
19R-1, 128–129 19R-2, 58–59 19R-2, 105–109 19R-2, 120–121 19R-2, 148–149	CP16b CP15b CP15b CP12a CP12a	M-G M M-G M-P M-G	A F A C	F R	F · ·	C F F	R	F	F	10 10 10 10	1 2 2 2			F	F R R		F	F	•	*: *: *:	A	R R F	С				100 A A A A A	10 N N N N
19R-3, 112–113	CP12a	M	A															Ľ.						R	?	÷.		÷.
19R-CC 20R-1, 24–25 20R-2, 47–48 20R-CC	CP11 CP11 CP9b	M M M–P	Barren A A C	2 X X X X	2 2 2 3 3 2 2 3 3 3	1 2 2 2 2			2 2 2 2 2	2 2 2 2 3 3 2 3 4 4 4 5 5	2 4 4 2 2 4 4 2	2 2 2 2 2		* * * *	****		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	• • • •		5. N. N. N. N. N.	5 F F F F				R F		• • • •	R
21R-1, 16-17	CP9a	M-P	C		•	÷	÷	÷	×	*	5	÷	8	s	ø		5	ĸ	×	R	8	8		ε	R	*		5
22R-CC 22R-1, 149–150 22R-2, 01–02 22R-3, 02–03	CP6 CP5 CP4	M M M	C C A	* * * * * *	1 1 1 1		1 1 1 1				1 2 2 3			2 2 2	10 10 10 10			•	Ċ C	R	•	•	•	* * * *	1 1 1 1 1	•	•	R R R
22R-4, 19–20 22R-4, 108–109 22R-5 22P.CC	CP3 CP2-CP3	М-Р М-Р	F R	* * *	•	8 20 20	42 142 23	* * *	4 4 4 4	•				*	0 2 2	•	40 40 40	4 4 4	•	•	•	10 40 40	•	•	F	•	R	R R
23R-1			Barren			-	1		12	1	1	÷.	12	1	•	10	1	•	12	1	13	20 20	1		20 20	23 23		12
23R-2						5				ē	÷		÷	•			Ŧ.	•	*	ю	÷	e	•	-	٠	٠	•	-

clicargolithus floridanus Subzone) based on the presence of *Sphenolithus ciperoensis* and is late Oligocene in age. The zonal assignment of this sample reveals another significant hiatus comprising most of the early Oligocene, as evidenced by the absence of Zones CP17 and CP18. This is supported by the good recovery of Core 123-765C-18R (78.3%, Ludden, Gradstein, et al., 1990), which suggests that few sediments were lost because of drilling. According to Berggren et al. (1985), this hiatus should span at least 8.5 Ma. Samples 123-765C-17R-CC through -17R-2, 79-80 cm, also were placed in Subzone CP19a. Samples 123-765C-17R-1, 70-71 cm, through -16R-CC were placed in Subzone CP19b (*Dictyococcites bisectus* Subzone) based on the presence of *S. ciperoensis* and last appearance of *Sphenolithus distentus* in Sample 123-765C-17R-2, 79-80 cm, and also are late Oligocene in age.

The Oligocene/Miocene boundary is indistinguishable in material from Hole 765C because of the absence of nannofossils in Core 123-765C-15R. The next available sample (Sample 123-765C-14R-CC) was placed in Subzone CN1c (*Discoaster druggii* Subzone) based on the presence of *D. druggii* and is early Miocene in age.

Site 766

Shipboard sedimentologic work indicated that the Albianlower Eocene section of Hole 766A (Units II through IV) consists primarily of hemipelagic to pelagic zeolitic calcareous nannofossil oozes and clay (Ludden, Gradstein, et al., 1990). Consequently, reworking is minimal, and nannofossils from this interval are generally abundant as a sedimentary component, while assemblages are diverse and moderately to well-preserved (Tables 3 and

Core, section, interval (cm)	Biostrati- graphic horizon/ zone	Preservation	Sedimentary abundance	Neococcolithes protenus	Neocrepidolithus bukryi	Neocrepidolithus cruciatus	Neocrepidolithus dirimosus	Orthozygus aureus	Parhabdolithus embergeri	Pedinocyclus larvalis	Pemma basquensis	Pemma papillatum	Peritrachelina joidesa	Placozygus sigmoides	Pontosphaera callosa	Pontosphaera desueta	Pontosphaera enormis	Pontosphaera japonica	Pontosphaera latoculata	Pontosphaera multipora	Pontosphaera ocellata	Pontosphaera pectinata	Pontosphaera plana	Pontosphaera scissura	Prediscosphaera cretacea	Prinsius bisulcus	Prinsius martini	Pyrocyclus inversus
123-765C-14R-CC	CN1c	G	C		*								•			æ				R	•	•	•	•				
16R-1, 132–133 16R-2, 36–37 16R-3, 71–72	CP19b CP19b CP19b	M M M	A A A A	* * * *	•		•	•	• • •	R R R	•	•	•••••	R	•	R ·	•	R	• • • •	· F R	•	•	• • • •	R F	• • •	• • •	• • •	* * * *
16R-4, 146–148 16R-CC 17R-1, 70–71	CP19b	M–G	Barren A Barren	:	•	*	*	:	•	:	•	÷	÷	•		ŕ			:	•	а. С	;	•	R	3 2	•	÷	Ŕ
17R-2, 79–80 17R-3, 31–32	CP19a CP19a	M-P M-P	A C				÷	:	:		•	•	R R		*	•	•	-			•	•	R	•	•	-	•	F
17R-4, 86–87 17R-CC 18R-1, 39–40 18R-2, 134–136 18R-3, 24–26	CP19a CP19a CP19a CP16b CP16b	M M M M	A A A A	• • •	* * * *	* * * *	• • • •			R · R	•	R • •	· · · · ·	R	• • • •	•••••	• • • •	• • •	••••	• • • •	* * *	• • • •	R	R F	* * * *	* * * * *	* * * *	F R F
18R-4, 27-29 18R-5, 17-19 18R-CC 19R-1, 11-13 19R-1, 105-106	CP16b CP16b CP16b CP16b CP16b CP16b	M M G M M	A A A C A					· · · C		R R F			· · R	R	····CC	R	R	R		· · R F F		· R F	F	R · · R			• • • • •	F R · F
19R-1, 128–129 19R-2, 58–59 19R-2, 105–109 19R-2, 120–121 19R-2, 148–149	CP16b CP15b CP15b CP12a CP12a	M-G M M-G M-P M-G	A F A C A	R	· · R R			C		F	R		F	• • •	C	R	* * * * *			F	R	F	* * * * *	R				* * * * *
19R-3, 112–113 19R-CC 20R-1, 24–25 20R-2, 47–48 20R-CC	CP12a CP11 CP11 CP9b	M M M	A Barren A A	30.000	R R							1 1 1 (NO.40		• • •	• • • •					• • • •	• • • •	• • • •		• • •			•••••	••••
21R-1, 16–17 21R-CC 22R-1, 149–150 22R-2, 01–02	CP9a CP6 CP5	M–P M M	C Barren C C	 31 100 100 100 					R	• • • • •				R	• • • • •					• • • • •		• • • • •			R	· · F		• • • •
22R-3, 02-03 22R-4, 19-20 22R-4, 108-109 22R-5	CP4 CP3 CP2–CP3	M M–P M–P	A F R	 N 1000 N 		R	R	5 N 200 N 4	R	• • • •				F · R											R	F R	F	
22R-CC 23R-1 23R-2			Barren	5 8 8 S 8		5 × × •	5 5 5 5	• • •	5 × × 5	•	• • •	0 0 0 0			N N N 240	0.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 * * *	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•		•	5 N N 140	* *		•	•	0.00

