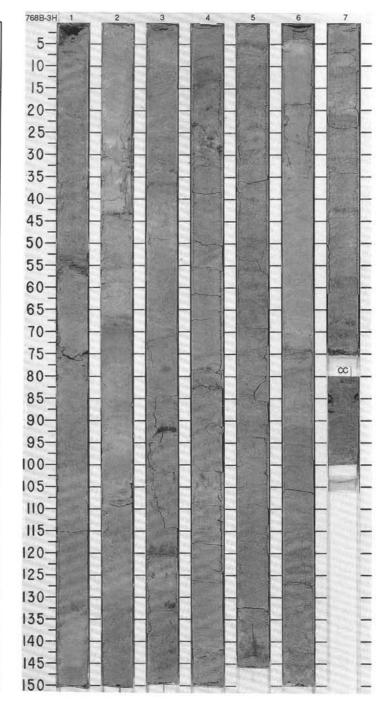
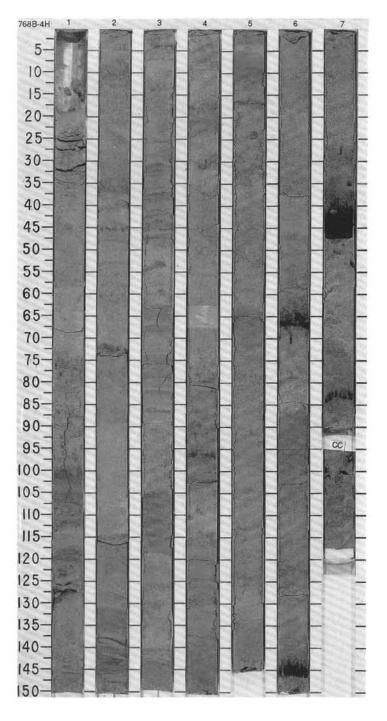
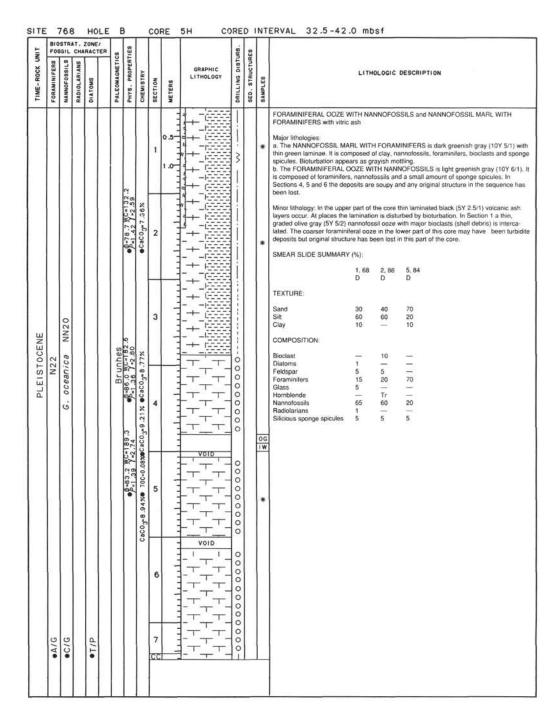


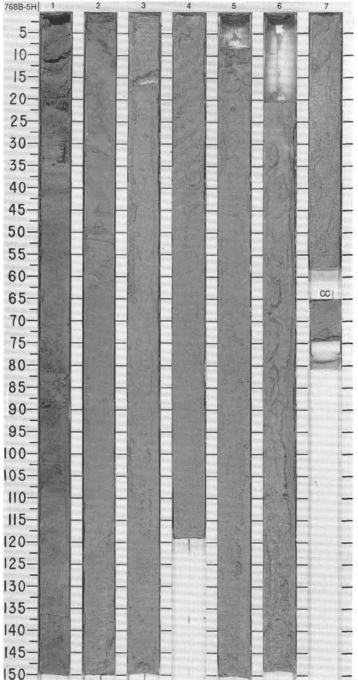
- No			CHAI			on .	831					JRB.	S3						
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LIT	HOLOGIC	DESCRIF	PTION	
- 1	22	huxley; NN21		a doliolus •AIG	(CaCO ₃ =4.35%)	1,97%)	P=85.1 7=2.55	•CaCO _{3*} 5.13% •	1	0.5	vo10	000000	1	**	NANNOFOSSIL MARL WITH DIA' MARL Major lithologies: NANNOFOSSIL core, and grades downward into Fi Thick laminae are present in the nu remainder of the mart is massive a (2.5 Y 5/4) with darker, organic-rich 2 the color becomes dark greenish layers of nannofossil mart occur very thin zones of foraminiferal sar	MARL WI DRAMINII Innofossil Ind bioturb Iaminae gray (10) Section 3 d which g	FH DIATO FERAL M. marl with ated. In S which are ' 5/2) to o The grad	OMS occur ARL and I diatoms (section 1 th olive brow live gray (ded beds i	rs in the upper part of the VANNOFOSSIL MARL. Section 1), but much of the mart is light olive brow m (2.5Y 4/4). Within Sect 5Y 5/2), Several graded have sharp bases overlain
PLEIS	Z	E. hux		Pseudoeunotia	CaCO ₃ =5.16%)	Brunhes	7-2.66 P=1.36	•	2	According to	+ 10000 + 10000 + 10000 + 10000 + 10000 + 10000			*	are interpreted as turbidite deposit SMEAR SLIDE SUMMARY (%): 1, 85 D TEXTURE: Sand 3 Sint 40	1, 96 M	2, 70 D	2, 100 M	3, 22 D
	•A/G	•A/G		•R/P		(CSCO)	WC=227.9 0=87.7	CaCO3=4.80%	3	The state of the s	T 10000		1		Sin	60 	45 	20 20 10 20 — Tr 35 5 10 10 — 3	2 2 1 1 10 1 1 1 1 80

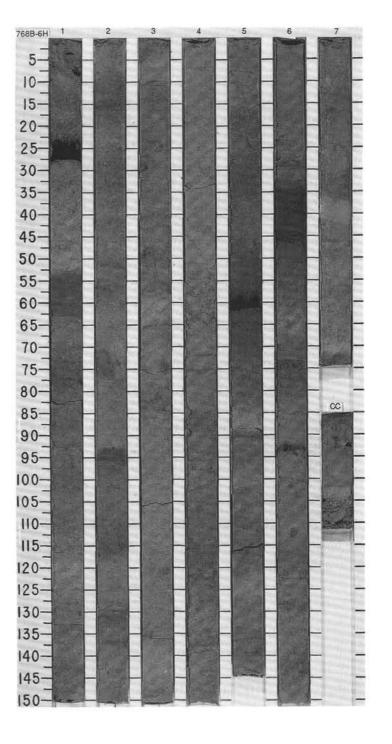


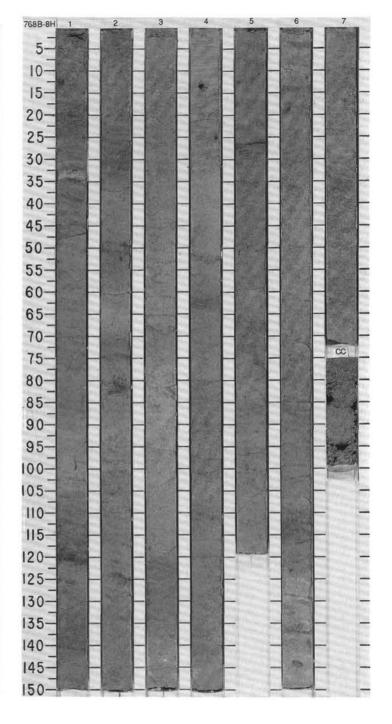
				ZONE/ RACTE	R	TIES				URB.	SES									
TIME- HOCK O	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMACNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES		LITH	OLOGIC	DESCRIP	TION			
\forall	1				Ť	0.4	T	Г	± . +	1	1		NANNOFOSSIL MARL and	FORAN	IINIFERA	L NANNO	OFOSSIL	MARL a	nd ash	
						WC=198.0 0 86.1	CaCO _{3"} 4.51%	1	0.5 + 1		****	* *	Major lithologies: NANNOF occur as clayey oozes in the bases and occasional lamit top of these beds; the lowe interpreted as pelagic clay bated. Minor lithologies: Vitric and	is core. To action are r parts of and carb crystal a	the beds onate turi	greenish n and biol s contain bidities. C	gray (10) turbation more fora other beds thin beds	f 5/2, 6/2 is more in iminifers is are main). Beds we need to These be ssive and n 1, 39-4	ith shar wards to eds are biotur- 1 cm ar
						-0-84.6 WC=171.6			+		* *		Section 6, 28-32 cm which 5/2, 10YR 5/2). They have of glass, plagioclase and he fragments.	sharp ba omblende	ses and g e with sm	gradation all amour	al upper o	contacts.	They are	compo
	-					9.5	4 4	2	1 + 355	1			SMEAR SLIDE and THIN S	ECTION	SUMMA	RY (%):				
						84	aco.		3-1	1	1			1, 30	1, 40	1,40	3, 40	3, 60	3, 103	4, 110
-	-					90,	9	١.	1-1		1		TEXTURE:	D	М	D	D	D	М	D
-	- 1									1	1F		TEXTURE:							
- 1	- 1										-		Sand Silt	20 10	40 20	10	10	10	70 30	30
-	- 1				1				4 - 6553	1	1	*	Clay	70	40	60	60	60	-	62
	-							3	1 - 1	1	1	*	COMPOSITION:							
1	- 1	21	- 1		1	● 87.5 WC=216.5		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		Ш			-					
E1910CENE	-	NN21			1	2.4	2%		<u></u> + , −,∞==	1	1	#	Accessory minerals Bioclast	1	9		_	5	_	_
ij	- 1				1	SMC.	6		1 1 1	1	1	"	Biotite		_	-	Val	-	-	Tr
51	7	ex			1	5 5	3.3		- 6		6		Clay Clinopyroxene	15	-	5	5	15	2	10
5 3	N22	huxleyi				96-	●CaCO ₃ =3.92%		,				Dinoflagellate	15 — — 20 —		5 —	-	-	_	Tr
5	- 1	2			l à		0		1	1	4	Н	Feldspar	-	10	-	-	1	_	-
1	- 1	E.	. 1	110					1 1 EEE	11	٠:٠		Foraminifers Glass	20	Tr 70	50	50	20	_	20
-	- 1							4	± ,	1	1		Hematite	_	Ξ	-	-	-	Tr	-
- 1	- 1									11	÷		Hornblende	-	-	-	-	-	12	Tr
- 1	- 1								1 4 5555	11	1		Magnetite Micrite	_		15	15	15	5	
	- 1								1-,-553	1:	1	*	Nannofossils	60	10	25	25	40	_	65
-	- 1						×.		1 - 555	11	1	П	Opaques	-	-	-	-	Tr	and the same	-
- 1	- 1						.03%	\vdash	+	1	1		Plagioclase Rock fragment	-	1	-	_	_	20 60	=
	-1						o		5555	1 !	1		Spicules	Ξ	4	1	1	-	_	Tr
- 1	- 1				1		TOC=0		1 + 5550	11			SMEAR SLIDE SUMMARY	(%):						
								5	1		٠٠.			5, 66 D	6, 31 M	6, 90 D	7, 14 D			
							3.74%		1-1-1		. 1		TEXTURE:	255	0.000	4753	17.			
							CaCO3#3		1 / /222	11	H	OG	Sand	30	20	1	10			
					1		Cac	L	-	1		IW	Silt	30	75	5	50			
									+ -5555	1	1		Clay	40	5	94	40			
									1+4	1	1	*	COMPOSITION:							
					1		1		4 + 655	11	1		Accessory minerals	_	2	_	-			
					1		1	6	1_75	1	1		Biotite	7.	3	_	_			
					1					11	,	*	Clay Diatoms	10		1 2	5			
									1 3 十 海縣	1	1		Dinoflagellate	Tr		1	5			
									1 - 1	11	150		Feldspar Foraminiters	1 20	_	-	10			
-								-	1 -555	1	1		Glass	30 5	40	10	-			
							1		1 + 200	- !!	4	*	Hornblende	Tr	10	\sim	5			
1			1. 3					7	1 - 70	1	1		Nannofossils Opaques	45	5	80	55			
	0	(2		0			1			1	1		Opaques Plagioclase	\equiv	30	2	Tr			
	•A/G	.A/G		•R/P	1		1		+ (22)	1	1		Pteropod	5	Ξ	_	-			
1	•	•	17	•			1	CC		11			Quartz Radiolarians	-		-	5			
- 1					1		1						Rock fragment		5	-	5			
- 1			1				1						Silicoflagellates	Tr	-	$\underline{a} := \underline{a}$	- 1			
- 1	- 1			I I	- 1		1	1					Spicules	1	-	3	10			

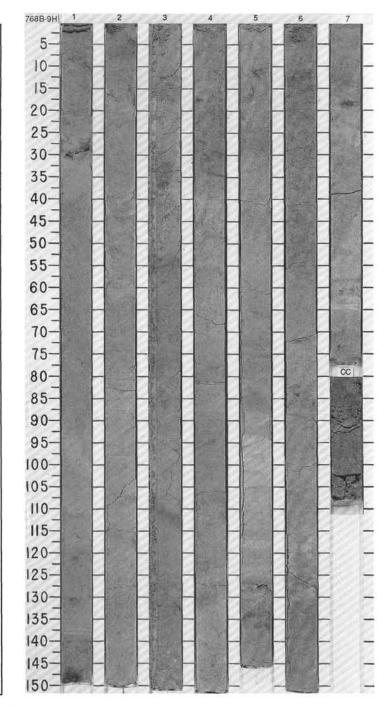

513

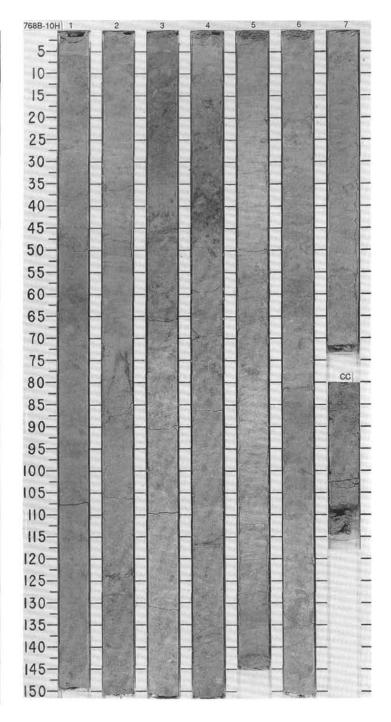



		ZONE/ RACTE	R on	831				88.	un.									
NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES		LITH	OLOGIC	DESCRIF	PTION			
				5.2				1	1	*	NANNOFOSSIL MARL W NANNOFOSSILS and ash	ITH FOR	AMINIFE	RS and F	ORAMIN	IFERAL I	MARL W	тн
				7=2.54 • 0=85			0.5		-	*	Major lithologies: The mar INIFERS to FORAMINIFE	s in this o	ore vary	from NAM	NOFOS	SIL MAR	L WITH	FORAM
				98.0	CaCO3=5.29%	1	十四	1	1		massive light greenish gra	y (10Y 5/	1, 6/1, 5Y	6/2) thic	k beds w	hich are r	mottled d	lue to
1				=2.5	3.5		1.0	1	1		bioturbation or medium be has disturbed original bed	ding conta	acts in ma	any place	s. The gr	aded bed	is are tur	biditic in
1				78	aco		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	i	*	origin. The marls are comp pteropods and volcanoger	posed of a	lay, nanr	notossils a	and foran	ninifers, b	out also in	nclude
				П				1	1		Minor lithology: Very thin a						dark aras	(10Y 3)
				П				11	1		4/1) and have sharp basal amphiboles and biotite, but	contacts.	They are	compos	ed mainly	v of class	. plagioc	lase.
				П			- , -kees	1	4		fossils).	t disco in c	uue soiiii	e carcarer	ous mate	riai (iurai	miniers a	ing nani
1					CaCO3-4.97%	2	1	1	.1.		SMEAR SLIDE SUMMAR	Y (%):						
1	-				3-4		1+		1			1, 36	1, 55	1, 121	2, 85	3, 68	4, 82	5, 92
1					CaC		+ 555	1:				М	M	D	D	D	М	М
				П	-		+1555	1			TEXTURE:							
							1 - 1999		.₩.		Sand	20	10	2	10	30	60	2
1	- 1		П	П				1	٨F		Silt Clay	70 10	80 10	20 78	40 50	10	20	20 78
						3	1 1 1		···	*	The fact of the second	10	10	10	50	00	20	10
MINE			Ш				1+55	1	-		COMPOSITION:							
2			60	2.2			+ (EEEE		1		Accessory minerals Amphibole	Tr	Tr	Tr	1	_	2	_
	- 1		Brunhes	37 7 *2.51	7%		1-799		1		Bioclast	-	-	-	-	10	_	_
HOVIER			5	3,0	●CaCO ₃ =5.97%						Biotite Clay	-	2	10	4	20	15	10
			B	37	03=		1 1		1		Dinoflageflate Feldspar	Ξ		-	5	1	Tr	1
			1 1	P=8	CaC		4 + 555		5		Foraminifers	\equiv	1	15	25	30	5 70	10
			1.1	•	•	4	T+7555				Glass Homblende	65 5	70 5	Tr Tr	-	2	Tr	_
			11				+===		1	*	Nannofossils	-	-	70	50	20	2	78
1			11	П				11	5		Opaques Plagioclase	Tr 25	Tr 20	3	Ξ	- 2	_	-
1				П			+ 1222	11			Pteropod	=	-	1	-	10	5	1
			11		%0.		Lining		•••		Pyroxene Radiolarians	Tr	Tr	-	5	-	_	_
1			Ш		T0C=0		于上世界		1		Spicules	-	Tr	Tr	10	2	Tr	Tr
1					9		1 - 1	1	ŧ		SMEAR SLIDE SUMMARY	Y (%):						
					.33%	5		1	'			6, 2	CC, 19					
1			1 1	● 74.5 WC=135.3	£.	- 1	1-1-1999	1	-	*		M	М					
1			1 1	2.4	•CaC03=1		1 - 1		1		TEXTURE:							
				*	CaC				1	IW	Sand	5	2					
1				4.	•		± , -000	1	•	*	Silt	70	40					
1				90			1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1	15		Clay	25	55					
					20	6	11年1日	1	1		COMPOSITION:							
					1.793		- 1-5-5	1			Accessory minerals	-	5					
					CaCO3=7.		+_+	1	1		Amphibole Biotite	8						
					ac.				:::		Clay	10	10					
					0		+ ;:::::	1	1		Dinoflagellate Feldspar	15	1					
							i + 5555	1			Foraminifers	5	5					
						7	」」。一		4		Glass Nannofossils	40 15	65 5					
0		٥						1	1		Plagioclase	-	5					
3		E C			. %	ccl	1-1-55	1			opicules	11	2					
					0.0	20		4	,	*								
200			•R/P	•R/P	•R/P	•R/P	٥ ا			e	e + T-###	Nannofossils Plagioclase Significant	Nannofossils 15 Plagioclase Plagioclase Tr	Nannofossils 15 5 Pilagioclase — 5 Spirituse Tr	Nannofossils 15 5 Plagioclase — 5 Spirules Tr	Nannofossils 15 5 Plagicidase — 5 Plagicidase — 5	Nannofossits 15 5 Plagioclase — 5 Spirules Tr	Nannofossils 15 5 Pilapioclase — 5 Spirules Tr

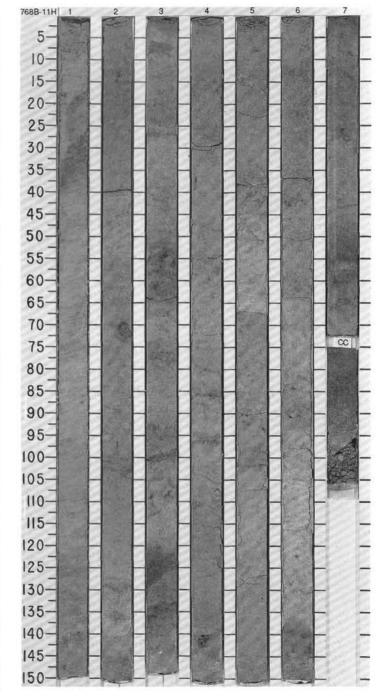

- IN				ONE/	R	LES		co		URB.	sa	Γ							
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES		LITH	OLOGIC	DESCRIP	PTION		
٦				T	T	1	T	T	VOID		١.		NANNOFOSSIL MARL and						
		1				WC=151.7 Ø-81.8	CaCO,=4.	1	0.5 + +		2 20 20	*	Major lithology: NANNOFOC occur in massive homogene are light greenish gray (10Y with bioturbation. They are a amounts of foraminifers and but also contain bioclastic in plagioclase). The graded be diffuse upper boundaries. Ti of redeposited material while	eous thic 6/1) wit compose d sponge naterial a ids are p he gradii	k beds a h some r ad of calc spicules and a sm ale olive ng is not	nd as gra mottling of careous no s. The gra all volcan to olive (always of	ded, med f grayish annoloss ided beds ic compo 5Y 6/3, 5 lear. The	dium beds green (50 ils and cla s are of sin nent (volc /3), sharp se beds a	The massive beds Y 5/2) associated by with variable milar composition. sanic glass and based and have re considered to be
		NN2					●CaCO _{3*2.50%}	2			1	*	Minor lithology: Vitric ash ar places in this core. They are depending on the proportion beds have sharp bases and SMEAR SLIDE SUMMARY	nd vitric a black (s n of cryst diffuse	ash with 5Y 2.5/1) tal mater	feldspar o , dark gra ial. which	occurs in ay (5Y 4/1	thin or ver	y thin beds in many gray (5Y 5/2), orker beds. These
											Ĺ			1, 131 D	2, 15 M	2, 36 M	3, 85 D	4, 100 M	7. 44 M
									二十.摄		1		TEXTURE:						
		e9/3								3			Sand Silt	20 20	50 50	_	_	60 40	20 70
		0						3	1		1	*	COMPOSITION:	60	_	_	_	_	10
						5.5					1		Accessory minerals	Tr	_		Tr	-	
						WC=178.5	2 %	L					Bioclast Biotite	=	2 Tr	20 Tr	20	5	-
						× 1.	-		1-19	3	1		Calcite Feldspar	_	5	_	5 Tr	15	 25
						-0-85.7	aco.		1 1 1 1 1 1	3	1		Foraminifers Glass	30	2 80	20 5	20	Tr 60	- 50
EISTOCENE					١.,		•	4	1-19		1		Hornblende Nannotossils	60	5	3 40	40	15	5
000	2				1	2			1 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		AF	*	Opaques Plagioclase	_	5	3	_	5	15
20	N22	S			0	3					Ľ	-	Silicious sponge spicules	10	_	_	15	-	=
PLE		€C/			0		.04%	H			1								
							TOC=0		1										
							135	5	1		≜ F								
						0,	1.2%		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		•••								
		0				WC=173.9	37=5	,	174		1								
		NN20				× ×	⊕CaCO ₂ =5.12%	L				ıw							
						D*83.1	34		1 1 2	=	15								
						9			1 1 4	==	1,								
		0					4.87	6			AF		d .						
		oceanica					CaCO 4.87%	2	1 41-6		1	1							
		cea					Ca],-===		1								
							40%	H			١,								
		S					4.0	-	1 1 - 22										
							TOC=0	7	1 1 1	==	1	*							
	• A/M	9/00		•R/P							-	1							
				•				CC	1 -1-1-		L	L							




UNIT	BIO FOS	STR	CHA	ZONE/ RACTE	R	99	2		T		RB.	83								
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETICS	Tura contract	CHEMISTRY	201103	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES		LITH	OLOGIC	DESCRIP	TION		
						-0-77.6 WC=128.6	P-1.41 1-2.56	•CaCO3-5.62%	0	1+3		1 1 1	* *	FORAMINIFERAL NANNOF Major lithology: FORAMINIF (5Y 5/1, 5/2) beds. Most bed poorly delined upper and lov 1, 53-63 cm and Section 6, 6 4/4). Clay, callesa, amounts volcanic rock fragments mak mar may be redeposited (at disturbed by bioturbation).	ERAL Notes that the second sec	ANNOF	OSSIL MA omogene Graded be se beds ar es, radiola ediment.	ARL occur ous and r eds with s re light oil mans and Some of t	noderate harp bas we gray (bioclast the foran	ely bioturbated vi ses occur in Sec 5Y 6/2) or olive s. Feldspar and niniferal nannoto
								1	2	+		* * * * *		Minor lithology: Vitric and lith Section 5, 58-61 cm and as black (5Y 2.5/1), with sharp variable amounts of rock frai ash beds suggesting that the SMEAR SLIDE SUMMARY	very this bases a gments by may	n indisting and diffusi and felds	t beds in tops. The par. Fora	other par e main co	ts of the instituen	core. They are t is glass with
						133.0	2.71	× ×				1	*		1, 26 M	1,58 M	1, 140 D	2, 137 M	3, 64 D	4, 22 D
		50				0.88-19.9 WC=133.0	1.43 /-	•CaCO _{3*} 5.66%	3	+ 688		* * *	*	Sand Silt Clay	60 30 10	20 80	15 25 60	80 10 10	30 50 20	40 50 10
STOCENE	22	vica NN20				Brunhes	2	3-4.42%				1		COMPOSITION: Bioclast Clay Diatoms	10	2 5 2	5	Tr	_ 10 _	=
PLE1S	N2	G. oceanica				41.6	"2.73 Fel. 42	•CaCO _{3*} 4		+ 1000		1	*	Feldspar Foraminifers Glass Nannofossils Opaques Pyroxene Radiolarians	5 45 5 5	20 70 —	1 30 50 2 	Tr 10 75 10 2	10 25 — 35 3 —	5 35 — 55 —
						M.		×10.0	-	1+ (A) + (A) + (A)		* * *		Rock fragment Silicious sponge spicules	30 Tr	ī	3	2	5	2
								08%	5	+ = = + = = = + = = = + = = = = + =										
						47.7	.60	% •CaCO _{3*5}	+		100000	F	ıw							
						.0=81.1 W.C=147.7	P=1.39 / =2	●CaCO ₃ =4.33%	6	+ E		1 1 1								
								9	7	1 + M + H + H		* **								
	e9/2	NN19 C/G.		₽.				C	С	-1-1	1000	1								

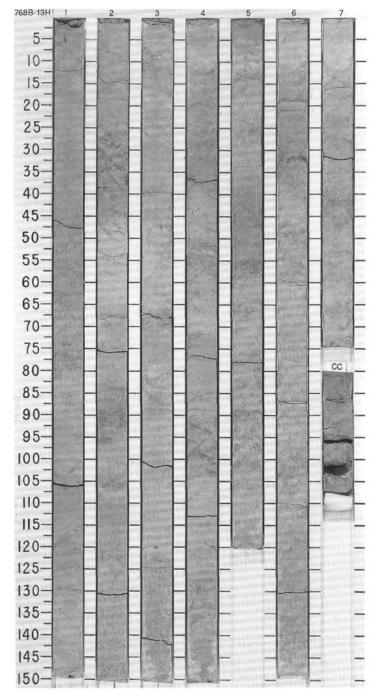


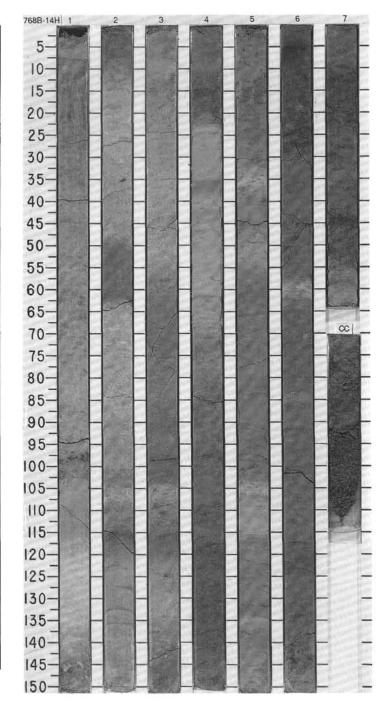
	FOS	STRA	CHA	RACTE	R	99	IES				JRB.	S									
	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	100000000000000000000000000000000000000	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES		LITH	OLOGIC	DESCRIF	PTION			
		NN20					6 7*2.60	●CaCO ₃₌ 7.38%	1	0.5 +		1 1 1	*	FORAMINIFERAL NANNOR Major Lithology: FORAMINI gray (5Y 6/1) to olive gray (5 except for those in Section 1 Lamination is only found in 1 lower boundaries occur in S are also gray (5Y 6/1) to olif foraminiters and nannofossi ments. The beds with sharp	FERAL I SY 5/2) a 2 and the he Secti ection 1, re gray (ls, with r	NANNOF and a few supper 6 ion 2, 12- , 0-20 and 5Y 5/2).	OSSIL M are dark 0 cm of S 15 cm. S d 138-15 The majo clasts, rae	Section 3, a some norm 0 cm, and or constitue diolarians,	gray (10 are sligh ally grad Section ents of the feldspare	Y 4/1). M tly bioturi ded beds 5, 53-60 ie sedime r and roci	ost bed cated, with sh cm. The
							P=81.0	•caco3	2		100000	* *	*	Minor lithology: Vitric ash ar gray (5GY 3/2) layers in Sec ash layers occur in Sections SMEAR SLIDE SUMMARY	ation 4, 1 3 and 5	05-107	m, and S	Section 5,	125-129	cm. Som	ery dark e very t
									-			2 2		TEXTURE:	1, 62 M	2, 50 D	4, 55 D	4, 135 M	5, 55 D	5, 128 M	6, 60 D
STOCENE		0 L N N				es	.68	*	3	+ 5	- 0000	* * * * *		Sand Sill Clay COMPOSITION: Accessory minerals Bioclast Biolitie Clay		60 40 -	35 65 —	40 40 20 — — Tr 5		30 60 10 — — 1 10	15 50 35 2 3 1
PLEISIO	N22	P. lacunosa				Brunh	P=76.3 WC=113.1	7	4			*****	*	Feldspar Foraminifers Glass Hornblende Nannofossils Opaques Pyroxene Radiolarians Rock fragment Silicious sponge spicules Spicules	2 20 35 5 2 5	60 - 35 - - - - -	12 35 — 50 — —	5 	2 10 — 80 Tr —	5 45 2 5 5 5 5 — 20 —	5 10 - 1 60 1 Tr 5 3 2
							WC=100.3 7=2.67	●CaCO ₃ =0.95% TOC=0.08%	5	+ 600			* * * * * * * * * * * * * * * * * * * *								
						ACCOUNT STATES OF THE PARTY OF	0-74.0 W	CaCO ₃ =2.98%	6	+ 6			*								
	•A/M	9/3		9.8				CaC	7	+		1									



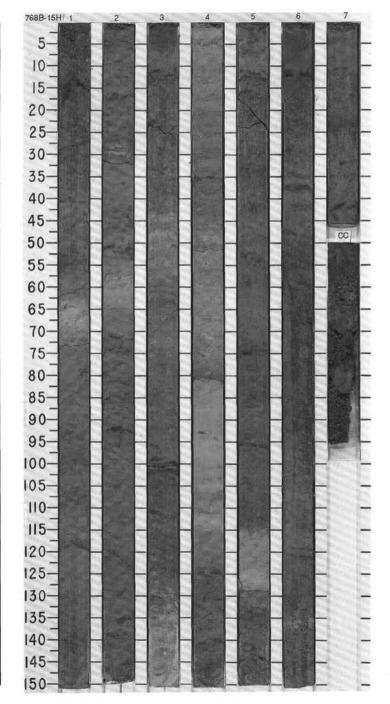
-				ZONE/		ES					78.	69								
IIME-ROCK ON	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	u	тноц	LOGIC (DESCRIP	TION		
					0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WC=127.1 • 0=78.3 7-2.69 • p=1.43	•%	1	0.5	+ 1555	0	* * * *	*	FORAMINIFERAL NANNOFOSS Major lithology: FORAMINIFERA in massive, thick, poorly defined monotonous gray color (SY 61, \$4 (106Y 4/2) layers which are undi and bioturbated. The principal co with foraminifers occurring as glass, biotite and hornblende conich in glass and other volcanic milions of opaque minerals (possib	L NA beds 5/1) is sturb mpor najor istitut	NNOFC which a sinterrujed by b nents of or mino te up to al and ti	OSSIL MA ire slightly pted by vioturbation this lithour compore 20% of the	ARL is the y to modi ery thin (in. Darke logy are hent. Plan mottling	e dominal erately bi around 1 r gray lay clay, calc gioclase, ent. The t	oturbated. The mm) greenish gra ters are more diffu- areous nannofoss- rock fragments, thin green layers a
					hes			2	land and	+ 5000 + 5000 + 5000 + 5000 + 5000		1	*	Minor lithology: Foraminiferal ma medium beds in Section 5. These and are clearly turbiditic in origin, which may have been deposited either by bioturbation or during th	Mos as tu	is are gr t of the rbidites.	aded, wit sediment Volcanio	h planar is in this materia	and conv core are it is mixed	volute laminations marls, some of
					Brunhes					(5555 + 5555 (5555	-	1		SMEAR SLIDE SUMMARY (%):	49	2, 82 D	3, 111 M	4. 70 D	5, 11 D	7, 19 M
STOCENE		NN19				9.1		3	and transfer	+ 655		* ** ** **	*	TEXTURE: Sand — Silt — Clay — COMPOSITION: Bioclast 5		30 60 10	_ _ _	10 20 70		2 15 80
PLEISTO	N22	P. lacunosa				P=17.7 WC=121	●CaCO3=4.84%	4	- Indiana	+ - - - - - - - - -		*	*	Biotite	3	2 — — 2 40 — 50	10 — — — Tr 10 — 50		30 -	
							.03% TOC=0.0%	5		+ 500			*	Opaques — Plagioclase 2 Pyroxene — Raciolarians — Rock fragment 15 Spicules 5			5 Tr - 15 5	2 2 2 1	15 2 - - -	7 15 — 1 5 2
					Matuyama	● 78.1 WC=120.5				+ / / / / / / / / / / / / / / / / / / /		#	ıw							
						90	CaCO3*4.32%	6	1	+ 633 + 633 + 633 + 633 + 633		1 1 1								
	●C/M	9€/0		8			5	7		+ 500		******	*							

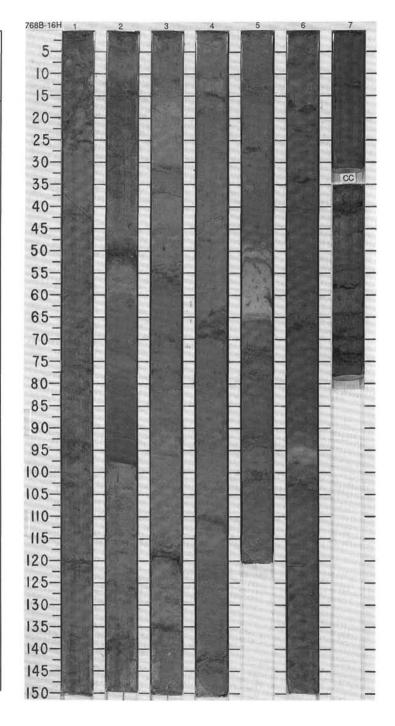


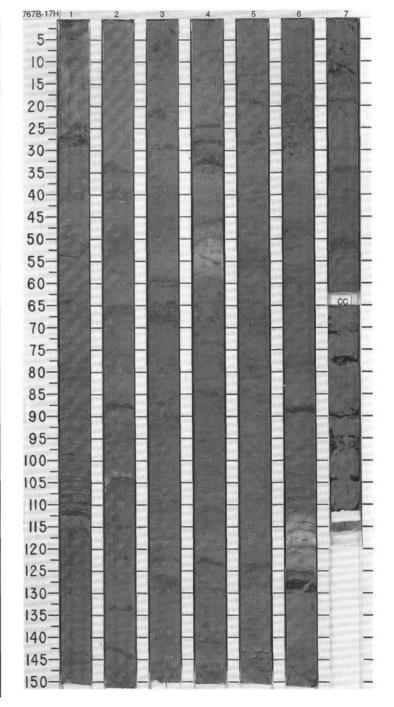

- NO				RACT		so.	831				-	RB.	S	ľ								
I ME-ROCK OF	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY		DRILLING DISTURB	SED. STRUCTURES	SAMPLES		LITHO	LOGIC	DESCRIP	TION			
						Jaramillo	7-2.63 \$=1.44	CaCO3-4.37%	1	0.5	21 21 2 12 13 13		¥:	*	NANNOFOSSIL MARL W and FORAMINIFERAL M Major lithologies: NANNO NANNOFOSSIL MARL ar abundant materials with o and light greenish gray (1 graded (Section 3, 24-28 volcaniclastic material ino gradational but the beds a	ARL WITH FOSSIL M. nd FORAM olor rangin 0Y 6/1). Th cm). The fo luding bioti	NANNO ARL WIT INIFERA g from gr e layers traminife te, amph	FOSSILS TH FORAL L MARL reenish gr with high ral mart in ibole and	and ash MINIFERS WITH NAI ray (5GY) er concern cludes da glass. Bo	S, FORAI NNOFOS 5/1) to gr trations or trker layer undaries	MINIFEI SSILS ar ay olive of foram ers with in other	RAL e the mos (5Y 5/2) nifers are up to 15%
								CaC	2	- 100000 1 - 100000 1 - 100000 1 - 100000 1 - 100000 1 - 100000 1 - 100000 1			*	* *	Minor lithology: Vitric ash sediments. They are silt-s bioturbated. These beds i plagioclase, biotite and he SMEAR SLIDE SUMMAR	ized with g are light gra ornblende.	raded be	dding, sh	arp basal	contacts osed of v	and the	y are ofte
ENE		9 LNN			X 45.5		• \$=69.1 WC=82.3	●CaCO ₃ =3.20%	3		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1.22	*	TEXTURE: Sand Silt Clay COMPOSITION: Accessory minerals Bioclast	40 20 40	8 15 77	10 15 75			20 80 —	20 30 50
PLEISTOCENE	N22	P. lacunosa				Matuyama	10.2	7	4		= " = " " = "		**	*	Biotite Clay Diatoms Dinoffagellate Feldspar Foraminiters Glass: Hornblende Nannofossils Opaques Plagioclase Pyroxene Radiolarians	1 30 - 2 40 1 Tr 20 2		20 1 20 1 55 1		5 ————————————————————————————————————	5 	1 1 20 5 40 5 15
							●Ø=70.9 WC=90.2 P=1.53 7=2.56	●CaCO _{3"} 3.22%	5					*	Rock fragment Spicules SMEAR SLIDE SUMMAR TEXTURE: Sand	1 — RY (%): 5, 105 D	6, 30 D	1 6, 138 M	7. 40 D	15	5	10
					Cobb Mt.	ama .		CaCO3=3,12% TOC=0.01%	6				*******	*	Silt Clay COMPOSITION: Biotite Clay Feldspar Foraminifers Glass Hornblende Nannofossils Opaques	2 10 5 20 5 20 7	2 10 5 20 5 2 40 Tr	60 35 1 5 5 15 5 5 5 5 5 5 5 5 5 5 5 5 5 5	20 30 Tr 20 — 55 5 1 15			
	•A/M	●C/M				Matuyama		0	7 CC	- u = \\ u = \sigma	-		.F.	*	Plagiociase Radiolarians Rock fragment Spicules	2 10	2 10	_ 10 _	Tr Tr Tr			

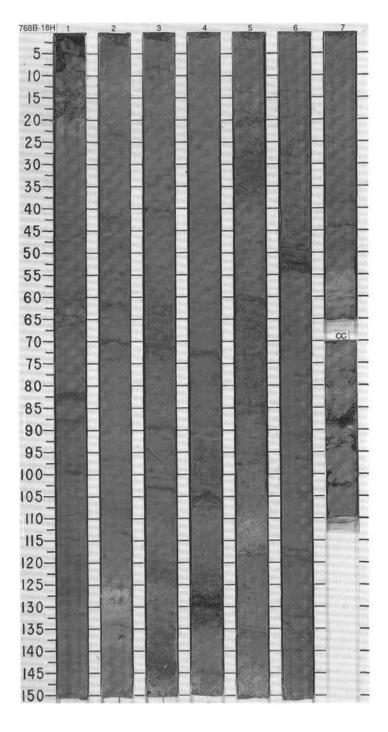


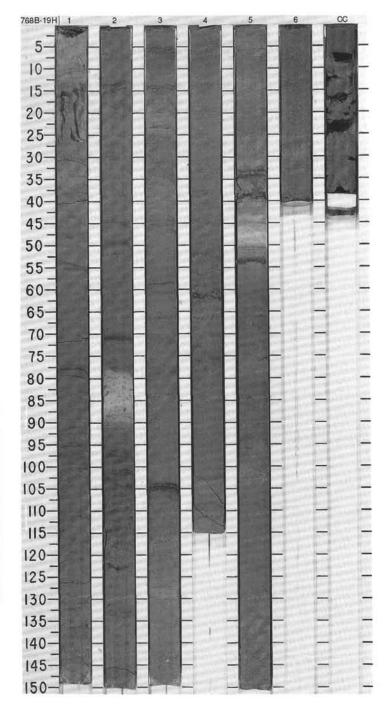
			CONE/		100 W						00		
FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIE	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTUR	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
				0.000,000,000	WC=139.4⊕@-81.0 7-2.46 - P=1.43	CaCO3-7.40%	1	0.5	T T T T T T T T T T T T T T T T T T T		*****	*	NANNOFOSSIL MARL and FORAMINIFERAL MARL with crystal-vitric ash Major lithologies: a. NANNOFOSSIL MARL is the dominant lithology. It is light greenish gray (5GY 7/1) with small, scattered volcaniclastic component of up to 1 or 2%. Massive beds are homogened and bioturbated without apparent graded bedding but rare levels contain a higher concern into of foraminifiers (Section 3, 100-102 cm). The lower part of the core is composed of nannofossil mart with foraminifiers. b. FORAMINIFERAL MARL occupies the top part of the core (Section 1) and contains up 40% foraminifiers, clay and some nannofossils. The volcaniciastic component is low (3-5% There are also radiolarians and traces of fish bones. Minor lithology: Crystal-vitric ash is recognizable in poorly preserved beds (because of bioturbation), mostly in Section 1, 135-137 cm and Section 5, 80-120 cm. The ashes cont
					2.67	88.	2			1	1	*	some foraminifers and nannofossils and are redeposited. They are composed mainly of glass and crystals of plagioclase. SMEAR SLIDE SUMMARY (%): 1, 100 2, 31 2, 85 3, 70 3, 142 4, 90 5, 83 D M D D D M M
2	81NN			a	- P=67.7	.6.500±0⊕	3	- Indiana			•••	•	TEXTURE: Sand 50 80 5 3 5 2 10 Sit 20 20 15 5 10 30 45 Clay 30 0 80 92 85 65 40 COMPOSITION: Biotite 2 1
N2:	P. lacunos					3%	4	to all to all to a			***	*	Clay 25 — 15 15 5 10 Dinofitisgellate — — — 1 Tr 1 — 3 — — — — 2 2 — — — 2 — — — 3 — — — — 2 — — — 3 — — — 2 — — — 3 — — — — 2 — — — 3 — — — — — — — — — 3 — — — —
					P=74.1WC	.02%	5	and have been					SMEAR SLIDE SUMMARY (%):
					2.70		6	leader			1 1	*	COMPOSITION: Accessory minerals 1 Clay 5 Dinollagellate 2 Feldspar 2 Foraminiters 10 Micrite 10 Nannolossiis 65
• A/G	•C/P		•B		9-80.4 W	26720	7		2000(T		1		Cpaques 2
	N22 FORMINIFERS IQ	A/G N22 FORMANIFERS FORMANIFERS 634 C/P P. /acunosa NN19 MAMMOFOSSILIS P	A/G N22 FORMANIFERS FORMANIFE	A/G N22 FORMINITERS FORMINITERS FORMINITERS FORMINITERS FORMINITERS PRINTING PRINTING	A/G NA22 FORMINITERS FORMINIT	А/G NN22 Роваминуєтея 45	GG MAZ FORMANIESERS F	ФД/С N22 Р. Jacunosa NN19 P. Jacu	• A / G N22 P. Jacunosa NN19 P. J	ФС/Р ФС/Р ФС/Р ФС/Р ФО-4 ИСС ФС/Р Матиуата Фред 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	### C/P ##### C/P ###################################		



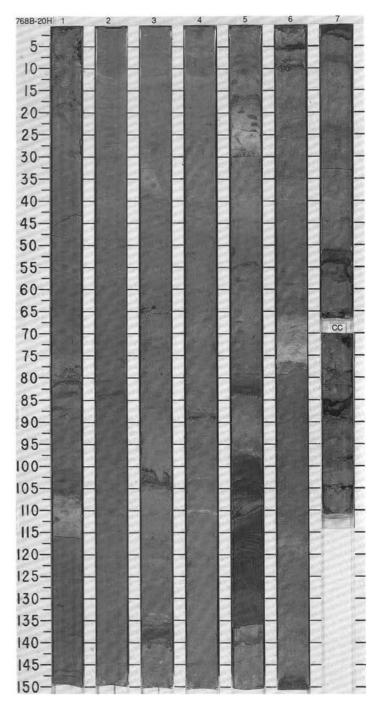

5				ZONE/ RACTER	0	IES					RB.	60		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
					(T0C=0.06%)	WC=113.6 Ø=77.0	CaCO3*5.38%	1	0.5				*	NANNOFOSSIL MARL and FORAMINIFERAL NANNOFOSSIL MARL and ash Major lithologies: NANNOFOSSIL MARL and FORAMINIFERAL NANNOFOSSIL MARL at the dominant lithologies in this core, intergrading with variations in the abundance of foraminifers. The marl is light greenish gray (10Y 6/1 to 5GY 7/1), with sporadic color mottling due to slight bioturbation throughout much of the core. Thin to thick lamination is found in the marl at a few levels. A thick layer of nannofossil marl in Section 4 has a sharr basal contact and faint fine lamination just above the base; this layer is interpreted as an pelagic marl redeposited by a turbidity current. The upper limit of the redeposited bed is uncertain.
						\frac{2}{\zero}	.47%	2			i	1	*	Minor lithology: Thin laminae of vitric-crystal ash are found in Section 1, 122, 125, and 12 cm. The ashes consist of glass, plagioclase, hornblende, rock fragments with minor biotite and opaque minerals. SMEAR SLIDE SUMMARY (%):
						(CaCO _{3=2.55%)}			-			1		1, 100 1, 130 2, 28 2, 55 5, 47 5, 71 5, 18 D M M D D D M TEXTURE:
						O)				+ +		1		Sand 1 20 5 5 5 2 2 Silt 15 70 60 40 10 10 10 Clay 80 10 30 50 85 85 88
STOCENE	2	sa NN19			ama			3				1 1		COMPOSITION: Accessory minerals — - 15 5 — — — Biotite — 5 1 2 — — 20 20 20 Uninflageilate 1 Tr — 1 1 1 1
PLE1ST(N2	P. lacunos			Matus	Ø=72.0 WC=88.1		4				2 2 5		Fish — — — — — — — — — — — — — — — — — — —
						WC-88.4	●CaCO ₂ =0.86% TOC=0.06%	5		+ - - - - - - - - - - - -		*	*	Spicules 3 — — — — — — — — — Ziroon — 2 — — — — —
						-93.7 - 0=72.3	CaCO 4 .94%	6				20 20 20		
	• A/M	• C/M				9-74.5 WC	CaCO4.65%	7	-			*		

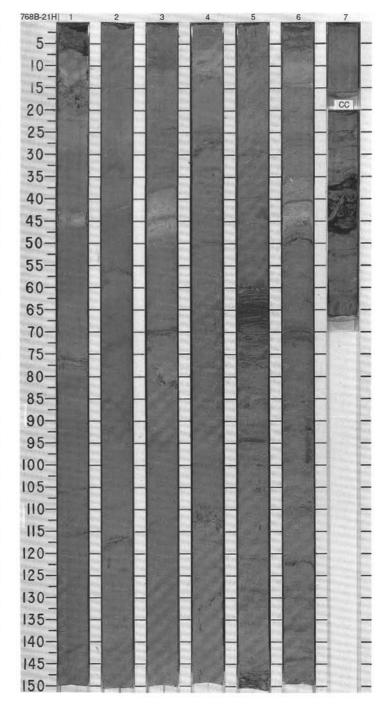


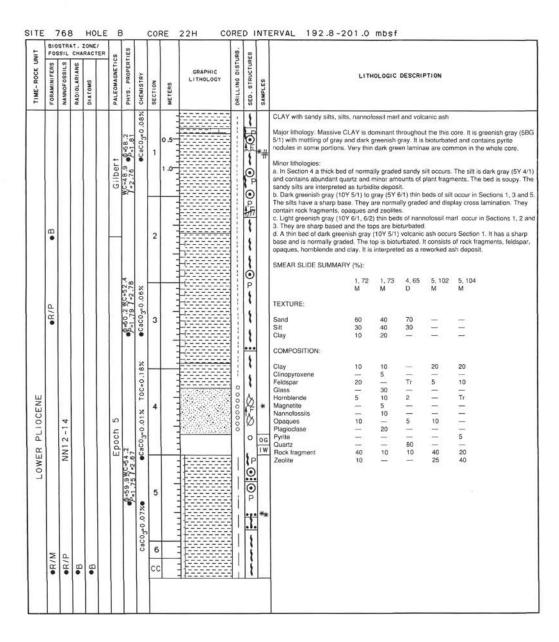

				ONE/		60					يَ				
TIME-ROCK ON	FORAMINIFERS	NAMNOFOSSILS	RADIOLARIANS	RACTER	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGI	C DESCRIPTION
	NN18	F/M +				7-2.63 P=1.51	●T0C=0.39%	1	0.5			******	*	laminations are almost never preserved, a green (10GY 3/2) material. It makes grada CLAY is generally gray (5Y 5/1) to greenis feldspar, rock fragments and biotite. Minor lithologies: a. The nannofossil marl occurs in light green	sive, moderately to highly bioturbated beds whi nd replaced by mottles and burrows filled by da tional contacts with the more carbonated units, in gray (5GY 5/1). It contains numerous oxides, enish gray (10Y 7/2) thin to medium bedded units
	9/J•	IS NN17				315		2				* * * *		150 cm and Section 4, 15-44 cm. b. Lithic ash is present in at least two thin I	ntain up to 40% nannolossils in Section 3, 130- ayers with a sharp basal contact in Section 4, 7 ark green laminations may also represent alter
	N21	D. pentaradiatus			Matuyama	P=74.5 WC=97.2		3				* * * * *	*	TEXTURE: Sand 1 — Silt 35 10 Clay 60 90 COMPOSITION: Accessory minerals 5 10 Amphibole 5 2	5 95
UPPER PLIOCENE	●P/P					9.	•CaCO3*3.75%	4		, + , +		*	*	Botite	55 1 40 Tr
Idn		•F/M				\$ =75.5 WC=99.6	●CaCO ₃ =0.05% TOC=0.35%	5				1 2 2 2 1F			
		surculus NN16			Gauss		•Cal	6				* * * * * *			
	88	D.		8				7			××	2 4			

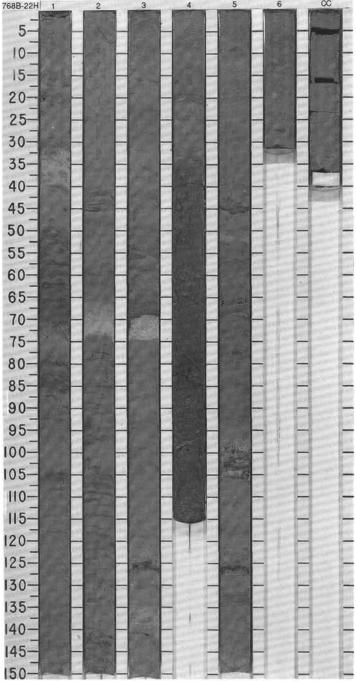


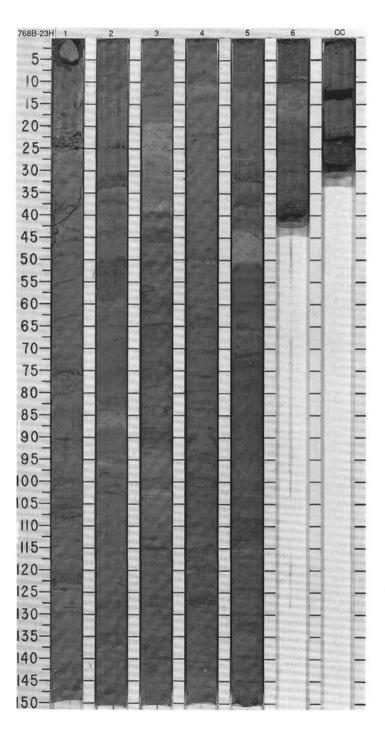
	_	68		HOLE				COF		17H C0		1		RVAL 146.5-156.0 mt		
5				RACTER	95	TIES					URB.	ES				
TIME- NOCK	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLO	OGIC DESCR	IPTION
						WC=76.8 7=2.74	2%	1	0.5			1 1 1	*	CLAY with calcareous marl Major lithology: Massive CLAY, is domit gray (10Y 4/1) and bioturbated (includin grayish green (55 4/2) laminae which a and other volcanogenic material, others sediment. Minor lithologies: a. A sand/sitt/clay bed occurs in Section	ng Zoophyco are silty. This wise clay mir	s), it is structureless except for thin coarser material contains amphiboles erals constitute at least 90% of the m. It is made up of interlaminated dar
PLIOCENE		NN16			Gauss	-68.8 WC	●CaCO ₃ *0.15%	2				*****	*	gray (SY 3:1) and light greenish gray (1 leldspar and rock fragments plus nanno laminated, including cross lamination. T turbiditic origin. b. Calcareous mart of clay, micrite and Sections 4 and 6. These are redeposite the upper boundaries of these bods but SMEAR SLIDE SUMMARY (%):	ofossils and This polygen some nanno ed clayey oo	oraminifers. The bed is graded and the atic sediment is considered to have a fossils occurs in two thin graded beds tes. Bioturbation has caused a mixing
UPPER		Ceres							1		1			1,110 2 M D	2,52 4,12 M	5 6, 112 M
10								3						TEXTURE: Sand 70	- 5 0 30	10 90
	• A/G					P=68.4 WC=75.7	*60.03.0.09%	4		80		.1.	*	Clay 10 9 Feldspar 10 4 Foraminifers 5 - Glauconite 2 - Hornblende - - Micrite - - Nannofosils 5 - Opaques 10 1 Plant - - Quartz 40 -	50	90 5 1 1
	N19/20	eudoumbilicus			Silbert	WC=81.0	CaCO3=0.02% TOC=0,36%	5				* * * * *		Rock fragment 15 -		-
		R. pseudo				0 -70.8 WC	03-0.05%			, OC			*			
OCENE		NN15					CaC	7								
LOWER PLINCENE	●R/M	•R/P						cc								

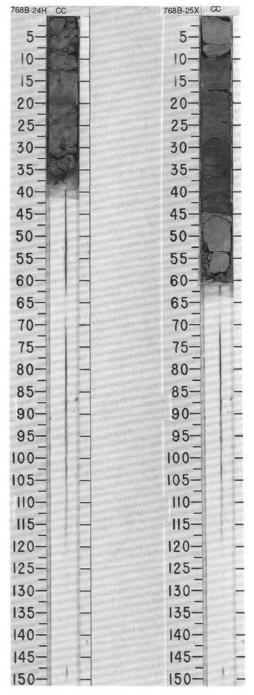



				RACTE	R 9	TIES					URB.	ES			
2004	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION	
					Gilbert	-0=65.9 WC=67.6	●CaCO3"0.05%	1	0.5			2 2 4	*	CLAYSTONE with calcareous mart and clayey siltstone Major lithology: Massive CLAY is dominant in all sections of this core. It is dark gr gray (10Y 4/1) and is structureless except for thin grayish green (5G 4/1) silty lam layers which are normally graded. Bioturbation occurs as dark gray mottling. Minor lithologies: a. Calcareous mart occurs in a very thin bed in Section 2. This bed is gray (2.5Y 6 bioturbated. Small amounts of accessory minerals suggest that it may be redepos b. Dark greenish gray (10Y 4/1 to 10Y 4/2) thin to medium bedded clayey siltston Section 5. They are composed of glass, rock fragments, opaques, feldspar, pyrox homblende and zeolites. The silts are interpreted as redeposited altered lithic ash	6/2) and sited. es occur kene,
	• A/G				24		• Caco	2	-	0.0			*	SMEAR SLIDE SUMMARY (%): 1,71 2,82 5,35 5,39 5,54 D M M M M M TEXTURE: Silt 5 Tr — — —	
LOWER PLIOCENE	N18-N19/20	NN15			Nunivak			3						Clay 95 100 — — — — — — — — — — — — — — — — — —	
	• A/S	4				5.2	2	4	-			* **	OG I W	Opeques Tr — 5 5 2 Plant Tr — — — — Pyroxene — 3 — Tr Rock fragments — 10 — 10 Zeolite — Tr 60 40	
		NN12-1			100	● 62.3 WC=60.2		1	-			## ·			
	•A/S	•C/M					CaCO 3"0.02% 10C*0.18%	6	-		5	1			



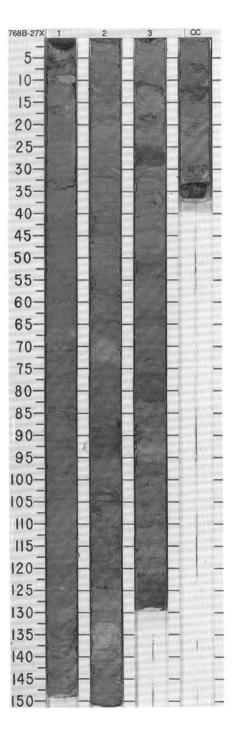

				ONE/	60	ES					98	67							
	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	GRAPHI LITHOLO	C GY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES		LITHO	LOGIC (DESCRIP	TION	
					Gilbert	WC=61.0 Ø=63.0 7=2.69 P=1.70	CaCO ₃ *O.06%●	1	1.0		W W		*	CLAY with silty sands, sil Major lithology: Massive i grayish (10Y 4/2) to gree dark gray mottles), very t Minor lithologies: a. In Section 5 a thick be- occurs. The bed has an o bedding. The silty sand o Sections 1, 3, 6 and 7. Tri opaques; the silts are into b. Light greenish gray (10 normally graded beds. The	CLAY is do nish gray (5 hin dark gre d of dark gre erosive base onsists mai hey are corr erpreted as DY 6/1) nani	minant the iBG 5/1), een lamin eenish gr eenish gr its mid nly of qua posed or altered li nofossil n	roughout The clay ae are co ray (5Y 4. dle intervents. Thin f rock frag thic ashe narl occu	s are blot ommon in (1) norma al display , normally gments, fi s.	urbated (dark greenish a the whole core. Illy graded silty sandston s well developed convolu- y graded siltstones occur- eldspar, hornblende and thin to thin laminated ar
רוססרואר		14						2				1 1 1		TEXTURE: Sand Silt Clay	5 25 70		10 75 15		or ordinal.
רסשרא ורו		NN12-1			Sidufjall	0.1		3					*	COMPOSITION: Accessory minerals Bioclast Clay Feidspar Glass Nannolossils Opaques Pellets Quartz		20 2 78	2 5 15 25 50 - 2		
					Sidufjall	P=64.5 WC=64		4				* * * * *		SMEAR SLIDE SUMMAR TEXTURE:	RY (%): 1, 71 D	2, 82 M	5, 35 M	5, 39 M	5, 54 M
	•A/S	•C/W			Gilbert		0.02% •TOC=0.28%	5				1	*	Clay COMPOSITION: Accessory minerals Bioclast Clay Feldspar Glass Glauconite Hornblende	3 95 2 Tr	Tr Tr 40 —	— Tr 65 10 — 3	30 5	
	•C/S				Thvera	## 73.6 WC=69.8	T0C+0	6						Micrite Opaques Plant Pyroxene Rock fragment Zeolite		60	5 	5	2 — Tr 10 40
	98	•B	9₽	8	Gilbert		CaCO ₃ =0.08%	7											

