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15. MAJOR-ELEMENT GEOCHEMISTRY OF ASHES FROM SITES 782, 784, AND 786 IN THE BONIN

FOREARC'

R. J. Arculus? and A. L. Bloomfield?

ABSTRACT

Many ash-rich layers, varying froma few millimeters to several centimeters thick, were identified in the sedimentary sequences
penetrated during Ocean Drilling Program Leg 125 at Sites 782, 784, and 786, located about 400 to 500 km south of Tokyo in
the Bonin forearc. The total age range of the ash layers is from Eocene to Pleistocene, although not all sites cover this full span.

The ashes consist of vitric, microlite-bearing, and crystal-rich components: the glassy shards are typically highly vesicular,
with elongate, flattened bubbles. The dominant crystalline phases are orthopyroxene, clinopyroxene, and plagioclase.

The major-element compositions of individual vitric shards collected from selected layers of Holes 782A, 784A, and 786A
were determined by electron microprobe analyses; particular care was taken to ensure that the analytical results were not
compromised by electron beam damage to the glasses.

Compositions range from basalt through andesite and dacite to rhyolite and generally belong to a tholeiitic, low-K suite. There
is no indication of any regular secular change during the evolution of the Bonin arc from tholeiitic through calc-alkalic to alkalic
compositions with time. In Holes 782A and 784A, some high-K rhyolite compositions of late Miocene and Pleistocene age are
present. A clear chemical distinction has existed since arc inception between the source(s) of these ashes and the upper mantle

source(s) tapped during construction of the igneous basement that formed the forearc.

INTRODUCTION

The results of a petrologic study of volcanic ash layers in Eocene-
Pleistocene sediments in the Izu-Bonin forearc are presented here.
This study was undertaken to determine the petrogenetic character
and evolutionary history of the explosive, subaerial magmatic activity
of the Izu-Bonin arc system. Major-element compositions of volcanic
glasses were determined; these were hand-picked from 36 selected
ash layers recovered from the ODP Leg 125 Holes 782A, 784 A, and
786A. These holes are located in the forearc region of the Bonin
system, and some of the oldest ash layers recovered appear to be
associated with the earliest stages of evolution of the arc.

Other scientists have studied similar ash layers recovered from the
sedimentary cover in the Mariana Trough (Warner et al., 1987),
however, the crust of this backarc basin is younger than that in the
forearc, and consequently, the earliest history of the adjacent arc
system is missing from the backarc ash record.

Holes 782A, 784A, and 786A are located 400 to 500 km south of
Tokyo, about 50 to 100 km from the axis of the Izu-Bonin
(Ogasawara) Trench and 50 to 120 km from the axis of the subaerially
active volcanoes of the Izu-Bonin arc (Fig. 1). With respect to the
nearest subaerial volcanoes, Sites 784 and 782 are southeast of
Sumisu Jima and northeast of Torishima, while Site 786 is southeast
of Aoga Shima. The ashes have been interpreted as the explosive
eruptive products of an adjacent subaerial arc system, although, of
course, the exact source of the ashes may not have been located along
the currently active axis of the Izu-Bonin arc.

Some of the most significant results of this study (bearing in mind
the sampling restriction to explosive fluxes only) include the follow-
ing: (1) the compositions of the recovered ashes lie within a remark-
ably consistent compositional band; (2) the ash compositions are
significantly different with respect to the Eocene-Oligocene forearc
basement high (FBH; Honza and Tamaki, 1985), penetrated at Sites
782 and 786 (and also at Leg 126, Site 793); and (3) the current
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voleanic rocks associated with the islands of Sumisu Jima and
Torishima also appear to be distinctly different, compared with most
of the Tertiary ash sequence.

Despite the disadvantage of sampling being restricted to the
explosive component of arc activity, it is nevertheless true that only
in the case of undisturbed, water-lain ash sequences can a fairly
complete sequential record of subaerial voleanic activity be obtained.
In contrast, lack of exposures or erosive gaps on volcanic edifices,
coupled with deep burial of the earliest stages of igneous construction,
limit our access to the record of geochemical evolution of the arc.

Another significant advantage for analyzing glass compositions
compared with compositions of phyric lithologies, of course, is that
glasses are directly representative of the liquid compositions and,
consequently, are of great value for determining liquid lines of descent
and processes of magmatic differentiation.