4). Average recovery for the entire sediment section was 63.1%, with a slightly lower average value for the Upper Cretaceous–Paleogene interval (Ludden, Gradstein, et al., 1990). Shipboard biostratigraphic work indicated a nearly complete Albian–early Eocene record (Ludden, Gradstein, et al., 1990), which is confirmed here. Good recovery combined with a relatively complete stratigraphic record and diverse, well-preserved nannofossil assemblages allowed for an accurate, high-resolution biostratigraphic correlation and the establishment of a useful temporal framework for the hole.

At the base of the studied interval, a thick section of Zone CC8 (*Prediscosphaera columnata* Zone) is present that includes Samples 123-766A-21R-CC through -17R-CC (Fig. 2). The zonal assignment is based on the presence of *P. columnata* and denotes an Albian age. The next available sample (Sample 123-766A-

17R-4, 80–82 cm) contains *E. turriseiffeli* and was placed in Zone CC9 (*Eiffellithus turriseiffeli* Zone), indicating an age of Albian–Cenomanian. Albian–Cenomanian sediments continue through Sample 123-766A-15R-CC, and all intervening samples also were placed in Zone CC9.

Samples 123-766A-14R-CC and -14R-4, 27-28 cm, were placed in Zone CC11 (*Quadrum gartneri* Zone), as determined by the presence of *Q. gartneri*, and indicates an age of Turonian. Distinction of Zone CC10 and the Cenomanian/Turonian boundary is impossible here because of sampling restrictions. Samples 123-766A-14R-3, 23-24 cm, and -14R-2, 22-23 cm, were placed in Zones CC12 (*Lucianorhabdus maleformis* Zone) and CC13 (*Marthasterites furcatus* Zone), respectively, based on the presence of both *E. eximius* and *M. furcatus*. This denotes an age of late Turonian-Coniacian for these two samples.

														-										-		_		
Core, section, interval (cm)	Biostrati- graphic horizon/ zone	Preservation	Sedimentary abundance	Pyrocyclus orangensis	Reinhardtites levis	Reticulofenestra hampdenehsis	Reticulofenestra hillae	Reticulofenestra minuta	Reticulofenestra pseudoumbilica	Reticulofenestra umbilica	Rhabdosphaera tenuis	Sphenolithus anarrhopus	Sphenolithus capricornutus	Sphenolithus ciperoensis	Sphenolithus conicus	Sphenolithus delphix	Sphenolithus distentus	Sphenolithus distentus (transitional)	Sphenolithus editus	Sphenolithus furcatolithoides	Sphenolithus moriformis	Sphenolithus obtusus	Sphenolithus pacificus	Sphenolithus predistentus	Sphenolithus primus	Sphenolithus pseudoradians	Sphenolithus radians	Toweius callosus
123-765C-14R-CC 15R-CC	CN1c	G	C Barren	:	3 4	:	:	F	F	•	:	и У	:	•	×	÷	•	*	:). 14	C	*	94 24	÷	*	ж ж	*	*
16R-1, 132–133 16R-2, 36–37 16R-3, 71–72	CP19b CP19b CP19b	M M M	A A A	R F			•	• • •	•	R R R			F	C C F	F F	F	••••	•		3.3	C C C	R	9.9.9	C C C		R		•
16R-4, 146–148 16R-CC	CP19b	M–G	Barren A	*	-	•	•	-	•	•		÷	•	ċ	Ė	F	•	•	3	:	ċ	:	8.3	R	:	÷	-	•
17R-1, 70-71 17R-2, 79-80 17R-3, 31-32	CP19a CP19a	M–P M–P	A C	•	•	•	•	•	•	R	•		•	Ċ F	R	• •	F			• • •	A C			F F	• • •	•		•••••
17R-4, 86–87 17R-CC 18R-1, 39–40 18R-2, 134–136 18R-3, 24–26	CP19a CP19a CP19a CP16b CP16b	M M M M M	A A A A A	R						R R · F			• • • •	с с с	R		F F ·	F F		· · R	с . с с с с			F F C C C		R R	• • • • •	
18R-4, 27–29 18R-5, 17–19 18R-CC 19R-1, 11–13 19R-1, 105–106	CP16b CP16b CP16b CP16b CP16b CP16b	M M G M M	A A A C A			• • • • •	F			C C F F F	· · · F		• • • •	* * * * *			•••••	R R ·		R R	CCCCC	• • • •		CCCCCC	• • • • •	R R · F	• • • •	•••••
19R-1, 128–129 19R-2, 58–59 19R-2, 105–109 19R-2, 120–121 19R-2, 148–149	CP16b CP15b CP15b CP12a CP12a	M-G M M-G M-P M-G	A F A C A	* * * * *		R F		* * * * *		F F C	· F ·	* * * *			* * *	• • • • •	• • • • •	F • •	• • • •	• • • •	C F F F C	•••••	• • • •	F R ·	•••••	R	F	•
19R-3, 112–113 19R-CC 20R-1, 24–25 20R-2, 47–48	CP12a CP11 CP11 CP05	M M M	A Barren A A	* * * *	* * *	• • • •		• • • •	• • • •	• • •	• • •	• • • •	• • •	• • • •	•	•	• • • •	•••••	R F C	:	F · C C	R	R F	• • • •	•	R	F · C F	· · · · · · · · ·
21R-1, 16–17 21R-CC	CP9a	M–P M–P	C Barren	*	*	•	*	•	•			R	•	•	ж е	•	*			÷		÷	* *	÷	ċ		:	2
22R-1, 149–150 22R-2, 01–02 22R-3, 02–03	CP6 CP5 CP4	M M M	C C	8	*	*	*	÷	•	*	*	R R	•	•	×	*	×	•	•	•	*	*	•	•	C F C	•	•	•
22R-3, 02-03 22R-4, 19-20 22R-4, 108-109 22R-5 22R-CC 23R-1	CP3 CP2–CP3	M–P M–P	F R Barren	* * * * *	R			* * * * *	* * * * *	* * * * * *	* * * * * *	* * * * *			* * * *				• • • •	• • • •	* * * *	* * * * *			R			
23R-2				*			2				*	×	÷	×			÷	*	*	×					÷			

