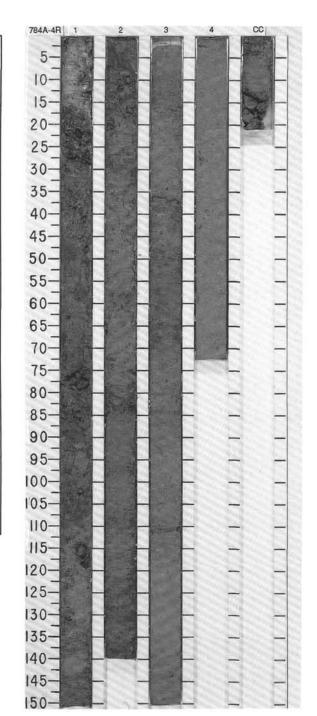
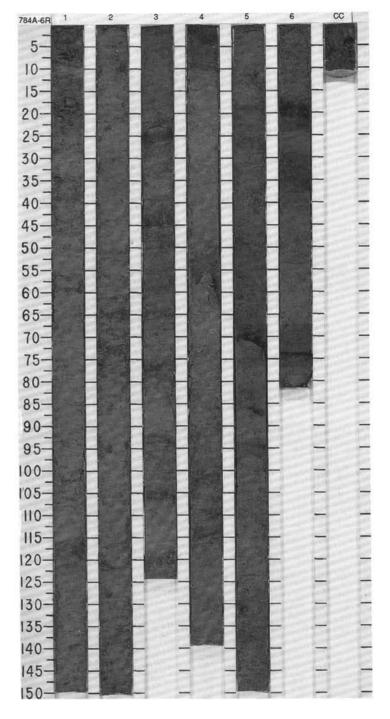
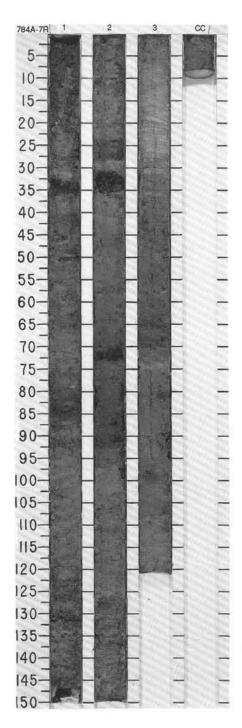

NI T				ONE/	99	LES					JRB.	ES					
TIME-ROCK UNIT	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	ı	LITH	OLOGIC	DESCRIPTION
NE	В	В		R/M F/M	٤	Ø=65.5 P=1.59	0.8	1 cc	0.5		0 0000-	000	* * *	with dark yellowish brown (10YF ous. Brown (10YR 5/3), subang in the interval from 28 to 40 cm SMEAR SLIDE SUMMARY (%): 1, 5	ND Gi R 4/4 gular t in Se	LASS-R) and ve o subro ection 1.	ICH CLAYEY SILT, dark gray (10YR 4/1) mottled ry dark brown (10YR 2/2) and is very homogene- unded, 0.5 to 4 cm pumice fragments are present CC, 9
UPPER PLEISTOCENE				P. doliolus		•	** %CaCO3	200						D TEXTURE: Sand 10 Silt 30 Clay 60 COMPOSITION: Amphibole — Clay 40 Diatoms 7 Epidote — Feldspar 12 Glass 22 Micrite — Opaques 6 Radiolarians 8 Spicules 5		3 60 37	8 8 62 30 2 30 Tr Tr 15 35 7 8 3 3

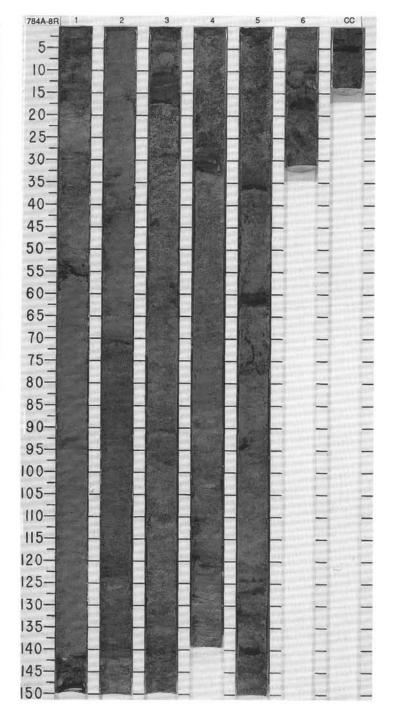
UNIT				ONE/	s s	LES					JRB.	53						
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES		LITI	HOLOGIC	DESCR	PTION
	/P	/B		9/	~	•	•	1	-	11 (11)	4	ō	**	FELDSPAR-BEARING VI	TRIC AS	H and VI	TRIC-BE	ARING BIOGENIC SILICA CLAY
	α	ď		O		Ø=68.5	0.3							(10YR 2/1), 0.5-to 4 cm th	ick beds	and as in	regular b	and pyroxene sand are present as blai- lebs. VITRIC-BEARING BIOGENIC in discontinuous laminae from 3 to 10
														SMEAR SLIDE SUMMAR	Y (%):			
															1, 2 D	1,3 M	1, 8 D	1, 14 M
ш				.~										TEXTURE:				
TOCEN				reinholdi										Sand Silt	80	90 10	20	30 70
10				inh										Clay	20	-	80	_
EIS		4 9	8											COMPOSITION:				
P		CN17		Nitzschia										Clay	-	_	25	2
ER		Ü		SC										Diatoms Feldspar	Tr 20	10	10	10
ш				7										Fish	20	10	Tr	10
W 0		- 1	11	>										Glass	78	25	15	84
ĭ				1										Micrite	Tr	-	Tr	1
														Opaques	-	20	10	5
														Pyroxene	1	40	-	Tr
														Quartz	T-	3	10	1
														Radiolarians Rutile	Tr	2	10	1.
							03							Silicoflagellates	Tr	-	10	<u> </u>
							300							Spicules	Tr		20	=
							W1.%CaC03							Zeolite			Tr	-
				- 1			100							Zoisite	1		-	_

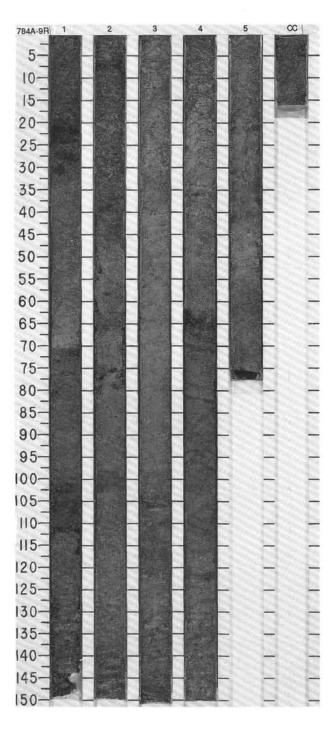


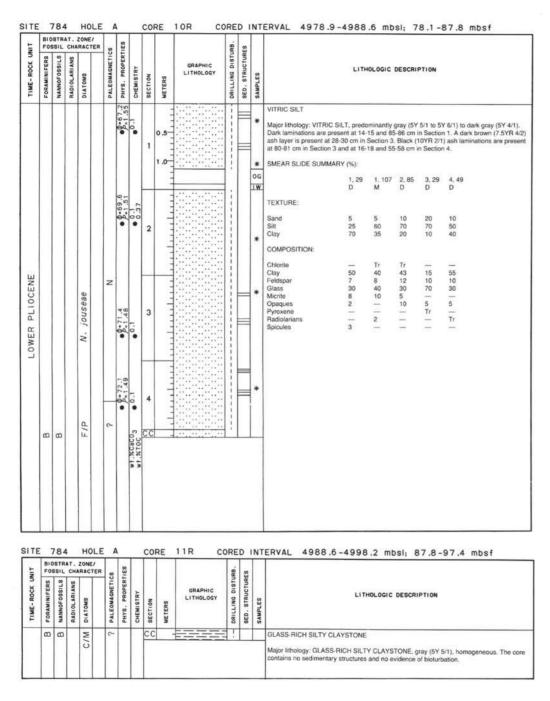

				ONE/	99	Sal					JRB.	ES.									
	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	5	LITH	OLOGIC	DESCRI	PTION			
1									1		T			VITRIC SILT and VITRIC SILT	Y SAM	ND					
					5	•	6.0.3	1	1.0			0	* OG	Major lithology: VITRIC SILT, v coring and by bioturbation. Inch approximately 0.5 cm wide, ar rounded to subangular, gray (2 in all sections. Thin (1 mm), fai in Section 3 at 54 cm. A black is present at 50-52 cm in Secti	lined a e presi 2.5Y 4- int, dis (10YR ion 3.	ent at 45 0) pumic turbed la	rbed gre i-50 cm i ce fragmo amination	enish gra n Section ents up to ns are pre	y vein-like 2. Rare, 2 cm in o esent in S	laminat scattered diameter ection 1 a	ons, l, sub- are pre at 55 cm
						52.9	9.5		-		1			SMEAR SLIDE SUMMARY (%);						
						9	00		=		İ	ځ۷		1. M		2, 102 M	3, 7 D	3, 51 M	3, 117 M	3, 144 M	4, 38 M
								2	7			٥		TEXTURE:							
- 1									3			0		Sand 50	0	100	90	80	30	10	10
-			М		Z	1	ш		-			0	*	Sift 40		-	10	20	60	60	80
-						1	ш		7			8		Clay 10	0	_	-	-	10	30	10
- 1									-			ľ	TW	COMPOSITION:							
- 1									4			0	*								
	Ш				1	Ø=70.8	1 1		3			1		Diatoms		-	-	-	-	1	-
- 1						F-	o.		-			•••	*	Epidote — Feldspar 10	2			22	3	10	10
-						90	0	3	-				*	Glass 45		100	100	53	57	80	60
- 1					1	1		~	1		_			Hornblende -	8	200	200	_	_	1	-
- 1									-		000-			Opaques 40	0	-		12	5	2	-
- 1									-		9		*	Pyroxene -		Tr	-	7	5	_	_
- 1						63.6	1		1			00		Quartz -	3			74	5	1	5
- [ω-	-						*	Radiolarians — Serpentine —					_	1.	5
- 1						90			_			0	1	Spicules —				-		_	5
- 1							•		-			0		Zeolite 5		-	-	-	_	5	10
- [0				4	_			ŏ	*	Zoisite -		-	-	6	5	_	_
-			1	9	0			CC			1	100									
	B	B		LL.	1,0		wt.%CaCO3	00				_	_								
- 1							380	į.													
- 1							2 2	5													


1	FOS	SIL	CHA	ZONE/	R	TIES					DISTURB.	IRES					
	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DIS	SED. STRUCTURES	SAMPLES	u	THOLOGIC	DESCRI	PTION
					0	0-73.0		1	0.5			0000		(2.5Y 4/0), and grayish green (100 mm to 2 cm in diameter, very pale	CLAY is 3 4/2) with brown (1 beds. Vitric	OYR 7/3) ash occ	oturbated, light gray (2.5Y 6/0), dark gray , individual, subrounded to rounded, 1 pumice clasts. These clasts are locally urs as thin (1 mm to 2 cm) layers and as cored interval.
						9-70.9	00.1		-			1°		2, 56 M	3, 36 D	3, 80 M	3, 111 M
								2	اسببال				*	Sand 10 Sit 60 Clay 30 COMPOSITION:	10 90	75 15 10	5 95
					œ	• 6-73.3	60.7	3	1,111			*	**	Clay — Diatoms — Epidote Tr FeldSpar 5 Glass 88 Opaques 5 Pyroxene Tr	88 10 	8 Tr — 15 75 1 Tr	95
						Ø=66.3	0.1		1			** ** ** **	*	Quartz — Radiolarians — Reportine — Spicules Tr Zeolite 2		Tr Tr 1	5
	a	æ		R/P				4 CC	-	" = "	!	1					
					2		wt.%CaCO3										

784 A 5R NO RECOVERY

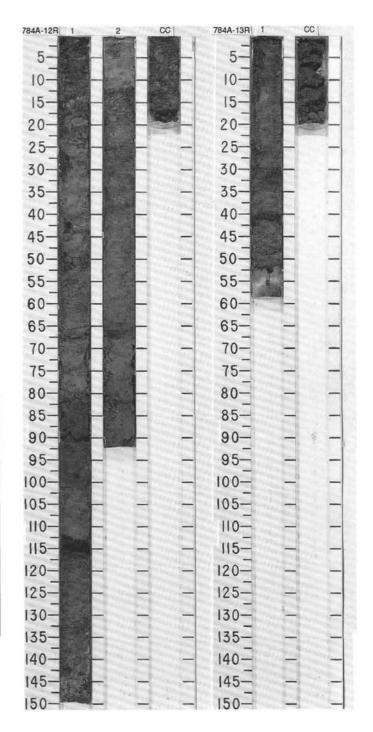


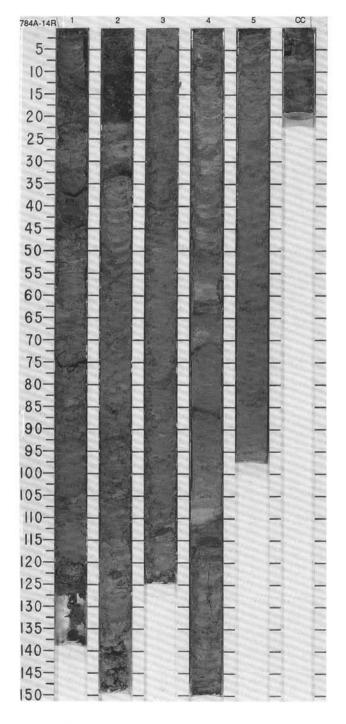

TINO				ZONE/ RACTE	R oo	IES					JRB.	ES		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
						9 67.8 P. 1.54	0	1	0.5					VITRIC ASH and VITRIC CLAYEY SILT Major lithology: VITRIC ASH and VITRIC CLAYEY SILT, dark greenish gray (10YR 4/1) t very dark greenish gray (10YR 3/1) with very dark gray (5Y 3/1) laminations at 33, 78, an 82-84 cm in Section 1, 60-64 cm in Section 3, and at 0-1 cm in Section CC. One very dar gray (5Y 3/1) ash bed is present at 30-34 cm in Section 2. SMEAR SLIDE SUMMARY (%):
												=		1, 33 1, 79 2, 71 3, 62 D D M D
R PLIOCENE				praebergonii		P=72.3	0.2	1	1					TEXTURE: Sand 60 10 88 40 Silt 30 60 10 30 Clay 10 30 2 30 COMPOSITION: Chlorite Tr — — — — — — — — — — — — — — — — — —
DPPE	8	8		A/G R. p		\$ 72.6		3	1				*	Diatoms 1 8 — 5 Feldspar 10 8 3 3 Glass 80 42 90 64 Opaques 5 — 2 3 Pyroxene — — Tr — Radiolariane — 9 3 5 Silicoflagellates — 5 — — Spicules — 8 — 5 Zoolite — — Tr
				179			wt.%CaC03							



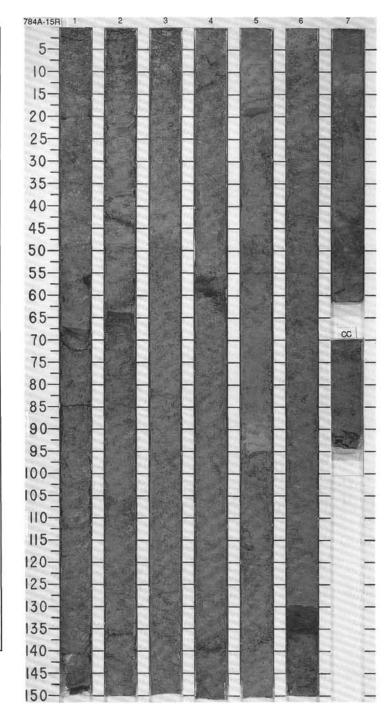
UNIT				ZONE/ RACTE	R	TIES				URB.	SES			
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION	
						-0-71.7		1				*	VITRIC ASH Major lithology: VITRIC ASH, predominantly gray (5Y 5/1) mortled and locally laminat dark greenish gray (5BG 4/1) and very dark greenish gray (10Y 3/1). Percentage of g the ash ranges from 60 to 89. Very dark gray to black (10YR 2/1) beds of glass-rich a present at 53-55 cm in Section 1, at 136-138 cm in Section 4, and at 129 cm in Section present at 28-29, 34-36, and 91-95 cm in Section 1, at 71 and 78-82 Section 2, at 29, 91, 135, and 140-142 cm in Section 3, and at 122-124, 128, 132, and in Section 5.Patches of dark brown (7.5YR 4/2) sand-sized material are present at 43 59, and 97-98 cm in Section 3.	lass in sh are on 5. cm in 1141
					Z	- 0-70.1	90.8	2		1 11111	=	*	SMEAR SLIDE SUMMARY (%): 1, 25 2, 70 2, 136 3, 44 3, 113 3, 140 4, D D D D D D D D D TEXTURE: Sand 5 90 10 70 20 30 15 Silt 75 10 70 20 70 60 75 Clay 20 — 20 10 10 10 10 10	
OCENE		CN12 P/B		Jonii		P-67.0	0.0	3				*	COMPOSITION: Clay 20 — 20 8 5 8 8 Diatoms 1 — 1 Tr 10 5 — Feldspar 5 5 5 3 15 5 10 Glass 69 89 66 84 60 72 75 Micrite — — 2 — — — Namofosis — — 2 — — — Namofosis 2 5 5 — — — —	
OFFER PLID				R. praebergonii	α	• P=66.0	0.0	4			•••	*	Pyroxene 1 Radiolarians 2 2 5 5 5 Seppentine - - Tr - - - Spicules 1 - 1 1 2 3 2 Zeolite - - Tr - - - -	
						. \$ 67.0	1.0	5		1	•••	IW		
	В			A/G			.%CaC03	6						

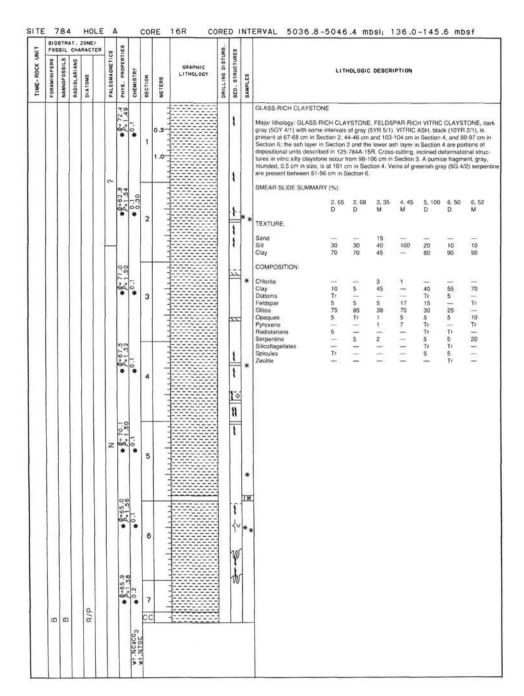
10000	FOS	SIL		ZONE/ RACTE	R	415					URB.	RES								
10000	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	DHYS PROPERTIES		SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES		LITHO	LOGIC I	DESCRIP	TION		
					c	0.69-0	0.1.51	1	0.5	2 1 2 N 1 2 N 2 N 1 N 1 N 1 N 1 N 1 N 1	A CONTRACTOR OF THE PARTY OF TH	•••	*	VITRIC SILTY SAND, VITRIC Major lithology: Slight change (n 4/), and dark greenish gray 2/1) VITRIC ASH occurs as is Section 1 and mixed with the laminations, bluish gray (58 5 80 cm in Section 3, at 99-101 cm in Section 4, and at 20-22 mottled black (10YR 2/1) at 7	s in gra (5Y 4/1 colated I silt and (1) and cm in 5 and 30	in size c i) VITRI lamination sand the dark greated dark greated dark greated dark greated dark greated dark greated	haracteriz C SILTY Sons and a roughout senish gra 1, 33, 63-7	SAND ar s a thin, the entire y (5Y 4/ 71, 81,90	nd VITRIO graded b e cored in 1) are pro), 94-97,	C SILT, Black (1 ed at 21-24 cm nterval, Local esent at 10 and 119, and 121-12
						7.	O)		1	"					%): 1, 24	1, 68 D	2, 119 D	3, 94 D	4, 50 D	5, 45 D
						■ Ø=72	0.1.49	2		2 N H			*	TEXTURE: Sand 4 Silt 4	40 40 20	20 60 20	20 70 10	10 20 70	10 60 30	 50 50
						0-66.7		3	dividing.	10 N = 11 2 N = 11 0 N H			*	Diatoms Feldspar Glass Micrite	30 	10 - 15 70 -	10 3 8 75	55 — 10 30 — 5	40 2 10 30 4 5	60
					α	€ 68.8	P=1.5	. 4		11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			*	Pyroxene Radiolarians Spicules Zeolite	3	Tr 1 —	2 2		3 6	<u> </u>
						72.7				=										
	æ	В		F/M	2	L-0-	0	5	1	N = N N = N N =			*							
							wr.%CaC0,	, X10c °												