SAMPLE DETAILS

Atotal of 14 ash layers from Hole 7824, 10 layers from Hole 784 A,
and 12 layers from Hole 786A were examined. Ash layers selected
for study either lack or have minimal evidence for bioturbation and
reworking. Layers were chosen in an attempt to obtain a preliminary
and temporally representative sample sequence, although we recog-
nize that a large number of layers remain unstudied (e.g., 116 ash or
ash-dominated layers are documented in Hole 782A, 86 in Hole
784A, and 58 in Hole 786A), and significant time gaps have not been
studied to this point.

Biostratigraphic dating and magnetostratigraphy were combined
to obtain estimates for the ages of the ash layers studied (Table 1).
The ages for samples from Hole 782A range from 0.3 to about 42 Ma;
for Hole 784A from approximately 2.6 to 7 Ma; and for Hole 786A,
from about 2.6 to about 43 Ma. At this point we have been unable to
correlate any single layer across all three of the sites, nor examined
possible thickness variations in specific horizons in an attempt to
identify source directions.

ANALYTICAL TECHNIQUES

Individual shards were handpicked from the 5-to 10-cm?, plastic-tube
cores taken on board the ship. We endeavored to include as many different
sizes, shapes (most are elongated and jagged extemally), and colors
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Figure 1. Location map of ODP Leg 125 Sites 782, 784, and 786, together with active subaerial volcanoes of the Bonin arc. Depths are in kilometers.

(almost colorless through pale yellow and varying shades of bottle
green to greenish brown) of shards as possible in any given sample.
These samples were washed in deionized water in an ultrasound bath,
gently dried, mounted in perspex, and carefully polished.

The major-element chemistry of individual glass shards within ash
layers was determined with the fully automated, 3-spectrometer
Cameca Camebax electron microprobe located in the Electron
Microbeam Analytical Laboratory at the University of Michigan. The
great advantage of individual shard analysis is that the true degree of
heterogeneity within a given layer can be determined, and genuinely
magmatic compositions can be obtained that have been unsullied by
background sediment contamination.

Because hydrated glasses are particularly susceptible to alkali
metal loss during electron beam bombardment, analytical conditions
were carefully selected to minimize this potential problem. Also taken
into account is the tendency of silicon counts per second to increase
with time during electron bombardment of glass.

Other scientists have shown that Na and K loss during electron
beam bombardment of glass is minimized when high accelerating
voltage, low-beam current, short counting times, and a rastered
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beam are used (Neilson and Sigurdsson, 1981; Strope, 1984; -
Jercinovic and Keil, 1988). A variety of analytical conditions
were tested for their effectiveness in reducing Na and K loss
in these glasses. The optimum operating conditions were deter-
mined as (1) 15-kV accelerating voltage, (2) 5-nA beam cur-
rent with the beam rastered over an area of 15 um X 15 pm. Beam
rastering has the additional advantage of effectively averaging
any micrometer-scale compositional heterogeneities.

Electron beam damage to the glass samples and alkali metal
volatilization were minimized by using short counting times during
analysis of the unknowns. Counts were collected for 5 s for Na, K,
and Si, which were analyzed first. Counts for P and F were then
collected for 10 s, Ti, Mn, and Cl for 15 s, and finally Mg, Fe, Ca, and
Al for 20 s. Natural mineral standards were used to calibrate the
electron microprobe. Peak and background positions were occupied
for 30 and 15 s respectively, on the standards.

Several basaltic and rhyolitic glass standards of known composi-
tion (USNM 111240/52 VG-2; USNM 113498/1 VG-A99; USNM
72843 VG-568) were analyzed prior to analysis of the Leg 125
samples to monitor the accuracy of our microprobe calibration.



Table 1. Occurrence, depth, and age of ash layers.

Core, section Depth Age Shipboard
Interval (cm) (mbsf) (Ma) layer no.
125-782A-
1H-3, 22-24 3.2 <0.3 2
2H-6, 84-87 18.1 0.3-1.6 12
6H-1, 138-140 479 =20 —
11X-3,51-54 99.2 -3 29
13X-2, 104-106 117.5 3646 35
13X-3,52-54 1185 3646 36
14X-2, 113-115 127.3 3646 9
14X-2, 141-143 127.5 3646 40
15X-4, 15-17 139 3646 40
17X-2, 123-125 156.3 4.6-6.5 54
17X-5, 140-142 161.0 4.6-6.5 58
26X-1, 141-144 2417 ~9.0 89
29X-6, 3941 2770  10.2-105 99
41X-CC, 4447 385 42 —
125-T84A-
8R-5, 35-37 65 26 30
9R-1, 69-71 69 28 36
10R-3, 29-31 81 3.2 37
12R-2, 66-68 929 4.0 38
16R-4, 103-105 141 5.6 54
17R-3, 144-149 150 6.0 58
17R-4, 3840 150.5 6.0 59
18R-2, 32-35 157 6.3 63
18R-2, 102-104 158 6.3 64
20R-3, 67-69 178 7.1 74
125-7T86A-
1H-4, 23-25 4.7 -26 5
5X-1, 74-76 39 -6.5 33
6X-3, 126-128 52 ~10 41
6X-5, 79 53.7 ~10 42
6X-5, 3941 54 ~10 44
7X-2, 127-129 60 10-14 46
7X-3, 15-17 60.2 10-14 48
TX-5, 64-66 63 10-14 52
9X-3, 129-131 81 14-24 56
9X-4, 24-26 81.5 14-24 57
9X-5, 61-63 83 14-24 68
19X-CC ~43 —_—