Sample 123-766A-14R-1, 46–47 cm, was placed in Zone CC15 (*Reinhardtites anthophorus* Zone) based on the presence of *R. anthophorus* and is of Santonian age. Good recovery in Core 123-766A-14R (>50%, Ludden, Gradstein, et al., 1990) and the absence of Zone CC14 suggest an unconformity or condensed section between Samples 123-766A-14R-2, 22–23 cm, and -14R-1, 46–47 cm. Samples 123-766A-13R-CC and 123-766A-13R-3, 68–69 cm, were placed in undifferentiated Zones CC15–CC16 (*Reinhardtites anthophorus–Lucianorhabdus cayeuxii* zones) based on the presence of species indicative of this zonal interval and also are of Santonian age. The next available samples (Samples 123-766A-13R-2, 29–30 cm, and -13R-1, 38–39 cm) were placed in Zone CC19 (*Calculites ovalis* Zone) based on the presence of *A. parcus* and *Lucianorhabdus cayeuxii* and are early

Campanian in age. Poor recovery in Core 123-766A-13R (<50%, Ludden, Gradstein, et al., 1990) may account for the absence of Zones CC17 and CC18 between Samples 123-766A-13R-3, 68–69 cm, and -13R-2, 29–30 cm; however, the presence of an unconformity or condensed section cannot be ruled out.

Sample 123-766A-12R-CC was placed in Zone CC21 (*Quadrum nitidum* Zone) based on the presence of *Q. nitidum* and is late Campanian in age. Poor recovery in Core 123-766A-13R (<50%, Ludden, Gradstein, et al., 1990) may account for the absence of Zone CC20; however, a disconformity may exist between Samples 123-766A-13R-1, 38-39 cm, and -12R-CC. Samples 123-766A-12R-2, 27-28 cm, and -12R-1, 114-115 cm, were placed in Subzone CC22a (*Quadrum trifidum* Zone) based on the presence of *Q. trifidum* and are late Campanian in age. Samples 123-

123-765C-14R-CC CN1c G C	. F
16R-1, 132–133 CP19b M A . R	R
10R-2, 50-37 CP19b M A	R
16R-4, 146–148 Barren	R
17R-1, 70–71 Barren	R
1/R-2, /9-80 CP19a M-P A	K
17R-3, 31–32 CP19a M–P C	
17R-4, 86–87 CP19a M A	
17R-CC CP19a M A	
18R-2, 134–136 CP16b M A . R	F
18R-3, 24–26 CP16b M A R	R
18R-5, 17–19 CP16b M A	R.R
18R-CC CP16b G A	
19R-1, 11–13 CP166 M C	
19R-1, 128–129 CP16b M–G A	2 2 2
19R-2, 58–59 CP15b M F	 P
19R-2, 100–105 CF150 M–O A I I I I I I I I I I I I I I I I I I	
19R-2, 148–149 CP12a M–G A F F	
19R-3, 112–113 CP12a M A F	
20R-1, 24–25 CP11 M A C . C . R	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
21R-1, 16–17 CP9a M–P C . C F F	
21R-CC Barren	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	F
22R-3, 02–03 CP4 M A . F C C	
22R-4, 19–20 CP3 M–P F .	R
22R-5	
22R-CC 23R-1 Darren	
23R-2	

766A11R-CC through -11R-1, 99–100 cm, were placed in Subzone CC22b (*Quadrum trifidum* Zone) based on the presence of *Reinhardtites levis* and *Q. trifidum* and are late Campanian in age.

Sample 123-766A-10R-CC was placed in Subzone CP23a (*Tranolithus phacelosus* Zone) based on the last appearance of *R. anthophorus* and is late Campanian–Maestrichtian in age. The next overlying sample (Sample 123-766A-10R-3, 13–14 cm) was placed in Zone CC26 (*Nephrolithus frequens* Zone) based on the presence of *Micula murus* and is late Maestrichtian in age. Poor recovery in Core 123-766A-10R (<50%, Ludden, Gradstein, et al., 1990) may be responsible for the lack of significant material of Maestrichtian age, but the presence of an unconformity or condensed section cannot be ruled out.

Cretaceous/Tertiary boundary material was found in Sample 123-766A-10R-2, 141-142 cm, and this sample was placed in the

undifferentiated Zone/Subzone CC26–CP1a (Nephrolithus frequens Zone/Cruciplacolithus primus Subzone) based on the presence of Biantholithus sparsus and substantial late Maestrichtian and other reworked Late Cretaceous species. Shipboard sedimentologists found material in Core 123-766A-10R that consisted of a mottled nannofossil ooze, suggesting extensive bioturbation (Ludden, Gradstein, et al., 1990). Reworking and co-occurrence of chronostratigraphically exclusive taxa further support this interpretation. Sample 123-766A-10R-2, 68–69 cm, was confidently placed in Subzone CP1a (Cruciplacolithus primus Subzone) based on the presence of Cruciplacolithus edwardsii and represents an age of early Paleocene.

Samples 123-766A-10R-1, 120–121 cm, through -9R-CC were placed in Subzone CP1b (*Cruciplacolithus tenuis* Subzone) based on the presence of *Cruciplacolithus tenuis* s.s. (Hay and Mohler,

Ð	S cinaroansis	CP10	b	16R → 18R-1, 40	
L.	5. Cipercensis	0113	a		
S	S. distentus	CP18			
igo	S. predistentus	CP17			
ō	H. reticulata	CP16	c b a	18R-2, 136 → 19R-1, 129	
	D. barbadiensis	CP15	b a	19R-2, 58 → 19R-2, 109	
0	R. umbilica	CP14	b a		
U é	N. quadrata	CP13	ba		
Ce	D. sublodoensis	CP12	b a	19R-2, 121 → 19R3, 113	3R-1, 119→ 3R-5, 93
ш	D. lodoensis	CP11		20R-1, 26 → 20R-2, 47	3R-6, 116→ 4R-2, 102
	T. orthostylus	CP10			
	D. diastypus	CP9	ba	20R-CC 21R-1, 17	4R, CC → 6R-5, 105
	D. multiradiatus	CP8	ba		6R-6, 114 → 6R-CC 7R
	D. nobilis	CP7			8R-1, 95
e	D. mohlerii	CP6		22R-1, 150	8R-2, 31→ 8R-CC
Ser 1	H. kleinpellii	CP5		22R-2, 2	
00	F. tympaniformis	CP4		22R-3, 3	
ale	E. macellus	CP3			
L L	C. danicus	CP2		22R-4, 19-108	9R-1, 111 → 9R-3, 111 9R-4, 111 → 9R-5, 111
	P. sigmoides	CP1	b a		9R-CC → 10R-1, 120 10R-2, 68 → 10R-2, 142

Argo Abyssal Exmouth Plateau Hole 765C Hole 766A

Figure 3. Distribution of Paleogene sediments from Leg 123 based on calcareous nannofossil biostratigraphy.