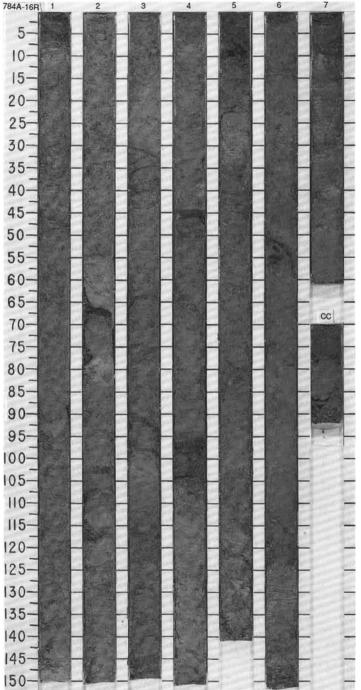


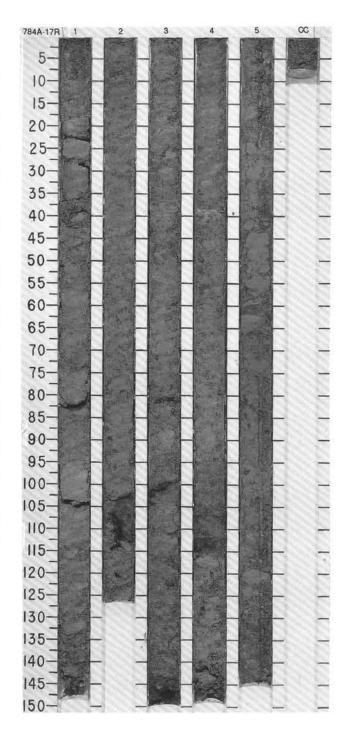

784A10R	1	2	3	4	CC	20910	784A-11R	ccl
5-							5-	
10-							10-	_
15-					1.4		15-	M -
20-							20-	
25-							25-	
30-			No.				30-	_
35-						-	35-	-
40-						4	40-	_
45-						-	45-	_
50-					_	-	50-	_
55-					_	4	55-	_
60-					_	-	60-	
65-					_	_	65-	_
70-					_	-	70-	<u> </u>
75—						-	75-	-
80-			- BEE		_	-	80-	
85-					-	-	85-	_
90-					-	-	90-	_
95-						-	95-	_
100-		-		4		-	100-	_
105-					-	-	105-	_
110-						-	110-	
115_						-	115-	-
120-	3-	-				-	120-	_
125	_					-	125-	
130-						-	130-	-
135—						-	135-	
140					_	-	140-	-
145						-	145-	-
150-	_	TOTAL STATE OF			-	-	150-	

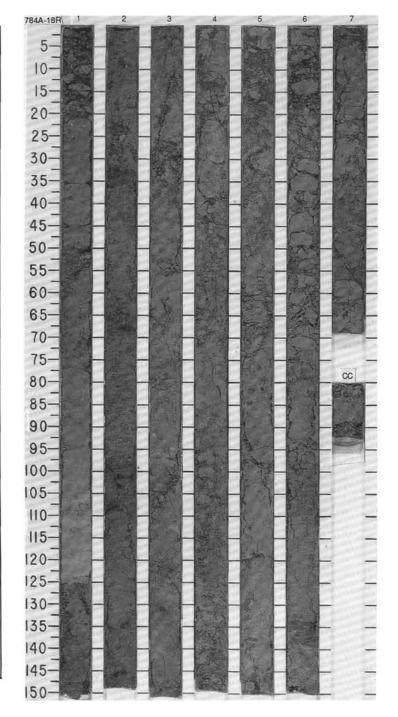
UNIT				ZONE/ RACTE	R o	ES					88.	83		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
				jouseae	4	3.9	•	1	0.5]			GLASS-RICH SILTY CLAYSTONE Major lithology: GLASS-RICH SILTY CLAYSTONE, dominantly gray (5Y 5/1) to dark gray (5Y 4/1) motited with dark greenish gray (5GY 4/1) and black (1-YR 2/1). Faimt, black (10YR 2/1), dark greenish gray (5G 4/1), and light greenish gray (5G 4/1) laminations occur throughout the cored interval. Graded beds with sharp bases and laminated tops are present at 70-72 and 64-66 cm in Section 2. SMEAR SLIDE SUMMARY (%): CC. 7 D
LOWER PLIOCENE	8	В		F/P N. jou		- Q-13	00	2 CC				***		TEXTURE: Sand — Sit #00 Clay #60 COMPOSITION: Chlorile 1 Clay 70 Feldspar 3 Glass 15 Opaques 2 Radiolarians 2 Serpentine 3 Spicules 4

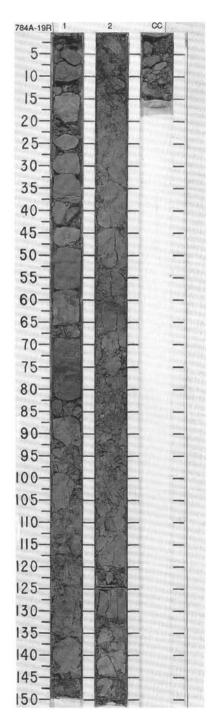

				RACTE	R w	ES					RB.	es la		
Company of the Compan	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
Ï	Г				0		00.1	1			!			GLASS-RICH SILTY CLAYSTONE
	В	В		F/P		0.08		cc			3			Major ithology: GLASS-RICH SILTY CLAYSTONE, dark greenish (5GY 4/1) with loca laminations with sharp bases and from 35 to 25 cm in Section 1. The core is otherwise monotonous.
							wt.%CaC03							



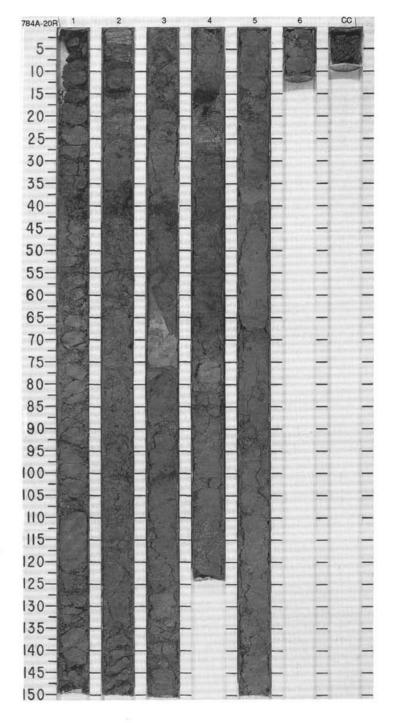

1	os	SIL	CHA	RACT	SO	TIES					URB.	RES						
	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	L	LITHO	LOGIC	DESCRI	PTION
						P=67.4	8.0	1	0.5	# # # # # # # # # # # # # # # # # # #	the second of th	<u>.</u>	*	(10YR 5/1) to dark gray (10YR 4/1) light brownish gray (10YR 6/2) wintervals often with laminations, 0-3 and 3-7.5 cm in Section CC, dark gray (10YR 2/1) occur from	LAYS 4/1). (with sl are p). Fine n 53-8	Graded that harp low resent for ly lamination of 55 cm in a Section	pasal lay ver conta rom 0-55 ated inte Section o CC. VI	SS-RICH SILTY CLAYSTONE, gray ers often very pale brown (10YR 8/3) cts, transitional upwards into less con is nection 1, 90-96 cm in Section rvals of dark greenish gray (5G 4/1), 1, 30-39 cm in Section 3, 45-60 cm a TRIC ASH is present at 64 cm Sectio occurs at 29 cm Section 1.
							0.1	2	The second second				*	SMEAR SLIDE SUMMARY (%): 1, 6 M TEXTURE: Silt 90 Clay 10	64	1, 100 D 35 65	2, 18 M 40 60	CC, 7 M
						•	0.1	3					og	COMPOSITION: Chlorite		1 65 Tr 1 7 13 2 Tr	2 60 Tr - 9 20 5 2 2 Tr	2 8 -
						• p=44.5	0.1	4						Siderite — Spicules —		2	ä	90 —
4	В	В		R/P	٢	Ø=68.5	#1.%CaC03 • 0.1	5 CC				1.	*					

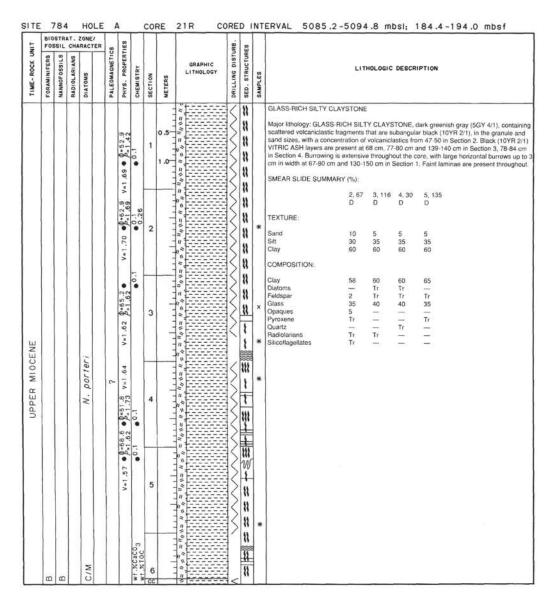

	FOS	STR	CHA	ZONE/			E CO	1				RB.	On Live		
STATE OF THE PARTY	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	DAI FORMACHETICS	The state of the s	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
						-0-72.2	P-1.45	•	1	0.5		:		*	GLASS-RICH SILTY CLAYSTONE and VITRIC ASH Major lithology. GLASS-RICH SILTY CLAYSTONE, dark gray (5CY 4/1) with some mottlin of (2.59 S.0) VITRIC ASH, black (10YR 2/1), occurs without distinct sedimentary structure from 67-69 cm in Section 1, 83-86 cm in Section 2, 3-66 cm in Section 3, 5-60 cm in Section 4, 18-20 cm and 95-96 cm in Section 5, and 130-136 cm and 128-130 cm in Section 5, and Sections 5 and 6 this sain occurs as laminated basal members of distinct depositional units defined by gradational upward changes in cotor, textural and burrowing. Cross-bedded cla layers of VITRIC ASH are distinctive from 36-36 cm and 48-50 cm in Section 2.4 white, subangular purice tragment, 0.5 cm in diameter, is present at 30 cm in Section 6. Section contains fittified worm burrows with sidefite which occur from 20-40 cm.
						-0-71.8	P-1.45	0.33	2	7"	===		1	*	SMEAR SLIDE SUMMARY (%): 1, 68
										1 = 0 1 1 2 1 = 0 1 1			Ī	*	TEXTURE: Sand 65 70 — 80 — Silt 5 25 30 10 100 Clay 30 5 70 10 — COMPOSITION:
						6.99=6	P-1.52		3	" " " " " " " " " " " " " " " " " " " "			1		Chlorite — 1 — Tr Clay 30 8 68 10 3 Diatoms — 1 1 Tr Feldspar 3 10 8 9 6 Glass 64 75 15 68 90 Opaques — 2 1 5 — Pyroxane Tr 5 2 6 1
					a	-0-72.6	P-1.45		4	" " " " " " " " " " " " " " " " " " "			1 1	*	Radolarians 2 — 2 1 Tr Silicoflagellates Tr — — — Spicules 1 — 2 — —
						-0.81.2	P. 1.51		5	11 = 1 = 1 1 1 1 1 1 1 1			1	*	
						89.68	P-1.57	•	6	- H = W H = 0 = H = W I			0		
						0.68.3	P.1.53	-	7						
	В	æ		R/M			00000	wt.%Toc 3	cc	-11	<u></u>				

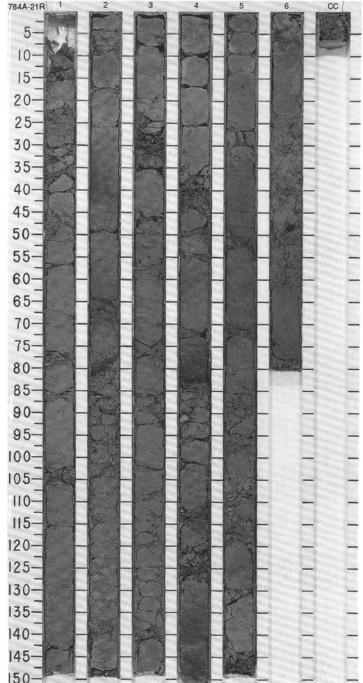


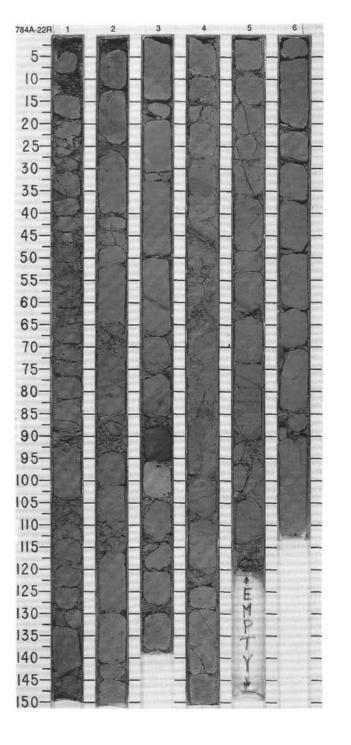


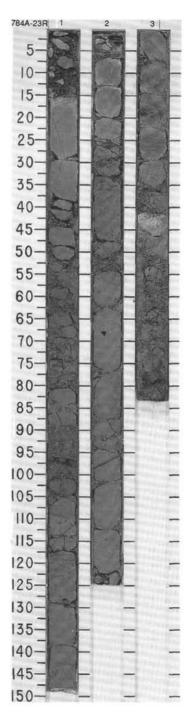
	FOS	SIL	CHA	ZONE/ RACTER	S	STIES					TURB.	RES		
IIIII- NOON	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS, PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
						69.5	0.1	1	0.5	1	ーンノエエエノノノ	*******		GLASS-RICH CLAY Major lithology: GLASS-RICH CLAY, dark gray (5GY 4/1), with black (2.5YR 2/1) VITRIC ASH at 102-114 cm in Section 2, 80-81 cm and 143-150 cm in Section 3, 38-39 cm and 115 cm in Section 4, and 59-82 cm in Section 5. A light gray (2.5Y 8/0) vitric ash is prese from 139-140 cm in Section 4. SMEAR SLIDE SUMMARY (%): 2, 50 2, 112 3, 101 4, 38
						-0*66.2	0.2			11 11 11 11 11 11 11 11 11 11 11 11 11	,	1	*	D M M M TEXTURE: Sand 5 90 90 90 Silt 20 10 10 10 Clay 75 — — COMPOSITION:
					z	• Ø=68.0	0.2	3			-	1	* og	Chilada
						00 0 0 0 0 0 0 0 0	0.5	4					*	
					0	•	0.2	5				=		

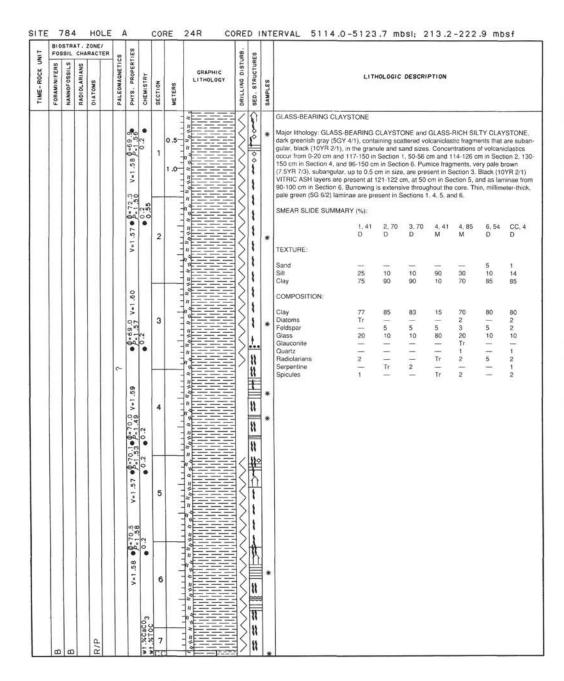


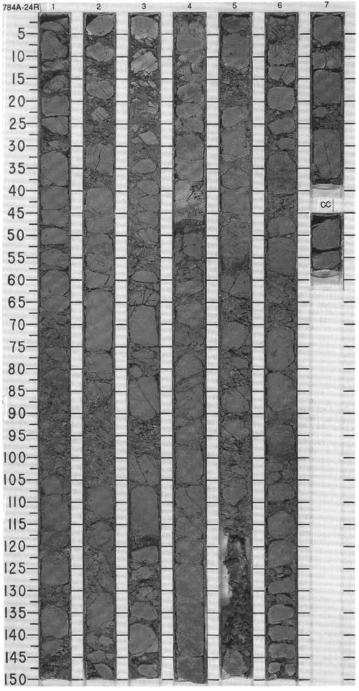



- NO				ONE/	R on	ES					RB.	S		
TIME-ROCK UP	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
						9 -61.4	0.0	1	0.5		エイイナー	1111111-		VITRIC SILTY CLAYSTONE Major lithology: VITRIC SILTY CLAYSTONE, dark greenish gray (5GY 4/1), containing scattered volcaniclastic fragments that are subangular, black (10YR 2/1), in the granule an sand sizes. Intervals of particular concentration of these volcaniclastics occur from 8-10 cn 55-61 cm, 68-87 cm in Section 1, and 0-16 cm and 60-81 cm in Section 2. SMEAR SLIDE SUMMARY (%): 2, 50 D
	В	В		T/P	N	V=1.67 - 0-56.8	•	2	-		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		*	TEXTURE: Silt 30 Clay 70 COMPOSITION: Clay 45 Diatoms 5 Feldspar 5 Glass 30 Pyroxene Tr Radiolarians 5 Sillcoflagellates Tr Spicules 10

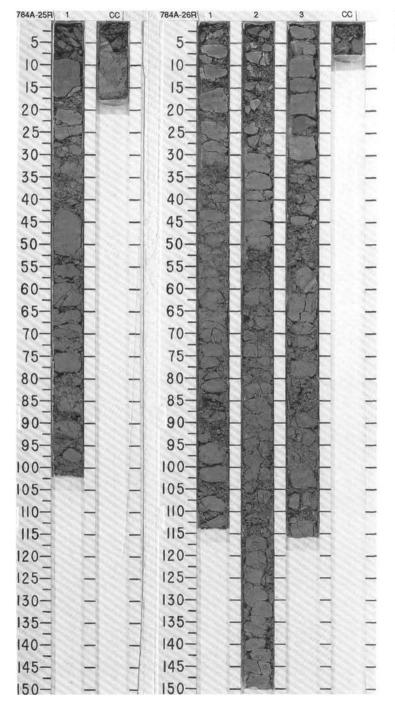

	FOS	SIL	СНА	RACTE	R	SS	TIES					rune.	RES									
-	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS			PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES		LITH	OLOGIC	DESCRI	PTION			
							P=03.1 V=1.6	1.00	1	0.5		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	 ***	*	GLASS-RICH SILTY CLAY Major lithology: GLASS-RIC scattered volcaniclastic frage sand sizes. Intervals of part Section 1, 39-43 cm in Secti (10VR 2/1), graded VITRIC very pale brown (10VR 7/3) extensive throughout the col SMEAR SLIDE SUMMARY	ments the cular co on 3, ar ASH lay pumice re.	nat are su ncentration d 28-42 of ers 0.5 to	bangula on of the om and 8 o 3 cm th	r, black (se volcar 31-106 cr ick are p	10YR 2/1 niclastics n in Secti resent. G), in the occur fro occur fro on 4. Ser ranule-si	pranule ar m 0-30 cr veral blac zed, angu
							5.5		2	1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		>	+	*	TEXTURE:	1, 9 D	1, 116 D	2. 29 D	3, 73 D	3, 131 D	4, 24 M	5, 57 D
							9	00.0				3	* * *		Sand Silt Clay COMPOSITION:	50 40	70 20	30 60	60 10	30 40	40 40	70 20
					2	Z	P.1.59	0.1	3	= " = " = " "			1/1	*	Clay Diatoms Feldspar Garnet Glass Opaques Pyroxene Quartz	60 Tr — 37 3	60 Tr Tr Tr 35 5 Tr	40 - 4 - 52 - 2	5 	40 Tr 3 — 50 5 Tr 2	40 Tr 60 Tr Tr	18 2 2 — 66 —
							- P=00.1	0.0.1	4	= " = " = 0" =		3	***	*	Radiolarians Spicules	Tr Tr	Tr Tr	2	Tr Tr	Tr Tr	Tr	10 2
										7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3	55	og								
					3	2	P=65.1	•	5			3		*								
	8	В		R/P				wt.%CaC03	6 CC			3	1									