Successful reproduction of the published values for the glass stand-
ards, within analytical uncertainty, indicates that the measurement
technique used yields accurate chemical analyses for these samples.

Microprobe totals obtained for the glasses range from 92% to
100%. The low totals may reflect in part the results of post-
depositional hydration of the glasses. Although some water may have
been magmatic, the volatile content (as estimated from some of the
oxide total deficiencies) apparently exceeds that soluble in a magma
of the observed composition (Clemens, 1984; see also Newman and
van der Laan, this volume). Furthermore, many of the glass shards
have textures indicative of exsolution of volatiles (vesicles or bubble
wall morphologies); thus it is unlikely that the glasses have retained
large amounts of pristine magmatic volatiles. Clearly, spectroscopic
studies of the abundances and speciation of the volatile complement
should be appropriate.

For ease of intersample comparison, the analyses have been recalcu-
lated to 100% on a volatile-free basis, and these data are presented in
Table 2. The relatively short counting times result in fairly large analytical
uncertainties for individual analyses. To reduce these uncertainties, repli-
cate analyses taken within individual shards were averaged. In some
cases, averages were taken of measurements from different shards (within
asingle ash layer) if the compositions of the shards were within analytical
precision for Si, Mg, Fe, and Ca. The number of analyses averaged are
alsoreported in Table 2. Note that the shards in ash layers from Hole 784 A
generally exhibit greater compositional variation than those in Holes
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782A or 786A, so that the majority of the measurements for ashes
from Hole 784A were not averaged.

PETROGRAPHY OF GLASSES AND PHENOCRYSTS

The glass fragments in the ash layers range in size from less than
1 mm, to 5 mm in maximum dimension. They are variably vesicular
and are remarkably fresh throughout the sequences from all three of
the holes, even those sequences from the early Miocene. Some
progressive devitrification and palagonitization is apparent in
samples from Oligocene through Eocene, but even in these some
apparently fresh material remains. Whether, in fact, these samples are
pristine with respect to fluid exchange with surrounding sediments
remains undetermined. The hydration suggested by microprobe totals
that reach a minimum of 92% is not evident optically in thin section.

The degree of crystallinity of the glasses is variable, even within
a single ash layer. Some ash layers are dominated by glass shards
without microlites; others are composed of glass fragments having a
significant microlite content. Some layers contain both crystal-free
shards and others having numerous crystallites, but there is no clear
compositional distinction that has yet been recognized between the
crystal-free or crystal-rich shards, However, because of the difficulty
in obtaining accurate chemical data by microprobe analysis of highly
inhomogeneous (microlite-rich) material, only data from crystal-poor
shards are presented here.

Many of the ash layers contain individual crystals. Most layers
contain plagioclase, but pyroxene also is fairly common. Pyroxene
compositions are presented in Table 3 and are projected in terms of
Mg-Fe-Ca components in Figure 2. Some individual ash layers con-
tain glass shards having a range of compositions, so it was not always
possible to discern from which melt a particular crystal or crystalline
assemblage had been derived. Consequently, pyroxene compositions
were determined only for crystals occurring in apparently
homogeneous layers. Nevertheless, the range of pyroxene composi-
tions obtained suggests that these layers may contain more than one
vitric and crystal ash population.

DISCUSSION

The major-element compositions of the ashes studied form a tight
continuum from basalt to rhyolite. This compositional range is of
tholeiitic (Fig. 3), low-K character. Ashes analyzed from Hole 782A
range from 53.1 to 78 weight % (wt%) SiO,, those from Hole 784A
range from 50.2 to 77.6 wt% SiO,, and those from 786A range from
47.6 10 76.3 wt% SiO,. The MgO contents of ashes from these holes
ranges from 5.8 to 0.04 wt% in Hole 782A, from 6.1 to 0.02 wt% in
Hole 784A, and from 8.8 to 0.4 wi% in Hole 786A.