1967) and denote an age of early Paleocene (Fig. 3). Early Paleocene sediments continue in Samples 123-766A-9R-5, 109-111 cm, through -9R-4, 109-111 cm, and were placed in Zone CP2 (*Chiasmolithus danicus* Zone) based on the presence of *Chiasmolithus danicus*. Samples 123-766A-9R-3, 109-111 cm, through -9R-1, 109-111 cm, were placed in undifferentiated Zones CP2-CP3 (*Chiasmolithus danicus/Ellipsolithus macellus* zones) and are early Paleocene in age.

A thick, late Paleocene–early Eocene sediment section that includes a complete Paleocene/Eocene boundary can be found first in Sample 123-766A-8R-CC and continues through Sample 123-766A-4R-CC. Samples 123-766A-8R-CC through -8R-2, 31–34 cm, were placed in Zone CP6 (*Discoaster mohleri* Zone) based on the presence of *D. mohleri*. Zone CP7 (*Discoaster nobilis* Zone), and this zone was assigned to sediments in Sample 123-766A-8R-1, 92–95 cm, based on the presence of *D. nobilis*. Samples 123-766A-7R-CC through -6R-6, 114–116 cm, were placed in Zone CP8 (*Discoaster multiradiatus* Zone) based on the presence of *D. multiradiatus* with a subdivision to Subzone CC8b (Camplyosphaera eodela Subzone) first occurring in Sample 123-766A-6R-CC based on the first appearance of C. eodela. Zone CP9 (Discoaster diastypus Zone) was assigned to sediments in Samples 123-766A-6R-5, 100–105 cm, through -4R-CC based on the presence of D. diastypus, but could not be differentiated into Subzones CP9a and CP9b because of the absence of Tribrachiatus contortus.

The completeness of the late Paleogene–early Eocene record and the high diversity of nannofossil assemblages make this interval unique. Members of the genera *Fasciculithus, Toweius,* and *Chiasmolithus* are particularly diverse. High assemblage diversities may result from the mid-latitude position of this site during this time. In modern waters, the highest diversity of coccolithophorids occurs in mid-latitude (between 15° and 30°) zones of upwelling (Okada and Honjo, 1973). This evidence combined with the absence of certain ecologically controlled marker species (such as *Tribrachiatus* Perch-Nielsen, 1985) further support an interpretation of a mid-latitude position for Site 766 during this time.

Table 4. Paleogene calcareous nannofossils from Site 766.

Core, section, interval (cm)	Biostrati- graphic horizon/ zone	Preservation	Sedimentary abundance	Apsidolithus parcus	Arkhangelskiella cymbiformis	Biantholithus sparsus	Biscutum parvulum	Bomolithus elegans	Calcidiscus protoannulus	Campylosphaera dela	Campylosphaera eodela	Chiasmolithus eodens	Chiasmolithus californicus	Chiasmolithus consuetus	Chiasmolithus danicus	Chiasmolithus eograndis	Chiasmolithus grandis	Chiasmolithus solitus	Chiasmolithus titus	Coccolithus eopelagicus	Coccolithus pelagicus	Coronocyclus prionion	Coronosphaera mediterranea	Cretarhabdus crenulatus	Cribrocentrum martinii	Cribrosphaerella ehrenbergi	Cruciplacolithus cribellum	Cruciplacolithus edwardsii
123-765C-3R-1, 119–122 3R-2, 14–17 3R-3, 58–62 3R-4, 55–58 3R-5, 93–96	CP12 CP12 CP12 CP12 CP12 CP12	M M M M	A A A A		1.12.12.12		•	• • • • •	C C F F C		F F F F F C	R	R R R	• 14 (4) (4)	1.0000		F F F C F	· F · R	F F	•••••	C C C A A			• 3• 2010 • 1				
3R-6, 113-116 3R-CC 4R-1, 100-101 4R-2, 101-102 4R-CC	CP11 CP10 CP11 CP11 CP9	M-G M-G M-G M-G	A A A A	10000	1 4 1 4 10 1	•••••		• • • •	A · · F	C F	C F F F F	R · · F F	R R F F R	F	F	F	F C · F F	F			CCCCC	· F · F				1 2 200 2 2 3	• • • •	1. STUDIE
5R-1, 44-46 5R-2, 44-46 5R-3, 44-46 5R-4, 44-46 5R-5, 44-46	CP9 CP9 CP9 CP9 CP9 CP9	M-P M-P M-P M	A A A A						? F		FFFFF	F F F	F F F F	· · · · · · · · · · · · · · · ·			F F F F F	R F R		F	C C A A A			1921 N N N N N				
5R-6, 44–46 5R-CC 6R-1, 144–146 6R-2, 144–146 6R-3, 99–101	CP9 CP CP9 CP9 CP9 CP9	M M-G M M M-G	A A A A								F C C F F	F F F C F	F F ·	F C ·F F	· F ·	R	F F F F	F			A A A A	F	F				F	
6R-4, 47-49 6R-5, 100-105 6R-6, 114-116 6R-CC 7R-1, 99-102	CP9 CP9 CP8b CP8b CP8a	M M-G M M-P M	A A A A			•					C C F F	F F F F	· F · F	F F F R F	R	F	· F · F	F F F		F	A C C C	• • • •	F	* * * * *	R		R	* * * *
7R-2, 99–102 7R-3, 99–102 7R-4, 98–100 7R-5, 99–101 7R-6, 99–101	CP8a CP8a CP8a CP8a CP8a	M M M-G M	A A A A					R	* * * * *		2 2 2 3 3	F F F F F	F	F F F F F				F F		с	· C C A C	•	* * * * *	* * * * *	* * * * *		•	
7R-CC 8R-1, 92–95 8R-2, 31–34 8R-CC 9R-1, 109–111	CP8a CP7 CP6 CP6 CP2–CP3	G M-G M-P M-P M-P	VA A A A A						10 10 10 10 10 10 10 10 10 10 10 10 10 1			C F · F	F F F	C F F ·	F · · F	F · · F		C F		· F ·	C A C C A	•		* * * * *	* * * * *	• • • •	•	•
9R-2, 109–111 9R-3, 109–111 9R-4, 109–111 9R-5, 109–111 9R-CC	CP2-CP3 CP2-CP3 CP2 CP2 CP2 CP1b	M-P M-P M-P M	A A A C		R	R	R R					F F · ·			F F F F			*****			A A V V		* * * * * *	R R		R R		F F
10R-1, 68–69 10R-1, 89–90 10R-1, 120–121 10R-2, 68–69 10R-2, 103–104	CP1b CP1b CP1b CP1a	M M–P M	A A C	R	R R R	· F F	F F ·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	• • • • •				· · · · · ·				• • • •	2.2.2.2.2	24 (24) ¥ (4)	1 2 2 1 2 1 2 1	A A C	•••••		R R R R		R R ·		C F

