PROCEEDINGS
OF THE
OCEAN DRILLING
PROGRAM

VOLUME 126
INITIAL REPORTS
BONIN ARC-TRENCH SYSTEM

Covering Leg 126 of the cruises of the Drilling Vessel JOIDES Resolution,
Tokyo, Japan, to Tokyo, Japan, Sites 787-793,
18 April 1989-19 June 1989

Brian Taylor, Kantaro Fujioka, Thomas R. Janecek,
Jonathan Aitchison, Stanley Cisowski, Albina Colella, Patricia Ann Cooper,
Kathleen A. Dadey, Per Kristian Egeberg, John V. Firth, James B. Gill,
Yvonne Herman, Richard N. Hiscott, Malynn Isiminger-Kelso, Kunio Kaiho,
Adam Klaus, Masato Koyama, Henriette Lapierre, Michael A. Lovell,
Kathleen Marsaglia, Akira Nishimura, Philippe A. Pezard,
Kelvin S. Rodolfo, Rex N. Taylor, Kazue Tazaki, Peter Torssander
Shipboard Scientific Party
Thomas R. Janecek
Shipboard Staff Scientist

Prepared by the
OCEAN DRILLING PROGRAM
TEXAS A&M UNIVERSITY
Eva M. Barbu and Amanda Palmer Julson
Volume Editors
in cooperation with the
NATIONAL SCIENCE FOUNDATION
and
JOINT OCEANOGRAPHIC INSTITUTIONS, INC.
Foreword
By the National Science Foundation

The scientists of the Ocean Drilling Program (ODP) have embarked on what could prove to be one of the most important earth science initiatives of the decade—an initiative rivaling in scope and impact the exploration of the frontiers of outer space. The program explores our planet’s last frontier—the Earth’s structure and history as it is revealed beneath the oceans. The scope of the program’s scientific goals excites the imagination, challenges the intellect, and enhances the spirit of cooperation among peoples in countries around the world.

Between 1872 and 1876, HMS Challenger undertook the world’s first major oceanographic expedition. That expedition greatly expanded man’s knowledge of the world’s oceans and revolutionized our ideas about planet Earth. From 1968 to 1983, another ship named Challenger logged more than 375,000 miles on 96 voyages across every ocean for the Deep Sea Drilling Project (DSDP), operated by Scripps Institution of Oceanography. Among the project’s many remarkable discoveries were the confirmation of seafloor spreading and the establishment of the relative youth of the seafloor, thus verifying the dynamic and changing nature of the Earth’s crust.

Today, the Ocean Drilling Program, which began in 1983, brings new resources to bear on scientific ocean drilling. A new drillship is in operation—the JOIDES Resolution—one of the world’s most modern and best equipped drillships with enhanced capability for drilling and coring in polar areas and rough weather, expanded laboratory space, facilities for more scientists, and a major drill-hole logging program. The name of the ship was derived from the international scientific partnership that directs the program—the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES)—and from the flagship of Captain Cook’s second voyage to the Pacific Ocean in the late 18th century. Texas A&M University is responsible for science operations in the program, and Lamont-Doherty Geological Observatory is responsible for the logging program.

The Ocean Drilling Program truly has international participation. In 1975, the International Phase of Ocean Drilling began with member nations—the U.S.A., U.S.S.R., the Federal Republic of Germany, Japan, the United Kingdom, and France—all providing funds and scientific guidance for the project. Today, ODP partners include the U.S.A., the Canada/Australia Consortium for the Ocean Drilling Program, France, the Federal Republic of Germany, Japan, the United Kingdom, and the European Science Foundation, which represents Sweden, Finland, Norway, Iceland, Denmark, Belgium, the Netherlands, Spain, Switzerland, Italy, Greece, and Turkey. The National Science Foundation, with funds contributed by the United States and international partners, supports the scientific operations and planning for the ODP through a contract with Joint Oceanographic Institutions, Inc. (JOI).

The information gained by the program leads to a better understanding of the Earth and its dynamic processes. Drilled sediment cores and logs reveal clues to past climatic history and tie into parallel studies of paleoclimates from glacial ice cores drilled on the continents. Understanding these sediment cores will enable scientists to complete the map of major geologically active regions of the Earth, and to identify processes that lead to dynamic change such as earthquakes, volcanic eruptions, and mountain and continental growth. We are far from being able to predict such changes accurately now; but with the new tools and understanding, the accuracy of such predictions can be improved. This better understanding of the Earth’s system(s) will allow us to identify regions of potential mineral and energy resource development, an issue of worldwide human interest. The Ocean Drilling Program is not in itself aimed at finding resources, but the knowledge of the Earth’s processes that is gained through such a basic research program will inevitably provide pieces of information required for such resource discovery and exploitation.