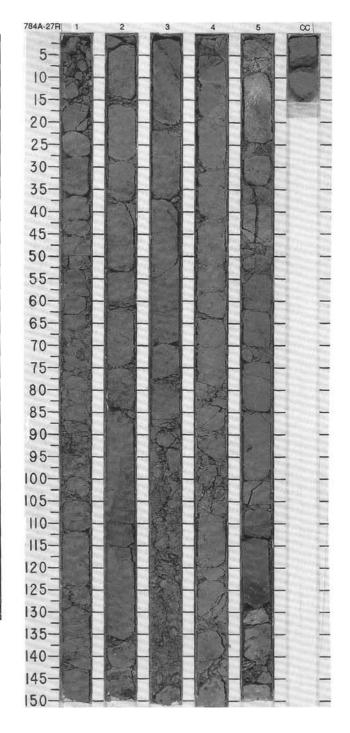




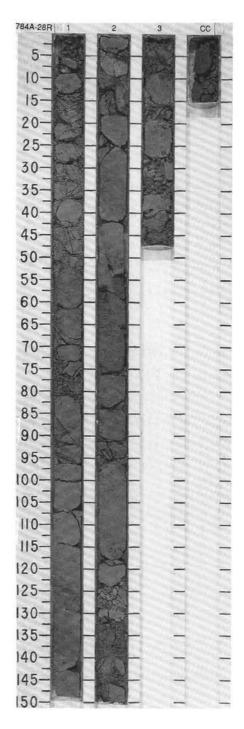

-				ONE/		60	Г					-		
TIME-ROCK UNIT	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
						V=1.58 • 0=69.2	0.1.0	1	0.5			** ** **	*	GLASS-RICH SILTY CLAYSTONE Major lithology: GLASS-RICH SILTY CLAYSTONE and GLASS-RICH CLAYEY SILTSTONE dark greenish gray (5GY 4/1), containing scattered volcaniclastic fragments that are subang in, black (1078 2/1), in the granule and sand sizes. Concentrations of volcaniclastics occur from 110-150 cm in Section 1 and 99-112 cm in Section 5. A black (107R 2/1), graded VITRIC ASH layer is present at 56 cm in Section 3. Pumice fragments, very pale brown (107R 7/3), subangular to subrounded, are scattered from 133-134 cm in Section 2 and throughout Section 6. Extensive burrowing occurs through Section 5. A few laminae are also present, often with apparent dips of about 45°. SMEAR SLIDE SUMMARY (%):
						.58 • Ø=67.7	0.5	2	-	1	3	*****	*	TEXTURE: Sand 10 5 5 5 5 5 5 5 5 5 5 6 Clay 40 70 20 80 80
MIOCENE				ibei	2	.57 00=69.6	0.0.5	3	-			***	TS *	COMPOSITION: Clay 71 70 20 80 80 Diatoms Tr — Tr — Feldspar 5 — 10 — Glass 20 30 60 20 20 Opaques Tr — 10 — Pyroxene 2 — — Quartz 2 — — — Radolarians Tr Tr — Tr — Spicules Tr — —
UPPER M				C. yab		.57. 0.58.4 Val		4	3		<	22 22 22 22 22	*	Spicules Tr — — —
						V=1.56 00-58.1 V=1	0.1	5				**	*	
	8	8		C/M		V=1.59 • 8-67.2		6	Transfer de	# # # # # # # # # # # # # # # # # # #	3	0000		
							wt.%CaCO3	W						9

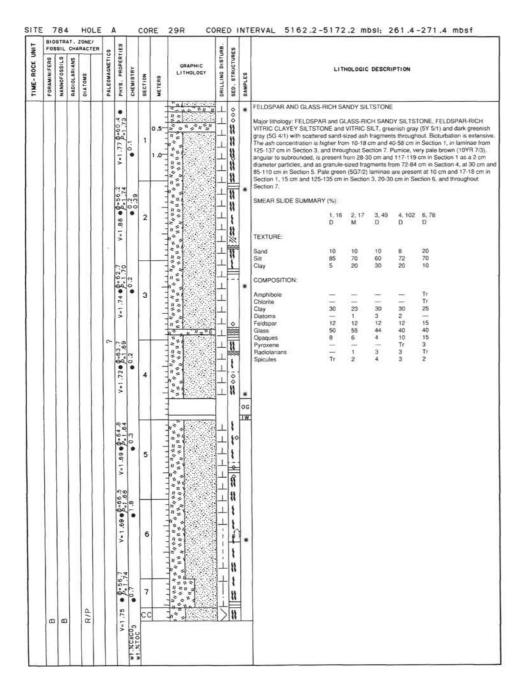
LIND				ZONE RACT	9	IES					IRB.	ES		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
						P=63.7 v=1.62	0.01	1	0.5		NVV-F000	1 22	*	GLASS-RICH SILTY CLAYSTONE Major lithology: GLASS-RICH SILTY CLAYSTONE, greenish gray (5Y 5/1 and 5GY 5/1), Laminae of dark greenish gray (5G 5/1) are present in Sections 1 and 2; a wavy, white (5Y 8/1) lamina of CLAYEY UTRIC ASH occurs from 40-46 cm in Section 3. Burrowing is extensive throughout the core. SMEAR SLIDE SUMMARY (%): 1, 119 2, 14 3, 42
						•	0.67	2			3	## 1°	*	M D M TEXTURE: Sand — — — — — — — — — — — — — — — — — — —
	В	æ		T/P		•	wt.%CaC03	3			<u> </u>	**	*	Feldspar 5 10

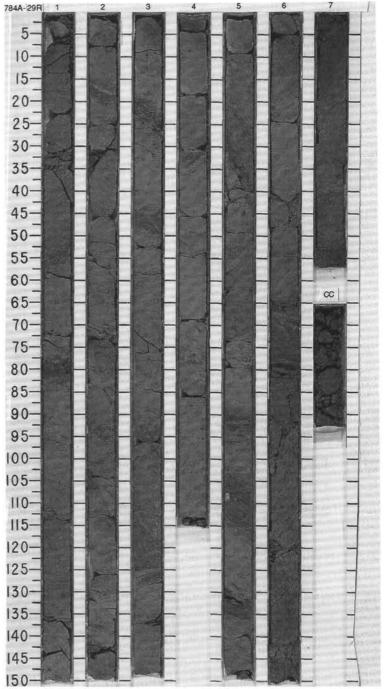


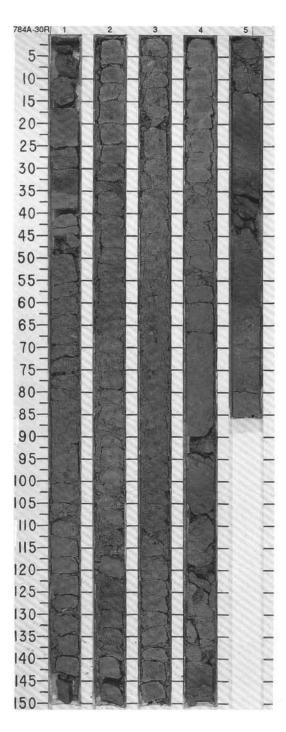


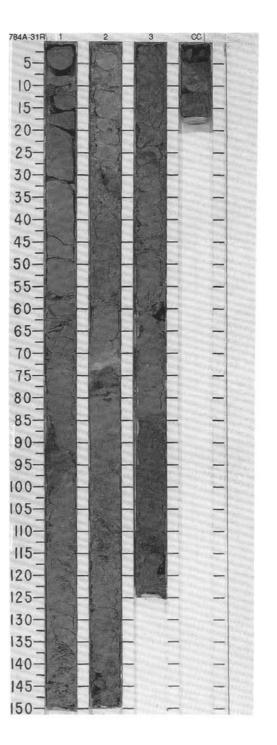
UNIT				RAC	çņ.	831					RB.	ES		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
	В	8		R/P	6	V=1.63 • \$2.1.60		CC				11 11	*	GLASS-BEARING CLAYSTONE Major lithology: GLASS-BEARING CLAYSTONE, greenish gray (5Y 5/1), containing scaltered sand-sized volcaniclastic fragments that are subangular, black (10YR 2/1), with a concentration of volcaniclastics from 92-93 in Section 1, Burrowing is extensive throughout the core. SMEAR SLIDE SUMMARY (%): 1, 48 D TEXTURE: Sand Silt 20 Clay 80 COMPOSITION: Clay 82 Glass 10 Radiolarians 5 Spicules 3

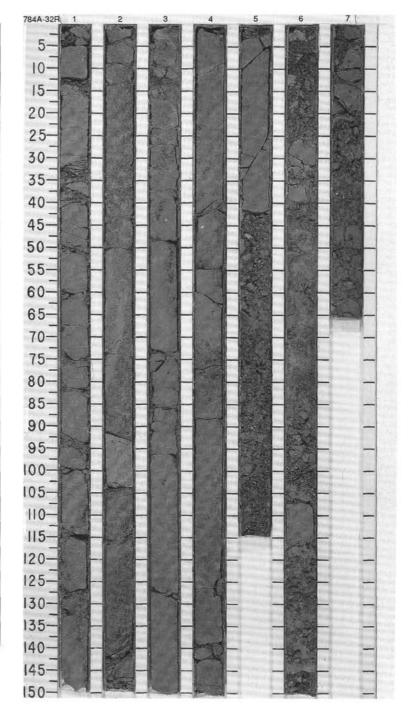

TINO				ONE/	R	07	ES					RB.	90		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS			PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
							● P=72.1 v=1.57	• 0.2	1	0.5		333	1 1	*	GLASS-BEARING CLAYSTONE Major lithology: GLASS-BEARING CLAYSTONE and CLAYSTONE, greenish gray (5Y 5/1), with volcariclastic laminase at 30 cm and 80 cm in Section 1, 135 cm in Section 2, and 14 cn and 30 cm in Section 3. Burrowing is extensive throughout the core. SMEAR SLIDE SUMMARY (%):
								. 1						OG	D D
MIDDLE MIDCENE				C. gigas var. diorama			V=1.59 • 6:1=V	0.1	2			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	*****	*	TEXTURE: Sand — 3 Silt 10 10 Clay 90 87 COMPOSITION: Clay 70 34 Diatoms — 1 Feldspar 5 3 Glass 15 — Glass 15 Micratle — 60 Radiolarians 5 2 Spicules 5 —
	8	8		R/P C				wt.%caco3	3			3	1		-

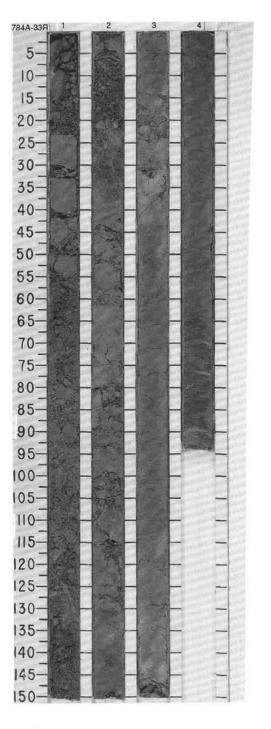


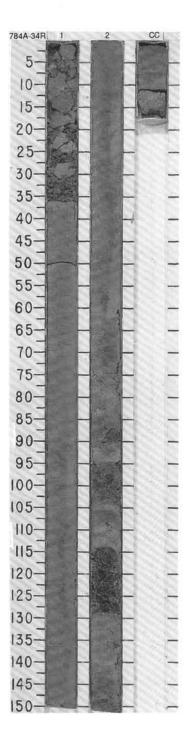

	co	-	Citia	RAC	e.n	S	=						URB	SES		
1	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPH LITHOL		DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
										-	= "	:::::	<	11		VITRIC SILT
							P=63.3		1	-			3	**	*	Major lithology: VITRIC SILT, VITRIC ASH and DIATOM-BEARING VITRIC ASH, gre gray (5Y 5/1). The core is extensively bioturbated. Ash concentration is higher from 12 cm in Section 5. Pumice fragments, very pale brown (10YR 7/3), angular to subround granule-sized, are present at 50 cm and 140 cm in Section 4, and 31-35 cm in Section
							90	0		1.0	" " " " " " " " " " " " " " " " " " "		2	11		SMEAR SLIDE SUMMARY (%):
							.66	•		=	11111		<	11		1,59 2,9 3,147 4,113 5,10 D D D D M
							/= \ 			-	"= "		<	11	*	
]	11111		<	11		TEXTURE:
1						1	NO				1 = 11		<			Sand — — 90 10 10 Sitt 10 5 9 60 70
-							52.	0.4	2	1	1 = 1		<	*		Clay 90 95 1 30 20
							•	•		-	1 = 1 1 1 1 1 1 1 1 1		5	**		COMPOSITION:
							73		l II	1 3	= 411		5	11		Clay — 10 26 34
1										-	= 11 11 11		<	*		Diatoms 5 5 Tr 4 1
1							>			1	3 2 1		<	*		Feldspar 5 2 2 9 6 Glass 88 93 88 45 50
1							200			1 2	11=11		1			Opaques 1 Tr — 5 5
1					2		Ø=57.5	-	3	1	"" =		2	11		Pyroxene — Tr — — Radiolarians 1 Tr Tr 6 2
					9		90		3		= 11	::-::	>	11		Spicules Tr Tr Tr 4 2
					diorama	П	94.			=		•::•	>	11		
					101		1.7		1 8	7	11 = 11		5	11		
				10	D		V=1			3	" =	::·::	5	٥.	*	
		0.9	П		Var	C	0.10			ä	= "	::-::	5			
1		1					B-65.0	2	10	1 3		•:::•	<	1		
	. ()				gigas		90	.00	000	-	11 11		<	0		
			19		gi		19.		4	1 5	11 2	::-::	2	1		
		Ш			ů.					1 975	S	:::::	>	1		
1							>			1		::		1	*	
1										1 3	= = 1		5	0		
										-	111111111111111111111111111111111111111	::-::	5	11/	* TS	
1													<	-	TS	
1							\$-63.8 P=1.61			1 _	1 = 11	:	<	1		
							9-6	0.2	5	-	######################################	::·::	1	1		
1						b (•		2	"= "		2	1		
1		l					69.			-	11 2 -	71	1>			
				۵.			V=1.6			1 3	" " " " " " " " " " " " " " " " " " "			1		
	В	В		N.		-	>	1 3	CC			11	5			
	-												-			
						1 1										
								W1.%CaC03								
								SC3								
								55								

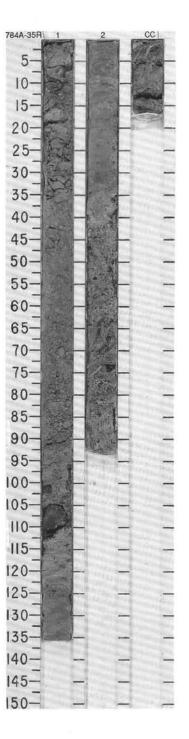

Composition					ONE/	8 00	IES					IRB.	ES					
Major lithology: VITRIC SILT. VITRIC ASH and VITRIC CLAYEY SILT. greeni and dark greenish gray (5G 4/1) with scattered sand-sized ash fragments thro Bioturbation is extensive. The ash concentration is higher from 94-96 cm in St 132-141 cm in Section 2. Pale green (5G 7/2) laminae occur from 133-136 cm and 128-129 cm in Section 2. SMEAR SLIDE SUMMARY (%): TEXTURE:	FORAMINIFERS		NAMNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETIC	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS		DRILLING DISTURB	SED. STRUCTURES	SAMPLES		LITT	40LOGIC	DESCRIPTION
Major lithology: VITRIC SILT, VITRIC ASH and VITRIC CLAYEY SILT, greeniand dark greenish gray (556 41) with scattered sand-sized ash fragments through the state of sand-sized ash fragments through the state of sand-sized sand-sized ash fragments through the state of sand-sized sand-siz	1	T				T	0			-	2	1	11	*	VITRIC SILT			
TEXTURE: 1, 11 2, 72 3, 37 D D D TEXTURE: TEXTURE: Sand 20 5 6 Salt 70 75 54 Clay 10 20 40 COMPOSITION: Clay 15 30 33 Diatoms 1 1 2 Feldspar 1 8 8 Fe							0-66.0 V=1	0.2	1	1	10 H H H H H H H H H H H H H H H H H H H	V V V V V V V V V V V V V V	1		and dark greenish gray Bioturbation is extensive 132-141 cm in Section 2 and 128-129 cm in Sect	(5G 4/1) wi e. The ash o 2. Pale gree tion 2.	th scatter concentra	ed sand-sized ash fragments throughout. ation is higher from 94-96 cm in Section 1 and
TEXTURE: TEXTURE: TEXTURE: To solve the second s		1					12			1 3	"	1	55			1, 11	2, 72	3. 37
TEXTURE: Sand 20 5 6 Salt 70 75 54 Clay 10 20 40 COMPOSITION: Clay 15 30 33 Diatoms 1 1 2 Feldspar 1 8 8 Glass 31 52 45 Opaques — 5 6 Pyroxene — Tr Radiolarians 1 2 3 Spicules 1 2 3	1	1					-			-	"*	1					D	
Clay 10 20 40 COMPOSITION: Clay 15 30 33 Diatoms 1 1 2 Feldspar 1 8 8 Glass 81 52 45 Opaques — 5 6 Pyroxene Radiolarians 1 2 3 Spicules 1 2 3		ļ	-		-	1			1	1 3	"		-		TEXTURE:			
Clay 10 20 40 COMPOSITION: Clay 15 30 33 Diamon 1 1 2 Feldspar 1 8 8 Glass 81 52 45 Opaques — 5 6 Pyroxene — Tr Radiolarians 1 2 3 Spicules 1 2 3							22	a	,	1	y ======				Sand	20		
Clay 10 20 40 COMPOSITION: Clay 15 30 33 Diatoms 1 1 2 Feldspar 1 8 8 Glass 81 52 45 Opaques — 5 6 Pyroxene Radiolarians 1 2 3 Spicules 1 2 3	100	1				0	90	4	2	1 3	*	1	Ŧ	*				
Clay 15 30 33 Diatoms 1 1 2 Septidopar 1 1 1 1 1 2 Septidopar 1 1 1 1 2 Septidopar 1 1 1 2 Septidopar 1 1 1 1 1 2 Septidopar 1 1 1 1 1 2 Septidopar 1 1 1		1					•	•		1 3	"====	<						
Clay 15 30 33 Diatoms 1 1 2 Feldspar 1 8 8 Grand 1 8 8		1	-				_			1		<	•		COMPOSITION:			
G. C.		1				1		2		- 3	"	<			Clav	15	30	33
© © © O O O O O O O O O O O O O O O O O		1	- 1	1	12		60	5		-	*====	1	11		Diatoms	1	1	2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1		.		1			3	1)	1					
Pyroxene		1			0	1	00	1	1	1 7	"	<	1	*		200		
Spicules 1 2 3	m	1	m		œ	1	0		CC		" F - · ·	2	11			_		
Spicules 1 2 3		1				1	1.	1	1							-		
		1	- (1	1											
W1.XC@C03	ľ	1	-			1												
X 1× X								Saco3										
								× ×	1									
			1	H				* 3	*									
		1	1	9 7		1		1										
			- (Н		1												
						1												