Key to symbols: RE = Reworked; R = Rare; F = Few; C = Common; A = Abundant; VA = Very abundant; ? = Questionable presence; . = Not present.

Early Eocene sediments continue in Samples 123-766A-4R-2, 101-102 cm, through -3R-6, 113-116 cm, and these were placed in Zone CP11 (*Discoaster lodoensis* Zone) based on the presence of *D. lodoensis*. Samples 123-766A-3R-5, 93-96 cm, through -3R-1, 119-122 cm, were placed in Zone CP12a (*Discoaster oides kuepperi* Subzone) based on the presence of *Discoaster sub-lodoensis* and *D. kuepperi* and are of early Eocene age. A significant unconformity overlies Core 123-766A-3R, with late/early Pliocene sediments found in Sample 123-766A-2R-CC. Accord-

ing to Berggren et al. (1985), this unconformity spans at least 24.1 Ma.

DISCUSSION AND CONCLUSIONS

Calcareous nannofossil biostratigraphy of core material obtained from Holes 765C and 766A during Leg 123 revealed thick and relatively complete sections of Upper Cretaceous–Paleogene sediments in each hole. Hole 765C has a nearly complete Albian– Oligocene interval that contains abundant and generally moderate

		1		1.5																			_	_				
Core, section, interval (cm)	Biostrati- graphic horizon/ zone	Preservation	Sedimentary abundance	Cruciplacolithus frequens	Cruciplacolithus latipons	Cruciplacolithus primus	Cruciplacolithus tenuis	Cyclagelosphaera alta	Cyclagelosphaera reinhardti	Cyclicargolithus marismontium	Dictyococcites callidus	Discoaster barbadiensis	Discoaster cruciformis	Discoaster deflandrei	Discoaster diastypus	Discoaster gemmeus	Discoaster kuepperi	Discoaster lenticularis	Discoaster lodoensis	Discoaster mahmoudi	Discoaster mohleri	Discoaster multiradiatus	Discoaster nobilis	Discoaster robustus	Discoaster sublodoensis	Discoaster tani	Eiffellithus turriseiffeli	Ellipsolithus bolli
123-765C-3R-1, 119–122 3R-2, 14–17 3R-3, 58–62 3R-4, 55–58 3R-5, 93–96 3R-6, 113–116 3R-CC 4R-1, 100–101 4R-2, 101–102	CP12 CP12 CP12 CP12 CP12 CP12 CP11 CP10 CP11 CP11	M M M M-G M-G M-G M-G	A A A A A A A A A	*****	R	*****	***** ***	**** * * * *		F	C F · · · · · · · · · ·	F F F F F C F C C C		F C C F F F ·		F R R R R R · ·	C C C A C C · · ·		A A C A A A C F		• • • • • • •	· · · ? · F	***** ****	:	FFFFF	• • • • • • • • • • •	化化合金 化合合金	
4R-CC 5R-1, 44-46 5R-2, 44-46 5R-3, 44-46 5R-4, 44-46 5R-5, 44-46	CP9 CP9 CP9 CP9 CP9 CP9 CP9	M M-P M-P M M	A A A A A	F	R		F		* * * * * *			· C C C · F		* * * * * *	C · · · F F		· · · F	F	* * * * * *		F	F C · C C C C	• • • • •	• • • • • • • • •		•	* * * * * *	
5R-6, 44-46 5R-CC 6R-1, 144-146 6R-2, 144-146 6R-3, 99-101	CP9 CP CP9 CP9 CP9 CP9	M M-G M M-G	A A A A	F F F F			F			a e e e a		F · · F	* • • • •	* * * * *	F C F R F	• • • •	F · · F	F · F ·	* * * * *	R	· F · F	CCCCC		F · · F F		• • • • •	5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
6R-4, 47–49 6R-5, 100–105 6R-6, 114–116 6R-CC 7R-1, 99–102	CP9 CP9 CP8b CP8b CP8a	M M-G M M-P M	A A A A		a (1) a (1)		F			1. 10 10 10 10 10 10 10 10 10 10 10 10 10	• • • • •	C C F · F		F	F C ·			R		F	F	CCCCC	F			•••••		R
7R-2, 99–102 7R-3, 99–102 7R-4, 98–100 7R-5, 99–101 7R-6, 99–101	CP8a CP8a CP8a CP8a CP8a	M M M–G M	A A A A	F	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	•••••	1.1.1.1.1.1.1.1.1		1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1		••••	• • • •		9 10 000 F	a strate a se			F R ·			F	C C C C C C C C		• • • • •				F F F F
7R-CC 8R-1, 92–95 8R-2, 31–34 8R-CC 9R-1, 109–111	CP8a CP7 CP6 CP6 CP2-CP3	G M-G M-P M-P M-P	VA A A A A	F	· · ·	• • • •	C R F C	• • • • •		1.100	• • •	•••••		1.00	1 10 10 10 10 10	• • • •				• • • • •	F F C C	A	F			5 5 000 E		
9R-2, 109–111 9R-3, 109–111 9R-4, 109–111 9R-5, 109–111 9R-CC	CP2CP3 CP2CP3 CP2 CP2 CP2 CP1b	M-P M-P M-P M	A A A C		F F R	F	C F C F		F		• • • •	14 14 14 14 14 14 14 14 14 14 14 14 14 1				• • • • •		A 21 21 21 21 21			1 10 10 10 10 10 10 10 10 10 10 10 10 10	* * * * *			••••		• • • •	2 010000 E
10R-1, 68–69 10R-1, 89–90 10R-1, 120–121 10R-2, 68–69 10R-2, 103–104	CP1b CP1b CP1b CP1a	M M-P M	A A C			F F ·	C C A ·	F	· · · · ·		•					• • • •	14 X X 12 12 14 14		• • • •	* * * * *		\cdot \cdot \cdot \cdot	* * * * *		10000	10.00	R R	

to well-preserved nannofossils that allow one to correlate accurately. Although turbidite deposition dominates in the upper part of this hole, reworking is minimal below the Miocene section. A particularly thick Aptian section exists in this hole that spans 13 cores. Hole 766A has a thick and relatively complete Albianlower Eocene interval. The hemipelagic to pelagic depositional environment of the sediments found in this hole allowed for generally good preservation of diverse nannofossil assemblages and nominal reworking.