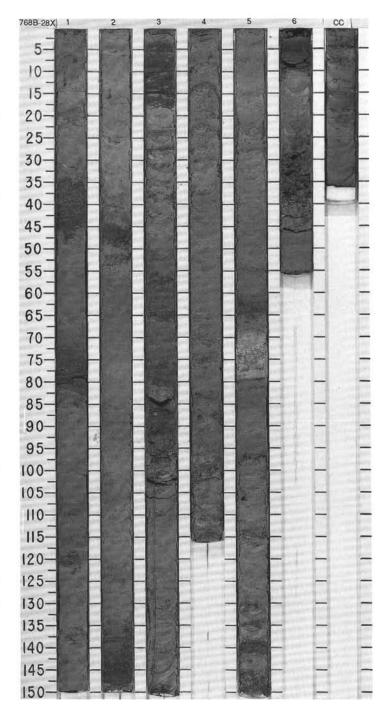

B10	STR	CHA	ZONE/ RACTER	00	ES					RB.	60		
FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS, PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
●R/S F08AMII	NN12-14 NanhoF	RADIOL	DIATOR	Gilber†	р. 64.5 WG-64.9 WC-64.6 Ф-64.2 Рния.	●CaCO ₂ 0.02% TOC=0.15% ●%CaCO ₃ =0.07 ●CaCO ₃ =0.07%		0.5		DBITIN	The result Th	* * * *	CLAY with nannofossil mari and ash Major lithology: greenish gray (5BG 5/1) to dark greenish gray (10Y 4/1) CLAY occurs throughout this core. It is bioturbated and in places displays a faint tamination. Pyrite occur in discrete nodules associated with burrows and disseminated in the clay. The clay containsome plant material and silt-sized feldspar. Minor lithologies: a. Nannofossil mari occurs in four thin beds in this core. The beds are light gray (5Y 7/1) to light olive gray (5Y 6/2) with sharp bases and composed of nannofossis and clay. These a considered to be beds of pelagic material reworked by turbidites. b. Lithic ash occurs as very thin beds in Section 1, 77 cm and Section 5, 6 and 7 cm. These all agers are composed mainly of altered rock fragments, feldspar, hornblende and zeoli Structure: Microfaults occur in Section 2 of this core. SMEAR SLIDE SUMMARY (%): 1, 77 3, 45 3, 112 4, 75 6, 5 6, 6 M M D D M M TEXTURE: Silt 95 5 5 — 80 80 Clay 5 95 95 100 20 20 COMPOSITION: Accessory minerals — 5 2 — — Clay 5 10 95 95 20 10 Feldspar 25 — 17 17 8 15 Formblende 15 — — 2 2 Nannofossils — 90 — — — — — — — — — — — — — — — —
•B	•R/P				-8-61	0000	6 7 CC	-		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	# - O LO //On		

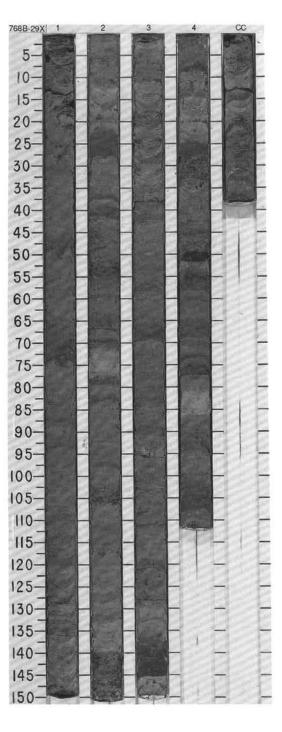


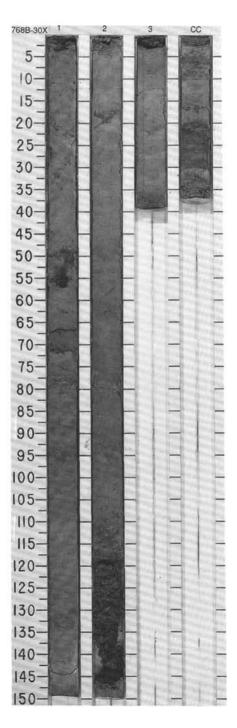
		SSIL	CHA	RACT	S	TIES					URB.	RES						
	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITE	OLOGIC	DESCRIF	PTION	
OWER PLIOCENE		NN12-14			The second second second second	WC=57.3-0=61.8	CaCO3"0.02%	1	0.5				*	CLAY with silt, marl, and ash Major lithology: CLAY occurs as thi (5BG 5/1).It is bioturbated and has bedding. The clay contains rare silt- Minor lithologies: a. Silt occurs as very thin to thin be dark greenish gray (10Y 5/1). The le boundaries with the clay are diffuse the main structures in the silt. The s	abundant sized felo ds throug ower bour . Graded	burrows ispar and hout the o ndaries as bedding,	with rare f rock fragi core in the re sharp o wavy lami	aint lamination, flaser ments. bottom of the clay bed in scoured and the uppinae and flaser bedding
1	• A/S					8.9		2	1				*	few grains of pyrite. Calcareous marl occurs in Sectio Section 4, 10-13 cm and Section 6, to thin beds. Some b have sharp lo cocurs near the bottom and bioturb c. Lithic ash occurs in Section 1, 73 base and bioturbated top. d. Calcareous sitl occurs in very thi 116-117 cm. The beds are light gre	10-18 cm wer bound ation is co -74 cm. If a beds in enish gra	as light daries and mmon ne is dark g	greenish g d diffuse u ear the top ray (5Y 5/ , 51-52 cm	gray (10Y 6/1, 6/2), ver pper boundaries. Larm of the beds. 1) and the bed has a s n and in Section 5, 31-
MIDCENE		quinqueramus NN11			5	P=71.2 WC=60.8	•CaCO ₃ *0.02%	3		55		-: -: -:	*	bioturbated tops with parallel laminal SMEAR SLIDE SUMMARY (%): 1, 121 M TEXTURE: Sand 30 Silt 60 Clay 10	2, 76 D	3, 37 M	3, 103 M	5, 47 M
OLLEA		D. quinqu			Epoch	75	CaCO3-0.01% TOC=0.33%	4	- I am discontinue					COMPOSITION: Accessory minerals 2 Clay — Feldspar 10 Hornblende — Micrite — Nannolossils — Opaques 10 Plant 1 Pyrite —	80 2 - - 10 -	20 10 — — 5 —		90
	•B					-0=53.8 WC=41		5				- # - # -	*	Quartz 40 Rock fragment 35 Zeolite —	5	60 Tr	35 10	
	•B	•R/P					Cal	6 CC				1						



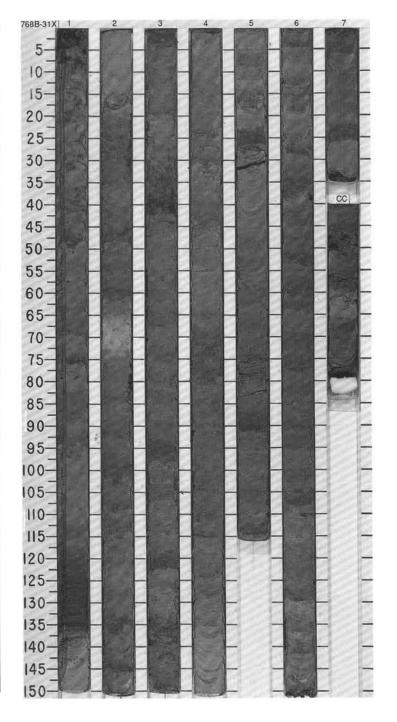

UNIT				RACTE	R co	IES				6	JRB.	ES				
TIME-ROCK U	FORAMINIFERS	B FORAHINITERS							METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITH	OLOGIC (DESCRIPTION
	B•	R/Pe						cc		而如而如 	I	10		some feldspar, quartz and pyrite cry	(5G 5/1) stals. It is	and is composed mainly of clay minerals with bioturbated, but otherwise homogeneous.
MIOCENE		NN 1 1												It is dark gray (5Y 4/1) and is comported plant material. The thick laminae are c. DOLOMITIC LIMESTONE occurs	sed of que picked of both at the ated, fine	cher, 25-45 cm is planar and cross laminated artz, rock fragments, plant debris and pyritize ut by variations in grain size and composition to top and the bottom of the core catcher, grained carbonate material which can be high magnification.
PPER		Z												CC, 21 D	CC, 36 D	CC, 49 D
d n			4	1	1		4							TEXTURE:		
														Sand -	50	-
														Silt 25 Clay 75	30	3
														COMPOSITION:	20	
							1							Clay 80	20	<u>40</u> 0
	f i	1			1		1							Feldspar 5	5	-
														Micrite —	_	100
		1			1		1							Opaques 10 Plant —	10	
					1									Print —	10	
					1		1							Quartz 5	45	_
	1	1		1	- 1	1	1							Rock fragment —	10	


				RACT	60	1.63					JRB.	ES .						
	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LIT	HOLOG	IC DESCRI	PTION	
	en a				03=0.09%)	7-2.69 9-59.0	•	1	0.5	000	1	- O P P O	**	CLAY with silt, calcareous chalk a Major lithology: Massive greenish Bioturbation appears as dark gray feldspar, rock fragments, opaques Minor lithologies: a. Dark greenish gray (10Y 4/1) sil graded layers. It is composed of q b. Greenish gray (10Y 6/1 and 10)	gray (5 and gr and bi	Y 5/1) CLAY eenish motti otite; pyrite i s as very thi ock fragmen	ing. The on nodules on n and thir its, opaqu	clay is composed of clay, cour in Section 1 and 2. I laminated and normally es and plant debris.
OCEINE P	200					52.8	3-2.41% TOC=0.03%	2	or from Corne			30 <u>P</u>	og	and in the core catcher, 0-4 cm. It c. A very thin layer of very dark gr is composed of feldspar, rock frag: SMEAR SLIDE SUMMARY (%): 1, 33 M TEXTURE:	y (5Y	3/1) volcanio hornblende.	ash occu opaques	irs in Section 1, 48-49 cm.
OL LEA MILE		P NN11				\$ =60.5 WC=52.	• • • • • • • •	3			1		1W *	Sand	80 20 —	20 80	60 20 20	5 10 85
9	90	•R/	• B	• B				СС	1		1	•••	#	Biotite	40 20 10 —	1 85 7 — 2 — 2	20 Tr Tr 	45 10 Tr 35 Tr Tr

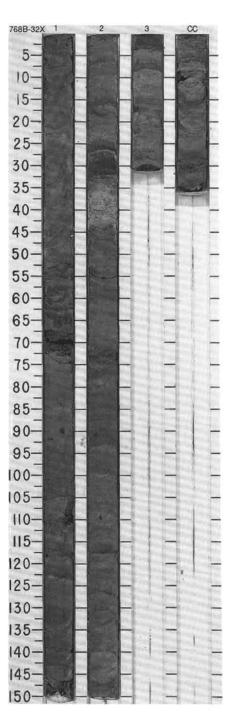

				RAC	90	ES .					JRB.	63		
TIME-ROCK ONLY	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
ш					T0C=0.33%)	WC=47.80=57.4	●CaCO ₃ =0.02%	1	0.5			*****		CLAY with quartz silt and mar! Major lithology: CLAY occurs as thick bioturbated beds with very thin silt laminae in the upper part of this core and interbedded with quartz silt in the lower part. In Sections 1 and it is bioturbated and mottled greenish gray (SBG 5/1) and gray (5Y 5/1). Slightly calcaroo clive gray (5Y 5/2) clay occurs in Section 1, 47-49 cm. In the lower part of Section 2 and Section 3 the clay is thin bedded, greenish gray (5BG 5/1) and contains some very thin si laminae. Minor lithologies: a. Quartz silt occurs in very thin to thin beds which have sharp, erosive bases, and are
UPPER MIOCEN		NN11			*10.04	● = 58.6 WC=47.6 ● P=1.86 7=2.90	●CaCO ₃ =6.83%	2		0			*	normally graded up into the overlying clay. These beds may be planar or cross laminated. The principal component is quartz, with minor amounts of rock fragments, teldspar and pyrite. The sitts are gray (6Y 5/1). b. Calcareous mart occurs in a single thin bed in Section 2 and as very thin beds in Section 1, 7-8, and 16-18 cm. It is light greenish gray (10Y 7/2). c. Crystal lithic ash, composed of rock fragments, feldspar, hornblende and zeolite, occur very thin beds in Section 2, at 32, 91 and 95 cm. SMEAR SLIDE SUMMARY (%): 2, 46 2, 95 3, 63
	●B A/S	●R/G				VC=28.4 9=44.2	CaCO3=0.04%	3			1	·		M M M TEXTURE: Sand
							0							Feldspar 2 30 5 Glauconite Tr — 5 Hematite — Tr — 5 Hornolende 2 15 — Magnetite — Tr — Pyrixte 5 3 5 Pyroxene Tr — — Cuartz 80 — 70 Hock tragment 5 35 10 Tourmaline 2 — Tr Zeoite — 15 — Zircon Tr — Tr

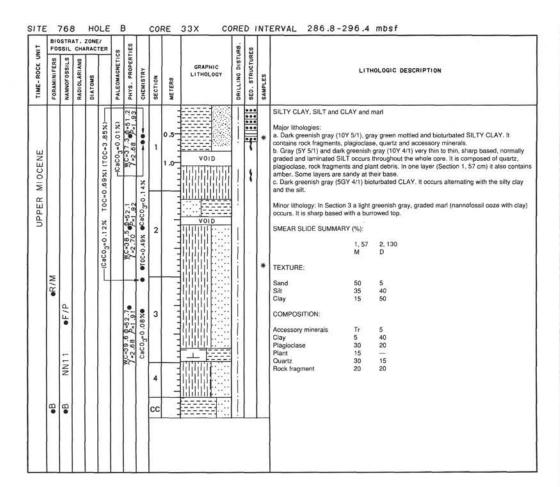

UNIT				ZONE/ RACTES	2 01	168					JRB.	ES									
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES		LITH	OLOGIC	DESCRI	PTION			
				\top	1	L-4	h		-		3	.,.		CLAY with silt and sand, na	nnofoss	l marl an	d volcani	c ash			
		/W			(CaCO.co.33%)-	WC=46.1-0-56.7	.45%	1	1.0		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		*	Major lithology: Greenish gr darker gray and greenish m occurs. Minor lithologies: a. Dark gray (5Y 4/1), sharp laminated silts and sands of transitional. They contain qu (aly. In Section 5 the basal	based, ocur thro	very thin ughout the ck fragment	to mediu ne whole ents, pyrit	m bedder core. The	d, normal contact ebris and	ly grader with the	nodule d and clays is mounts o
		•					T0C=0	2					*#	 b. Gray (5Y 5/1) nannofossi based, thin to medium bedd and quartz. c. Very thin layers of dark g are composed of rock fragm SMEAR SLIDE SUMMARY 	I marl or led and ray (5Y nents, fe	ocurs in the normally 4/1) volca	ne Section graded, 7 unic ashe	ns 2, 4 ar They cont s occur in	od 5. The ain nanno Sections	beds are ofossils,	sharp micrite, c
						4.6	2.		1		-:	1		SMEAT OCIDE COMMITTE	1, 44 M	2, 47 M	2, 47 D	3, 90 M	4, 52 M	4, 75 M	6, 5 M
						0=56.5 WC=44.6	.03%	Н			1			TEXTURE:							
						88	•Caco3=0		3		i	4		Sand	20	70	-	80	_	-	30
						1.56	Sac	١	-		!			Silt	60	30	20	20	-	30 70	30
ш							•	3	133	11 211 2 11 2		٥	*	COMPOSITION:	20	-	80	_		70	40
EN S						Н			-					Accessory minerals	200	2	Tr	2	-	-	-
OC			. 0		1	U	×				li			Bioclast Biotite		-		-	7	15	1
Ξ		NN			1		4		-		!			Clay	15	_	70	_	15	20	40
nr.		ź			1				2			1		Feldspar	_	25	15	25	-	-	15
UPPE					1		T0C=0		-	0-0	!			Foraminiters	_	_	-		_	Tr.	-
Ь		Ш			1		-	4	- 3				*	Glauconite Hornblende	_	10	2	15	_	Tr	10
\supset	l, II		0.0				%	1	- 2			Ō	*	Micrite	_		5	-	15	-	_
			1 2		1	4	0				11		0	Nannofossils	-		Tr	3	65 Tr	40	-
						55	30		- 2		-		-	Opaques Plant	10	=	1	_	11	_	1
						1=62.2 WC=56	CaCO3-0.03%						0 G	Pyrite	10	10	-	5	-	2.00	-
			1		1	SIL	Ü	-			1		1 11	Pyroxene	40	=	1		5	15	15
			ш			62			- 3			1		Quartz Rock fragment	20	50	5	40	5	10	15
						00	.03%		-		j	Ľ		Zeolite SMEAR SLIDE SUMMARY	-	Tr	-	10	-	-	-
							CaCO3=0.03	5	:		1				6, 6 M						
							CaC					•••		TEXTURE:							
								6	-		. 0	•	*#	Sand Sift	40 60						
	_							L	-		0-	1:		COMPOSITION:							
	B				1			cc	-		1	1		Accessory minerals Feldspar	25						
	•	•						-	-		_	_	_	Hornblende	10						
								l						Pyrite Park (manual)	3						
	ı		ı	l I			I	1						Rock fragment Zeolite	10						

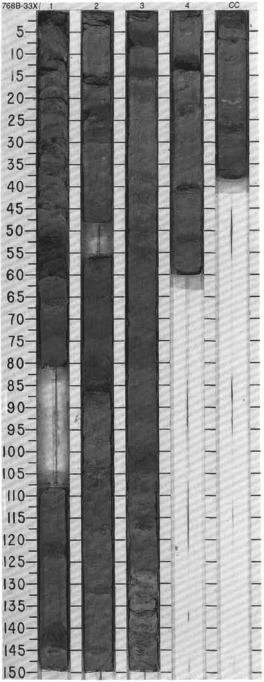
				ZONE/ RACTER	97	IES					JRB.	ES								
2000	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES		LITH	OLOGIC	DESCRIF	PTION		
UPPER MICCENE		NN11					0.02%		0.5			•••	*	CLAY with quartz silt, ma Major lithology: Greenish mainly of clay minerals w ous and may be bioturbal Minor lithologies: a. Quartz silt occurs in ve laminated and normally g are dark gray (5Y 41). Si variable amounts of telds considered to be thin turb. Calcareous marl occur 95 cm, and Section 4, 51 greenish gray (10Y 6/2). c. Ash beds occur in Sec lithic tragments, zeolite a beds. SMEAR SLIDE SUMMAF	gray (5BG ith some si ted. ry thin bed raded and it grade ropar, lithic fridites. s as very It-53 and 81 They are milion 2, 105 nd feldspar	s in this of the upper unded qua- agments hin beds it -86 cm. T lainly mic cm and in	ore. The roundar artz grain and calcin Section hese bed rite with an Section	beds have beds have beds have beds are the areous mands are well a few name 4, 49-51	e sharp erlying o main co aterial. I dd 71-77 I defined nofossils cm. The	bases, they are lay is diffuse. The nstituent with These beds are cm, Section 3, 93 d and are light 5.
	•A/S					WC=26.2 -0=42.3 WC=29.	CaCO3=0.08% •Ca	3				1	**	TEXTURE: Sand Silt Clay COMPOSITION: Accessory minerals	1, 96 D	2, 29 M	2, 105 M	3, 143 M	4, 5 M	4, 50 M
	9 9	•R/G				P=41.3	CaCO3=0.06%	4 cc				***	*	Calcite Clay Feldspar Foraminiters Glauconite Hornblende Micrite Nannolossils Opaques Pellets	90 5 Tr — — 3	10 2 - 80 5	10 5 3	20 Tr 3	10 5 5 1 10 5 	5 5
														Plant Pyrite Quartz Rock fragment Zeolite	Tr 2	_ 1_	- - 60 20	50 20		15 — 50 20

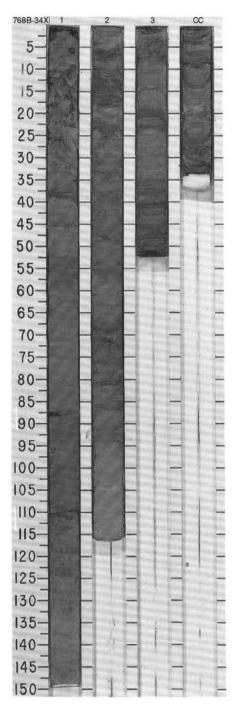


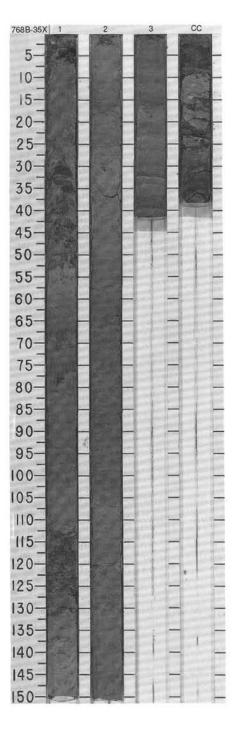
5				ONE/	R co	ES					RB.	S			
IIME-ROCK OF	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION		PHIC OLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LI!	THOLOGIC DESCRIPTION
CENE					-	P=1.3 WC=38.2	~	1	.0		3 MM 0	**		1) and gray (5Y 5/1) clay occurs in bated with abundant mottles. Dark	in to thick beds throughout the core. Greenish gray (5G 5/ n Section 1 and Section 2 and is heavily to slightly biotur- k greenish gray (5GY 4/1, 10Y 5/1) clay occurs in Section 3 smogeneous. The clay contain about 20% silt-sized rock
UPPER MIO		NN11			F	WC=41.6 0=43.1WC=31.7	169	2			1			a. Sitt occur as thin beds in Sectio catcher it occurs as thin beds afte It has sharp base and grades into composed of quartz, rock tragmer b. Calcareous mari occurs in Sect variable carbonate content, partia	n 1, 65-70, 76-79 cm and Section 2, 78-81 cm. In the core mating with clay beds. Silt is dark greenish gray (107 S11), overlying clay and is finely laminated. Silt is mainly its, teldspar and some plant debris. ion 1, 133-150 cm. It is light greenish gray (10Y 6/1) with ly cemented. 25-29 cm. It is greenish gray (5G S/1), composed of quartz
	•B	•R/G			(CaCO ₃ =0.56%	€ =3.3 =1.86	9%6	3	* v	DID			*	3, 17 D TEXTURE: Sand — Silt 20	CC, 29 M
							CaCO ₃ =0.1							20 20 20 20 20 20 20 20	10 5 2 1 5 3 40

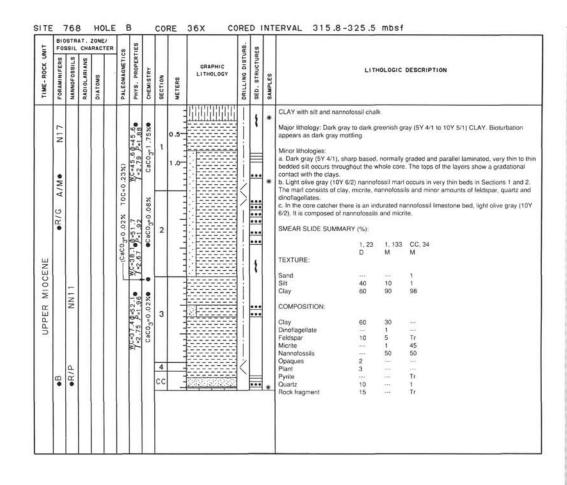


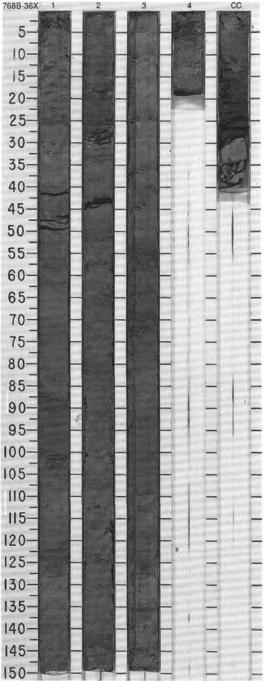

=		STRA	T. 20	HOLE	Г	B 83		CO		31X C0		Г		ERVAL 267.5-277.2				
TIME-ROCK UNIT	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS, PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	Lit	HOLOGI	C DESCRI	PTION	
						WC=52.6 0=59.8	CaCO3*0.18%●	1	0.5			*****	*	CLAY with silt and marl Major lithology: CLAY occurs as to clay is mottled dark greenish gray grayish green (5GY 5/2), The clay Minor lithologies: a. Silt occurs in very thin to thin b Sections 2 and 3 than in the other (5Y 5/1). The beds usually have a silt beds have laminations. The silt beds have laminations. The silt beds have laminations.	(5GY 4/ is slight eds throu sections sharp b t is come	ghout the coordinate and graduate and graduate and graduate main	ore. There is very deade into the	6 5/1, 5GY 5/1), gray (5Y 5/1 ted. be are more silt beds in ark gray (5Y 4/1) and gray ne overlying clay beds. Thin tz and rock fragments.
						WC=48.6 0=57.8	CaCO3-0.27%	2		00		# # # # # # # # # # # # # # # # # # #	**	b. Nannofossil marl occurs as ver cm, Section 6, 114-115 cm, and it gray (10* 61). The marl in the cc homogeneous. c. Calcareous clay occurs as a th and homogeneous. SMEAR SLIDE SUMMARY (%):	n the cor re catch in bed in	e catcher, t er has a sh Section 2,	8-26 cm. arp base :	The color is light greenish and is graded. The rest are
	•B	●C/P				7-2.63 P=1.86		3				32-22-22	*	M TEXTURE: Sand Tr Silt 30 Clay 70 COMPOSITION:	60 40 0	M _ _ 100		90 5 5
UPPER MIOCENE		LLINN	4			sc.		4				***************************************		Biotite	1 2 1 2 Tr	50 50	95 3 	60
	eA/S						●CaCO3=0.04% TOC=0.25%	5		00 ;			og	Pyrite — Quartz 5 Rock fragment — Zircon —	70 20 Tr	Tr	=	
							• CaC	6				** ** ** **	IW					
	•B	•8						7	1			•	. *					

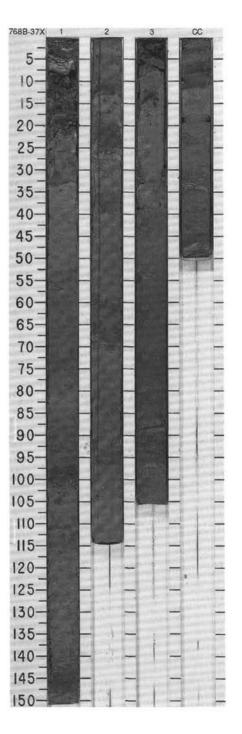

541

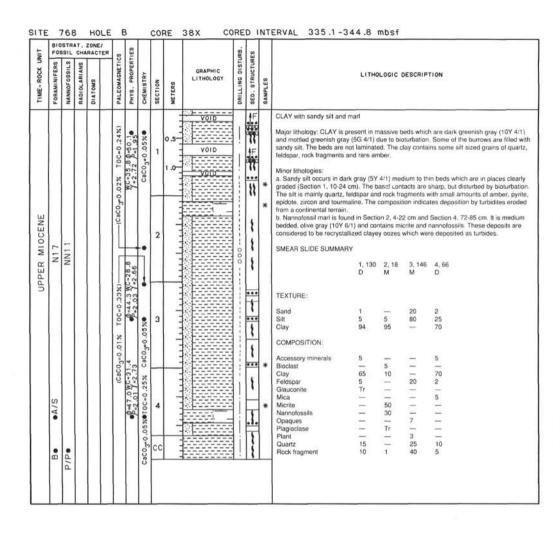

				ONE/	R S	LES					JRB.	83						
I WE LOOK O	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES		LITH	OLOGIC	DESCRI	PTION
				T	\top						T	٠	Г	SILTY CLAY with SILT a	and sandy s	ilt and na	nnotoss	il mari
UCENE		1				P=54.1WC=41.6	• CaCO ₃ -0.31%	1	0.5		i	****	*	components are rock fra clasts consisting of mark Minor lithologies: a. Dark greenish gray (5 based, normally graded fragments.	gments, fel G 4/1) sill a and lamina	dspar and and sandy ted layers	silt occur. The sil	ted (mottling) SILTY CLAY. Its main In Section 1 the clays contain mud- urs as thin to medium thick, sharp It contains quartz, feldspar and rock
ואו אבו	8	NN			T0C=0.28%)	7-2.75 P=1.90	CaCO3=0.67%		from		-		7	occurs as very thin and to SMEAR SLIDE SUMMA	thin, sharp I	oased and	normal	ly graded layers.
5					0=0	75	Coo	2	1				*		1, 40 D	2, 84 D	3, 3 M	3, 12 M
V					3% TO	B.	Ca		-					TEXTURE:				
					-				1	!!!!!!!!!!!!!!!		***		Sand Silt	5 45	1 30	20 60	5
		5			100			3			i		*	Clay	50	65	20	95
1		eF/M			(CaCO ₃ =0.1	\$ \$=52.8 \$=1.92	CaCO3=2.16%●	3	- 3			=		11775				
	8	•			5	5:0	2.1	cc	1		i.			COMPOSITION:				
١	-	8				7	3,		-					Accessory minerals	-	5		<u></u>
		-				VC=39.2	300							Biotite	1	-	-	-
						5 0	Ü							Clay	30	60	5	30
						78								Epidote	-	-	5	
П														Feldspar	25	10	20	4
														Glauconite	Tr	-	-	72
П			- 1			1	0.7							Micrite	-	-	-	15
														Nannofossils	-	-	_	45
				- 1										Plant	Tr	15	Tr	7
				11										Quartz Rock fragment	15 25	15	50 20	1

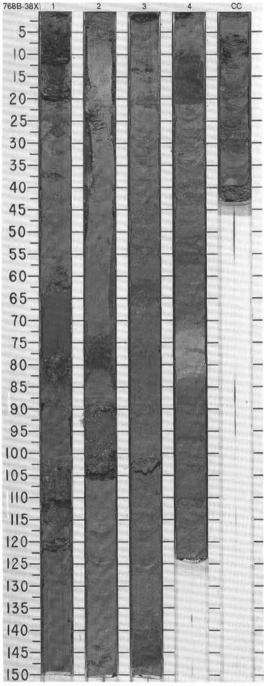




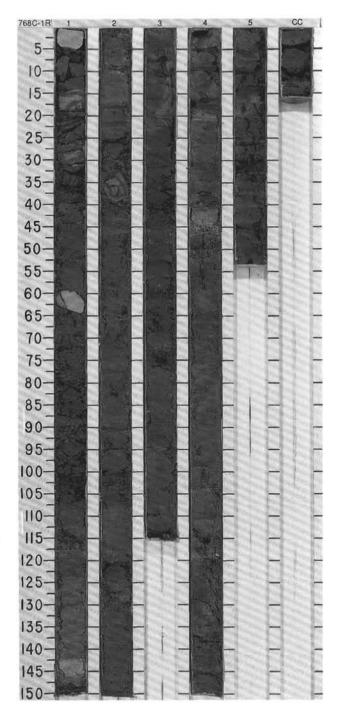

-				RACTE	PALEOMAGNETICS	831					URB.	S 3					
TIME-ROCK UNIT	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	RADIOLARIANS		PHYS. PROPERTIES	CHEMISTRY	SECTION	GRAPH LITHOL		DRILLING DISTURB	SED, STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION			
		NN11			TOC=0.29%)	WC-35.7-0-50.2	CaCO3=0.35%	1	0.5					gray (10Y 5/1), light reddish brown a dark gray and black mottling. I b. CLAY occurs as thin beds i (5G 5/1) and dark greenish gray.	to thick rown (2 alternate It conta n Section ay (10) ate with	k beds in 2.5Y 6/4) e with ea ins quart on 3 and (5/1). Th	d marl Sections 1 and 2. The color is dark greenish and gray (SY 5/1). In Section 1, dark greenish of other. It is slightly bioturbated with green, z, plagioclase and rock fragments. the core catcher. The color is greenish gray lick laminae (5-15 cm) of dark greenish gray ber in Section 3. The clay is slightly bioturbate.
	•B •C/S				7.1.0	WC=35.2 -0=50.4	CaCO3*0.53%	2			1 1 1		* *	Minor lithologies: a. Silt and sandy silt occur as very thin to thin beds throughout the core. Sandy silt occurs: Section 3, 20-34 cm. The color is gray (57 5/1), dark gray (57 4/1) and dark greenish gray (10Y 5/1). The beds are laminated with sharp base. The mineral composition is quartz, roc fragment an feldspar. b. Nannofosali marl occurs as a thin bed in Section 2. It is light olive gray (10Y 5/2), massis and slightly bioutroated at the top. c. Calcareous clay occurs only occur in the core catcher, 18-20 cm. It is light gray (5Y 7/2).			
		W ⊢ H				9 P=1.97	CaCO3=0.52%	3				+	7 1	SMEAR SLIDE SUMMARY (9	. 38	2, 114 M	3, 44 M
						WC=33.4	CaC		7					Clay 5 COMPOSITION: Accessory minerals 5 Clay 4 Feldspar 4 Nannofossils 9 Plagicolase 2 Quartz 2	i0	20 80 15 75 5 2	30 70 — — 10 — 65 525

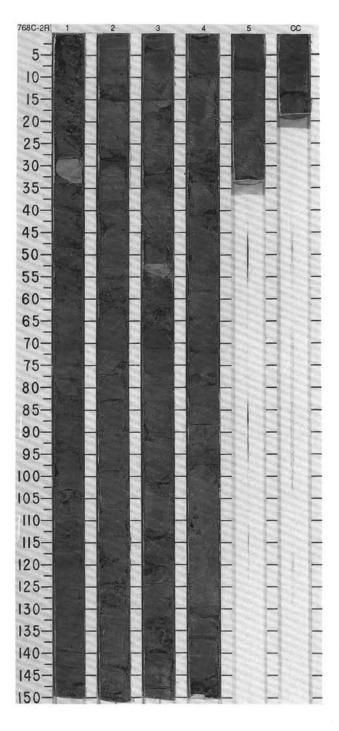

	BIOSTRAT. ZONE/ FOSSIL CHARACTER 8 E											JRB.	SS						
TIME-ROCK UNI	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION				
UPPER MIOCENE	8●	8• •F/M NN11	(NN11)			Control of the contro	WC=31.7 0*47.6 WC=34.6 0*50.0 WC=35.5 0*48.7 7*2.72 P=2.03 7*2.71 0 P=1.99 7*2.70 0 P=1.94	=0.06% CaCO3=5.35% TOC=0.32%	1 2 CC	0.5		3	* * * * * * * * * * * * * * * * * * * *	* *	feldspar, quartz, rock fragments, Minor lithologies: a. Gray (5Y 5/1) thin bedded, shi sections. It consists of quartz, ro- b. In Sections 1 and 2 a bed of d	ay (10Y 5/1 accessory arp based a ck fragmen ark greenis d normally	n), mottler minerals and plana is and pla h gray (1 graded.	r laminated sandy silt occurs in all the	

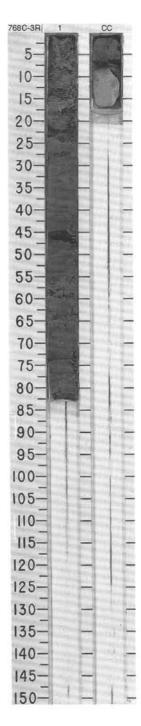


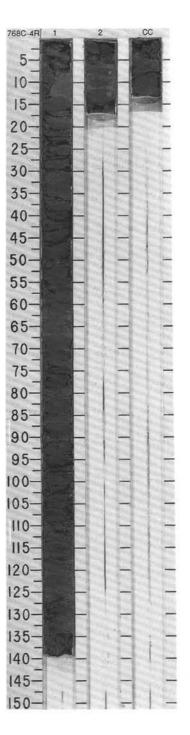


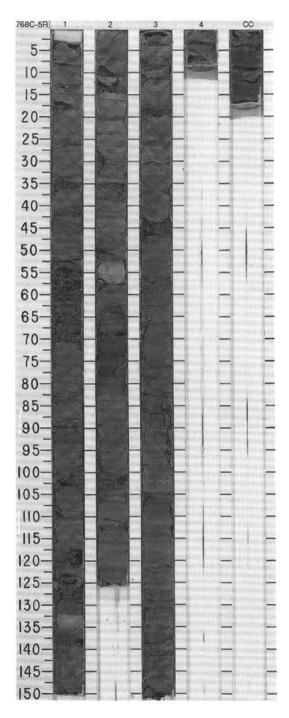

				ZONE/ RACTER	00	ES					JRB.	ES.					
IIME-ROCK O	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES		LITH	OLOGIC	DESCRIPTION
	•R/S	●F / M				95 7.2.77 P.1.91	.08% CaCO	1	0.5		1		*	core. The clays are blotur clay with very minor amou Minor lithology: Very thin t interbedded with the clay sharp bases, they are nor	nish gray bated with ints of lithin bed in Section mally grad of quartz a eted as tury (%):	mottling cs, quart s of dark s 1, 2, an led and s and rock	gray (5Y 4/1) silt, silty sand and sand are d 3 and the core catcher. These beds have ometimes show parallel laminations. They are fragments with minor amounts of feldspar and posits.
MIOCENE		NN11				VC=38.4 \$-52.7		2	1		!	1	og IW	TEXTURE: Sand Silt Clay	2, 23 M	3, 62 M 5 95	90 10
UPPER		Z					.04% TOC+0.21%	3				1. 1	*	COMPOSITION; Accessory minerals Calcite Clay Epidote Feldspar Foraminifers	1 Tr 5	Tr 88 1	5 5
	B.	8●					CaCO3*0	cc			!	4	*	Hornblende Opaques Plant Pyrite Ouartz Rock fragment Zircon	5 40 45	1 Tr 2 5	2 Tr

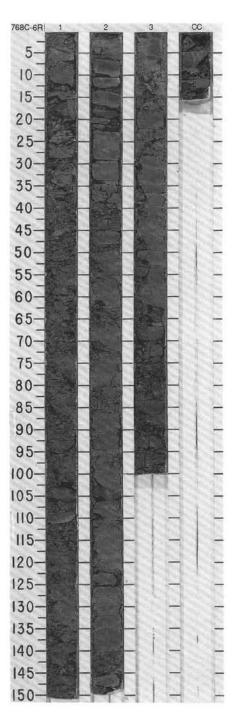


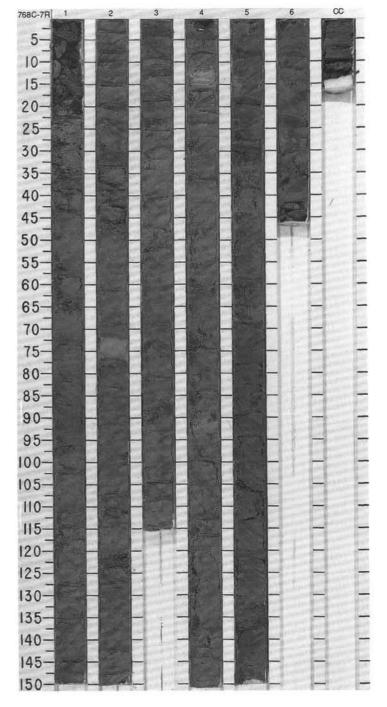

- No				RACT	65	LES					JRB.	8						
IIME-ROCK O	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS, PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES		LITI	HOLOGIC	DESCRI	PTION
	9 B	•C/M			(CaCO ₃ =0.05%)	0=53.5 WC=29.7 0=45.1	●CaCO ₃ =6.68% ●	1	0.5				*	is dark greenish gray (10) not calcareous. Minor lithologies: a. Silt and silty sand occu. 1) and are faintly laminate pyrite, glauconite and rococur. This mineral asser	ours in ho Y 5/1, 5G' ars in thin ed. The m k fragmer nolage inc	mogeneou y 4/1) and beds inter aibn cons its. Trace dicates a c	bedded vitituent is amounts continents	nterbedded with silts and sandy silts. by indistinct bioturbation. They clay is with the clay. The beds are gray (5Y squartz with minor amounts of feldospe of epidote, tourmaline and zimon al origin for these deposits. (SY 6Y), massive and sturctureless.
MIOCENE		1			W -1%70.	0=50.6 WC=40.0	●T0C=0.26%●	2			ーー・ノーシ	* * * * *	*	SMEAR SLIDE SUMMAR TEXTURE: Sand Silt Clay		2, 20 M	3. 76 D 5 70 25	4, 8 M
OPPER M		INN			200000000000000000000000000000000000000	P=48.4 P=48.2 WC=33.0	●CaCO ₃ =0.05%	3				2 2 2 2	*	COMPOSITION: Accessory minerals Calcite Clay Dinoflagellate Epidote Feldspar Foraminifers Glass	5	5 	20 20 20	Tr 5
	•B	•B			1 CONT. CO. CO. CO. CO. CO. CO. CO. CO. CO. CO	7=33.0 0 =48.4 7=2.74 P=2.00	CaCO3=0.03%	cc			×	١		Glauconite Nannolossils Opaques Plant Pyrite Quartz Rock fragment Tourmaline Zircon	5	90 5 	5 5 10 40	5 80 10

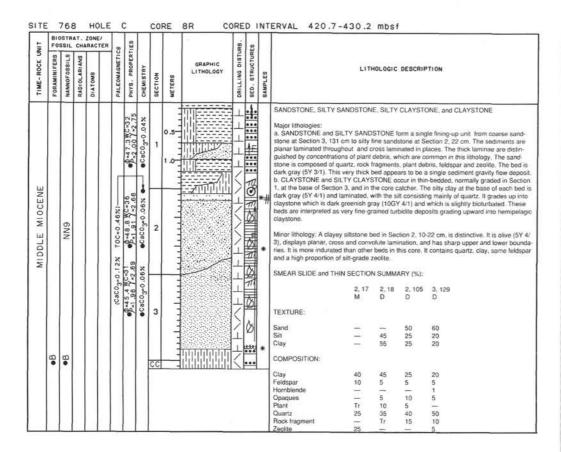

i i				ZONE/		TIES					URB.	SES							
TIME-ROCK O	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES		LITH	LOGIC E	ESCRIPT	TION	
		• C/M			(WC=31)	WC=29 0-46.5 0-47.2	0.0=coco	1	1.0		ノーノノノ	1	*	CLAYSTONE. SILTY CLAY Major lithologies: a. SILTY CLAYSTONE and (5G 4/1), yellowish green (have faint, gradational thick is expressed as elongated fragments and plant debris carbonate (dolomite?) nodu are glauconific. These lay b. CLAYEY SILT and SILT and normally graded beddie very thin beds, and are dar	CLAYS' 10GY 3/2 k laminati horizonta dominate ules also rs are inte Y CLAYS ng are inte k gray (5)	FONE occ), to grayi on partial i burrows the silt hoccur. So erpreted a TONE wi erbedded y 4/1). Th	cur as thin sh olive g ly disrupte filled with action. R me rare li as hemipe th sharp to with the e silt frace	n to thick preen (50 ed by slin darker are, light ght gree elagic de basal cor clayston ction cor	beds of dark greenish gra SY 3/2) color. Thicker bed jah bioturbation. Bioturbat sediment. Quartz, rock tolive green (SY 6/2) in claystone layers (5G 3/2) posits. tacts, planar laminations, e. They occur as laminae tains mainly subrounded
UPPER MIOCENE		NN 1				-(CaCO ₃ -0.03% TOC.0.30%) WC	●CaCO ₃ =0.17% TOC=1.51%	3	Juniford market		///////////		*	quartz grains and rock frag well as minor feldspar (mic terrigenous turbidite depos Minor lithology: Maristone of basal contacts that grade a (5Y 4-1), and contain nann SMEAR SLIDE SUMMARY TEXTURE: Sand Sit Clay	rocline?). its. occurs as bruptly in ofossils (well indu	eds are in rated cart erlying cla	terprete bonate-b systone.	d as very fine-grained earing thin beds with sha They are generally olive g
	•B N16-N17 A/M•	NN10 •B D. quinqueramus •C/P				WC=29 0+43.2	CaCO ₃ =0.02%	4 5			111111			COMPOSITION: Accesory minerals Bioclast Clay COMPOSITION: Accesory minerals Bioclast Clay Feldspar Glauconite Mica Nannofossils Organic Plant Quartz Tourmaline Zircon	20 1 Tr - 18 35 25 Tr Tr	- 2 72 72 - 2 72 	1 85 1 85 7 - - 2 5	2 50 2 50 1 Tr 2 30 10	

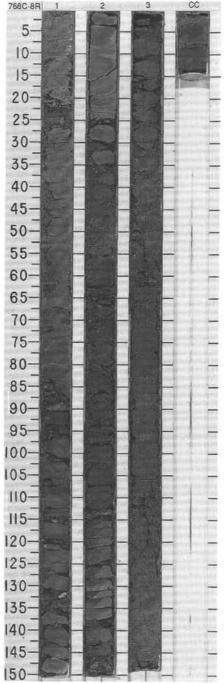

1	FOS	SSIL	CHA	ZONE/ RACTER	83	TIES					DISTURB.	RES		
TIME-ROCK I	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
						WC=27 0=44.4	CaCO3"6.66%	1	0.5		1///	1 1 ::: 7 ::	*	CLAYSTONE and CLAYEY SILT to SILTY CLAYSTONE and calcarus claystone Major lithologies: a. CLAYSTONE forms thin to thick beds which compose the majority of the core. The clay dark greenish gray (5G 4/1 to 10Y 4/1), with slight color variations, defining vague thick laminations. Slight bioturbation is evident, with slimple horizontal to oblique burrows (Plar lites) predominating. The bioturbated claystone beds are interpreted as hemipelagic deposits. b. CLAYEY SILT to SILTY CLAYSTONE occurs as common laminae to very thin beds (1- cm thick) with sharp basal contacts and normal grading from basal clayery silt to silty clay. Fine planar lamination is present in some beds. These beds consist of clay, quartz, rock
						8		2						fragments, feldspar, and up to 10-15% line plant debris. The graded beds aggregate about 00% of the thickness of the core, and are interpreted as terrigenous turbidite deposits. Minor lithology: Thin beds of calcareous claystone (3-5 cm thick) occur in Section 1, 28-3 cm, and Section 3, 51-54 cm. These beds are very fine-grained and well-cemented, contrasting with the enclosing soft clay. The contacts have been disrupted by drilling, but on bed has an intact gradational top. These layers are interpreted as fine-grained calcareous redeposited by turbidity currents. SMEAR SLIDE SUMMARY (%):
		•F/G				P=2.02 7=2.78	●CaCO3=0.05%	3			\perp	•••		1,71 2,9 2,15 3,113 5,7 D D M D D TEXTURE: Sand — 15 10 4 Sitt 5 25 55 30 20
ENE		NN10									$^{\perp}$	•••	*	Sit
UPPER MIDGENE		D. calcaris					-0.25% TOC-0.18%	4				•••		Sit
	₽•	₽•						5			1	1	*	

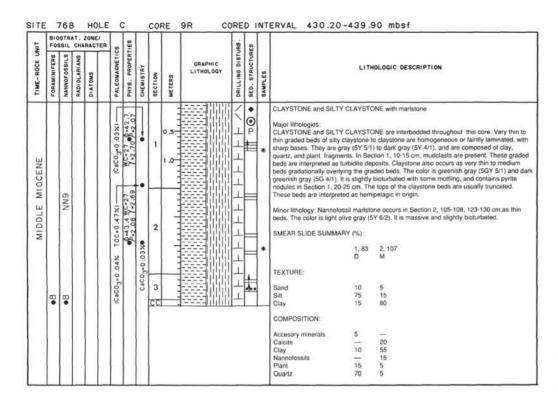

		STRA			çı	831					JRB.	S3			
	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEGMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	tr	THOLOGIC DESCRIPTION
LEN MISSEINE		NN10			2	VC=31 0 =47.4	CaCO ₃ =0.06%	1	0.5	VOID	/ ! /	•		beds of dark greenish gray color (material, Clayey silt beds have a finer clays. Both lithologies contain (reaching 0.5 mm) occurring in the	TONE with recrystallized marl YEY SILT and SILTY CLAYSTONE in thin to very thin 10Y 4/1) containing thin laminae of more light green sharp base of coarser sediment that grades upwards in abundant quartz and rock fragments with plant debris coarser material. There is one thick sandy silt lamina ate (dolomite?) nodules are present, as well as very
5	B	₽•			CaCO3=0.15%		Cal	cc			/		*		crystallized marl containing 50% clay and 45% microsp light greenish gray (10Y 6/1), Drilling disturbance basal contact.
1					S									1, 72 M	CC, 6 M
1														TEXTURE:	
														Sand 40 Silt 45 Clay 15	5 20 70
	1													COMPOSITION:	
														Clay	50 — 45 1

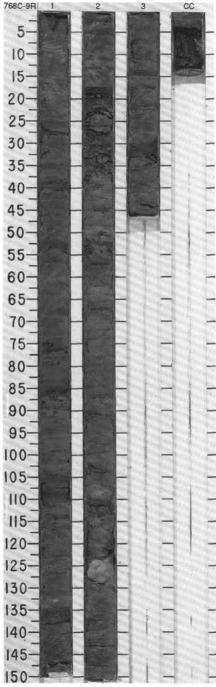

ITE	_	768	_	НО	_	_			CO	1	4R CC	1		1	ERVAL 382.1-391.8 mbsf
TIME-ROCK UNIT		SSIL		RACT		PALEOMAGNETICS	PHYS. PROPERTIES	STRY	N	w	GRAPHIC LITHOLOGY	NG DISTURB.	STRUCTURES	89	LITHOLOGIC DESCRIPTION
TIME-	FORAM	NANNO	RADIO	DIATOMS		PALEO	PHYS.	CHEMISTRY	SECTION	METERS		DRILLING	SED. S	SAMPLES	
UPPER MIOCENE	₽.	Be NN10					● = 44.3 WC=28	TOC=0.28%	1 2 CC	0.5				*	CLAYSTONE and CLAYEY SILT to SILTY CLAYSTONE Major lithologies: a. CLAYSTONE occurs in thin to medium beds with faint color laminations and common small horizontal burrows (Planolities). The color is primarily dark greenish gray (5G 4/1). b. CLAYES SILT and SILTY CLAY contain very abundant quartz of silt size. It is present in interbeds 1-3 cm thick with sharp basal contact and graded bedding. Thicker beds show planar laminations accentuated by concentration of plant fragments (Section 1) or rare cross bedding (Core catcher). SMEAR SLIDE SUMMARY (%): 1, 58 M TEXTURE:
								CaCO ₃ *0.06% T							Sand 10 Silt 50 Clay 40 COMPOSITION: Clay 40 Epidote Tr Feldspar 2 Glauconite 2 Plant 10 Ouartz 40 Rock fragment 5 Zircon Tr

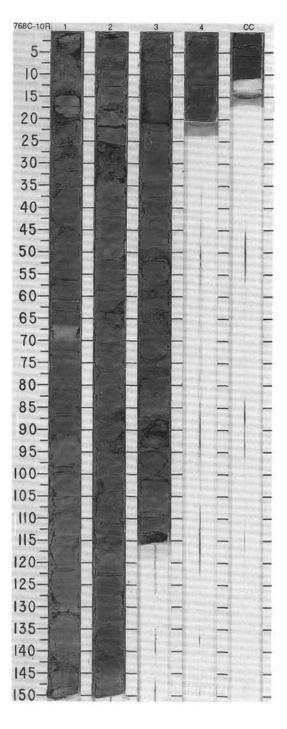

:				ONE/	R	ES					RB.	S3		
IIME-ROCK ON	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED, STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
		F/G			TOC=0 54%)	-0=48.1 WC=33	0.08%	1	0.5		1111111			CLAYSTONE and SILTY CLAYSTONE to CLAYEY SILT Major lithologies: a. CLAYSTONE occurs in thin to thick, dark greenish gray (10Y 4/1) beds with thick color laminations and common horizontal simple burrows. It commonly contains micronodules or pyrite or chalcopyrite. These deposits are interpreted as hemipelagic in origin. b. SILTY CLAYSTONE to CLAYEY SILT appears in beds 1-4 cm thick with sharp bases, common planar lamination, and abundant black plant debris. These beds are interpreted fine-grained turbidité deposits. They are less cohesive than the claystone and probably te to wash out; the original beds could be thicker than the recovery would suggest.
MIDDLE MIDCENE		hamatus NN9			CaCO.=0.04% TOC	7.00	●CaCO ₃ *0.08%	2	سياسيانين		14444	-6-	og	SMEAR SLIDE SUMMARY (%): 3, 57 D TEXTURE: Sand 1 Silt 20 Clay 75
	•R/S	D.				0=45.6 WC=29	• CaCO _{3"} O.04%	3			_ _ _ _		*	COMPOSITION: Accesory minerals 2 Clay 75 Glauconite 2 Organic matter 1 Quartz 5 Silt 10

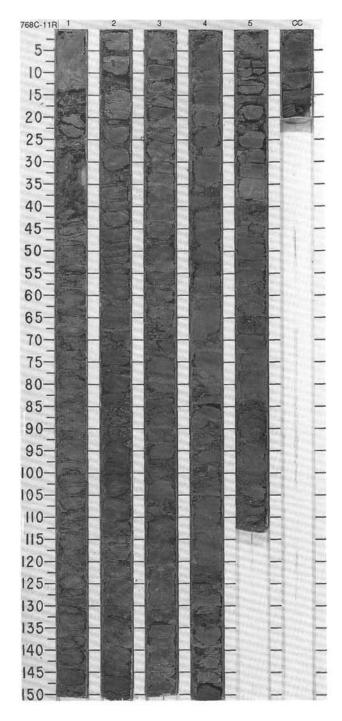


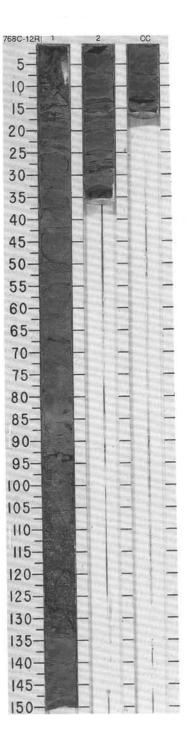

				ONE/	8 8	ES					88.	8		
IIME-NOON OF	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
MIOCENE						WC=33 -49.3	●CaCO ₃ =0.06%	1	0.5		ナナノノイナ	\ \ \ \ \ \		CLAYSTONE and CLAYEY SILT to SILTY CLAYSTONE Major lithologies: a. CLAYSTONE occurs in thin to medium beds with poorly defined thick laminae and simple flattened horizontal burrows. The claystone is dark greenish gray (10Y 4/1) to dark grayist green (10SY 4/1), and is interpreted as hemipelagic in origin. b. CLAYEY SILT to SILTY CLAYSTONE beds are very thin with sharp basal contacts and gradational tops, grading from clayey silt at the base upward to silly claystone. The silt component of these beds is primarily quartz, rock tragments, and plant debris. The graded beds are dark greenish gray (10Y 4/1), and are interpreted as turbidite deposits.
MIDDLE MIC		6NN			1.04% TOC=0.41%]	(X10C=0.61%)	CaCO3=0.04%	2	milmi		ナトトンナ			SMEAR SLIDE SUMMARY (%): 1, 76
	eB	•B			(CaCO ₃ *0.04%	WC=37 0=52.7 7=2.80 P=2.00	CaCO3-0.03%	3			XXX		*	COMPOSITION: Accesory minerals

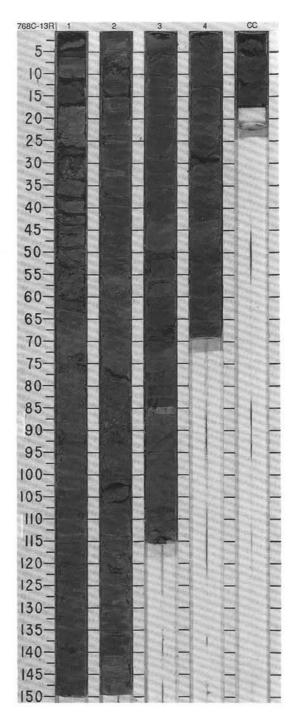



-			T. Z	NE/ ACTER	99	831					JRB.	ES				
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION		RAPHIC THOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DES	CRIPTION	
						WC=24 0 38.4 7-2.66 9=2.05	CaCO ₃ =0.05%●	1	0.5		3	-6-	*	SILT to SILTY CLAYSTONE and CLAYSTONE, we Major lithologies: SiLT to SILTY CLAYSTONE and out the core. The silt to silty claystone forms thin tining cycles. The basal interval of the cycles (silt) grades into clayer silt and silty clay which are dar common in the graded beds, and convolute lamin they beds. The silt is composed of quartz, plant de These graded beds as thin interval of dark greenish gray bioturbated, and which is interpreted as hemippela	c CLAYSTC o medium b is very dark gray (5Y 4 ation and croris, access turbidite di (10Y 4/1) c	NE are interbedded through edded, sharp-based upward greenish gray (10Y 3/1), ar /1). Planar lamination is oss-lamination are present in ony minerals, and opaques. sposits. At the top of each
							Ö	2			1/1///	000	*	Minor lithology: Dark greenish gray (107 5/2) and occurs as thin beds in Section 2 and 4. In Section nannofossil maristone contains nannofossils, plar SMEAR SLIDE SUMMARY (%): 1, 100 2, 73 4, D M D	4 one bed	displays planar lamination. T artz and opaques.
E MIOCENE		NN9					4% TOC=0.44%	3				0.00		TEXTURE: Sand 5 — 5 Sit 30 10 80 Clay 65 90 15 COMPOSITION:	3	15 85
MIDDLE		~				\$ 48.6 WC=29	●C3C03=0.34%				//		OG I W	Accesory minerals 1 Tr 10 Clay 60 30 15 Foldspar — — — — — — — — — — — — — — — — — — —	70 Tr — 5 Tr 20	5 85 — — 2 5 2
						4.8	203-0.06%	4			1111	#	*	Plant — 10 15 Quartz 5 5 55 Rock tragment 2 — — Silt 25 — —	20	-
						WC=29 0=45.	CaCO3-0.04% Ca	5			/ 44444	717	**			
	•R/S	9.						6			111/	***				

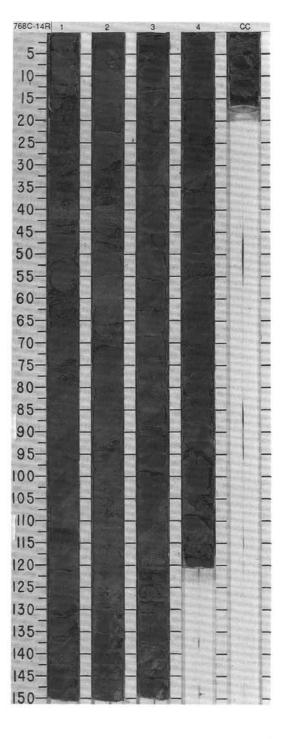




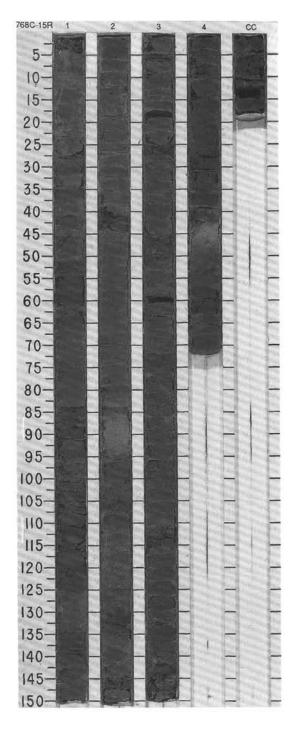

			CHAR	ONE/	8	TIES					DISTURB.	SES					
IIME-ROCK UNIT	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEGMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTURES	SAMPLES		LITH	OLOGIC	DESCRIPTION
					L ICal	7 WC=26 0=42.2]	1	0.5		, 1	000	*	STONE are arranged in thin silty claystone intervals are i claystone intervals are mod- plant debris, rock fragments deposits grading upward into	Y 4/1) a bedded aminate arately b pyrite a b hemip	nd olive (I, sharp b id; the da ioturbate and glaud elagic cla	gray (5Y 4/2) CLAYSTONE and SILTY CLA' assed and normally graded cycles. The lower rk laminae consist of plant debris. The uppe d (mottling). The silt contains quartz. clay, conties. These beds are interpreted as turbidit systone. by (5Y 6/2) maristone layers occur in Section
MIDDLE MIDCENE		6NN			10	P=2.17 7=2.4	CaCO3"0.47%	2			・	***	*	SMEAR SLIDE SUMMARY TEXTURE: Sand Sit Clay		1, 86 D	2, 87 D
	•B				(CaCO ₃ *0.17%	P=2,14 7=2.71	CaCO3=0.15% CaC	3 4 CC	1000		i		IW OG	COMPOSITION: Clay Glauconite Metamorphic rock fragments Mica Micrite Namolossils Opaques Plant Pyrite Quartz Rock fragment	40 - 40 5 - 10 -	40 20 5 10 25	25 2 Tr 2 ————————————————————————————————

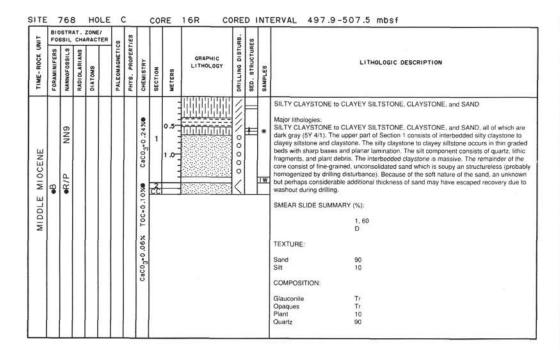

088	IL I	CHAR		831	TIES					TURB.	RES					
FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNET	PHYS. PROPER	CHEMISTRY	SECTION	LI		DRILLING DIS	SED, STRUCTU	SAMPLES	i	ITHOLOGIC	DESCRI	PTION
					.5 WC=26	3=0.18%	1	訓		>	:†: :T:		Major lithologies: CLAYSTONE, mythmically bedded throughout is sharp and there is a gradual it medium beds have sitistone (wit material; the majority of the bed silty beds are planar laminated, principal component of the sit g mica, glauconite, plant fragment deposits. Gradationally overlying clay stone intervals which are si	SILTY CLA in thin to m ransition up ich may be s are norma dark gray o rade materi s and pyrite each turbic	YSTONE edium bed wards thro sandy) at ally graded r very dark all and the t. These gi lite are ge	and CLAYSTONE. This core is its (5-20 cm). The base of each rhyth upp finer grain sizes to day. The the base, grading up to more clay-ritrom sity claystone to claystone. Tr (gray (5Y 4/1, 3/1), Quartz is the lithology also contains rock fragmer raded beds are interpreted as turbid nerally thinner, greenish gray (5G 4/
					P-42	0000	2			1 1 1	T.	*	Minor lithology: Olive gray (5Y 5 39, 43-46 cm.		ne occurs i	in two very thin beds in Section 5, 33
													D	50 3,71 M	4, 40 D	5, 36 M
	6NN			.42%)	1,7		3			1111	:I.	*	Sand — Silt 30 Clay 70 COMPOSITION:	60 40 —	5 95	
					9.5 WC=5.	03=0.04%	1			1-1-	4.		Feldspar —	2 Tr Tr	90	45
				(CaCO ₃ =0.12%	00	De CaC	4				·†·		Plant 3 Pyrite 2	5 10 10 55 15	 	50 2 3
•B	•R/G			L	2.75 Pal 88	CaCO3=0.03%@ T0C=1.11%@ .	5			エ ////	T.	*				
	FORAMINFERS	NN9 NANHOFOSSILE 3	NNG NAMOFOSSILS ROLLERS RADIOLARIANS RADIOLA	6NN9	/G NN9 NAWOFOSSILS COLOLARIANS NAWOFOSSILS COLOLARIANS NAWOFOSSILS COLOLARIANS NATIONS	NN9 NAMOFOSSILS SOUNT SOUNT	NN9 PALEOMANIESS SOLITION PALEOMANEESS SOLITION PALEOMANEES SOLITION PALEOMANEES SOLITION PALEOMANEES SOLITION PALEOMANEES PALEOMA	NN9 NAMOFOSSILE POTAMINITESS STATE NAMOFOSSILE NAMOFOSSILE	NN9 RADIOLENIESS SOLUTIONS SOLUTIONS	NNS CANAMHEES AND	NN9 NAMOFOSSILE NAMOFOSS	NN9 NN9	NN9 NAMOFOSSILE NAMOFOSS	SENT CHARACTER SOLUTION TO THE STORY OF THE	CLAYSTONE, SILTY CLAYSTONE and SILTY CLAYSTONE and SILTY CLAYSTONE, SILTY CLAYSTONE and SILTY CLAYSTONE, SIL	CLAYSTONE, SILTY CLAYSTONE and SILTSTONE BY STAND OF THE

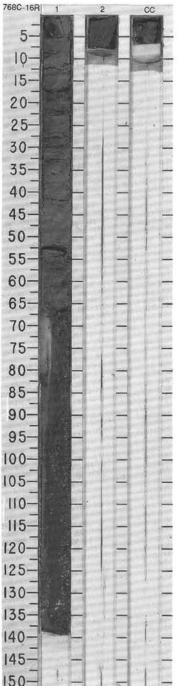
UNIT		STRA			57	168					URB.	ES					
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	u	THOL	OGIC	DESCRIPTION
MIDDLE MIDCENE	R/S•	Be NN9 eR/G			[%50,0°50]	WC=25 0-41.0	CaCO ₂ =0.05% TOC=0.17%	2	1.0		1		*	throughout in thin to medium bee grading up to more clay-rich mat claystone. The graded beds are lamination in the siltstone. Quart the lithology also contains rock fr These beds are interpreted as tu greenish gray (5G 4/1) silty clays is interpreted as hemipelagic in c	ONE s (5-22) s (5-24)	and SI to cm), the maj gray or e prince ents, mi e depos which is careous and pla	LTSTONE. This core is rhythmically bedded The medium beds have siltstone at the base ority of the beds are normally graded silty very dark gray (5/ 4/1, 3/1), with planar ipal component of the silt grade material, and ca, glauconite, plant fragments and pyrite. sits. The top of each turbidite bed grades into s slightly to moderately bioturbated, and which s claystone occurs in a thin bed in Section 1.