The program is fully under way in its aim to further the understanding of the Earth’s dynamic systems. People of our planet will benefit directly and indirectly from this research in both their daily living and work activities. This multinational endeavor will perhaps foster other cooperative efforts in science or among societies. The Ocean Drilling Program has distinguished ancestors in the original Resolution and Challenger expeditions and the Deep Sea Drilling Project. The National Science Foundation is proud to be playing a leading role in this program, and we are looking forward to significant and innovative science for many years to come.

Erich Bloch
Director
National Science Foundation

Washington, D.C.
Foreword
By Joint Oceanographic Institutions, Inc.

This volume presents results from the Ocean Drilling Program (ODP), where scientists use a specially equipped ocean drilling ship to sample and measure the properties of the submerged part of the Earth's crust. These data are then synthesized with other information to yield new insights into earth processes.

These results address the scientific goals of the program, which include providing a global description of geological and geophysical structures and materials, studying in detail areas of major geophysical activity such as mid-ocean ridges and the associated hydrothermal circulations, and studying passive and active continental margins. In addition, the ODP data support the study of sea-level and ocean-circulation changes, the effects of the Earth's orbital variations on climate, and the study of processes and mechanisms of evolution from the biological records in the cores which are recovered from drilling.

The Ocean Drilling Program is a partnership of scientists and governments. Overall scientific policy and management guidance is provided by Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES), which consists of committees and panels made up of representatives of the participating institutions and other scientific and engineering experts. The JOIDES Executive Committee (EXCOM) provides general oversight; the JOIDES Planning Committee (PCOM) is the focal point for all scientific planning for the ODP and is key to the scientific success of the program.

The PCOM has a network of panels and working groups which screen drilling proposals, evaluate instrumentation and measurement techniques, and assess geophysical survey data and other safety and siting information. PCOM uses the recommendations of these panels and committees to select drilling targets, to specify the major scientific objectives of each two-month drilling segment or leg, and to provide the science operator with nominations for co-chief scientists. The science operator, Texas A&M University, in turn is responsible for planning the detailed ship's operations, actual drilling schedules, and final scientific rosters, which are developed in close cooperation with PCOM and the cognizant panels.

Many of the scientific goals can be met only with new technology. Thus the program has identified engineering goals, which include the ability to start a hole and to core on bare rock at mid-ocean ridge sites, to drill in high-temperature and corrosive regions typical of hydrothermal areas, and to core in high latitudes with minimum interference from high seas and sea ice. To meet these needs, the program operates a specially equipped drillship, the JOIDES Resolution, which contains laboratories and equipment that are state-of-the-art, and carries a major new logging program.

The ship, registered as SEDCO/BP 471 after her owners and her length in feet (144 meters), is 70 feet (21 meters) wide, and has a displacement of 16,595 long tons. Her derrick towers 200 feet (61 meters) above the waterline, and a computer-controlled dynamic-positioning system stabilizes the ship over a specific location while drilling in water depths up to 27,000 feet (8230 meters). The drilling system collects cores from beneath the seafloor with a derrick and drawworks that can handle 30,000 feet (9144 meters) of drill pipe. More than 12,000 square feet (1115 square meters) of space distributed throughout the ship is devoted to scientific laboratories and equipment. The ship sails with a scientific and technical crew of 50 and a ship's crew of 65.

Logging is a major part of the overall operation. The program provides a full suite of geochemical and geophysical measurements for every hole deeper than 1300 feet (400 meters). For each such hole, there are lowerings of basic oil-industry tools: nuclear, sonic, and electrical. In addition, a borehole televiwer is available for imaging the well-bore wall, a 12-channel logging tool provides accurate velocity and elastic property measurements as well as sonic waveforms for spectral analysis of energy propagation near the well bore, and a vertical seismic profiler records reflections from below the total depth of the hole.