Several confidently interpreted unconformities occur in sections of each hole. In the Upper Cretaceous section of Hole 765C, the most confidently interpreted unconformities span much of the Santonian, lower Campanian, and Maestrichtian. Paleogene unconformities occur in the upper Eocene and lower Oligocene. Following the time scale data of Berggren et al. (1985), the late Eocene unconformity spans at least 12 Ma, while the early Oligocene unconformity spans at least 8.5 Ma. In the Upper Cretaceous of Hole 766A, confidently interpreted unconformities span much of the Coniacian, lower Campanian, and Maestrichtian. The most significant Paleogene unconformity in this hole spans the upper Eocene to the lower Pliocene, and, following Berggren et al. (1985), spans at least 24.1 Ma. The chronostratigraphic position

Biost grap Core, section, horiz interval (cm) zou	rati- hic on/ Freservation	Sedimentary abundance	Ellipsolithus distichus	Ellipsolithus lajollaensis	Ellipsolithus macellus	Ericsonia cava	Ericsonia fenestrata	Ericsonia formosa	Ericsonia obruta	Ericsonia robusta	Ericsonia subpertusa	Fasciculithus bobii	Fasciculithus clinatus	Fasciculithus involutus	Fasciculithus lillianae	Fasciculithus magnus	Fasciculithus mitreus	Fasciculithus richardii	Fasciculithus schaubi	Fasciculithus tympaniformis	Fasciculithus ulii	Haqius circumradiatus	Heliolithus kleinpelli	Lanternithus minutus	Lithraphidites carniolensis	Lithraphidites quadratus	Lophodolithus nascens
123-765C-3R-1, 119–122 CP12 3R-2, 14–17 CP12 3R-3, 58–62 CP12 3R-4, 55–58 CP12 3R-5, 93–96 CP12	M M M M	A A A A A	* * * * *	* * * * *			F F F · F	F · F · F		· F F	F F C C	• • • • •		• • • • •		• • • •						• • • • •	* * * * *			•••••	
3R-6, 113–116 CP11 3R-CC CP10 4R-1, 100–101 CP11 4R-2, 101–102 CP11 4R-CC CP9	M-G M-G M-G M	A A A A		R	F F	• • • • •	F	F R F	· · F R	F F F F	· F A C			R	1.11.11.11.1	• • • •				R							F R
5R-1, 44-46 CP9 5R-2, 44-46 CP9 5R-3, 44-46 CP9 5R-4, 44-46 CP9 5R-5, 44-46 CP9	M-P M-P M M M	A A A A	R		F F F F	• • • • •		5 5 5 5 5 5 5 5	F F F F	C R F	A C A A A	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	• • • • •	1. 1. 1. 1. 1.	•••••		0 14 100000 40 10					• • • • •			• • • • •	R R F F
5R-6, 44-46 CP9 5R-CC CP 6R-1, 144-146 CP9 6R-2, 144-146 CP9 6R-3, 99-101 CP9	M M-G M M-G	A A A A		F R R F	F F R F R	•••••	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N 00 00 00 00 00	F F F F F	• • • •	A F A C A		34 (A 131) (A 131)		2. 3. 3. 32.55	• • • •					• • • • •	• • •		A 14 14 14			F · F F
6R-4, 47–49 CP9 6R-5, 100–105 CP9 6R-6, 114–116 CP8b 6R-CC CP8b 7R-1, 99–102 CP8a	M M-G M M-P M	A A A A	R	F	R			R R ·	F F ·		A C A C A		* * * *	* * * * *	F	•		· · · F	F	c	• • • •	• • • • •	* * * * *		• • • • •	••••	F
7R-2, 99–102 CP8a 7R-3, 99–102 CP8a 7R-4, 98–100 CP8a 7R-5, 99–101 CP8a 7R-6, 99–101 CP8a	M M M-G M	A A A A	R		R F ·	•		* * * * *		c	A A A A		· F F	· F · F	F F C	· F · F	F F	F F F F	F · F · F	F C C C C C	F	•••••	* * * * *	* * * * *		\cdot \cdot \cdot \cdot \cdot	
7R-CC CP8a 8R-1, 92–95 CP7 8R-2, 31–34 CP6 8R-CC CP6 9R-1, 109–111 CP2–	G M-G M-P M-P CP3 M-P	VA A A A	F	* * * * *	R R R	•		· · ?		F C	C F C	· F F	F.	C F · F	С			R	A	A C A C	F		* * * * *	* * * * *	1 1 1 1 1 2	•••••	* * * * *
9R-2, 109–111 CP2– 9R-3, 109–111 CP2– 9R-4, 109–111 CP2 9R-5, 109–111 CP2 9R-CC CP1b	CP3 M–P CP3 M–P M–P M M	A A A C		8 X 8 X 8		· C C		???					* * * * *		* * * * *					* * * *	• • • •	R	* * * * *	F	R	• • • •	
10R-1, 68-69 CP1b 10R-1, 89-90 CP1b 10R-1, 120-121 CP1b 10R-2, 68-69 CP1a 10R-2, 103-104 CP1a	M M M–P M	A A C						2 2 4 3 0 S							1.1.1.1.1.1			* * * * * **					3 3 3 4 (B)	• • • •	R R	R R R	• • • •

and length of all these unconformities may have considerable significance for reconstructing the sedimentary history and for interpreting the paleoceanography of this region.