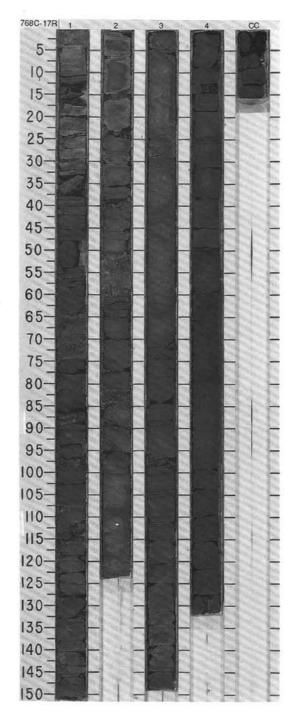


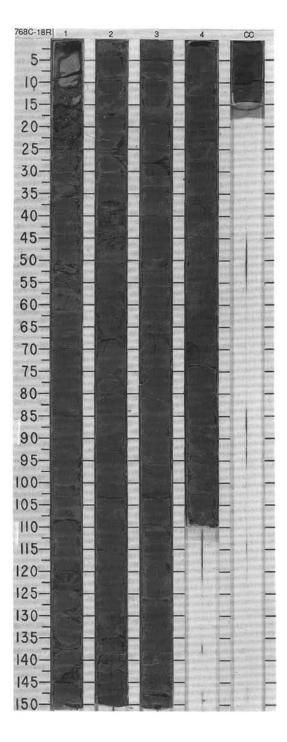
				RACT	99	831					JRB.	ES .					
וושב- אספר ה	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS, PROPERTIES	CHEMISTRY	SECTION	METERS	RAPHIC HOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	ı	I THOL	OGIC	DESCRIPTION
					9			1	0.5		1		D 1	rhythmically bedded throughout alternating with thin bioturbated base, grading up to sithy claystonormally-graded sithy claystone are dark gray or very dark gray grade material, and the lithology debris. These graded beds are grades into greenish gray (5G 4 which is interproted as hemipelic	SILTY, with the claystone. This The si (5Y 4/1) also conterpres/1) clay	r CLAY hin to none. The ingrade ity inte 1, 3/1). contains eted as systone	STONE with clayey mar! STONE, and SILTSTONE. This core is needium (5-15 cm), sharp-based graded be remedium (graded beds have siltstone at it do beds are more numerous, and consist orvals show planar and ripple lamination, ar Quarts is the principal component of the s rock fragments, feldspar, opaques and p turbidite deposits. The top of each turbidit which is slightly to moderately bioturbated the bioturbated intervals make up about or
		●F/G				.76 Y-2.70 P-2.16	caco,	2	111111111		/////		*	based bed in Section 3. It is con SMEAR SLIDE SUMMARY (%) 2, D	nposed		clayey maristone occurs in a thin, sharp- rite, clay and nannolossils. 4, 39
E MIOCENE		6NN				P=42.4 WC=25	●CaCO ₃ =0.05%	3			/	**************************************	ы	TEXTURE: Silt 15 Clay 85 COMPOSITION: Calcite		100	80 20
MIDDL	8.						CaCO3=0.05% TOC*0.40%	4 CC			エエノ		*	Clay 85 Feldspar — Micrite — Nannofossils — Opaques — Plant 1 Pyrite 1 Quartz 10 Rock fragment Zeolite — Zircon —	1	90 60 10 —	20 10

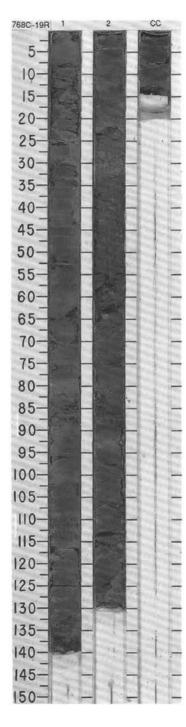


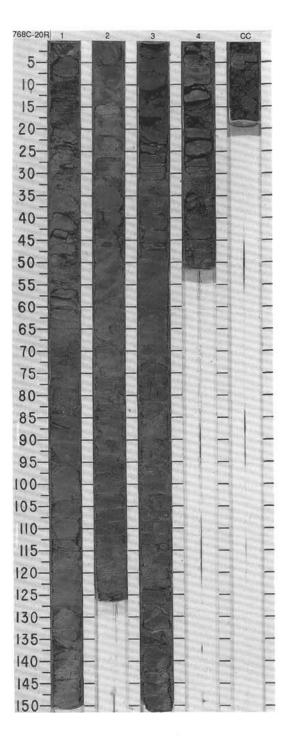

5		SSIL	CHAR	ONE/	cs	TIES	T.				URB.	RES				
IIME-ROCK C	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	APHIC HOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LIT	HOLOGIC	DESCRIPTION
						WC=23 7=2.75	0.10%	1	0.5		1111	: :: ::	*	SILTSTONE. This core is rhythmic graded beds alternating with very have dark gray (5Y 41) sandy slit more clayer sediments. The thinn stitstone and slity sandstone have to claystone is faintly laminated or sand grade material; other comported by a far are glauconic and ky	LTY CLA ally bedde tione or si or beds ar planar an massive. nents inclu anite. The	YSTONE, SILTSTONE and SANDY of throughout, with thin to medium (3-26 cm) bated claystone. The medium graded beds tistone above a sharp base, and grade up to a graded from sity claystone to claystone. Tri dripple lamination, whereas the sitly clayston Quartz is the principal component of the sit a de rock fragments, ledspar, pytite, plant se graded units are interpreted as turbidities are graded units are interpreted as turbidities.
MIDCENE		6NN				5 -239.2 WC=23	⊕CaCO ₃ =0.10%	2			1	•	*		rately biot	ward into very thin, greenish gray (5G 4/1) urbated, and which is interpreted as hem-
MIDDLE		N				0=39.5 WC=23	€CBCO3=0.41%				1111			TEXTURE: Sand — Silt 5 Clay 95	 30 70	25 60 15
							T0C=0.68%@CaCO3=0.23%	3	Linita		1	F	*	COMPOSITION: Calcite Tr Clay 95 Feldspar — Glauconite —	60 1 —	
		eF/M			Control Control Control Control Control	P=2.117=2.66	2%0	4			1	•••		Kyanite Mica Tr Plant Tr Pyrite — Quartz 3 Rock fragment — Tourmaline —	Tr 5 2 20 10 —	5 10 5 5 50 15 Tr
	•B	ĕ.					CaCO3=0.1	CC	=]:		1					

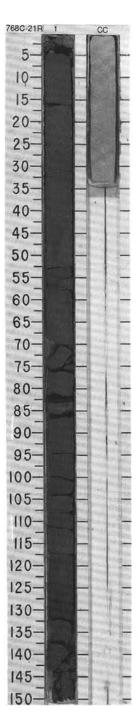

563

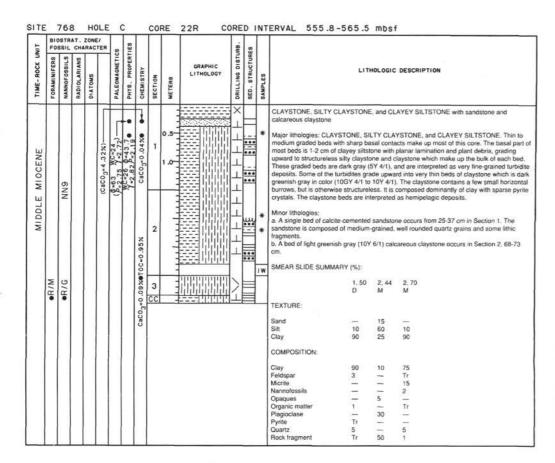

UNIT				ONE/ RACTER	92	ES				88.	S	Г		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LITHOL	OGIC DESCRIPTION
					(CaCO ₃ =0.17%)	WC=26 0-41.6	Jun 199	1	0.5				Major lithology: CLAYEY SILTSTONE, STONE. This core is rhythmically bed cm) alternating with very thin, slightly bt (5Y 4/1) or very dark gray (5Y 3/1) and in places) or clayey siltstone forms the 4/1) silty claystone. The principal comp pyrite. These rhythmic beds are interpr	SILTY CLAYSTONE and CLAYSTONE , SILTSTONE, SILTY CLAYSTONE and CLAY- ded throughoul, with thin to thick graded beds (3-30 bioturbated claystone. The graded beds are dark gra lower part, and grades up into massive dark gray (5 ponent of the sit is quartz, plus some plant debris an erted as turbidites. Slightly bioturbated dark greenish overflies most of the graded beds, and is interpreted
MIDDLE MIDCENE						63	CaCO3=0.06% TOC=0.45%	2	100	//////		*	Minor fithology: Maristone occurs in thi cm. It is gray (5° 6'1) and olive gray (5 and upper boundaries are both transiti SMEAR SLIDE SUMMARY (%):	in beds in Section 2, 87-92 cm, and Section 4, 40-45 57 5/2) and massive to faintly laminated. The lower ional to dark gray claystone.
		9/20				90=43.7 WC=29	€%60.0°500c0	4				*	Silt 60 Clay 40 COMPOSITION: Clay 40 Micrite — Namolossils — Opaques — Plant 5 Pyrite 2 2	5 5 5 95 95 95 95 95 95 95 95 95 95 95 9
	•B	6NN				VC=26 0-41.7	CaCO_3-0.25%	CC			H	•		

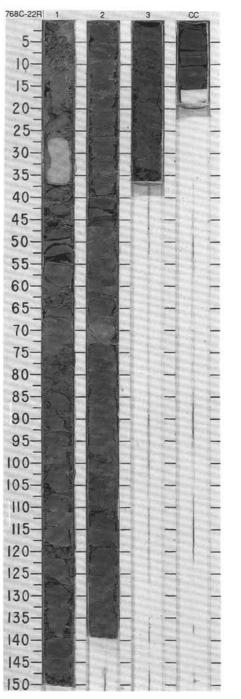


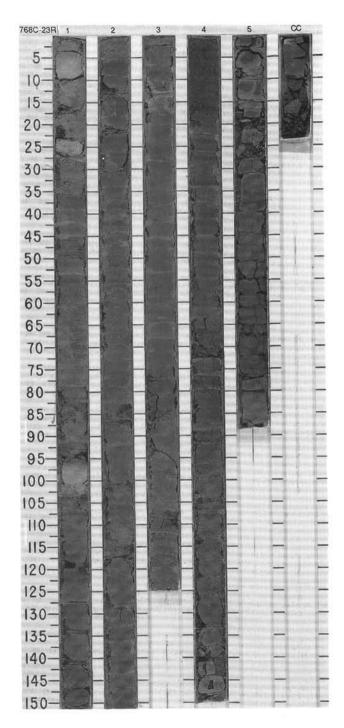

-				ZONE		83	TIES				URB.	SES			
IIME-HUCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LIT	HOLOGIC DESCRIPTION
						TOC=0.10%)	-0-44.5 WC=29.3	●CaCO3=	1	0.5	/////////	•••		Major lithologies: SANDSTONE. S Medium to very thick beds grading siltstone make up much of this cor sandstone and siltstone have fine overlying clayey siltstone units are Sections 4, 3, and into the base of sequences is dark gray (5Y 4/1). T gravity flow deposits. Very thin in- thick graded units. The color is var	VEY SILTSTONE, and CLAYSTONE ILTSTONE, CLAYEY SILTSTONE and CLAYSTONE. upward from quartz sandstone to siltstone to clayey be the basal contacts of these beds are sharp. The planar lamination and common fine plant debris, while the massive. A very large fining upward unit occurs through Section 2. The color of the sandstone and siltstone hase graded sequences are interpreted as sediment ribeds of slightly bioturbated claystone occur between the fiable, ranging from greenish gray (10GV 4/1) to gray (10GV ribated claystones appear to be hemipelagic deposits.
		•R/G					P=52.3 WC=39	●CaCO ₃ =0.10%	2		////	••• •••	*	SMEAR SLIDE SUMMARY (%): 2, 72 D TEXTURE: Sand J 10	4, 94 M
IDDLE MIOCENE		6NN			(CaCO ₃ =0.06%)	(%40.03*0.07%)	7=2.69 P=1.97		3		///////			Clay 90 COMPOSITION: Tr Accesory minerals Tr Clay 80 Dinoflagellate Tr Discoaster Tr Feldspar — Glauconite Tr Opaques 5	5 Tr Tr
W	e _B					(T0C=1.21%)—	7=2.68 P=1.95	TOC-0.60%	4	A CONTRACTOR	////////		*	Plant 10 Quartz 5 Rock fragment — Spores Tr Zircon —	10 80 5 Tr

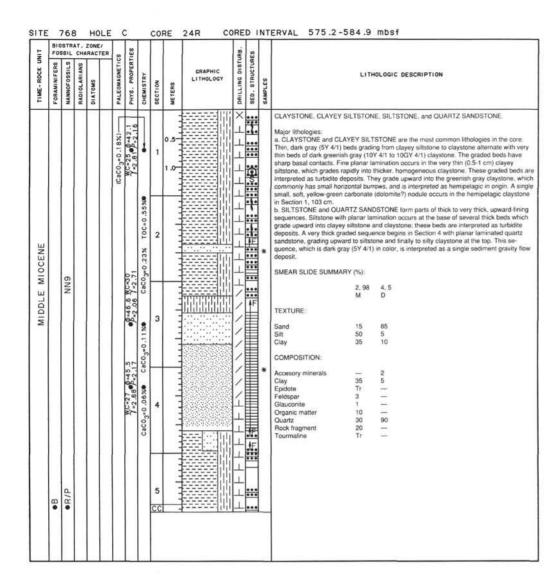

	FOS	SIL	CHA	ONE/	s s	TIES					DISTURB.	RES						
	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHI LITHOLO	DRILLING DIST	SED. STRUCTURES	SAMPLES		LITH	OLOGIC	DESCRI	PTION
							CaCO3-4.28%	1	0.5		1111			consists of very thin to med very thin to thin beds of clat tions in their lower part, with dominantly quartz with min (5Y 4/1) beds grade upwar gray (10Y 4/1 to 5Y 4/1). To as hemipelagic deposits.	SILTSTO fium grad ystone. I h the upp or rock fr d into cla he grade	DNE, SIL1 ded beds he grade her portion agments, ystone wild d beds an	TY CLAY of clayey d beds h n usually feldspar hich is sli e interpre	STONE, and CLAYSTONE. This co siltstone to claystone alternating wi ave sharp bases and planar lamina- structureless. The silt fraction is , and plant debris. These dark gray ightly bioturbated and dark greenish eted as turbidites, and the claystone
MIOCENE						\$-48.4 WC-32	●CaCO3=0.24%	2			1	•••			of the vine lower	ery thick g	graded se	ection 1 above a sharp basal contac squence of sandstone/siltstone/clay 68C-17R.
u l		6NN				-8-5-5			1		<u>+</u>	*		TEXTURE:	D	M	M	D D
MIDDL							% TOC=0.49%	3			<u> </u>	•••		Sand Silt Clay COMPOSITION:	10 50 40	10 90	10 70 20	1 20 75
					(CaCO ₃ =0.06%)	P=42.9 WC=26	CaCO3"0.44%				+			Accesory minerals Calcite Clay Feldspar Glauconite	2 Tr 40 10	90 3	10	2 75 1
					Cac	- P=2.1	00	4	1		<u>+</u>	•••	*	Opaques Organic matter Plant Quartz Rock fragment Sill	10 20 15		1 13 50 25	1 1 15
	eR/S	•R/P				(T0C=0.46%)-	TOC=0.19%	CC			I	• • •	STEEN STEEN	Zircon	=		1	=

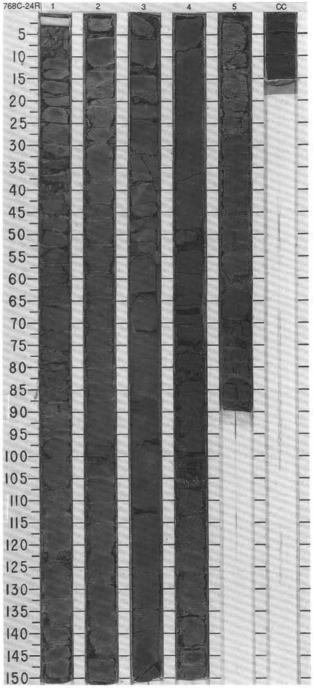

UNIT				ONE/	R	ES					88.	65					
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES		LITH	OLOGIC	DESCRIPTION
MIOCENE						-0-40.4 WC=25	●CaCO ₃ =0.05%	1	0.5		<u> </u>	Ф ф	*	Major iithologies: CLAYEY medium beds consisting of claystone are present through the greenish greenish gray (10 V 4") commonly bloturbated with The graded beds are interpolaystones as hemipelagic	SILTSTO planar la ighout th i) claysto horizont preted as deposits.	ONE, SIL1 iminated of e core, Tr ine which al burrows very fine-	and CLAYSTONE with nannolossii claystone. Y CLAYSTONE and CLAYSTONE. Thin to clayey siltstone fining upward to massive silt uses beds are dark gray (5Y 411), and altern coccurs in very thin beds. The claystone is, and contains common pyrite micronodules grained turbidite deposits, and the bioturbational pale olive (10Y 6/2) nannolossii claystone is.
MIDDLE	9₽	NN9 •F/G			(CaCO ₃ =0.12% TOC=0.29%)	WC=27 0=44.7	CaCO3-0.07%	2					*	occur in Sections 1 and 2. SMEAR SLIDE SUMMARY TEXTURE: Sand Silt Clay COMPOSITION:		1, 130 D	
														Accesory minerals Calcite Clay Feldspar Nannofossits Opaques Organic matter Plant Quartz Rock fragment Silt Zircon	90 5 - 1 - 2 - Tr	1 Tr 30 15 — 5 — 7 30 10 —	50 25 1 1 1 1 20

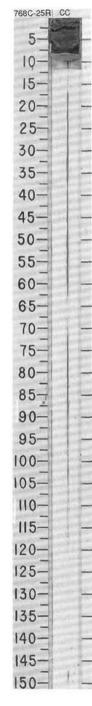


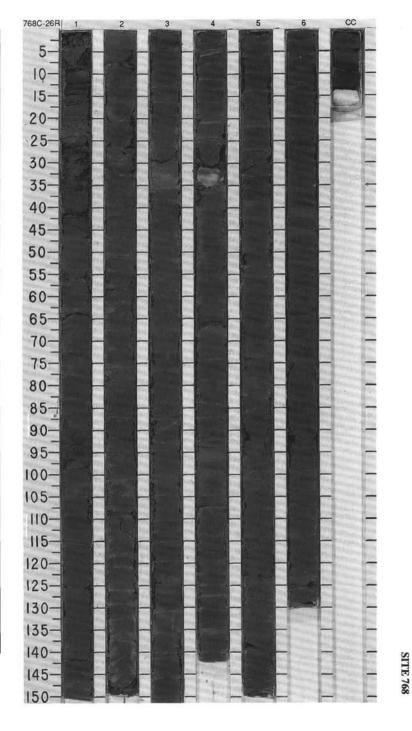

-				RACTE	. 0	0	ES				. BB	S		
TIME-ROCK UNIT	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
						5.5		●CaCO ₃ =0.10%	1	0.5	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	#. **.	*	CLAYSTONE, SILTY CLAYSTONE and CLAYEY SILTSTONE Major lithologies: CLAYEY SILTSTONE, SILTY CLAYSTONE and CLAYSTONE. Clayey siltstone and silty claystone occur in thin to medium beds with sharp basal contacts. The beds show parallel lamination in the basal clayey siltstone, grading upward into massive sity claystone, and are dark gray (5Y 41). The silt component consists of quartz, rock fragments, and minor feldspar and plant fragments. These beds are interpreted as very fin grained turbidite deposits. Gradationally overlying most turbidite beds is claystone, occur- nng in very thin beds which are massive to slightly bioturbated in the upper part, with horizontal burrows. The claystone is dark greenish gray (10Y 4/1 to 10GY 4/1), and contail some pyrite micronodules. The claystone beds are absent between some turbidite beds.
MIDDLE MIOCENE					- 1	- (cacu ₃ =0.13% 10c	P=2.19 7=2.78	◆CaCO3=0.05%	2			#F		The claystone is interpreted as hemipelagic in origin. SMEAR SLIDE SUMMARY (%): 1, 95 M TEXTURE: Sand 10 Sit 70
M							7-2.58 P-21.5	CaCO3=0.10%	3		/	A	og	Clay 20 COMPOSITION: Clay 10 Feldspar 5 Opaques 1 Plant 5 Quartz 49 Rock fragment 30 Zircon Tr
	B	8							4		18	F.		

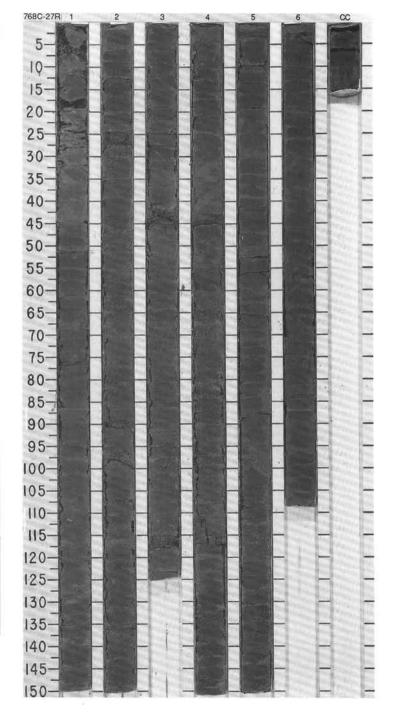

		STRA		RACT		8	ES					RB.	60				
	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	Lit	HOLOGIC	DESCRIPTION
u l	\neg				П		-	•	П	=		1		Г	QUARTZ SANDSTONE		
MIDDLE MIDDENE		6NN			-(%75.0.50T %	(CaCO ₃ =0.05%)	VC-31 0-49.0		1	1.0		 - - - -	A.F.	*	(5Y 5/1) to dark greenish gray (5C rock fragments, and minor feldspalarge (up to 1 cm long) wood frag 135 cm). The sandstone is grader which are accentuated by concen	Y 4/1) and r and opace nents occur, with som- rations of t ery indurat	e only lithology recovered in this core. It is g medium-grained. Subrounded quartz grains use minerals make up the sandstone. Sever in the lower part of the bed (Section 1, 131 e diffuse planar laminae in the middle part plack plant debris. In the core catcher there ed and cemented by calcium carbonate. It is grains.
٤					CaCO3*0.14%	0	`		СС			1		100	SMEAR SLIDE and THIN SECTION	N SUMMA	IRY (%):
-1	B	R/P.	- 1		03.			2%	CCI	_ =		11	L	#			T
	-	R/I			Cac		VC=2.6 0-6.8	F4.12							1, 71 D	1, 140 D	CC, 30 D
							2.71	Cacog 4.1							TEXTURE:		
-					- 1		χ.	Č							Sand 85	75	70
- 1	1								1						Silt 10	5	_
- 1	- 1						ш								Clay 5	20	30
1	- (COMPOSITION:		
- 1							П								Clay 3	20	30
-1															Feldspar 5	5	5
- (I		- 1						1						Glauconite -	Tr	
1	- 1								1						Glauconite — Opaques 2 Plant 5	5	-
- 1									1						Plant 5	-	=
-															Quartz 65	40	40
			0.1		1			1	Ì						Rock fragment 20 Serpentine —	25	20 5
									l						Zircon Tr	_	5

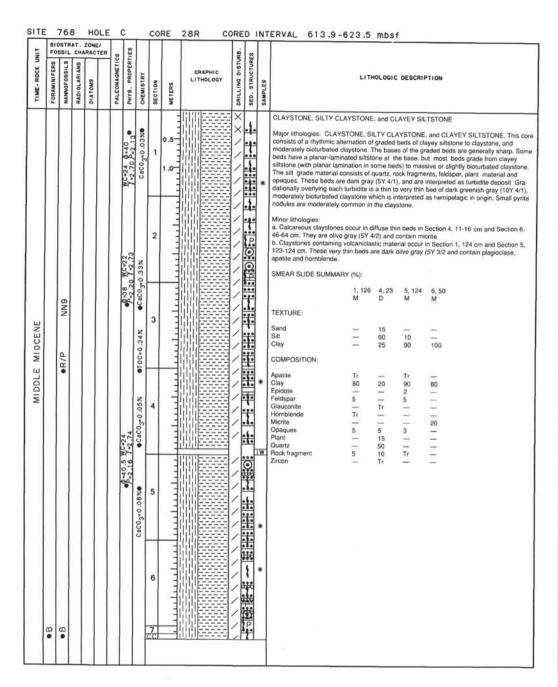


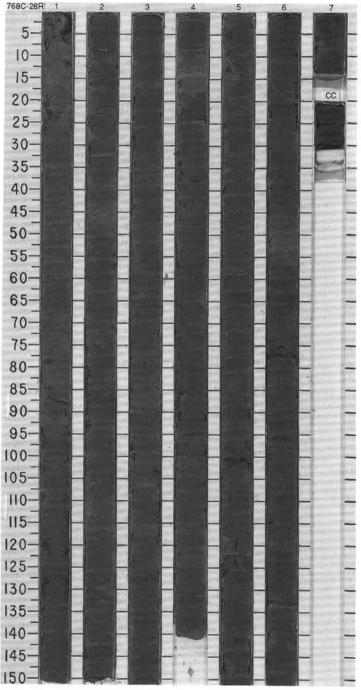


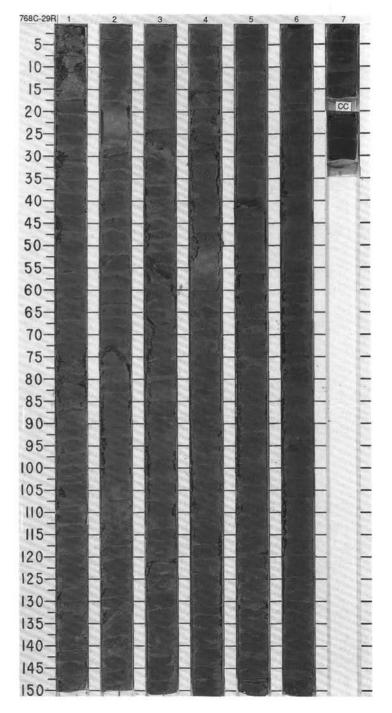

F	0881	CH1	ZONE/	cs cs	TIES					URB.	SES		
FODAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
	•9/J			(CaCO ₂ =8.23%)	.2 WC=6 0=15.2•	-0.44% •TOC-	1	0.5		1/11/11		*	CLAYEY SILTSTONE and CLAYSTONE with nannolossil maristone and siltstone. Major lithologies: CLAYEY SILTSTONE and CLAYSTONE. This core consists of thin to medium graded beds of dark gray (5Y 4/1) clayey siltstone to claystone, alternating wit beds of dark greenish gray (10Y 4/1 to 10GY 4/1) claystone. The graded beds have sh basal contacts, overlain by very thin, planar laminated clayey siltstone with plant fragm grading rapidly to structureless claystone. Greenish gray claystone gradationally overlith graded beds, and is structureless of linely laminated with slight biourbation. Small and carbonate (dolomite?) nodules occur locally in the claystone. The graded clayey siltstone to claystone beds are interpreted as turbidities, and the bioturbated claystones interpreted as the mipelagic in origin.
INE					WC=27 -44	CaCO3-0.12% TOC-0	2	***************************************		1111111	000		Minor lithologies: a. Beds of nannolossii maristone occur in Section 1. These beds contain nannolossiis- micrite and are light green (10Y 6/2) in color. They are interpreted as muddy carbonate turbidities. b. Highly fragmented homogeneous siltstone occurs in the core catcher. SMEAR SLIDE SUMMARY (%): 1, 100 4, 101 5,87
MIDDLE MIDCENE	6 2 2						3						M D M TEXTURE: Sand 1 Tr — Silt 20 10 15 Clay 75 85 85 COMPOSITION:
						●CaCO3=0.05% TOC=0.29%	4					*	Clay
a d	DE // G					•	5	1		× ¬¬¬×	***	*	

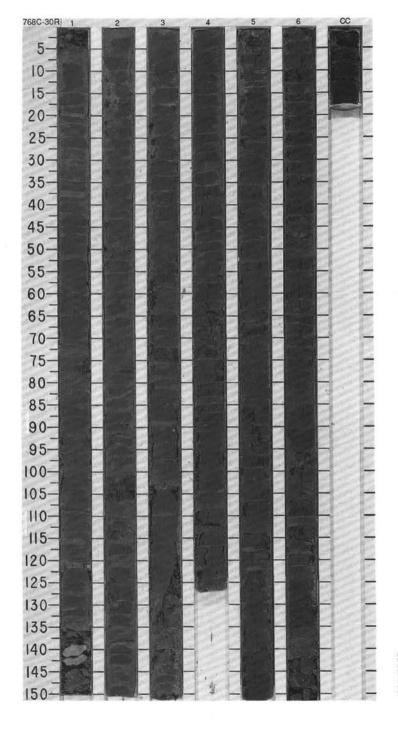


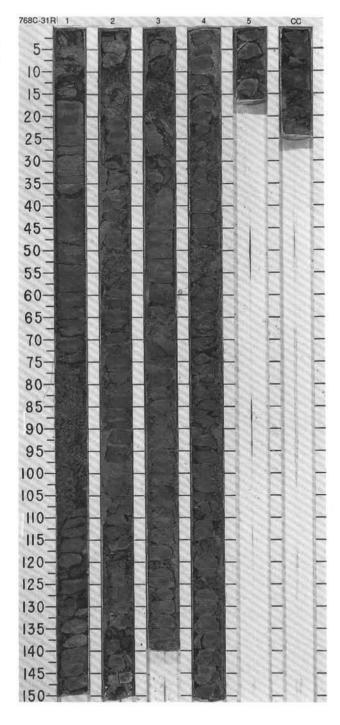


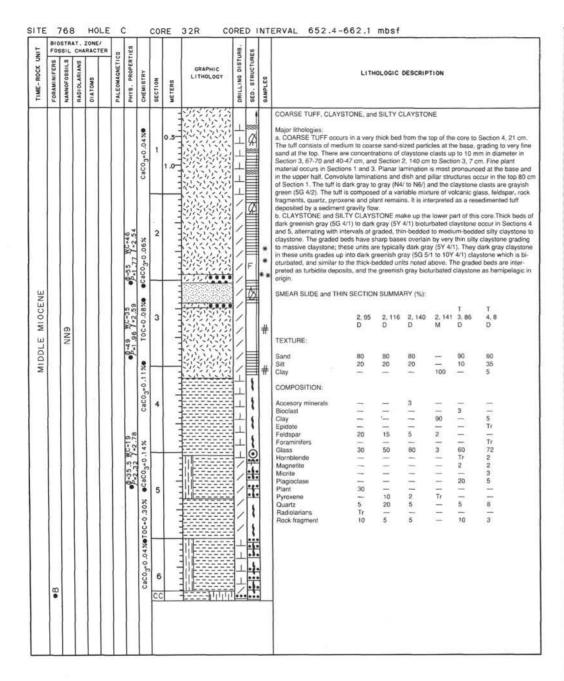

				RACTI	00	158					RB.	S		
TIME-ROCK UP	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
MIDDLE MIOCENE		NN9 R/Pe						ec			l x			CLAYEY SILTSTONE and CLAYSTONE Major lithology: CLAYEY SILTSTONE and CLAYSTONE occur in a single graded bed in the core catcher. The color ranges from very dark to dark gray (5Y 3/1 to 5Y 4/1). Several wavy laminations are also preserved. although the section is disturbed by drilling.

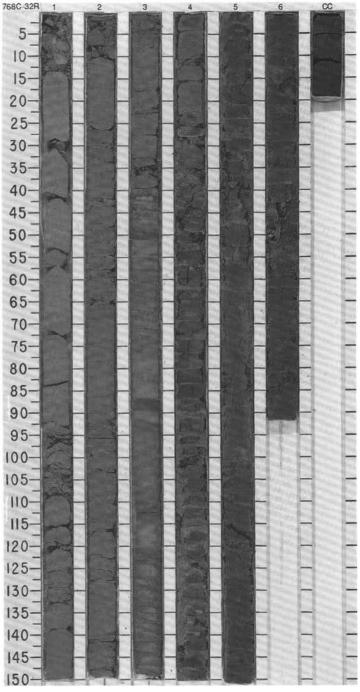


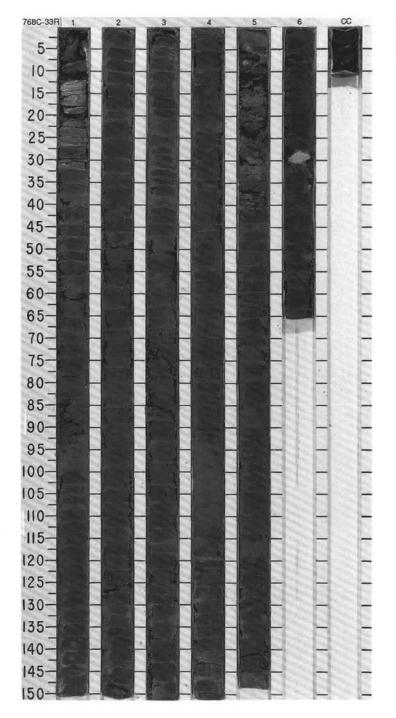

ON I		SIL		ONE/	So	TIES					URB.	RES					
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES		LITHO	LOGIC (DESCRIPTION
				\top	T	П			=!		1	1		CLAYSTONE, SILTY CLAY	STONE,	and CLA	YEY SILTSTONE
						VC=23 0=40	Caco,	1	0.5		1111			medium graded beds of clay moderately bioturbated clays planar-laminated siltstone (in massive silty claystone and ments, feldspar, and opaque The color ranges from very of the silty claystone to claysto	ey siltsto stone. The dedium to clayston es, with s dark gray ne. Thes	one to cla ne bases neds) or de. The silt mall amo (5Y 3/1) ne beds g	STONE, and CLAYEY SILTSTONE. Thin to systone alternate rhythmically with thin beds of the graded beds are generally sharp, with clayey sittstone (thin beds) grading up to grade material consists of quartz, rock frag- bunts of glaucorine, plant material and mica, in the coarsest beds to dark gray (57 4/1) in rade upward into dark greenish gray (10Y 4/ irite occurs as small nodules and as crystals.)
						-2.25	●CaCO3*0.18%	2	111111		1	1		the claystone. The graded b	eds are nemipela oughout	nterprete gic in ori	d as very fine-grained turbidite deposits, and gin. Small (maximum 0.5 cm) white aggluti-
						WC=18 9 -34	• C	*	1		1	1			3, 66 D	4, 44 D	5, 64 D
						, w			=		10.00	1		TEXTURE:			
						2.65	7%		=		1	1.		Sand Silt Clay	5 95	30 55 15	25 75
MIOCENE						P=32 WC=17	●CaCO ₃ =0.1	3	=		1	:1:		COMPOSITION:			
		6NN				2.2	● Ca(1		1	.1.	1	Accesory minerals Clay Dinoflagellate	Tr 90 2	3 15	70
DDLE		-							= 1			ļ	og	Feldspar Glauconite		5 Tr	<u> </u>
M							.20%		3		1	1		Kyanite Opaques	Tr	Tr 3	5
-					1				di		,		*	Plant Pyrite	5 Tr	2	Tr.
					1		T0C=0	4	1		,			Quartz Rock fragment	2	50 20	5
					1		х.		l fi		1	P		Rutile	0.0	Tr	10
					1		.05%		lΞi		1			Spores Tourmaline	Tr	Tr	
							0] <u> </u>		1	.,.		Zeolite		-	5
							0.0000	\vdash			1	:1:					
					1		Ü		4		1	ï	4				
									4		1	:::					
								5	 3		1	i	*				
					1				<u>3</u> ;		/	ï	4				
									‡		1						
					1				4		1						
					1				H		1	:					
	1				1				1 B		1300		1				
					1				1 =		1	1					
								6	1 4		1						
	B	9/0·						200	=		1						
	•	•						CC	1 4		/	16	_				
					1	1	I	1						I			

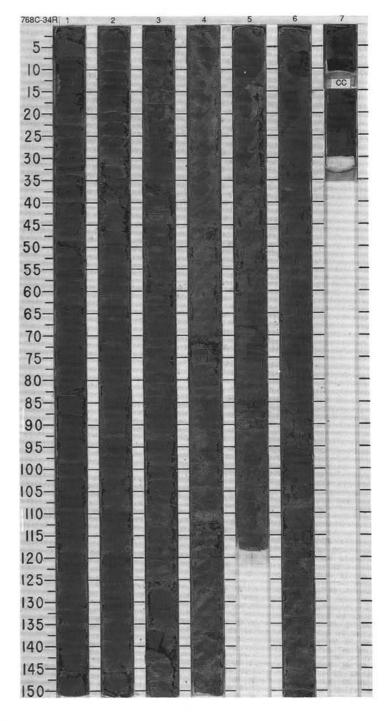




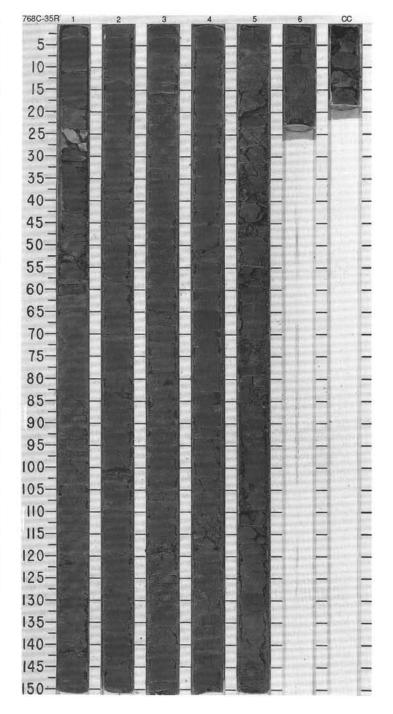

11	BIO FOS	STR	CHA	ZONE/ RACTER	0	ES						RB.	99						
TIME-ROCK UNI	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS, PROPERTIES	CHEMISTRY	SECTION	METERS		GRAPHIC THOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES		LITH	OLOGIC	DESCRIP	PTION
		•R/P				\$ 36.5 WC=21	●CaCO ₃ =0.02%	1	0.5			/////		*	consists of a rhythmic alte graded beds are thin to th thicker beds have laminat clayey siltstone to massiv clayey siltstone is very da (5Y 4/1). The silt grade m and opaques. These grad thinner beds of dark green	rONE, Sil. rmation of ick, with be desiltstone or slightly fix gray (5) taterial coned beds a hish gray (terpreted	TY CLAY graded be ases sha e at the be y bioturb ('3/1), whosists of a re interpretation of the 10Y 4/1) as hemip	vSTONE opeds and opense, but ated silty hile the sil quartz, rometed as to claystone	and CLAYEY SILTSTONE. This con- slightly bioturbated claystone. The seed by bioturbation. Some of the most beds grade from laminated claystone to claystone. The laminate by clay stone to claystone is dark gra- ck fragments, feldspar, plant material tribidite deposits. They are overfain to the which are moderately bioturbated. posits. Small pyrite nodules are
		•				e 2	•Ca	2				1	1.	1	Section 4, 51-58 cm. They	are gray			thin beds in Section 2, 15-25 cm an ain micrite.
									Hinn			//	1		SMEAR SLIDE SUMMAR	Y (%): 1, 30 M	2, 20 M	2, 85 M	5, 132 D
						9-42.5 WC=25.5	-0.48%	3				////			TEXTURE: Sand Silt Clay COMPOSITION: Accessory minerals Apalite	5 40 50			10 90
DDLE MIOCENE		•R/P				●Ø=42.	; CaCO3=0.08% • TOC=0.48%	4				111	1		Bioclast Clay Epidote Feldspar Glauconite Micrite Opaques Plant Quartz Rock fragment Tourmaline	1 40 2 3 - 2 45 5	5 40 — 50 Tr 5	80 Tr 	90 2 7 7 3 7 5
M		6NN					●CaCO ₃ =0.04% TOC=0.27%	5		11111		+ $+$ $+$ $+$	1.	*	Zeolite	-	7 	Tr	
	•B	•B				P=37 WC=21	●CaCO3=0.23%	6											

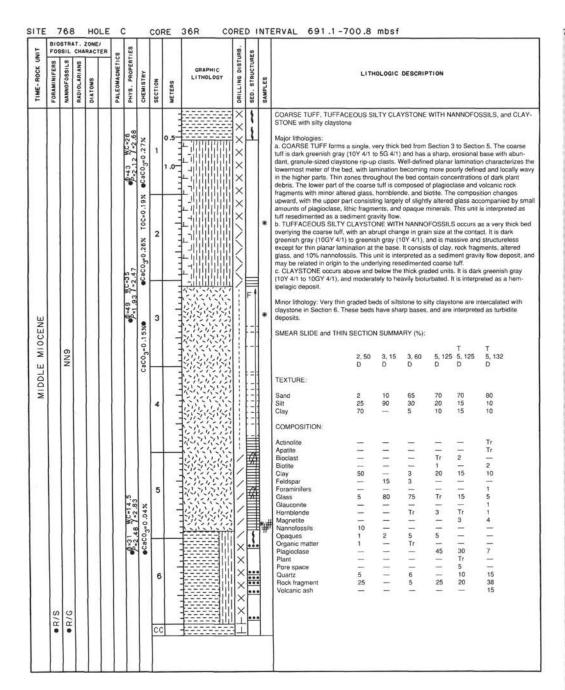


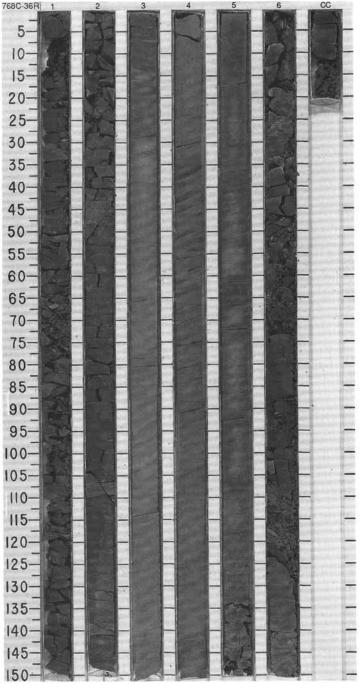

				RACTE		60	ES				RB.	SS		
	FORAMINIFERS	NANNOF 0551LS	RADIOLARIANS	DIATOMS		PALEOMAGNETICS PHYS. PROPERTIES		CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
							7-2.70 P-2.16	CaCO3"0.03%	1	0.5	く、エノエエく	# 1	*	CLAYSTONE and SILTY CLAYSTONE with coarse tuff Major lithology: CLAYSTONE and SILTY CLAYSTONE. Claystone occurs in thick beds as part of rhythmic, thin to medium-bedded intervals. The thick beds are dark greenish g (10Y 4/1) to 5G 4/1) with faint lamination and bioturbation. The rhythmically bedded intervals of thin to medium graded beds of silty claystone to claystone alternating with thin bioturbated claystone. The basal silty claystone in the graded beds has planar laminatios once cases, and grades up into massive claystone. In Section 3 a laminated sity claystone submitted to the section of the property of the section of the property of the
MIDDLE MIDCENE		6NN			- 1	0	%=31 WC=31	30	3		^/_////////////////////////////////////		* *	graded beds are thin beds of dark greenish gray (10Y 41) claystone which is slightly bio bated, and is similar to the thick-bedded claystone. The bioturbated claystone is interpretable and is similar to the thick-bedded claystone. The bioturbated claystone is interpretable and is similar to the thick-bedded claystone. The bioturbated claystone is interpretable and is included in a similar process. The support of the claystone consists of glass, rock fragments, feldspar, opaques and clay. The vitric tuff has the same composition as the redeposited tuff in the underlying Core 124-768C-32R. This suggests that the fuff was injected from this underlying bed into the claystone. SMEAR SLIDE SUMMARY (%). 1, 119 2, 114 2, 138 3, 54 3, 130 4, 60 4, 13 M M M D D D M TEXTURE: Sand
	98						7=29 0=45 7=2.64 P=2.06	CaCO3 = 0.09%	4 5 CC		111111111111111111111111111111111111111	° 11 /1	*	Apatile Tr Tr <t< td=""></t<>

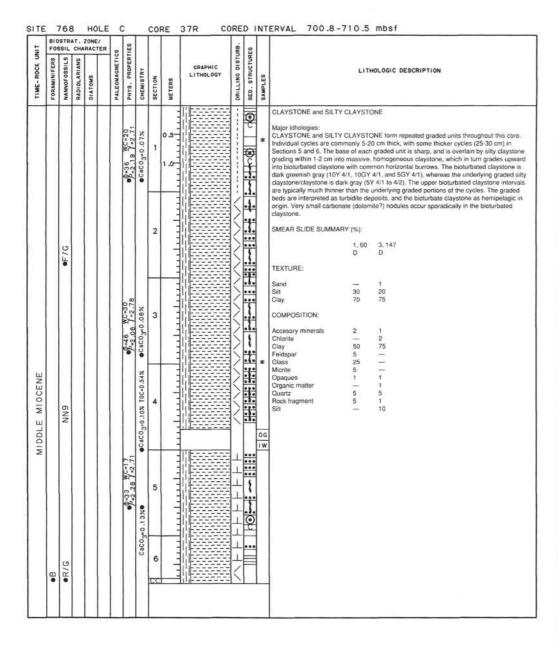


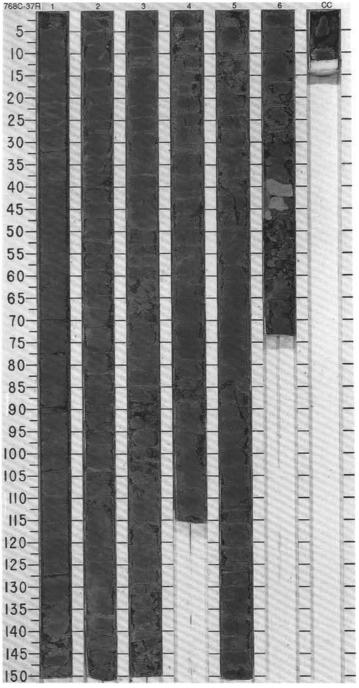
TINO	FOS			RACT	80	TIES					URB.	ES					
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETE	PALEOMAGNETICS PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHII LITHOLO	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION			
MIDDLE MIOCENE		NN9 NN9	RAC	DIA			.12% •CaCO ₃ =0.03% TOC=0.37%• •CaCO ₃ =0.04%	3	0.5				* *	CLAYSTONE, SILTY CLAYSTONE, and CLAYEY SILTSTONE with sandy siltstone and maristone Major lithologies: CLAYSTONE, SILTY CLAYSTONE, and CLAYEY SILTSTONE in grade thin beds. The base of each graded bed is sharp, overlain by clayey siltstone or more commonly silty claystone, both of which are dark gray (5Y 4/1) with planar lamination nea the base of some beds. The clayey siltstone and silty claystone intervals are commonly are think (with a few thick beds in Sections 3 and 4 up to 50 cm thick), and grade upward into dark greenish gray (10Y 4/1 to 5GY 4/1) bioturbated claystone with simple horizontal oblique burrows. The bioturbated claystone units are 2-5 cm thick. The silt component of the dark greenish gray (10Y 4/1 to 5GY 4/1) bioturbated claystone with simple horizontal versual privine nodules occur locally in the claystone. The bioturbated claystone beds are interpreted as hemipelagic depositsoverlying silty claystone or clayey siltstone turbidite deposits. Minor lithologies: a. A very thin bed of sandy siltstone occurs in Section 3, 50-51 cm. It is graded, and consists of quartz, feldspar, plant fragments, and 10% recrystallized volcanic glass. b. Thin beds of martstone occur in Section 5, 6-8 cm, and Section 6, 31-34 cm. They are olive gray (5Y 5/1 to 5/2), and well comented. SMEAR SLIDE SUMMARY (%): 2. 72 2, 120 3, 50 4, 45 6, 35 M M M M M TEXTURE: Sand			

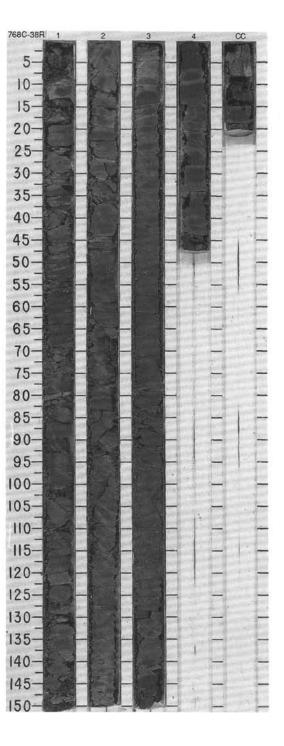


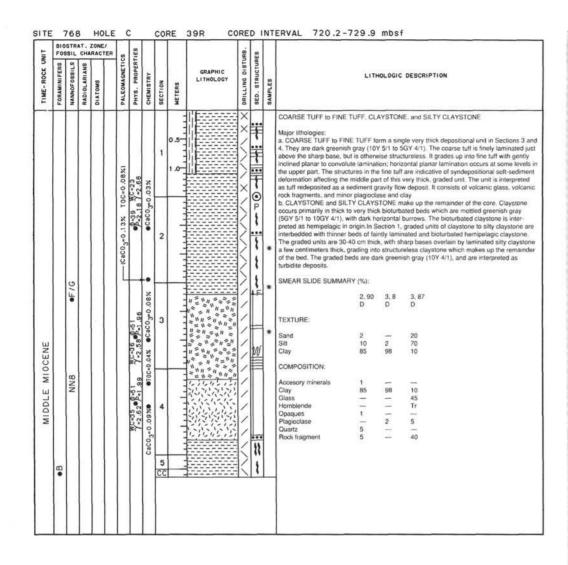

LIND	F08	SIL	CHAI	ONE/	R g	LES					JRB.	Sa		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PAI FOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
						WC=24 -0-41	CaCO,=0.03%	1	0.5					SILTY CLAYSTONE and CLAYSTONE Major lithologies: SILTY CLAYSTONE and CLAYSTONE. This core consists of graded be of dark gray (5Y 4/1 to 4/2) silty claystone to claystone alternating with bioturbated, dark greenish gray (10Y 4/1, 10GY 4/1, and 5GY 4/1) claystone. The graded silty claystone/ claystone beds are mostly 5-20 cm thick, and have sharp basal contacts. Silty claystone, commonly with planar lamination, forms the basal 1-2 cm of each bed. The silt component in it graded beds is mostly quartz and rock fragments. These beds are interpreted as very finegrained terrigenous turbidites. Bioturbated claystone with simple horizontal to oblique burrows overfies the graded units, and is interpreted as the result of hemipelagic deposition.
						0.0		2	ll		11-61-	1	*	The hemipelagic claystone units are 2-10 cm thick in the upper part of the core, increasin in thickness (up to 30 cm) in Sections 5 and 6. The proportion of turbidite to hemipelagic claystone therefore decreases downward through the core, from two-thirds in the upper p to less than one-third in Sections 5 and 6. Rare very small pyrite nodules occur sporadics through the core. SMEAR SLIDE SUMMARY (%):
ш						-8-36 WC-20	●CaCO ₂₌ 0.19%	3	l		4444-	1.1	*	2, 70 3, 46 D M TEXTURE: Sitt 40 15 Clay 60 85
LE MIOCENE		6NN										1		COMPOSITION: Accesory minerals 2 — Clay 45 85 Feldspar Tr — Opaques 1 — Ouartz 25 — Rock fragment 25 7
MIDDLE							●T0C=0.38%	4	milmin					Rock fragment 25 7 Zeolite
)1 0	5						
					1900 0 000	-0-37 WC-21	2	6	and and an		11111	•	OG IW	
	•B				- 1	×60=6	CaCO ₀ =0.05%	CC	-		7777		•	

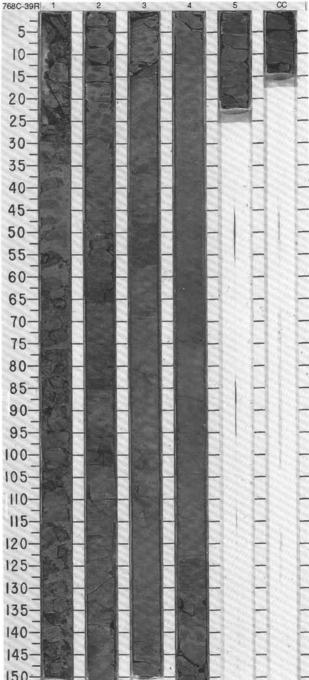

583

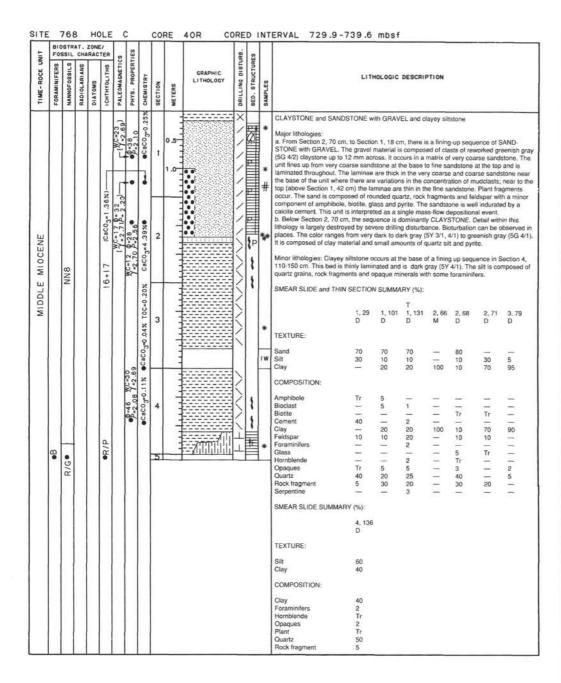


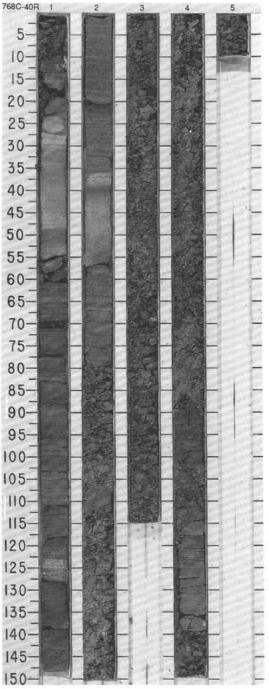

- INO				RACT	ED		ES					JRB.	ES .				
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	WETERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIP	TION	
					寸	1	T	T		-		I	1		CLAYSTONE, SILTY CLAYSTONE, and SILTSTONE	with ma	ristone
		•R/G				_@=36 3 WC=20	P-2.20 7-2.72	●CaCO3=0.07%	1	0.5			1:1:1	*	Major lithologies: CLAYSTONE, SILTY CLAYSTONE, made up of graded beds of dark gray (5Y 4/1 to 3/1) si 3-10 cm thick, alternating with somewhat thinner beds 4/1 and 5GY 4/1) bioturbated claystone. The graded b 2 cm of planar-laminated or massive sitly claystone gra neous claystone. They are interpreted as very fine-gra component of the graded beds is primarily quartz, rock plant debris. The bioturbated claystone beds have sim and are interpreted as hemipleagic deposits. Some m	ity clays of dark eds have ding up ned turb fragme sple hori	tone to claystone which ar greenish gray (10Y 4/1 to e sharp bases, overlain by ward into massive, homogidite deposits. The silt nts, and minor feldspar an zontal to oblique burrows,
									2				1.	*	alternating thick laminae of dark gray (5Y 4/1) and dark picturbation throughout. In Sections 5 and 6, a thick be grades upward into massive clayey siltstone, and is int The siltstone is composed of quartz and rock fragment plant debris). Small pyrite and dolomite nodules occur units in Section 3. Minor lithology: very thin beds of hard, olive (5Y 5/2) m cm, and Section 5, 7-8 cm.	greenis d of pla erpreted s, with 1 within th	sh gray (10Y 4/1) with slig nar-laminated siltstone i as a thick turbidite depos 0% organic matter (proba ie hemipelagic claystone
				П		1				=			.1.		SMEAR SLIDE SUMMARY (%):		
ш						WC=21	=2.78	3%				+	Û		1, 75 2, 105 5, 53 M M D	5, 92 M	6, 8 D
OCEN						2	23 7	●CaCO ₃ =0.13%	3	3		T	<u>o</u>		TEXTURE:		
0 W		6		П		0.38	P-2.23	300		4		1	-4-		Sand 5 1 — Silt 50 15 30	40	5 80
DDLE		6NN						.47%		1		1	1.		Clay 45 80 70 COMPOSITION:	60	15
M						1		0		3		+	+		_ 2 _	-	
						1		T0C*0.		4		1			Clay 30 75 70 Feldspar — 5	60 5	15
							- 1		4	di		1	.1.		Glass — — —	=	1
						-		.08%		4		1	•••		Opaques 2 1 — Organic matter — 1 —	_	2 10
						- 1		0		7		+			Plant 4 — 2	5	<u> </u>
				П	- 1	1	2	●CaCO3=0		3	1	1-	•••	1	Pyrite — 3 Quartz 30 5 3	15	30
					- 1	WC=1	=2.70	Ca				1	4F		Rock fragment 30 1 15	10	40
						B		•		l H		1	_	-	Silt — 10 —	-	-
						0	29	П		11		1	1	1	Zeolite — — 2 Zircon Tr — Tr		Ξ.
			0.1			2	P=2.2			Hi		1		*			
ı							•	*	5	i ii		I	1				
								CaCO3=0.11%		3		+	4F	*			
ı	S							Caco		_=		Ī					
	•R/								6 CC	- 1	···.··	1		*			
						1		1	50			-	-	_			
					- 1	- 11	- 1	- 1									