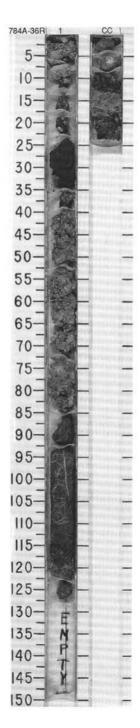


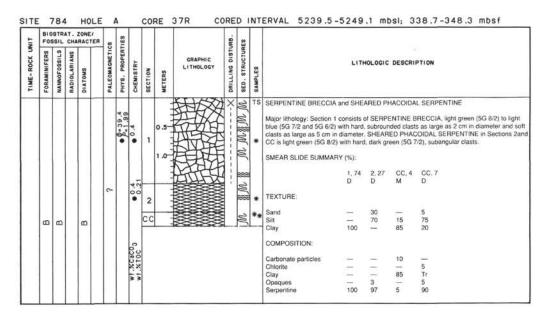

			ZONE/	Я	9	LES					URB.	SES			
FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOL	OGIC DESCRIPTION
						772	• 1.0	1	0.5		111 111	* * * * * * *		gray (5Y 4/1), containing scattered volk 2/1), in the granule and sand sizes. Co 45-90 cm in Section 1, 30-65 cm and 1 in Section 4, and 16-24 cm and 32-61	CLAYSTONE, dark greenish gray (5Y 5/1) and green caniclastic fragments that are subangular, black (10 nocentrations of volcaniclastics occur from 0-35 cm 110-115 cm in Section 2, 115-120 cm and 144-151 cm in Section 5. Pumice fragments are present from 4, and from 61-76 cm in Section 5; this pumice is y pale brown (10YR 7/3).
					A-61 7	P-1.61	● 0.0 6.4	2				* * * * * * *	* TS	2,100 5 D N	
						P=00.4	• 0.2	3				* * * * * * *		Clay 81 — Feldspar 2 —	
						V=1.78 \$ 52.0	•	4	- Conference			# # # #			
В	В		മ			V=1.76 • \$=57.9	•	5				1	*		
							*1.%CaC03								


TINO	FOS	SIL	CHA	ZONE/ RACTE	R	TIES					DISTURB.	RES					
TIME-ROCK	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PAI FOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTURES	SAMPLES	Lith	40L0GIC	DESCRI	PTION
				В		V=1.84 8-63.20	0.2	1	0.5		// 444/	***	*	gray (5Y 4/1), containing scattered 2/1), in the granule and sand sizes. Section 1, from 8-11 cm and 140-1: 125 cm in Section 3, Pumice tragm	volcanich Concen 50 cm in ents are	astic frag trations o Section 2 present a	k greenish gray (5Y 5/1) and greenish ments that are subangular, black (10Y I volcaniclastics occur from 91-107 cm , from 0+13 cm, and 24-30 cm and 83- t 38-40 cm in Section 1 and at 28-57 c lar to rounded, 1 mm to 1 cm in diame
				dioram		me					1	11	*	1, 40	2, 20 D	2, 71	2, 77
				gigas var. di	c		0.0	2			44444	# 1 8000		D TEXTURE: Sand — Silt 25 Clay 75	15 85	M 100	50 40 10
DDLE MIDGENE				C. 9		● Q=59.5 V=1.75	0.2	3			エエエンシン	w w w		COMPOSITION: Amphibole Tr Chlorite Tr Clay 81 Diatoms Tr Feldspar 3 Glass 11 Opaques 2	Tr — 87 — 2 8 1		10 9 78
W	В	8		R/P			wt.%CaCO3	CC			2	NOT .	•	Pyroxene Tr Radiolarians 2 Spicules —	Tr Tr 1		3

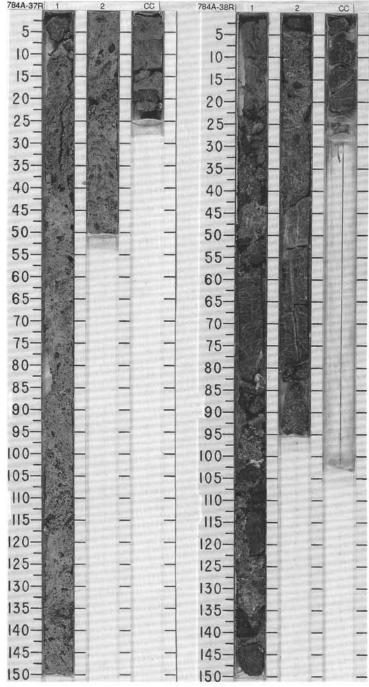

UNIT	BIO FO	OSTR	AT.	ZONE	ER	9	S3I					. 88	8		
TIME-ROCK UP	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
						1	V=1.75 • \$=62.8	0.2	1	0.5			一一新安郊	•	VITRIC CLAYSTONE Major lithology: VITRIC CLAYSTONE, olive gray (5Y 5/2) to greenish gray (5Y 5/2), biotur bated. Water-escape structures are present at 55-95 and 140-150 cm in Section 1., at 45-7 cm in Section 2, at 0-80 cm in Section 3, and sat 12-18 cm in Section 5. These structures a distinctive because they do not contain any ash. Ash is incorporated into the rest of the sediment in varying amounts, Distinct clastic layers are present in Section 2 at 103-104, 101-117, and 141-142 cm. Very pale brown (10YR 7/3), rounded to subangular, scattered, loca mm to 3 cm in diameter, punior fragments are present at 100-150 in Section 3 and at 45, 71-72, 120-122, and 147 cm in Section 4.
							• Ø=65.5	0.42	2	and bear learn			多りの人		SMEAR SLIDE SUMMARY (%): 1, 20 4, 70 5, 30 D M D TEXTURE: Sand — 100 — Sit 10 — 20 Clay 90 — 80
							V=1.79 . 0=64.0		3				1 1 1 2 2 3		COMPOSITION: Chlorite 1 — Tr Clay 93 Tr 78 Diatoms Tr — Tr Feldspar 3 1 2 Glass — 98 10 Opaques 1 — 1 Pyroxene Tr 1 — Radiolarians 1 — 2 Serpentine — 4
							V=1.82 - 8=65.3		4				多川 美川 ル	*	Sergentine — 4 Spicules 1 — 1
							V=1.74 • \$=67.7	0.2	5			<	11c	*	2
						- 11	.9 -0-70.7		6			>> + > +	1 1	IW	
							P 70.9	• 0.2	7			T > T	1		
	8							WT.XCaCO3							


	FOS	SIL	СНА	ONE/	801	RTIES					DISTURB.	IRES									
- Harris	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DIS	SED. STRUCTURES	SAMPLES		LITH	OLOGIC	DESCRI	PTION			
						P=71.9	0.2.0	1	0.5		ノイエく	1 1	*	CLAYSTONE Major lithology: CLAYSTON present in Section 1 from 2/ are present in Section 3 and (2.5Y 5/2) layer at 89-93 in SMEAR SLIDE SUMMARY	0 to 60 c d 4. Vitri Section	m. Irregu c-bearing	lar pale o	reen (5	G 6/2) spo	ts and to	amination
									- 3		3				1, 35 D	2, 135 D	2, 136 M	3, 5 D	3, 140 D	4, 5 D	4, 45 D
									- 5		>			TEXTURE:							
					1			2	-		1			Silt Clay	9 91	2 98	4 96	3 97	100	1	100
						\$=63.1 \$=1.73	.30	2			4			COMPOSITION:							11.50
١						•	•	H	1 2		1	0		Amphibole	-	-	Tr	_		-	-
									1 5		1	9	*	Clay Feldspar	91	98 Tr	96 2	98	100 Tr	99 Tr	100 Tr
									-		1:		*	Glass	3		2	-	Tr	Tr	
							0		1 3		1			Opaques	-	=	-	-	-	1	Ξ
					0	1			1 3		1		1	Pyroxene Serpentine	3	2	Tr	-	-	-	_
						53.9		3	-					SMEAR SLIDE SUMMARY	17.5	2		1	· ==	-	.775
									-						4, 90 M						
									3				*	TEXTURE:							
						· \$-62.2			1		1			Sand							
						19	0	1	1 3					Silt	10						
							•		-				*	Clay	90						
								4	1				*	COMPOSITION:							
														Clay	90						
		1				1	000	1						Feldspar Glass	3						
							wt.%CaCO3							Gld5S	7						
	8	В		8			* *														

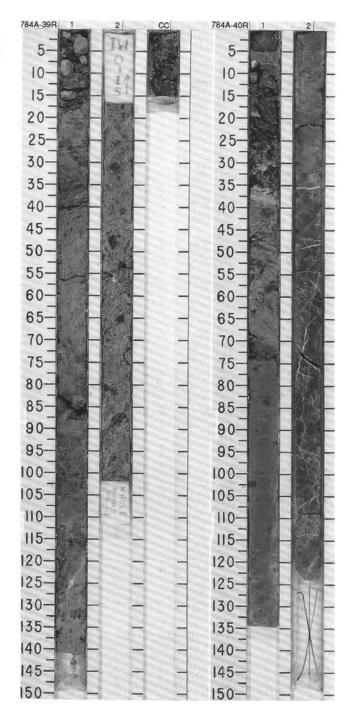

-				ZONE RACI		on	1.58					JRB.	80									
-	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES		LITH	OLOGIC	DESCRI	PTION			
												X			CLAYSTONE, SILT-SIZE	D SERPE	NTINE					
No. of the second							7 P=1.91		1	1.0		×	0 705	*	Major lithology: CLAYSTO SERPENTINE, pale greer and dark blue gray (58 4/ 2 and between 0 and 11 c tions. Serpentinized ultrar Section 2.	n (5GY 6/2 1). Serpen im in Sect natic clast) to dust tine unit on CC.	ky yellow s are pres They exhi	green (50 sent betw bit sheare	BY 5/2) to seen 87 ar ad texture	bluish go nd 128 cm as and wa	ray (5B 5/1) n in Section ivy lamina-
- 0							41.	N	_	-						at a constant						
					1	۲,	· \$-54.1	0.0								1, 100 D	2, 92 D	2, 98 D	2, 110 D	2, 125 D	2, 125 M	D D
									2	-					TEXTURE:							
-1				4 (- 1	- 1			4	0 9				TS	Sand	-	-	30	-	10	100	
		9 1			- 1				(********			*	Silt	2	100	70	100	90	_	-
ı								0		1			***	*	Clay	98	-	-	-		577.5	100
								%CaC03						*	COMPOSITION:							
					- 1			20	CC					IW	Clay	98	_	_	_	-		100
1	8	α		0				* *	CC				***	**	Dolomite	_	1	_		_	_	
1															Feldspar	1	-	-	-		-	Tr
١		0.9		. 1	- 1	. 1		0.3	1						Glass	1	-	-	-	-	-	1
1															Opaques	-	-	-	2	15		-
Ï				9 1	- 1										Serpentine	Te	99	100	98	85	100	Tr
						-))									SMEAR SLIDE SUMMAR	Y (%);						
																CC, 13 M						
															TEXTURE:	100						
															COMPOSITION:							
															6	1521						
															Opaques Serpentine	99						

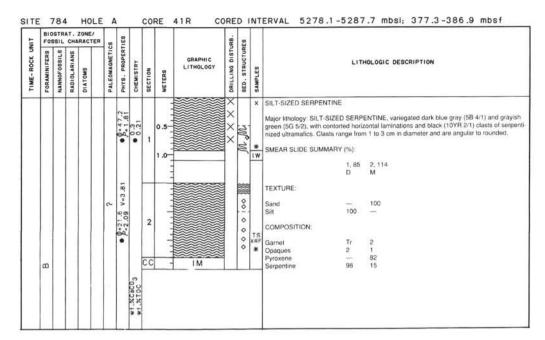


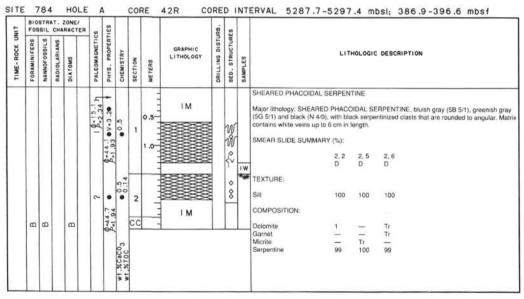
				RACT	E0	99	IES					JRB.	83									
	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES		LITE	OLOGIC	DESCR	PTION			
							\$=43.9 \$=1.98	8.1.8	1	0.5		~~~	•	*	SERPENTINE-BEARING Major lithology: SERPEN' interbedded with SILT-Siz gray (56 5/2). Serpentine layers, often with small, u shades of green, blue, an SMEAR SLIDE SUMMAR	TINE-BEA ED SERI texture is sually blad d gray.	RING CL PENTINE characte	AYSTO predon	NE, predo ninantly b wavy lan	ominantly luish gray ninations	brown (1 (5B 5/1) and disco	to green
1						~	CCT/CC	100		3				1.W		1, 25	1, 100	2,2	2, 13	2, 18	2, 31	2,50
							\$=43.4 \$=2.03		2 CC				JAC	** * * *	TEXTURE: Silt Clay	D 6 94	D 100	D 100	D 100	D 100 —	D 100	D 100
					- 1				-						COMPOSITION:							
	8	8						wt.%CaC03							Carbonate particles Clay Glass Opaques Serpentine	94 — — 6	4 - 3 93	12 - 4 84	13 _ 1 86	15 — 1 84	4 20 1 75	1 99
															SMEAR SLIDE SUMMAR	Y (%):						
																2, 75 D	CC, 5 D					
															TEXTURE:							
															Silt	100	100					
				П											COMPOSITION:							
															Amphibole Hematite Opaques	_ Tr	Tr 5 1 94					

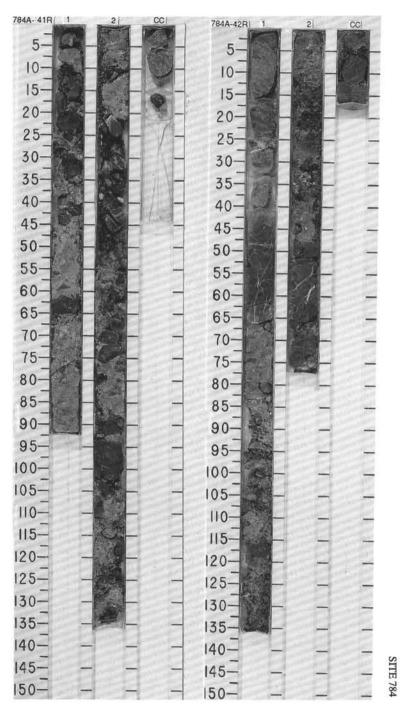


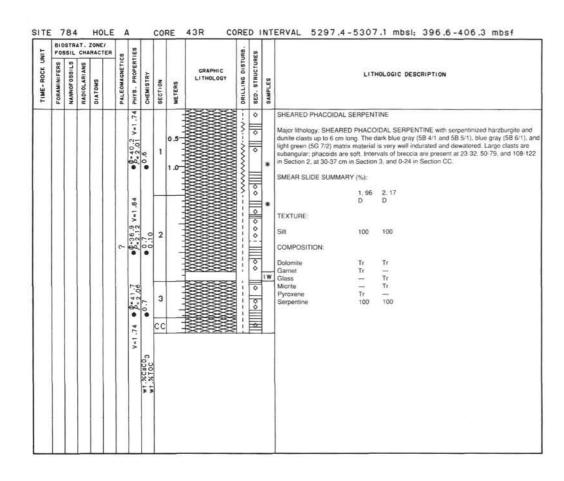
				ONE/	2 50	Sa					JRB.	ES						
and and	FORAMINIFERS	NANNOFOBBILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES		LITT	HOL OGIC	DESCRI	PTION
7	\neg				+	†				\$\$\$\$\$	X		* TS	SHEARED PHACOIDAL	SERPEN	TINE		
						. 0-37.9 F-1.71	0.4	1	0.5	IM	×		*	(5B 5/1), and dark bluish	gray (5BY d harzburg ection CC.	6/1), is	extremely	iE, very light green (5G 8/2), bluish gra disturbed by drilling. Subangular to om in diameter float in the sheared
						3.9			-	1101					1,7	1, 7	1, 60	CC, 16
-	B	B		m	~	P=2.3		CC		8888	30	00	*		M	D	D	D
														TEXTURE:				
- 1	П					3,45											200	
- 1	- 1					V=3	3							Sand Sili	100	100	20 70	20 75
- 1					10		ac							Clay	100	700	10	5
							wt.%CaC03							COMPOSITION:				
-	ш		h.					1						Chlorite			2	5
- 1						1								Clay	40	_	30	10
1						1								Diatoms	-22	Tr	-	-
1						1								Epidote	-	-	2	_
-				- 1		1	1							Feldspar	-	7.5	-	3
1						1								Glass	-	Tr	_	_
1	- 1					1								Micrite	60	-		15
1	- 1				1		1							Opaques Pyroxene	_	=	10	3
П	- 1	1.0					1	li .						Radiolarians	Tr	Tr		_
- 1							1							Serpentine		Tr	56	61
н							1	1						Siderite	-	100	_	_
1	- 1																	

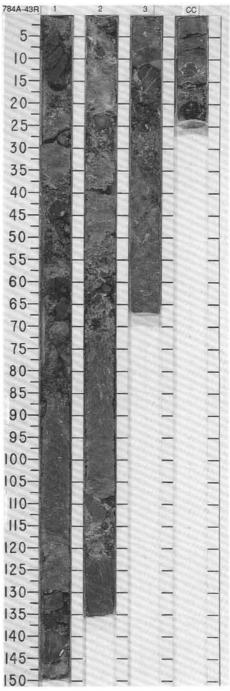


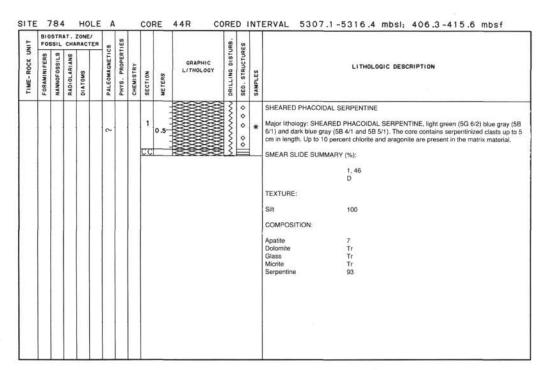

UNIT				RACTE	re l	ES					IRB.	ES		
TIME-ROCK UP	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
						9 0=15.8 P=3.55	80000	1	0.5		X	001	1	SHEARED PHACOIDAL SERPENTINE Major lithology: SHEARED PHACOIDAL SERPENTINE, blue gray and dark blue gray (58 st. 1, 58 4/1, and 58 6/1), Phacoidal blocks are up to 23 cm in length. Clasts in the matrix are typically 5 to 9 cm in the long dimension; all clasts are dark gray (N 4/), are serpentinized.
						6.8 V=3.63			1.0	M		ŵ	TS	harzburgite or dunite, and exhibit vein textures. SMEAR SLIDE SUMMARY (%): 1, 50 2, 33 D D
					6	V=2.24 • \$=36.8		2		M		٥	X XRF *	TEXTURE:
	В	8						CC		IM		L		COMPOSITION: Clay 10 5 Opaques 7 10 Serpentine 83 85