Many of the compositional ranges of the ashes from the three holes
overlap when the analyses of all of them are plotted together (Fig. 4). As
is evident in these variation diagrams, for oxides such as CaO, FeO* (total
Fe as FeO), MgO, to a lesser extent Na,O, and for a subset for K,O, glass
compositions are tightly grouped and appear to vary systematically. Some
oxides vary linearly with silica (e.g., CaO) but others, such as MgO, vary
nonlinearly (Fig. 4). We interpret the distinctly nonlinear variation of
MgO with SiO, to indicate that the genesis of the spectrum of glass (melt)
compositions sampled was dominated by fractional crystallization rather
than simple mixing processes.

There is more relative scatter of oxide variation in the case of
Al,0;, TiO,, MnO, and particularly F and Cl. In the case of the minor
components, part of this scatter can reasonably be attributed to the
degree of precision of electron microprobe analyses at low concentra-
tion levels with relatively short counting times. The scatter in Al,O,
should be free of this type of analytical noise and, given that these are
glass compositions, appears to indicate that differing degrees of
plagioclase fractionation were involved in the parental magmas. Note
that within the trend of Al,O, variation with SiO,, there is about
16 wt% Al,O, at about 54-57 wt% SiO,.
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(>10° Pa) and elevated H,O activities on the position of the appropriate
cotectics means that other conditions are possible, and that this overlap

may be coincidental. Quantification of the pristine volatile contents wi

help to resolve this question,

Projections of the glass compositions in the olivine-clinopyroxene-
quartz pseudoternary phase diagram of Grove et al. (1982) are shown in

(2) the ages of the layers range over a

k]

Itis clear in detail that the glass compositions cannot represent a single
anic center

line of liquid descent because (1) the ash layers are probably not the

products of one vole

s thus a possible interpretation is that the overall

s projection
low pressures in shallow crustal-level magma chambers.

Figure 5. The glass compositions generally overlap closely the 10°-Pa
However, the opposing effects of equilibrium pressures of differentiation

cotectics of thi

compositional spread results from fractional crystallization differentia-

tion at very
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ompositions are inconsistent

Nevertheless, the compositional variation documented may have

resulted from the oft-repeated eruption of lavas that formed by a
common differentiation process, persistently reproduced, possibly in
more than one magmatic system, over a remarkable period of time.

period of about 40 Ma; and (3) the temporal relationships between
Note that we see no evidence for a secular change in the geochemistry

of these ash horizons taken in foto, and no hint of the production of

progression from low-to high-silica magmas (see Fig. 6).

the various c
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125-784A-9R-1, 69-71 cm, and 125-782A-11X-3, 51-54 cm, are

alternative explanation is that ash eruptions from more than one

correlated. These compositions are clearly distinct with respect to the
rest of the suite and have not yet been detected in Hole 786A.

volcano occurred within a relatively short period of time and that
some degree of bioturbation and reworking of the ash layers mixed

the different ashes together.

tions within

individual ash layers is evidence that analysis of individual glass shards
is a more accurate measure of original lava composition than are bulk ash

analyses. Furthermore, future application of any method of trace-element
analysis must take this heterogeneity into account, and one should take

great care to analyze homogeneous glass populations.

ement composi

in major-el

de range

wi

Note that the

K,O-rich compositions occur in Hole 784A in Cores 9 (about
69 meters below sea floor (mbsf) and 2.8 Ma old) and 17 (about
150 mbsf and 6 Ma old), and in Hole 782A in Cores | (atabout 3 mbsf

and <0.3 Ma old) and 11 in a bimodal population (at 99 mbsf, approx.
3 Maold). We are not convinced that the high-K,O layers in Samples
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Figure 2. Projections of pyroxene compositions in terms of relative proportions of Ca-Mg-Fe, separated by site. Sample numbers

are given.
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Table 3. Representative pyroxene compositions.