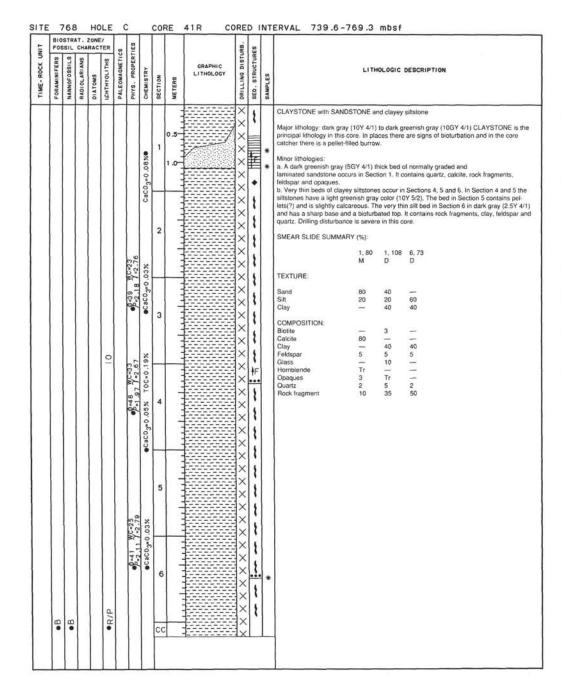


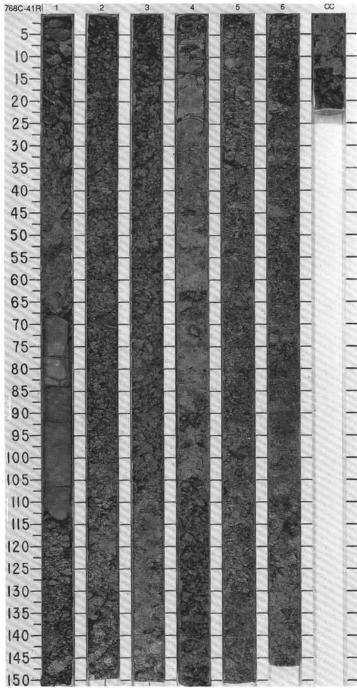


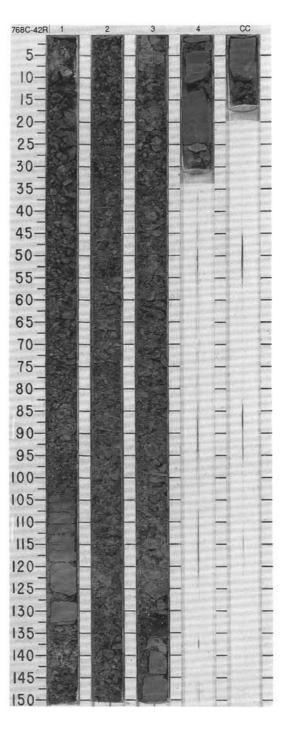


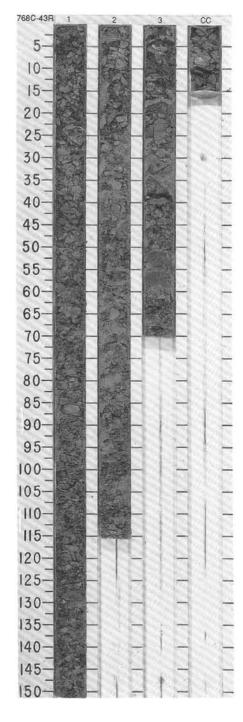



	SSIL		ONE/	00	ES				88	ES .					
FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEGMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES		LITH	IOLOGIC I	DESCRIPTION
				(CaCO ₂ =0.13%)	66 9 37		1	0.5	• < > < > < > < > < > < > < > < > < > <	1	*	Major lithologies: CLAYS' unit of structureless, hom zone of silly claystone ov fine-grained turbidite dep. 1). Above and below this to silty claystone, interbed basal contacts and very ticaystone; they are dark of claystone; they are dark of the contacts and services of the contacts and very ticaystone; they are dark of the contacts and very ticaystone; they are dark of the contacts and the contacts and the contacts are contacts and the contacts and the contact and the con	ONE and orgeneous orlying a s osit. It is v unit, the o ded with hin basal ; ray (5Y 4)	I SILTY Conclaystone tharp base ery dark gone consistionary to dark gones of significant states of significant	occurs in Sections 2 and 3. It has a thin basa it contact, and is interpreted as a thick, very ray (5Y 3/1) to very dark greenish gray (10Y 3 its of thin (5-15 cm) graded beds of claystone d claystone. The graded beds have sharp
	6NN				WC=24 -40	0.03c0g=0.0	2					dark greenish gray (5G 4) occurs in beds 5-20 cm thi pleagio deposits. Very ra core, and a calcite concre SMEAR SLIDE SUMMAR	to 10Y a ick. The b e small nation with o	4/1), with o noturbated odules of p cone-in-co	common, very small horizontal burrows, and d claystone beds are interpreted as hem- pyrite and carbonate (dolomite?) occur in the
	●F/G			TOC*0.52%)	3 WC=24	3CO3*0.03%	3		/ / ×	O o	*	Sand Silt Clay COMPOSITION:	100	_ 5 95	1 10 85
	NN8			03=0.19%	-	•C3			× × 	1		Clay Feldspar Nannofossils Organic matter Pyrite		95 3 1 1 Tr	85 1 1 1
•B	coalitus			CaC			CC		×	:1:		Quartz Siderite Silt	99	<u> </u>	10
		NN8 •F/G NN9	•B . coalitus NN8 •F/G NN9	. coalitus NN8 •F/G NN9	©B NN8 •F/G NN9 (CacO ₃ -0.19% TOC-0.52%)— (CacO ₃ -0.19% TOC-0.52%)— (CacO ₃ -0.19% TOC-0.52%)—	Coaiitus NN8 •F/G NN9 (CacCo ₃ -0.19% TOC.0.52%) (CacCo ₃ -0.19% TOC.0.52%) (CacCo ₃ -0.19% TOC.0.52%) (CacCo ₃ -0.13%) (CacCo ₃ -0.13%) (CacCo ₃ -0.13%) (CacCo ₃ -0.13%)	CacOg-o.19x TOC-o.52x1—	(CacOg-o.19x TOC-o.52xi— (CacOg-o.13xi— (CacOg-o.13	(CaCO ₃ -0.19x TOC-0.52x) (CaCO ₃ -0.19x TOC-0.52x) (CaCO ₃ -0.13x) (Ca	(CaCO ₃ -0.13x)	(CacO ₃ -0.13x)	(CacOg-o-19x TOC-o-52xi) (CacOg-o-19x TOC-o-52xi) (CacOg-o-19x TOC-o-52xi) (CacOg-o-13xi)	CLAYSTONE and SILTY. Major lithologies: CLAYST unit of structureless, home zone of silty claystone owe fine-grained turbidite dept of silty claystone; they are daily claystone; they are daily claystone; they are daily claystone; they are daily concurs in beds 5-20 and c	CLAYSTONE and SILTY CLAYSTONE and unit of structureless, homogeneous zone of sity claystone overlying a fine-grained turbide deposit. It is a fine-grained turbide dark gray (56 4/1 to 104 coccurs in beds 5-20 cm thick. The fine-grained turbide dark gray (56 4/1 to 104 coccurs in beds 5-20 cm thick. The fine-grained turbide dark gray (56 4/1 to 104 coccurs in beds 5-20 cm thick. The fine-grained turbide dark gray (56 4/1 to 104 coccurs in beds 5-20 cm thick. The fine-grained turbide dark gray (56 4/1 to 104 coccurs in beds 5-20 cm thick. The fine-grained turbide dark gray (56 4/1 to 104 coccurs in beds 5-20 cm thick. The fine-grained turbide dark gray (56 4/1 to 104 coccurs in beds 5-20 cm thick. The fine-grained turbide dark gray (56 4/1 to 104 coccurs in beds 5-20 cm thick. The fine-grained turbide dark gray (56 4/1 to 104 coccurs in beds 5-20 cm thick. The fine-grained turbide dark gray (56 4/1 to 104 coccurs in beds 5-20 cm thick. The fine-grained turbide dark gray (56 4/1 to 104 coccurs in beds 5-20 cm thick. The fine-grained turbide dark gray (56 4/1 to 104 coccurs in beds 5-20 cm thick. The fine-grained turbide dark gray (56 4/1 to 104 coccurs in beds 5-20 cm thick. The fine-grained turbide dark gray (56 4/1 to 104 coccurs in beds 5-20 cm thick. The fine-grained turbide dark gray (56 4/1 to 104 coccurs in beds 5-20 cm thick. The fine-grained turbide dark gray (56 4/1 to 104 coccurs in beds 5-20 cm thick. The fine-grained turbide dark gray (56 4/1 to 104 coccurs in beds 5-20 cm thick. The fine-grained turbide dark gray (56 4/1 to 104 coccurs in beds 5-20 cm thick. The fine-grained turbide dark gray (56 4/1 to 104 coccurs in beds 5-20 cm thick. The fine-grained turbide dark gray (56 4/1 to 104 coccurs in beds 5-20 cm thick. The fine-grained turbide dark gray (56 4/1 to 104 coccurs in beds 5-20 cm thick. The fine-gray (56 4/1 to 104 cm the fine-gray (56 4/1 to 104 cm the fine-gray (56 4/1 to 104	CLAYSTONE and SILTY CLAYSTONE Major lithologies: CLAYSTONE and SILTY C unit of structureless, homogeneous clayslone zone of silty claystone overlying a sharp bass fine-grained turbidite depost. It is very dark g 1). Above and below this unit, the core consist to silty claystone, interded with bioturbate basal contacts and very thin basal zones of a claystone; they are dark gray (59 4/1) to dark interpreted as very fine-grained turbidite dep dark greenish gray (56 4/1) to 104/1), without cocrus in beds 5-20 cm thick. They bioturbate iplegic deposits. Very rare small notubes of core, and a calcite concretion with cone-in-co SMEAR SLIDE SUMMARY (%): 1. 76 2, 128 M D TEXTURE: Sand Sitt 100 5 Clay 95 COMPOSITION: Clay 95 Feldspar 3 Nannolossils 1 Organic matter 1 Pyrite 1 Ouartz 1 Siderite 99 Sitt 1 Siderite 90 Sitt 1 Siderite 90 Sideri

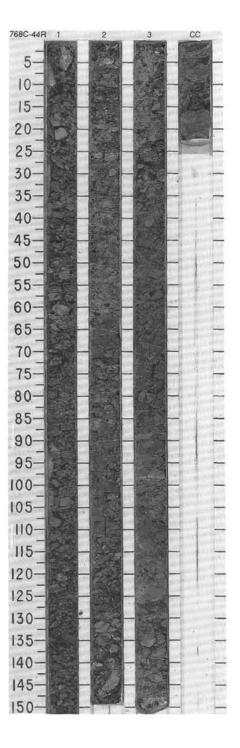




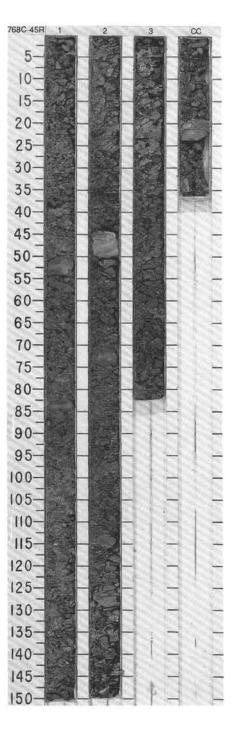




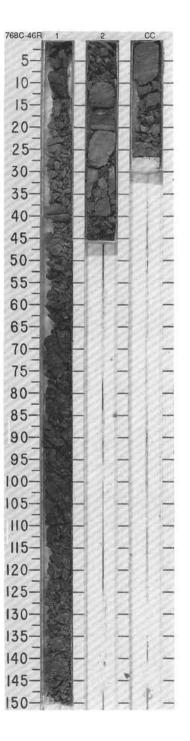
100		SSIL				83	LIES					URB.	ES		ş				
TIME-ROCK D	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	ICHTHYOLITHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES		LITH)LOGIC	DESCRIP	PTION
				Г						-		X	Г		CLAYSTONE with sandstone	and cla	ayey silts	tone	
		•R/G					VC=21 0-37		1	0.5		×××//×	1	*	Section 1, 2 and 3. Drilling dis- occurs throughout this litholog Minor lithologies: a. Greenish gray (5GY 5/1) and in the core catcher. The bition. It is composed of rock tra	turban ay. and dark beds an	greenish e normali s, feldspa	gray (50 y graded ar, glass,	gray (5G 4/1) CLAYSTONE occurs in fing suggests some bioturbation GY 4/1) sandstone occurs in Section and display planar and ripple lamina quartz and opaques.
MIOCENE								TOC-0.10%	2			×××	2		clayey siltstone which grades	upward tz, feld f mixed	d into cla spar and volcanic	stone or glas The lastic and	ccurs in Section 1, 100-133 cm. It sandstone and clayey sittstone bed
ĕ		5						.053	a	-		×	1						T
ш		(NNS			0		WC-22	●CaCO _{3*} 0.05%				X			1 M		3, 143 M	4, 19 M	CC. 8 D
MIDDL							P=38	•				X							
Σ							60					^			Sand — Silt 6	-	10 70	50 40	80 20
- 1								3%		-		X			Clay 3		20	10	_
								CaCO3=0.03%	3	3		×			COMPOSITION:				
-		000						03		-					Bioclast -	21			5
- 1		•R/G			- 1			8		-	/	^			Biotite -	-	Tr		-
- 1		2			- 1			~	- 1	- 1		X			Calcite -		2	-	20
- 1	1 0	-			- 1		- 1	1		-	7	1	₽F.	*	Cement -	-	-	77.0	25
- 1		ш			0				4			1	711	*	Chlorite -		-	-	Tr
- 1	8				•R/P				CC	_		X	•••	#	Clay 30		5	10	77
-	•				•				CC	-	international district	_	\Box	11	Feldspar 10		20	20	10
- 1					- 1										Foraminifers — Glass 5		Tr Tr	15	- T
															Glauconite –		Tr	15	_
- 1	8 9														Nannolossils —		Tr		
- [Opaques —		5	3	_
- 1														- 1	Plant -		5	<u> </u>	2
- 1					. 1									- 4	Quartz 10	0	30	10	5
- 1							1 1							- 10	Rock fragment 48	0	30	40	35

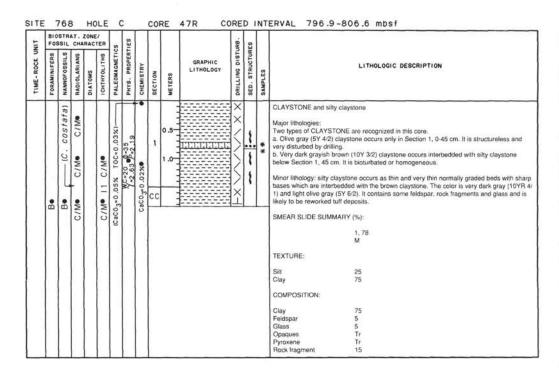


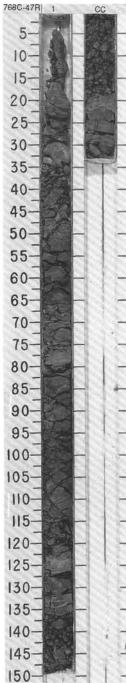
	STR				on	83					RB.	SI		
FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	ICHTHYOLITHS	PALEOMAGNETICS	PHYS, PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
						WC=22 0-38	.14% •CaCO ₃₌ 0.04%	1	0.5		××××××	1		CLAYSTONE Major lithology: the only lithology in this core is CLAYSTONE. It is dark gray (5Y 4/1) to dargreenish gray (10Y 4/1) or olive gray (5Y 4/2). There is no evidence of lamination, but there is some mottling indicating bioturbation in places. Drilling disturbance in this core is severe. SMEAR SLIDE SUMMARY (%): 3, 22
				11+18		8 WC=34 .35 7-2.72	3-0.03% TOC-0	2	and second second		× × × × ×	ŧ	I W	D TEXTURE: Sift 5 Clay 95 COMPOSITION Clay 90
•B	•B	•B	•B	•R/P		●Ø=58 •Ø=2.35	0.04%	3			× × ×	ł	*	Ouartz 2 Rock fragment 5

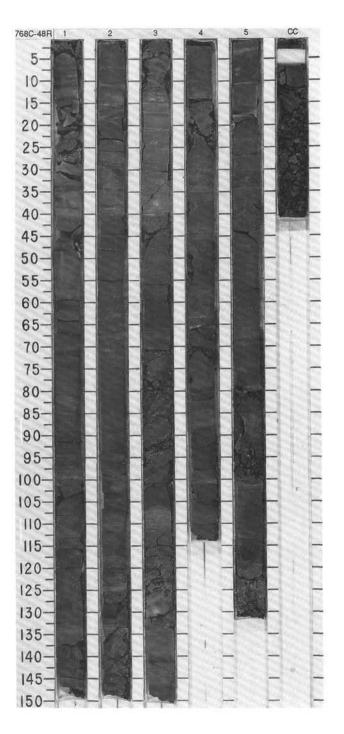


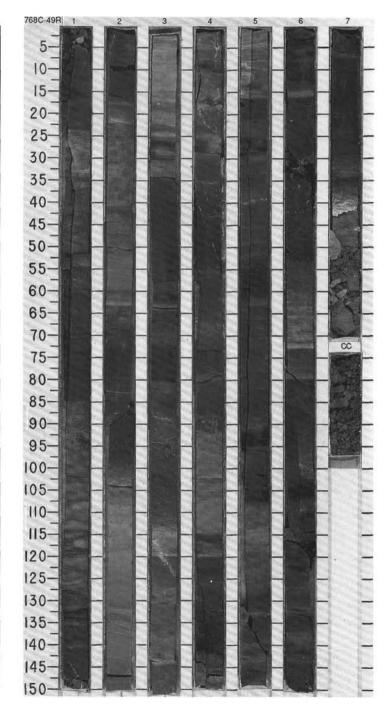
2	FO		CHA	RAC		on	ES				88	83		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	ICHTHYOLITHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
	99	9.8	•B	. 8	•VR/P		2 WC=19 0=35	CaCO3=0.05%	2	0.5	××××××××××××××××××××××××××××××××××××××	*	*	CLAYSTONE Major lithology: The principal lithology in this core is CLAYSTONE which is sitly in places is very dark to dark gray (5Y 3/1, 4/1) or dark greenish gray (10Y 4/1). There is no eviden of lamination, but there is some mottling due to bioturbation in places. Minor lithology: Sitly claystone occurs as very thin beds in Section 1, 20-22 cm and Sectio 3, 98-99 cm. This material is light gray (5Y 7/1) and contains voicanic material (plagicolas glass and biotite) in addition to quartz. Drilling disturbance in this core is severe. SMEAR SLIDE SUMMARY (%): 1, 21 D TEXTURE: Sät

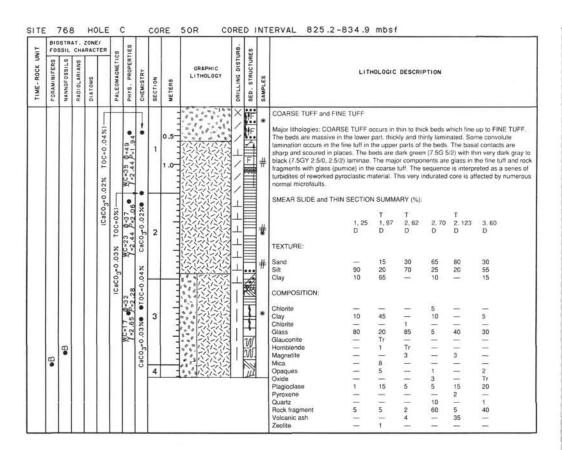

593

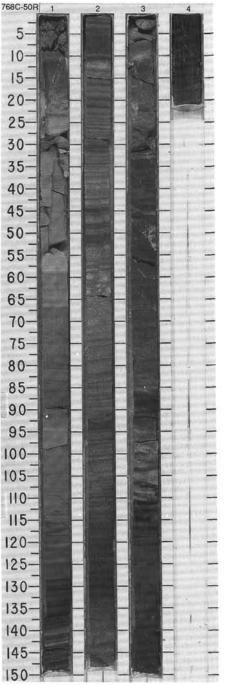


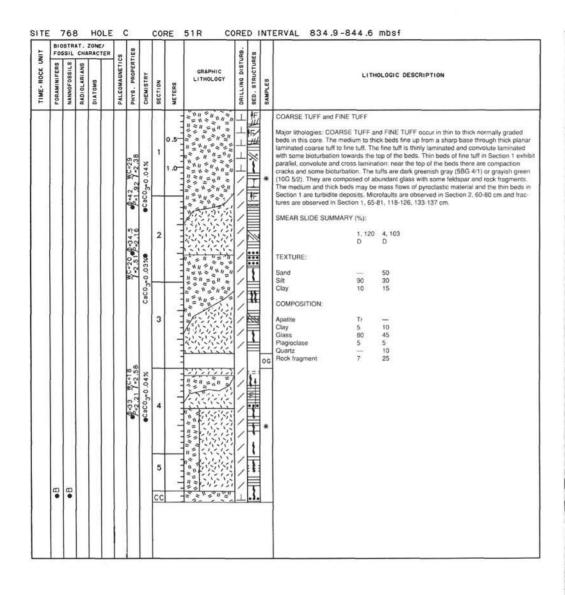

		CHA			en .	ES					RB.	S							
 FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	ICHTHYOLITHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES		LITHO	LOGIC	DESCRIP	TION	
						P=37 WC=21		1	0.5		<>>>>	1	*	CLAYSTONE Major lithologies: Two types of CLAYSTONE ca a. Dark greenish gray (10Y 4// b. Bioturbated very dark grayis Section 2, Section 3 and the o debris.	1) clay: sh brov	stone oc	curs in m. 3 3/2) cla	assive, ho	minates in the lower par
		98		18		WC=20	\$CaCO3-0.04% TOC-0.11%	2	- International		>>>>	* * * * * * *	**	Minor lithology: a very thin, ve- with light gray (2,57 7/2) mottl appears to be cement. Orilling SMEAR SLIDE SUMMARY (% t N TEXTURE:	ling occ disturb (6):	curs in S	ection 2,	45-48 cm	The calcareous compo
						P=37	.04% •0	3			3	1		Silt -	10	100	5 90 5	15 85	5 95
•B	9€	•B		●R/P			CaCO ₃ =0.04	cc			×	1	*	Calcite 9	00	10 90	100 Tr 	70 10 2 5	90 Tr 2 — Tr 2 2 2 3

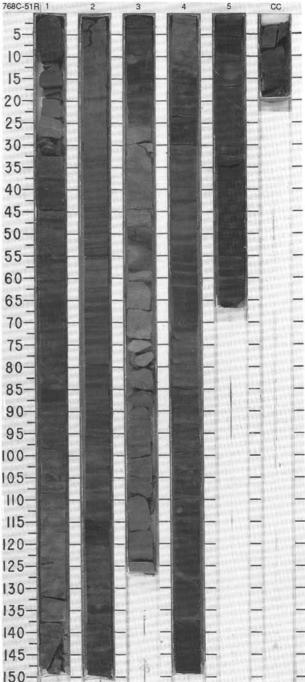

SITE		768	3	Н	LE	(0		CO	RE	46R CC	RE	DI	NT	TERVAL 787.4-796.9 mbsf
TIME-ROCK UNIT		NANNOFOSSILS IS				PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
	9€	•₿	•B •B •B		●VR/M	(CaCO ₃ =0.04% T	WC=17 @-22 7-2.59 P=2.23 P=2.25 7-2.75	03=0.03%		0.5		× × / / / / / × ×	± ⊕ □ #	* *	CLAYSTONE and SILTY CLAYSTONE Major lithologies: graded greenish gray (5G 5/1) laminated SILTY CLAYSTONE occurs, fining upward into greenish gray (5G 5/1) CLAYSTONE. In Section 1 the boundary between the sithy claystone and the claystone is diffuse. In Section 1, 0-13 and 49-115 cm, the claystone is diffuse. In Section 1, 0-13 and 49-115 cm, the claystone is diffuse. In Section 1, 0-13 and 49-115 cm, the claystone is diffuse. In Section 1, 0-13 and 49-115 cm, the claystone is laminated. It contains rock fragments, feldspar and opaques. In Sections 2 and 3 the silty claystone is laminated. It contains rock fragments, feldspar, glass and biotite. Drilling disturbance in this core is severe. SMEAR SLIDE SUMMARY (%): 1, 30 1, 100 2, 17 CC, 7 D D M M TEXTURE: Sand

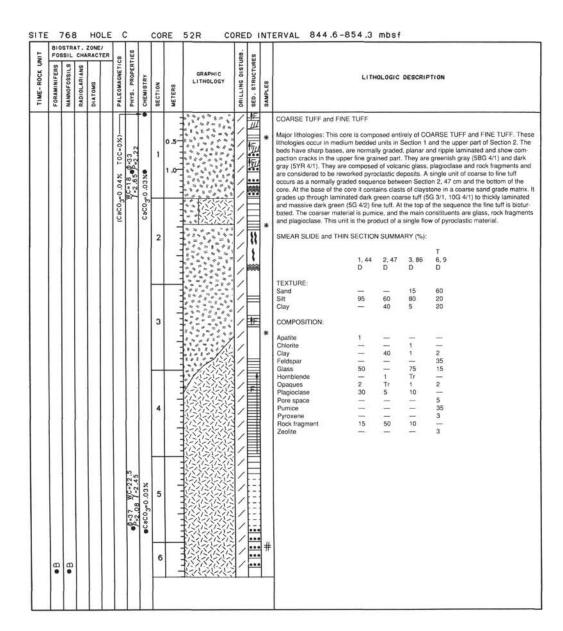


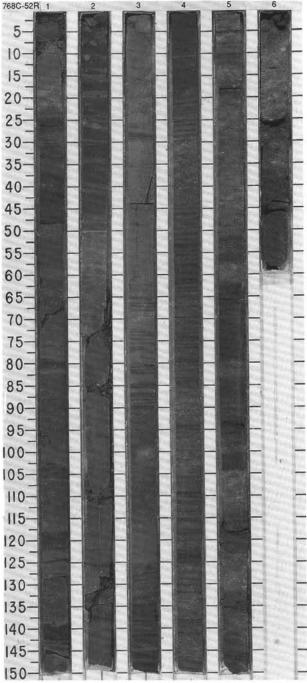


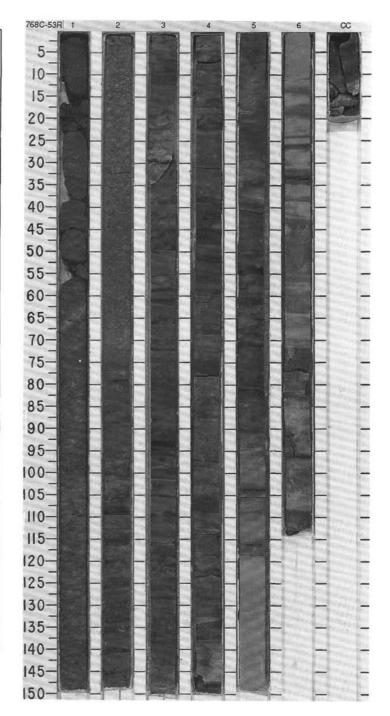

	FOS	SIL	CHA			cs	TIES					URB.	RES							
	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	ICHTHYOLITHS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES		LITH	OLOGIC	DESCRIP	TION	
1							25			=		×		Г	COARSE TUFF, FINE TU	FF and C	LAYSTON	1E		
			•F/M				\$ 34 WC=20	●CaCO ₃ =0.05%	1	1.0		7////		*	to thin beds throughout th or fine tuff, lining-up to cla finer. These sedimentary cross lamination in the low there are thin planar lamin color of the coarse and fin	is core. The systome, we structures wer and metations, core tuff is did 10GY 3/1 inblende a	ne base of hich trunc present a iddle part impaction ark green , 7.5G 3/2 nd pyroxe	each rhy ated at the re grader of the be- cracks a (10GY 3/1 ene. All of	othm is sine top. To dibedding ds. In the nd some 1, 4/1) a). The tu	e upper parts of the beds very slight bioturbation. The nd the claystone is dark ifs are composed of feldsp
1			ata				•	. %		3		1	D] "	SMEAR SLIDE and SECT					
			costat				WC=18 0-32	CaCO3-0.04%	2	1	= " =	1	Va			1, 59	1, 100		2, 94	T 5, 118
			Ċ.				WC=1	CaCo		-		1	11	*	TEXTURE:	D	D	D	D	D
			· Me							_ =	= " " " " " " " " " " " " " " " " " " "	1			Sand	20	70	_		50
			F/							-		1	K		Silt Clay	60 20	20 10	70 30	30 70	10 40
	1								3	1	! "=""	/			COMPOSITION:					
			C/M							3		1	, 1		Biotite Calcite	_	5	Tr —	Tr Tr	Tr
			•							-		/	. 1		Clay Feldspar	20 10	10	20 5	70 2	20
1							52			=	1 11 = 111	/	b		Glass Glauconite	40	_	50	5	20 Tr
			-				WC=1	.05%		- 2		/	4		Hornblende	2	5	_	Tr	2
		ч					1 38	0		-	= ""	/	神	1	Opaques Plagioclase	5	3	5		10 15
١							P=33	⊕CaC03=0		-		/	11	1	Plant	1	=			3
							90	O	4	3	""=""	/	15	1	Pore space Pumice	=		_	=	8 10
		- 1	fi			-	•	•		- 2		1	-	1	Pyroxene	Tr	5	_	Tr	_
1			Wolffii		8.			100		-	3 "="	1	L	og	Quartz Rock fragment	20	50	20	20	1
			W							-				IW	Volcanic ash	_	_	_	_	10
			S						\vdash	-	,""=""	1	1.	-						
					7.1			.03%		1		1	IAP.	1						
								TOC=0		-	=	1	-	1						
								00	5	1	3121	1		1						
								18.		- 2		1	1	1						
								.05%		-		1	45.0	4						
			Σ					0	L	-	"""""""""""""""""""""""""""""""""""""""	1	1	#						
	B	BB	F.		B			CaCO3=0.	cc	-	=	X	1	1						
	•	•	•		-			Ca	H	_	"," =	ΙX	1,	1	1					
								1	I											

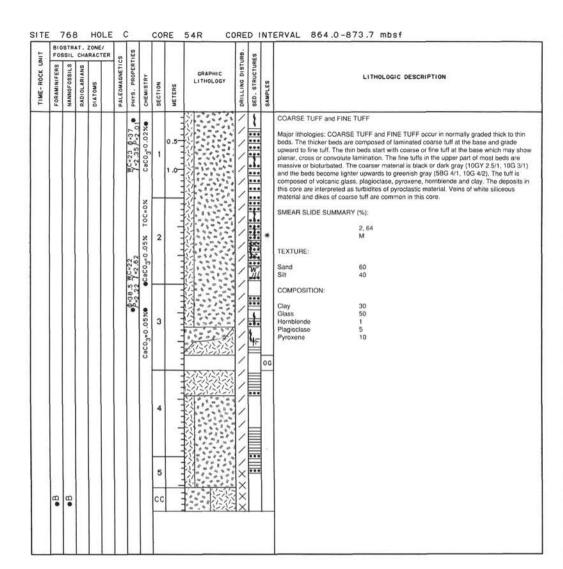


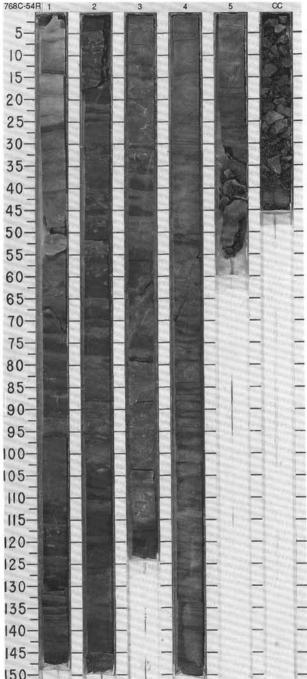

200				CONE/ RACTE	R	ES		1			IRB.	ES						
	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEDMAUNETICS PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LII	HOLOGIC	DESCRIP	PTION	
							TOC=0%	1	0.5		////////	ME HE MAN		FINE TUFF and coarse tuff Major lithology: successive mediu normal graded bodding, have sha cross lamination. The fine fulf in it more bioturbated (including Chon shows compaction cracks at the ta bed. The furf is composed of rock Minor lithology: coarse fuff occurs It is thickly laminated and grades 1) to grayish green (7:56 578)	p basal or e upper p frites). Son p of the si fragments at the bass ip into fine	intacts, ar arts of the ne of the tequence v feldspar e of media tuff. The	nd show beds is fine tuff i where it i (plagical um grade beds are	thin planar, convolute and not well laminated and is s clay grade material and s overlain by the next grad ase), and glass. ad beds in Sections 3 and d dark grayish green (10G)
						-0-39 WC-27	0.03%	2	Transfer of		11111	五五二十四二十八八万二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二	*	The proclastic material. There are so claystone. SMEAR SLIDE and THIN SECTION T 1, 13	ne sedim	entary dike	es of silts	
						60-00	●CaCO ₃ =0.03%				111			D TEXTURE:	D 70	D 70	D	D
								3	1		111	上	*	Silt 5 Clay 65 COMPOSITION:	20 10	30	=	<u> </u>
							×				111	「日下門」が一脚型		Biotite	10 5 10		Tr — 5 10 1	5 90
					1		●CaCO ₃ =0.03% TOC=0%	4	- Internation		1	四次一十二年 2000		Opaques 3	3 - 2 - 70	2 3 50	Tr	2
							90300	5			111							
								_			111	Д F	*					
							CaCO3-0.05%	6		" = " =	/	I I						
							ľ	7			111							
	• B	• B	•B	1		1	1	cc	-	1 = 1 1 = 11	×	1	1					

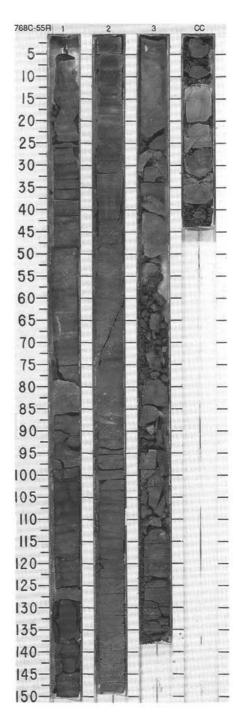


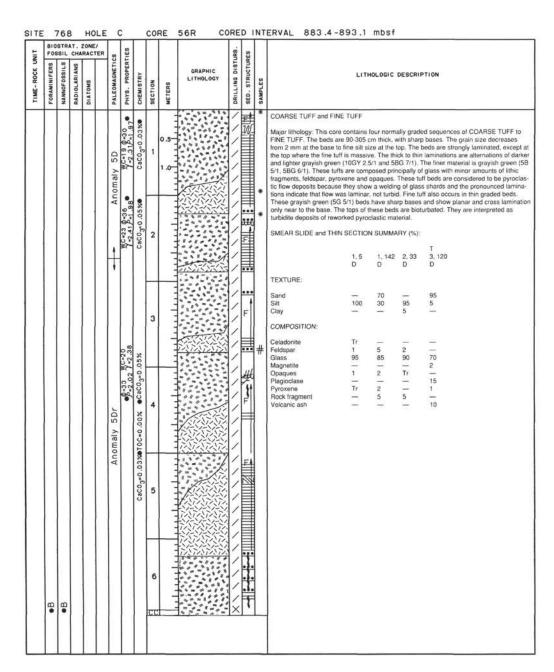


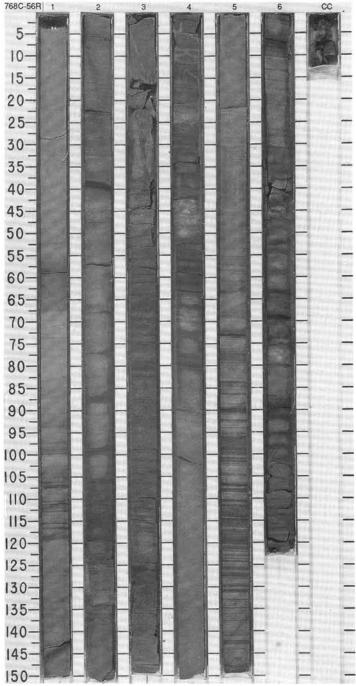




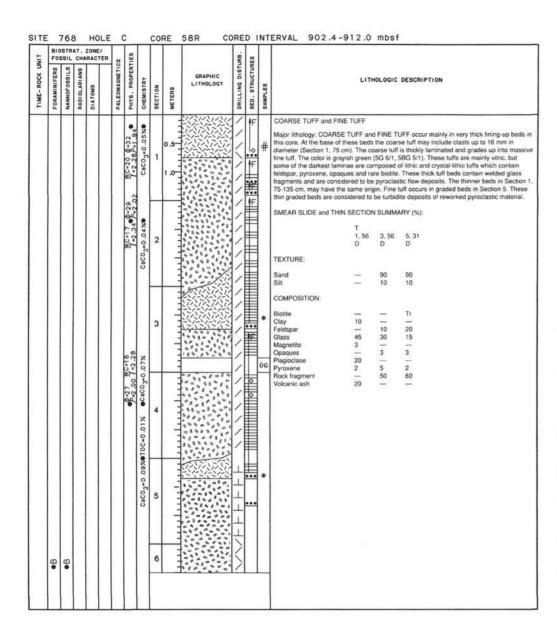


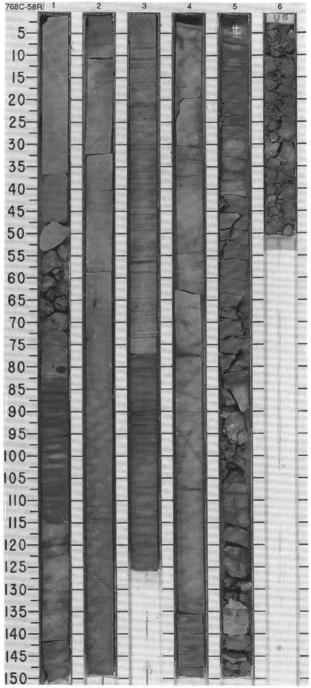

Ę	FOS	SSIL		ZONE/ RACTER	83	TIES					URB.	RES		
IIME-ROCK C	FORAMINIFERS	NAMNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
7					T		Г				1			COARSE TUFF and FINE TUFF
						9	T0C=0.01%@CaC03=0.05%	1	1.0		//////		###	Major lithologies: COARSE TUFF and FINE TUFF occur interbedded in a series of grad bods with sharp basal contacts. Beds range from 10 cm to over 2 m in thickness. The the beds are composed of coarse planar laminated tuff which fines up to fine tuff with planar and convolute laminations. Bioturbation (including Zoophycos in Section 5, 97 cm) is common in the fine tuff. The fine tuffs are dark to light grayish green (10G 3/1, 6/2) and coarse tuffs are dark grayish green (10G 3/2) or very dark green (5G 2.5/1). A bed of COARSE TUFF with scattered lapilli occurs in the upper part of the core with the base in Section 2, 78 cm. The bed is massive and poorly sorted with reverse grading at the bas fines up to coarse tuff without lapilli. The tuffs are vitric or lithic, composed of glass, rock
						WC=1	0.013		3		/			fragments, feldspar and pyroxene. These are beds of redeposited pyroclastic material. SMEAR SLIDE and THIN SECTION SUMMARY (%):
						-0-33.5 WC=19		2	1		/	1	#	T T T T T 1,103 1,142 2,75 3,56 4,47 4,73 5,12 D D D D D D D
							3=0.0530		1111		/			TEXTURE: Sand 80 90 80 20 5 85 5
						C=19 =2.59	CaCO3=0		1111		1	1		Silt 10 10 10 60 40 10 60 Clay 10 — 10 20 55 5 3
						P=2.21 7=2.59		3	11111		//	1	*	COMPOSITION: Cement
							CaCO_3-0.04%				/	1		Glass 50 60 — 40 30 30 30 Hornblende — 1 — 1 — 1
							Caco		1111		/		*	Plagioclase 15 20 45 1 5 40 1
								4			////	1	#	Pore space 10 — 25 — 3 — Pumice — — Tr — — — Proxene 2 2 3 — 5 2 1 Quartz — — 2 2 5 — 15 30 30 Yolcanic ash —
								1			//	-		
								5	11111		///	*		
											/	= :	*	
								6	111111		///	Į		
0	9	•B						СС			X	1		

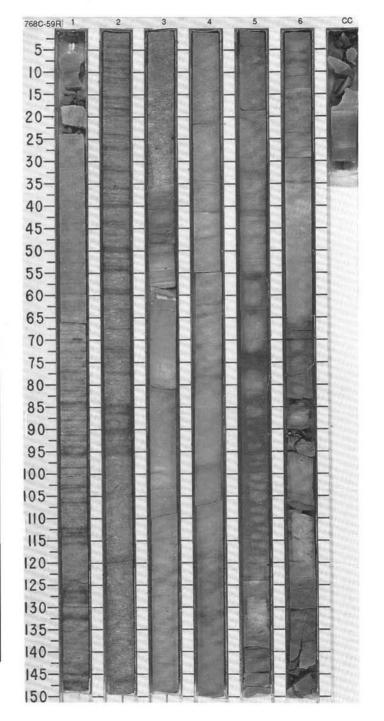


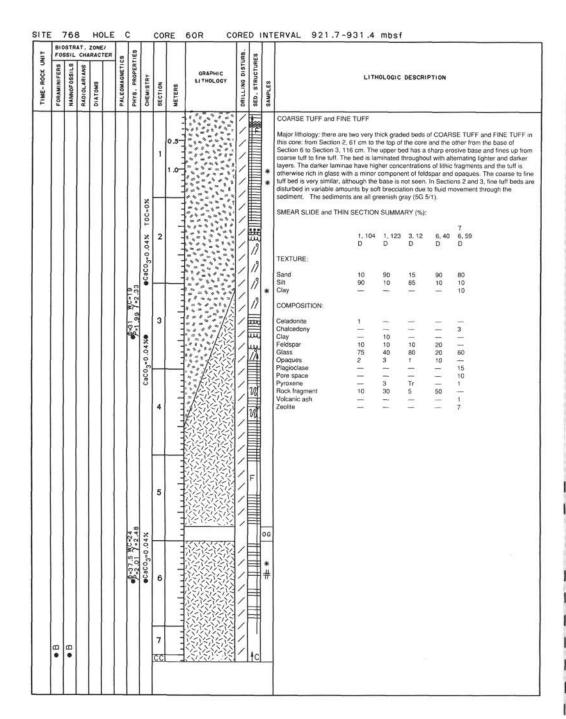


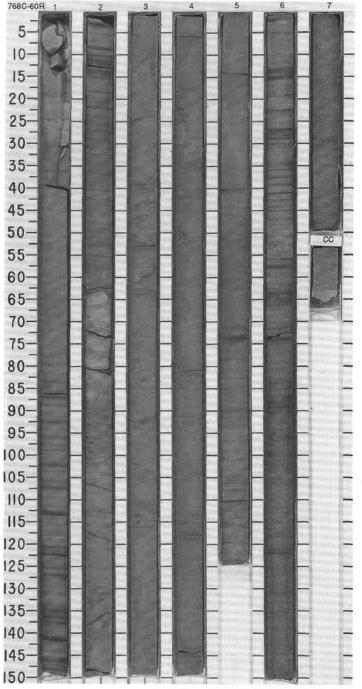
			ZONE	ren l	00	ES				88	S			
FORAMINIFERS	NANNOFORSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	Li	THOLOGIC DESCRIPTION
						WC=21 7-2.59	.23%	1	0.5	////////////			beds. The beds are composed of then massive fine tuff. Some of it at the base and massive in the u grayish green (10GY 2.5/1) and 1). The tuffs are composed of vo The overall grain size becomes f are interpreted as turbidites of vo	F and FINE TUFF occur in normally graded thick to the laminated coarse tuff which grades up first to laminate he thin beds are fine tuff throughout with planar laminat paper part where the tuff is every fine. The coarser tuff is the beds become lighter upwards to greenish gray (100 lcanic glass, plagiodase, pyroxene, homblende and climer towards the top of the core. The sediments in this.
						P-26	TOC=0.04% CaCO3=0.23%	2		ノノノノノノ	¥:	*	SMEAR SLIDE SUMMARY (%): 2, 1 D TEXTURE: Sand 20 Sitt 80 COMPOSITION:	7 CC, 33 D
8	9	2				P=2.05 7=2.53	CaCO3=0.07% CaCO3=0.04% TOC=0.04%	з		//××××/××	#F	*	Clay 5 Feldspar 1 Glass 70 Opaques Tr Pyroxene — Rock fragment 20	10 70 3 2 10

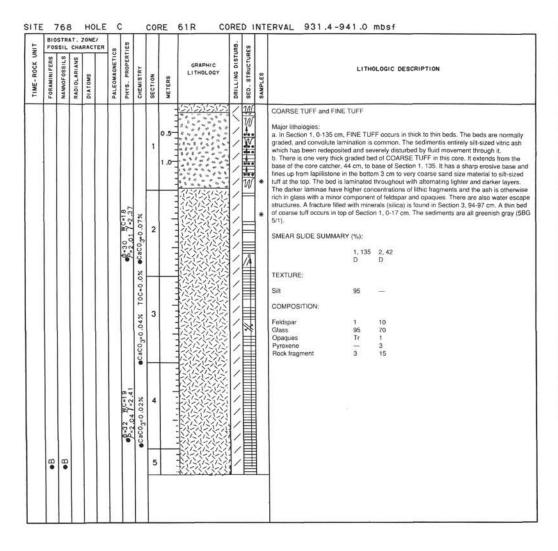


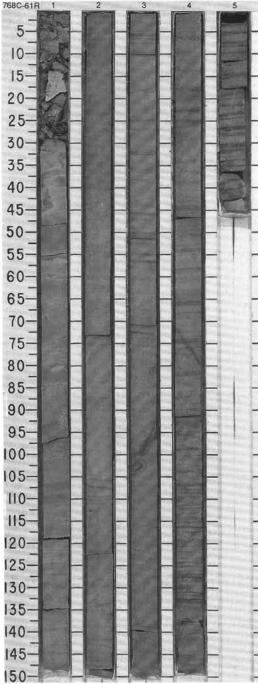


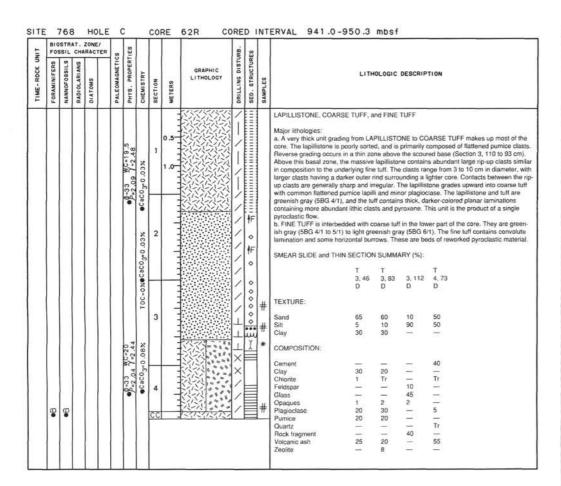

BIOSTRAT. ZONE/ FOSSIL CHARACTER						LIE8					JRB.	S			
FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION	
							CaCO3=0.03% TOC=0%	1			1	W		FINE TUFF Major kihology: Light green (5G 6/2) FINE TUFF is the only lithology. It shows planar as convoluted lamination.	

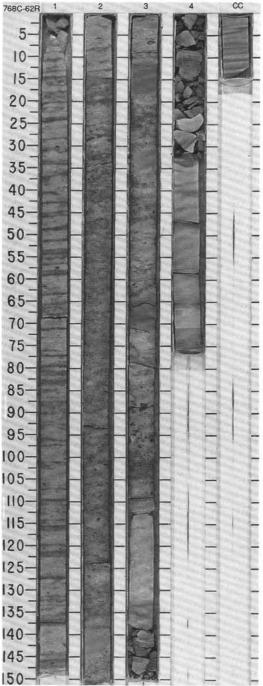


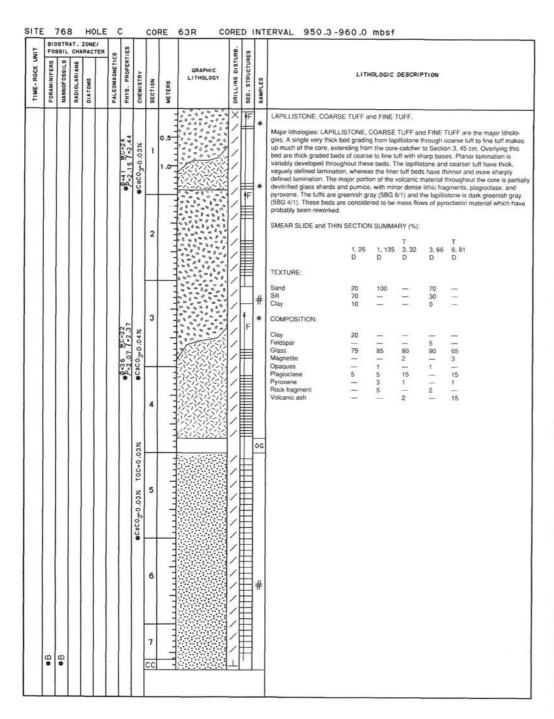


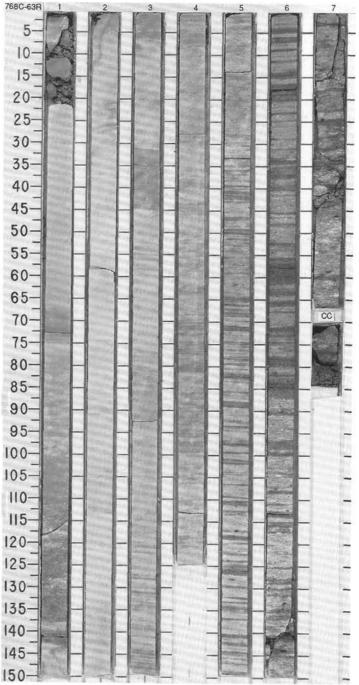


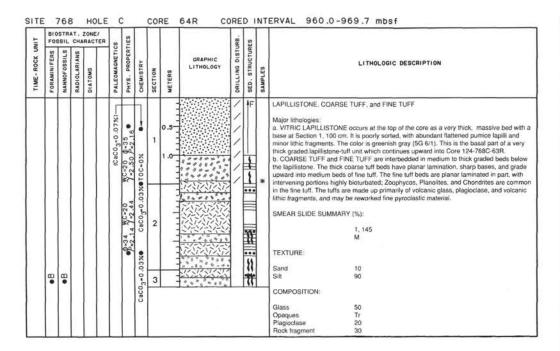

				ONE/	83	TIES					URB.	SES			
AND THE PERSON	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION	
	П					0.0					1	₽F.		COARSE TUFF and FINE TUFF	
						WC=20.5 0 32.5	CaCO3"O.06%	1	0.5		////////			Major tithologies: COARSE TUFF and FINE TUFF occur in very thick fining-up beds in core. The beds fine up from coarse, thickly laminated fulf to fine massive tuft. The color grayish green (56 62, 56 61). The tufts are mainly vitric, but some of the darkest lamin are composed of linitic and crystal tithic tufts containing feldspar, pyroxene, opaques and rare blottle. These thick tuft beds contain welded glass fragments and are considered to pyroclastic flow deposits. Fine tuff also occurs in thick normally graded, sharp based be with planar and ripple lamination in Section 3, 5 and 6. Convoluted bedding is a common feature in these beds. The color of the volcanic siltstones is grayish green (56 61, 62). They are composed of glass, clay, feldspar and rock fragments. The fine tuft beds are interpreted as turbditic deposits.	
										经经济	1			SMEAR SLIDE and THIN SECTION SUMMARY (%):	
								2	1	经经验	1			Ŧ	
	Ш							•		经经验	1			3, 24 3, 33 5, 50 6, 16 6, 37 D D M D	
									-		1	H		TEXTURE:	
1	Н									公公公公	/	Т		Sand — 15 20 — 5	
	П							П		NOW Y	1		ıı.	Silt — 85 80 80 95	
ł										12 14 14	1	m	#	Clay — — 20 —	
١								3			/			COMPOSITION:	
						37	×				1	世		Clay — — — 20 — Feldspar — 2 5 5 2	
						P=31 WC=19	●CaCO ₃ =0.05%		1.5	11 11 11	1	盂	1	Glass 45 95 75 70 95	
						M 6	3=0				1	拱	1		
	$ \ $					5.0	aco			- 11, 4, 4 - 4	1			Opaques — 1 — 1 Plagioclase 25 — — —	
	П					80			1	11 = 1 = 1	1			Magnetite 5 — — — Opaques — 1 1 Plagioclase 25 — — — — — — Pore space 20 —	
	П										1	,,,		Rock fragment — 15 2 —	
	Ш					1.2		4		1.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	1	#	1		
	П			Н		Ø=32.5 WC=20	×			T	1	11			
						200	0.0		-		1	W	1		
						0.0	3=0		1 8	100000	1	∳ F			
						5=3	●CaCO3=0.05%	_		1.30000	1				
					1	•	•			北大学学	1				
				П						355555E	1		*		
							\	5		2000000	Y.		1		
						1	.06		1	\$5555E	1	E			
						1	9.0		1	校校校校	1	00	1		
							300			1 - 1 - 1 - 1	/	***			
						1	0	H	-		/				
					1		023			111 = 1 = 1	/	1	*		
							T0C=0.02% C3CO3=0.06%				/	Ľ,	*		
							100	6			/				
										T= " " " " "	1				
					1				1	30,000=01	/	***	980		
											1				
	B	l _m						-	1	1	X				
		•						CC		- 1 1 - 1 - 1	1/	F	1_		
		1		1 1		1	1	1							