Calcareous nannofossil assemblages found in the Upper Cretaceous–Paleogene section of Hole 765C and the Upper Cretaceous section of Hole 766A are fairly standard and do not differ significantly from assemblages typical of established, low-latitude zonations, such as those discussed by Sissingh (1977) and Okada and Bukry (1980). Extensive reworking of nannofossil species occurs in the lower Oligocene and near the Cretaceous/Paleogene boundary of Hole 765C. Although the nannofossil assemblages from the thick and complete Paleogene/Eocene section of Hole 766A were correlated successfully using the low-latitude zonation of Okada and Bukry (1980), biostratigraphic resolution was reduced by the absence of the marker taxon *Tribrachiatus contortus* and the resultant inability to differentiate Subzones CP9a and CP9b. Paradoxically, assemblages are diverse in this interval and contain a large number of species in the genera *Fasciculithus*, *Toweius*, and *Chiasmolithus*. Specimens of less typical genera, such as *Neocrepidolithus* and *Neochiastozygus*, also are commonly present. These data (absence of ecologically restricted marker species and high as-

	1		-	T	_				T	_			_	1					1				_	1				
Core, section, interval (cm)	Biostrati- graphic horizon/ zone	Preservation	Sedimentary abundance	Lophodolithus reniformis	Manivitella pemmatoidea	Markalius apertus	Markalius inversus	Microrhabdulus decoratus	Micula decussata	Micula murus	Neochiastozygus chiastus	Neochiastozygus distentus	Neochiastozygus modestus	Neocrepidolithus biskayae	Neocrepidolithus bukryi	Neocrepidolithus coheni	Neocrepidolithus cruciatus	Neocrepidolithus dirimosus	Neocrepidolithus neocrassus	Octolithus multiplus	Parhabdolithus embergeri	Pedinocyclus larvalis	Placozygus sigmoides	Pontosphaera plana	Prediscosphaera cretacea	Prediscosphaera grandis	Prinsius bisulcus	Prinsius martini
123-765C-3R-1, 119–122 3R-2, 14–17 3R-3, 58–62 3R-4, 55–58 3R-5, 93–96	CP12 CP12 CP12 CP12 CP12 CP12	M M M M	A A A A			••••••	R R F		10.00	••••••	1111	R	••••		F F F F F			• • • • •		2001 AL 20 2	•••••	R			1.	• • • •	• • • •	
3R-6, 113–116 3R-CC 4R-1, 100–101 4R-2, 101–102 4R-CC	CP11 CP10 CP11 CP11 CP11 CP9	M-G M-G M-G M-G	A A A A		• • • •	R	R · F F R	•••••		• • •		R R			FFFFF			• • • • •			• • • •		F			• • • •	F	
5R-1, 44-46 5R-2, 44-46 5R-3, 44-46 5R-4, 44-46 5R-5, 44-46	CP9 CP9 CP9 CP9 CP9 CP9	M-P M-P M-P M	A A A A		• • • •	•	F F F R			•		R · · · R			FFFFF			• • • •		R. S. WINDER					1.000	• • • •		•
5R-6, 44-46 5R-CC 6R-1, 144-146 6R-2, 144-146 6R-3, 99-101	CP9 CP CP9 CP9 CP9 CP9	M M-G M M-G	A A A A		••••	R	R · · R R	• • • • •	1 N 2 1 1 1 1			R F		Ř ·	F F F R F	• • • • •	1. 1. 1000 B	 A 2000 0 			• • • •	•	F · F F			• • • •		
6R-4, 47-49 6R-5, 100-105 6R-6, 114-116 6R-CC 7R-1, 99-102	CP9 CP9 CP8b CP8b CP8a	M M-G M M-P M	A A A A			F ·	F R R R	* * * * *			• • • •	F F R			FFFFF		1 200 10 10 10 10				• • • •	• • • •	F F F R F		1.11.1	••••	F	
7R-2, 99–102 7R-3, 99–102 7R-4, 98–100 7R-5, 99–101 7R-6, 99–101	CP8a CP8a CP8a CP8a CP8a	M M M–G M	A A A A		* * * * *		R R · · F		* * * * *		•		* * * * *	R R F	F R R F F		1. 1. 1. 1. 1.					• • • •	F · R F F		10 12 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14			* * * * *
7R-CC 8R-1, 92–95 8R-2, 31–34 8R-CC 9R-1, 109–111	CP8a CP7 CP6 CP6 CP2–CP3	G M-G M-P M-P M-P	VA A A A		• • • •	F R	F		* * * * *		R	* * * * *	* * * *	R R ·	F R R R	•	R					• • • • •	R R · F C	R	* * *		R · · F	• • • • •
9R-2, 109–111 9R-3, 109–111 9R-4, 109–111 9R-5, 109–111 9R-CC	CP2-CP3 CP2-CP3 CP2 CP2 CP2 CP1b	M-P M-P M M	A A A C	* * * * *		R R F	R F F F F	· · R	· · R R		F					R R	R	\cdot \cdot \cdot \cdot	R	· F F	R		00000		R R R		F · F ·	F
10R-1, 68–69 10R-1, 89–90 10R-1, 120–121 10R-2, 68–69 10R-2, 103–104	CP1b CP1b CP1b CP1a	M M–P M	A A C	* * * *	R	F F ·	F F C C	R R R	R R R R	R	• • • •		R			· F F	C F ·	F		F	R	8	F C C A	* * * * *	R R R R	R R	• • •	F F

semblage diversity) suggest that this site may have had a mid-latitude position during the upper Paleocene–lower Eocene, which is supported by the following evidence:

1. According to Okada and Honjo (1973), in modern waters the highest diversity of coccolithophorids occurs between 15° and 30° in mid-latitude zones of upwelling.

2. Perch-Nielsen (1985) indicated that members of the genus *Tribrachiatus* are generally found only in low paleolatitudes.

Other shipboard nannofossil biostratigraphic data for Site 766 (Ludden, Gradstein, et al., 1990) suggest a mid-latitude position

during this time, including (1) the successful application of the mid-latitude Subzone CN10d (*Amaurolithus delicatus* Bukry, 1981) in Neogene sediments from Hole 766A, (2) the persistence of *Dictyococcites* spp. into the Neogene, and (3) the absence of *Tribrachiatus* spp. in the lower Eocene.

ACKNOWLEDGMENTS

I would first like to thank the Ocean Drilling Program and the United States Science Advisory Committee (USSAC) for providing financial support while completing this project. The facilities for generating and managing the data of this study were provided by the Geology Department of the University of Nebraska and are