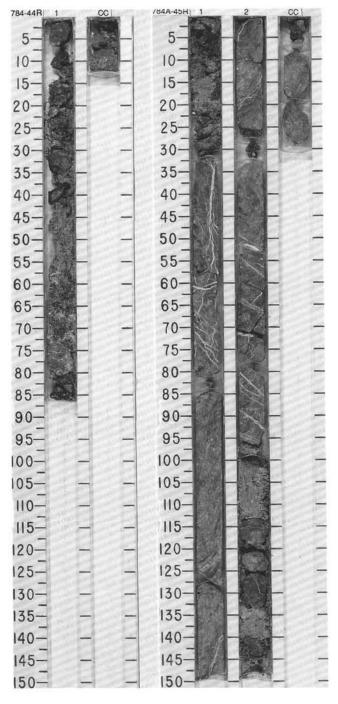


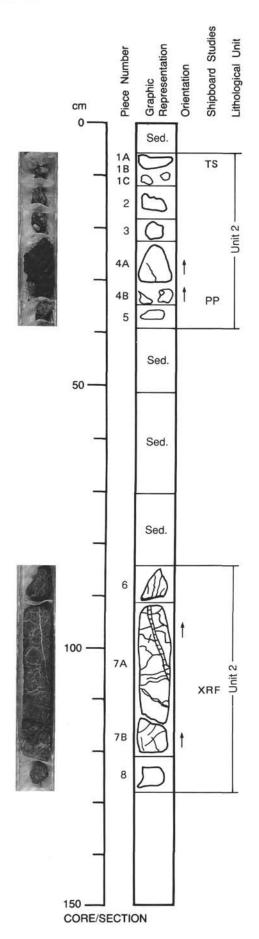

			ONE/	8 00	ES					RB.	ço.							
 FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES		LIT	HOLOGIC	DESCRI	PTION	
					• 0=34.5 P=2.10	6.0.3	1	0.5	CUTTINGS	X	JAM MES	** TS	SHEARED PHACOIDAL S Major lithology: SHEAREI lightness (5B 6/1 alternational stemations of these color throughout the core. Dark serpentine matrix. SMEAR SLIDE SUMMAR	PHACO ng with N s. Convo serpentin	DIDAL SE 7/ and 5 lute lami	G 6/2). Denations, be	offormation oth vertice	n pattern is outlined by all and horizontal, are pres
				۲-	• \$*33.4 \$*2.09	00.3	1			<	o ollo Mo o	* !W *	TEXTURE: Sand Silt Clay	1, 3 M	1, 5 M	1, 115 M 5 55 40	1, 130 M 5 55 40	2, 50 D 5 55 40
В	83		60				cc			×		TS	COMPOSITION: Carbonate particles Chert Chlorite Clay Diatoms Feldspar Glass Opaques Radiolarians Serpentine Spicules Thulte	Tr — Tr 60 Tr Tr 40 — Tr — T	20 555 - 15 10 - Tr	Tr 20		5


				CONE/ RACTE	R	92	LIES					JRB.	ES		
I WE - NOON O	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
	В						2.48 V=1.8 0=2.08	e.0.3	1	0.5		×	000 Mad	** TS * TS XXRF IW	Major lithology: SHEARED PHACOIDAL SERPENTINE, dark blue gray (58 4/1), grayish s green (58 5/2), bluish gray (58 3/1), light greenish gray (56/7/1) and dark blue (58 4/1) i alternating wavy and convolute laminations and bands. Broken and sheared black (10YR rock fragments in the matrix are angular and up to 8 cm in their longest dimension. SMEAR SLIDE SUMMARY (%): 1, 6 1, 8 1, 37 1, 50 1, 100 2, 10 D D D D D D
							V=4.9 • \$=2	wt.%CaC03	2	-	IM				Silt 100 100 100 100 100 100 100 COMPOSITION: Dolomite









				RACTI	60	ES					HB.	ES						
I WE - NOCK	FORAMINIFERS	MANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	SED SAMPLES SA				LITA	OLOGIC	LOGIC DESCRIPTION		
						.58		1	0.5		***		*	and light green (5G 7/2) interbedde	RED SEF	RPENTINE, dark blue gray (58 4/1 and 58 5/1 pentinized ultra matic clasts.		
						V=5.66 @\$=0.5			1.0	IM			*	SMEAR SLIDE SUMMARY (%): 1, 17 D TEXTURE:	2, 109 M	2, 138 D		
					2	P=11.0		2						Sand — Silt 100 COMPOSITION:	30 70	100		
						V=3.82 • P=		cc		I M	~~~		TS	Dolomite Tr Garnet Tr Micrite Tr Serpentine 100	Tr Tr Tr 100	Tr		

125-784A-36R-1

UNIT 2: CALCAREOUS SILTSTONE

Pieces 1A; 1B; 1C

COLOR: Light brownish gray (10YR 6/2).

LAYERING: Piece 1A shows 5-mm-wide lamination consisting of dark gray (10YR 4/1)

material

DEFORMATION: None visible.

PRIMARY MINERALOGY: No primary mineralogy is visible.

SECONDARY MINERALOGY:

Calcite (<1 mm) 40-60%; quartz (?) (<1 mm) 40-60%; opaque minerals (<2 mm) <2%.

Total percent: 100%.
Texture: Grain-supported.
Vein material: None visible.

ADDITIONAL COMMENTS: This is a sedimentary rock whose mineralogy is difficult to see in hand sample. Piece 1A has lamination which probably represents bedding.

UNIT 2: SERPENTINIZED HARZBURGITE

Pieces 2, 3, 8

COLOR: Black (7.5YR 2/0).
LAYERING: None visible.
DEFORMATION: None visible.
PRIMARY MINERALOGY:

Primary silicates are variably serpentinized. Olivine - Mode: 70-75%.

Olivine - Mode: 70-75%. Crystal size: Not visible. Crystal shape: Not visible. Crystal orientation: None visible. Percent replacement: 80-90.

Orthopyroxene - Mode: 20-25%. Crystal size: 1-4 mm. Crystal shape: Subhedral.

Crystal orientation: None visible. Percent replacement: 50-70.

Clinopyroxene - Mode: 2-5%.

Crystal size: 1-2 mm.

Crystal shape: Subhedral.

Crystal orientation: None visible. Percent replacement: 20-30.

Comments: Appears fresher than orthopyroxenes.

Spinel - Mode: Trace. Crystal size: <1 mm. Crystal shape: Ragged. Crystal orientation: None visible. Percent replacement: 0.

SECONDARY MINERALOGY:

Serpentine.

Total percent: 70-80%.

Texture: Bastite and mesh textures in areas.

Vein material: Piece 3 has <0.1-mm-wide white veins.

125-784A-36R-1 (continued)

UNIT 2: SERPENTINIZED HARZBURGITE

Pieces 4A; 4B; 6; 7A; 7B

COLOR: Dark greenish gray to dark gray (5BG 4/1 - N 4/).

LAYERING: None visible.

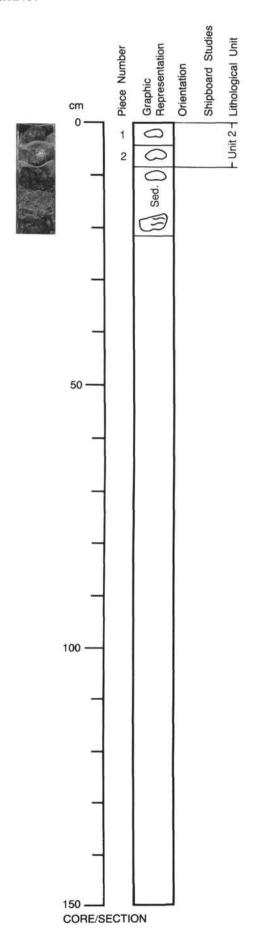
DEFORMATION: Abundant fracturing and veining throughout rock.

PRIMARY MINERALOGY:
Primary silicates are variably serpentinized.
Olivine - Mode: 75-85%.
Crystal sheet 1-2 mm. Crystal shape: Anhedral. Crystal orientation: None visible. Percent replacement: 80-90.

> Orthopyroxene - Mode: 15-25%. Crystal size: 1-4 mm. Crystal shape: Subhedral. Crystal orientation: None visible.

Percent replacement: 80-90.

Spinel - Mode: <1%. Crystal size: <1 mm.


Crystal shape: Subhedral-ragged. Crystal orientation: None visible. Percent replacement: 0.

SECONDARY MINERALOGY:

Serpentine.

Total percent: 80-90%.

Texture: Mesh and bastite pseudomorphs after olivine and orthopyroxene. Vein material: Abundant veins (0.5 mm-3 mm wide) throughout rocks. Piece 7A has large 3-m-wide chrysotile (?) vein oriented 30 degrees from core barrel. Smaller serpentine veins cross it at a large angle (70-90 degrees).

125-784A-36R-CC

UNIT 2: SERPENTINIZED HARZBURGITE

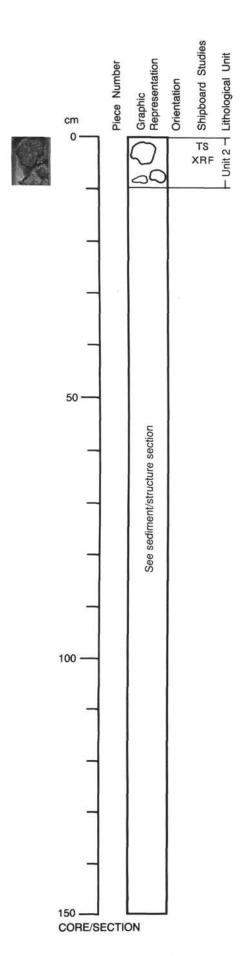
Pieces 1 and 2

COLOR: Black (7.5YR 2/0). LAYERING: None visible.
DEFORMATION: None visible.
PRIMARY MINERALOGY:

Primary silicates are variably serpentinized.
Olivine - Mode: 70-75%. Crystal size: Not visible.
Crystal shape: Not visible. Crystal orientation: None visible. Percent replacement: 80-90.

Orthopyroxene - Mode: 25-30%.

Crystal size: 1-4 mm. Crystal shape: Subhedral. Crystal orientation: None visible. Percent replacement: 50-70.


Spinel - Mode: Trace. Crystal size: <1 mm. Crystal shape: Ragged.
Crystal orientation: None visible. Percent replacement: 0.
SECONDARY MINERALOGY:

Serpentine. Total percent: 70-80%.

Texture: Mesh and bastite serpentine pseudomorphs after olivine and orthopyroxene.

Vein material: None visible.

ADDITIONAL COMMENTS: There are larger clasts (3-4 cm) of serpentinized harzburgites distributed in lower portion of core catcher within the phacodial

125-784A-37R-1

UNIT 2: SERPENTINIZED HARZBURGITE

Pieces multiple fragments

COLOR: Black (7.5YR 2/0). LAYERING: None visible.

DEFORMATION: None visible. PRIMARY MINERALOGY:

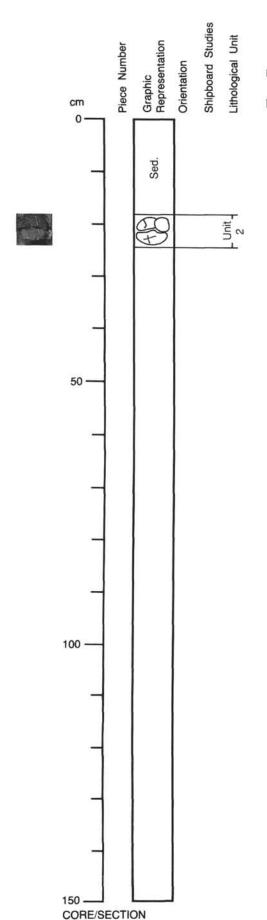
Primary silicates are variably serpentinized.

Olivine - Mode: 70-80%. Crystal size: Not visible. Crystal shape: Not visible. Crystal orientation: None visible. Percent replacement: 80-90.

Orthopyroxene - Mode: 20-30%. Crystal size: 1-4 mm.

Crystal shape: Subhedral.
Crystal orientation: None visible.
Percent replacement: 50-70.

Clinopyroxene - Mode: Trace. Crystal size: 0.5-1 mm. Crystal shape: Subhedral. Crystal orientation: None visible. Percent replacement: 40-50.


Spinel - Mode: Trace. Crystal size: <2 mm. Crystal shape: Ragged. Crystal orientation: None visible.

Percent replacement: 0. SECONDARY MINERALOGY:

Serpentine.

Total percent: 70-80%.

Texture: Mesh and bastite serpentine pseudomorphs after olivine and orthopyroxene. Vein material: Small (<0.5-mm-wide) white-green veins cutting rock at no particular

125-784A-37R-CC

UNIT 2: SERPENTINIZED HARZBURGITE

Pieces large clast

COLOR: Dark greenish gray to dark gray (5BG 4/1 - N 4/).

LAYERING: None visible.

DEFORMATION: Clast is severely fractured.

PRIMARY MINERALOGY: Primary silicates are largely serpentinized.

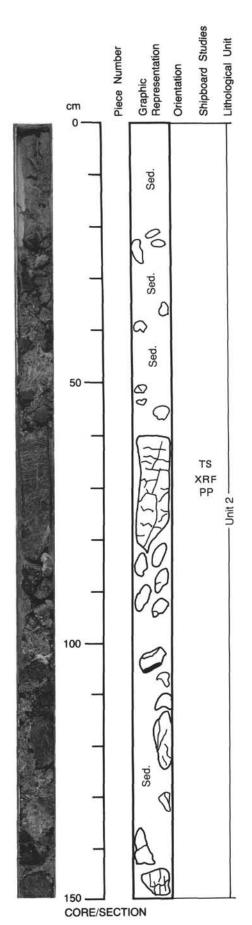
Olivine - Mode: 85-90%. Crystal size: Not visible. Crystal shape: Not visible. Crystal orientation: None visible. Percent replacement: 90-95.

Orthopyroxene - Mode: 10-15%.

Crystal size: 1-3 mm. Crystal shape: Equant.

Crystal orientation: None visible. Percent replacement: 80-90.

Spinel - Mode: Trace. Crystal size: <1 mm.
Crystal shape: Ragged.
Crystal orientation: None visible.


Percent replacement: 0.
SECONDARY MINERALOGY:

Serpentine.

Total percent: 80-90%.

Texture: Patches of serpentine bastite pseudomorphs.

Vein material: Small white veins (<1 mm wide) are oriented approximately 90 degrees to

125-784A-38R-1

UNIT 2: SERPENTINIZED HARZBURGITE

Pieces multiple pieces

COLOR: Dark greenish gray to dark gray (5BG 4/1 - N 4/).

LAYERING: None visible.

DEFORMATION: Some clasts show abundant fracturing and veining.

PRIMARY MINERALOGY:

Primary silicates are variably altered to serpentine. Olivine - Mode: 80-90%. Crystal size: Not visible. Crystal shape: Not visible.
Crystal orientation: None visible. Percent replacement: 80-95.

Orthopyroxene - Mode: 10-20%. Crystal size: 1-4 mm. Crystal shape: Equant to elongate. Crystal orientation: None visible. Percent replacement: 80-95.

Spinel - Mode: Trace.

Crystal size: <1 mm.

Crystal shape: Equant to ragged. Crystal orientation: None visible. Percent replacement: 0. SECONDARY MINERALOGY:

Serpentine.

Total percent: 80-95%.

Texture: Patches of serpentine bastite pseudomorphs.

Vein material: Large fragment has 2-mm-wide black-green serpentine vein paralleling core barrel. This vein is crosscut perpendicularly by smaller white veins (<2 mm wide and 5 cm long). Other fragments also have small white veins (<2 mm wide) with random

ADDITIONAL COMMENTS: This section consists of multiple clasts of serpentinized harzburgite embedded in a phacoidal serpentine matrix.

Shipboard Studies Graphic Representation ithological Unit Piece Number Orientation cm 0 0 Sed. TS XRF Piit 1A 50 2B 2(3 TS XRF 100 150 CORE/SECTION

125-784A-38R-2

UNIT 2: SERPENTINIZED HARZBURGITE

Pieces 1A, 1B, 1C, 2A, 2B, 2C

COLOR: Dark greenish gray to dark gray (5BG 4/1 - N 4/).

LAYERING: None visible.

DEFORMATION: Abundant fractures and veins.

PRIMARY MINERALOGY:

Primary silicates are variably serpentinized.

Olivine - Mode: 80%. Crystal size: Not visible. Crystal shape: Not visible.
Crystal orientation: None visible. Percent replacement: 80-90.

Orthopyroxene - Mode: 15-20%.

Crystal size: 1-4 mm. Crystal shape: Subhedral. Crystal orientation: None visible. Percent replacement: 50-70.

Spinel - Mode: 1%. Crystal size: <1 mm.

Crystal shape: Equant-ragged.

Crystal orientation: None visible. Percent replacement: 0.

SECONDARY MINERALOGY:

Serpentine.

Total percent: 70-80%.

Texture: Serpentine bastite pseudomorphs after orthopyroxene.

Vein material: Abundant veins (0.5-3 mm wide) throughout pieces. Large 5-mm-wide chrysotile vein oriented almost parallel to core barrel. This vein is fractured along its length and crosscut perpendicularly by small (1-mm-wide and 6-mm-long) green-white serpentine veins.

ADDITIONAL COMMENTS: In upper portion of this section (0-2 cm) there is a serpentinized dunite clast (2 cm x 4 cm). This clast is >90% serpentinized and has no separate number on it.

UNIT 2: SERPENTINIZED HARZBURGITE

Piece 3

COLOR: Dark greenish gray to dark gray (5BG 4/1 - N 4/).

LAYERING: None visible. **DEFORMATION:** None visible. PRIMARY MINERALOGY:

Primary silicates are variably serpentinized.

Olivine - Mode: 57-67%. Crystal size: 1-3 mm. Crystal shape: Anhedral. Crystal orientation: None visible. Percent replacement: 50-70.

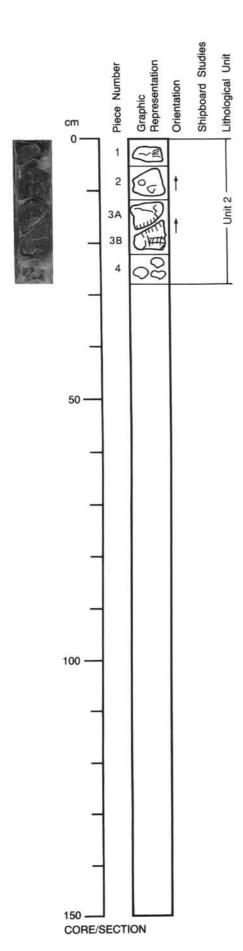
Orthopyroxene - Mode: 30-40%. Crystal size: 1-6 mm.

Crystal shape: Equant. Crystal orientation: None visible. Percent replacement: 50-70.

Clinopyroxene - Mode: <3%. Crystal size: 1-2 mm. Crystal shape: Subhedral. Crystal orientation: None visible. Percent replacement: 50-70.

Spinel - Mode: Trace. Crystal size: <2 mm. Crystal shape: Ragged. Crystal orientation: None visible. Percent replacement: 0.

SECONDARY MINERALOGY:


Serpentine.

Total percent: 50-70%.

Texture: Patches of serpentine bastite pseudomorphs.

Vein material: None visible.

ADDITIONAL COMMENTS: Sample is rich in pyroxene and fairly fresh.

125-784A-38R-CC

UNIT 2: SERPENTINIZED HARZBURGITE

Pieces 1, 2, 3A, 3B, 4

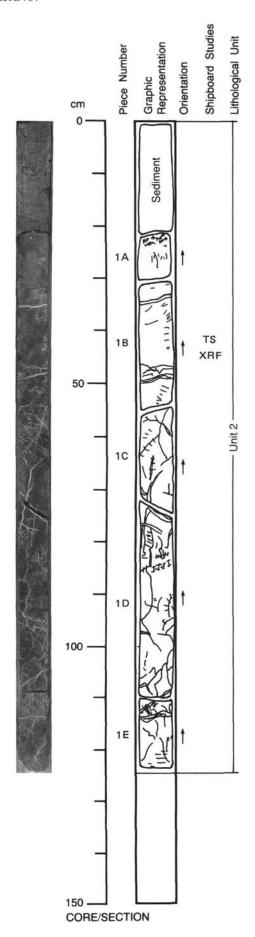
COLOR: Dark greenish gray to dark gray (5BG 4/1 - N 4/).

LAYERING: None visible.

DEFORMATION: Pieces 1, 3A and 3B show abundant fracturing and veining. PRIMARY MINERALOGY: Primary silicates are variably altered to serpentine.

Olivine - Mode: 80-90%. Crystal size: 1-2 mm. Crystal shape: Anhedral.
Crystal orientation: None visible. Percent replacement: 80-90.

Orthopyroxene - Mode: 10-20%. Crystal size: 1-6 mm. Crystal shape: Subhedral. Crystal orientation: None visible. Percent replacement: 80-90.


Spinel - Mode: Trace. Crystal size: <1 mm.

Crystal shape: Equant to ragged. Crystal orientation: None visible. Percent replacement: 0.
SECONDARY MINERALOGY:

Serpentine.

Total percent: 80-90%.