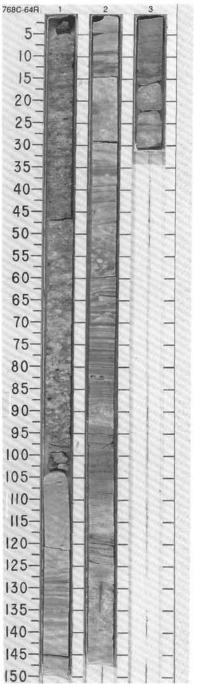


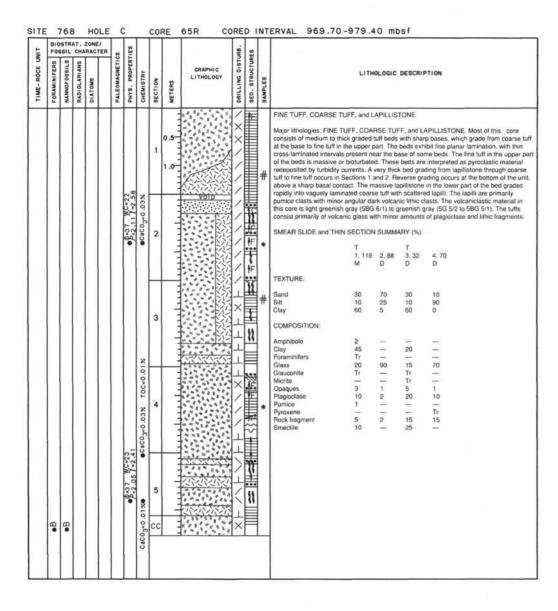


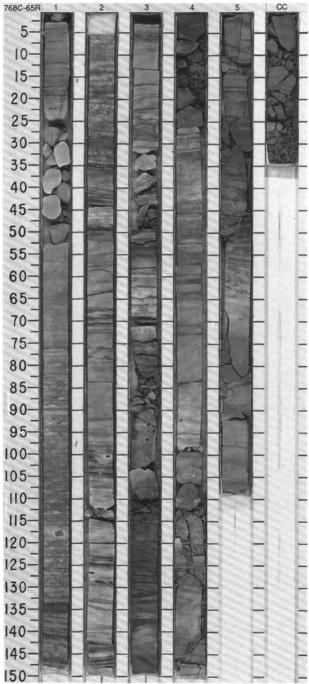


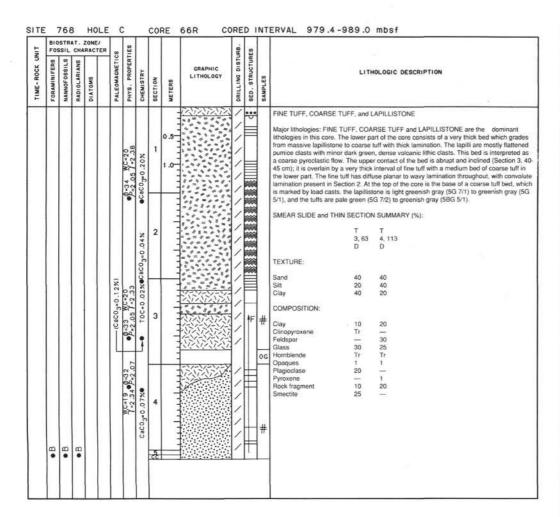


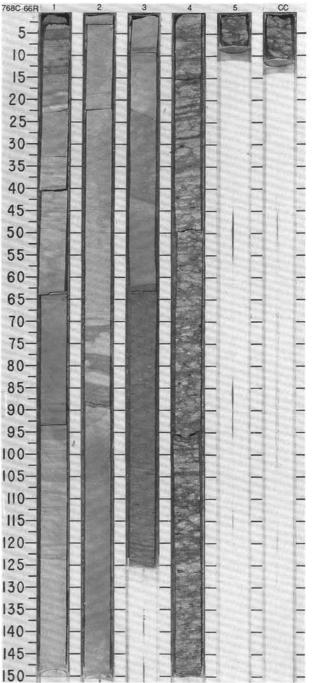


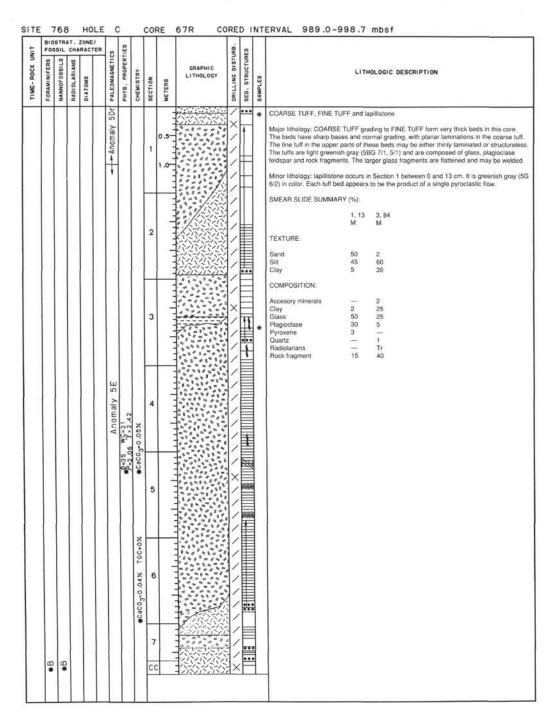


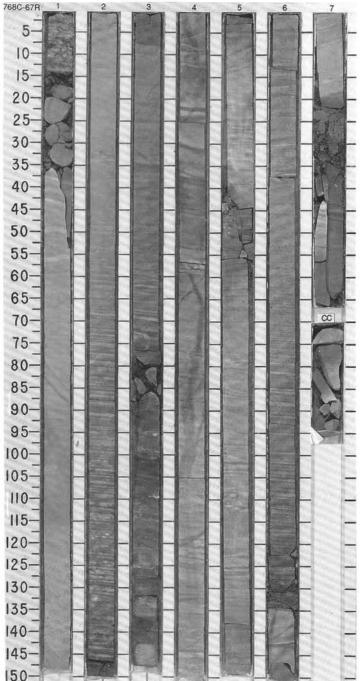


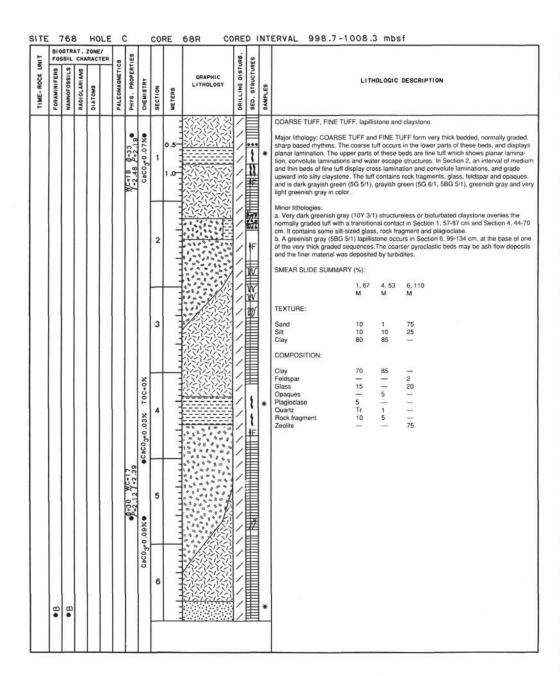


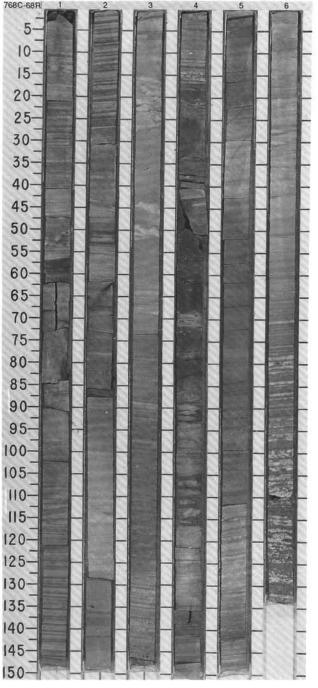


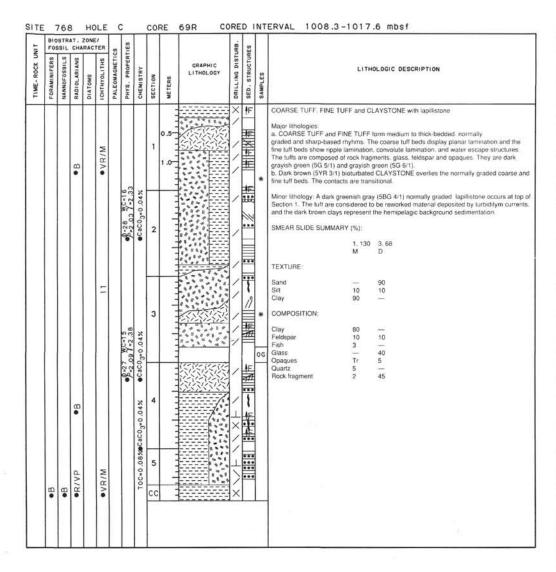


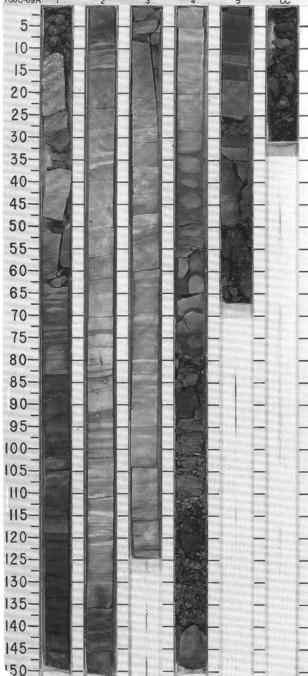


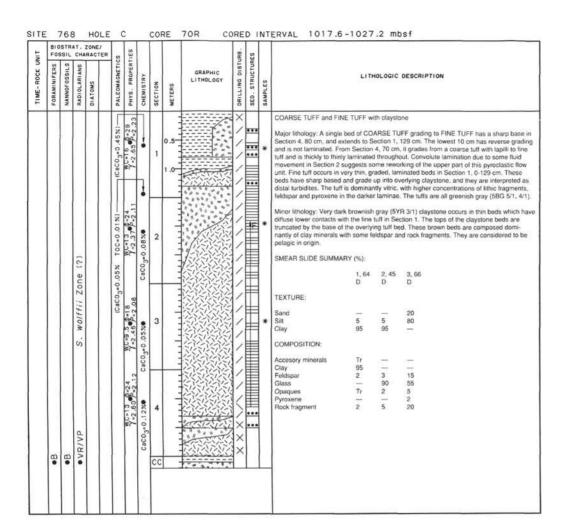


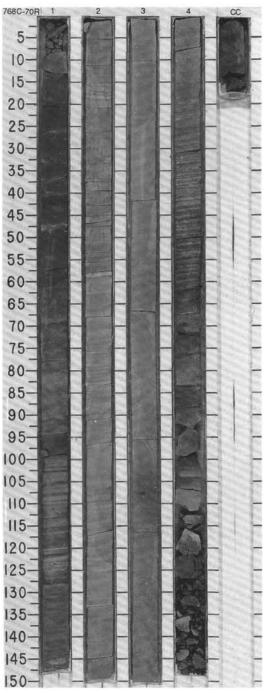


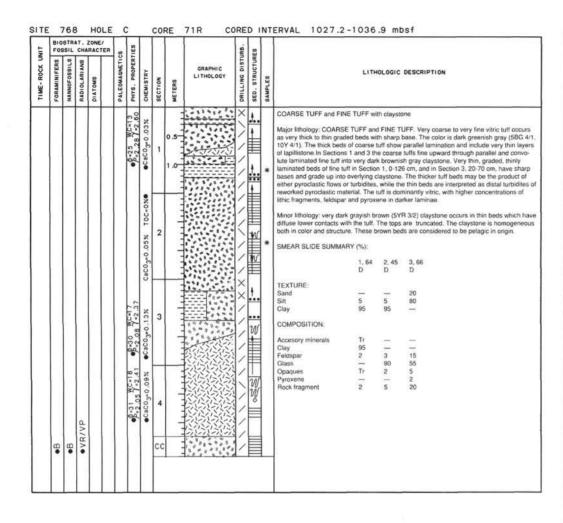


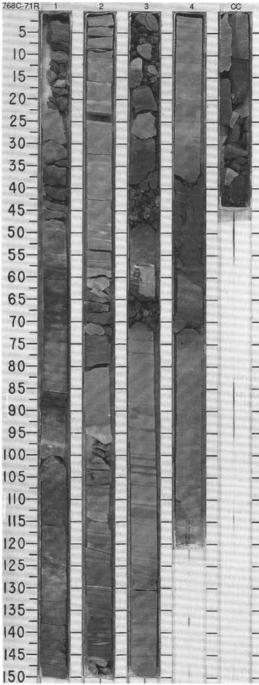


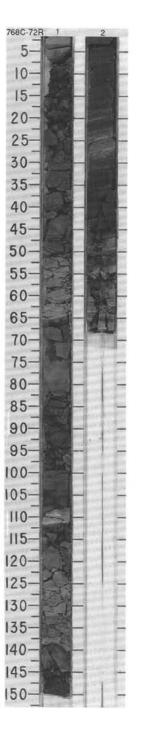


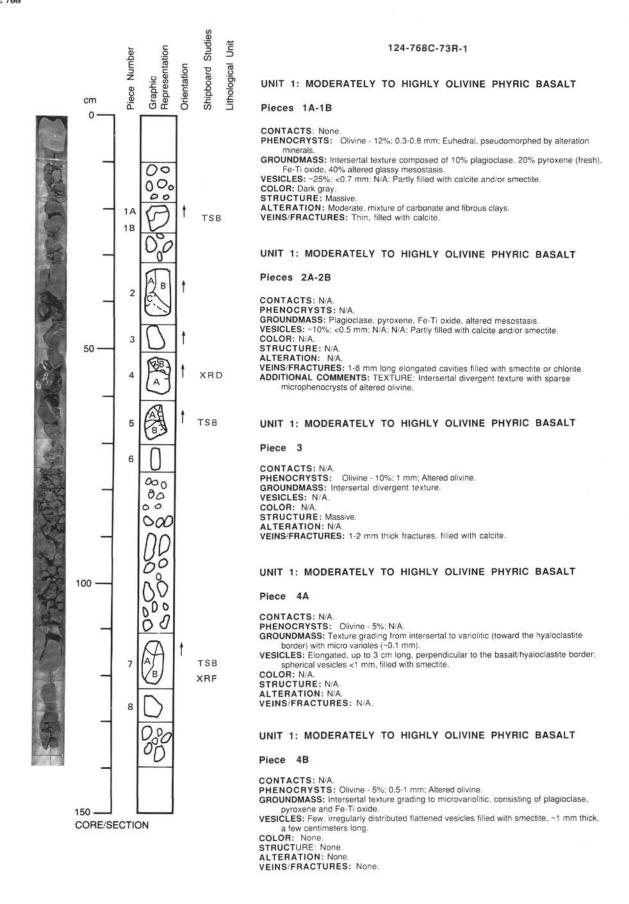












		STRA				92	IES					JRB.	ES					
	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS			PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION			
†	T	T	П		П	П	Г	Г	Г		Secretary.	1		*	CLAYSTONE and fine tu	ff		
1	1			Г			\vdash	h)	ì	*	Major lithology: Dark red	dish brown	(5YR 3/2	2) and dark brown (7.5YR 3/2) CLAYSTONE
1	1			T0C=0.02%)			80,5			0.5	100121	>	1	*				geneous both in color and structure. It contain red to be pelagic in origin.
1			D >	0.0	Ξ		WC=1		1			(
1			VR/VP	00		<u>^</u>				1.0		1						line tuff occurs in very thin to thin, faintly gra 1, 49-66 cm, has a sharp base and grades
ı	ı	- 1	•			ma	32.5			1 3	24 % = x =)				ne. It cont	ains glass	rock fragments and feldspar. These beds
ı	-			.04%		Anomaly	B-3	:	Н			>					orunes.	
1	-			(CaCO ₃ =0)	CM	7		.07%	2	1		Ĺ			SMEAR SLIDE SUMMAR	RY (%):		
1		- 1		COS	•	2		0.	-			1				1, 3 M	1.30 D	1.60 M
١,	e	- 1		Ca	•	1		Cacogeo.		-						IM	U	NA.
ľ		- 1	1		R/M.			CaC							TEXTURE:			
ı	-														Silt	100	5 95	40
1	-					ш									Clay		95	60
1	-														COMPOSITION:			
1	-														Clay	-	90	55
1	- 1	- 1	ĺ												Feldspar	10	Tr	177
1	- 1														Glass	30	10 Tr	30
1	- 1	- 1													Opaques Rock fragment	Tr 60	16	1

124-768C-73R-1

UNIT 1: MODERATELY TO HIGHLY OLIVINE PHYRIC BASALT

Pieces 5A-5B

CONTACTS: N/A

PHENOCRYSTS: Olivine - 10%; 0.1-1.0 mm; Euhedral, prismatic, pseudomorphed by

secondary minerals.

GROUNDMASS: Texture grading from intersertal (inner part) to microvariolitic to glassy with

sparse 0.15 mm microvarioles (outer green border).

VESICLES: Flattened, filled with smectite a few mm long, perpendicular to the basal

hyaloclastite boundary.

COLOR: N/A.

STRUCTURE: N/A

ALTERATION: Glass and olivine alter to a mixture of fibrous highly birefringent clays and

smectite, with minor carbonate. VEINS/FRACTURES: N/A

UNIT 1: MODERATELY TO HIGHLY OLIVINE PHYRIC BASALT

Piece 6

CONTACTS: see comments
PHENOCRYSTS: see comments **GROUNDMASS:** see comments VESICLES: see comments COLOR: see comments STRUCTURE: see comments ALTERATION: see comments VEINS/FRACTURES: see comments

ADDITIONAL COMMENTS: Altered ash with angular claystone clasts. Bedded structures (bed 1-3 cm thick), silty texture. Two sides of the piece are coated with veins of calcite

and smectite.

UNIT 1: MODERATELY TO HIGHLY OLIVINE PHYRIC BASALT

Pieces 7A-7B

CONTACTS: N/A

PHENOCRYSTS: Olivine - 12%; 0.04-0.7 mm; euhedral, altered to secondary minerals. GROUNDMASS: Intersertal divergent to variolitic texture consisting of 20% plagioclase, 8% pyroxene, Fe-Ti oxide and 20% glassy mesostasis.

VESICLES: 40%; mostly very fine; spherical (0.07 - <1 mm); N/A; Filled with fibrous clay,

allophane, and iron oxide. COLOR: N/A.

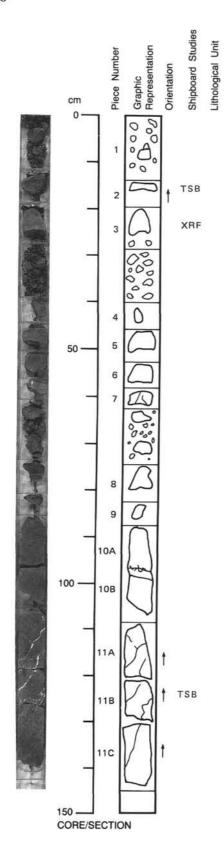
STRUCTURE: N/A

ALTERATION: Highly altered, olivine and mesostasis alter to a mixture of fibrous clay, allophane and iron oxide.

VEINS/FRACTURES: One fracture filled with mixed basaltic and sedimentary (claystone) fragments, 1-10 mm in size, cemented with calcite, 1-1.5 cm thick.

UNIT 1: MODERATELY TO HIGHLY OLIVINE PHYRIC BASALT

Piece 8


CONTACTS: N/A

PHENOCRYSTS: Olivine - 3-5%; N/A; Subhedral to euhedral, sporadically distributed throughout, some glomerocrysts. Some are sites of vesiculation, rimmed by Fe-oxide in altered portion of the piece.

GROUNDMASS: Fine grained, relatively fresh plagioclase, pyroxene and glass. VESICLES: Moderate, mostly filled by calcite and green mineral (chlorite/smectite?). COLOR: N/A.

STRUCTURE: Vesicular.

ALTERATION: Slight to moderate; Fe-oxide, chlorite/smectite. VEINS/FRACTURES: None.

124-768C-74R-1

UNIT 1: MODERATELY TO HIGHLY OLIVINE BASALT

Pieces 1-2

CONTACTS: None. PHENOCRYSTS: Olivine - 12%; 0.1-1 mm; Euhedral, pseudomorphed by secondary

GROUNDMASS: Hypocrystalline mixture of plagioclase 20%, clinopyroxene 15% and devitrified glass 23%.

VESICLES: 30%, 0.015-0.15 mm, spherical to lobate, evenly distributed, filled with clay.

COLOR: Light gray.

STRUCTURE: Glassy margin of pillow. Upper margin very fine grained, light colored, glassy with varioles and olivine phenocrysts; zone of small lobate vesicles filled with green mineral just below varioles.

ALTERATION: Highly altered. VEINS/FRACTURES: None.

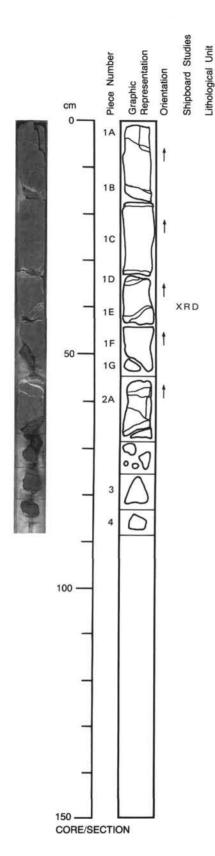
UNIT 1: MODERATELY TO HIGHLY OLIVINE PHYRIC BASALT

Pieces 3-11

CONTACTS: N/A.
PHENOCRYSTS: Olivine - 15%; 0.1-1 mm; Euhedral, prismatic, altered to iddingsite and

carbonate.

GROUNDMASS: Glassy to microcrystalline, sometimes variolitic to intersertal texture, with radiating fresh plagioclase 0.3-1.0 mm, 25%, and interstitial glass 13%, and pyroxene 0.01-0.02 mm, 10%.

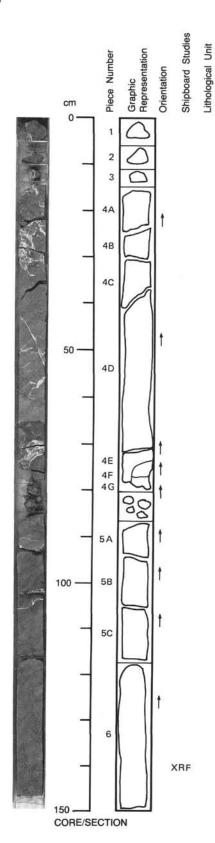

VESICLES: Numerous small (0.03-0.7 mm diameter) vesicles uniformly distributed throughout, generally lobate, filled with calcite and green clay.

COLOR: Light gray green in Piece 2, rest dark gray.

STRUCTURE: Chilled upper margin indicates lava, no evidence of pillows.

ALTERATION: Moderate; phenocrysts replaced by iddingsite and carbonate.

VEINS/FRACTURES: Few very thin carbonate veins in upper part, become numerous in Piece 6. They are irregular ~5 mm wide filled with white and buff colored calcite. Vein in Piece 6C filled with brown clay.


124-768C-74R-2

UNIT 1: MODERATELY TO HIGHLY OLIVINE PHYRIC BASALT

Pieces 1-4

CONTACTS: see comments
PHENOCRYSTS: see comments
GROUNDMASS: see comments
VESICLES: see comments

VESICLES: see comments
COLOR: see comments
STRUCTURE: see comments
ALTERATION: see comments
VEINS/FRACTURES: see comments
ADDITIONAL COMMENTS: Veins in Pieces 1B, 1D, 1E, 1F, and 2A are mainly red clay with some carbonate. Mineralogy and textures are similar to Section 124-768C-74R-1, but vesicles become larger in Pieces 1B and 1C. The vein in the bottom of 1E contains a green banded mineral which may represent the vesicle filling.

124-768C-75R-1

UNIT 1: MODERATELY TO HIGHLY OLIVINE PHYRIC BASALT

Piece 1

CONTACTS: see comments PHENOCRYSTS: see comments GROUNDMASS: see comments VESICLES: see comments COLOR: see comments STRUCTURE: see comments **ALTERATION:** see comments

VEINS/FRACTURES: see comments
ADDITIONAL COMMENTS: Chilled margin with varioles in glass and olivine phenocrysts in microcrystalline to intersertal matrix. No contact. 15% filled vesicles.

UNIT 1: MODERATELY TO HIGHLY OLIVINE PHYRIC BASALT

Piece 2

CONTACTS: N/A PHENOCRYSTS: Olivine altering to dark green mineral.

GROUNDMASS: Variolitic to intersertal and microcrystalline. Intergrown plagioclase laths, pyroxene, and mesostasis.

VESICLES: 15-20% filled or partially filled mainly with green clay or calcite.

COLOR: Gray with pale green chilled margin.

STRUCTURE: N/A.

ALTERATION: Slight to moderate.

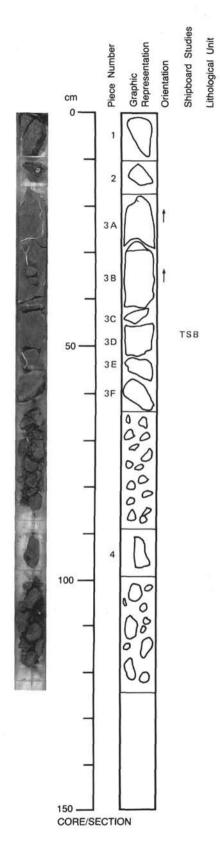
VEINS/FRACTURES: 1-2 mm irregular veins filled with calcite.

UNIT 1: MODERATELY TO HIGHLY OLIVINE PHYRIC BASALT

Pieces 3-6

CONTACTS: Fragmental chilled margin.

PHENOCRYSTS: Olivine - <10%; N/A.
GROUNDMASS: Pillow margins are glassy with varioles; texture of main parts varies from intersertal to equigranular microcrystalline consisting of plagioclase, pyroxene and glassy mesostasis.


VESICLES: Up to 15% lobate vesicles, mostly filled with green material, some with calcite.

COLOR: N/A

STRUCTURE: N/A

ALTERATION: N/A.

VEINS/FRACTURES: Top half--vein networks. Fe-oxidation along some veins and adjacent rock. Red clay parting and veining near the bottom of 4D and in 4E where it is associated with pillow margin.

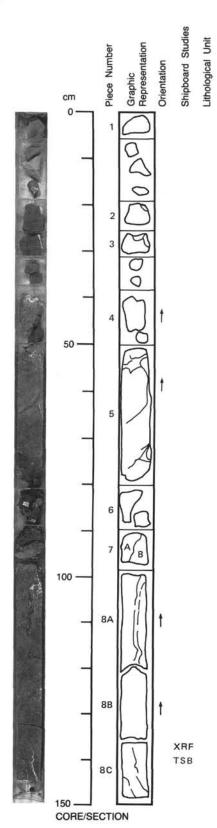
124-768C-75R-2

UNIT 1: MODERATELY TO HIGHLY OLIVINE PHYRIC BASALT

Pieces 1-3

CONTACTS: Chilled margins of pillows in Piece 1, 3E and 3F.
PHENOCRYSTS: Olivine - 10%; 0.2-1.0 mm; Euhedral prisms, pseudomorphed by secondary minerals.

GROUNDMASS: Microcrystalline to hypocrystalline, intersertal divergent aggregates of plagioclase 24%, and clinopyroxene 7%, and mesostasis 24%.


VESICLES: 35%; 0.03-0.6 mm; spherical to lobate; filled with clays and carbonate.

COLOR: Brownish gray.

STRUCTURE: Chilled margins of pillows in Pieces 1, 3E, and 3F.

ALTERATION: Highly altered, mesostasis and olivine altered to allophane and iron oxide.

VEINS/FRACTURES: None.

124-768C-76R-1

UNIT 1: MODERATELY TO HIGHLY OLIVINE PHYRIC BASALT

Piece 1

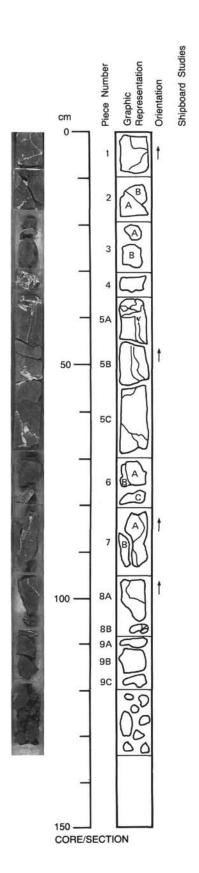
CONTACTS: see comments PHENOCRYSTS: see comments GROUNDMASS: see comments VESICLES: see comments COLOR: see comments STRUCTURE: see comments ALTERATION: see comments VEINS/FRACTURES: see comments

ADDITIONAL COMMENTS: Variolitic chilled margin continues from bottom of Section

124-768C-75R-2.

UNIT 1: MODERATELY TO HIGHLY OLIVINE PHYRIC BASALT

Pieces 2-8

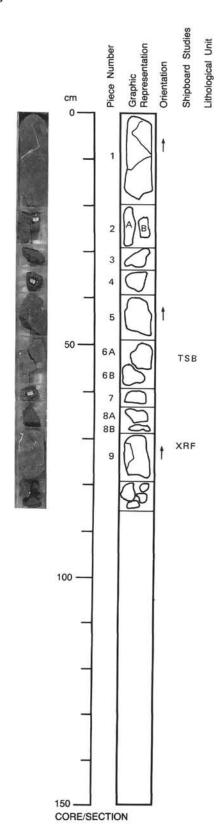

CONTACTS: N/A.

PHENOCRYSTS: Olivine - 10%; N/A; Including Cr-spinel, replaced by secondary minerals, GROUNDMASS: Hypocrystalline to fine grained, sporadic intersertal texture consisting of plagioclase 15%, pyroxene 10% and mesostasis 32%. Grain size increases from Piece 2 to Piece 6.

VESICLES: 15%; 0.05-0.5 mm; spherical to lobate; N/A; Filled with green clay. occasionally lined with limonite.

COLOR: Brownish gray except for green chilled margin.
STRUCTURE: Broken pillow lava, Pieces 7 and 8 are pillow margin hyaloclastite.
ALTERATION: High. Mafic minerals are commonly coated with Fe-oxide; pyroxene is altered to a green mineral.

VEINS/FRACTURES: Discontinuous and irregular. Occur throughout. Carbonate fills the thinner veins and carbonate, mud and hyaloclastic fragments fill the wider veins and interpillow spaces.



124-768C-76R-2

UNIT 1: MODERATELY TO HIGHLY OLIVINE PHYRIC BASALT

Pieces 1-9

CONTACTS: see comments
PHENOCRYSTS: see comments
GROUNDMASS: see comments
VESICLES: see comments
COLOR: see comments
STRUCTURE: see comments
ALTERATION: see comments
VEINS/FRACTURES: see comments
ADDITIONAL COMMENTS: This section shows similar features to the rocks in Section
124-768C-76R-1 including oxidized glomeroporphyritic aggregates of olivine. Chilled pillow margins grain size coarsening inward, generally similar vein systems and brown-gray color.

124-768C-76R-3

UNIT 1: MODERATELY TO HIGHLY OLIVINE PHYRIC BASALT

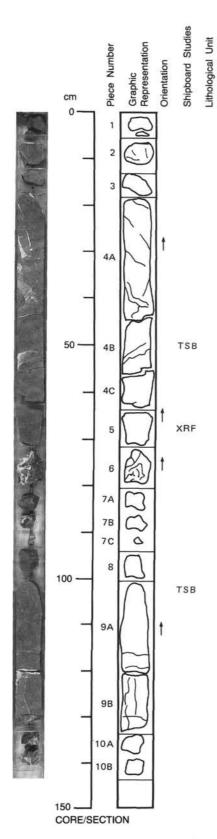
Pieces 1-9

CONTACTS: N/A.
PHENOCRYSTS: Olivine - 7%; N/A; Euhedral prisms pseudomorphed by secondary

PHENOCRYSTS: Olivine - /%; N/A; Eunedral prisms pseudomorphied by sectionary minerals.

GROUNDMASS: Microcrystalline to fine grained, patchy intersertal texture made up of radiating 35% plagioclase laths 0.01-1.0 mm, and 3% pyroxene 0.01-0.2 mm and 23% glassy mesostasis.

VESICLES: 30%; generally 0.1-1 mm; lobate to spherical; N/A; Most filled or partly filled with green clay.


COLOR: Brownish gray.

STRUCTURE: Massive.

ALTERATION: Moderate, plagioclase laths in upper part of section are iron stained; iron stained zones around fractures.

stained zones around fractures.

VEINS/FRACTURES: 1-2% white and buff colored calcite ~5 mm wide.

124-768C-77R-1

UNIT 1: MODERATELY TO HIGHLY OLIVINE PHYRIC BASALT

Pieces 1-4

CONTACTS: No contacts. Chilled margins of fractured pillows.

PHENOCRYSTS: Olivine - 10%; 0.2-1.5 mm; Euhedral prisms. Commonly altered to

fibrous clay, and Fe-oxide.

GROUNDMASS: Fine-grained intersertal texture with aggregates of 24% plagioclase laths 0.02-1.0 mm, 2% olivine, 2% pyroxene 0.002-0.2 mm, and 20% glassy mesostasis. There are several examples of fine-grained margins and glassy margins grading inward to coarser grained rock from Pieces 1 through 3, 2 to 5, 6 to 10.

VESICLES: 30%; 0.1-1.0 mm; spherical to lobate; N/A; Filled with clay

COLOR: Brownish gray to gray.
STRUCTURE: Pillowed.
ALTERATION: Moderate, olivine and mesostasis alters to clays.

VEINS/FRACTURES: Veins and interpillow filling of red clay up to 3 cm thick. Clay is amygdaloidal in some veins and may be cut by later veins of white calcite (<1 cm) or produce a breccia of hyaloclastite fragments, clay and calcite veins.

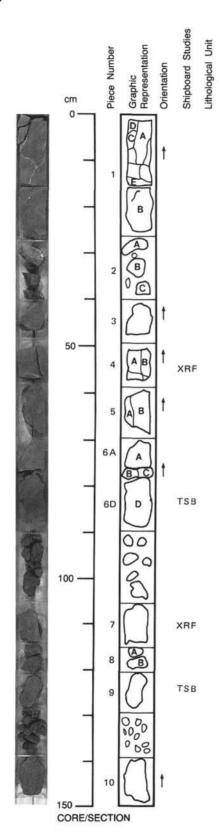
UNIT 1: MODERATELY TO HIGHLY OLIVINE PHYRIC BASALT

Pieces 5-9

CONTACTS: None.

PHENOCRYSTS: Olivine - 5%; 0.15-0.5 mm; Euhedral prisms, pseudomorphed by

secondary minerals.


GROUNDMASS: Fine-grained, intersertal and divergent aggregates of 28% plagioclase, 1% olivine, 2% clinopyroxene, and 20% mesostasis.

VESICLES: 45%; 0.1-1.0 mm; spherical to lobate vesicles; N/A; Filled with clay.

COLOR: Brownish-gray. STRUCTURE: Pillowed.

ALTERATION: Moderate, olivine and mesostasis alter to clay and fibrious minerals.

VEINS/FRACTURES: As in Pieces 1 to 4.

124-768C-77R-2

UNIT 1: MODERATELY TO HIGHLY OLIVINE PHYRIC BASALT

Pieces 1-5

CONTACTS: None

PHENOCRYSTS: Olivine - 12%; 0.1-0.6 mm; Euhedral prisms, pseudomorphed by

secondary minerals.

GROUNDMASS: Fine-grained intersertal aggregates of 22% plagioclase 0.01-0.5 (An50-70), 1% clinopyroxene 0,01-0.2, and 24% mesostasis.

VESICLES: 25%; 0.03-2.0 mm; spherical; N/A; Filled with clay.

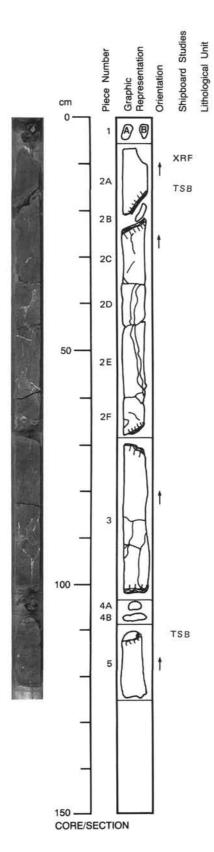
COLOR: Brownish-gray. STRUCTURE: Massive.

ALTERATION: Moderate, olivine and mesostasis replaced by green to yellow fibrous clays. VEINS/FRACTURES: Few.

UNIT 1: MODERATELY TO HIGHLY OLIVINE PHYRIC BASALT

Pieces 6-9

CONTACTS: None.


PHENOCRYSTS: Olivine - 8%; 0.07-1.3 mm; Euhedral, pseudomorph ed by secondary

GROUNDMASS: Fine-grained aggregate of 35% plagioclase, 1% olivine, 1% clinopyroxene 0.17 mm, and 25% mesostasis.

VESICLES: 30%; 0.03-2.0 mm; irregular; N/A; Filled with clay, two size groups. COLOR: Brownish-gray.
STRUCTURE: Large pillows >50 cm.

ALTERATION: Moderate, pale greenish and yellowish fibrous clays replace olivine and

VEINS/FRACTURES: Few.

124-768C-78R-1

UNIT 1: MODERATELY TO HIGHLY OLIVINE PHYRIC BASALT

Pieces 1-5

CONTACTS: N/A.

PHENOCRYSTS: Altered olivine - 8-10%; 0.5-1 mm; Euhedral, pseudomorphosed by smectite and calcite

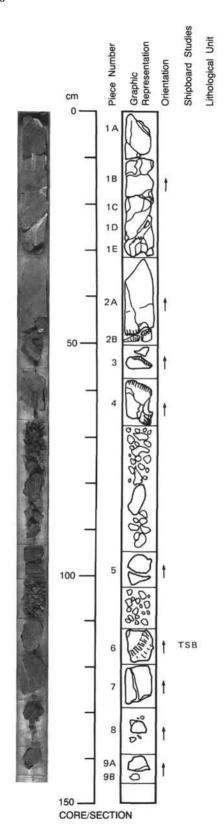
GROUNDMASS: Varying from intersertal to intersertal divergent to variolitic to glassy. Mineral assemblage is 10 % plagioclase, 12% clinopyroxene (microlithic to skeletal),

Fe-Ti oxide, and mesostasis 30%. VESICLES: 40%; 0.01-0.3 mm; N/A; N/A; Filled with smectite and/or calcite. Larger

vesicles (1-2 mm) are lined or filled with smectite.

vesicles (1-2 mm) are inited or inited with stricture.

COLOR: Brownish gray.


STRUCTURE: Pillowed, moderately brecciated.

ALTERATION: Highly altered.

VEINS/FRACTURES: Few fractures. Veins 2-10 mm thick, irregular, filled with brown clay and lesser amount of calcite. Smaller veins (0.5-3 mm) filled with calcite cut the former

ones.

ADDITIONAL COMMENTS: Piece 2A: Moderately phyric olivine basalt with texture grading from intersertal divergent to variolitic. Chilled border (pillow rim) inclines 45 degrees. Pieces 2B-2F: Pieces 2C, 2D, and 2F show a thick (up to 2 cm) vein filled with brown clay specked and cemented by calcite. Thin calcite veins occur through all unit. Upper and lower boundaries are chilled margins of one pillow (estimated minimum diameter approximately 50 cm). Piece 3A: Upper part inclines 20 degrees and lower part approximately 0 degree, Boundaries are chilled margin of a pillow. Pieces 4-5: Interpillow glassy basalt and chilled margin of a pillow are shown by Pieces 4A and 4B, and by the upper border (0 degree inclination) of Piece 5.

124-768C-78R-2

UNIT 1: MODERATELY TO HIGHLY OLIVINE PHYRIC BASALT

Pieces 1-3

CONTACTS: see comments PHENOCRYSTS: see comments GROUNDMASS: see comments VESICLES: see comments COLOR: see comments STRUCTURE: see comments ALTERATION: see comments

VEINS/FRACTURES: see comments
ADDITIONAL COMMENTS: Moderately phyric olivine basalt with intersertal divergent texture, rarely variolitic. Color varies from brownish gray to dark brownish gray in the most altered portions (Piece 1A). Pieces 1B, 1C and 1D show thick (maximum 3 cm) breccia red veins filled with brown clays and cemented with calcite and a geode (extending through Pieces 1C-1D) lined with calcite crystals. Pieces 2A-2B show an intersertal divergent to variolitic texture(lower part of Piece 2A) suggesting a chilled pillow margin (20 degrees inclination).

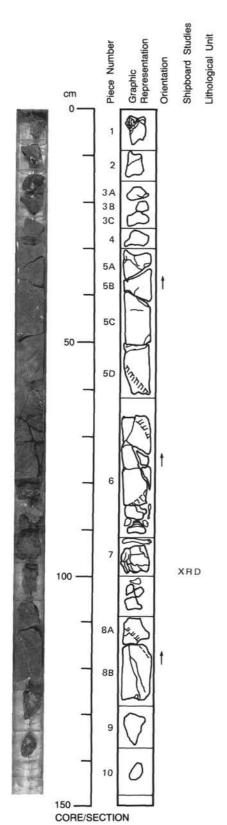
UNIT 1: MODERATELY TO HIGHLY OLIVINE PHYRIC BASALT

Pieces 4-9

CONTACTS: None.

PHENOCRYSTS: Olivine - 10%; 0.06-0.6 mm; Euhedral, pseudomorphed by secondary

GROUNDMASS: Fine-grained aggregates comprising 5% plagioclase < 0.2 mm (An50-70), 3% olivine, 22% quenched and plumose clinopyroxene < 0.3 mm and 30%


VESICLES: 30%; 0.08-1.0 mm; N/A; N/A; Filled with green clays and carbonate.

COLOR: Brown gray to greenish gray.

STRUCTURE: Pillowed to massive (center of pillow?).

ALTERATION: Highly altered, olivines and mesostasis replaced by fibrous clays. VEINS/FRACTURES: Mostly irregular veins, 1-5 mm thick, filled with brown clays and rare

ADDITIONAL COMMENTS: Piece 4: Texture grading from subvariolitic (center) to microvariolitic (upper and lower border) indicating chilled rims of a small (cm-sized) pillow. Unnumbered pieces in interval at 68-95 cm: Microlitic to glassy (altered) basalt, representing interpillow material. Piece 5: Moderately olivine phyric basalt with intersertal texture. Piece 6: Moderately phyric olivine basalt with intersertal to variolitic texture (varioles 1-2 mm), representing a chilled margin of a pillow. Pieces 7-9: Moderately phyric olivine basalt with uniform intersertal divergent texture, veined by brown clays and scarce calcite.

124-768C-79R-1

UNIT 1: MODERATELY TO HIGHLY OLIVINE PHYRIC BASALT

Pieces 1-5

CONTACTS: see comments
PHENOCRYSTS: see comments GROUNDMASS: see comments VESICLES: see comments COLOR: see comments STRUCTURE: see comments ALTERATION: see comments VEINS/FRACTURES: see comments

ADDITIONAL COMMENTS: Moderately phyric olivine basalt with intersertal divergent to microvariolitic to glassy texture. Pillowed structure. Pieces 1 to 3 show variolitic and glassy texture. Pieces 4 to 5 show intersertal divergent to variolitic (lower part of Piece 5C) texture. These pieces could represent one pillow with thick (4-5 cm) variolitic borders, lower one inclines 70 degrees.

UNIT 1: MODERATELY TO HIGHLY OLIVINE PHYRIC BASALT

Pieces 6-7

CONTACTS: N/A

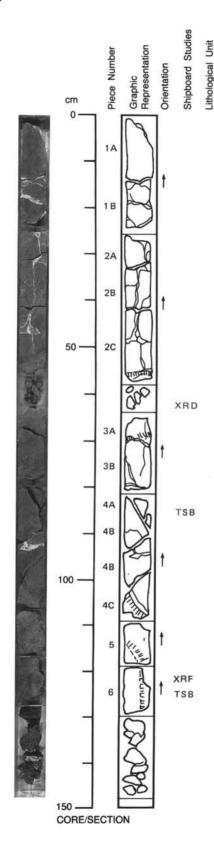
PHENOCRYSTS: Altered (to smectite) olivine, variable in frequency from 5% to 10%. **GROUNDMASS:** Textures varying from intersertal divergent to subvariolitic to microvariolitic, or variolitic to glassy.

VESICLES: None.

COLOR: Greenish gray to brownish gray to dark green (altered glass).

STRUCTURE: Pillowed (pillow rim on the lower part of Piece 6) and brecciated (lowermost part of Piece 6 and Piece 7), representing a part of a pillow and interpillow material consisting of rock fragment and glassy matrix.

ALTERATION: N/A.


VEINS/FRACTURES: Some fractures in Piece 6. Brown clay veins 2-10 mm thick and calcite veinlets occur in Piece 6. Piece 7 shows frequent calcite veinlet.

UNIT 1: MODERATELY TO HIGHLY OLIVINE PHYRIC BASALT

Pieces 8-10

CONTACTS: see comments PHENOCRYSTS: see comments **GROUNDMASS:** see comments VESICLES: see comments COLOR: see comments STRUCTURE: see comments ALTERATION: see comments VEINS/FRACTURES: see comments

ADDITIONAL COMMENTS: Similar in petrographical features to Pieces 1-5. Pieces 8A and 8B show a chilled pillow margin, inclined about 80 degrees, in the upper portions.

124-768C-79R-2

UNIT 1: MODERATELY TO HIGHLY OLIVINE PHYRIC BASALT

Pieces 1-2

CONTACTS: see comments PHENOCRYSTS: see comments **GROUNDMASS:** see comments VESICLES: see comments COLOR: see comments STRUCTURE: see comments ALTERATION: see comments VEINS/FRACTURES: see comments

ADDITIONAL COMMENTS: Pieces 1, 2A and 2B show uniformly subvariolitic textures. Lower part of Piece 2C shows a variolitic border (lower chilled margin of a pillow) a few cm thick with 220 degrees azimuth.

UNIT 1: MODERATELY TO HIGHLY OLIVINE PHYRIC BASALT

Pieces 3-4

CONTACTS: None.

PHENOCRYSTS: Olivine - 12%; 0.07-0.8 mm; Euhedral, pseudomorphed by secondary

GROUNDMASS: Fine-grained, subvariolitic, divergent to intersertal aggregates of 32% plagioclase 0.01-0.4, >1% clinopyroxene, 20% mesostasis. VESICLES: 35%; 0.03-1.5 mm; N/A; N/A; Filled with clay.

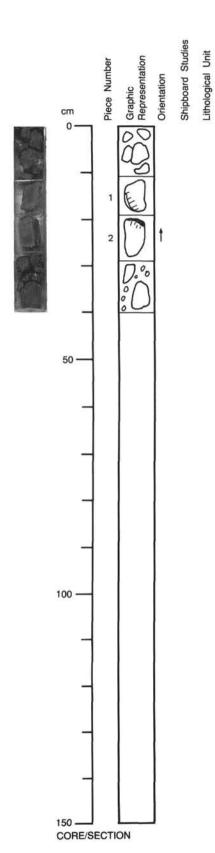
STRUCTURE: Pieces 3B, 3D and 4C show the upper (azimuth 220 degrees) and lower (azimuth 130 degrees) chilled margins, with variolitic texture, 3-5 cm thick, of a pillow.

ALTERATION: Highly altered, 40% yellowish and colorless fibrous clay replacing

mesostasis and olivine.
VEINS/FRACTURES: None.

UNIT 1: MODERATELY TO HIGHLY OLIVINE PHYRIC BASALT

Pieces 5-6

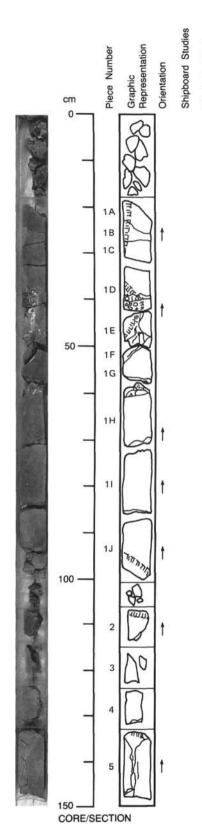

CONTACTS: None. PHENOCRYSTS: Olivine - 12%; 0.07-0.6 mm; Euhedral olivine, pseudomorphed by secondary minerals.

GROUNDMASS: Fine-grained variolitic, comprising 8% plagioclase 0.006-0.02 (An50-70), 2% olivine, 18% clinopyroxene < 0.1 quenched and plumose, and 2518% mesostasis.

VESICLES: 3%; 0.08-0.7; Round to irregular; N/A; Filled with clay.

STRUCTURE: Show well developed variolitic margins (up to 7 cm in Piece 5) of possibly

ALTERATION: Highly altered, 56% Mesostasis oxidized and olivine replaced by yellow green clay.
VEINS/FRACTURES: N/A.



124-768C-79R-3

UNIT 1: MODERATELY TO HIGHLY OLIVINE PHYRIC BASALT

Pieces 1-2

CONTACTS: see comments
PHENOCRYSTS: see comments
GROUNDMASS: see comments
VESICLES: see comments
COLOR: see comments
STRUCTURE: see comments
ALTERATION: see comments
ALTERATION: see comments
VEINS/FRACTURES: see comments
ADDITIONAL COMMENTS: Pieces 1 and 2 are lithologically similar to Section
124-768C-79R-2, Pieces 5-6 and show subvariolitic texture in inner part, and chilled variolitic borders of a pillow.

124-768C-80R-1

UNIT 1: MODERATELY TO HIGHLY OLIVINE PHYRIC BASALT

Pieces 1-5

CONTACTS: N/A.

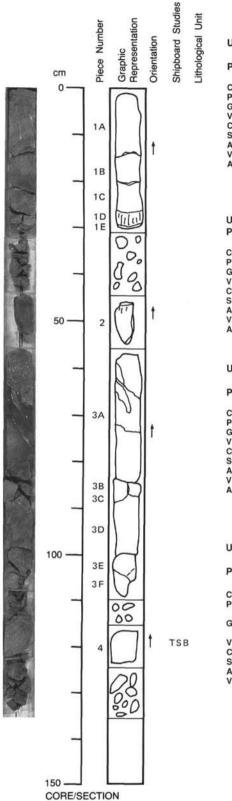
PHENOCRYSTS: Olivine - 5-10%; N/A; Pseudomorphosed by green or orange-yellow smectite and scarce calcite.

GROUNDMASS: Consisting of plagioclase, pyroxene, Fe-Ti oxide and altered glassy

mesostasis. Varies in texture from intersertal to subvariolitic.

VESICLES: Very small (<0.1 mm) vesicles uniformly distributed, lined with smectite, and sparse, coarser (0.5-1 mm) filled with smectite and less frequently with calcite.

COLOR: Brown gray to green gray. STRUCTURE: Pillowed, brecciated.


ALTERATION: N/A.

VEINS/FRACTURES: Fractures are widely spaced. Irregular veins filled with brown clays, up to 4 cm in thickness, and filled with a fine breccia composed of altered glass cemented by brown clay or calcite.

ADDITIONAL COMMENTS:

Piece 1: Consisting of moderately phyric basalt with intersertal to subvariolitic texture. Fractured and cemented by brown clays or by fine-grained breccia of glass clasts cemented with calcite or brown clays. Subvari (azimuth 90 degrees) and at bottom of Piece 1J (azimuth 120 degrees). Piece 2: Moderately phyric olivine basalt with subvariolitic to glassy texture.

Representing chilled margin of pillow. Pieces 3-5: Moderately phyric olivine basalt with intersertal divergent groundmass, with veins filled with brown clays and calcite.

124-768C-80R-2

UNIT 1: MODERATELY TO HIGHLY OLIVINE PHYRIC BASALT

Pieces 1A-1E

CONTACTS: see comments
PHENOCRYSTS: see comments
GROUNDMASS: see comments
VESICLES: see comments
COLOR: see comments
STRUCTURE: see comments
ALTERATION: see comments
VEINS/FRACTURES: see comme

VEINS/FRACTURES: see comments

ADDITIONAL COMMENTS: Moderately phyric olivine basalt with intersertal to subvariolitic texture, showing thin fractures filled with green smectite and/or calcite. Pieces 1D and 1E show the lower chilled margin of a pillow (azimuth 180 degrees).

UNIT 1: MODERATELY TO HIGHLY OLIVINE PHYRIC BASALT Piece 2

CONTACTS: see comments
PHENOCRYSTS: see comments
GROUNDMASS: see comments
VESICLES: see comments
COLOR: see comments
STRUCTURE: see comments
ALTERATION: see comments
VEINS/FRACTURES: see comments

ADDITIONAL COMMENTS: Moderately phyric olivine basalt with intersertal divergent to subvariolitic texture, showing a chilled margin on top (azimuth 180 degrees).

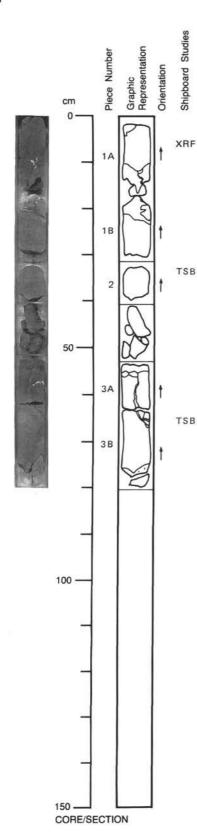
UNIT 1: MODERATELY TO HIGHLY OLIVINE PHYRIC BASALT

Piece 3

CONTACTS: see comments
PHENOCRYSTS: see comments
GROUNDMASS: see comments
VESICLES: see comments
COLOR: see comments
STRUCTURE: see comments
ALTERATION: see comments
VEINS/FRACTURES: see comment

VEINS/FRACTURES: see comments
ADDITIONAL COMMENTS: Lithologically similar to Section 124-768C-80R-1, Pieces
3-5. Shows coarser veins of brown clays (up to 5 cm, Piece 3A) and calcite amygdules
(upper part of Piece 3A).

UNIT 1: MODERATELY TO HIGHLY OLIVINE PHYRIC BASALT


Piece 4

CONTACTS: None

PHENOCRYSTS: Olivine - 10%; 0.1-0.7 mm; Euhedral, pseudomorphed by secondary minerals.

GROUNDMASS: Fine-grained, divergent to subvariolitic made up of 32% plagioclase <0.1 mm (An50-70), 3% clinopyroxene and 35% mesostasis and glass.</p>
VESICLES: 2%; 0.02-0.7 mm; Round to irregular; N/A; Filled with clays.

COLOR: N/A.
STRUCTURE: N/A.
ALTERATION: Moderate.
VEINS/FRACTURES: N/A.

124-768C-80R-3

UNIT 1: MODERATELY TO HIGHLY OLIVINE PHYRIC BASALT

Pieces 1A-1B

CONTACTS: see comments PHENOCRYSTS: see comments GROUNDMASS: see comments VESICLES: see comments COLOR: see comments STRUCTURE: see comments ALTERATION: see comments VEINS/FRACTURES: see comments

ADDITIONAL COMMENTS: Moderately phyric clivine basalt with intersertal divergent texture. Piece 1A shows a poorly vesicular massive texture. Piece 1B is finely vesicular and contains veins filled with brown clays and/or calcite.

UNIT 1: MODERATELY TO HIGHLY OLIVINE PHYRIC BASALT

Piece 2

CONTACTS: None

PHENOCRYSTS: Olivine - ~5%; 0.02-0.4 mm; Pseudomorphed by secondary minerals. GROUNDMASS: Fine-grained, divergent and intersertal, made up of 34% plagioclase, >1% olivine, >1% clinopyroxene, 30% mesostasis.

VESICLES: 30%; 0.03-1.3 mm; irregular and rounded; N/A; Filled with clays.

COLOR: Gray to dark gray.

STRUCTURE: None

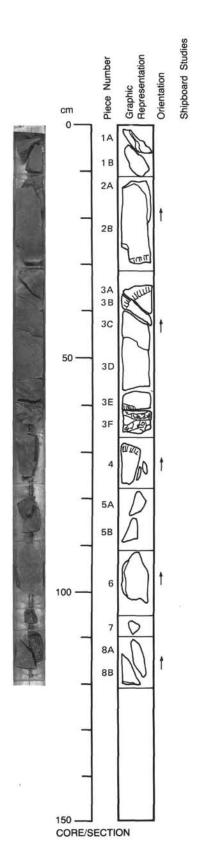
ALTERATION: Highly altered, mesostasis and olivine altered to pale green to colorless fibrous clay and allophane. VEINS/FRACTURES: N/A.

UNIT 1: MODERATELY TO HIGHLY OLIVINE PHYRIC BASALT

Piece 3

CONTACTS: None.

PHENOCRYSTS: Olivine - 5%; 0.07-0.6 mm; Euhedral completely pseudomorphed by secondary minerals.


GROUNDMASS: Fine-grained, intersertal divergent aggregates of 20% subhedral plagioclase 0.02-1.7 mm, 4% olivine 0.2-0.6 mm, >1% subhedral clinopyroxene 0.05 mm.

VESICLES: 35%; N/A; Irregular and rounded; Even. COLOR: Dark gray.

STRUCTURE: None

ALTERATION: Highly altered, olivine altered to greenish fibrous material and smectite, and mesostasis altered to clays.

VEINS/FRACTURES: Thin veins filled with brown clay and calcite.

124-768C-81R-1

UNIT X: MODERATELY TO HIGHLY OLIVINE PHYRIC BASALT

Pieces 1-8

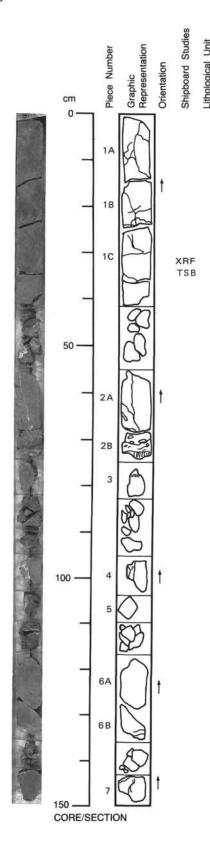
CONTACTS: N/A.

PHENOCRYSTS: Olivine - 1-10%; N/A; Replaced by green or orange yellow smectite.

GROUNDMASS: Consisting of plagloclase, pyroxene, iron ore and intersertal glass showing intersertal to subvariolitic texture. Locally (adjacent to subvariolitic rims and in

intersertal breccia) glassy texture.

VESICLES: Very fine, uniformly distributed, lined with smectite, and sparse coarser (0.5-2 mm) spherical or flattened, filled partly with smectite or calcite.


COLOR: Brownish gray to greenish gray.

STRUCTURE: Pillowed to brecciated, locally massive.

ALTERATION: N/A.

VEINS/FRACTURES: Moderately frequent, filled with brown clays and calcite.

ADDITIONAL COMMENTS: Pieces 1-2: Moderately olivine phyric basalt with finely vesicular intersertal to variolitic to glassy texture. Some calcite veinlets. Piece 2A shows vesicular intersertal to variolitic to glassy texture. Some calcite veinlets. Piece 2A shows a chilled margin at bottom (azimuth 185 degrees), corresponding to a border of a pillow. Pieces 3A-3F; Similar in lithology to Pieces 1-2. A chilled margin (upper border of pillow, with azimuth 45 degrees) is shown by Pieces 3A-3B. Piece 3F shows brecciated green glass, altered to smectite, cemented by calcite veinlets. Piece 4: Lithologically similar to Pieces 3A-3F. Shows in the upper part of Piece 4A a chilled margin of pillow (azimuth 350 degrees). Pieces 5-8: Sparsely phyric olivine basalt with uniform intersertal groundmass. Very fine and fine vesicles filled with smectite and (Piece 6) calcite. Veins filled with brown clays occur in Pieces 6 and 8B.

124-768C-81R-2

UNIT 1: MODERATELY TO HIGHLY OLIVINE PHYRIC BASALT

Pieces 1A-1D

CONTACTS: None. PHENOCRYSTS: Olivine - 15%; 0.03-1.0; Subhedral to euhedral crystals, wholly

pseudomorphed.

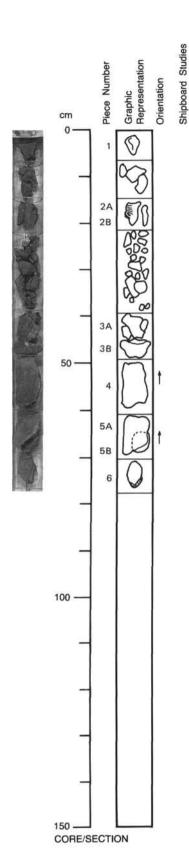
GROUNDMASS: Fine-grained, intersertal divergent aggregates of 28% subhedral to euhedral plagioclase < 2.0 mm (An50-70), > 1% of subhedral clinopyroxene 0.04-0.2 mm, and 20% mesostasis.

VESICLES: 40%; 0.04-0.4 mm; Rounded and irregular.; N/A.

COLOR: N/A.

STRUCTURE: N/A

ALTERATION: Highly altered, mesostasis and olivine altered to clay. VEINS/FRACTURES: Sparse veinlets of brown clays and calcite.


UNIT 1: MODERATELY TO HIGHLY OLIVINE PHYRIC BASALT

Pieces 2-7

CONTACTS: see comments PHENOCRYSTS: see comments GROUNDMASS: see comments VESICLES: see comments COLOR: see comments

STRUCTURE: see comments
ALTERATION: see comments
VEINS/FRACTURES: see comments

ADDITIONAL COMMENTS: Moderately to sparsely olivine phyric basalt with intersertal divergent to intersertal groundmass. Locally glassy texture (glass altered to green smectite) with slightly brecciated structure and cementation by calcite (Piece 2B). A chilled margin, suggesting a pillow border, is in Piece 3. Veins filled with brown clays and/or calcite occur in Pieces 2A, 3-5, 6B and 7. Sparse vesicles 1-3 mm in size occur in Pieces 4-6A. Very fine vesicles are thoroughly distributing.

124-768C-81R-3

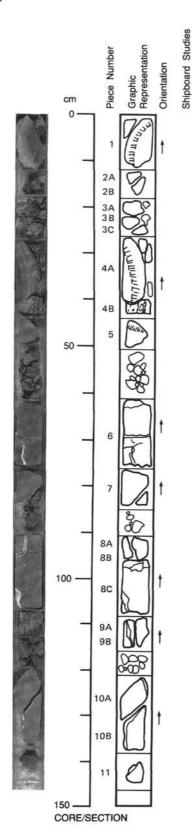
UNIT 1: MODERATELY TO HIGHLY OLIVINE PHYRIC BASALT

Pieces 1-2

ithological Unit

CONTACTS: see comments
PHENOCRYSTS: see comments
GROUNDMASS: see comments
VESICLES: see comments
COLOR: see comments
STRUCTURE: see comments
ALTERATION: see comments
VEINS/FRACTURES: see comments
ADDITIONAL COMMENTS: Lithologically similar to Section 124-768C-81R-1, but
showing textural grading to variolitic in Piece 2A, probably indicating the chilled margin
of a pillow.

UNIT 1: MODERATELY TO HIGHLY OLIVINE PHYRIC BASALT


Pieces 3-5

CONTACTS: see comments
PHENOCRYSTS: see comments
GROUNDMASS: see comments
VESICLES: see comments
COLOR: see comments
STRUCTURE: see comments
ALTERATION: see comments
VEINS/FRACTURES: see comments
ADDITIONAL COMMENTS: Lithologically similar to Section 124-768C-81R-2, uniform in texture. It shows a moderately finely vesicular texture.

UNIT 1: MODERATELY TO HIGHLY OLIVINE PHYRIC BASALT

Piece 6

CONTACTS: see comments
PHENOCRYSTS: see comments
GROUNDMASS: see comments
VESICLES: see comments
COLOR: see comments
STRUCTURE: see comments
ALTERATION: see comments
VEINS/FRACTURES: see comments
ADDITIONAL COMMENTS: Lithologically similar to Pieces 3-5. Also probably representing the chilled margin of a pillow.

124-768C-82R-1

UNIT 1: MODERATELY TO HIGHLY OLIVINE PHYRIC BASALT

Pieces 1-9

Lithological

CONTACTS: N/A

PHENOCRYSTS: Olivine - 5-8%; N/A; Altered, pseudomorphosed by green or orange vellow smectite.

GROUNDMASS: Consists of plagioclase, pyroxene, iron ore and glass showing various

textures grading from intersertal to subvariolitic to variolitic to glassy.

VESICLES: Moderately frequent fine-grained and few sparse 1-3 mm vesicles, filled or lined with green smectite and very rarely with calcite.

COLOR: Brownish gray to light gray.
STRUCTURE: Pillowed, brecciated.

ALTERATION: None.

VEINS/FRACTURES: Sparse veins filled with brown clay or calcite.

ADDITIONAL COMMENTS: Piece1: Moderately olivine phyric basalt with intersertal divergent to variolitic groundmass bordered by altered glass representative of the outer zone and chilled margin of a pillow (azimuth 90 degrees). Pieces 2-3: Basalt and glass (dark green, altered to smectite) fragments cemented by ?silica. Possibly representing intrapillow material. Pieces 4A-4B: Lithologically similar to Pieces 2-3, representative of the outer zone and chilled margin of a pillow (azimuth 179 degrees). Piece 5: Lithologically similar to Pieces 2-3, but showing a small portion with subvariolitic texture, representing part of the chilled margin of a pillow. Pieces 6-9: Moderately olivine phyric basalt with uniform intersertal divergent groundmass. Piece 6: veins filled with brown clays. Pieces 8A-9B veins partially filled with calcite.

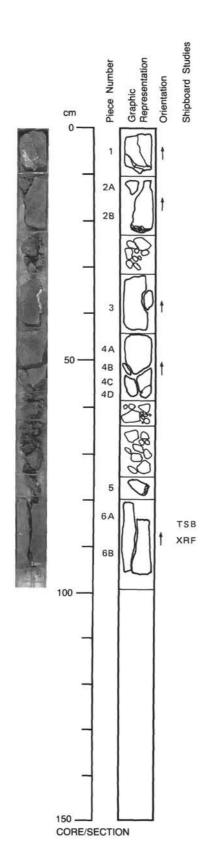
UNIT 1: CONTINUED

Pieces 10-11

CONTACTS: N/A

PHENOCRYSTS: Olivine - 2-3%; N/A; Pseudomorphosed by smectite.

GROUNDMASS: Consisting of plagioclase, pyroxene, iron ore and altered glassy mesostasis, intersertal in texture.


VESICLES: Very fine grained evenly distributed, and sparse coarser (0.5-1 mm), lined or

filled with smectite and rarely with calcite.

COLOR: Gray.

STRUCTURE: Massive.

ALTERATION: N/A, VEINS/FRACTURES: Veinlets (1-3 mm thick) filled with calcite and/or brown clay.

124-768C-82R-2

UNIT 1: MODERATELY TO HIGHLY OLIVINE, PHYRIC BASALT

Pieces 1-2

CONTACTS: N/A.

PHENOCRYSTS: Olivine - 5-8%; N/A; Altered.

GROUNDMASS: With texture grading from intersertal to subvariolitic to variolitic, consisting of plagioclase, pyroxene, iron ore and altered glass.

VESICLES: Mostly very fine, evenly distributed and lined or filled with smectite.

COLOR: Brownish gray to greenish gray. STRUCTURE: Pillowed, brecciated.

ALTERATION: N/A.

VEINS/FRACTURES: Coarse (3 cm thick) vein filled with brown clay and calcite, veinlets

mostly filled with calcite

ADDITIONAL COMMENTS: Piece 1: Moderately olivine phyric basalt, finely vesicular, with intersertal divergent groundmass, with veins filled with brown clay and/or calcite. Pieces 1A-1B: Moderately olivine phyric basalt with texture grading from intersertal to variolitic. At the lower edge of Piece 1B bordered with altered green glass, representative of the outer zone and chilled margin of a pillow.