A column 1 column 2 column 3 column 4 column § column 6 column 7 column 8 column 9 column 10
5i0, 50.47 49.03 49.17 51.67 45.39 52.88 50.20 50.12 51.55 51.36
TiO, 0.25 0.39 0.55 0.23 1.65 0.23 0.39 0.49 0.24 0.53
Al,O, 1.05 118 1.69 1.15 7.72 1.16 2.29 257 0.67 1.38
Cr,0, 003 0.00 0.00 0.04 0.00 0.00 0.03 0.02 .00 0.00
FeO 18.36 28.25 2231 19.39 15.01 18.57 12.86 11.38 2693 14.27
MnO 0.84 0.53 0.50 048 0.34 04. 0.34 032 0.81 0.55
MgO 9.83 11.54 10.39 2091 10.85 23.34 15.67 15.61 17.58 12.46
CaO 18.79 7.31 13.61 3.58 16.46 2.25 16.35 17.51 1.B8 19.32
Na,0 0.16 0.08 0.18 0.04 0.40 0.01 0.16 0.16 0.02 0.22
Total 99.80 98.31 98.40 97.50 97.82 98.83 98.29 98.18 99.95 100.09
columnll  column 12  column 13  column 14  column 15  column 16  column 17  column I8  column 19  column 20
Si0, 51.18 50.97 51.59 51.96 51.06 50.31 51.29 51.16 52.96 53.57
TiO, 0.28 0.48 0.44 0.35 0.44 0.57 0.26 0.41 0.21 0.23
Al Oy 0.78 1.33 125 1.95 1.33 1.70 1.34 2.00 0.90 0.93
Cr04 0.02 0.03 0.00 0.15 0.00 0.00 0.00 0.01 0.00 0.00
FeO 26,24 14.45 14.41 8.37 2115 16.75 7.91 8.79 16.80 16.66
MnO 0.86 0.48 0.51 0.21 0.60 0.48 042 0.50 0.64 0.56
MgO 17.95 12.66 12.61 16.42 17.45 14.23 14.71 14.25 25.59 25.52
Ca0 2.01 19.25 19.02 20.10 6.83 14.21 21.90 21.77 1.24 1.27
Na,O 0.01 0.20 0.21 0.13 0.1 0.23 0.32 0.36 0.03 0.04
Total 99.33 99.85 100.03 99.63 98.97 98.47 98.15 99.26 98.37 98.76
column 21 column 22 column23  column24  column25 column26  column27  column28  column29  column 30
Sio, 55.03 54.47 48.94 51.15 49.27 50.16 50.04 51.03 51.10 50.50
TiO, 0.33 0.30 0.11 0.02 0.53 0.23 0.24 0.19 0.30 0.35
ALO, 1.80 1.86 4.50 247 2.44 0.94 0.99 0.96 0.91 0.99
Cry04 0.03 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00
FeO 14.22 13.86 20.61 19.72 15.94 22.26 22.85 2343 25.17 2334
MnO 0.28 0.29 1.22 1.19 0.47 0.66 0.57 0.63 0.74 0.69
MgO 28.76 28.90 9.30 10.30 14.46 18.55 17.94 18.38 17.14 16,03
Ca0 051 0.46 12.10 12.20 15.16 5.10 4.88 486 4.62 8.28
Na,0 0.02 0.01 0.32 0.19 0.20 0.06 0.08 0.06 0.07 0.13
Total 100,97 100.15 97.09 97.25 98.52 97.96 97.60 99.54 100.04 100.29
column 31 column32  column33 column34  column35  column36  column 37 column38  column39  column 40
Si0, 51.90 52,11 50.26 50.31 50,60 5042 50.47 50.14 50.64 50.81
Tio, 0.22 0.23 0.38 0.19 0.19 027 0.27 0.23 0.27 0.51
AlLO, 2.29 1.59 0.79 0.53 0.53 0.93 1.05 0.65 1.05 3.07
Cr,0,4 0.17 0.04 0.06 0.00 0.00 0.01 0.00 0.03 0.04 0.00
FeO 8.51 18.61 28.45 28.54 28.23 1477 15.03 28.52 14.87 14.65
MnO 0.28 0.44 0.72 0.94 0.79 0.49 0.56 0.95 0.48 0.52
MgO 16.22 21.12 14,38 17.07 16,97 11.77 12.01 16.57 12.13 14.07
Ca0 20.03 5.14 5.13 1.84 1.80 19.80 19.53 1.84 19.47 16.22
Na,0 0.16 0.07 0.07 0.00 0.03 0.24 0.24 0.07 0.21 0.20
Total 99.80 99.35 100.24 99.42 99.14 98.71 99,17 98.99 99.17 100.06
column4]l  column42  column43  column44  column45  column 46
Sio, 47.38 47.01 51.68 51.21 46.01 45.56
TiO, 0.94 1.00 0.28 0.27 1.20 1.27
AlO, 6.16 6.36 1.47 1.38 Y AE 7.19
Cr,0, 0.01 0.00 0.00 0.00 0.00 0.00
FeO 13.87 14.87 2372 24.06 16.12 15.68
MnO 0.36 040 0.77 0.77 0.34 0.28
MgO 11.81 11.91 17.10 17.74 11.52 11.22
CaO 19.01 18.48 5.61 4.57 18.14 18.30
Na,0 0.25 0.26 0.08 0.05 0.20 0.21
Total 99.79 100.30 100.73 100.06 100.70 99.71
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Table 3 (continued).
B column 1 column 2 column 3 column 4 column 5 column 6 column 7 column 8 column 9 column 10