Core, section, interval (cm)	Biostrati- graphic horizon/ zone	Preservation	Sedimentary abundance	Reticulofenestra dictyoda	Rhomboaster cuspis	Scampanella magnifica	Sphenolithus anarrhopus	Sphenolithus conspictus	Sphenolithus editus	Sphenolithus moriformis	Sphenolithus primus	Sphenolithus radians	Striatococcolithus pacificanus	Toweius callosus	Toweius crassus	Toweius eminens	Toweius gammation	Toweius magnicrassus	Toweius occultatus	Toweius pertusus	Toweius selandianus	Toweius tovae	Tribrachiatus orthostylus	Umbellosphaera irregularis	Umbilicosphaera sibogae	Watznaueria barnesae	Zygodiscus adamas	Zygodiscus bramlettei	Zygodiscus plectopons	Zygrhablithus bijugatus
123-765C-3R-1, 119–122 3R-2, 14–17 3R-3, 58–62 3R-4, 55–58 3R-5, 93–96 3R-6, 113–116 3R-CC	CP12 CP12 CP12 CP12 CP12 CP12 CP11 CP10	M M M M-G M-G	A A A A A A	F F R ·	いい きんちょう たい		*****	*****	*****	C F · C F C F	• • • • • •	F C C C C C C C F	· R · R F F	• • • • •	F F F C C F	F	F F F F F F · ·	• • • • •	* * * * * * *				· FFF F?	R ·F ·F ·F	R				R	C C C C C C C C F F
4R-1, 100–101 4R-2, 101–102 4R-CC 5R-1, 44–46 5R-2, 44–46	CP11 CP11 CP9 CP9 CP9	M-G M-G M M-P M-P	A A A A		* * * * *	•	10 10 10 10 10 10 10 10 10 10 10 10 10 1	F · ·	F R · · F	C C . C C	· F ·	F F F C F	R · F ·	F C F C C	F F C	· F F · F	F F	· F ·	• • •	F F · F		F R	F C · C C	F R ·	***		R ·	R	· R ·	C F C F
5R-3, 44-46 5R-4, 44-46 5R-5, 44-46 5R-6, 44-46	CP9 CP9 CP9 CP9	M-P M M	A A A	F		•	•	F	F R R	F C C C C	•	F F ·		C A A C	•	F F ·	2 2 2 X			F F	C F	F	F F ·	R	а ж ж		:•) :•) :•)		* * *	F C C
5R-CC 6R-1, 144–146 6R-2, 144–146 6R-3, 99–101 6R-4, 47–49	CP CP9 CP9 CP9 CP9	M-G M M-G M	A A A A	• • • •	F			* * * *	•	F C A C C		F	F R R	CCCCA	• • • •	F C · F		•	F F	F R · F		F		· · F F			•	к	* * *	· F · F
6R-5, 100–105 6R-6, 114–116 6R-CC 7R-1, 99–102	CP9 CP8b CP8b CP8a	M–G M M–P M	A A A A			• • • •				CCCC		• • • •	F F R	F C F		C F C	•		F · C	F A F	F	F F F F	F · ·	R F R	3 3 3 3 3 3 3		•		*	F F ·
7R-2, 99–102 7R-3, 99–102 7R-4, 98–100 7R-5, 99–101 7R-6, 99–101	CP8a CP8a CP8a CP8a CP8a	M M M–G M	A A A A		* * * * *	: R				CCCCC		1.1.1.1.1.1		F ·	• • • •	CCCCC			FFCCF	C F · F C	F C F F F	F · F F		R R R R F			•	• • • • •	* * *	F
7R-CC 8R-1, 92–95 8R-2, 31–34 8R-CC	CP8a CP7 CP6 CP6	G M-G M-P M-P	VA A A		10 21 21 20 20 2		R R	0.00 N 10 N		CCCC	1. 1. 1. 1.		F R	C C C		F C C F	••••		A · · A	FFFF	F C	· F C F		F R		•	•	••••	* * * *	
9K-1, 109–111 9R-2, 109–111 9R-3, 109–111 9R-4, 109–111 9R-5, 109–111 9R-CC	CP2-CP3 CP2-CP3 CP2-CP3 CP2 CP2 CP2 CP1b	M-P M-P M-P M M	A A A A C		5 01 00 04 15 1	1.1000				v C			· · · · · · ·	· · ? ?		R		10 14 14 14 14 14 14 14 14 14 14 14 14 14		F C ·	F F ·	F F 		R R R			• • • • •			
10R-1, 68-69 10R-1, 89-90 10R-1, 120-121 10R-2, 68-69 10R-2, 103-104	CP1b CP1b CP1b CP1a	M M M-P M	A A A C	8 (00 00 00 × ×			• • •		N 14 14 14 14 14				8 14 14 AL (AL)				• • • •	1 4 14 14 1 4 4	100 10 10 100 10 100		N 4 20 10 1 2			F R	F	R R R R	•••••	5 - 4 - 4 - 4 - 4 - 4		••••

gratefully acknowledged. Thanks also are extended to the Geology Department of the University of Papua New Guinea for providing support during production of the manuscript.

REFERENCES

- Berggren, W. A., Kent, D. V., and Flynn, J. J., 1985. Jurassic to Paleogene: Part 2, Paleogene geochronology and chronostratigraphy. In Snelling, N. J. (Ed.), The Chronology of the Geologic Record: New York (Blackwell Scientific Publications), 141-195.
- Hay, W. W., 1970. Calcareous nannofossils from cores recovered on Leg 4. In Bader, R. G., Gerard, R. D., et al., Init. Repts. DSDP, 4: Washington, D.C. (U.S. Govt. Printing Office), 445–501.
- Hay, W. W. and Mohler, D., 1967. Calcareous nannoplankton from early Tertiary rocks at Pont Labau, France, and Paleocene-Eocene correlations. J. Paleontol., 41:1505–1541.
- Ludden, J. N., Gradstein, F. M., et al., 1990. Proc. ODP, Init. Repts, 123: College Station, TX (Ocean Drilling Program).
- Moran, M. J., and Watkins, D. K., 1988. Oligocene calcareous nannofossil biostratigraphy from Leg 101, Site 628, Little Bahama Bank Slope. In Austin, J. A., Jr., Schlager, W., Palmer, A. A., et al., Proc. ODP, Sci. Results, 101: College Station, TX (Ocean Drilling Program), 87–103.
- Okada, H., and Honjo, S., 1973. The distribution of oceanic coccolithophorids in the Pacific. *Deep-Sea Res.*, 20:355-374.
- Okada, H., and Bukry, D., 1980. Supplementary modification and introduction of code numbers to the "low-latitude coccolith biostrati-

graphic zonation" (Bukry 1973; 1975). Mar. Micropaleontol., 5:321-325.

- Perch-Nielsen, K., 1979. Calcareous nannofossils from the Cretaceous between the North Sea and the Mediterranean. IUGS Ser. A, 6:223–272.
 ______, 1985. Cenozoic calcareous nannofossils. In Bolli, H. M., Saunders, J. B., and Perch-Nielsen, K. (Eds.), Plankton Stratigraphy:
- Cambridge (Cambridge University Press), 427–554.
 Sissingh, W., 1977. Biostratigraphy of Cretaceous calcareous nannoplankton. *Geol. Minjbouw.*, 56(1):37–65.
- Watkins, D. K., and Bowdler, J. L., 1984. Cretaceous calcareous nannofossils from Deep Sea Drilling Project Leg 77, Southeast Gulf of Mexico. In Buffler, R. T., Schlager, W., et al., Init. Repts. DSDP, 77: Washington, D.C. (U.S. Govt. Printing Office), 649–674.

Date of initial receipt: 15 June 1990 Date of acceptance: 12 September 1991 Ms 123B-118