Texas A&M University serves as science operator for the Ocean Drilling Program. In this capacity, they operate and staff the drillship to collect cores from JOIDES-designated sites from around the world. The science operator also ensures that adequate scientific analyses are performed on the cores by maintaining the shipboard scientific laboratories and by providing logistical and technical support for shipboard scientific teams. Onshore, Texas A&M manages scientific activities after each leg, is curator for the cores, distributes samples, and coordinates the editing and publication of the scientific results. Lamont-Doherty Geological Observatory (LDGO) of Columbia University manages the program's logging operations, which include processing the data and provision of assistance to scientists in data analysis. The ODP Data Bank, a repository for geophysical data, is also managed by LDGO. Core samples from ODP and the previous Deep Sea Drilling Project are stored for future investigation at three sites: ODP Pacific and Indian Ocean cores at Texas A&M University; ODP and DSDP Atlantic and Antarctic cores at Lamont-Doherty Geological Observatory, and DSDP Pacific and Indian Ocean cores at Scripps Institution of Oceanography.

International oversight and coordination are provided by the ODP Council, a governmental consultative body of partner country representatives, chaired by the United States, which periodically reviews the general progress of the program and discusses financial plans and other management issues. Joint Oceanographic Institutions, Inc., a nonprofit consortium of U.S. oceanographic institutions, serves as the National Science Foundation's prime contractor and manages the ODP. JOI is responsible for seeing that the scientific objectives and plans are translated into scientific operations consistent with JOIDES recommendations and budgetary constraints.

Scientific achievements of the ODP already include new data on early seafloor spreading and how continents separate and their margins evolve. We have new insight into glacial cycles and the fluctuations of currents throughout geological time. Technical achievements include the first bare-rock coring, and logging data more accurate and complete than ever before. JOI is pleased to have played a facilitating role in the Ocean Drilling Program.

D. James Baker
President
Joint Oceanographic Institutions, Inc.
Washington, D.C.
MEMBER ORGANIZATIONS OF THE JOINT OCEANOGRAPHIC INSTITUTIONS FOR DEEP EARTH SAMPLING (JOIDES):
University of California at San Diego, Scripps Institution of Oceanography
Columbia University, Lamont-Doherty Geological Observatory
University of Hawaii, Hawaii Institute of Geophysics
University of Miami, Rosenstiel School of Marine and Atmospheric Science
Oregon State University, College of Oceanography
University of Rhode Island, Graduate School of Oceanography
Texas A&M University, College of Geosciences
University of Texas at Austin, Institute for Geophysics
University of Washington, College of Ocean and Fishery Sciences
Woods Hole Oceanographic Institution
Canada/Australia Consortium for the Ocean Drilling Program, Department of Energy, Mines and Resources (Canada) and Department of Primary Industries and Energy (Australia)
European Science Foundation Consortium for Ocean Drilling (ECOD), Belgium, Denmark, Finland, Iceland, Italy, Greece, the Netherlands, Norway, Spain, Sweden, Switzerland, and Turkey
Federal Republic of Germany, Bundesanstalt für Geowissenschaften und Rohstoffe
France, Institut Français de Recherche pour l'Exploitation de la Mer
Japan, University of Tokyo, Ocean Research Institute

PRIME CONTRACTOR
Joint Oceanographic Institutions, Inc.
Washington, D.C.
Thomas E. Pyle
Director, Ocean Drilling Programs

OPERATING INSTITUTION
College of Geosciences
Texas A&M University
College Station, Texas
Melvin Friedman, Principal Investigator

OCEAN DRILLING PROGRAM
Philip D. Rabinowitz
Director
Louis E. Garrison
Deputy Director
Richard G. McPherson
Administrator
Audrey W. Meyer, Manager
Science Operations
Barry W. Harding, Manager
Engineering and Drilling Operations
Russell B. Merrill, Curator and Manager
Science Services
Robert E. Olivas, Manager
Technical and Logistics Support

LOGGING OPERATOR
Borehole Research Group
Lamont-Doherty Geological Observatory
Columbia University
Palisades, New York
Roger N. Anderson, Head
PARTICIPANTS ABOARD THE JOIDES RESOLUTION FOR LEG 126*

Brian Taylor
Co-Chief Scientist
Hawaii Institute of Geophysics
University of Hawaii
2525 Correa Road
Honolulu, Hawaii 96822

Kantaro Fujioka
Co-Chief Scientist
Ocean Research Institute
University of Tokyo
1-15-1 Minamidai Nakano-ku
Tokyo 164
Japan

Thomas R. Janecek
ODP Staff Scientist/Sedimentologist
Ocean Drilling Program
Texas A&M University
1000 Discovery Drive
College Station, Texas 77845-9547