#si* 1.958 1.962 1.946 1.969 1.760 1.968 1.904 1.897 1.975 1.948
#Ti* 0.007 0.012 0.016 0.007 0.048 0.007 0.011 0.014 0.007 0.015
#AP 0.048 0.056 0.079 0.052 0.353 0.051 0.102 0.114 0.030 0.062
#Cr'* 0.001 0.000 0.000 0.001 0.000 0.000 0.001 0.001 0.000 0.000
#Fe®* 0.596 0.945 0.738 0.618 0.487 0.578 0.408 0.360 0.863 0.453
#Mn** 0.028 0.018 0.017 0.016 0.011 0.013 0.011 0.010 0.026 0.018
#Mg™ 0.569 0.688 0.613 1.188 0.627 1.294 0.886 0.881 1.020 0.704
#Ca™ 0.781 0313 0.577 0.146 0.684 0.090 0.664 0.710 0.077 0.785
#Na'* 0.012 0.006 0.014 0.003 0.030 0.000 0.012 0.012 0.002 0.016
H#TOTAL 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000
¥ MgFeCa™ 1.946 1.946 1.928 1.952 1.798 1.962 1.959 1.951 1.960 1.941
En 0.292 0.354 0.318 0.609 0.349 0.660 0.452 0.451 0.520 0.363
Fs 0.306 0.486 0.383 0317 0.27 0.294 0.208 0.185 0.440 0.233
Wo 0.401 0.161 0.299 0.075 0.380 0.046 0.339 0.364 0.039 0.404

column 16 column 17 column 18  column 19  column20 column2l  column22  column23  column 24  column 25

#sit 1.934 1.934 1915 1.956 1.971 1.948 1.940 1.957 2038 1.886
#Ti* 0016 0.007 0.012 0.006 0.006 0.009 0.008 0.003 0.001 0.015
#AP* 0.077 0.060 0.088 0.039 0.040 0.075 0.078 0.212 0.116 0.110
#crt 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001
#Fe?t 0.539 0.250 0.275 0.519 0513 0421 0.413 0.689 0.657 0.510
#Mn™ 0.016 0.013 0.016 0.020 0.017 0.008 0.009 0.041 0.040 0,015
#Mgf* 0.815 0.827 0.795 1.409 1.400 1.518 1.534 0.554 0612 0.825
#Ca®* 0.585 0.885 0.873 0.049 0.050 0.019 0.018 0.518 0.521 0.622
#Na't 0.017 0.023 0.026 0.002 0.003 0.001 0.001 0.025 0.015 0.015
#TOTAL 4,000 4,000 4.000 4,000 4,000 4,000 4,000 4,000 4.000 4.000
X MgFeCa™ 1.939 1.962 1.943 1.977 1.962 1.958 1.965 1.762 1.790 1.957
En 0.420 0.422 0.409 0.713 0.713 0.775 0.781 0315 0.342 0.422
Fs 0.278 0.127 0.142 0.262 0.261 0.215 0.210 0.391 0.367 0.261
Wo 0.302 0.451 0.449 0.025 0.026 0.010 0.009 0.294 0.291 0.318

column 26 column27  column28  column29 column30 column3l column32 column33  column34  column 35

#sit 1.932 1.941 1.941 1952 1.923 1918 1.943 1.952 1951 1.966
#Ti* 0,007 0.007 0.005 0.009 0.010 0.006 0.007 0.011 0.005 0.006
#A1™ 0.043 0.045 0.043 0.041 0.044 0.100 0.070 0.036 0.024 0.024
#Cr'* 0.000 0.000 0.000 0.000 0.000 0.005 0.001 0.002 0.000 0.000
#l'-'cz: 0.717 0.741 0.745 0.804 0.743 0.263 0.581 0.924 0.926 0.917
#Mn’* 0.022 0.019 0.020 0.024 0.022 0.009 0.014 0.024 0.031 0.026
#Mgl'* 1.065 1.038 1.043 0.976 0.910 0.894 1.174 0.832 0.986 0,983
#Ca* 0.210 0203 0.198 0.189 0.338 0.793 0.205 0.213 0.077 0.075
#Na'* 0.005 0.006 0.004 0.005 0.010 0.011 0.005 0.005 0.000 0.002
#TOTAL 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000
¥ MgFeCa™ 1.992 1.982 1.986 1.969 1.991 1950 1.960 1.970 1.989 1.976
En 0.535 0.524 0.525 0.496 0.457 0458 0.599 0,423 0.496 0.498
Fs 0.360 0.374 0.375 0.408 0.373 0.135 0.296 0.469 0.465 0.464
Wo 0.106 0.102 0.100 0.096 0.170 0.407 0.105 0.108 0.039 0.038

column 31 column 32 column 33 column34  column35  column 36  column 37  column 38  column 39  column 40