UNIT 1: MODERATELY TO HIGHLY OLIVINE, PHYRIC BASALT

Pieces 3-4

CONTACTS: N/A.

PHENOCRYSTS: Olivine - 2-3%; N/A; Altered.
GROUNDMASS: Consisting of plagioclase, pyroxene, iron ore and altered glass, with uniform intersertal divergent texture.

VESICLES: N/A; Sparse vesicles 0.5-1 mm in diameter.; N/A; Finely distributed.; Very fine

grained, filled or lined by smectite.

COLOR: Gray to brownish gray.

STRUCTURE: Massive.

ALTERATION: N/A. VEINS/FRACTURES: Thin veins filled with calcite and brown clay.

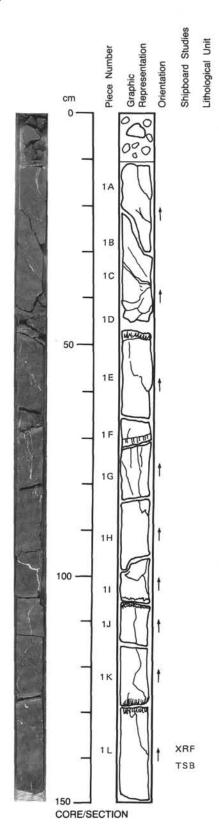
UNIT 1: MODERATELY TO HIGHLY OLIVINE, PHYRIC BASALT

Pieces 5-6

CONTACTS: N/A.

PHENOCRYSTS: Olivine - 8%; 0.2-1.0 mm; Euhedral prismatic, pseudomorphed by secondary minerals.

GROUNDMASS: Fine-grained, hypocrystalline, intersertal and divergent texture, consisting of 40% plagioclase laths 0.01-0.8 mm (labradorite), 2% clinopyroxene, iron ore and 20% mesostasis.


VESICLES: 20%; 0.05-2.0 mm; Spherical to lobate; N/A; Filled with clay and calcite.

COLOR: N/A

STRUCTURE: Massive.

ALTERATION: Moderately altered, olivine and mesostasis replaced by fibrous clays.

VEINS/FRACTURES: None.

124-768C-83R-1

UNIT 1: MODERATELY TO HIGHLY OLIVINE, PHYRIC BASALT

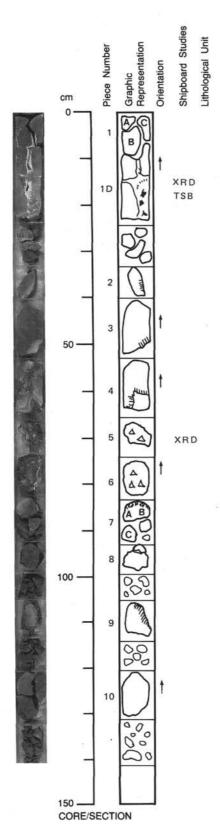
CONTACTS: No contact, but pillow rinds preserved at intervals as shown.

PHENOCRYSTS: Olivine - -3%; 0.14-0.8 mm; Heterogeneously distributed, euhedral.

Altered almost totally to green clay and Fe-oxide.

GROUNDMASS: Fine-grained intersertal divergent texture. Mainly aggregates of 23% plagioclase <1.1 mm and 3% clinopyroxene 0.04-0.2 and 33% mesostasis.

VESICLES: 38%, 0.01-0.9 mm vesicles throughout rock filled or partly filled with green clay and carbonate. Larger vesicles (~1 mm) partly filled with green clay and carbonate occur is patched.


in patches.

COLOR: Brownish gray.

STRUCTURE: Pillowed.

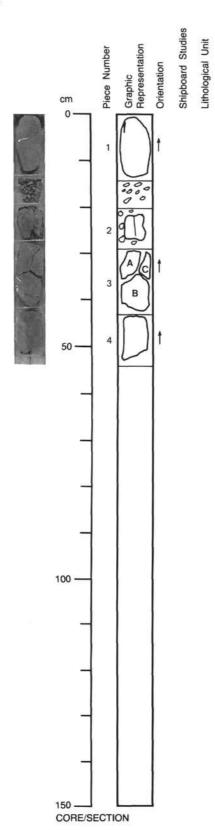
ALTERATION: Highly altered olivine and mesostasis, to clays and Fe-oxide.

VEINS/FRACTURES: Brown clay with white areas fills irregular fractures through the length of the section, thickness 1-5 mm. These are cut by irregular white calcite veins.

124-768C-83R-2

UNIT 1: MODERATELY TO HIGHLY OLIVINE, PHYRIC BASALT

Pieces 1-9


CONTACTS: None.
PHENOCRYSTS: None.
GROUNDMASS: Cryptocrystalline, made up of 15% glass, 30% crypto-crystallites, and

45% varioles

VESICLES: <1%; N/A; N/A; N/A; ?
COLOR: Brownish-gray.
STRUCTURE: Pillow breccia.

ALTERATION: Highly altered, carbonate replacing varioles.

VEINS/FRACTURES: Structure is broken by large fractures filled with brown clay which contain angular fragments of green altered glass from pillow margins and in places white mineral aggregates are developing. Frequent examples of small pieces of pillow margin indicate that this is a breccia.

124-768C-83R-3

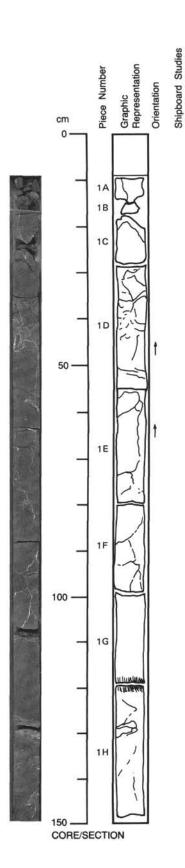
UNIT 1: MODERATELY TO HIGHLY OLIVINE, PHYRIC BASALT

CONTACTS: None.
PHENOCRYSTS: Olivine - 2%; < 1 mm; Heterogeneously distributed euhedral and resorbed olivine altered to green clay.

GROUNDMASS: Varies from cryptocrystalline in pillow margin to variolitic and intersertal texture. Made up of plagioclase, pyroxene, and glass.

VESICLES: N/A; Mainly <0.5 mm, some about 1 mm; Lobate and circular;

VESICLES: N/A; Mainly <0.5 mm, some about 1 mm; Lobate and circular;
Heterogeneously distributed; Partly or completely filled almost entirely with green clay,
few with calcite.


COLOR: Brownish gray.

STRUCTURE: Massive, with remnant of pillow margin in Piece 4.

ALTERATION: Slightly altered, olivine to clay and matrix to Fe-oxide.

VEINS/FRACTURES: Few thin irregular calcite veins about 2 mm. One irregular brown
clay vein in Piece 3B.

clay vein in Piece 3B.

124-768C-84R-1

UNIT 1: MODERATELY TO HIGHLY OLIVINE, PHYRIC BASALT

Pieces 1A-1G

CONTACTS: Flat chilled margin at the bottom of piece 1G.
PHENOCRYSTS: Olivine - <20%; <1 mm; heterogeneously distributed, altered to green clay and Fe-oxide. Euhedral and corroded.

GROUNDMASS: Intersertal aggregates of plagioclase, pyroxene, and glass.
Cryptocrystalline chilled margin.

VESICLES: 20%+; <0.5 mm, some large vesicles about 1 mm.; N/A; N/A; Filled or partially

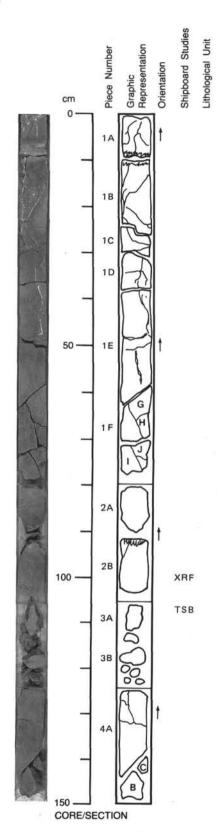
filled dominantly with green clay and some calcite.

COLOR: Reddish brown.

STRUCTURE: Possible sheet flow approximately 1 m.

ALTERATION: Slightly to moderately altered, olivine phenocrysts altered to clay and

Fe-oxide and mesostasis altered to Fe-oxide.


VEINS/FRACTURES: Flow penetrated throughout by irregular brown clay (with zeolites)

and calcite veins <1 cm thick.

UNIT 1: MODERATELY TO HIGHLY OLIVINE, PHYRIC BASALT

Piece 1H

CONTACTS: see comments PHENOCRYSTS: see comments GROUNDMASS: see comments VESICLES: see comments COLOR: see comments STRUCTURE: see comments ALTERATION: see comments
VEINS/FRACTURES: see comments
ADDITIONAL COMMENTS: Chilled top and bottom 40 cm. Sheet flow?

124-768C-84R-2

UNIT 1: MODERATELY TO HIGHLY OLIVINE, PHYRIC BASALT

Pieces 1-2A

CONTACTS: Planar chilled contacts above and below about 80 cm. PHENOCRYSTS: Olivine - ~1%; < 1mm; Scattered as individual crystals and

glomeroporphyries.

GROUNDMASS: Variable to intersertal texture consisting of plagioclase, pyroxene and

glass.

VESICLES: <0.5 mm throughout the rock. Filled with green clay and some calcite.

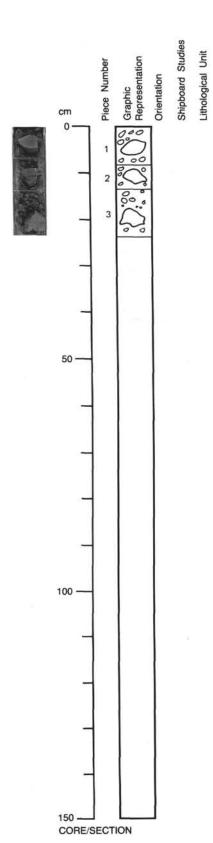
COLOR: Brownish gray to gray.

STRUCTURE: Sheet flow, grains fine inward from margins.

ALTERATION: Moderate. VEINS/FRACTURES: N/A.

UNIT 1: MODERATELY TO HIGHLY OLIVINE, PHYRIC BASALT

Pieces 2B-4C

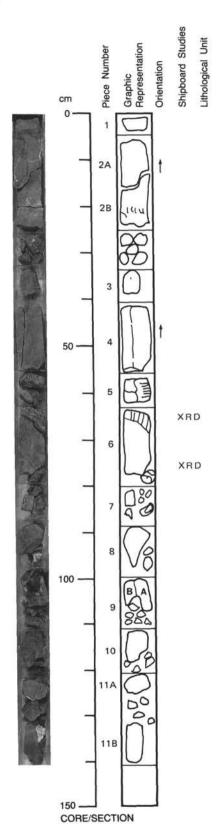

CONTACTS: Chilled top, 25 cm total thickness, sheet flow? PHENOCRYSTS: Olivine - 12%; 0.07-0.7 mm; Euhedral, pseudomorphed by secondary

GROUNDMASS: Fine-grained intersertal divergent texture, made up of 18% subhedral to euhedral plagioclase 0.02-1.7 mm, 7% subhedral clinopyroxene 0.01-0.2 mm, and 20% mesostasis.

VESICLES: 40%; 0.04-2.6 mm; Irregular; N/A; Filled with clay.

COLOR: Brownish-gray.
STRUCTURE: Pillow margins indicate pillows are up to 1 m in diameter.
ALTERATION: Highly altered, olivine and mesostasis altered to colorless to pale yellowish

green clay.
VEINS/FRACTURES: N/A.

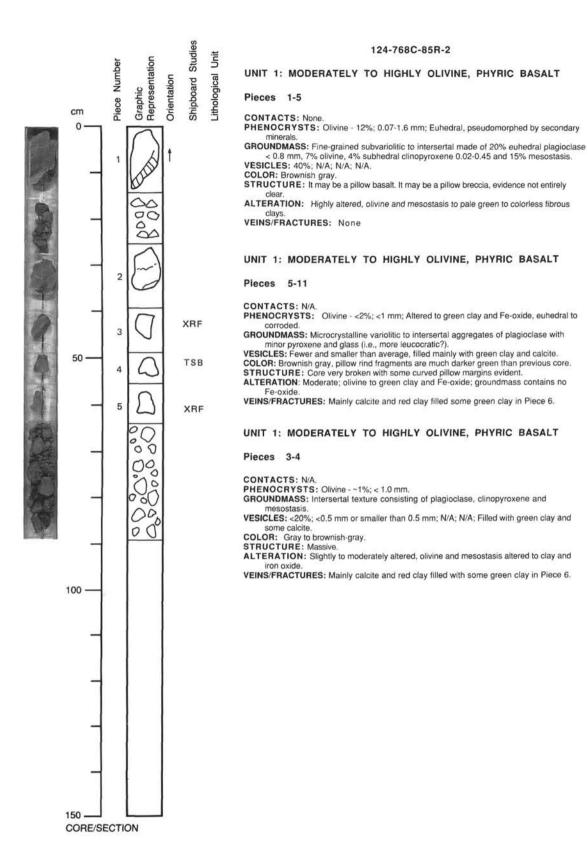


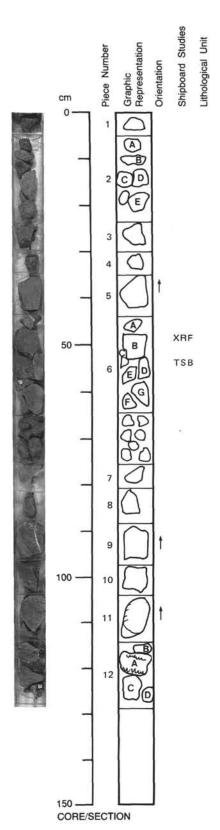
124-768C-84R-3

UNIT 1: MODERATELY TO HIGHLY OLIVINE, PHYRIC BASALT

Pieces 1-3

CONTACTS: see comments
PHENOCRYSTS: see comments
GROUNDMASS: see comments
VESICLES: see comments
COLOR: see comments
STRUCTURE: see comments
ALTERATION: see comments
VEINS/FRACTURES: see comments
ADDITIONAL COMMENTS: Continues from Section 124-768C-84R-2.




124-768C-85R-1

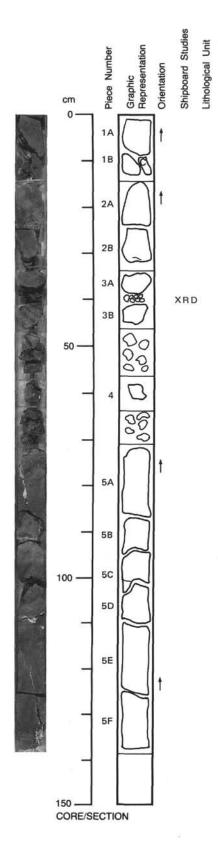
UNIT 1: MODERATELY TO HIGHLY OLIVINE, PHYRIC BASALT

Pieces 1-2

CONTACTS: see comments
PHENOCRYSTS: see comments
GROUNDMASS: see comments
VESICLES: see comments
COLOR: see comments
STRUCTURE: see comments
ALTERATION: see comments
VEINS/FRACTURES: see comments
ADDITIONAL COMMENTS: Continues from Section 124-768C-84R-3. Flow is about 1 m
thick

124-768C-86R-1

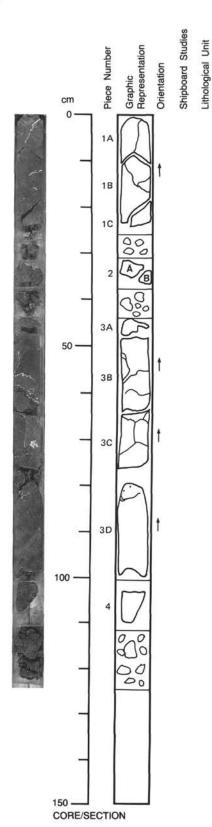
UNIT 1: MODERATELY TO HIGHLY OLIVINE, PHYRIC BASALT


Pieces 1-12

CONTACTS: None.
PHENOCRYSTS: Olivine - 10%; 0.04-0.6; Euhedral, pseudomorphed by secondary minerals.

GROUNDMASS: Fine-grained intersertal divergent texture made up of 17% euhedral plagioclase <1.4 mm (An50-70), 10% subhedral clinopyroxene 0.1 mm and 21% mesostasis.

VESICLES: 35%; 0.02-1.0 mm; Irregular to round; N/A.


COLOR: Brownish gray.
STRUCTURE: Brecciated pillow lava.
ALTERATION: Highly altered, olivine and mesostasis replaced by pale green high relief fibrous clays.
VEINS/FRACTURES: Few.

124-768C-86R-2

UNIT 1: MODERATELY TO HIGHLY OLIVINE, PHYRIC BASALT

CONTACTS: see comments
PHENOCRYSTS: see comments
GROUNDMASS: see comments
VESICLES: see comments
VESICLES: see comments
STRUCTURE: see comments
ALTERATION: see comments
ALTERATION: see comments
VEINS/FRACTURES: see comments
ADDITIONAL COMMENTS: Shows dark green hyaloclastite pillow margins, varioles and leucocratic groundmass; perhaps slightly coarser grained than in the previous sections but still clearly belonging to this unit petrographically. Varioles and apparent chill zones develop at intervals but cannot generally be identified as associated with pillow margins. However, there is at least one rounded hyaloclastite coated margin in Piece 3.

124-768C-86R-3

UNIT 1: MODERATELY TO HIGHLY OLIVINE, PHYRIC BASALT

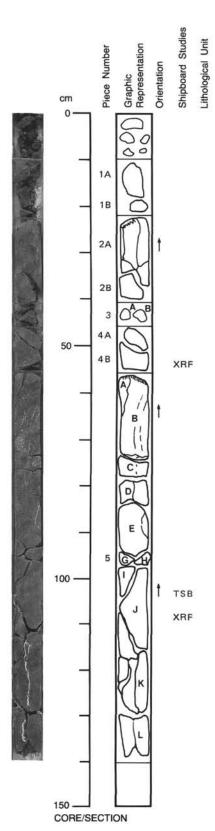
Pieces 1-4?

CONTACTS: N/A. PHENOCRYSTS: Not determined - ~2%; < 1 mm; heterogeneously distributed, euhedral

and corroded.

GROUNDMASS: Variolitic to intersertal with abundant plagioclase laths and minor

pyroxene and glass.


VESICLES: Sparse, partly and completely filled with green clay or carbonate, spherical to lobate.

COLOR: Brownish gray.

STRUCTURE: Massive.

ALTERATION: Moderate; olivine to clay and Fe-oxide, groundmass to Fe-oxide.

VEINS/FRACTURES: Veins of red clays.

124-768C-87R-1

UNIT 1: MODERATELY TO HIGHLY OLIVINE, PHYRIC BASALT

CONTACTS: Planar.
PHENOCRYSTS: Olivine - ~2%; N/A; Euhdral.
GROUNDMASS: Variolitic to intersertal with abundant plagioclase laths, minor pyroxene

VESICLES: Sparse filled with green clay and carbonate. COLOR: Brownish gray. STRUCTURE: Massive. ALTERATION: Moderately altered, olivive and groundmass to clay, iron oxide. VEINS/FRACTURES: N/A.

UNIT 1: MODERATELY TO HIGHLY OLIVINE PHYRIC BASALT

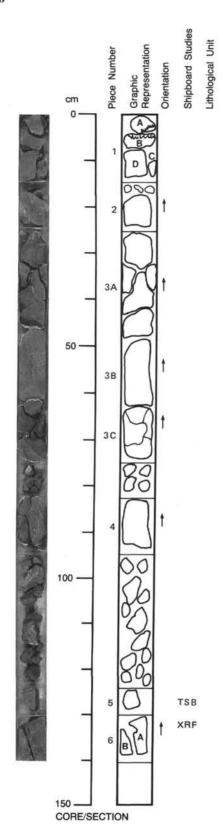
Pieces 4-5

CONTACTS: Planar

PHENOCRYSTS: Olivine - < 8%; 0.12-1.1 mm; Euhedral, pseudomorphed by secondary

minerals.

GROUNDMASS: Fine-grained even textured intergrowth of 28% plagioclase 0.04-0.2 mm (An50-70), 8% anhedral clinopyroxene and 15% mesostasis.


VESICLES: 20%; 0.06-1.2 mm; Round to lobate; N/A; Filled with green clay.

COLOR: Gray.

STRUCTURE: Large pillow (30 cm) lava.

ALTERATION: Moderately altered, olivine and groundmass and mesostasis to clays. VEINS/FRACTURES: Irregular veins of red clay and white calcite. ADDITIONAL COMMENTS: Similar to Pieces 1-4 thicker (approximately 95 cm).

Continues to the upper part of Section 124-768C-87R-2.

124-768C-87R-2

UNIT 1: MODERATELY TO HIGHLY OLIVINE, PHYRIC BASALT

CONTACTS: Planar contact at top.
PHENOCRYSTS: Olivine - <2%; 0.5 mm; Heterogeneously distributed, altered to green

GROUNDMASS: Fine grained, even intergrowth of plagioclase, pyroxene and glass. VESICLES: Small and scattered in matrix and large (2 mm) concentrated in a zone 10 cm

from the top, filled with green clay and carbonate.

COLOR: Gray with minor oxidation in parts.

STRUCTURE: Sheet lava > 135 cm thick, although there are large vesicles in the granules between Piece 4 and 5.

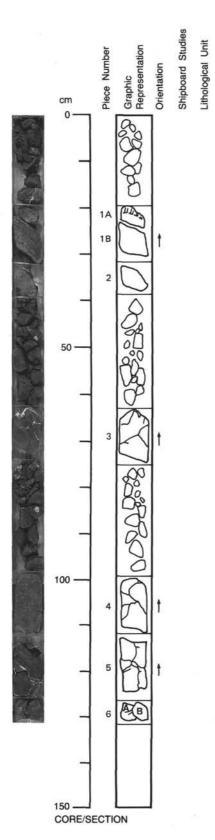
ALTERATION: Slight, olivine altered to clay and some oxidation in the groundmass.

VEINS/FRACTURES: Filled with red clay and carbonate.

UNIT 1: MODERATELY TO HIGHLY OLIVINE, PHYRIC BASALT

Pieces 1B-6

CONTACTS: None
PHENOCRYSTS: Olivine - 8%; 0.02-0.09 mm; Euhedral, pseudomorphed by secondary


GROUNDMASS: Fine-grained intersertal intergrowth of 26% plagioclase, 10% clinopyroxene, and 20% mesostasis.

VESICLES: 35%; 0.03-2.3 mm; Round to lobate; N/A; Filled with clay. Two size classes.

STRUCTURE: Large pillow, 135 cm in thickness.

ALTERATION: Highly altered, olivine and mesostasis replaced by pale greenish to colorless fibrous clay.

VEINS/FRACTURES: Filled with red clay and carbonate.

124-768C-88R-1

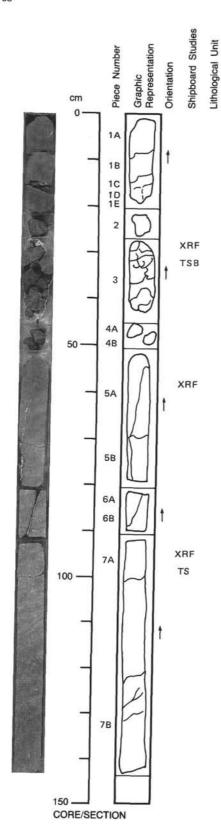
UNIT 1: MODERATELY TO HIGHLY OLIVINE, PHYRIC BASALT

Pieces 1-6

CONTACTS: N/A.

PHENOCRYSTS: Olivine - ~10%; N/A; Altered, replaced by green and yellow smectite.

GROUNDMASS: Consisting of plagioclase, clinopyroxene, Fe ore and altered glassy mesostasis; varies in texture from intersertal to variolitic. Varioles may be 5 mm in


VESICLES: Sparse, < 1 mm, filled with green smectite.

COLOR: Brownish gray. STRUCTURE: Massive.

ALTERATION: N/A.
VEINS/FRACTURES: Sparse veins filled with green smectite and finely granular opaque minerals, and/or calcite.

ADDITIONAL COMMENTS: Textural variations along the section indicate a lava with one

recognizable chilled margin (Piece 1A-2), with undetermined structure.

124-768C-88R-2

UNIT 1: MODERATELY TO HIGHLY OLIVINE, PHYRIC BASALT

Pieces 1-4

CONTACTS: N/A.

PHENOCRYSTS: Olivine - ~10%; 0.15-0.7 mm; Altered, euhedral.

GROUNDMASS: Fine-grained intersertal intergrowth of 18 plagioclase laths<0.57 (An50-70), 2% subhedral clinopyroxene 0.05 mm, and 40% mesostasis.

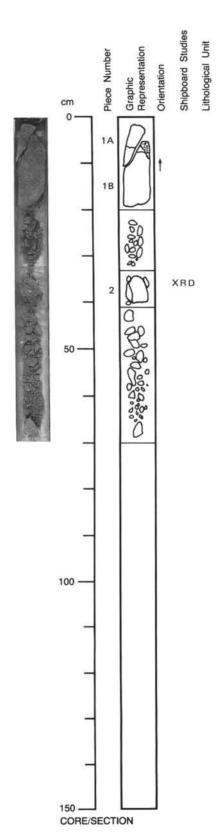
VESICLES: 30%; 0.007-0.9 mm; Round to lobate; N/A; Filled with clay.

COLOR: Brownish gray. STRUCTURE: Massive.

ALTERATION: Highly altered, olivine, plagioclase and mesostasis replaced by pale green

and colorless clays.
VEINS/FRACTURES: N/A

UNIT 2: OLIVINE DOLERITE

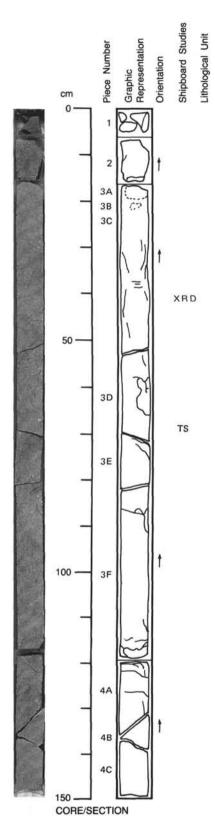

Pieces 5-7

CONTACTS: N/A.

PHENOCRYSTS: N/A.
GROUNDMASS: Phaneritic, fine-grained rock consisting of 50% plagioclase, 2% olivine,
25% pyroxene, Fe ore and 18% mesostasis. Texture is mostly intersertal. Piece 5A shows the gradual downward passage from a microporphyritic (olivine) texture of intersertal type to an intersertal texture increasing in grain size downward. The transition has a vertical trend, indicating an horizontal upper surface of chilling of a lava flow or of a

VESICLES: 3%; N/A; N/A; Filled with green smectite. COLOR: Gray to greenish gray.

STRUCTURE: N/A.
ALTERATION: Highly altered.
VEINS/FRACTURES: Almost vertical veins, 0.5-2 mm thick, filled with calcite. These veins mark surfaces of alteration advancing toward the interior of the rock, marked by diffusion of opaque minerals. Veinlets filled with opaque minerals (Fe oxide or manganese ore), with horizontal trend also occur.


124-768C-88R-3

UNIT 2: CONTINUED

Pieces 1-2

CONTACTS: see comments
PHENOCRYSTS: see comments
GROUNDMASS: see comments
VESICLES: see comments COLOR: see comments STRUCTURE: see comments

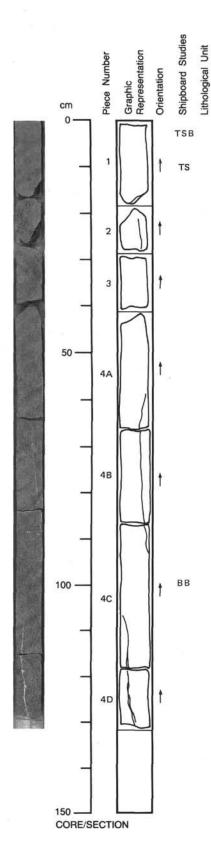
ALTERATION: see comments
VEINS/FRACTURES: see comments
ADDITIONAL COMMENTS: The olivine dolerite shows a slightly coarser grain size than
in Section 124-768C-88R-2 and is more altered.

UNIT 2: CONTINUED

Pieces 1-4

CONTACTS: N/A
PHENOCRYSTS: N/A
GROUNDMASS: Medium to fine grained, phaneritic aphyric rock with an intergranular to subophitic and intersertal texture. It consists of 50% plagioclase laths 0.3-2.0 mm, 27% subhedral clinopyroxene 0.2-1.0 mm, 3% magnetite, and 18% mesostasis. The rock becomes progressively finer grained at the bottom of the section (Piece 4C).

VESICLES: 2%; N/A; Spherical and ovoid amygdules; N/A; Filled with clay and zeolites are unevenly distributed. In the interval 5-87 cm, amygdules with ovoidal forms (elongated mostly in horizontal directions) 1-5 mm in size filled with zeolites occur. In the lower part of the section (interval 112-140 cm) there are spherical amygdules 1-2 mm in size filled with smectite.


With Smecture.

COLOR: Gray.

STRUCTURE: Massive with lower zone of rapid chilling.

ALTERATION: Moderately altered, clays and carbonate replace mesostasis.

VEINS/FRACTURES: Veinlets filled with opaque minerals occur.

UNIT 2: CONTINUED

Pieces 1 (Interval 3-4 cm)

CONTACTS: N/A

CONTACTS: N/A
PHENOCRYSTS: Olivine - 15%; 0.5 mm; Euhedral, entirely altered to clays.
GROUNDMASS: Phaneritic, fine-grained, consisting of 52% subhedral plagioclase laths 0.05-0.75 mm (An50-70), >1% clinopyroxene 0.01-0.25, 2% magnetite 0.04 mm, cryptocrystallites and mesostasis. Texture is fining upward through Pieces 2 to 1.
VESICLES: 1%; Amygdules 2.4 mm; N/A; Unevenly distributed; Partially filled with clay, Fe-oxide and actinolite. In the lower part of the section 1-3 mm sized amygdules filled with areas precise occur.

with green smectite occur.

COLOR: Greenish gray.

STRUCTURE: Massive, with ill-defined upper zone of rapid chilling. ALTERATION: Highly altered, clays replace plagioclase and mesostasis. VEINS/FRACTURES: Almost vertical, filled with calcite.

UNIT 2: CONTINUED

Pieces 1-4

CONTACTS: None

PHENOCRYSTS: Olivine - 10%; 0.26-1.1 mm; Euhedral completely altered to actinolit and

GROUNDMASS: Fine-grained intersertal, made up of 54% plagioclase laths 0.04-1.85 mm, >1% subhedral clinopyroxene 0.3-1.6 mm, 2% euhedral magnetite 0.008-0.06 mm, and 30 crystallites.

VESICLES: 4%; 0.18-2.6 mm; Round to lobate; Evenly distributed; Filled with amphibole and zeolites.

COLOR: Greenish gray.

STRUCTURE: Massive.

ALTERATION: Highly altered, clays replace plagioclase and crystallites, actinolite replaces olivine and crystallites, allophane abundant.

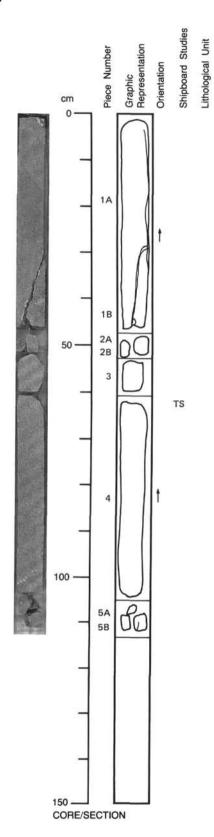
VEINS/FRACTURES: None.

UNIT 2: CONTINUED

Piece 4

CONTACTS: N/A

PHENOCRYSTS: Olivine - 10%; N/A; Completely replaced.
GROUNDMASS: Fine-grained phaneritic, made up of 52% euhedral, tabular, plagioclase 0.04 mm (An50-70), 12% subhedral clinopyroxene, 0.04-2.6 mm, 2% magnetite, and


VESICLES: 6%; Amygdales 2.4 mm; Round to ovate; Unevenly distributed; Filled with clay.

COLOR: Greenish-gray.

STRUCTURE: Massive.

ALTERATION: Moderate, clay replacing plagioclase and mesostasis principally.

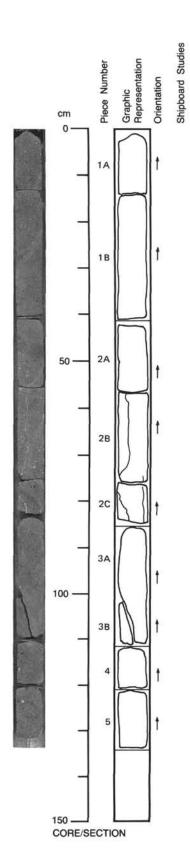
VEINS/FRACTURES: Almost vertical, filled with calcite.

UNIT 2: CONTINUED

Pieces 1-5

CONTACTS: N/A
PHENOCRYSTS: Olivine - 10%; N/A; Subhedral, replaced by secondary minerals.
GROUNDMASS: Medium to fine-grained, intergranular to subophiltic, comprising, 52% subhedral to euhedral plagioclase 0.2-2.0 mm (An50-70), 12% subhedral clinopyroxene 0.1-1.0 mm, 5% euhedral to skeletal magnetite 0.1 mm, 15% mesostasis, trace of acicular apatite.
VESICLES: 6%; 2-5 mm; Spherical to ovoid.; N/A.

VESICLES: 6%; 2-5 min; Sprieman to Group, 1997.


COLOR: Gray.

STRUCTURE: Massive.

ALTERATION: Moderate, olivine is replaced by hematite and clay, actinolite, clay and zeolites replace the mesostasis and clinopyroxene.

VEINS/FRACTURES: Few filled with calcite.

664

UNIT 2: CONTINUED

Pieces 1-3

Lithological Unit

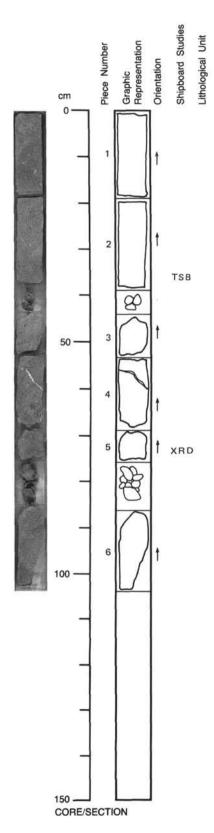
CONTACTS: N/A
PHENOCRYSTS: N/A
GROUNDMASS: N/A
VESICLES: N/A
COLOR: N/A
STRUCTURE: N/A
ALTERATION: N/A
VEINS/FRACTURES: N/A
ADDITIONAL COMMENTS: This section shows the coarse grained zone of Unit 2,
downward fining through Piece 3A and in Piece 3B. The deletite is relatively less downward fining through Piece 3A and in Piece 3B. The dolerite is relatively less altered in the interval between 0-64 cm. Vertical veinlets filled with calcite cross Pieces 1B and 2.

UNIT 2: CONTINUED

Pieces 4-5

CONTACTS: N/A
PHENOCRYSTS: N/A
GROUNDMASS: Consists of plagioclase, pyroxene, olivine, Fe ore, composing
holocrystalline intergrowths with texture intermediate between intergranular and

ophitic.


VESICLES: Amygdules unevenly distributed, spherical and ovoidal, 1-3 mm in size, filled with white or yellowish green phyllosilicate.

COLOR: Gray to greenish gray.

STRUCTURE: Massive.

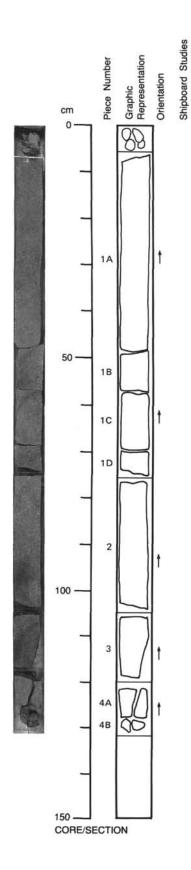
ALTERATION: N/A

VEINS/FRACTURES: Veins rare, filled with calcite.

UNIT 2: CONTINUED

Pieces 1-6

CONTACTS: N/A


PHENOCRYSTS: N/A
GROUNDMASS: Medium to fine-grained, hypidiomorphic granular to sub-ophitic and ophitic. 55% euhedral, tabular plagioclase 0.07-2.22 mm (An50-70), 30% subhedral to anhedral clinopyroxene 0.52-1.85 mm, 3% euhedral to skeletal magnetite 0.007-0.15 mm, 12% altered mesostasis.

COLOR: Gray to greenish-gray.
STRUCTURE: Massive.
ALTERATION: Moderate, plagioclase, clinopyroxene and the mesostasis are altered to

clays.

VEINS/FRACTURES: None.

ADDITIONAL COMMENTS: This section shows the even grained olivine dolerite described in Section 124-768-89R-4. The rock is moderately amygdaloidal and locally contains abundant amygdules 1-5 mm in size (Pieces 4-5), filled with greenish yellow fibrous crystals.

UNIT 2: CONTINUED

Pieces 1-4

ithological Unit

CONTACTS: No contact or major discontinuities are present through the unit.

GROUNDMASS: Phaneritic fine-grained rock, consisting of plagioclase, pyroxene, olivine and Fe-Ti oxide. Olivine and glassy mesostasis occur in variable amounts. Texture shows significant variations along this unit. Intersertal to ophitic texture is predominant. Intersertal divergent to subvariolitic textures occur, showing gradual passages

to each other and to the dominant texture.

VESICLES: Amygdules moderately frequent, 1-3 mm in size, unevenly distributed with various fillings; zeolites, fibrous? phyliosilicates and rare calcite.

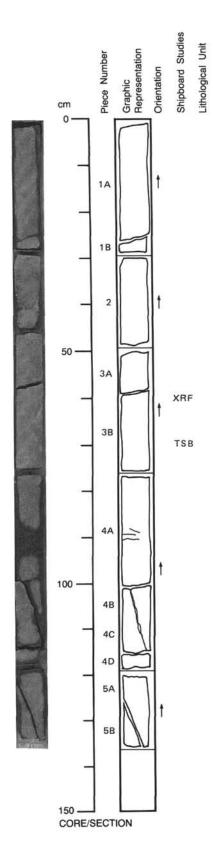
COLOR: Greenish gray to brownish gray.

STRUCTURE: Massive.

ALTERATION: Low to moderate, affecting olivine and glass, and incipiently at places plaginglase and Fe-Ti oxide.

ALTERATION: Low to moderate, affecting olivine and glass, and incipiently at places plagioclase and Fe-Ti oxide.

VEINS/FRACTURES: Very rare, filled with calcite and Fe-oxide.


ADDITIONAL COMMENTS: Pieces 1-2: This unit consists of relatively olivine-poor dolerite, greenish gray in color, with frequent amygdules, characterized by intersertal to ophitic texture. Pieces 3-4: Consists of olivine dolerite, richer in olivine with texture grading from subvariolitic to intersertal (from the upper part to the lower edge of Piece 3).

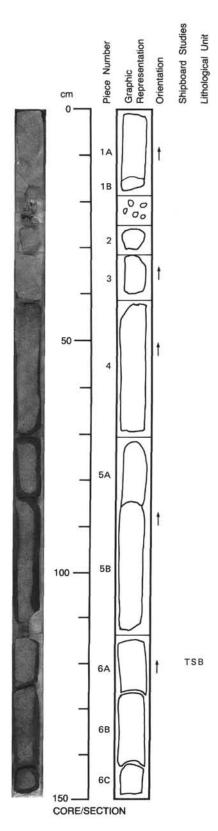
UNIT 2: CONTINUED

Pieces 1-3

CONTACTS: see comments
PHENOCRYSTS: see comments
GROUNDMASS: see comments
VESICLES: see comments
VESICLES: see comments
STRUCTURE: see comments
ALTERATION: see comments
VEINS/FRACTURES: see comments
ADDITIONAL COMMENTS: This section shows an even textured and coarser grain than in Section 124-768C-90R-1. Olivine dolerite, slightly fresher than in Section 124-768C-90R-1. Piece 3 is cut by calcite-Fe oxide veins, nearly vertical or steeply inclined.

UNIT 2: CONTINUED

Pieces 1-5

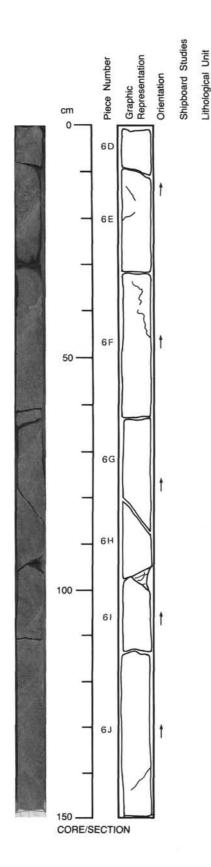

CONTACTS: N/A
PHENOCRYSTS: N/A
GROUNDMASS: Phaneritic, intergranular to subophitic texture. 8% totally altered olivine, with 55% euhedral to subhedral plagioclase 0.2-2.0 mm (An50-70), 8% subhedral clinopyroxene 0.1-1.0 mm, 4% euhedral and skeletal magnetite, 5% mesostasis, and trace of acicular apatite.

VESICLES: 10%; 1.0-1.5 mm; N/A; N/A.

COLOR: Greenish-gray.
STRUCTURE: Massive.
ALTERATION: Moderate, olivine and mesostasis alter to clays, clinopyroxene alters to

actinolite.

VEINS/FRACTURES: Few steep dipping filled with calcite.

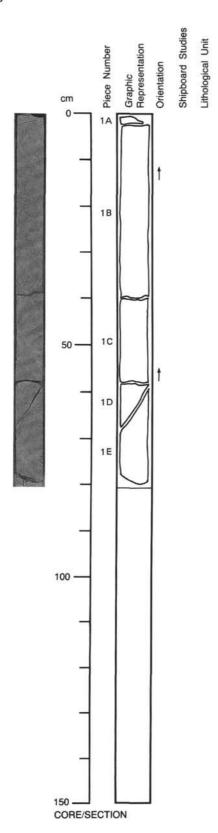

UNIT 2: CONTINUED

Pieces 1-6C

CONTACTS: N/A
PHENOCRYSTS: N/A
GROUNDMASS: Fine to medium-grained intersertal to intergranular texture. 3%
completely replaced euhedral to subhedral olivine, 54% euhedral to subhedral
plagioclase 0.1-2.0 mm (An45-80), 8% subhedral clinopyroxene 0.05-2.0 mm, 6%
euhedral and skeletal magnetite, 10% mesostasis, and trace of apatite.

VESICLES: 5%; N/A; N/A; N/A; Filled with clay.
COLOR: Greenish gray.
STRUCTURE: Massive.
ALTERATION: Moderate chlorite and actinolite after clinopyroxene, clay after olivine.

ALTERATION: Moderate, chlorite and actinolite after clinopyroxene, clay after olivine. VEINS/FRACTURES: None.

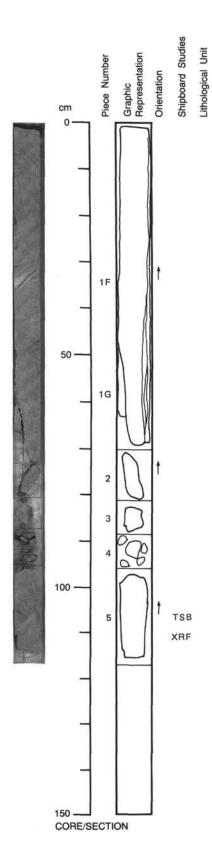


UNIT 2: CONTINUED

Pieces 6D-6J

CONTACTS: see comments
PHENOCRYSTS: see comments
GROUNDMASS: see comments

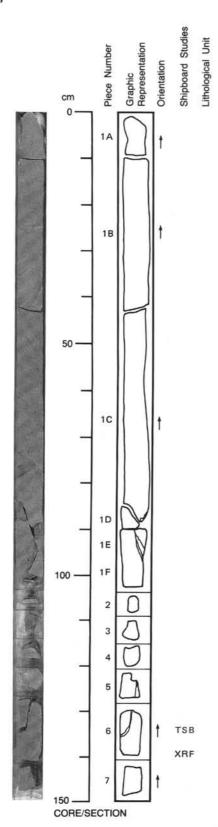
GROUNDMASS: see comments
VESICLES: see comments
COLOR: see comments
STRUCTURE: see comments
ALTERATION: see comments
VEINS/FRACTURES: see comments
ADDITIONAL COMMENTS: Dolerite is evenly textured, with intersertal features and slightly richer in olivine. Locally more altered zones (Piece 6E) and zones with diffuse brownish standing are present (Pieces 6G-6J).


UNIT 2: CONTINUED

Pieces 1A-1E

CONTACTS: see comments PHENOCRYSTS: see comments GROUNDMASS: see comments **VESICLES:** see comments

VESICLES: see comments
COLOR: see comments
STRUCTURE: see comments
ALTERATION: see comments
VEINS/FRACTURES: see comments
ADDITIONAL COMMENTS: Consists of olivine dolerite, poor in olivine than in Section
124-768C-90R-5, with even finer grained intersertal, relatively glass-rich texture.

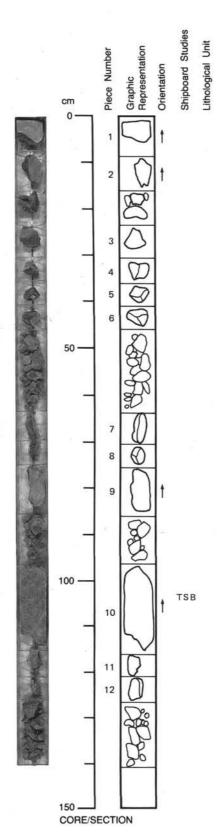

Alteration is low Alteration is low.

UNIT 2: CONTINUED

Pieces 1F-5

CONTACTS: N/A
PHENOCRYSTS: N/A
GROUNDMASS: Fine to medium-grained, phaneritic subophitic rock. 10%, 0.3-1.0 mm, euhedral to subhedral olivine, totally altered to clay, 42% euhedral plagioclase laths 0.1-2.0 (An30-75), 25% anhedral prisms of clinopyroxene 0.1-1.0 mm, 3% subhedral magnetite 0.03-0.3 mm, 20% mesostasis including altered crystallites.
VESICLES: None.
COLOR: Greenish gray.
STRUCTURE: N/A.
ALTERATION: Slightly altered, 5% of the mesostasis, and all of the olivine, altered to clays. VEINS/FRACTURES: None.

124-768C-91R-1


UNIT 2: CONTINUED

Pieces 1-7

CONTACTS: None.
PHENOCRYSTS: None.
GROUNDMASS: Medium-grained, phaneritic, hypidiomorphic granular rock consisting of 37% skeletal and lath plagioclase 0.07-1.5 mm (An50-70, An70-90), 30% subhedral clinopyroxene 0.04-1.2 mm, 2% olivine, 3% euhedral Fe-Ti oxide 0.008-0.3 mm, and 8% mesostasis.

VESICLES: 20%; 0.4-9.0 mm; Round; Evenly distributed; Filled with clay.

COLOR: Greenish-gray.
STRUCTURE: Massive.
ALTERATION: Moderately altered, clays, allophane, and actinolite replace mesostasis, Fe oxide after olivine and magnetite.
VEINS/FRACTURES: Few.

124-768C-91R-2

UNIT 2: CONTINUED

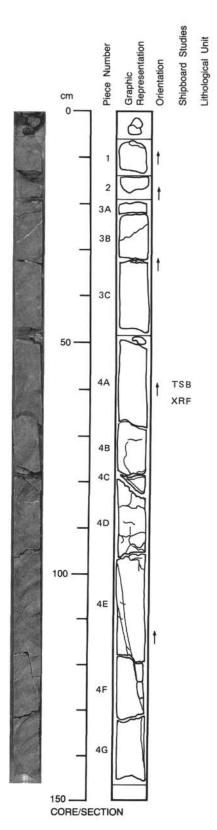
Pieces 1-9

CONTACTS: see comments PHENOCRYSTS: see comments GROUNDMASS: see comments VESICLES: see comments COLOR: see comments STRUCTURE: see comments ALTERATION: see comments VEINS/FRACTURES: see comments

ADDITIONAL COMMENTS: Continuation of Section 124-768C-91R-1.

UNIT 2: CONTINUED

Pieces 10-12


CONTACTS: None
PHENOCRYSTS: Olivine - 15%; N/A; totally replaced.

GROUNDMASS: Fine to medium-grained, phaneritic rock with hypidiomorphic granular texture, consisting of 25% euhedral tabular plagioclase 0.05-2.22 mm (An50-70), 30% subhedral pyroxene 0.1-1.6 mm, > 1% magnetite and 28% mesostasis.

VESICLES: 2%; 2.7-3.4 mm; Lobate; Irregularly distributed; Filled with clays and

crystallites.
COLOR: Brownish gray.
STRUCTURE: Massive.

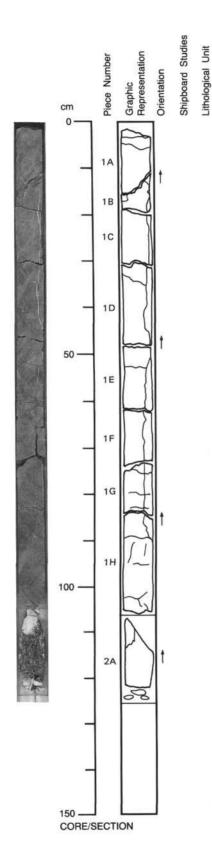
ALTERATION: Moderate, mainly clays replacing plagioclase, mesostasis and olivine. VEINS/FRACTURES: N/A ADDITIONAL COMMENTS: Pieces 10 to 12 differ from the previous section in having larger grain size and high contents of coarse amygdules.

UNIT 3: OLIVINE MICROGABBRO

PIECES 1-4G

CONTACTS: None
PHENOCRYSTS: None
GROUNDMASS: Fine to medium-grained hypidiomorphic granular to ophitic and intergranular. Consists of 20% olivine 0.45-1.11 mm, 40% plagioclase 0.04-1.85 mm, 24% clinopyroxene 0.08-0.22 mm, 1% magnetite 0.04-0.5 mm, 10% mesostasis, and a

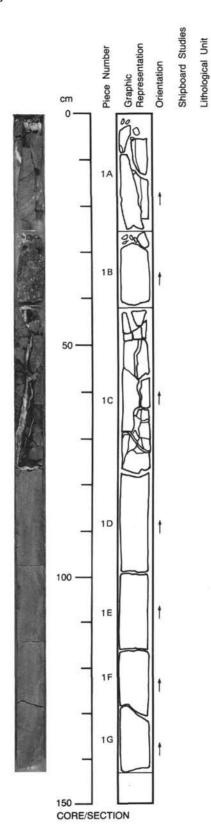
24% clinopyroxene 0.08-0.22 mm, 1% magnetite 0.04-0.5 mm, 10% mesosation, and trace of biotite.


VESICLES: 5%; 0.7-2.5 mm; Lobate; Irregularly distributed; Filled with clay.

COLOR: Dark gray to brownish gray.

STRUCTURE: Massive to moderately brecciated.

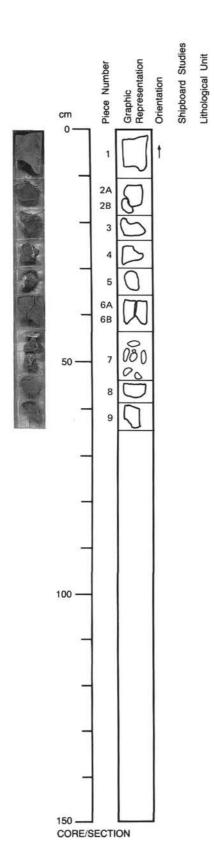
ALTERATION: Highly altered, along major veins, plagioclase, mesostasis and olivine replaced by clays, chlorite, and actinolite.


VEINS/FRACTURES: Thin, mostly vertical veins filled with calcite and Fe-oxide. Thicker veins (up to 3 cm) are filled with pale green fibrous ?serpentine, calcite, gypsum and hematite. Fibrous ?serpentine also occur in veinlets.

UNIT 3: CONTINUED

Pieces 1-2A

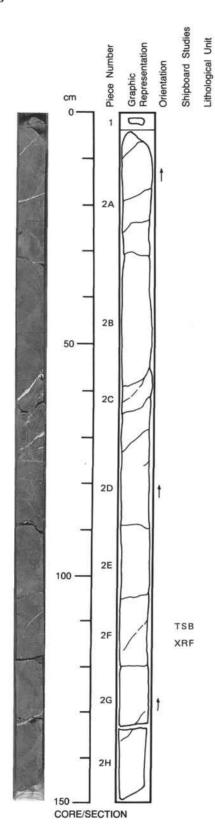
CONTACTS: see comments
PHENOCRYSTS: see comments
GROUNDMASS: see comments
VESICLES: see comments
COLOR: see comments
STRUCTURE: see comments
ALTERATION: see comments
VEINS/FRACTURES: see comments
ADDITIONAL COMMENTS: Same lithology as Section 124-768C-92R-1. Alteration
uniformly moderate. A long vertical vein filled with calcite and Fe-oxide extends through
Piece 1. Piece 2 shows one wall of a major vein. It is filled with hematite, calcite, fibrous?
serrentine and grosum. serpentine and gypsum.



UNIT 3: CONTINUED

Pieces 1A-1G

CONTACTS: see comments
PHENOCRYSTS: see comments
GROUNDMASS: see comments
VESICLES: see comments

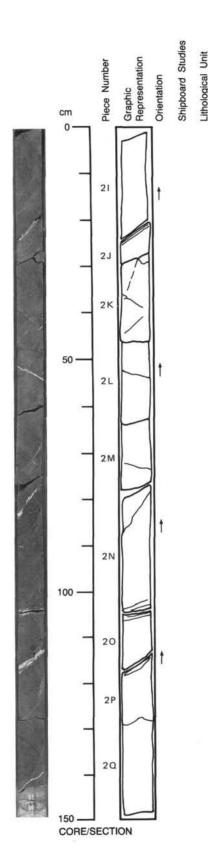

VESICLES: see comments
COLOR: see comments
STRUCTURE: see comments
ALTERATION: see comments
VEINS/FRACTURES: see comments
VEINS/FRACTURES: see comments
ADDITIONAL COMMENTS: Same lithology as Section 124-768C-92R-1 and -92R-2
except degree of alteration related to veining. Pieces 1D and 1G are moderately altered with brownish staining which is diffused and perpendicular to a vertical surface. Pieces
1A, 1B, and 1C are cut by a vertical vein pinching and thickening lengthwise, with maximum thickness of approximately 2 cm. The vein is filled with hematite, ? serpentine, calcite and gypsum.

UNIT 3: CONTINUED

Pieces 1-9

CONTACTS: see comments
PHENOCRYSTS: see comments
GROUNDMASS: see comments GROUNDMASS: see comments
VESICLES: see comments
COLOR: see comments
STRUCTURE: see comments
ALTERATION: see comments
VEINS/FRACTURES: see comments
ADDITIONAL COMMENTS: Moderately altered olivine microgabbro is in this section.
Veins are present and thin filling is mostly of calcite, hematite and ?serpentine.

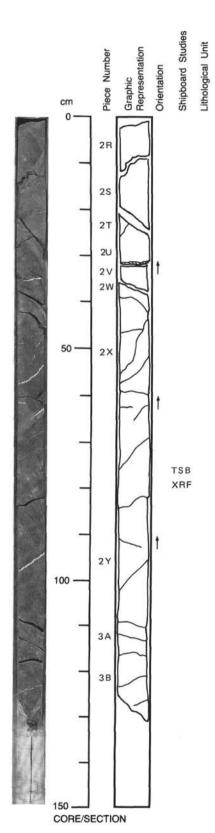
UNIT 3: CONTINUED


Pieces 1A-2H

CONTACTS: N/A
PHENOCRYSTS: N/A
GROUNDMASS: Fine to medium-grained, phaneritic hypidiomorphic texture. 15%
euhedral olivine 0.1-0.9 mm totally altered and included in orthopyroxene and clinopyroxene, 15% subhedral clinopyroxene 0.04-1.2 mm, 8% euhedral to subhedral orthopyroxene 0.3-0.6 mm, 45% subhedral plagioclase 0.2-1.2 mm (An75-85), 1% brown, subhedral hornblende 0.1-0.3 mm, 0.5% biotite 0.2-0.3 mm.

VESICLES: None. COLOR: Dark gray. STRUCTURE: Massive.

ALTERATION: Moderate, clays replace olivine, orthopyroxene, clinopyroxene, and plagioclase, 10% chlorite replacing hornblende, clinopyroxene and orthopyroxene.


VEINS/FRACTURES: Numerous vertical to steeply dipping fractures filled with hematite, gypsum, carbonate, and clay.

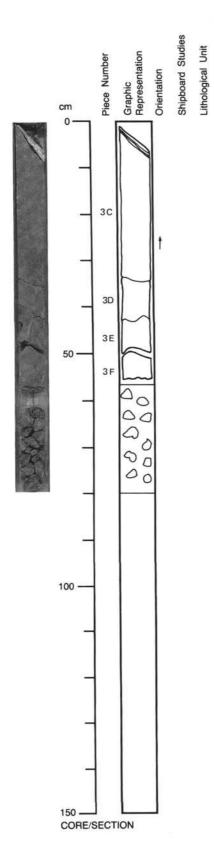
UNIT 3: CONTINUED

Pieces 21-2Q

CONTACTS: see comments
PHENOCRYSTS: see comments
GROUNDMASS: see comments
VESICLES: see comments VESICLES: see comments
COLOR: see comments
STRUCTURE: see comments
ALTERATION: see comments
VEINS/FRACTURES: see comments
ADDITIONAL COMMENTS: The rock shows the same mineralogy, texture, alteration and vein systems as described in Core 124-768C-92R.

UNIT 3: CONTINUED

Pieces 2R-3B

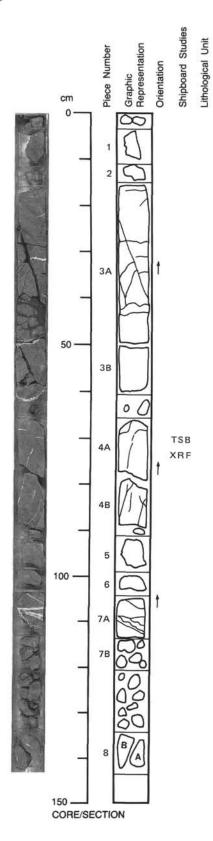

CONTACTS: N/A PHENOCRYSTS: N/A

GROUNDMASS: Fine to medium-grained, hypidiomorphic granular texture, comprising 20% totally replaced euhedral prismatic olivine 0.2-0.7 mm, 30% euhedral to subhedral plagioclase laths 0.2-1.5 mm (An75-85), 20% subhedral prisms of clinopyroxene 0.2-1.5 mm, 2% euhedral to subhedral prisms of orthopyroxene 0.2-0.7 mm, 2% subhedral prisms of hornblende 0.05-0.6 mm, 3% biotite 0.1-0.6 mm, 4% magnetite and limonite, trace of apatite.

VESICLES: None.

VESICLES: None.
COLOR: Dark gray.
STRUCTURE: Massive.
ALTERATION: Moderately altered, olivine alters to turbid aggregates, plagioclase is replaced by clays, hornblende and olivine by chlorite, orthopyroxene, clinopyroxene, and hornblende by actinolite, and celadonite replaces all of the mafic minerals.
VEINS/FRACTURES: Abundant steeply dipping to horizontal fractures filled with

hematite, gypsum, and carbonate.



UNIT 3: CONTINUED

Pieces 3C -3F

CONTACTS: N/A
PHENOCRYSTS: N/A
GROUNDMASS: see comments
VESICLES: see comments
COLOR: see comments
STRUCTURE: see comments

ALTERATION: see comments
VEINS/FRACTURES: see comments
ADDITIONAL COMMENTS: The rock shows the same mineralogy, texture, alteration and vein systems as described in core 124-768C-92R.

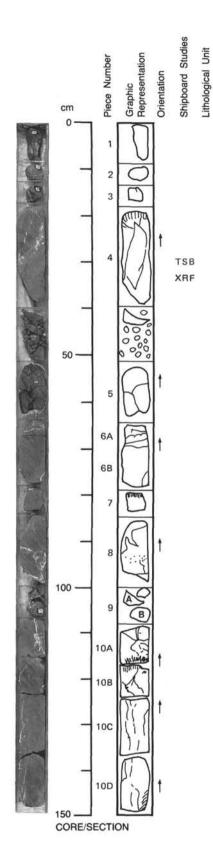
124-768C-94R-1

UNIT 3: CONTINUED

Pieces 1-8

CONTACTS: N/A PHENOCRYSTS: N/A

GROUNDMASS: Fine to medium-grained, phaneritic hypidiomorphic texture, 13% totally replaced euhedral olivine 0.2-1.0 mm, 45% plagioclase, 20% clinopyroxene, 2% magnetite, 3% mesostasis, traces of hornblende and apatite.


VESICLES: None.

VESICLES: None. COLOR: Dark gray. STRUCTURE: Massive.