Jonathan Aitchison
Paleontologist (radiolarians)
Department of Geology and Geophysics
University of New England
Armidale, N.S.W. 2351
Australia

Stanley Cisowski
Paleomagnetist
Department of Geological Sciences
University of California, Santa Barbara
Santa Barbara, California 93106

Albina Colella
Sedimentologist
Dipartimento Di Scienze della Terra
Università della Calabria
87939 Castiglione Cosentino
Scalo (CS)
Italy

Patricia Ann Cooper
Geophysicist
Hawaii Institute of Geophysics
University of Hawaii
2525 Correa Road
Honolulu, Hawaii 96822

Kathleen A. Dadey
Physical Properties Specialist
Graduate School of Oceanography
University of Rhode Island
Narragansett Bay Campus
Narragansett, Rhode Island 02882-1197

Per Kristian Egeberg
Inorganic Geochemist
Department of Geology
University of Oslo
Postboks 1047, Blindern
N-0316 Oslo 3
Norway

John V. Firth
Paleontologist (nannofossils)
Department of Geology
Florida State University
Tallahassee, Florida 32306

James B. Gill
Igneous Petrologist
Department of Earth Sciences
University of California, Santa Cruz
Santa Cruz, California 95064

Yvonne Herman
Paleontologist (foraminifers)
Department of Geology
Washington State University
Pullman, Washington 99164

Richard N. Hiscott
Sedimentologist
Earth Sciences Department
Memorial University
St. John's, Newfoundland A1B 3X5
Canada

MaLynn Isiminger-Kelso
Paleontologist (nannofossils)
Antarctic Research Facility
Florida State University
Tallahassee, Florida 32306

Kunio Kaiho
Paleontologist (foraminifers)
Institute of Geology and Paleontology
Faculty of Science
Tohoku University
Aoba, Sendai, 980
Japan

Adam Klaus
Physical Properties Specialist
Hawaii Institute of Geophysics
University of Hawaii
2525 Correa Road
Honolulu, Hawaii 96822

Masato Koyama
Paleomagnetist
Institute of Geosciences
Shizuoka University
836 Oya
Shizuoka 422
Japan

*Address at time of cruise.
Henriette Lapierre
Igneous Petrologist
Laboratoire de Géologie Structurale
Université d'Orléans
45067 Orléans Cedex 2
France

Michael A. Lovell
Logging Scientist
Department of Geology
University of Nottingham
University Park
Nottingham NG7 2RD
United Kingdom

Kathleen Marsaglia
Sedimentologist
Department of Geology
University of Texas at El Paso
El Paso, Texas 79968

Akira Nishimura
Sedimentologist
Marine Geology
Geological Survey of Japan
1-1-3 Higashi, Tsukuba-shi
Ibaraki 3065
Japan

Philippe A. Pezard
LDGO Logging Scientist
Borehole Research Group
Lamont-Doherty Geological Observatory
Columbia University
Palisades, New York 10964

Kelvin S. Rodolfo
Sedimentologist
Department of Geological Sciences
University of Illinois at Chicago
P.O. Box 4348
Chicago, Illinois 60680

Rex Neil Taylor
Igneous Petrologist
Geology Department
University of Southampton
Southampton S09 5NH
United Kingdom

Kazue Tazaki
Sedimentologist
Geology Department
Shimane University
Matsue
Shimane Prefecture 690
Japan

Peter Torssander
Igneous Petrologist
Department of Geology
University of Stockholm
S-10691 Stockholm
Sweden

SEDCO OFFICIALS

Captain Anthony Ribbens
Master of the Drilling Vessel
Underseas Drilling, Inc.
707 Texas Avenue South
Suite 103D
College Station, Texas 77840-1917

Jack Tarbutton
Drilling Superintendent
Underseas Drilling, Inc.
707 Texas Avenue South
Suite 103D
College Station, Texas 77840-1917
ODP ENGINEERING AND OPERATIONS PERSONNEL

Ron Grout Operations Superintendent
David Huey Operations Superintendent

ODP TECHNICAL AND LOGISTICS PERSONNEL

Wendy J. Autio Assistant Laboratory Officer
Jim Briggs Electronics Technician
Scott Chaffey Curatorial Representative
Valerie Clark Chemistry Technician
Joe DeMorett Marine Technician
David Divins Marine Technician
Bettina Domeyer Marine Technician
John R. Eastlund Computer Systems Manager
Susan Erb Marine Technician
Chris Galida Photographer
Ted ("Gus") Gustafson Marine Technician
Brad Julson Laboratory Officer
Kazushi ("Kuro") Kuroki Marine Technician
Christine Y. Mato Marine Technician
Dwight E. Mossman Electronics Technician
John Perry Chemistry Technician
Dawn J. Wright Yeoperson