#si* 1918 1.943 1.952 1.951 1.966 1.944 1.937 1.956 1.942 1913
#Ti% 0.006 0.007 0.011 0.005 0.006 0.008 0.008 0.007 0.008 0.014
#AI® 0.100 0.070 0.036 0.024 0.024 0.042 0.048 0.030 0.048 0.136
#Cr** 0.005 0.001 0.002 0.000 0.000 0.000 0.000 0.001 0.001 0.000
#Fe™* 0.263 0.581 0924 0.926 0.917 0.476 0.482 0.930 0477 0.461
#Mn? 0.009 0.014 0.024 0.031 0.026 0.016 0.018 0.031 0.016 0.016
#Mg™* 0.894 1.174 0.832 0.986 0.983 0.677 0.687 0.963 0.693 0.790
#Ca™ 0.793 0.205 0.213 0.077 0.075 0818 0.803 0.077 0.800 0.654
#Na'* 0.011 0.005 0.005 0.000 0.002 0.018 0.018 0.005 0016 0.015
#TOTAL 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000
TMgFeCa™ 1.950 1.960 1.970 1.989 1.976 1.971 1.972 1.970 1.970 1.905
En 0.458 0.599 0.423 0.496 0.498 0.343 0.348 0.489 0.352 0.415
Fs 0.135 0.296 0.469 0.465 0.464 0.242 0.245 0.472 0.242 0.242
Wo 0.407 0.105 0.108 0.039 0.038 0415 0.407 0.039 0.406 0.343
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Table 3 (continued).
column 41 column 42 column43  column44  column45  column 46

#Si** 1.792 1.772 1.954 1.946 1.734 1.734
#Ti* 0.027 0.028 0.008 0.008 0.034 0.036
HAP 0.275 0.282 0.066 0.062 0319 0.322
#Cr:' 0.000 0.000 0.000 0.000 0.000 0.000
#Fe™ 0.439 0.469 0.750 0.765 0.508 0.499
#Mn’* 0.011 0.013 0.025 0.025 0.011 0.009
#Mg™ 0.666 0.670 0.964 1.005 0.647 0.637
#Ca®* 0.770 0.746 0.227 0.186 0.732 0.747
#Na'* 0.019 0.019 0.006 0.004 0.015 0.015
#TOTAL 4,000 4,000 4.000 4,000 4,000 4,000
X MgFeCa™ 1.876 1.885 1.942 1.956 1.888 1.882
En 0.355 0.355 0.496 0.514 0.343 0338
Fs 0.234 0.249 0.386 0.391 0.269 0.265
Wo 0.411 0.396 0.117 0.095 0.388 0.397

A, as wit% oxides; B, in terms of cation proportions on the basis of six oxygen atoms, and end-member
enstatite (En), ferrosilite (Fs) and wollastonite (Wo) proportions. £MgFeCa”*refers to the sum of Mg,
Fe and Ca cations. Total Fe reported as FeO. Column numbers refer to the following ash layers, from
which the specific pyroxene analyses were made: 1-3, 125-782A-13X-3, 52-54 cm; 4-8, 125-7T82A-
17X-2, 123-125 cm; 9-16, 125-782A-17X-5, 140-142 cm; 17-20, 125-784A-9R-1, 69-71 cm; 21-24,
125-784A-17R-3, 144-149 cm; 25, 125-784A-20R-3, 67-69 cm; 26-33, 125-T86A-7X-3, 15-17 cm;
34-39, 125-786A-9X-3, 129-131 cm; 40-46, 125-786A-9X-4, 24-26 cm.
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Figure 3. Variation of FeO* (total Fe as FeO)YMgO vs. 5i0; for all ash
compositions. Discriminant line between tholeiitic and calc-alkaline composi-
tions is from Miyashiro (1974). In this figure and also Figures 4 and 5, symbols
are as follows: Hole 782A, circles; Hole 784A, triangles; Hole 786A, squares.