Texture: Serpentine bastite pseudomorphs after orthopyroxene. Vein material: Piece 3 is fractured along a chrysotile "Frankenstein" vein. This vein is oriented 45 degrees to side of core barrel. It is perpendicularly cut by smaller (>2-mm-wide) veins along its length. Other pieces have small (>1-mm-wide) white-green

125-784A-40R-2

UNIT 2: SERPENTINIZED DUNITE

Pieces 1A - 1E

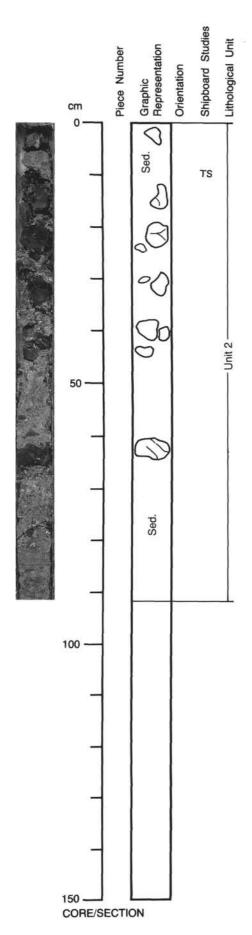
COLOR: Black (N 4/). LAYERING: None visible.

DEFORMATION: None visible. PRIMARY MINERALOGY:

Primary silicates are extensively and pervasively serpentinized. Olivine - Mode: 95-97%.

Crystal shape: None visible.
Crystal shape: None visible.
Crystal orientation: None visible.
Percent replacement: 95-100.

Orthopyroxene - Mode: 3-5%. Crystal size: 1-3 mm. Crystal shape: Subhedral. Crystal orientation: None visible. Percent replacement: Variable.


Cr-spinel - Mode: <1%. Crystal size: 0.1-0.5 mm. Crystal shape: Subhedral. Crystal orientation: Disseminated. Percent replacement: None visible.
SECONDARY MINERALOGY:

Massive textured serpentine.

Total percent: 99%.

Texture: Mesh texture present in 4 cm of top of piece; otherwise massive, but veined. Vein material: White veins of chrysotile, mostly with shallow dip and often anastomosing; some crosscutting dark greenish-black serpentine veins.

ADDITIONAL COMMENTS: All sub-pieces are part of one continuous cored piece.

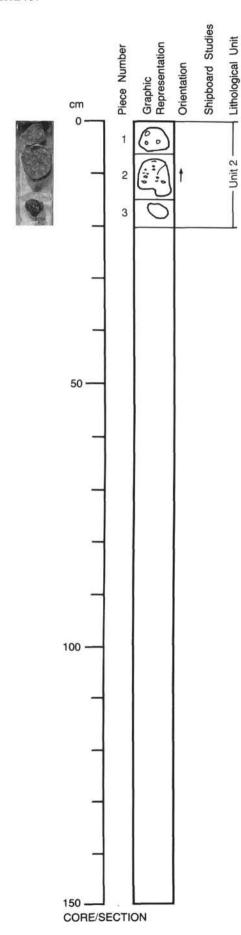
125-784A-41R-1

UNIT 2: SERPENTINIZED HARZBURGITE AND DUNITE

Pieces assorted clasts in a matrix

COLOR: Black (N 4/). LAYERING: None visible. DEFORMATION: None visible. PRIMARY MINERALOGY: Extensively serpentinized rock. Olivine - Mode: 95-99%. Crystal size: None visible. Crystal shape: None.
Crystal orientation: None visible.

Percent replacement: 95-100.


Orthopyroxene - Mode: 0-5%. Crystal size: 0.5-3 mm. Crystal size: 0.5-3 mm,
Crystal shape: Subhedral.
Crystal orientation: None visible.
Percent replacement: Variable.

Cr-spinel - Mode: Trace. Crystal size: 0.1-0.5 mm. Crystal shape: Anhedral. Crystal orientation: Disseminated. Percent replacement: None visible. SECONDARY MINERALOGY:

Massive serpentine. Total percent: 98-10%.

Texture: Massive and bastite after orthopyroxene.

Vein material: <0.2 mm wide, white fill of chrysotile, orientated sub-horizontal.

125-784A-41R-CC

UNIT 2: SERPENTINIZED HARZBURGITE

Pieces 1 and 2

COLOR: Dark greenish gray to dark gray (5BG 4/1 - N 4/).

LAYERING: None visible.
DEFORMATION: None visible.
PRIMARY MINERALOGY:

Primary silicates are variably serpentinized. Olivine - Mode: 75-80%.

Crystal size: Not visible. Crystal shape: Not visible. Crystal orientation: None visible. Percent replacement: 80-90.

Orthopyroxene - Mode: 20-25%.

Crystal size: 1-4 mm.

Crystal shape: Subhedral-equant. Crystal orientation: None visible. Percent replacement: 60-70.

Spinel - Mode: Trace. Crystal size: <1 mm. Crystal shape: Equant. Crystal orientation: None visible.

Percent replacement: 0.
SECONDARY MINERALOGY:

Serpentine

Total percent: 70-80%.

Texture: Patches of serpentine bastite pseudomorphs after orthopyroxene.

Vein material: No veins are visible.

UNIT 2: SERPENTINIZED DUNITE

Piece 3

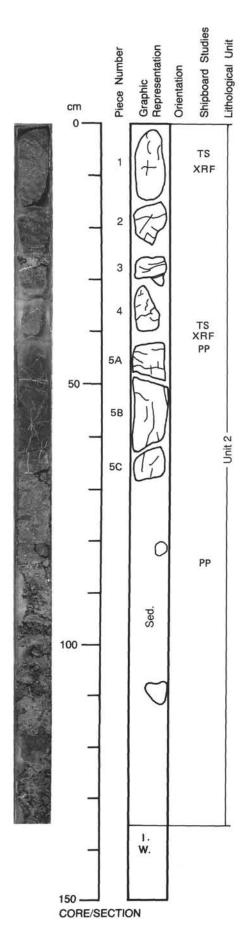
COLOR: Dark bluish gray (5B 4/1).

LAYERING: None visible.

DEFORMATION: None visible. PRIMARY MINERALOGY:

Olivine - Mode: 95-99%. Crystal size: Not visible. Crystal shape: Not visible. Crystal orientation: None visible. Percent replacement: 80-90.

Spinel - Mode: Trace. Crystal size: <1 mm. Crystal shape: Equant. Crystal orientation: None visible.


Percent replacement: 0. SECONDARY MINERALOGY:

Serpentine.

Total percent: 80%.

Texture: Serpentine mesh texture after olivine.

Vein material: <2-mm-wide white veins at no specific orientation.

125-784A-42R-1

UNIT 2: SERPENTINIZED HARZBURGITE AND DUNITE

Pieces 1-5

COLOR: Dark greenish gray to dark gray (5BG 4/1 - N 4/). LAYERING: There appears to be a contact within Piece 2 (18-22 cm) between harzburgitic

and dunitic rocks.

DEFORMATION: Locally abundant deformation; fractures and veins.

PRIMARY MINERALOGY:

Primary silicates are variably serpentinized.

Olivine - Mode: 70-95%. Crystal size: Not visible. Crystal shape: Not visible. Crystal orientation: None visible. Percent replacement: 80-90.

Orthopyroxene - Mode: 5-30%.

Crystal size: 1-4 mm. Crystal shape: Equant.

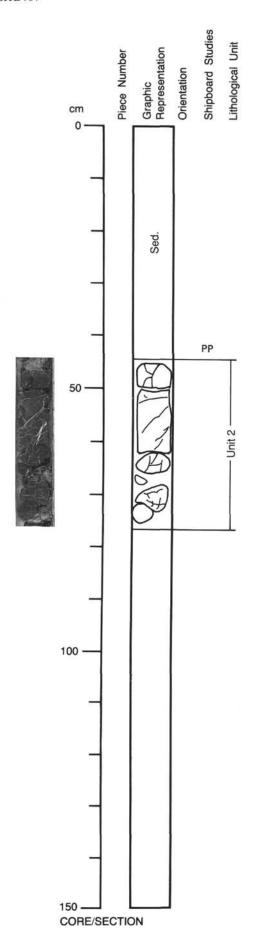
Crystal orientation: None visible. Percent replacement: 70-80.

Spinel - Mode: Trace. Crystal size: <1 mm.

Crystal shape: Equant-ragged. Crystal orientation: None visible.

Percent replacement: 0. SECONDARY MINERALOGY:

Serpentine.


Total percent: 75-90%.

Texture: Patches of serpentine mesh and bastite textures.

Vein material: Abundant white and pale-green veins (0.5-3 mm wide) distributed

throughout rocks at no specific orientation.

ADDITIONAL COMMENTS: There is a gradation between harzburgite and dunites within these fragments; fragments are clasts sitting in a serpentine matrix.

125-784A-42R-2

UNIT 2: SERPENTINIZED DUNITE

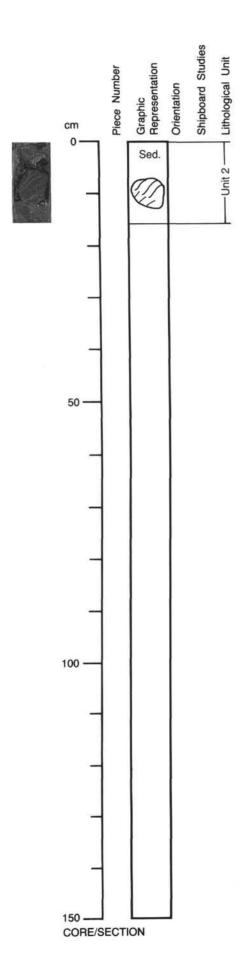
Pieces multiple fragments

COLOR: Black (N 4/).
LAYERING: None visible.
DEFORMATION: None visible. PRIMARY MINERALOGY:

Primary silicates are variably serpentinized.

Olivine - Mode: 95-99%. Crystal size: Not visible. Crystal shape: Not visible. Crystal orientation: None visible. Percent replacement: 80-90.

Orthopyroxene - Mode: 1-2%. Crystal size: 1-2 mm. Crystal shape: Subhedral. Crystal orientation: None visible. Percent replacement: 70.


Spinel - Mode: Trace. Crystal size: <1 mm. Crystal shape: Ragged. Crystal orientation: None visible. Percent replacement: 0. SECONDARY MINERALOGY:

Serpentine.

Total percent: 80-90%

Texture: Minor serpentine bastite pseudomorphic texture in areas.

Vein material: White veins, (0.5-2 mm wide), and pale-green (serpentine?) veins in fragments at no specific orientation.

125-784A-42R-CC

UNIT 2: SERPENTINIZED DUNITE

Pieces one clast

COLOR: Black (N 4/).
LAYERING: None visible.
DEFORMATION: Abundant fractures and veining.
PRIMARY MINERALOGY:

Primary silicates are variably serpentinized.
Olivine - Mode: 90-99%.

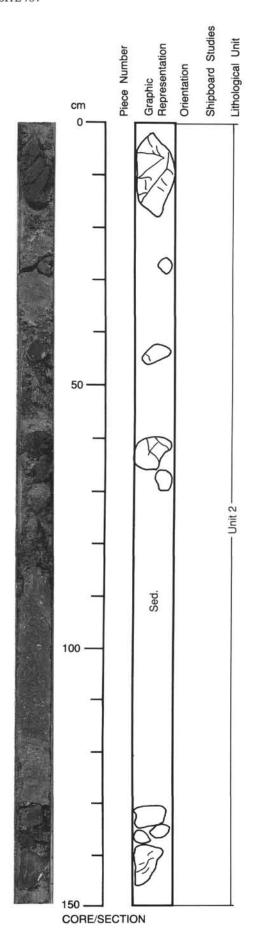
Olivine - Mode: 90-99%.
Crystal size: Not visible.
Crystal shape: Not visible.
Crystal orientation: None visible.
Percent replacement: 80-90.

Spinel - Mode: Trace. Crystal size: <1 mm.

Crystal shape: Equant-ragged.

Crystal orientation: None visible.

Percent replacement: 0.


SECONDARY MINERALOGY:

Serpentine.

Total percent: 80-90%.

Texture: Serpentine mesh after olivine (?).

Vein material: Pale-green serpentine veins (0.5-2 mm wide) oriented 45 degrees to

125-784A-43R-1

UNIT 2: SERPENTINIZED HARZBURGITES AND DUNITES

Pieces multiple clasts in matrix

COLOR: Dark greenish gray to dark gray (5BG 4/1-N 4/).

LAYERING: None visible.

DEFORMATION: Abundant veining and fracturing.

PRIMARY MINERALOGY:

Primary silicates are variably serpentinized.

Olivine - Mode: 70-95%. Crystal size: Not visible. Crystal shape: Not visible.
Crystal orientation: None visible. Percent replacement: 80-90.

Orthopyroxene - Mode: 5-30%.

Crystal size: 1-3 mm. Crystal shape: Equant.

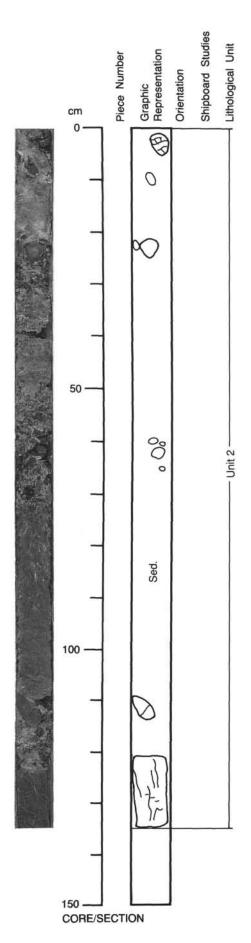
Crystal orientation: None visible.

Percent replacement: 70-80.

Spinel - Mode: Tr-1%.

Crystal size: <1 mm.

Crystal shape: Equant-ragged. Crystal orientation: None visible.


Percent replacement: 0.

SECONDARY MINERALOGY:

Serpentine.
Total percent: 70-90%.

Texture: Serpentine mesh and bastite pseudomorphs.

Vein material: Abundant veins (0.5-2 mm wide) of white and green (serpentine) minerals throughout rocks. The fractures in the clasts follow the general trend of the

125-784A-43R-2

UNIT 2: SERPENTINIZED DUNITE AND HARZBURGITES

Pieces multiple clasts in matrix

COLOR: Dark greenish gray to dark gray (5BG 4/1-N 4/). LAYERING: None visible. DEFORMATION: None visible.

PRIMARY MINERALOGY: Olivine - Mode: 70-95%.

Crystal size: Not visible. Crystal shape: Not visible.

Crystal orientation: None visible. Percent replacement: 80-90.

Orthopyroxene - Mode: 5-30%.

Crystal size: 1-2 mm. Crystal shape: Equant.

Crystal orientation: None visible.

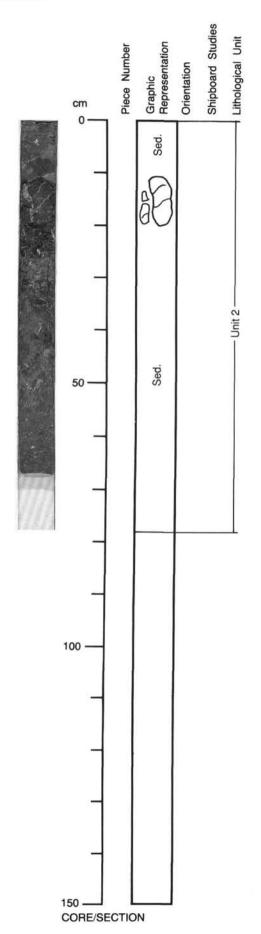
Percent replacement: 70.

Spinel - Mode: Tr-1%.

Crystal size: <1 mm.

Crystal shape: Ragged.

Crystal orientation: None visible.


Percent replacement: 0. SECONDARY MINERALOGY:

Serpentine.

Total percent: 80-90%.

Texture: Patches of serpentine mesh and bastite pseudomorphs.

Vein material: Some clasts have white veins (0.5-1 mm wide) at no specific orientation.

125-784A-43R-3

UNIT 2: SERPENTINIZED HARZBURGITE

Pieces multiple clasts in matrix

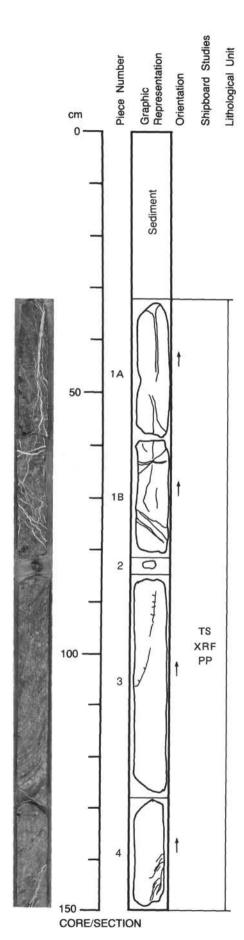
COLOR: Dark gray (N 4/).
LAYERING: None visible.
DEFORMATION: None visible.
PRIMARY MINERALOGY:

Primary silicates are variably serpentinized. Olivine - Mode: 75-85%. Crystal size: Not visible. Crystal shape: Not visible. Crystal orientation: None visible. Percent replacement: 80-90.

Orthopyroxene - Mode: 15-25%. Crystal size: 1-2 mm.

Crystal shape: Equant.

Crystal orientation: None visible. Percent replacement: 70-80.


Spinel - Mode: Tr? Crystal size: <1 mm. Crystal shape: Ragged. Crystal orientation: None visible. Percent replacement: 0.
SECONDARY MINERALOGY:

Serpentine.

Total percent: 80-90%.

Texture: Patches of serpentine bastite pseudomorphs.

Vein material: Some clasts have white veins (1-2 mm wide) at no specific orientation.

125-784A-45R-1

UNIT 2: SERPENTINIZED TECTONIZED HARZBURGITE

Pieces 1A, 1B, 2, 3, 4

COLOR: Dark gray to gray (N5/ to N4/).

LAYERING: None visible.

DEFORMATION: Aligned spinels, curved cleavage planes on orthopyroxene crystals.

PRIMARY MINERALOGY:

Primary silicates are variably serpentinized.

Olivine - Mode: 70-80%. Crystal size: <8 mm. Crystal shape: Not visible. Crystal orientation: Not visible.

Percent replacement: Variable 50-100%.

Orthopyroxene - Mode: 20-30%.

Crystal size: <5 mm.

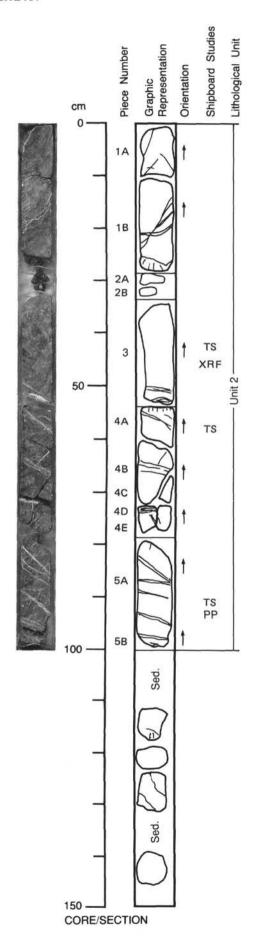
Crystal shape: Equant to elongate. Crystal orientation: Not visible. Percent replacement: Variable 50-80%.

Spinel - Mode: <1%. Crystal size: <1 mm.

Crystal shape: Equant to elongate.

Crystal orientation: Short stringers at random orientations.

Percent replacement: Not visible.


Comments: Chlorite halos around crystals (<1 mm wide).
SECONDARY MINERALOGY:

Minor "Frankenstein" texture at bottom of heavily veined portion of the section.

Total percent: 80-99%.

Texture: Patches of serpentine bastite pseudomorphs.

Vein material: Piece 1 is highly veined. Three generations: first: subvertical, filled with amorphous green serpentine, <5 mm wide; second: also subvertical, follows tracks of first generation, white, probably chrysotile, 1-2 mm wide; third: subhorizontal to

125-784A-45R-2

UNIT 2: SERPENTINIZED HARZBURGITE

Pieces 1A, B; 2A, B; 3; 4A-E; 5A, B;

COLOR: Dark gray-gray (N4/ N5/).

LAYERING: Some areas have alignment of orthopyroxene at 30 degrees to core axis.