ALTERATION: Moderate, olivine is replaced by clasts, hematite, and carbonate,

plagioclase by clays and carbonate, and clinopyroxene by actinolite and celadonite.

VEINS/FRACTURES: Abundant steep and horizontally dipping veins filled with hematite, gypsum, carbonate.

124-768C-95R-1

UNIT 4: SPARSELY OLIVINE PHYRIC TO APHYRIC OLIVINE BASALT

Pieces 1-10D

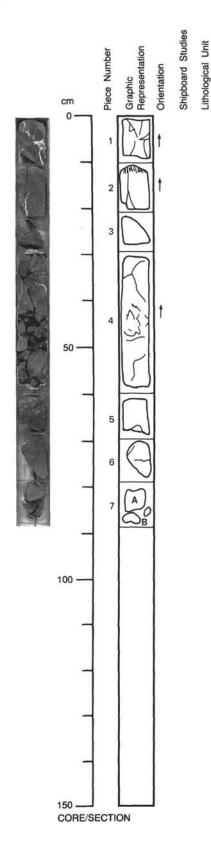
CONTACTS: No contact. Minor portions of chilled margins preserved. PHENOCRYSTS: Olivine - 10%; ~ 1 mm; Heterogeneously distributed and altered to

green clay.

GROUNDMASS: Fine-grained to microcrystalline and glassy variolitic to intersertal (poorly developed), made up of 15% skeletal and lath plagioclase 0.02-0.6 mm (An50-70), 5% subhedral to microcrystalline clinopyroxene < 0.2 mm, > 1% magnetite, 7% mesostasis,

and 8% crystallites.

VESICLES: ~50%; 0.04 mm in groundmass, 3.7 mm scattered; Mainly spherical, some lobate, irregular; N/A; Filled or partially filled with green gray clay and calcite.

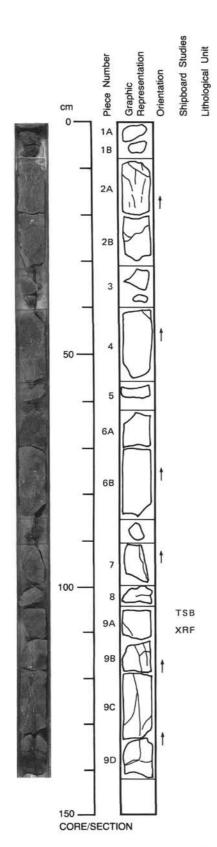

COLOR: Gray to brownish gray.

STRUCTURE: Pillowed.

ALTERATION: Highly altered, clay, allophane after olivine and mesostasis, some oxidation

around veins.

VEINS/FRACTURES: Irregular veins throughout section, filled with white calcite and some silicate, green clay and minor red clay.



124-768C-95R-2

UNIT 4: CONTINUED

Pieces 1-7

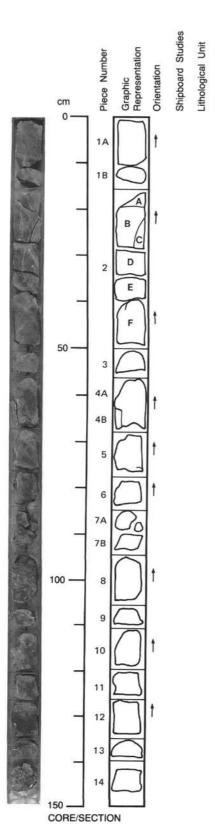
CONTACTS: see comments
PHENOCRYSTS: see comments
GROUNDMASS: see comments
VESICLES: see comments
COLOR: see comments
STRUCTURE: see comments
ALTERATION: see comments
VEINS/FRACTURES: see comments
ADDITIONAL COMMENTS: Continues from Section 124-768C-95R-1.

124-768C-96R-1

UNIT 4: CONTINUED

Pieces 1-8D

CONTACTS: None.
PHENOCRYSTS: None.
GROUNDMASS: Fine-grained, hypocrystalline intersertal texture, 35% altered plagioclase plates 0.1-2.0 mm, 15% microcrystalline and skeletal clinopyroxene < 0.3 mm, 3% magnetite, 20% mesostasis which is cryptocrystalline and glassy.
VESICLES: ~25%; 0.05-1.0 mm; Small spherical and lobate; N/A; Partly filled with zeolites,

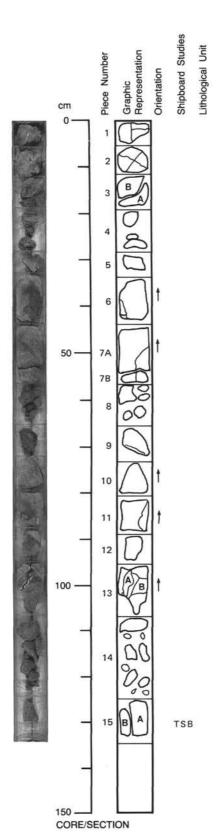

vesicles: ~25%; 0.05-1.0 mm; Small spherical and lobate; N/A; Partly filled with zeolite carbonate, and chlorite.

COLOR: Brownish gray.

STRUCTURE: N/A

ALTERATION: Highly altered.

VEINS/FRACTURES: Irregular veins filled with red clay and calcite (possibly with some silica and clay).



124-768C-96R-2

UNIT 4: CONTINUED

Pieces 1-14

CONTACTS: N/A
PHENOCRYSTS: N/A
GROUNDMASS: N/A
VESICLES: N/A
COLOR: N/A
STRUCTURE: N/A
ALTERATION: N/A
VEINS/FRACTURES: N/A
ADDITIONAL COMMENTS: Very similar to 124-768C-96R-1 in texture and,mineralogy.
There are some variolitic areas which may indicate a margin nearby but no contacts are found.

124-768C-96R-3

UNIT 4: CONTINUED

Pieces 1-13

CONTACTS: see comments
PHENOCRYSTS: see comments
GROUNDMASS: see comments
VESICLES: see comments
COLOR: see comments STRUCTURE: see comments ALTERATION: see comments
VEINS/FRACTURES: see comments
ADDITIONAL COMMENTS: Continuation of 124-768C-96R-2

UNIT 4: CONTINUED

Pieces 14-15

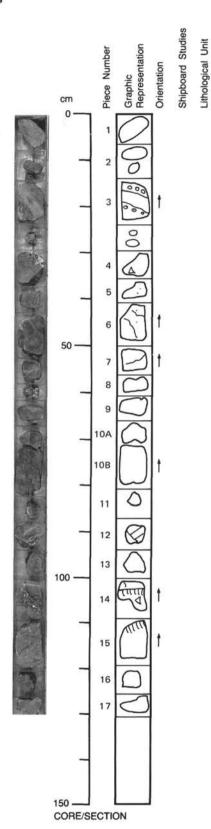
CONTACTS: None PHENOCRYSTS: None.

GROUNDMASS: Fine to medium-grained intersertal texture. 10% euhedral prisms of olivine replaced by clays, 20% subhedral clinopyroxene 0.05-2.5 mm, 40% plagioclase laths 0.05-2.5 (An70-80). 4% euhedral to skeletal Fe-Ti oxides, 15% mesostasis, and

traces of spinel and apatite.

VESICLES: 10%; 0.1-1.5 mm; Spherical to lobate; N/A; Filled with clays

and carbonate.


and carbonate.

COLOR: Brownish gray.

STRUCTURE: None evident.

ALTERATION: Highly altered, olivine replaced by celadonite and carbonate, plagioclase by zeolites and k-feldspar, mesostasis partially replaced by clays, and iron-oxides by hematite.

VEINS/FRACTURES: Few

124-768C-97R-1

UNIT 4: CONTINUED

Pieces 1-2

CONTACTS: see comments
PHENOCRYSTS: see comments
GROUNDMASS: see comments VESICLES: see comments VESICLES: see comments
COLOR: see comments
STRUCTURE: see comments
ALTERATION: see comments
VEINS/FRACTURES: see comments
ADDITIONAL COMMENTS: Continuation of 124-768C-96R-3.

UNIT 4: CONTINUED

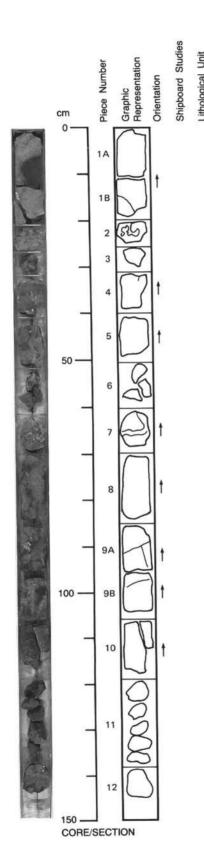
Pieces 3-17

CONTACTS: N/A
PHENOCRYSTS: N/A

GROUNDMASS: Variolitic to intersertal aggregates of plagioclase and glass, ?pyroxene, dark blade mineral present.

VESICLES: Abundant small vesicles filled with green clay. Larger vesicles filled with white

?chalcedony.

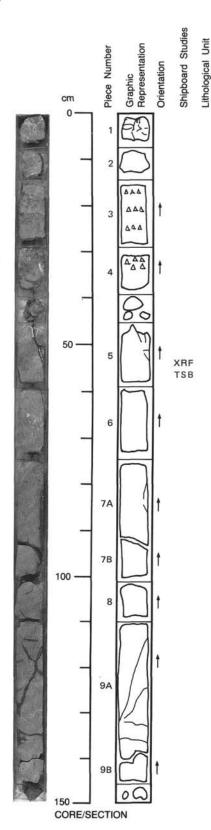

COLOR: Red, red-brown, and brownish gray.

STRUCTURE: Brecciated.

ALTERATION: Moderately altered to clay and Fe-oxide.

VEINS/FRACTURES: Irregular veins filled with red clay or calcite, maximum thickness

3-4 mm.
ADDITIONAL COMMENTS: Much of the rock is fragmental pillow rinds, varioles and basalt. No order can be made out.



124-768C-97R-2

UNIT 4: CONTINUED

Pieces 1-?

CONTACTS: see comments
PHENOCRYSTS: see comments
GROUNDMASS: see comments
VESICLES: see comments
COLOR: see comments
STRUCTURE: see comments
ALTERATION: see comments
VEINS/FRACTURES: see comments
ADDITIONAL COMMENTS: The dark acicular mineral may be pyroxene. Still brecciated, one individual pillow or sheet may be present at top of section between Pieces 1 and 2, it contains olivine.

124-768C-97R-3

UNIT 4: CONTINUED

Piece 1

CONTACTS: see comments PHENOCRYSTS: see comments GROUNDMASS: see comments VESICLES: see comments COLOR: see comments STRUCTURE: see comments ALTERATION: see comments VEINS/FRACTURES: see comments
ADDITIONAL COMMENTS: Continuation of 124-768C-97R-2.

UNIT 4: CONTINUED

Pieces 2-4

CONTACTS: Chilled at top and bottom margins. Maybe planar making this a sheet flow

(Pieces 2-4, 9B).

PHENOCRYSTS: Olivine - N/A; 1.0 mm; Most abundant between interval 100-110 cm, possible accumulation.

GROUNDMASS: Microcrystalline, variolites near chilled margin, plagioclase, glass and

acicular or platey pyroxene.

VESICLES: Abundant small vesicles; the matrix filled with green clay. Larger vesicles near center of unit filled with chalcedony.

COLOR: Brownish-red.

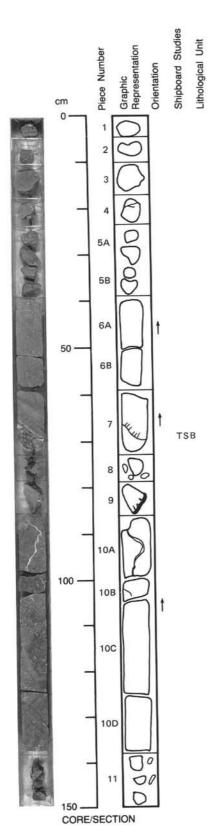
STRUCTURE: Sheet flow? - 140 cm thick.

ALTERATION: Olivine altered to smectite and Fe-oxide, matrix stained with Fe-oxide. VEINS/FRACTURES: There are a few thin (1-3 mm) irregular veins filled with calcite and ?chalcedony.

UNIT 4: CONTINUED

Pieces 5-9

PHENOCRYSTS: None.


GROUNDMASS: Fine to medium-grained, intersertal to intergranular comprising 25% skeletal and lath plagioclase 0.09-2.0 mm (An50-70), 33% subhedral clinopyroxene 0.05-3.1 mm, 20% mesostasis and glass, 2% euhedral olivine, > 1% euhedral

magnetite. VESICLES: 20%; 0.14-1.7 mm; Irregular and round; Evenly distributed; Filled with clay and

COLOR: Brownish-gray. STRUCTURE: N/A

ALTERATION: Highly altered, clays after plagioclase, mesostasis, and olivine, iron oxide after olivine and magnetite.

VEINS/FRACTURES: Few, filled with calcite and chalcedony.

UNIT 4: CONTINUED

Pieces 1-11

CONTACTS: Chilled pillow margins in section.

PHENOCRYSTS: Olivine - 2%; 0.2-2.0 mm; Euhedral, altered to smectite and Fe-oxide.

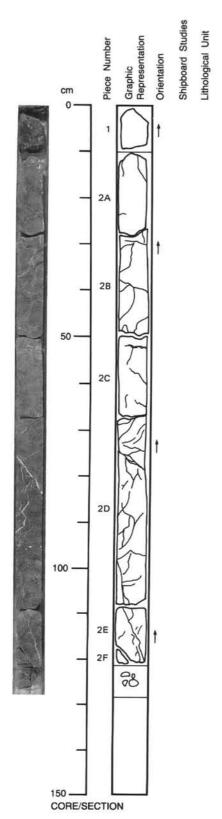
GROUNDMASS: Fine-grained intersertal to variolitic, consisting of 5% microcrystalline plagioclase, 1% microcrystalline clinopyroxene, 20% crystallines and 27% glass.

Texture markedly variable from intersertal to subvariolitic in section. Glassy texture with

Texture markedly variable from intersertal to subvariable in section. Glassy texture without crystallite clusters developed at chilled margins.

VESICLES: 45% very fine irregular and lobate vesicles 0.008-0.5 mm, filled or lined with smectite and chalcedony; coarser larger vesicles (1-2 mm) irregularly distributed, filled mostly with chalcedony or empty.

COLOR: Gray, brownish gray, reddish gray, dark green (chilled margins).


STRUCTURE: Pillowed, moderately brecciated, locally finely brecciated (interpillow

material).

ALTERATION: Moderate, clays zeolites, allophane and iron oxide are secondary minerals.

VEINS/FRACTURES: Sinuous with calcite filling, < 1 mm to 3 mm.

ADDITIONAL COMMENTS: Pieces 1-8: Sparsely to moderately phyric basalt with intersertal texture (Pieces 1-6), grading to intersertal divergent to variolitic to glass (Pieces 7-8). This subunit represents the inner part, and the childed margin of a pillow, and the interpillow glass-rich breccia. Pieces 9-11: A chilled margin with thin microvariolitic rim in Piece 9. Pieces 10-11 consist of variably textured snarsely phyric. microvariolitic rim in Piece 9. Pieces 10-11 consist of variably textured sparsely phyric basalt. They probably represent an inner zone of a metric sized pillow.

UNIT 5: SPARSELY OLIVINE PHYRIC BASALT

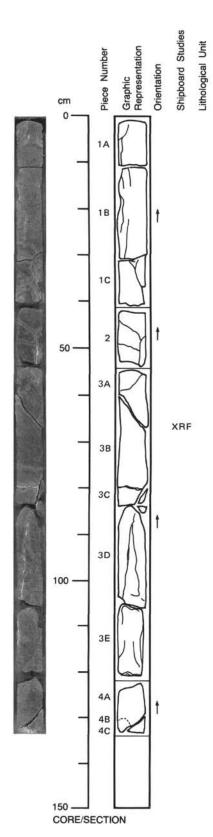
Pieces 1-2

CONTACTS: N/A PHENOCRYSTS: Olivine - 1-2%; N/A; Altered to smectite, Fe-oxide and ? chalcedony. In

places olivine is more abundant (up to about 8%) (e.g., Piece 1D).

GROUNDMASS: Consisting of plagioclase, pyroxene, Fe-oxide and glass (altered to smectite plus? chalcedony); has a uniform intersertal texture.

VESICLES: Abundant very fine vesicles diffused evenly in the groundmass, partly filled with smectite. Scattered larger vesicles, irregular in form and distribution, 1-4 mm in size, are filled with chalcedony and often lined with calcite.


COLOR: Gray, reddish gray.

STRUCTURE: Massive, slightly brecciated. Could indicate a massive lava, 3-4 m minimum

thickness.

ALTERATION: Moderate.

VEINS/FRACTURES: N/A; 0.5-10 mm; N/A; Irregular veins filled with calcite (the thinnest vein), chalcedony and scarce calcite, brown and green smectite (thicker veins).

UNIT 5: CONTINUED

Pieces 1A-4C

CONTACTS: None.

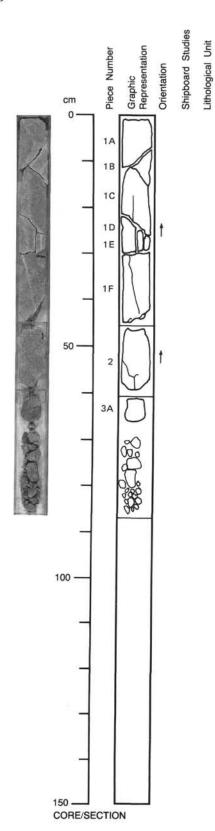
PHENOCRYSTS: Olivine - >1%; ~2.2 mm; Euhedral, completely altered.

GROUNDMASS: Fine-grained intersertal texture made up of 25% skeletal and lath plagioclase (An50-70), 15% subhedral clinopyroxene, 12% olivine, 2% euhedral and acicular magnetite and opaques, and 26% mesostasis.

VESICLES: 20%; N/A; Round to lobate; evenly distributed; Filled with clay and zeolites.

COLOR: Gray.

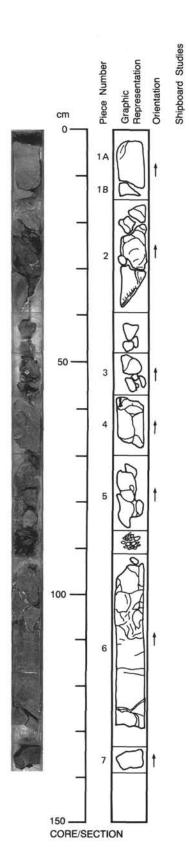
STRUCTURE: Massive.


ALTERATION: Highly altered; clays replace olivine and plagioclase, actinolite and iddingsite after olivine and allophane.

VEINS/FRACTURES: Veins mostly vertical, filled with chalcedony and scarce calcite, fractives froment.

fractures frequent.

ADDITIONAL COMMENTS: Lithologic features are same as Section 124-768C-98R-2.


More diffused, slightly olivine-rich zones (Pieces 2 and 4) and zones with abundant chalcedony filled vesicles, 0.3-0.5 mm in size.

UNIT 5: CONTINUED

Pieces 1-3

CONTACTS: see comments
PHENOCRYSTS: see comments
GROUNDMASS: see comments
VESICLES: see comments
STRUCTURE: see comments
STRUCTURE: see comments
ALTERATION: see comments
VEINS/FRACTURES: see comments
ADDITIONAL COMMENTS: Lithological features are same as Section 124-768C-98R-3.
Olivine content slightly higher than average in this section, locally abundant chalcedony filled vesicles 0.1-1.0 mm in size. Vertical veinlets filled with chalcedony and scarce calcite.

UNIT 5: CONTINUED

Piece 1

CONTACTS: N/A

PHENOCRYSTS: Olivine - ~1%; N/A; Altered.

GROUNDMASS: Consisting of plagioclase, pyroxene, Fe-Ti oxide and abundant altered (to green smectite) glass, intersertal in texture.

VESICLES: Very fine vesicles are scattered, partly filled with smectite and chalcedony or

calcite.

COLOR: Brownish gray to gray.

STRUCTURE: Massive. ALTERATION: Moderate.

VEINS/FRACTURES: Veinlets filled with calcite and Fe-oxide.

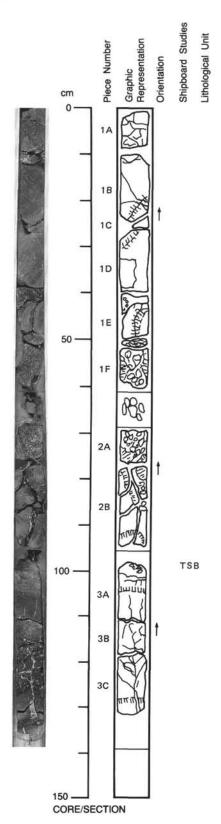
UNIT 6: SPARSELY OLIVINE PHYRIC BASALT

Pieces 2-7

CONTACTS: N/A
PHENOCRYSTS: Olivine - < 1-3%; N/A; Altered.

GROUNDMASS: Consisting of plagioclase and pyroxene (mostly skeletal) and Fe-Ti oxide, contains altered glass in highly variable amounts (up to 100% in chilled margins).

Groundmass texture variable, grading from intersertal divergent to arborescent, subvariolitic to microvariolitic (varioles 1 mm or less) or variolitic (varioles up to 5 mm) toward the glassy margin. Microvariolitic borders are 2-10 mm thick.
REST SEE COMMENTS
VESICLES: Sparse to moderate, spherical and elongated, perpendicular to chilled


margins, filled with green smectite.

COLOR: Brown, brownish gray, reddish gray, greenish gray, dark green(glassy portions).
STRUCTURE: Brecciated, pillowed.
ALTERATION: Moderate to high.

VEINS/FRACTURES: Irregular <1-5mm thick, filled with aragonite and chalcedony or with

reddish brown Fe-oxide.

ADDITIONAL COMMENTS: GROUNDMASS CONTINUED: Variolitic borders develop in inner and the farthest from the glassy rims, and are up to 3 cm thick, followed toward the glassy rim by subvariolitic to microvariolitic zones. Pieces 2-5: Pillow breccia with cm-sized fragments embedded in scarce hyaloclastite matrix (altered to smectite), irregular veins filled with iron oxide. Pieces 6-7: Moderately brecciated pillow. More than 60 cm in size (lower part in Section 124-768C-99R-2). Upper chilled margin represented probably by disaggregated glass in the interval 87-93 cm.

UNIT 6: CONTINUED

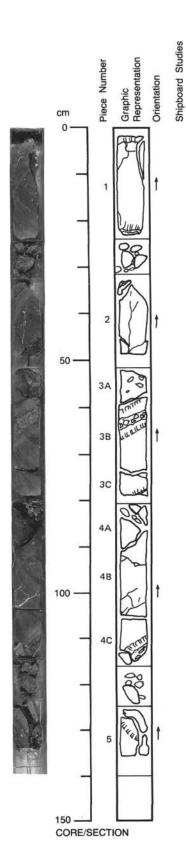
Pieces 1-3

CONTACTS: Pillow margin.
PHENOCRYSTS: Trace of euhedral olivine, completely altered.

GROUNDMASS: Fine-grained to microcrystalline comprising plumose aggregates, variolites, of 45% crystallites, 20% glass and a trace of clinopyroxene 0.2 mm.

VESICLES: 35%; N/A; Round to lobate; Evenly distributed; Filled with clay and calcite.

VESICLES: 35%; N/A; Round to lobate; Evenly distributed; Filled with clay and calcite.


COLOR: Light gray.

STRUCTURE: Pillow margin.

ALTERATION: Highly altered to clays, carbonate, zeolites, allophane, and iron oxide.

VEINS/FRACTURES: Few.

ADDITIONAL COMMENTS: Pieces 1A-1B: Lower portion of pillow showing a 3-4 mm thick microvariolitic rim (azimuth 50 degrees). Pieces 1C-1D: Small pillow (about 20 cm in size) with microvariolitic and glassy margins. Pieces 1E-2A p.p.-2B p.p.: Interpillow breccia with micropillows and fragments of pillow and abundant hyaloclastite matrix. Pieces 2A p.p-2B p.p: Pillow of decimetric size showing a curved vertical chilled margin. Piece 3: Pillow about 35 cm in size, with a well developed upper chill margin that include (from the inner to the outer part) a variolitic zone (2.5 cm), a subvariolitic zone (1.5 cm) and a microvariolitic zone. Glass margin preserved. Lower thin chilled margin in the bottom portion of Piece 3C. Piece 3C p.p: Pillow (~20 cm). The upper chilled margin is present in the lower part of Piece 3C.

UNIT 6: CONTINUED

Piece 1

ithological Unit

CONTACTS: see comments
PHENOCRYSTS: see comments
GROUNDMASS: see comments
VESICLES: see comments
COLOR: see comments
STRUCTURE: see comments
ALTERATION: see comments
VEINS/FRACTURES: see comments
ADDITIONAL COMMENTS: Interior zone and lower chilled margin of pillow. Sparse vesicles 1-3 mm in size.

UNIT 6: CONTINUED

Pieces 2-3A-3B p.p.

CONTACTS: see comments
PHENOCRYSTS: see comments
GROUNDMASS: see comments
VESICLES: see comments
COLOR: see comments
STRUCTURE: see comments
ALTERATION: see comments
VEINS/FRACTURES: see comments

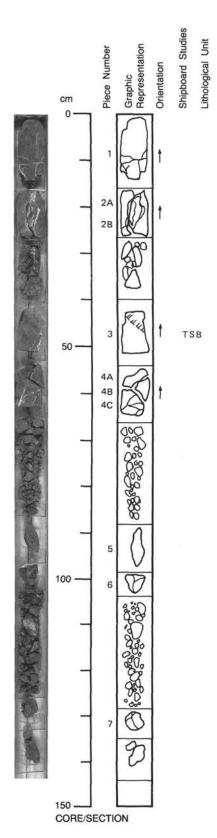
ADDITIONAL COMMENTS: Pillow about 30 cm in size with traces of the upper chilled margin, separated by the overlying pillow by glass-rich breccia (fragments in the interval 24-32 cm of this section), with preserved lower chill margin. Coarse amygdules filled with smectites and aragonite occur in an inner, brecciated portion.

UNIT 6: CONTINUED

Pieces 3B p.p.-3C

CONTACTS: see comments
PHENOCRYSTS: see comments
GROUNDMASS: see comments
VESICLES: see comments
COLOR: see comments
STRUCTURE: see comments
ALTERATION: see comments
VEINS/FRACTURES: see comments
ADDITIONAL COMMENTS: Decimeter-sized pillow separated by the overlying pillow by
3 cm of intrapillow glassy breccia.

UNIT 6: CONTINUED


Piece 4

CONTACTS: see comments
PHENOCRYSTS: see comments
GROUNDMASS: see comments
VESICLES: see comments
COLOR: see comments
STRUCTURE: see comments
ALTERATION: see comments
VEINS/FRACTURES: see comments
ADDITIONAL COMMENTS: Decimeter-sized (>30 cm) pillow with well preserved lower chilled margin (azimuth 60 degrees).

UNIT 6: CONTINUED

Piece 5

CONTACTS: see comments
PHENOCRYSTS: see comments
GROUNDMASS: see comments
VESICLES: see comments
COLOR: see comments
STRUCTURE: see comments
ALTERATION: see comments
VEINS/FRACTURES: see comments
ADDITIONAL COMMENTS: Portion of pillow with inclined (azimuth 80 degrees) chilled margin.

UNIT 6: CONTINUED

Pieces 1-2

CONTACTS: see comments PHENOCRYSTS: see comments GROUNDMASS: see comments VESICLES: see comments COLOR: see comments
COLOR: see comments
STRUCTURE: see comments
ALTERATION: see comments
VEINS/FRACTURES: see comments

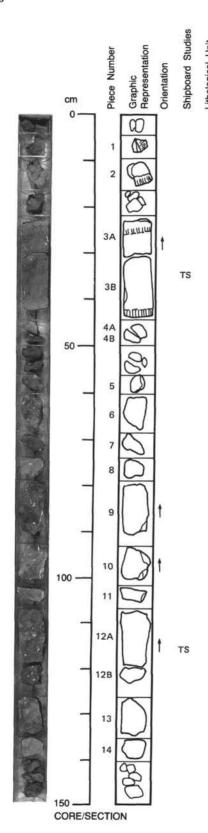
ADDITIONAL COMMENTS: Inner part of pillow. Lower chilled margin not

shown. Aragonite veins.

UNIT 6: CONTINUED

Pieces 3-4

CONTACTS: None.
PHENOCRYSTS: Olivine - 1%; 0.17-0.57 mm; Euhedral, completely altered.
GROUNDMASS: Fine-grained, intersertal divergent texture, comprising, 10% microcrystalline plagioclase 0.15 mm (An50-70), 7% skeletal olivine, 0.3 mm, >1% clinopyroxene 0.02-0.13 mm, and 62% mesostasis.
VESICLES: 20%; 0.06-0.9 mm; Round to lobate; Evenly distributed; Filled with clay.


COLOR: Brownish gray.

STRUCTURE: Pillowed.

ALTERATION: Highly altered, mesostasis and olivine alter to allophane and iron oxide.

VEINS/FRACTURES: Few.

ADDITIONAL COMMENTS: Fragment of pillow with upward concave upper chilled margin. Aragonite veins.

124-768C-100R-1

UNIT 7: SPARSELY TO HIGHLY OLIVINE PHYRIC BASALT

Pieces 1-3

CONTACTS: None.

PHENOCRYSTS: Olivine - 3%; 0.03-0.7; Euhedral, completely altered.

GROUNDMASS: Fine-grained with intersertal divergent texture, comprising 22% plagioclase 1.0 mm (An50-70), 12% olivine skeletal olivine 0.28 mm, >1% clinopyroxene 0.008-0.11 mm, and 38% mesostasis.

VESICLES: 25%; 0.02-1.7 mm; Irregular and round; Evenly distributed; Filled with clay.

COLOR: Brownish gray. STRUCTURE: Pillowed.

ALTERATION: Highly altered olivine and plagioclase alter to clay and olivine and

mesostasis are altered to iron oxide. VEINS/FRACTURES: Carbonate veinlets.

UNIT 7: CONTINUED

Piece 4

CONTACTS: N/A

CONTACTS: N/A
PHENOCRYSTS: Olivine - ~3%; N/A; Altered.
GROUNDMASS: Consisting of 25% plagioclase, 10% pyroxene, Fe-Ti oxide and 43% mesostasis. Intersertal divergent (glass-poor) to subvariolitic to variolitic.
VESICLES: 15%; 0.5-2 mm; N/A; N/A; Very fine grained vesicles. Scattered through the groundmass. Irregularly distributed (inner part of pillow).
COLOR: Brownish gray, dark green (altered glass).

STRUCTURE: Pillowed, brecciated. One pillow 20 cm in size present. This unit closely resembles Section 124-768C-99R-1 to -4 in lithology and structure.

ALTERATION: Very highly altered.
VEINS/FRACTURES: Carbonate veinlets.

UNIT 7: CONTINUED

Pieces 5-14

CONTACTS: N/A

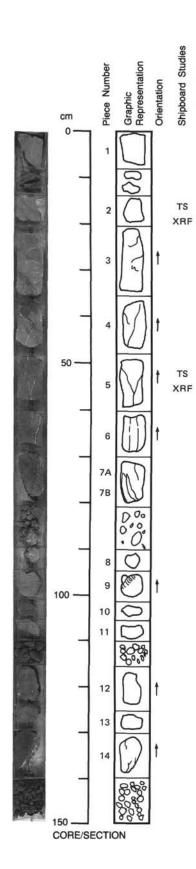
PHENOCRYSTS: Olivine - 3%; N/A; Altered euhedral prismatic. Variable in amount. (5% in

the finer grained basalt and up to 15% in the coarser grained).

GROUNDMASS: Fine-grained intersertal divergent texture made up of 25% altered skeletal and lath plagioclase 0.1-1.2 mm, 7% microcrystalline and skeletal

clinopyroxene < 0.03 mm, 2% spinel, 25% mesostasis.

VESICLES: 15%; 1-8 mm; N/A; N/A; Filled with aragonite and chalcedony in basalt.


COLOR: Reddish brown to gray and greenish-gray.

STRUCTURE: Massive. No chilled margin shown. Structure and variations in texture, frequency of vesicles and oxidation indicate a lava flow, 160 cm as minimum thickness, with a thick rapidly chilled upper zone (basalt, about 25 cm) and a lower zone that

cooled more slowly where accumulation of olivine occurred.

ALTERATION: Moderate, olivine alters to clay, hematite and carbonate, plagioclase to clay and zeolites, magnetite to hematite, and mesostasis to clay and hematite.

VEINS/FRACTURES: Few filled with carbonate and chalcedony.

124-768C-100R-2

UNIT 7: CONTINUED

Pieces 1-2

ithological Unit

CONTACTS: N/A PHENOCRYSTS: None.

GROUNDMASS: Fine-grained, phaneritic intergranular to subophitic. Comprising, 50% plagioclase laths 0.3-1.0 mm (labradorite), 20% subhedral clinopyroxene 0.5-1.0 mm, 2% euhedral magnetite 0.3-0.5 mm, 15% mesostasis.

VESICLES: 10%; 0.2-0.5 mm; N/A; N/A; Filled with clays.

COLOR: Grav

STRUCTURE: Massive, uniform flow 1.85 m thick.

ALTERATION: Moderately altered.

VEINS/FRACTURES: Rare filled with carbonate.

UNIT 7: CONTINUED

Pieces 3-7

CONTACTS: N/A

PHENOCRYSTS: Olivine - 15%; N/A; Euhedral, replaced by secondary minerals.

GROUNDMASS: Fine-grained, phaneritic intergranular to subophitic, made up of 30% plagioclase (labradorite), 2% olivine, 18% clinopyroxene, 18% mesostasis.

VESICLES: 13%; N/A; N/A; N/A; Filled with carbonate. COLOR: Gray. STRUCTURE: Massive with planar contacts, lava flow.

ALTERATION: Highly altered.
VEINS/FRACTURES: Rare, filled with carbonate.
ADDITIONAL COMMENTS: This is the coarser grained (doleritic) portion than Pieces 1 and 2. The sequence an increase of the content of olivine downward, from Piece 1 to Piece 7, and concurrently a coarsening of the grain size, and decrease of glass

UNIT 8: MODERATELY OLIVINE PHYRIC BASALT

Pieces 8-14

CONTACTS: N/A

PHENOCRYSTS: Olivine - 8-10%; N/A; Altered.

GROUNDMASS: Consisting of plagioclase, pyroxene, Fe-Ti oxide and glass. Texture is

intersertal divergent. VESICLES: Few.

COLOR: Brownish gray.

STRUCTURE: Possibly pillowed, inferred by the occurrence of a chilled margin in Piece 9 (subvariolitic basalt).

ALTERATION: Moderate

VEINS/FRACTURES: Veins rare, filled with carbonate.

124-768C-73R-01 (Piece 1, 19-22 cm)

OBSERVER: SPA

WHERE SAMPLED: Pillow interior

ROCK NAME: Olivine phyric basalt

GRAIN SIZE: Fine-grained

TEXTURE: Phyric, intersertal divergent

VESICLES/ CAVITIES Vesicles	PERCENT 25	LOCATIO Even	SIZE ON (mm) 0.04-0	.7	FILLING Clays	SHAPE COMMENTS Round or 20% full, 5% empty- circular(i rregular).
		OTTVIN		C183	Coloite reprac	ing office, occasionally in residues.
Carbonate	1		es e and vesi	clas		ing olivine, occasionally in vesicles.
Clays	20	Vesicle	~			nd fibrous clays.
Clays	11	Olivin			Carbonate and	
SECONDARY	PERCENT		LACING/			COMMENTS
Mesostasis	15	15	N/A		Angular patches	Mostly with brown muck and magnetite.
Clinopyroxene	10	10	0.03-0.8	Diop.	Subhedral euhedral	Mostly intersertal to pl; colorless.
GROUNDMASS Plagioclase	35	37	~0.3	An70	Euhedral	Slight alteration to fresh; acicular.
Spinel	trace	trace	~0.05	Chromite	Euhedral	Included in olivine.
PHENOCRYSTS Olivine	0	12	0.3-0.8		Euhedral	Pseudomorphed by alteration minerals.
MINERALOGY	PRESENT	ORIGINA	L (mm)	SITION	MORPHOLOGY	COMMENTS
PRIMARY	PERCENT	PERCENT	SIZE	COMPO-		

COMMENTS: Calcite could have been more abundant in vesicles, but was removed by slide preparation.

124-768C-73R-01 (Piece 5B, 67-69 cm)

OBSERVER: SPA

WHERE SAMPLED: Border of pillow

ROCK NAME: Olivine phyric basalt

GRAIN SIZE: Fine-grained

TEXTURE: Phyric subvariolitic/variolitic

CAVITIES /esicles	PERCENT 20	LOCATIO Even			FILLING Clay	SHAPE COMMENTS Spherical, Rare medium-sized, elongated mostly 0.03-0.02 mm.
VESICLES/			SIZE			
Carbonate	>1	Olivin	e			
Clays	20	Vesicl	0.5		Smectite and fi	brous clay mineral with high birefringence
Clays	10	Olivin	•		Fibrous, highly	
MINERALOGY	PERCENT		LING			COMMENTS
SECONDARY			LACING/			
Glass	40	40	N/A		N/A	Devitrified.
Clinopyroxene	20	20	0.3001	Diop.?	Subhedral, skeletal microliths	Colorless (endiopside?).
Plagioclase	10	10	0.5-0.1	An50-70	Lath, skeletal	Incipiently altered.
GROUNDMASS					E.W. E.V. 1	7-7-7-11-11-1
Spinel	trace	trace	0.02	Chromite	Euhedral	Cr-Sp included in Olivine.
PHENOCRYSTS Olivine	0	10	1-0.1		Euhedral-prism	Pseudomorphed by secondary minerals.
MINERALOGY	PRESENT	ORIGINA	L (mm)	SITION	MORPHOLOGY	COMMENTS
PRIMARY	PERCENT	PERCENT	SIZE	COMPO-		

COMMENTS: Marked textural zoning. A 1 mm thick variolitic zone includes varioles 0.15 mm in size.

124-768C-73R-01 (Piece 5B, 67-69 cm)

OBSERVER: SPA

WHERE SAMPLED: Pillow rim

ROCK NAME: Olivine phyric basalt

GRAIN SIZE: Fine-grained

TEXTURE: Phyric, hypocrystalline subvarialitic groundmass.

PRIMARY	PERCENT	PERCENT	SIZE	COMPO-		
MINERALOGY		ORIGINAL		SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Olivine	0	15	1-0.2		Euhedral, prisms	Replaced by phyllosilicates.
Spinel	trace	trace	N/A		Euhedral	Circular Cr-Sp included in olivine.
GROUNDMASS						
Plagioclase	3		N/A		Microliths	
Clinopyroxene	7	7	0.2-0.01		Microliths, skeleto	
Devitrified	40	53	N/A		N/A	Partly altered, glass with crystallites
glass						in origin.
SECONDARY		REPL	ACING/			
MINERALOGY	PERCENT	FILL	ING			COMMENTS
Clays	15	Olivine	, plagioclase			
Clays	30	Vesicle	s, Groundmass	3		
Fe-hydrox.	5	Olivine	, Groundmass			
VESICLES/			SIZE			
CAVITIES	PERCENT	LOCATIO	N (mm)		FILLING	SHAPE COMMENTS
Vesicles	20		0.1003		Clay	Spherical, Zonally distributed, pipe missing in outer varialitic rims.

COMMENTS: Porphyritic (olivine) texture, with quenched groundmass high vesicularity (NO UNIT NUMBER GIVEN).

124-768C-73R-01 (Piece 7A, 113-114 cm) OBSERVER: SAJ

WHERE SAMPLED: Pillow

ROCK NAME: Olivine phyric basalt

GRAIN SIZE: Fine-grained

TEXTURE: Phyric, divergent intersertal

esicles,	PERCENT 30	LOCATIO Even	N (mm) 0.040	.8 Clay, F	The state of the s	SHAPE Round, irregular	COMMENTS Filled with fibrous clay, and Fe-oxide.
VESICLES/	DEDCENT	LOCATIO	SIZE				COLANTITO
Fe-oxide	7	Fracts,	plag, o	l, vesicles, mesostasis	2% vacant fract	ure.	
Clays	32	Fractur	e, vesic	les, plagioclase	Smectite and al	lophane.	
Clays	10	Olivine			Fibrous mineral	(colorless to yellor	v) and Fe oxide.
MINERALOGY	PERCENT	FILL	ING			COMMENTS	
SECONDARY		REPL	ACING/				
Mesostasis	26	26	N/A		N/A		
Clinopyroxene	10	10	N/A	j	N/A		
Plagioclase	15	22	N/A	ğ	N/A		
GROUNDMASS							
Spinel	>1	>1	0.01	Chromite	Euhedral	Included in oliving	ne.
PHENOCRYSTS Olivine	0	12	.047		Euhedral	Pseudomorphosed by	secondary mineral.
MINERALOGY	PRESENT	ORIGINAL	(mm)	SITION	MORPHOLOGY	COMMENTS	
PRIMARY		PERCENT	SIZE	COMPO-			

COMMENTS: The colorless clay(?) mineral in the vesicles has high relief and very high strong birefringence.

124-768C-74R-01 (Piece 2, 14-16 cm)

OBSERVER: SAP

WHERE SAMPLED: Pillow

ROCK NAME: Olivine phyric basalt

GRAIN SIZE: Fine-grained

TEXTURE: Phyric, hypocrystalline

CAVITIES Vesicles	PERCENT 30	LOCATIO Even		5	FILLING Clay		SHAPE Spherical, lobate
VESICLES/			SIZE				
Carbonate	<1	Olivine	i .		Usua	lly in olivir	ne cores.
Clays	30	Vesicle	s		Fibr	ous, colorles	ss to greenish.
Clays	12	Olivine			With	calcite; fit	brous, high relief (colorless).
SECONDARY MINERALOGY	PERCENT	REPL	ACING/				COMMENTS
31.777							magnacitat
glass	25	23	NA		N/A		magnetite.
Devitrified	23	23	N/A			c, hs, skeletal	With crystallites, dusted with
Clinopyroxene	15	15	0.2-<0.001		aggregat Subhedro	d.	Colorless (endiopside?)
GROUNDMASS Plagioclase	20	20	. 15 03			icroliths	
Spinel	trace	trace	.002	Chromite	Euhedral		Cr-Sp included in olivine.
PHENOCRYSTS Olivine	0	12	1-0.1		Euhedral	, prism	Pseudomorphosed by secondary mineral.
MINERALOGY	PRESENT	ORIGINAL	. (mm)	SITION	MORPHOL	OGY.	COMMENTS
PRIMARY		PERCENT	SIZE	COMPO-			

124-768C-74R-01 (Piece 11B, 127-129 cm)

OBSERVER: SAP

WHERE SAMPLED:

ROCK NAME: Olivine phyric basalt

GRAIN SIZE: Fine-grained
TEXTURE: Phyric, intersertal

MINERALOGY	PRESENT	ORIGINAL	. (mm)	SITION	N	MORPHOLOGY	COMMENTS
PHENOCRYSTS		775	armar ex			THE STATE OF THE S	
Olivine	0	15	1-0.1		275	uhedral, Prismati	
Spinel	trace	trace	0.002		Eu	uhedral	Cr-Sp and magnetite, included in olivine.
GROUNDMASS							
Plagioclase	24	25	1-0.03	Labradorite	Lo	ath, skeletal	
Clinopyroxene	10	10	.201		Mi	crolith	Colorless (endiopside?).
Magnetite	2	2	N/A	Iron oxide	Eu	uhedral	
Mesostasis	23	23	N/A		Ar	nhedral	Devitrified plus crystallites.
SECONDARY		REPL	ACING/				
MINERALOGY	PERCENT	FILL	ING				COMMENTS
Clays	5	Olivine	•			Associated wit	h iddingsite and calcite.
Clays	20	Plag.,	vesicles				5 등 기가 있는 (2.11) (10 기가 10 기가 10 (10 기가 10 기가 1
Carbonate	6	Olivine	, fracture	s		Mostly in vein	s, also replacing olivine and in vesicles.
Iddingsite	10	Olivine	•			Associated wit	h calcite and clays.
VESICLES/			SIZE				
CAVITIES	PERCENT	LOCATIO	ON (mm)		FILLING		SHAPE
V/fracts.	25	Even	0.03-0.	7	Calcite,	clay	Irregular
						roomen	to round

COMMENTS: Wall lining of vesicles are usually pale green smectite, the core is a fibrous colorless mineral (also clay) with high relief and birefringence. Allophane is usually associated and obscures the vesicle fillings.

124-768C-75R-02 (Piece 3C, 48-50 cm)

OBSERVER: SPA

WHERE SAMPLED: Pillow

ROCK NAME: Olivine phyric basalt

GRAIN SIZE: Fine-grained
TEXTURE: Phyric, intersertal

VESICLES/ CAVITIES Vesicles	PERCENT 25	LOCATIO	SIZE (mm) 0.03-0	6	FILLING Clays, calcite	SHAPE Spherical,	COMMENTS Filled with smectite		
Fe-oxide	1	Olivine			Associated with	calcite and clay.			
Clays	11	Plagioc	lase, mes	ostasis					
Carbonate	4	Olivine			and the second s		######################################		
Clays	25	Vesicle	\$		Smectite. Pale greenish, fibrous, highly birefringent.				
Clays	5	Olivine			Associated with carbonate and iron oxide.				
MINERALOGY	PERCENT	FILL				COMMENTS			
SECONDARY		REPL	ACING/						
20					euhedral				
Mesosatsis	24	29	N/A		Subhedral, anhedral,				
Clinopyroxene	7		0.02-0.3	Diopside?	Anhedral, subhedral				
					skeletal				
Plagioclase	23	29	.002-0.6	An50-70	Lath, microliths,				
GROUNDMASS									
Spinel	<1	<1	0.001	Chromite	Euhedral	Included in olivin	e and groundmass.		
Olivine	0	10	0.2-1.0		Euhedral, prismatic	Pseudomorphored by	secondary mineral		
PHENOCRYSTS									
MINERALOGY	PRESENT	ORIGINAL	(mm)	SITION	MORPHOLOGY	COMMENTS			
PRIMARY	PERCENT	PERCENT	SIZE	COMPO-					

124-768C-76R-01 (Piece 8C, 137-139 cm)

OBSERVER: SPA

WHERE SAMPLED: Pillow interior

ROCK NAME: Olivine phyric basalt

GRAIN SIZE: Fine-grained

TEXTURE: Phyric, hypocrystalline, intersertal

PRIMARY	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PERCENT		COMPO-		
MINERALOGY	PRESENT	ORIGINAL	L (mm)	SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Olivine	0	10	1-0.2		Euhedral, prismmatic	Including Cr-Sp.
Spinel	Trace	Trace	N/A		Granules	
GROUNDMASS						
Plagioclase	15	25	101	Labradorite	Lath, microliths	Cores replaced by zeolites.
Clinopyroxene	10	10	0.5-0.01		Subhedral, microlith	Colorless (endiopside?).
Magnetite	2		<.01		Euhedral	
Mesostasis	32	37	N/A		N/A	Cryptocrystalline, slightly altered.
SECONDARY		REPI	LACING/			
MINERALOGY	PERCENT	FILI	LING			COMMENTS
Clays	5	Olivine	0		Pale green fibro	us and orange-yellow lath.
Clays	20	Vesicle	es, mestasi	3		
Carbonate	5	Olivine	•			
Zeolites	10	Plagio	clase			
Hemotite	1	Magnet	ite			
VESICLES/			SIZE			
CAVITIES	PERCENT	LOCATIO	ON (mm)		FILLING	SHAPE
Vesicles	15	Even	.505		Clay	Spherical,
					000 FD #1	lobate.

124-768C-76R-03 (Piece 6A, 53-55 cm)

OBSERVER: SPA

WHERE SAMPLED: Pillow

ROCK NAME: Olivine phyric basalt

GRAIN SIZE: Fine-grained

TEXTURE: Phyric, intersertal-divergent

VESICLES/ CAVITIES	PERCENT	LOCATIO	SIZE N (mm)		FILLING		SHAPE
Allophane	7	Vesicle	s, plagio	clase		Masking the obsc	uring inclusions.
Carbonate	5	Olivine				150 S	
511.5 6 150			T			and smudged by a	
Clays	20	Vesicle				Smectite lining	walls of vesicles filled with fibrous clay
Clays	2	Olivine	50.000				
SECONDARY MINERALOGY	PERCENT	REPL FILL	ACING/				COMMENTS
Mesostasis	33	33	N/A		N,	/A	Devitrified
Clinopyroxene	3		.012	Endiopside?	м	icrolith, skeletal	Colorless.
GROUNDMASS Plagioclase	30		.01-1.0	An50-70	Ĺ.	ath, skeletal	Microliths are masked by allophane.
Spinel	<1	<1	.001	Chromite	E	uhedral	Included in olivine.
PHENOCRYSTS Olivine	9	7	0.1-1.0		Ε	uhedral, prismatic	Pseudomorphosed by secondary mineral.
MINERALOGY	PRESENT	ORIGINAL	(mm)	SITION	1	MORPHOLOGY	COMMENTS
PRIMARY	PERCENT	PERCENT	SIZE	COMPO-			

124-768C-77R-01 (Piece 9A, 106-108 cm)

OBSERVER: SPA

WHERE SAMPLED: Pillow

ROCK NAME: Olivive basalt, phyric

GRAIN SIZE: Fine-grained

TEXTURE: Phyric, intersertal-divergent

SECONDARY MINERALOGY	PERCENT	REPL FILL	ACING/			COMMENTS
SECONDARY		REPL	ACING/			
			0.00	5	Skeretar	
Dlivine	0	1	0.05	2	Skeletal	
Mesostasis	19	200	N/A	end opar der	N/A	
Clinopyroxene	2	2	.0022	Endiopside?	Microliths, skeletal	
Plagioclase	30	40	.02-1.0	An50-70	Lath, skeletal	
		1912	1212-1112-1120		Market Services	
GROUNDMASS						
0001110111100						
pinel	<1	<1	0.001		Granules	Included in olivine.
pinel	<1	<1	0.001		Granules	Included in olivine.
livine	0	5	0.15-0.5		Euhedral, prismatic	Pseudomorphosed by secondary minerals.
PHENOCRYSTS	. 2	2	1 4 1 5		2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	2 2 2 2 2 2
DUENOCOVETS						
			· ()			
INERALOGY	PRESENT	ORIGINAL	(mm)	SITION	MORPHOLOGY	COMMENTS
THERMIOON		PERCENT		COMPO-		0000000

COMMENTS: 13% of rock is empty vesicles. (NO UNIT NUMBER GIVEN).

124-768C-77R-01 (Piece 43, 49-51 cm)

OBSERVER: SPA

WHERE SAMPLED: Pillow

ROCK NAME: Olivine basalt, phyric

GRAIN SIZE: Fine-grained
TEXTURE: Phyric intersertal

PRIMARY PERCENT PERCENT SIZE COMPO-MINERALOGY PRESENT ORIGINAL (mm) SITION MORPHOLOGY COMMENTS PHENOCRYSTS Olivine 10 0.2-1.5 Euhedral, prismatic Pseudomorphosed by secondary mineral. Spinel <1 <1 .001 Chromite Euhedral Included in olivine. GROUNDMASS Plagioclase 24 30 .02-1.0 An50-70 Lath, skeletal Clinopyroxene 2 Endiopside? Microlith, skeletal 2 .002-.2 Olivine 2 0 N/A N/A Mesostasis 24 24 N/A N/A SECONDARY REPLACING/ MINERALOGY PERCENT FILLING COMMENTS Clays 2 Olivine Fibrous high birefringent mineral, including smectite globules. Clays 24 Vesicles Colorless, fibrous, and pale green. Carbonate Olivine Usually in olivine cores. Allophane 14 Plagioclase, vesicles Masking plag. and vesicular minerals. Fe-oxide Replacing skeletal olivine and magnetite in mesostasis. 2 Mesostasis olivine Iddingsite 1 Olivine VESICLES/ SIZE CAVITIES PERCENT LOCATION SHAPE FILLING (mm) Vesicles Clay Spherical, 26 Even 0.1-1.0 lobate

124-768C-77R-02 (Piece 6B, 81-83 cm)

OBSERVER: SPA

WHERE SAMPLED:

ROCK NAME: Olivine basalt, phyric

GRAIN SIZE: Fine-grained

TEXTURE: Phyric

PRIMARY	10.000	PERCENT	SIZE	COMPO-	LIBBRUOL COV	CONTRICTO
MINERALOGY	PRESENT	ORIGINAL	(mm)	SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS	_		10101		2200 100 13 120	
Olivine	0		0.6-0.1	1925Y 538	Euhedral, pris	
Spinel	<1	<1	.001	Chromite	Euhedral	Included in olivine.
GROUNDMASS						
Plagioclase	18	22	0.01-0.5	An50-70	Lath, skeletal	
Clinopyroxene	1	1	0.01-0.2	Endiopside?	Microliths, st	celetal
Mesostasis	24	40	N/A		N/A	Abundant allophane obscuring.
SECONDARY		REPL	ACING/			
MINERALOGY	PERCENT	FILL	ING			COMMENTS
Clays	12	Olivine	•		Pale green birefringe	nish to yellowish, fibrous, high relief and snce.
Clays	25	Vesicle	5		Similar to	clay alteration of olivine.
Allophane	20	Mesosto	sis, plag	ioclase	Obscurring	mesostasis and plagioclase.
Fe oxide	<1	Ground	nass			
Carbonate	<1	Olivine	•			
VESICLES/			SIZE			
CAVITIES	PERCENT	LOCATIO	ON (mm)		FILLING	SHAPE COMMENTS
Vesicles	25	Even	0.03-2	.0	Clay	Spherical, Two size groups. elongate

COMMENTS: (NO UNIT NUMBER GIVEN).

124-768C-77R-02 (Piece 9, 122-125 cm)

OBSERVER: SPA

WHERE SAMPLED:

ROCK NAME: Olivine basalt, phyric

GRAIN SIZE: Fine-grained

TEXTURE: Phyric

CAVITIES Vesicles	PERCENT 25	LOCATIO	ON (mm) 0.04 -1	.4	FILLING Clay		SHAPE Round, irregular
VESICLES/			SIZE				
Clays	1	Plagio	lase				
Iddingsite	<1	Olivine	,				
Fe oxide	<1	Olivine					
Carbonate	6	Olivine					
Clays	26	Vesicle	_		,	INGU WITH SMECT	110.
Clays	2	Olivine				ined with smect	colorless clay minerals; walls of vesicles
MINERALOGY	PERCENT	FILL	10000				COMMENTS
SECONDARY			ACING/				2012/17/17
Olivine	0	1	N/A		N/A		
Mesostasis	30	30	N/A		N/A		Including cryptocrystallites, devitrified.
	55%				micro	liths.	
Clinopyroxene	1	100	Max. 0.17m	m		dral, skeletal,	
GROUNDMASS Plagioclase	34	35	N/A		N/A		
Spinel	<1	<1	0.0204	Chromite	Euhed	ral	Included in olivine and groundmass.
PHENOCRYSTS Olivine	0	7020	0.07-1.3		Euhed	3.70	Pseudomorphosed by secondary minerals.
MINERALOGY	PRESENT	ORIGINAL	. (mm)	SITION	MORP	HOLOGY	COMMENTS
PRIMARY		PERCENT	SIZE	COMPO-	117035242	PRODUCTION .	newerships

COMMENTS: Olivine are either skeletal or lath shaped. Some have glassy core. Others have cores transformed into k-spar or less calcic variety (low relief). (NO UNIT NUMBER GIVEN).

124-768C-78R-01 (Piece 2A, 15-18 cm)

OBSERVER: SPA

WHERE SAMPLED: Pillow border

ROCK NAME: Olivine basalt, phyric

GRAIN SIZE: Fine-grained

TEXTURE: Phyric, intersertal/sub-varialitic

esicles	PERCENT 32	LOCATIO Even	N (mm) 0.01-0.	3	Clay		Spherical, lobate
VESICLES/	DEDOENT	LOCATIO	SIZE	·	FILLING		SHAPE
Allophane	1	Rock			Obs	curing whole	section.
Fe oxide	10	Glass					
Carbonate	<1	Olivine					
Clays	32	Vesicle	s		Sin	nilar material	to that replacing olivine.
Clays	8	Olivine			Vei	y slight gree	nish, fibrous, high relief.
MINERALOGY	PERCENT	FILL					COMMENTS
SECONDARY		REPL	ACING/				
							texture.
							crystals with feathery, fibrous radiate
Glass	15	30	N/A		N/A		Including plumose anhedral unresolvable
Clinopyroxene	10	12	N/A		N/A		Plumose texture.
Plagioclase	18	18	N/A		N/A		
GROUNDMASS							
Spinel	<1	<1	.002	Chromite	Euhedro	11	Included in olivine.
Olivine	0	8	0.5-1.0		Euhedro	ıl, prismatic	Irregularly distributed. Maximum frequency in non-glassy portion.
PHENOCRYSTS							
MINERALOGY	PRESENT	ORIGINAL	(mm)	SITION	MORPHO	OLOGY	COMMENTS
PRIMARY		PERCENT	SIZE	COMPO-			

COMMENTS: Marked textural variations related to chilling. Vesicles very abundant in phyric portions, absent in glass.
(NO UNIT NUMBER GIVEN).

124-768C-78R-01 (Piece 6, 114-116 cm)

OBSERVER: SPA

WHERE SAMPLED: Near pillow border

ROCK NAME: Olivine phyric basalt

GRAIN SIZE: Fine-grained

TEXTURE: Varialitic to sub-varialitic, phyric

/fracts.	24	Even	0.08-1.	0	Clays, cc	Spherical, irregular			
VESICLES/ CAVITIES	PERCENT	LOCATION	SIZE (mm)		FILLING	SHAPE			
Fe oxide	3	Olivine	mesostas	iis					
Carbonate	2	Olivine	fracture	, vesicles					
Clays	23	Vesicles	. fractur	e	Similar to	o those in olivine, includes smectite.			
Clays	9	Olivine				to very pale greenish fibrous clay mineral.			
MINERALOGY	PERCENT	FILL	NG		COMMENTS				
SECONDARY		REPLA	CING/						
Olivine	0	3 (.09		Subhedral, ske	eletal Quenched.			
Mesostasis	36		0.014		?	With cryptocrystallites.			
Clinopyroxene	22		lax. 0.3	Diopside?	Microliths, sl	keletal Plumose, quenched.			
GROUNDMASS Plagioclase	5	5 N	lax. 0.2	An50-70	Microliths, si	keletal			
Spinel	<1	<1	00104	Chromite	Euhedral	Included in olivine and gm			
PHENOCRYSTS Dlivine	9	10 (.06-0.6		Euhedral	Pseudomorphosed by secondary minerals.			
MINERALOGI	PRESENT	ORIGINAL	(mm)	SITION	MORPHOLOGY	COMMENTS			
PRIMARY MINERALOGY			SIZE	COMPO-		COLUMNITATION			

COMMENTS: Abundant quenched pyroxene define and enclose varioles with much vesicles, glass, px, and plagicalse microliths. Interstitial to the cpx are cryptocrystallites of mesostasized glass. (NO UNIT NUMBER GIVEN).

124-768C-79R-02 (Piece 4B, 86-87 cm)

OBSERVER: SPA

WHERE SAMPLED: Pillow

ROCK NAME: Olivine phyric basalt

GRAIN SIZE: Fine-grained

TEXTURE: Subvarialitic/intersertal

CAVITIES Vesicles	PERCENT 25	LOCATIO	0N (mm) 0.03 -	-1.5	FILLING Clay	SHAPE	COMMENTS 3% vesicles empty.
VESICLES/			SIZE				
Fe oxide	3	Olivine	, plagio	lase			
Carbonate	3	Olivine					
Clays	25	Vesicle	s		Similar to alte	ration of olivine	
Clays	9	Olivine			Yellowish to co	lorless fibrous hig	th biref, high relief clay
MINERALOGY	PERCENT	FILL				COMMENTS	
SECONDARY		REPL	ACING/				
Clinopyroxene	<1	<1	N/A		Subhedral	Microliths.	
Mesostasis	31		~0.3		Anhedral, subhedral	Devitrified.	
Plagioclase	28	32	0.01-0.4	~An70	Euhedral	Occasionally obs	curred by allophane.
GROUNDMASS							
Spinel	<1	<1	0.04	Chromite	Euhedral	Included in oliv	ine.
PHENOCRYSTS Olivine	0	12	0.03-0.8		Euhedral	Pseudomorphosed	by secondary minerals.
DUENCODYCEC							
MINERALOGY	PRESENT	ORIGINAL	(mm)	SITION	MORPHOLOGY	COMMENT	S
PRIMARY	PERCENT	PERCENT	SIZE	COMPO-			

COMMENTS: (NU UNIT NUMBER GIVEN).