For homogeneous ash layers and consistent pyroxene assemblage
compositions, the thermometer of Lindsley (1983) was applied with
the assumptions (1) that the separate clinopyroxene and or-
thopyroxene crystal components were in equilibrium and (2) that an
equilibration pressure of 10° Pa is appropriate. Both assumptions may
be invalid, and further comparative study of pyroxenes within glasses
and the isolated crystals will be required. Preliminary results give a
range of equilibration temperatures from about 1050°C for the
analyzed ash layer from 125-782A-17X-2, 123-125 cm (~56 wt%
Si0,), to 780°C for the layer from 125-786A-9X-3, 129-131 cm
(~76 wt% Si0,).
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A notable absence from the ashes analyzed so far is any boninitic
or bronzite andesite component. Warner et al. (1987) recognized such
compositions in ashes recovered from the Mariana Trough. It would
appear that a pulse of intermediate-Ca and high-Ca boninite (terms
defined in Arculus et al., this volume) dike intrusion took place at
about 34 Ma in the FBH as recovered from Hole 786B (see Mitchell
et al. and Pearce et al., this volume). Our ash sampling density may
not have been sufficient to identify such compositions, especially if
they erupted over a limited time span; however, such materials may
yet be discovered.

Clearly, the ash suite examined to date is distinctive composition-
ally with respect to (1) the igneous lithologies recovered from the
basement underlying Holes 782A and 786A; and (2) the lithologies
present in the currently active subaerial arc volcanoes of Torishima
and Sumisu Jima (Fig. 7). The relatively high TiO, concentrations at
low SiO, abundances of the ash sequence is a particularly striking
difference and can be attributed to the involvement of a more-fertile upper
mantle source than that associated with both the FBH sites and the
currently active subaerial arc. In fact, we observed that with TiO,
concentrations of about 1.5 wt% at 50 wt% SiO,, the ash sequence
overlaps most closely with the relatively young eruptive products from
the actively spreading backarc basin to the west of Sumisu Jima. Our
current working hypotheses are ( 1) that across-strike chemical variations
in the nature of the upper mantle are tapped at different times during
magma generation episodes in the evolution of the overall arc basement
and (2) that these variations are relatively long-lived, sometimes escaping
general replenishment by advective processes in the mantle wedge
overlying subjacent, subducted lithosphere.

CONCLUSIONS

From an initial study of a representative set of vitric ashes recovered
from sedimentary sequences (mostly nannofossil-bearing calcareous
marls and clays) overlying the forearc basement of the Bonin arc, the
following conclusions can be drawn: (1) the geochemistry of these ashes
is remarkably consistent, with very limited spread around a basalt-to-
rhyolite spectrum; (2) the.sequences belong to a low-K tholeiitic suite;
(3) the compositions are coincident with experimentally-determined,
atmospheric-pressure cotectics and peritectics; (4) there is no indication
of a secular evolution of the chemistry of these ashes of increasing
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Figure 4. Variation of wi% oxides vs. wi% SiO, for all ashes, distinguished by Site.

alkalinity with time, in sharp contradiction with many popular models
of the magmatic evolution of island arcs; (5) the volumetrically
predominant crystalline phases are orthopyroxene and clinopyroxene
and plagioclase. Hydrous silicates are absent; and (6) the
geochemistry of the ashes is distinctly different, compared to the
igneous basement that formed the present FBH; clearly, different
sources in the upper mantle have been involved.
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Figure 5. Oxygen-weighted molar projections of ash compositions (grouped and also distinguished by individual site) in the pseudoternary clinopyroxene
(cms2)-olivine (m2s)-SiO, (s), after Grove et al. (1982); 10° Pa cotectics and peritectics are indicated.
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Figure 6. Oxide variations of ash compositions plotted against depth (in meters) below seafloor (mbsf). A. Site 782, B. Site 784, C. Site 786.
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Figure 6 (continued).
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Figure 7. Comparison of ash chemistry to lithologies from the forearc
basement high (recovered at Sites 782 and 786, see Arculus et al., this
volume) and active subaerial Bonin arc volcanoes (Torishima and Sumisu
Jima)., Symbols are as follows: igneous basement lithologies from Site
125-786, open squares; igneous basement from Site 125-782, filled
diamonds; igneous basement from Hole 126-793B, multiplication signs; sill
from Hole 126-793A, plus signs; ash layers from Hole 125-782A, open
diamonds; ash layers from Hole 125-784A, open circles; ash layers from
Hole 786A, dotted squares; open triangles, active subaerial volcanoes; filled
triangles, backarc rift.