DEFORMATION: Elongate spinels and trains of spinel; orthopyroxene cleavage has wavy extinction.
PRIMARY MINERALOGY:

Primary silicates are variably serpentinized 60-100%. Olivine - Mode: 80-90%.

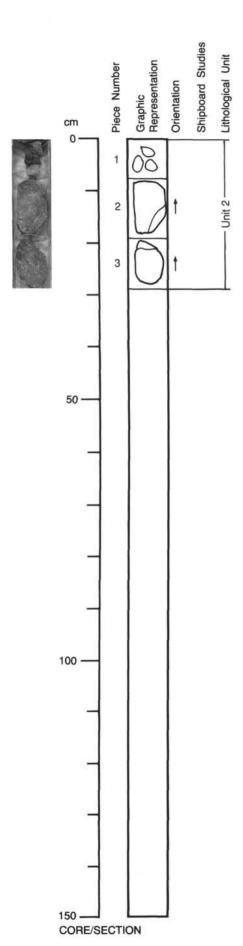
Crystal size: <6 mm. Crystal shape: Not visible. Crystal orientation: Not visible. Percent replacement: 90-100.

Orthopyroxene - Mode: 10-20%. Crystal size: <3-5 mm.

Crystal shape: Equant to elongate. Crystal orientation: Some alignment.

Percent replacement: 40-60.

Spinel - Mode: <1%. Crystal size: <1-1 mm.


Crystal shape: Equant to elongate. Crystal orientation: Some stringers.

Percent replacement: None. SECONDARY MINERALOGY:

The break between Pieces 3 and 4 appears to be along a major vein. Total percent: 70-99%.

Texture: Serpentine mesh and bastite pseudomorphs.

Vein material: Two major generations. first: conjugate set, dipping at 45 degrees to core axis, dark to pale green and white chrysotile to dark amorphous serpentine, <4 mm wide, en echelon development especially in Piece 5; second: anastomosing, chrysotile filled, white, <2 mm wide.

125-784A-45R-CC

UNIT 2: SERPENTINIZED TECTONIZED HARZBURGITE

Pieces 1 (3 fragments), 2, 3

COLOR: Dark gray to gray (N4/ to N5/).
LAYERING: None visible.
DEFORMATION: Well-developed spinel stringers, wavy cleavage on orthopyroxene.

PRIMARY MINERALOGY:

Primary silicates are variable serpentinized.
Olivine - Mode: 80-90%. Crystal size: <6 mm.
Crystal shape: Not visible. Crystal orientation: Not visible. Percent replacement: 90-100.

Orthopyroxene - Mode: 10-20%. Crystal size: <3-5 mm.

Crystal shape: Equant to elongate. Crystal orientation: None visible. Percent replacement: 40-70.

Spinel - Mode: <1%. Crystal size: <1-2 mm.

Crystal shape: Equant to elongate. Crystal orientation: Stringers. Percent replacement: None visible.
SECONDARY MINERALOGY:

Serpentine.

Total percent: 80-99%.

Texture: Patches of serpentine mesh and bastite pseudomorphs.

Vein material: Minor chrysotile vein, white, <2 mm wide, dips 50 degrees to core axis.

125-784A-34R-02 (87-89 cm)

OBSERVER: TER

WHERE SAMPLED: Torishima Forearc Seamount, west flank

ROCK NAME: Serpentinized dunite

GRAIN SIZE: 0.1 - <2 mm

TEXTURE: Mesh

PRIMARY PERCENT PERCENT SIZE COMPO-MINERALOGY PRESENT ORIGINAL (mm) SITION MORPHOLOGY COMMENTS PHENOCRYSTS Olivine 0 97 Not visible Not visible Altered to serpentine and without mesh texture. Spinel 0.1-1.5 Subhedral-euhedral Reddish brown Cr-spinel. Orthopyroxene Subhedral Altered to bastite. 0 <2 GROUNDMASS N/A N/A N/A N/A SECONDARY REPLACING/ MINERALOGY PERCENT FILLING COMMENTS Clays 25 Serpentine Dusty clay is scattered throughout the thin section. 65-70 Olivine, orthopyroxene Serpentine Chrysotile and/or lizardite replaced olivine. Brucite Antigorite and brucite exist after olivine. 5 Spinel, serpentine Opaques Magnetite(?) is partly replacing spinel and serpentine. VESICLES/ SIZE CAVITIES PERCENT LOCATION (mm) FILLING SHAPE Vesicles 0

COMMENTS: Mesh texture after olivine is not common, because serpentinization in this rock is associated with antigorite and brucite. Fine-grained opaque minerals are scattered throughout the thin section. No piece number given.

125-784A-36R-01 (Piece 7,107-109 cm)

OBSERVER: SAB

WHERE SAMPLED: Torishima Forearc Seamount, west flank

ROCK NAME: Serpentinized harzburgite

GRAIN SIZE: 0.5-7 mm

TEXTURE: Mesh and bastite; tectonized

PRIMARY MINERALOGY		PERCENT	SIZE	COMPO- SITION	MOI	RPHOLOGY	COMMENTS
PHENOCRYSTS	PRESENT	ORIGINAL	a (mm)	SITION	MOI	RPHOLOGI	COMMENTS
Olivine	<1	78-83	1-3		Anhe	edral	95-100%, altered to serpentine mesh and magnetite.
Clinopyroxene	Trace	Trace	N/A		Subl	hedral	As exsolution lamellae in orthopyroxenes.
Spinel	1.5	2	0.5-2	Cr	Subl	hedral-anhedral	Red-brown, irregular shape, minor inclusions.
Orthopyroxene	2	15-20	2-7		Subi	hedral-anhedral	95-100% altered to serpentine bastite; minor clinopyroxene exsolution lamellae, wavy extinction in some grains.
GROUNDMASS							
N/A	N/A	N/A	N/A		N/A		
SECONDARY			LACING/				
MINERALOGY	PERCENT		LING				COMMENTS
Clays	2	Serpent	ine			시민 경기가 다른데 마음이 아이를 하는데 없어요?	ck clay intermixed with serpentine and istributed throughout slide.
Serpentine	79-84	Olivine	e, ortho	pyroxene		Antigorite and I difficult to tel	ing mesh texture and bastite texture. lizardite may both be present, but it is ll because of amount of magnetite. Chrysotile -mm-wide veins throughout rock with no ation.
Magnetite	10-15	Olivine	e, spine	i.		mesh-textured se	ral crystals (0.05 to 0.3 mm) surrounded by erpentine. Magnetite is heavily concentrated mesh centers and in mesh edges.
VESICLES/			SIZ				
CAVITIES	PERCENT	LOCATIO	ON (mm)	FILLING		SHAPE
Vesicles	0						

COMMENTS: 98-100% altered ultramafic. Spinels have minor anhedral inclusions of orthopyroxene(?). Relic orthopyroxenes show wavy clinopyroxene exsolution lamellae; curved outlines of mesh texture are present. Spinel crystals are rounded and appear to be out of equilibrium(?). This slide has abundant magnetite scattered throughout.

125-784A-34R-02 (87-89 cm)

OBSERVER: TER

WHERE SAMPLED: Torishima Forearc Seamount, west flank

ROCK NAME: Serpentinized dunite

GRAIN SIZE: 0.1 - <2 mm

TEXTURE: Mesh

PERCENT PERCENT SIZE PRIMARY COMPO-MINERALOGY PRESENT ORIGINAL (mm) COMMENTS SITION MORPHOLOGY PHENOCRYSTS Olivine 97 Not visible Not visible Altered to serpentine and without mesh texture. Spinel 0.1-1.5 Subhedral-euhedral Reddish brown Cr-spinel. Orthopyroxene 0 Subhedral Altered to bastite. GROUNDMASS N/A N/A N/A N/A N/A SECONDARY REPLACING/ MINERALOGY PERCENT COMMENTS FILLING Clavs 25 Serpentine Dusty clay is scattered throughout the thin section. 65-70 Olivine, orthopyroxene Serpentine Chrysotile and/or lizardite replaced olivine. Brucite Antigorite and brucite exist after olivine. Opaques Spinel, serpentine Magnetite(?) is partly replacing spinel and serpentine. VESICLES/ CAVITIES PERCENT LOCATION SHAPE (mm) FILLING Vesicles 0

COMMENTS: Mesh texture after olivine is not common, because serpentinization in this rock is associated with antigorite and brucite. Fine-grained opaque minerals are scattered throughout the thin section. No piece number given.

125-784A-36R-01 (Piece 7,107-109 cm)

OBSERVER: SAB

WHERE SAMPLED: Torishima Forearc Seamount, west flank

ROCK NAME: Serpentinized harzburgite

GRAIN SIZE: 0.5-7 mm

TEXTURE: Mesh and bastite; tectonized

PRIMARY MINERALOGY	PERCENT PRESENT		SIZE L (mm)	COMPO- SITION	MC	PRPHOLOGY	COMMENTS
PHENOCRYSTS Olivine	<1	78-83	1-3		Anh	medral	95-100%, altered to serpentine mesh and magnetite.
Clinopyroxene	Trace	Trace	N/A		Sub	hedral	As exsolution lamellae in orthopyroxenes.
Spinel	1.5	2	0.5-2	Cr	Sub	hedral-anhedral	Red-brown, irregular shape, minor inclusions.
Orthopyroxene	2	15-20	2-7		Sub	hedral-anhedral	95-100% altered to serpentine bastite; minor clinopyroxene exsolution lamellae, wavy extinction in some grains.
GROUNDMASS N/A	N/A	N/A	N/A		N/A		
SECONDARY MINERALOGY Clays	PERCENT 2		LACING/ LING tine				COMMENTS ck clay intermixed with serpentine and
Serpentine	79-84	Olivine	e, orthopy	roxene		Serpentine formi Antigorite and 1 difficult to tel forms 0.1- to 3-	stributed throughout slide. ing mesh texture and bastite texture. izardite may both be present, but it is because of amount of magnetite. Chrysotile mm-wide veins throughout rock with no
Magnetite	10-15	Olivine	e, spinel			mesh-textured se	action. all crystals (0.05 to 0.3 mm) surrounded by expentine. Magnetite is heavily concentrated mesh centers and in mesh edges.
VESICLES/ CAVITIES Vesicles	PERCENT 0	LOCATIO	SIZE ON (mm)		FILLING		SHAPE

COMMENTS: 98-100% altered ultramafic. Spinels have minor anhedral inclusions of orthopyroxene(?). Relic orthopyroxenes show wavy clinopyroxene exsolution lamellae; curved outlines of mesh texture are present. Spinel crystals are rounded and appear to be out of equilibrium(?). This slide has abundant magnetite scattered throughout.

125-784A-37R-01 (6-9 cm) OBSERVER: SAB WHERE SAMPLED: Torishima Forearc Seamount, west flank

ROCK NAME: Serpentinized harzburgite

GRAIN SIZE: 0.05-5 mm
TEXTURE: Mesh and bastite

Talc	1	Serpent	ine	********		Dusty, high bire	ne), mesh edges, and along cleavages. efringence; found associated with nd bastites in and along edges and cleavages.
Magnetite	15	Spinel,	olivine	serpentine		Dusty 0.1-mm gra	ains throughout slide and concentrated in
Serpentine	69	Olivine	, orthopy	yroxene			the serpentine. e and/or chrysotile forming mesh and bastite
Clays	5	Serpent	ine				ck clay scattered throughout slide and
SECONDARY MINERALOGY	PERCENT	FILL					COMMENTS
GROUNDMASS N/A	N/A	N/A	N/A		N/I		
Orthopyroxene	5	15	0.1-5		Sub	hedral-anhedral	Altered to serpentine bastite; kink-banded, wavy extinction, bent exsolution lamellae.
Spinel	1	577	0.05-1	Cr	Eul	nedral-anhedral	individual grains. Red-brown; altering to magnetite.
Clinopyroxene	2	3	0.05-1		Anh	nedral	As exsolution lamellae (100) and as
PHENOCRYSTS Olivine	2	80	0.1-0.5		Ani	nedral	Altered to serpentine mesh; wavy extinction.
PRIMARY MINERALOGY		PERCENT ORIGINAL	SIZE (mm)	COMPO- SITION	Mo	DRPHOLOGY	COMMENTS

COMMENTS: Relatively pyroxene-rich harzburgite. Spinels are fractured with silicates forming between fractures. Some spinels form ragged elongate trains. Orthopyroxene are wavy and kink-banded; have inclusions of clinopyroxene and spinels(?). One orthopyroxene grain is split by 1 to 1.5-mm-wide serpentine veins. This slide has abundant magnetite mesh edges and in serpentine veins (which are almost all parallel throughout slide). This rock was further altered after serpentinization. No piece number given.

125-784A-38R-01 (66-68 cm) OBSERVER: SAB WHERE SAMPLED: Torishima Forearc Seamount, west flank

ROCK NAME: Serpentinized harzburgite

GRAIN SIZE: 0.2-5 mm

TEXTURE: Mesh and bastite

PRIMARY	PERCENT	PERCENT	SIZE	COMPO-			
MINERALOGY	PRESENT	ORIGINAL	(mm)	SITION	Mo	ORPHOLOGY	COMMENTS
PHENOCRYSTS							
Olivine	0	85-90	1-4		Ani	nedral	Altered to serpentine mesh texture.
Spinel	Trace	Trace	0.2-0.3		Sul	chedral-anhedral	Partly altered to magnetite.
Orthopyroxene	0	10-15	1-5		Ani	nedral	Altered to serpentine bastite.
GROUNDMASS							
N/A	N/A	N/A	N/A		N/	4	
SECONDARY		REPL	ACING/				
MINERALOGY	PERCENT	FILL	ING				COMMENTS
Clays	5	Serpent	ine			Dusty brownish-h intermixed with	plackish clay distributed throughout rock and serpentine.
Serpentine	93	Olivine	, orthopy	roxene			r chrysotile forming mesh and bastite otile is also abundant in veins (see below).
Magnetite	2	Spinel					fine-grained; scattered throughout slide and rated in serpentine veins and mesh centers.
VESICLES/			SIZE				
CAVITIES	PERCENT	LOCATIO	N (mm)		FILLING		SHAPE
Vesicles	0						

COMMENTS: Veins of serpentine (0.05 to 1 mm); magnetite and clays are abundant throughout slide and parallel one another. These smaller veins are then cut perpendicularly by a 5-mm-wide chrysotile vein (almost like "Frankenstein" texture). This larger chrysotile vein is also rimmed by a high birefringence, length slow(?) mineral. No piece number given.

125-784A-38R-02 (Piece 3,92-95 cm)

OBSERVER: SAB

WHERE SAMPLED: Torishima Forearc Seamount, west flank

ROCK NAME: Serpentinized harzburgite

GRAIN SIZE: 0.2-5 mm

TEXTURE: Cumulate, mesh and bastite

PRIMARY PERCENT PERCENT SIZE COMPO-PRESENT ORIGINAL (mm) MINERALOGY SITTON MORPHOLOGY COMMENTS PHENOCRYSTS 79.5 Altering to serpentine mesh texture. Olivine 1-3 Anhedral 2-4 Clinopyroxene 2-4 0.5-2 As exsolution lamellae and as anhedral Anhedral crystals. 0.2-0.5 1.5 1.5 Anhedral Reddish brown; fractured. Partly or fully altered to serpentine Orthopyroxene 25 2-5 N/A bastite texture, wavy extinction, kink-banded, exsolution lamellae. GROUNDMASS N/A N/A N/A N/A N/A SECONDARY REPLACING/ MINERALOGY PERCENT COMMENTS FILLING Pale-green in color; rarely visible in orthopyroxene Chlorite Orthopyroxene, serpentine Trace bastite. 74-76 Lizardite and/or chrysotile forms mesh and bastite textures. Serpentine Olivine, orthopyroxene Chrysotile veins are present. Magnetite <1 Spinel Dusty 0.1-mm grains; occurs along the grain boundaries among olivine, orthopyroxene and clinopyroxene. VESICLES/ SIZE CAVITIES PERCENT LOCATION SHAPE (mm) FILLING Vesicles 0 COMMENTS: Spinels are fractured and have silicates forming within the fractures. Spinels are sometimes aligned in elongate trains. Orthopyroxenes are kink-banded, have wavy extinctions and have inclusions of clinopyroxene as well as serpentine pseudomorphic grains. Minor chrysotile veins (0.5 mm wide and 2 mm long) cross many orthopyroxene grains. OBSERVER: HIR WHERE SAMPLED: Torishima Forearc Seamount, west flank 125-784A-39R-01 (5-6 cm) ROCK NAME: Meta-volcaniclastic rock GRAIN SIZE: 0.1-2 mm TEXTURE: Cataclastic PRIMARY PERCENT PERCENT SIZE COMPO-MINERALOGY PRESENT ORIGINAL (mm) SITION MORPHOLOGY COMMENTS Plagioclase Trace 5-10 <0.1 Euhedral Occurs in volcanic fragments. Clinopyroxene Trace 2-5 < 0.2 Anhedral Occurs in volcanic fragments and in matrix. SECONDARY REPLACING/ MINERALOGY PERCENT FILLING COMMENTS Clays 70 Plagioclase Matrix is occupied by brown dusty clay. 20-30 Chlorite Clinopyroxene, hornblende Showing abnormal interference color. Sphene Trace Showing high reflective index, high birefringence and euhedral to subhedral shape; abundant in amphibolite clasts. Hornblende Occurring in amphibolite clasts; pale-green to colorless. WESTCIES! SIZE CAVITTES PERCENT LOCATION (mm) FILLING SHAPE Vesicles 0

COMMENTS: This rock contains subround to angular clasts of varying sizes (<2 mm) in a dusty clay matrix. Clasts consist of amphibolite and basalt. This rock underwent the low-grade metamorphism and associated cataclastic deformation. Amphibolite consists of pale-green hornblende, saussuritized plagioclase, chlorite and sphene. Basalt consists of chlorite, saussuritized plagioclase and relict clinopyroxene. No piece number given.

125-784A-39R-01 (5-6 cm)

OBSERVER: JOH

WHERE SAMPLED: Torishima Forearc Seamount, west flank

ROCK NAME: Metabasalt

GRAIN SIZE: Fine-grained

TEXTURE: Aphyric

PRIMARY PERCENT PERCENT SIZE COMPO-MINERALOGY PRESENT ORIGINAL (mm) SITION Glass 60-70 N/A 0 Plagioclase 10-15 15-25 0.05-0.15 15-20 0.1-0.2 Clinopyroxene 7-12 <1 0.01-0.02 <1 Magnetite

N/A Laths Anhedral, elongate Equant, euhedral

MORPHOLOGY

COMMENTS 100% altered to clays + limonite. Quench morphology, altered to clays. Small occasional radiation clusters. Randomly distributed throughout.

SECONDARY MINERALOGY

Clays

REPLACING/ PERCENT FILLING 65-70 Glass, plagioclase

Carbonate 2-3 Chlorite 5-10 Veins 10-15 Glass, matrix Limonite

COMMENTS Brown amorphous clays disseminated throughout slide obscuring original textures. Calcite (0.02 to 0.04 mm wide), throughout.

Pale-green chlorite is scattered throughout the rock. Occurs as veins and patches. Veins are anastomosing and appear to converge to form patches. Veins are 0.5 to 1 mm

wide, patches are up to 3 mm.

VESICLES/ SIZE PERCENT LOCATION (mm) CAVITIES

Vesicles 0 FILLING

SHAPE

COMMENTS: This sample is a small (1 cm diameter) altered clast of aphyric fine-grained basalt with limonite vein alteration. No piece number given.

125-784A-39R-01 (11-12 cm)

OBSERVER: HIR

WHERE SAMPLED: Torishima Forearc Seamount, west flank

ROCK NAME: Serpentinized harzburgite

GRAIN SIZE: 1-4 mm

TEXTURE: Mesh and bastite

PERCENT PERCENT SIZE COMPO-MINERALOGY PRESENT ORIGINAL (mm) SITION MORPHOLOGY COMMENTS PHENOCRYSTS 1-4 Olivine 2-3 83 Anhedral Mostly altered to mesh textured serpentine. Clinopyroxene Trace Trace 0.1-0.3 Anhedral Forms exsolution lamellae in orthopyroxene and isolated anhedral crystal. Spinel 2 2 0.5-1.5 Subhedral-anhedral Dark red and translucent Cr-spinel is scattered throughout the rock. Orthopyroxene 7-8 15 1-4 Anhedral Partly altered to bastite-textured serpentine. GROUNDMASS N/A N/A N/A N/A N/A SECONDARY REPLACING/ MINERALOGY PERCENT COMMENTS FILLING Chrysotile/ 85-89 Olivine, orthopyroxene Form mesh and bastite textures after olivine and lizardite orthopyroxene, respectively. Magnetite <1 Occurs in serpentine veins. VESICLES/ CAVITIES PERCENT LOCATION (mm) FILLING Vesicles

COMMENTS: Wavy extinction and kink-bands are common in orthopyroxene crystals. Mesh texture is well developed in most of slide and olivine, thus there appears to be very little post-serpentinization deformation. Hourglass serpentine texture is also well developed in a portion of the slide. Clinopyroxene grains are usually near orthopyroxene edges. No piece number given.