124-768C-79R-02 (Piece 6, 124-125 cm)

OBSERVER: SPA

WHERE SAMPLED: Near pillow border

ROCK NAME: Olivine basalt, phyric

GRAIN SIZE: Fine-grained
TEXTURE: Variolitic, phyric

PRIMARY PERCENT PERCENT SIZE COMPO-MINERALOGY PRESENT ORIGINAL (mm) SITION MORPHOLOGY COMMENTS PHENOCRYSTS Olivine 0.07-0.6 0 12 Euhedral Pseudomorphosed by secondary minerals. Spinel <1 <1 0.04 Chromite Euhedral Included in olivine. GROUNDMASS Plagioclase .006-.02 Microliths 8 8 An50-70 Bow tie. Clinopyroxene 18 18 ~0.1 Diopside? Microliths, skeletal Quenched, plumose Mesostasis 31 38 ~0.02 Anhedral Oxidized in portions, includes allophane. Olivine 2 ~0.02 Subhedral, skeletal Totally altered. SECONDARY REPLACING/ MINERALOGY PERCENT FILLING COMMENTS Clays Colorless to very pale yellow greenish clay. Olivine 10 Clays 20 Vesicles Similar to that in olivine. Chlorite 4 Olivine, vesicles Lining vesicles. Fe oxide 9 Olivine, mesostasis

VESICLES/ SIZE
CAVITIES PERCENT LOCATION (mm) FILLING SHAPE
Vesicles 22 Even 0.08-0.7 Clay round,

COMMENTS: Texture gives evidence of quenching.

124-768C-80R-02 (Piece 4, 120-121 cm)

OBSERVER: SPA

WHERE SAMPLED: Pillow

irregular

ROCK NAME: Olivine phyric basalt

GRAIN SIZE: Fine-grained

TEXTURE: Intersertal/subvarialitic

esicles	20	Even	0.02-0.	2	Clays	Round, irregular
VESICLES/ CAVITIES	PERCENT	LOCATIO	SIZE N (mm)		FILLING	SHAPE
Fe oxide	<1	Magneti	te		Within mea	sostasis.
Carbonate	1	Olivine				
Clays	20	Vesicle	7		Same mater	rial as in olivine.
Clays	9	Olivine			Very pale	greenish high relief clay (fibrous).
MINERALOGY	PERCENT	FILL	ING			COMMENTS
SECONDARY		REPL	ACING/			
Mesostasis	35	35	N/A		N/A	Altered glass with crystallites.
Clinopyroxene	3		0.02-0.4	Diopside?	skeletal Subhedral	Colorless, occasionally skeletal.
Plagioclase	32	32	Max. 0.1	An50-70	Subhedral, eut	hedral,
GROUNDMASS						
Spinel	<1	<1	0.04	Chromite	Euhedral	Included in olivine.
PHENOCRYSTS Olivine	0	10	0.1-0.7		Euhedral	Pseudomorphosed by secondary minerals.
MINERALOGY	PRESENT	ORIGINAL	(mm)	SITION	MORPHOLOGY	COMMENTS
PRIMARY		PERCENT	SIZE	COMPO-		

COMMENTS: (NO UNIT NUMBER GIVEN).

124-768C-80R-03 (Piece 2, 35-36 cm)

OBSERVER: SPA

WHERE SAMPLED: Pillow

ROCK NAME: Olivine basalt, phyric

GRAIN SIZE: Fine-grained

TEXTURE: Divergent intersertal, phyric

/esicles	23	Even	0.03-1	.3 C16	ays	Irregular, Two size classes. round
VESICLES/ CAVITIES	PERCENT	LOCATIO	SIZE (mm)	FI	ILLING	SHAPE COMMENTS
Fe oxide	<1	Olivine		The second secon		
Allophane	6			cles, plagioclase	Obscuring cer	rtain portions of the section.
Carbonate	<1	Olivine				
Clays	23	Vesicle	-		Similar to th	nat in olivine, associated with allophane.
Clays	~5	Clay			Very pale gre	eenish to colorless fibrous clay.
MINERALOGY	PERCENT	FILL	ING			COMMENTS
SECONDARY		REPL	ACING/			
enivi10	0	<1	N/A		N/A	
Clinopyroxene	<1	<1	N/A		N/A	
Mesostasis	35		N/A		N/A	Altered glass with crystallites.
GROUNDMASS Plagioclase	30	34	N/A		N/A	
Spinel	<1	<1	0.002	Chromite	Euhedral	Included in olivine.
Olivine	0		0.02-0.4	****	N/A	Pseudomorphosed by secondary minerals.
PHENOCRYSTS						
MINERALOGY	PRESENT	ORIGINAL	(mm)	SITION	MORPHOLOGY	COMMENTS
PRIMARY	PERCENT	PERCENT	SIZE	COMPO-		

COMMENTS: The plagioclase cores can be glassy (skeletal plag.) or replaced by probable K-feldspar. (NO UNIT NUMBER

GIVEN).

124-768C-80R-03 (Piece 3C, 65-66 cm)

OBSERVER: SPA

WHERE SAMPLED: Pillow

ROCK NAME: Olivine basalt, phyric

GRAIN SIZE: Fine-grained
TEXTURE: Intersertal

VESICLES/ CAVITIES Vesicles	PERCENT 25	LOCATIO Even	SIZE N (mm) N/A		FILLING	SHAPE Irregular,
		Ollvine			Along offvine r	ims and wholly in skeletal, olivine.
Carbonate Fe oxide	<1 2	Olivine			Alana allulas a	ims and wholly in skeletal, olivine.
Clays	2	Vesicle	-		Similar to that	in olivine associated with allophane.
Clays	7	Olivine				sh fibrous mineral.
MINERALOGY	PERCENT	FILL				COMMENTS
SECONDARY			ACING/			
					CONTRACTOR OF THE	grain boundaries.
Mesostasis	35		?		Anhedral	Magnetite on glass mesostasis and along
Olivine	0		0.07-0.20	O TOPS TUB!	Subhedral	Skeletal.
Clinopyroxene	<1	1.573.77	0.02-1.7	Diopside?	Subhedral	Skeletal, plumose.
GROUNDMASS Plagioclase	32	30	0.02-1.7	An50-70	Subhedral-euhedral	Occasionally skeletal.
Spinel	<1	<1	0.0204	Cr	Euhedral	In olivine and gm.
Olivine	0	5	.0760		Euhedral	Completely pseudomorphosed by secondary minerals.
PHENOCRYSTS						
MINERALOGY	PRESENT	ORIGINAL	(mm)	SITION	MORPHOLOGY	COMMENTS
PRIMARY		PERCENT	SIZE	COMPO-		

COMMENTS: Fracture filling may have been removed during preparation. Plagicalise can be skeletal with glassy cores, or altered to clay. (NO UNIT NUMBER GIVEN).

124-768C-81R-02 (Piece 1C, 33-34 cm)

OBSERVER: SAP

WHERE SAMPLED: Pillow

ROCK NAME: Olivine phyric basalt

GRAIN SIZE: Fine-grained
TEXTURE: Intersertal

VESICLES/ CAVITIES Vesicles	PERCENT 23	LOCATIO	SIZE (mm) 0.04-0	4	FILLING	SHAPE Round,	COMMENTS 0.4 size = 5.7%, 0.04
Fe oxide	~10	Mesosto		ine, plagioclase	Secondary mixed	with primary, hard	to estimate.
Clays	9	Plagioc					
Clays	30		, vesicle	3			
MINERALOGY	PERCENT	FILL				COMMENTS	
SECONDARY		REPL	ACING/				
Clinopyroxene	<1	<1	.04-0.2	Diopside	Subhedral	Skeletal, plumose	, microliths.
<i>l</i> esostas is	25	31	N/A		Anhedral, irregular		
GROUNDMASS	25	30	Max. 2.0	An50-70	Subhedral-euhedral	Microliths to late	٠.
pinel	<1	<1	0.02	Chromite	Euhedral	Inclusion in olivi	ine.
PHENOCRYSTS Divine	0	15	0.03-1.0		Subhedral-euhedral	Wholly pseudomorph skeletal grains.	nosed phenocrysts and
INERALOGY	PRESENT	ORIGINAL	(mm)	SITION	MORPHOLOGY	COMMENTS	
RIMARY		PERCENT	SIZE	COMPO-			

COMMENTS: (NO UNIT NUMBER GIVEN).

124-768C-82R-02 (Piece 6B, 85-87 cm)

OBSERVER: SAP

WHERE SAMPLED:

ROCK NAME: Olivine basalt, phyric

GRAIN SIZE: Fine-grained

TEXTURE: Phyric, divergent-intersertal

/ESICLES/ CAVITIES /esicles	PERCENT 20	LOCATIO Even	SIZE N (mm) 2.00	5	FILLING Clay, carbonate	SHAPE Spherical,
Carbonate	3	Vesicle	s, olivin	e		
Clays	12	Vesicle	-577		Fibrous, similar	to olivine pseudomorphs.
Zeolites	1	name and a second			A CONTRACTOR OF THE PROPERTY O	We that the Conference of the
Clays	23	Plagio	lase, mes	ostasis	Fine-grained smed	ctites.
Clays	5	Olivine				en, relatively high birefringent.
MINERALOGY	PERCENT	FILL				COMMENTS
SECONDARY			ACING/			
Magnet i te	2	3	N/A		Euhedral	Dusty, partly hematitized.
Mesostasis	20		N/A		N/A	Cryptocrystalline, altered p.p.
Clinopyroxene	2		<0.01		Microliths, skeletal	Colorless (endiopside).
Plagioclase	32		0.801		Lath, skeletal	Cores replaced by clay and zeolites.
GROUNDMASS			90 5 000		000 7 (4000)	STATUTE TO PROPERTY
Spinel	Trace	Trace	N/A		N/A	Cr-Spinel.
PHENOCRYSTS Dlivine	0	8	1-0.2		Euhedral, prismatic	Including Cr-Sp.
MINERALOGI	PKESENI	ORIGINAL	(mm)	SITION	MORPHOLOGY	COMMENTS
PRIMARY MINERALOGY		PERCENT		COMPO-	HODDING COV	COLAUTIUTO

COMMENTS: (NU UNIT NUMBER GIVEN).

124-768C-83R-01 (Piece 1P, 139-140 cm)

OBSERVER: SAP

WHERE SAMPLED: Pillow

ROCK NAME: Olivine phyric basalt

GRAIN SIZE: Fine-grained

TEXTURE: Divergent-intersertal

ESICLES/ CAVITIES Sesicles	PERCENT 28	LOCATIO Even	SIZE N (mm) 0.01-0.	90	FILLING	SHAPE Round, irregular	COMMENTS Two sets: big, 2%; small, 31%.
hlorite	4	Mesosta	sis		As lining on wall	s of vesicles.	
Carbonate	2	Olivine					
Clays	32	Olivine	, plagioci	as , vesicles	Very pale yellow,	fibrous.	
MINERALOGY	PERCENT	FILL	ING			COMMENTS	
SECONDARY		REPL	ACING/				
Mesostasis	34	38	N/A		N/A		
Clinopyroxene	3		0.04-0.20	Diop?	Subhedral	Microliths.	
riagiociase	25	20	Max. 1.1	An50-70	Subhedral, euhedral, skeletal		
GROUNDMASS	25	28	Max. 1.1	1-50 70	*****		
Spinel	<1	<1	0.01-0.04	Chromite	Euhedral	Included in oliving	ne.
Olivine	0		0.14-0.80		Euhedral	Pseudomorphosed by	secondary minerals.
PHENOCRYSTS							
MINERALOGY	PRESENT	ORIGINAL	(mm)	SITION	MORPHOLOGY	COMMENTS	
PRIMARY	PERCENT	PERCENT	SIZE	COMPO-			

COMMENTS: Plagioclase has either glassy or replaced core by K-feldspar. (NO UNIT NUMBER GIVEN)

124-768C-83R-02 (Piece 1C, 16-20 cm)

OBSERVER: SAP

WHERE SAMPLED: Pillow border

ROCK NAME: Aphyric basalt GRAIN SIZE: Fine-grained

TEXTURE: Hypohyaline, variolitic

VESICLES/ CAVITIES Vesicles	PERCENT	LOCATIO	SIZE N (mm)		FILLING Clay	SHAPE Ovg I
Fe-oxide	9				Including F	e-rich clay, masking the rock.
Carbonate	45	Variole	3			
Clays	1	Vesicle	3			
MINERALOGY	PERCENT	FILL	ING			COMMENTS
SECONDARY		REPL	ACING/			
Groundmass	99	N/A	N/A		N/A	Hypohyaline, devitrified.
MINERALOGY	PRESENT	ORIGINAL		SITION	MORPHOLOGY	COMMENTS
PRIMARY	PERCENT		SIZE	COMPO-		

COMMENTS: The rock is a chilled basalt pillow border with abundant pseude-varioles completely replaced by calcite.

Cryptocrystalline mineral probably plagicalse is intermicrogranular with glass.

124-768C-84R-02 (Piece 3A, 109-111 cm) OBSERVER: SAP WHERE SAMPLED: Pillow

ROCK NAME: Olivine phyric basalt

GRAIN SIZE: Fine-grained

TEXTURE: Divergent-intersertal

/ESICLES/ CAVITIES /esicles	PERCENT 25	LOCATIO	SIZE N (mm) 0.04-2.	60	FILLING Clay			SHAPE Round, irregular
Clays	1	Plagioc	1370					
tes	50	1983				2110.7.0	ar rophum	
Cryptocrystalli	1370.00	?				Inclu	ded allophan	ous clay.
Fe oxide	3	Mesosta						
Chlorite	<1	Olivine	(15) 이 이번 (16) - 15) (14) (15)					
Carbonate	2	Olivina	, vesicles			biref	ringence and	relief.
Clays	24	Vesicle	s			Color	less to pale	yellow greenish clay with high
0.070	10	OTTALLE					ringence and	
Clays	10	Olivine	0.000			Coler	less to very	pale yellow greenish, with high
SECONDARY MINERALOGY	PERCENT	REPL FILL	ACING/					COMMENTS
.eto			of .					
Crystallites	15		N/A		N/A			
Mesostasis	17		N/A	D. opside!		edral		
Clinopyroxene	7	7	0.01-0.20	Diopside?	Sub	hedral		replaced cores.
GROUNDMASS Plagioclase	14	18	0.02-1.70	An50-70	Sub	hedral	euhedral	Microliths to fine grained, with
Spinel	<1	<1	0.01-0.03	Chromite	Euh	edral		Included in olivine and dispersed in groundmass.
Olivine	0	10000	0.07-0.70	E E ST PONDANT		edral		Pseudomorphosed by calcite and other secondary minerals.
PHENOCRYSTS								
MINERALOGY	PRESENT	ORIGINAL	(mm)	SITION	MO	RPHOLO	Υ	COMMENTS
PRIMARY	PERCENT	PERCENT	SIZE	COMPO-				

COMMENTS: ????????CANNOT READ COPY?????? (NO UNIT NUMBER GIVEN).

124-768C-85R-02 (Piece 4, 52-54 cm)

OBSERVER: SAP

WHERE SAMPLED: Chilled margin of pillow

ROCK NAME: Olivine phyric basalt

GRAIN SIZE: Fine-grained TEXTURE: Sub-varialitic

/ESICLES/ CAVITIES /esicles	PERCENT 27	LOCATIO	SIZE (mm) 0.04-0	_	FILLING	SHAPE
Fe oxide	7	Olivine	, mesosta:	sis		
Allophane	6	gm	ne removementories	100		
Carbonate	<1	Olivine	Ų.			
Clays	30		s. plagio	lase	Very pale g	reen to colorless fibrous high relief clay.
Clays	10	Olivine				reen to colorless fibrous high relief clay.
SECONDARY MINERALOGY	PERCENT	FILL				COMMENTS
Mesostasis	25	30	?		Anhedral	Including cryptocrystallites.
Clinopyroxene	4		0.02-0.45	Diopside?	Subhedral	Skeletal near chilled margin.
Olivine	0		~0.5		Subhedral	grained. Skeletal
GROUNDMASS Plagioclase	17	20	Max. 0.8	An50-70	Euhedral	Microliths near chilled, to fine
Spinel	<1	<1	0.02	Chromic oxide	Euhedral	Included in olivine and in gm.
PHENOCRYSTS Olivine	0	1	0.07-1.60		Euhedral	Pseudomorphosed by secondary mineral.
MINERALOGY	PRESENT	ORIGINAL	. (mm)	SITION	MORPHOLOGY	COMMENTS
PRIMARY		PERCENT		COMPO-		

COMMENTS: Rock shows abrupt chilling and a relatively more crystalline portion. (NO UNIT NUMBER GIVEN).

124-768C-86R-01 (Piece 6, 51-53 cm)

OBSERVER: SAP

WHERE SAMPLED: Near chilled pillow border

ROCK NAME: Olivine phyric basalt

GRAIN SIZE: Fine-grained

TEXTURE: Divergent-intersertal

Vesiclse	33	Even	0.02-1.	00	FILLING		Irregular, round
VESICLES/	PERCENT	LOCATI	SIZE ON (mm)		FILLING		SHAPE
Fe oxide	10	Olivin	e, Mt.				
Clays	40	Vesicl	es				fibrous high relief and biref mineral, including
Clays	2	Olivin	e, plagiocl	ase, mesostasis			fibrous high relief and birefringent mineral, hlorite/smectite.
MINERALOGY	PERCENT	447.000	LING				COMMENTS
SECONDARY		REP	LACING/				
Mesostasis	21	27	N/A		N/A		
Clinopyroxene	10	10	~0.1	Diopside?	Subh	edral	
GROUNDMASS Plagicclase	17	20	Max. 1.40	An50-70	Euhe	drol	Microliths in chilled portion.
Spinel	Trace	Trace	0.02	Chromite	Euhe	dral	Included in olivine.
PHENOCRYSTS Olivine	0	10	0.04-0.60		Euhe	drai	Pseudomorphosed by secondary minerals.
MINERALOGY	PRESENT	ORIGINA	L (mm)	SITION	MOF	PHOLOGY	COMMENTS
PRIMARY		PERCENT		COMPO-			

COMMENTS: Chilled portion ends abruptly to more crystalline portion. Plagioclase may be skeletal, whose cores are glassy, or are transformed to either K-feldspar or a less calcic plagioclase. (NO UNIT NUMBER GIVEN).

124-768C-87R-01 (Piece 2D, 107-109 cm)

OBSERVER: SAP

WHERE SAMPLED: Pillow

ROCK NAME: Olivine phyric basalt

GRAIN SIZE: Fine-grained

TEXTURE: Intesertal, phyric

CAVITIES Vesicles	PERCENT 20	LOCATIO Even	ON (mm) 0.06-1.	74/70	LLING	SHAPE Round,
VESICLES/			SIZE			
Fe oxide	7	Mesosto	isis, olivi	ne	350	년
Allophane	8			stasis, pyroxene	Obscurring c	rystal faces.
Serpertine	<1	Olivine				
Iddingsite	<1	Olivine				
Carbonate	4	Olivine				
					fibrous clay	
Clays	24	Vesicle	s, olivine			e lining walls of vesicles, pale greenish
Clays	5	Plagio	lase		With kaolini	te(?)/illite
MINERALOGY	PERCENT	FILL				COMMENTS
SECONDARY		REPL	ACING/			
Clinopyroxene	8	12	0.07	Diopside?	Subhedral	
Mesostasis	15		N/A		Anhedral	Magnetite and glass.
Plagioclase	28		0.04-0.20	An50-70	Euhedral	
GROUNDMASS						
Spinel	Trace	Trace	0.02		Euhedral	Included in olivine.
PHENOCRYSTS Olivine	0	8	0.12-1.10		Euhedral	Pseudomorphosed by secondary minerals.
MINERALOGY	PRESENT	ORIGINAL	. (mm)	SITION	MORPHOLOGY	COMMENTS
PRIMARY		PERCENT	7.7.7	COMPO-	at load table of the tribute day to	*/5000000000000000000000000000000000000

COMMENTS: Kaolinite usually occurs along twinning plane of plagioclase and encroaching into adjacent crystals. (NO UNIT NUMBER GIVEN).

124-768C-87R-02 (Piece 5, 125-126 cm) OBSERVER: SAJ

WHERE SAMPLED: Pillow

ROCK NAME: Olivine phyric basalt

GRAIN SIZE: Fine-grained TEXTURE: Intersertal, phyric

esicles.	25	Even	0.03-2	. 3	Clay		Round, Lobate	2 size classes.
VESICLES/	PERCENT	LOCATIO	SIZE ON (mm)		FILLING		SHAPE	COMMENTS
Allophane	2	Plag. n	nesostasis					
Iddingsite	<1	Olivine	V/ 257					
Fe oxide	4	Mesosto			A1	tering mt. in	mesostasis.	
Carbonate	<1	Olivine	10					
Clays	3		nesostasis		Ka	olinite/illit	e.	
Clays	32	Olivine	, vesicle	s	Pa	le greenish t	o colorless fibrou	s mineral,
MINERALOGY	PERCENT	FILL	ING				COMMENTS	
SECONDARY		REPL	ACING/					
Magnet i te	1	1	N/A		N/A			
Mesostasis	20	25	N/A		N/A			
Clinopyroxene	10	10	N/A		N/A			
GROUNDMASS Plagioclase	28	31	N/A		N/A			
Spinel	Trace	Trace	0.014	Chromite	Euhedro	1.	Inclusions in o	livine.
PHENOCRYSTS Dlivine	0	8	0.09002		Euhedro	ı İ	Pseudomorphosed	by secondary minerals
MINERALOGY	PRESENT	ORIGINAL	. (mm)	SITION	MORPHO	DLOGY	COMMEN.	rs
PRIMARY		PERCENT		COMPO-				

124-768C-88R-02 (Piece 3, 30-31 cm)

OBSERVER: SAJ

WHERE SAMPLED: Pillow

ROCK NAME: Olivine phyric basalt

GRAIN SIZE: Fine-grained TEXTURE: Phyric, intersertal

Vesicles	30	Even	0.0	07-0	.900	Crystallites, clay	Round, lobate	Includes fractures.
VESICLES/ CAVITIES	PERCENT	LOCAT10	com 40000	ZE		FILLING	SHAPE	COMMENTS
Carbonate	<1	Olivine	, vesi	cles				
Clays	40	Olivine				Pale green and co	olorless clay mine	ral.
Clays	8	Plagioc				Kaolinite/illite	0 0 0 10	1911
SECONDARY MINERALOGY	PERCENT	FILL				2007 - DOTNIE LEEDE MERHENDERF	COMMENTS	
	10	100000					**********	
Mesostasis	40		N/A			N/A	Including crysta	Ilites.
Clinopyroxene	2	2	0.05			skeletal Subhedral, microlith		
GROUNDMASS Plagioclase	9	18	Max.0	.57	An50-70	Microliths, lath,		
Spinel	<1	<1	.015		Chromite	Euhedral	Included in oliv	ine.
PHENOCRYSTS Olivine	0		0.15-0	.70		Euhedral		by secondary minerals.
MINERALOGY	PRESENT	ORIGINAL	(mm)		SITION	MORPHOLOGY	COMMENT	5
PRIMARY		PERCENT			COMPO-	200221 - 10023 T		20

COMMENTS: Chilled portion are characterized by glass and quenched pyroxene and plagicalase. One fracture (?) filled with glassy material. (NO UNIT NUMBER GIVEN).

124-768C-88R-02 (Piece 7A, 100-101 cm)

OBSERVER: SAP

WHERE SAMPLED:

ROCK NAME: Olivine bearing dolerite

GRAIN SIZE: Fine-grained

TEXTURE: Intersertal, aphyric

Vesicles	3	Uneven	0.4	Clay		Round, lobate
CAVITIES	PERCENT	LOCATIO		FIL	LING	SHAPE
VESICLES/			SIZE			
Carbonate	3	Plag, m	esostasis,	pyroxene.		
Uralite	1	Pyroxen	e			
Iddingsite	<1	Olivine	6			
Fe oxide	4	Olivine	, mesostas	is	Includes seconda	ry magnetite.
Chlorite	<1	Plagioc	lase			epolitic School and Mark Constructions
Clays	8	The same of the sa		, mesostasis	Colorless to gre	
Clays	11	Plagioc	lase, meso	stasis, vesicles,	Kaolinite/illite	
MINERALOGY	PERCENT	FILL				COMMENTS
SECONDARY		REPL	ACING/			
Olivine	0	2	~0.30		Euhedral to skeletal	
Magnetite	2		0.03	Fe oxide	Euhedral	Disseminated in groundmass.
Glass	16	18	?		Anhedral	Plus magnetite.
Clinopyroxene	25	25	0.04-2.60	Diopside?	skeletal, subhedral Subhedral	Colorless to very faint brown.
Plagioclase	30	50	0.04	An50-70	Euhedral, tabular,	
MINERALOGY		ORIGINAL		SITION	MORPHOLOGY	COMMENTS
PRIMARY		PERCENT		COMPO-		

COMMENTS: Clinopyroxene and plagioclase can be intergrown forming radiate crystals. Illite/kaolinite alters plagioclase along cracks and masks the interstices of the crystals including glass mesostasis. (NO UNIT NUMBER GIVEN).

124-768C-89R-01 (Piece 3B, 69-70 cm)

OBSERVER: SPA

WHERE SAMPLED:

ROCK NAME: Dolerite

GRAIN SIZE: Medium-to fine-grained

TEXTURE: Intersertal to subophitic, aphyric

CAVITIES Vesicles	PERCENT 2	LOCATIO	N (mm) 2.0-0.5		FILLING Clay, zeolite	SHAPE COMMENTS Spherical, Zeolite is mostly ovoidal scolecite.
VESICLES/			SIZE		DAY YORK	
Zeolites	1	Vesicle	18			
Celadonite	2	Mesosta	ısis			
Carbonate	3	Mesosta	sis			
Clays	1	Vesicle	9			
Clays	11	Mesosta	sis			
MINERALOGY	PERCENT	FILL				COMMENTS
SECONDARY		REPL	ACING/			
						crystals, altered.
Mesostasis	0	18	N/A		N/A	Including microliths and skeletal
Mt	3	3	0.15-0.05		N/A	
Cithopyroxene	21	21	1.0-0.2	Augite	Subhedral-prismatic	Finer grained in scattered domains with intersertal texture.
Clinopyroxene	27	27	1.0-0.2		6.17.3	intersertal texture.
Plagioclase	50	50	2.0-0.3	An65-70	Lath	Finer grained in scattered domains with
MINERALOGY	PRESENT	ORIGINAL	(mm)	SITION	MORPHOLOGY	COMMENTS
PRIMARY	PERCENT	PERCENT	SIZE	COMPO-		

COMMENTS: Marked variations in texture: phaneritic medium to fine-grained dolerite with sparse mesostasis (of original glass) includes domains mm-sized lenticular or vein-like with fine-grained largely glassy intersertal texture often developed around vesicles. (NO UNIT NUMBER GIVEN).

124-768C-89R-02 (Piece 1, 3-4 cm)

OBSERVER: SPA

WHERE SAMPLED: SIII

ROCK NAME: Olivine dolerite GRAIN SIZE: Fine-grained

TEXTURE: Intersertal

esicles	1	Uneven	2.4		Clay, Fe oxide, actinolite	or mile		
VESICLES/	PERCENT	LOCATIO	SIZE N (mm)		FILLING	SHAPE		
Fe oxide	1	Mt, oli	vine, vesi	cles				
Actinolite	15	Olivine	, pyroxene	, mesostasis				
Carbonate	Trace	Vesicle	s					
Clays	9	Olivine	, mesostas	is				
Clays	3	Plagioc	lase, meso	stasis	Including kaolinite/illite.			
MINERALOGY	PERCENT	FILL	ING			COMMENTS		
SECONDARY		REPL	ACING/					
Magnet i te	2	2	~0.04		Euhedral			
Mesostasis	30	30	N/A		N/A	Glass with pyroxene crystallites.		
Clinopyroxene	>1	>1	0.01-0.25	Diopside?	Subhedral	Incipiently altered to actinolite.		
GROUNDMASS Plagioclase	40	52	0.05-0.75	An50-70	Lath, skeletal			
Olivine	0	15	~0.5		Euhedral	Entirely altered.		
PHENOCRYSTS								
MINERALOGY	PRESENT	ORIGINAL	(mm)	SITION	MORPHOLOGY	COMMENTS		
PRIMARY		PERCENT	SIZE	COMPO-				

COMMENTS: (NO UNIT NUMBER GIVEN).

124-768C-89R-02 (Piece 1, 7-10 cm)

OBSERVER: SPA

WHERE SAMPLED: SIII

ROCK NAME: Olivine dolerite
GRAIN SIZE: Fine-grained
TEXTURE: Intersertal

/esicles	4	Even	0.18-2	60	Empty, zeolites	Round, lobate
CAVITIES	PERCENT	LOCATIO	2000 NO. 1000 NO. 100		FILLING	SHAPE
VESICLES/			SIZE			
Actinolite	10	Olivine	, crystall	ites		
Allophane	8					
Zeolites	<1	Vesicle	5			
Clays	7	Vesicle	s, plagio	lase, crystall	ites	
MINERALOGY	PERCENT	FILL	ING			COMMENTS
SECONDARY		REPL	ACING/			
	0703	3251511	acare nel 1.2.43.		ACCESSAGE TO THE	clay.
Olivine	0		0.26-1.10		Euhedral	Completely altered to actinolite and
Magnetite	2	2000000	N/A		Euhedral	
Mesostasis	26		N/A	2.063.3	N/A	
Clinopyroxene	<1		0.3-1.6	Diopside?	Subhedral	
Plagioclase	45		0.04-1.85	Lab50-70	Lath, skeletal	
MINERALOGY	PRESENT	ORIGINAL	(mm)	SITION	MORPHOLOGY	COMMENTS
PRIMARY	PERCENT	PERCENT	SIZE	COMPO-		

COMMENTS: (NO UNIT NUMBER GIVEN).

124-768C-89R-03 (Piece 4, 62-63 cm)

OBSERVER: SPA

WHERE SAMPLED:

ROCK NAME: Olivine dolerite

GRAIN SIZE: Medium-to fine-grained

TEXTURE: Aphyric, intersertal/subophitic

CAVITIES Cavity	PERCENT 6	LOCATIO			FILLING	SHAPE COMMENTS Ovoidal, Largest probably spherical originated by degassing
VESICLES/			SIZE			
Hematite	6	Olivine	•			
Actinolite	4	Covitie	95		Partly formed	after clinopyroxene
Zeolites	Trace	Covitie	9.8			
Chlorite	1	Mesosto	osis		Strong pleochr	oism, blue-green
Clays	5	Mesosto	osis			
MINERALOGY	PERCENT	FILI	LING			COMMENTS
SECONDARY		REPI	LACING/			
Mesostasis	15	25	N/A		N/A	Devitrified, partly altered.
Magnetite	5	5	0.1		Euhedral, skeletal	
						plag.
Clinopyroxene	12	12	1.0-0.1	Augite	Subhedral	In places ophitic intergranular with
Plagioclase	52	52	2.0-0.2	An70-50	Subhedral-euhedral	
Olivine	0	10	0.6-0.3		Sub, prismatic	
MINERALOGY	PRESENT	ORIGINAL	L (mm)	SITION	MORPHOLOGY	COMMENTS
PRIMARY	PERCENT		SIZE	COMPO-		

COMMENTS: GROUNDMASS CONT: Apatite, trace, trace, euhedral needles. (NO UNIT NUMBER GIVEN).

124-768C-89R-05 (Piece 2, 36-37 cm)

OBSERVER: SPA

WHERE SAMPLED: SIII

ROCK NAME: Microgabbro

GRAIN SIZE: Fine to medium-grained TEXTURE: Hyphylomorphic granular

Vesicles	0								
CAVITIES	PERCENT	LOCATIO	ON (mm)		FILLING		SHAPE		
VESICLES/			SIZE						
Allophane	10	Mesosto	ısis, plagi	oclase		Amorphous,	isotropic clays.		
Actinolite	6			oclase, px			Applicable Annual Co. Annual Co.		
Chlorite	<1	Mesosto							
Carbonate	<1	Mesosto	sis						
Clays	4	Plagio	Plagioclase, mesostasis			Including kaolinite/illite.			
MINERALOGY	PERCENT	FILL	ING				COMMENTS		
SECONDARY		REPL	ACING/						
Magnetite	3	3	.007-0.15	Fe oxide	Euh	edral, skel	etal		
Mesostasis	0	12	N/A		N/A		Altered to chl. activelite and clay.		
Clinopyroxene	29	30	0.52-1.85	Diopside?	Sub	hedral, anh	edral		
Plagioclase	48	55	0.07-2.22	An50-70	Euh	edral, tabu	lar		
MINERALOGY	PRESENT	ORIGINAL	(mm)	SITION	MO	RPHOLOGY	COMMENTS		
PRIMARY	PERCENT	PERCENT	SIZE	COMPO-					

COMMENTS: Dark intergranular interstices are interpreted as mesostasis. (NO UNIT NUMBER GIVEN).

124-768C-92R-01 (Piece 4A, 60-61 cm)

OBSERVER: SPA

WHERE SAMPLED:

ROCK NAME: Olivine microgabbro

GRAIN SIZE: Medium to fine-grained

TEXTURE: Subophitic

VESICLES/ CAVITIES Vesicles	PERCENT 0	LOCATIO	SIZE ON (mm)		FILLING		SHAPE
Clays		Phiogo	pite, mes	,		Blue green celado	onite replacing phlogopite and mesostasis.
	2	Dhilana					own on cpx, opx and hornblende.
Clays Actinolite	9	Mesost	0313			n	NOS DE COMPENSAR DE LA PROPERTA DEPARTA DE LA PROPERTA DEPURDA DE LA PROPERTA DE
Clays	15	Olivin	7 St.			Plae yellow - gre	en.
MINERALOGY	PERCENT		LING				COMMENTS
SECONDARY			LACING/				
ACCESSOFIES	•	5	0.4-0.1		N,	/A	Inclusions: Ti⊸nagnetite, apatite, hornblende and phlogopite.
Orthopyroxene Accessories	2	2	0.6-0.4	Bronzite		ubhedral, prismatic	Incipiently altered to clays.
Clinopyroxene	22	22	3.0-0.2	Augite		ubhedral, prismatic	
Plagioclase	50	50	2.0-0.2	An85-30	1.77	oths	
Olivine	0	15	1.2-0.5		S	ubhedral, prismatic	
MINERALOGY	PRESENT	ORIGINA	L (mm)	SITION		MORPHOLOGY	COMMENTS
PRIMARY	PERCENT	PERCENT	SIZE	COMPO-			

COMMENTS: Groundmass continued: Mesostasis, present percent=5, original percent=15, comments= microliths of plag, pyroxene, apatite, opaques and altered glass. Comments: Mostly plutonic texture — Late magmatic hydrous phases include green hornblende and phlogopite replaced in post-magmatic stages by actinolite and clays.

124-768C-93R-01 (Piece 2F, 110-116 cm)

OBSERVER: SPA

WHERE SAMPLED:

ROCK NAME: Olivine microgabbro

GRAIN SIZE: Medium to fine-grained

TEXTURE: Gabbroic to subophitic

VESICLES/ CAVITIES Vesicles	PERCENT 0	LOCATIO	SIZE ON (mm)		FILLING	SHAPE
Hydromica	3	Phlogop			Blue green pseudo	omorphing phlogopite.
Clays	8	Plag.	epx, opx		Literature Primerrore → py consulty motor to est.	
Clays	20	Olivine	•		Yellow-green smee	ctites.
MINERALOGY	PERCENT	FILL	ING			COMMENTS
SECONDARY		REPL	ACING/			
Hornb I ende	2	2	0.5-0.2		Subhedral, prismatic	Reddish brown to pale green color.
Orthopyroxene	3	6	1.5-2.0	Bronzite		Columnar, incipiently altered.
Clinopyroxene	22	24	2.0-0.2	Augite	Subhedral, prismatic	
Plagioclase	37	40	2.0-0.2	An85-60	Laths	Altered to clays along cracks.
Olivine	0	20	1.2-0.5		Subhedral, prismatic	그는 생생님이 뭐지 하지 않았다. 내용에 가득하는 가입니다. 그렇게 하는 아이를 하는 사람들이 얼마를 하는 것이다. 그렇게 하는 그 그 때문에 가입하다.
MINERALOGY	PRESENT	ORIGINAL	_ (mm)	SITION	MORPHOLOGY	COMMENTS
PRIMARY	PERCENT	PERCENT	SIZE	COMPO-		

COMMENTS: Groundmass continued: Phlogopite, present percent=2, original percent=5, size=0.6-0.2 mm, morphology=plates, comments=orange color, isolated crystals replacing cpx. Accessories, present percent=3, original percent=3, size=0.15-0.05 mm, comments=Fe-Ti oxides and apatite.

124-768C-93R-03 (Piece 2X, 77-78 cm)

OBSERVER: SPA

WHERE SAMPLED:

ROCK NAME: Olivine microgabbro

GRAIN SIZE: Medium to fine-grained

TEXTURE: Gabbroic - subophitic

CAVITIES Vesicles	PERCENT 0	LOCATIO	N (mm)		FILLING		SHAPE
ESICLES/			SIZE				
e-oxides	trace	Olivine					
lydromica	6	Mica			Green	and blue -	green.
Actinolite	4	Pyroxen	e, hornb	lende			
Clays	6	Plag, p	yroxene,	hornblende	Also 1	illing inte	ergranular spaces.
Clays	25	Olivine			Yellov	smectite o	and irresolvable turbid clays.
INERALOGY	PERCENT	FILL	ING				COMMENTS
ECONDARY		REPL	ACING/				
hlogopite	2	8	0.6-0.2		N/A		Largely altered.
rthopyroxene	2		0.5-0.2	Bronzite	Subhedral,	prismatic	Mostly columnar.
							mica.
Clinopyroxene	19	20	1.5-0.2	Augite	Subhedral,	prismatic	Incipiently replaced by hornblende and
Plagioclase	33	35	2.0-0.3	An85-60	Laths		Invaded by clays along cracks.
Divine	0	25	1.315		Subhedral,	prismatic	Small crystals included in cpx.
INERALOGY	PRESENT	ORIGINAL	(mm)	SITION	MORPHOLOG	Y	COMMENTS
RIMARY	PERCENT	PERCENT	SIZE	COMPO-			

COMMENTS: Hornblende: present percent=1, original percent=4, size=0.4 mm, morphology=subhedral, prismatic. Accessories, present percent=2, original percent=2, size=0.15-0.05 mm, comments=granular Fe-Ti oxides and columnar apatite.

124-768C-94R-01 (Piece 4A, 74-77 cm)

OBSERVER: SPA

WHERE SAMPLED:

ROCK NAME: Olivine microgabbro

GRAIN SIZE: Medium to fine-grained

TEXTURE: Subophitic

VESICLES/ CAVITIES Vesicles	PERCENT 0	LOCATIO	SIZE N (mm)		FILLING	SHAPE		
Hydromica	5	Mica			Blue - gr	reen.		
Hematite	1	Olivine	, mesost	nsis	Dissemina	ated granules.		
oxide/hydroxide	6							
Fe	trace	Olivine	, mesosto	osis	Staining altered olivine and mesostasis.			
Actinolite	1					ringing augite.		
Carbonate	4	Olivine			At cores of altered crystals.			
Clays	8	Olivine		7,0075	Yellow at	nd green smectite.		
Clays	7	(155.5 a.)	px, meso:	stasis		COMMENTS		
SECONDARY MINERALOGY	PERCENT	REPL	ACING/			COMMENTS		
Mica	trace	5	0.3	Mg	Plates	Relics of orange colored phlogopite.		
Mesostasis	5		N/A		N/A	Microfelsite with microliths.		
Clinopyroxene	24	25	1.5-0.3	Augite	Subhedral, p	rismatic Pale brown color.		
Plagioclase	42	47	2.5-0.8	An85-55	Plates			
Olivine	0	13	1.0-0.5		Subhedral, pi	rismatic		
MINERALOGY	PRESENT	ORIGINAL	(mm)	SITION	MORPHOLOGY	COMMENTS		
PRIMARY	PERCENT	PERCENT	SIZE	COMPO-				

COMMENTS: The rock is crossed by a vein 0.4 to 0.15 mm thick, filled with carbonate and clays which is in turn cut by a veinlet (0.04 mm in width) of albite. Groundmass continued: Accessories, present percent=3, original percent=3, comments=Fe-Ti oxides and apatite.

124-768C-95R-01 (Piece 4, 30-33 cm)

OBSERVER: SPA

WHERE SAMPLED:

ROCK NAME: Olivine phyric basalt

GRAIN SIZE: Fine-grained

TEXTURE: Phyric, hypocrystalline

VESICLES/ CAVITIES Vesicles	PERCENT 30	LOCATIO Even	SIZE N (mm) 2.505	i i	FILLING Clays	SHAPE COMMENTS Spherical, Two size groups: >1 mm lobate and 0.1 .05 mm.
Clays	50	Mesosta	sis, vesio	les, plag	Pale green and	d colorless.
Clays	10	Olivine			Green smectite	
SECONDARY MINERALOGY	PERCENT	REPL FILL	ACING/ ING			COMMENTS
Mesostasis	40		N/A		N/A	Poorly resoviable intergrowth of plag, cpx and Fe—Ti oxides within altered glass.
Clinopyroxene	5		0.3-0.05	Augite	Subhedral, prismat	Medical Control of the Control of th
GROUNDMASS	5	15	7.0-0.05	Labradorite	Laths	Largely altered to clays.
PHENOCRYSTS Olivine	0	10	1.0-0.3		Euhedral, prismati	le .
MINERALOGY	PRESENT	ORIGINAL	(mm)	SITION	MORPHOLOGY	COMMENTS
PRIMARY		PERCENT	SIZE	COMPO-		

124-768C-96R-01 (Piece 8A, 106-108 cm) OBSERVER: SPA

WHERE SAMPLED:

ROCK NAME: Aphyric basalt GRAIN SIZE: Fine-grained

TEXTURE: Intersertal

Vesicles	25	Even	2.5-0.0	5	Clays	Spherical, lobate			
VESICLES/	PERCENT	LOCATIO	SIZE ON (mm)		FILLING	SHAPE			
K-feldspar	5	Plag			Replacing at a	crystal cores.			
Plagioclase	25	Plag			Albite/oligoci	lase pseudomorphing plagioclase.			
Clays	10	Vesicle	s		Pale yellow gr	reen, lining vesicles.			
Clays	15	Plag, m	nesostasis		Pale yellow green and green smectites.				
MINERALOGY	PERCENT	PERCENT FILLING				COMMENTS			
SECONDARY		REPL	ACING/						
						glass.			
Mesostasis	30	40	N/A		crystals N/A	Poorly resolvable intergrowth of plag, cpx and Fe-Ti oxides within altered			
Clinopyroxene	15	15	0.2-0.1	Augite	Microliths, skelet	tal			
Plagioclase	trace		2.5-0.15		Laths	Crystals with length/width ratio ~20:1.			
MINERALOGY	PRESENT	ORIGINAL	. (mm)	SITION	MORPHOLOGY	COMMENTS			
PRIMARY		PERCENT		COMPO-					

124-768C-96R-03 (Piece 15A, 126-128 cm) OBSERVER: SPA

WHERE SAMPLED: Pillow core

ROCK NAME: Olivine dolerite

GRAIN SIZE: Medium to fine-grained

TEXTURE: Intersertal

	13	CAAU	1.00	3	Clays, carbonate	ovoid concentring in colorless and brown smectite (outer part) and celadonite (inner
VESICLES/ CAVITIES Vesicles	PERCENT 15	LOCATIO	SIZE ON (mm) 1.00		FILLING	SHAPE COMMENTS Spherical, Clay filling in
K-feldspar	10	Plag			Replacing p	lag at crystal cores.
Carbonate	2		, vesicle	3	Replacing of	livine at crystal cores, also in amygdules.
Clays	14	Vesicle	s			
Clays	9	Olivine	, mesosta	sis	Mostly redo	ish brown, colorless and green smectites.
SECONDARY MINERALOGY	PERCENT	REPL	ACING/			COMMENTS
esostas i s	10	15	N/A		N/A	Poorly resolvable aggregate of plag, cpx and Fe—Ti oxides within altered glass.
Fe-Ti oxides Mesostasis	5		0.105		Skeletal, granu	
Clinopyroxene	20	77.7	2.005	Augite	Subhedral, pris	있는 사람이 있다면 보다는 사람들이 되었다면 보다는 사람들이 되었다면 보다 되었다면 하는데 보다 되었다면 하는데 보다 되었다면 하는데 보다 되었다면 보다 되었다면 보다 되었다면 보다 되었다면 보다 보다 되었다면
Plagioclase	30		3.0-0.2	An50-70	Laths	
GROUNDMASS Dlivine	0		1.2		Euhedral, prism	atic Altered to clays and carbonate.
PHENOCRYSTS Dlivine	0	1	1.5		Euhedral, prism	atic
			. ()	311101	mon notogi	COMMENTS
PRIMARY MINERALOGY		PERCENT		COMPO- SITION	MORPHOLOGY	COMMENTS

124-768C-97R-03 (Piece 5, 55-59 cm)

OBSERVER: SPA

WHERE SAMPLED:

ROCK NAME: Olivine dolerite

GRAIN SIZE: Medium to fine-grained

TEXTURE: Aphyric, intersertal

/ESICLES/ CAVITIES /esicles	PERCENT 20	LOCATIO Even	SIZE N (mm) 2.0-0.	2	FILLING Zeolite, clay, carbona	SHAPE Spherical,			
Fe hydroxide	trace	Mesosta	sis		Staining all	tered mesostasis.			
K-feldspar	12	Plag							
Zeolites	12		esicles		Mostly fibro	ous.			
Carbonate	6	Vesicle	100000000000000000000000000000000000000			iate aggregates and patchy crystals.			
Clays	13		s, mesost	asis	Reddish brown iddingsite. Green and coloriess smectite, pale green celadonite.				
Clays	2	Olivine							
MINERALOGY	PERCENT	FILL	ING			COMMENTS			
SECONDARY		REPL	ACING/						
						cpx and Fe-Ti oxides and altered glass			
Mesostasis	5	13	N/A		N/A	Poorly resolvable microliths of plag,			
Fe-Ti oxides	5	1000	0.105		Grains	Ti-magnetite			
Clinopyroxene	30		1.505	Augite	Prism, skeletal	(20) 10(0)			
2420-0000000000	2.0	2007 S	12.0020 02020			cores.			
Plagioclase	15	30	3.005	Labradorite	Laths	Replaced by K-feldspar and zeolites at			
Olivine	0		0.5		Euhedral, prismo	atic			
MINERALOGY	PRESENT	ORIGINAL	(mm)	SITION	MORPHOLOGY	COMMENTS			
PRIMARY		PERCENT		COMPO-					

124-768C-98R-01 (Piece 7, 67-69 cm)

OBSERVER: SPA

WHERE SAMPLED: Pillow rim

ROCK NAME: Olivine basalt

GRAIN SIZE: Fine-grained to glassy

TEXTURE: Phyric, hypocrystalline, subvariolitic

PRIMARY		PERCENT		COMPO-		
MINERALOGY	PRESENT	ORIGINAL	_ (mm)	SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Olivine	0	2	1.0-0.4		Euhedral, prismatic	Irregularly distributed.
GROUNDMASS						
Plagioclase	0	7	0.05		Laths	
Clinopyroxene	3	3	0.05		Skeletal	
Mesostasis	45	65	N/A		N/A	Intergrown skeletal plag and cpx in bundles and radiate aggregates with interposed altered glass, or altered glass.
SECONDARY		REPL	_ACING/			
MINERALOGY	PERCENT					COMMENTS
Clays	2	Olivine	•		Colorless smectit	e.
Clays	50	Plag, n	nesostasis,	vesicles		
Zeolites	trace	Olivine				
VESICLES/			SIZE			INCOME.
CAVITIES	PERCENT	LOCATIO	ON (mm)		FILLING	SHAPE
Vesicles	25	Even	1.003		Clays	Spherical,
						ovoidal
	11.50 (11.50 11.50		cm)	OBSERVER: SPA	WHERE SAMPLED:	
ROCK NAME: Oli GRAIN SIZE: Fi	vien basa ne to med	it ium—grair	12 200-50	OBSERVER: SPA	WHERE SAMPLED:	
ROCK NAME: OII GRAIN SIZE: FI TEXTURE: Aphyr PRIMARY	vien basa ne to med ic, inter	it ium—grair	ned	OBSERVER: SPA	WHERE SAMPLED:	
ROCK NAME: OII GRAIN SIZE: FI TEXTURE: Aphyr PRIMARY	vien basa ne to med ic, inters	lt ium-grain sertal	SIZE		WHERE SAMPLED: MORPHOLOGY	COMMENTS
ROCK NAME: OII GRAIN SIZE: FI TEXTURE: Aphyr PRIMARY	vien basa ne to med ic, inters	ium-grain sertal PERCENT	SIZE	сомро-		COMMENTS
ROCK NAME: OII GRAIN SIZE: FI TEXTURE: Aphyr PRIMARY MINERALOGY PHENOCRYSTS	vien basa ne to med ic, inters	ium-grain sertal PERCENT	SIZE (mm)	сомро-		COMMENTS
ROCK NAME: OII GRAIN SIZE: FI TEXTURE: Aphyr PRIMARY MINERALOGY PHENOCRYSTS	vien basa ne to med ic, inter: PERCENT PRESENT	ium-grain sertal PERCENT ORIGINAL	SIZE (mm)	сомро-	MORPHOLOGY	COMMENTS
ROCK NAME: OII GRAIN SIZE: FI TEXTURE: Aphyr PRIMARY MINERALOGY PHENOCRYSTS OIIVINE GROUNDMASS	vien basa ne to med ic, inter: PERCENT PRESENT	ium-grain sertal PERCENT ORIGINAL	SIZE (mm)	сомро-	MORPHOLOGY	COMMENTS
ROCK NAME: OII GRAIN SIZE: FI TEXTURE: Aphyr PRIMARY MINERALOGY PHENOCRYSTS OIIvine GROUNDMASS OIIvine	vien basa ne to med ic, inter: PERCENT PRESENT	ium-grain sertal PERCENT ORIGINAL	SIZE (mm)	сомро-	MORPHOLOGY Euhedral, prismatic Subhedral, prismatic Laths	
ROCK NAME: Oli GRAIN SIZE: Fi TEXTURE: Aphyr PRIMARY MINERALOGY PHENOCRYSTS Olivine GROUNDMASS Olivine Plagioclase Clinopyroxene	PERCENT PRESENT 0 0 5 25	ium—grain sertal PERCENT ORIGINAL trace	SIZE (mm) 1 0.515 1.2-0.2 2.005	COMPO- SITION	MORPHOLOGY Euhedral, prismatic Subhedral, prismatic Laths Euhedral — subhedral	
ROCK NAME: Oli GRAIN SIZE: Fi TEXTURE: Aphyr PRIMARY MINERALOGY PHENOCRYSTS Olivine GROUNDMASS Olivine Plagioclase Clinopyroxene	vien basa ne to med ic, inter: PERCENT PRESENT	ium-grain sertal PERCENT ORIGINAL trace	SIZE (mm) 1 0.515 1.2-0.2	COMPO- SITION Labradorite	MORPHOLOGY Euhedral, prismatic Subhedral, prismatic Laths Euhedral — subhedral Grains, skeletal	
ROCK NAME: Oli GRAIN SIZE: Fi TEXTURE: Aphyr PRIMARY MINERALOGY PHENOCRYSTS Olivine GROUNDMASS Olivine Plagioclase Clinopyroxene Fe-Ti oxides	PERCENT PRESENT 0 0 5 25	ium—grain sertal PERCENT ORIGINAL trace	SIZE (mm) 1 0.515 1.2-0.2 2.005	COMPO- SITION Labradorite	MORPHOLOGY Euhedral, prismatic Subhedral, prismatic Laths Euhedral — subhedral	Columnar habit.
ROCK NAME: Oli GRAIN SIZE: Fi TEXTURE: Aphyr PRIMARY MINERALOGY PHENOCRYSTS Olivine GROUNDMASS Olivine Plagioclase Clinopyroxene Fe-Ti oxides	PERCENT PRESENT	PERCENT ORIGINAL trace	SIZE (mm) 1 0.515 1.2-0.2 2.005 0.205	COMPO- SITION Labradorite	MORPHOLOGY Euhedral, prismatic Subhedral, prismatic Laths Euhedral — subhedral Grains, skeletal crystals	Columnar habit.
Olivine	PERCENT PRESENT	PERCENT ORIGINAL trace	SIZE (mm) 1 0.515 1.2-0.2 2.005 0.205	COMPO- SITION Labradorite	MORPHOLOGY Euhedral, prismatic Subhedral, prismatic Laths Euhedral — subhedral Grains, skeletal crystals	Columnar habit. Irresolvable intergrowth of plag, cpx with interstitial glass dusted with

FILLING

Zeolite, clays

COMMENTS

SHAPE

Spherical, ovoidal, angular

Mostly reddish brown iddingsite. Colorless, green and orange.

MINERALOGY

Clays

Clays Zeolites

VESICLES/

CAVITIES

Vesicles

PERCENT

12

26

20

FILLING

Plag, vesicles

Mesostasis, plag, vesicles

SIZE

Olivine

PERCENT LOCATION (mm)
15 Even 2.0-.15

124-768C-99R-02 (Piece 3A, 100-104 cm)

OBSERVER: SPA

WHERE SAMPLED:

ROCK NAME: Olivine basalt GRAIN SIZE: Fine-grained

TEXTURE: Hypocrystalline, subvariolitic, phyric

PRIMARY	PERCENT	PERCENT	SIZE	COMPO-		
MINERALOGY	PRESENT	ORIGINAL	(mm)	SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Olivine	0	2	0.5-0.3		Euhedral, prismatic	
Spinel	trace	trace	0.01 C	hromite	Grains	Dark brown Cr-spinel.
GROUNDMASS						
Olivine	0	trace	0.2		Grains	
Plagioclase	0	2	0.2		Laths	
Clinopyroxene	trace	trace	0.4		Acicular crystals	
Crystallites &	48	81	N/A		N/A	Glass devitrified and altered P.P.
glass						crystallites of plag and clinopyroxene
SECONDARY		REPL	ACING/			
MINERALOGY	PERCENT	FILL	ING			COMMENTS
Clays	2	Olivine	1			
Clays	50	Vesicle	is, glass and	crystallites		
VESICLES/			SIZE			
CAVITIES	PERCENT	LOCATIO	N (mm)		FILLING	SHAPE
Vesicles	15	Irregul	or 0.503	С	lays	Ovoidal,
					300 5 Val	spherical

COMMENTS: The rock is fractured into cm-sized fragments cemented by veins 1 to 6 mm thick with composite fillings of

clays and carbonate.

124-768C-99R-04 (Piece 3, 49-50 cm)

OBSERVER: SPA

WHERE SAMPLED:

ROCK NAME: Olivine phyric basalt

GRAIN SIZE: Fine-grained

TEXTURE: Phyric, intersertal-radiate

PRIMARY		PERCENT	SIZE	COMPO-		
MINERALOGY	PRESENT	ORIGINAL	_ (mm)	SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Olivine	0	3	1.0-0.3		Euhedral, prismatic	Isolated and glomerophyric, sometimes hollowed crystals.
Spinel	trace	trace	. 02	Chromite	Grains	Dark brown Cr-spinel.
GROUNDMASS						
Olivine	0	7	1.0-0.3		Plates	Typical habit of quenched olivine.
Plagioclase	20	20	0.303	Labradorite	Laths	
Clinopyroxene	trace	trace	.03		Skeletal	
Mesostasis	20	50	N/A		N/A	Crystallites within altered and
					43-400	devitrified glass dusted with opaques
SECONDARY		REPI	LACING/			
MINERALOGY	PERCENT		ING			COMMENTS
Clays	10	Olivine			Reddish brown id	dinasite.
Clays	50	Vesicle	s, mesost	asis		
VESICLES/			SIZE			
CAVITIES	PERCENT	LOCATIO	ON (mm)		FILLING	SHAPE
Vesicles	20	Even	1.06	3	Clays	Lobate,
				1000	District Control of the Control of t	spherical,
						ovoidal

124-768C-100R-01 (Piece 3B, 34-35 cm) OBSERVER: SPA

WHERE SAMPLED:

ROCK NAME: Olivine phyric basalt

GRAIN SIZE: Fine-grained

TEXTURE: Phyric, intersertal-radiate

VESICLES/ CAVITIES Vesicles	PERCENT 25	LOCATIO	SIZE ON (mm) 1.50	E	FILLING Clays	SHAPE Spherical,			
Clays K-feldspar	55 5	Plag, v Plag	esicles,	mesostasis					
Clays	15	Olivine	1		Mostly po	le yellow green smectite.			
MINERALOGY	PERCENT	FILL	ING		COMMENTS				
SECONDARY		REPL	ACING/						
						devitrified glass.			
Mesostasis	10	25	N/A		N/A	Crystallites within altered and			
Clinopyroxene	trace	trace	~.15	Augite	Microliths	Acicular habit.			
riagrociase	13	25	1.0-0.1	Capitagorita	crystals	01			
Plagioclase	15		1.0-0.5	Labradorite	Laths, skelet	Quenched crystals.			
GROUNDMASS Olivine	0	10	1.0-0.5		Plates	Outpoled countries			
Spinel	trace	trace	.01	Chromite	Grains	Included mostly in olivine.			
PHENOCRYSTS Olivine	0	(5.4	1.0-0.3		Euhedral grai				
MINERALOGY	PRESENT	ORIGINAL	. (mm)	SITION	MORPHOLOGY	COMMENTS			
PRIMARY		PERCENT		COMPO-	10 5 20 2 4 5 20 12 20 0	10/10/10 11/10/10			

124-768C-100R-01 (Piece 12A, 115-119 cm) OBSERVER: SPA

WHERE SAMPLED:

ROCK NAME: Olivine basalt GRAIN SIZE: Fine-grained

TEXTURE: Phyric, intersertal-radiate

PRIMARY	PERCENT	PERCENT	SIZE	COMPO-		
MINERALOGY	PRESENT	ORIGINAL	(mm)	SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Olivine	0	3	0.5-0.2		Euhedral, prismatic	
Spinel	trace	trace	0.02	Chromite	Grains	Dark brown, black.
GROUNDMASS						
Plagioclase	0	25	1.5-0.1		Laths	
Clinopyroxene	2	2	0.305		Subhedral,	
					prismatic, skeletal	
Mesostasis	10	55	N/A		N/A	Devitrified, altered glass with
						crystallites.
Olivine	0	trace	0.3		Plates	
SECONDARY		REPL	ACING/			
MINERALOGY	PERCENT	FILL	ING			COMMENTS
Clays	3	Olivine	,		Reddish brown id	ddingsite.
Clays	55	Plag, v	esicles,	mesostasis		er entre en
Carbonate	5	Vesicle	15			
Zeolites	25	Plag. v	esicles			
VESICLES/			SIZE			- Mary Adoresis (Annual Control of the Control of t
CAVITIES	PERCENT	LOCATIO	N (mm)		FILLING	SHAPE COMMENTS
Vesicles	15	Even	1005	5	Clays, zeolites, carbonate	Spherical, Two size classes. ovoidal, lobate

124-768C-100R-02 (Piece 2, 17-19 cm)

OBSERVER: SPA

WHERE SAMPLED:

ROCK NAME: Aphyric baselt GRAIN SIZE: Fine-grained

TEXTURE: Intersertal

CAVITIES Vesicles	PERCENT 10	LOCATIO Even			FILLING Clays	SHAPE Spherical, lobate
VESICLES/			SIZE			
K-feldspar	7					
Hematite	trace	Mesosto	sis			
Carbonate	1	Vesicle	5			
Clays	9	Vesicle	3			
Clays	10	Plag. m	nesostasis			
MINERALOGY	PERCENT	FILL	.ING			COMMENTS
SECONDARY		REPL	ACING/			
						crystallites.
Mesostasis	5	12	N/A		crystals N/A	Devitrified, altered glass with
Fe-Ti oxides	3	3	.0301		Grains, sk	eletal
Clinopyroxene	25	25	1.203	Augite		prismatic
Plagioclase	40		2.0-0.1	Labradorite	Laths	
MINERALOGY		ORIGINAL		SITION	MORPHOLOG	Y COMMENTS
PRIMARY	PERCENT	PERCENT	SIZE	COMPO-		

124-768C-100R-02 (Piece 5, 53-55 cm)

OBSERVER: SPA

WHERE SAMPLED:

ROCK NAME: Olivine phyric basalt

GRAIN SIZE:

TEXTURE: Phyric, intersertal

VESICLES/ CAVITIES Vesicles	PERCENT LOCATION (mm) 13 Even 2.015		5	FILLING Clays, carbonate	SHAPE Spherical, lobate	
		agroc				
K-feldspar	1 Vesicles 10 Plagioclase					
Carbonate						
Clays	24	Plag, mesostasis, vesicles		vesicles	Modelan promi rodingaria.	
Clays	17	Olivine			Reddish brown iddingsite.	
SECONDARY MINERALOGY	REPLACING/ PERCENT FILLING		COMMENTS			
Olivine	0	2	0.2-0.1		Subhedral grains	
Mesostasis	5		N/A		crystals N/A	
Fe-Ti oxides	3	3	. 05		Grains, skeletal	
Clinopyroxene	20		1.005	Augite	Subhedral, prismatic	
GROUNDMASS Plagioclase	20		1.005	Labradorite	Laths	
PHENOCRYSTS Olivine	0	15	1.2-0.2		Euhedral, prismati	c
MINERALOGY	PRESENT	ORIGINAL	(mm)	SITION	MORPHOLOGY	COMMENTS
4711FD41 0014		PERCENT		COMPO-		