125-784A-39R-CC (12-13 cm)

OBSERVER: HIR

WHERE SAMPLED: Torishima Forearc Seamount, west flank

ROCK NAME: Serpentinized dunite

GRAIN SIZE: 1-3 mm

TEXTURE: Mesh and bastite

PRIMARY MINERALOGY Olivine		PERCENT ORIGINAL 91-94	SIZE (mm) 1-3	COMPO- SITION	MORPHOLOGY Anhedral	COMMENTS Altered to mesh-textured serpentine.
Spinel	Trace	1	0.1-0.8		Anhedral	Altered to magnetite.
Orthopyroxene	0	5-8	0.5-1.5		Anhedral	Altered to bastite-textured serpentine.
SECONDARY MINERALOGY	PERCENT		ACING/			2010/57/77
		FILL			727 17 127	COMMENTS
Clays	10	Serpent				own clay is scattered throughout the rock.
Chrysotile/ lizardite	88-89	Olivine	, orthopy	roxene	Form mes	h and bastite textures.
Magnetite	1	Spinel			Fine-gra	ined magnetite is scattered throughout the rock.
VESICLES/			SIZE			
CAVITIES Vesicles	PERCENT 0	LOCATIO	N (mm)		FILLING	SHAPE

COMMENTS: Fragmentation and veining are prevailed throughout the rock. Veins vary in width from 0.5 mm to 2 mm, and consist of chrysotile, magnetite and clays. Veins appear to have no preferred orientation. Veins also have bright purple color which probably results from impregnation when making the thin section. No piece number given.

125-784A-40R-01 (10-12 cm)

OBSERVER: HIR

WHERE SAMPLED: Torishima Forearc Seamount, west flank

ROCK NAME: Meta-volcaniclastic rock

GRAIN SIZE: 0.5-1 mm

TEXTURE: Clastic

Vesicles

PRIMARY MINERALOGY Clinopyroxene	PERCENT PRESENT 20	PERCENT SIZE ORIGINAL (mm) 25-30 0.5-1	SITION	MORPHOLOGY Anhedral	COMMENTS Tectonically distorted and actinolitized.
SECONDARY		REPLACING	G/		
MINERALOGY	PERCENT	FILLING			COMMENTS
Clays	10-20	Matrix		Dusty brownis	sh clays are scattered throughout the rock.
Carbonate	<5	Vein fill		Forms veins.	
Chlorite	50	Matrix		Pale-green ch	nlorite fills in matrix throughout the rock.
Actinolite	<5	Clinopyroxer	ne	Occurs as sma	all acicular crystals along rim of

Prehnite	<2	Vein fill			clinopyroxene. Partly shows feather-like texture; colorless, high birefringence.
VESICLES/					
VESICLES/			SIZE		
CAVITIES	PERCENT	LOCATION	(mm)	FILLING	SHAPE

COMMENTS: This rock contains abundant clinopyroxene fragments in highly sheared chlorite and clay matrix. Clinopyroxene is distorted to varying degrees and is partly or fully actinolitized. Veins of calcite and chlorite (0.01 to

0.1 mm wide) run throughout the rock. No piece number given.

125-784A-40R-01 (12-15 cm)

OBSERVER: HIR

WHERE SAMPLED: Torishima Forearc Seamount, west flank

ROCK NAME: Metabasalt GRAIN SIZE: 0.05-0.1 mm

TEXTURE: Primary intersertal, secondary cataclastic

PRIMARY	PERCENT	PERCENT	SIZE	COMPO-		
MINERALOGY	PRESENT	ORIGINAL	(mm)	SITION	MORPHOLOGY	COMMENTS
Clinopyroxene	25-30	25-30	0.05-0.1		Anhedral	Mostly occurs as quench crystal.
Plagioclase	0	40-50	0.1		Euhedral-subhedral	Mostly occurs as quench crystal, replaced by chlorite.
Glass	0	25-30	N/A		N/A	Completely altered to clay and chlorite.
Opaques	<5	<5	0.05		Euhedral-anhedral	Scattered throughout the rock.
SECONDARY		REPI	ACING/			
MINERALOGY	PERCENT	FILL	ING			COMMENTS
Clays	<10	Glass,	plagioclase		Brown dusty cla pervasive.	y is locally visible, amorphous clays
Carbonate	5				Occurs as vein	minerals.
Chlorite	40-50	Glass			Pale-green in c	olor, low refractive index; pervasive.
Actinolite	Trace				Pale-green in c	olor.
Sphene	Trace				Fine-grained, h the rock.	igh refractive index, distributed throughout
VESICLES/			SIZE			
CAVITIES	PERCENT	LOCATIO	N (mm)	FII	LING	SHAPE
Vesicles	0					

COMMENTS: Fine-grained (0.01-0.05 mm) pale-green actinolite to actinolitic hornblende partly replaces primary clinopyroxene. Cataclastic deformation has prevailed throughout the rock. Fractured and pulverized fragments are predominant in the slide. No piece number given.

125-784A-40R-01 (52-54 cm)

OBSERVER: PHI WHERE SAMPLED: Torishima Forearc Seamount, west flank

ROCK NAME: Sand-sized serpentine

GRAIN SIZE: Fine-grained

TEXTURE: Foliated, anastomosing foliation

PRIMARY	PERCENT	PERCENT	SIZE	COMPO-						
MINERALOGY	PRESENT	ORIGINAL	(mm)	SITION	MOR	RPHOLOGY	COM	MENTS		
PHENOCRYSTS										
Olivine	0	Most	N/A		N/A	C	ompletely a	ltered.		
Orthopyroxene	0	Some?	N/A		N/A	С	ompletely a	ltered.		
GROUNDMASS										
N/A	N/A	N/A	N/A		N/A					
SECONDARY		REPL	ACING/							
MINERALOGY	PERCENT	FILL	ING			C	OMMENTS			
Clays	20	Serpent	ine, olivine	, orthopyroxene	10					
Serpentine	70	Olivine	, orthopyrox	ene?		Fibrous: fibers rad matrix.	ial in clas	ts bundled an	nd anastomosin	g in
Opaques	10	Olivine	, orthopyrox	ene?		Concentrated along	edges of fi	ber bundles i	n matrix.	
VESICLES/			SIZE							
CAVITIES	PERCENT	LOCATIO	N (mm)	F	ILLING		SHAPE			
Vesicles	0									

COMMENTS: Slide almost annihilated in polishing and grinding. Fine-grained fibrous serpentine anastomoses around serpentinite clasts. Probable serpentinite mud-flow. Original serpentine possibly foliated to yeild the abundant fibers. No piece number given.

125-784A-40R-02 (Piece 1B, 41-43 cm)

OBSERVER: TER

WHERE SAMPLED: Torishima Forearc Seamount, west flank

ROCK NAME: Serpentinized dunite

GRAIN SIZE: Not visible

TEXTURE: Mesh

PRIMARY	PERCENT	PERCENT	SIZE	COMPO-		
MINERALOGY	PRESENT	ORIGINAL	(mm)	SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Olivine	0	99	Not visible		Not visible	Altered to mesh-textured serpentine.
Spinel	<1	99 1	0.2-0.5		Euhedral-subhedral	Dark brownish black Cr-spinel.
GROUNDMASS						
N/A	N/A	N/A	N/A		N/A	
SECONDARY		REPL	ACING/			
MINERALOGY	PERCENT	FILL	ING			COMMENTS
Clays	5	Serpent	ine		Dusty brownish of especially in ve	clay is scattered throughout the rock,
Serpentine	90-95	Olivine			Chrysotile and/c	or lizardite replaced olivine.
Opaques	2	Spinel,	serpentine		Magnetite(?) is vein.	replacing partly spinel, and observed in
VESICLES/			SIZE			
CAVITIES	PERCENT	LOCATIO	N (mm)	FILL	ING	SHAPE
Vesicles	0					

COMMENTS: Mesh texture appears to define a crude foliation because mesh vein edges parallel one another to a great degree. Veins (0.1 to 0.5 mm wide) of serpentine and clays (after serpentine) run throughout the rock. Veins

(0.01 to 0.02 mm wide) of opaque minerals also exist.

125-784A-41R-02 (98-100 cm)

OBSERVER: HIR

WHERE SAMPLED: Torishima Forearc Seamount, west flank

ROCK NAME: Serpentinized dunite

GRAIN SIZE: 1-3 mm

TEXTURE: Mesh

				2	9
PHENOCRYSTS Olivine	0	99	1-3?	Anhedral	Completely altered to mesh-textured
ozzvine.		,,,	+ 5.	Amiediai	serpentine.
Spinel	<0.5	1	0.5-1.5	Euhedral to subhedral	Mostly altered to magnetite.
GROUNDMASS					
N/A	N/A	N/A	N/A	N/A	
SECONDARY		REPL	ACING/		
MINERALOGY	PERCENT	FILL	ING		COMMENTS
Clays	10	Serpent	ine		ish clay is scattered throughout the rock and with serpentine.
Chrysotile/ lizardite	85	Olivine		Form mesh te	exture which is well developed.
Magnetite	5	Spinel		Replaced spi 0.1-mm grain	inel and filled in vein with serpentine; dusty as.
VESICLES/			SIZE	 	
CAVITIES	PERCENT	LOCATIO	N (mm)	FILLING	SHAPE
Vesicles	0				

COMMENTS: This rock is highly altered, and contains abundant dusty brown clay fine-grained magnetite. Anastomosing veins of serpentine run throughout the rock. Some appear to form "Frankenstein-like" texture. Veins appear to be mostly chrysotile, clay and magnetite. No piece number given.

125-784A-42R-01 (Piece 1,5-8 cm)

OBSERVER: HIR

WHERE SAMPLED: Torishima Forearc Seamount, west flank

ROCK NAME: Serpentinized harzburgite

GRAIN SIZE: 1-5 mm

TEXTURE: Mesh and bastite

PRIMARY		PERCENT		COMPO-		
INERALOGY	PRESENT	ORIGINAL	L (mm)	SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Olivine	2-3	80-85	1-3		Anhedral	Mostly altered to mesh-textured serpentine.
Clinopyroxene	<1	<1	1-2		Anhedral	Forms exsolution lamellae in orthopyroxene and isolate anhedral crystal.
Spinel	<0.5	<0.5	<1	Cr	Euhedral-anhed	ral Reddish brown spinel scattered throughout the rock.
Orthopyroxene	10-15	15-20	1-5		Anhedral	Mostly altered to bastite textured serpentine.
GROUNDMASS						
I/A	N/A	N/A	N/A		N/A	
SECONDARY		REPI	LACING/			
MINERALOGY	PERCENT	FILI	LING			COMMENTS
hlorite	Trace	Orthopy	roxene		Pale-green	chlorite occurs in pyroxene bastite.
hrysotile/	75-80	Olivine	e, orthopy	roxene	Forms mesh	and bastite textures after olivine and
izardite					orthopyrox	ene, respectively.
Magnetite	Trace				Magnetite	(0.01 to 0.02 mm) scattered throughout the rock.
ESICLES/			SIZE			
CAVITIES	PERCENT	LOCATIO	ON (mm)		FILLING	SHAPE
esicles	0					

125-784A-42R-01 (Piece 4,39-41 cm)

OBSERVER: HIR WHERE SAMPLED: Torishima Forearc Seamount, west flank

ROCK NAME: Serpentinized dunite

GRAIN SIZE: TEXTURE: Mesh

PRIMARY	PERCENT	PERCENT	SIZE	COMPO-		
MINERALOGY	PRESENT	ORIGINAL	(mm)	SITION	MORPHOL	LOGY COMMENTS
Olivine	0	99	Not visible		Not visi	ible Altered to mesh-textured serpentine completely.
Spinel	Trace	1	0.2-0.6		Anhedral	Mostly altered to magnetite.
SECONDARY		REPL	ACING/			
MINERALOGY	PERCENT	FILL	ING			COMMENTS
Clays	5-10	Serpent	ine		Dust	brownish clay is scattered throughout the rock.
Chrysotile/	88-93	Olivine				
lizardite						
Magnetite	>1	Spinel			Spin	nel is almost altered to magnetite.
Sulfides	1				Fine	e-grained sulfide minerals (pyrrhotite?) are scattered
					thro	oughout the rock.
VESICLES/			SIZE			
CAVITIES	PERCENT	LOCATIO	N (mm)	FI	LLING	SHAPE
Vesicles	0					

COMMENTS: Anastomosing veins of serpentine run throughout the rock. Spinels form crudely elongated trails; mesh texture appears to define a crude foliation because mesh vein edges parallel one another to a great degree.

125-784A-45R-01 (Piece 3,98-100 cm)

OBSERVER: SAB

WHERE SAMPLED: Torishima Forearc Seamount, west flank

ROCK NAME: Serpentinized harzburgite

GRAIN SIZE: 0.1-5 mm

TEXTURE: Mesh (minor bastite)

VESICLES/ CAVITIES Vesicles	PERCENT	LOCATIO	SIZE (mm)		FILLING		SHAPE
Magnetite	0.5	Spinel					ains disseminated throughout slide.
Serpentine	80	Olivine	, orthopy	roxene			chrysotile forming mesh and bastite texture orthopyroxene, respectively.
MINERALOGY	PERCENT	FILLING		COMMENTS			
SECONDARY		REPL	ACING/				
GROUNDMASS N/A	N/A	N/A	N/A		N/	A	
Orthopyroxene	χ.	20	1-5		An	hedral	Altering to serpentine bastite texture, wavy extinction, (100) exsolution lamellae, kink-banded.
Spinel	0.5		0.01-0.5	Cr		hedral-subhedral	Dark brown to dark red brown, fractured.
Clinopyroxene	2	2	0.1-0.5		Su	bhedral-anhedral	As exsolution lamellae and as individual crystals.
PHENOCRYSTS Olivine	10		1-4		An	hedral	Altered to serpentine mesh texture, wavy extinction, kink-banded.
MINERALOGI	PRESENT	ORIGINAL	(mm)	SITION	М	ORPHOLOGY	COMMENTS
PRIMARY MINERALOGY		PERCENT	SIZE	COMPO-	823		

COMMENTS: Relatively pyroxene-rich serpentinized harzburgite. Orthopyroxene and olivine show wavy extinctions and are kink-banded. Olivine appears to have been more altered than orthopyroxene. Orthopyroxenes have anhedral inclusions of clinopyroxene and of serpentine pseudomorphs. Most clinopyroxene grains are concentrated near orthopyroxene margins.

125-784A-45R-02 (Piece 3,41-44 cm)

OBSERVER: HIR

WHERE SAMPLED: Torishima Forearc Seamount, west flank

ROCK NAME: Serpentinized harzburgite

GRAIN SIZE: 1-4 mm

TEXTURE: Mesh and bastite

VESICLES/ CAVITIES Vesicles	PERCENT 0	LOCATIO	SIZE N (mm)		FILLING		SHAPE
Magnetite 	Trace	Serpent	ine, veins) 		Occurs in serpe	entine veins; very fine-grained, dusty grains.
Chrysotile/ lizardit	60-70		, orthopy:			orthopyroxene,	
MINERALOGY	PERCENT	FILL					COMMENTS
SECONDARY			ACING/				
Orthopyroxene	15-20	30-35	1-4		Ar	hedral	Partly altered to bastite textured serpentine wavy extinction, kink-banded.
Spinel	Trace	Trace	<1		Eu	hedral-anhedral	exsolution lamellae in orthopyroxene. Reddish brown in color.
Clinopyroxene	2-3	2-3	1-1.5		Ar	hedral	Occurs as anhedral crystal and as
Olivine	5-10		1-4		Ar	nhedral	Mostly altered to mesh serpentine.
MINERALOGY	PRESENT	ORIGINAL	(mm)	SITION	N	MORPHOLOGY	COMMENTS
PRIMARY	PERCENT	PERCENT	SIZE	COMPO-			

COMMENTS: Serpentine veins (0.02 to 0.1 mm wide) run throughout the slide at no preferred orientation. Wavy extinction and kink-bands are visible in orthopyroxene crystals. Clinopyroxene-exsolution lamellae appear bent in some orthopyroxene crystals. Olivines are more altered than orthopyroxene.

125-784A-45R-02 (Piece 4,60-62 cm)

OBSERVER: SAB

WHERE SAMPLED: Torishima Forearc Seamount, west flank

ROCK NAME: Serpentinized harzburgite

GRAIN SIZE: 0.1-5 mm

TEXTURE: Mesh and bastite

PRIMARY COMPO-PERCENT PERCENT SIZE MINERALOGY PRESENT ORIGINAL (mm) SITION MORPHOLOGY COMMENTS PHENOCRYSTS Olivine 70 Anhedral Altered to serpentine mesh texture. 1-2 Clinopyroxene As exsolution lamellae and as grains 1.5 0.1-2 Anhedral near orthopyroxene margins. Spinel 2.5 0.1-2 Subhedral-anhedral Red-brown, fractured. Cr Orthopyroxene 25 0.1-5 Anhedral Altering to serpentine bastite, wavy 5 extinctions, kink-banded, (100) clinopyroxene lamallae. GROUNDMASS N/A N/A N/A N/A N/A SECONDARY REPLACING/ MINERALOGY PERCENT FILLING COMMENTS Clays Serpentine Dusty brown clay distributed throughout slide and intermixed with serpentine. Serpentine Lizardite and/or chrysotile forming mesh and bastite 80 Olivine, orthopyroxene textures. Dusty grains concentrated along cleavages of orthopyroxene Magnetite 1 Spinel mostly. VESICLES/ SIZE CAVITIES PERCENT LOCATION FILLING SHAPE (mm) Vesicles 0 COMMENTS: Relatively pyroxene-spinel-rich serpentinized harzburgite. Spinels are large and congregate in patches and

COMMENTS: Relatively pyroxene-spinel-rich serpentinized harzburgite. Spinels are large and congregate in patches and crudely elongate trains. They are fractured and have inclusions of anhedral serpentine pseudomorphs. Orthopyroxene grains have inclusions of anhedral serpentine pseudomorphs after olivine inclusions (olivine still inside one pseudomorph).

125-784A-45R-02 (Piece 5,92-94 cm)

OBSERVER: TER

WHERE SAMPLED: Torishima Forearc Seamount, west flank

ROCK NAME: Serpentinized harzburgite

GRAIN SIZE: 0.1-4 mm

TEXTURE: Mesh and bastite

PRIMARY PERCENT PERCENT SIZE COMPO-MINERALOGY PRESENT ORIGINAL (mm) COMMENTS SITION MORPHOLOGY PHENOCRYSTS Olivine 0 85-90 Not visible Not visible Altered to mesh-textured serpentine. Clinopyroxene 0 0.1-2 Anhedral Altered to bastite. Spinel Trace 0.1-0.3 Anhedral-subhedral Reddish brown Cr-spinel. Trace Orthopyroxene 0 10-15 0.5-4 Anhedral Altered to bastite. GROUNDMASS N/A N/A N/A N/A N/A SECONDARY REPLACING/ MINERALOGY PERCENT COMMENTS FILLING. 10-15 Dusty brownish clay is scattered throughout the rock, Clays Serpentine especially in vein. Serpentine Chrysotile and/or lizardite replaced clivine and 85-90 Olivine, orthopyroxene orthopyroxene. Magnetite is partly replacing spinel and observed in vein. Opaques Spinel, serpentine VESICLES/ SIZE CAVITIES PERCENT LOCATION FILLING SHAPE (mm) Vesicles

COMMENTS: Mesh texture appears to define a crude foliation because mesh vein edges subparallel one another. Veins (0.1 to 4 mm wide) of serpentine and clays (after serpentine) run through the rock.