Ocean Drilling Program Publications Staff

Publications Supervisor
William D. Rose

Chief Editor
Norman J. Stewart

Editors
Eva M. Barbu
Lona Haskins Dearmont
Sondra K. Stewart
William R. Winkler

Chief Production Editor
Jennifer Pattison Hall

Production Editors
Susan Collinsworth
Jaime A. Gracia (this volume)

Publications Coordinator
Janalisa Braziel Solits

Assistant Publications Coordinator
Jill Mutschler-Fontenot

Hole Summary Coordinator
Laura Hammond Young

Publications Distribution Specialist
Fabiola Muñoz Byrne

Senior Photographer
John W. Beck

Photographer
Roy T. Davis

Chief Illustrator
Karen O. Benson

Illustrators
L. Michelle Curtis
Linda C. DeLeon
Garnet D. Gaither
Cindy M. Mullican

Compositor
Mary E. Betz

Production Assistants
Gudelia ("Gigi") Delgado
Lisa L. Tirey
TABLE OF CONTENTS

VOLUME 126—INITIAL REPORTS

ACKNOWLEDGMENTS

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

SECTION 1: INTRODUCTION

1. **INTRODUCTION** .. 5
 B. Taylor and Shipboard Scientific Party

2. **EXPLANATORY NOTES** ... 13
 Shipboard Scientific Party

3. **UNDERWAY GEOPHYSICS DATA COLLECTED ON LEG 126** 43
 P. Cooper and Shipboard Scientific Party

4. **MULTICHANNEL SEISMIC SURVEY OF THE CENTRAL IZU-BONIN ARC** 51
 B. Taylor, G. Moore, A. Klaus, M. Systrom, P. Cooper, and M. MacKay

SECTION 2: SITE REPORTS

5. **SITE 787** .. 63
 Shipboard Scientific Party

6. **SITES 788/789** .. 97
 Shipboard Scientific Party

7. **SITE 790/791** ... 127
 Shipboard Scientific Party

8. **SITE 792** .. 221
 Shipboard Scientific Party

9. **SITE 793** .. 315
 Shipboard Scientific Party

SECTION 3: CORRELATION PAPERS

10. **CORRELATION AND COMPARISON OF FOREARC SITES** 407
 Shipboard Scientific Party

11. **CORRELATION AND COMPARISON OF BACKARC SITES** 415
 Shipboard Scientific Party

SECTION 4: CORES

Core description forms and core photographs for:

- **SITE 787** ... 421
- **SITE 788** ... 455
- **SITE 789** ... 489
SECTION 5: POLICY

JOIDES ADVISORY GROUPS ... 997
SAMPLE-DISTRIBUTION POLICY 1001

BACK-POCKET FOLDOUT

INITIAL REPORTS: CHAPTER 4: FIGURE 3. Forearc basin multichannel seismic (MCS) data. VE = 6.7.

INITIAL REPORTS: CHAPTER 4: FIGURE 10. Sumisu Rift MCS data.

BACK-POCKET MICROFICHE

Formation microscanner images for Leg 126:

Hole 792E: depth range, 2090.0–2484.2 mbrf

Hole 793B: depth range, 3543.0–4523.0 mbrf
ACKNOWLEDGMENTS

The Ocean Drilling Program Leg 126 scientific party expresses its thanks to all who gave invaluable help to make the outcome of the drilling along the Izu-Bonin Arc a great success.

We appreciate the cooperation and professionalism of Captain Tom Ribbens, his officers, and the crew of the JOIDES Resolution (SEDCO/BP 471), as well as Jack Tarbutton, the drilling superintendent, and the rest of the drilling crew. Dave Huey and Ron Grout, the ODP operations superintendents, skillfully provided that vital link between the scientific goals of Leg 126 and the realities of ocean drilling. The ODP scientific technicians were thoroughly dedicated and professional in their duties.

We are indebted to the Geological Survey of Japan, the Hawaii Institute of Geophysics, and the JOIDES/ODP Site Survey Data Bank for providing us with extensive pre-drilling surveys of each site. The cooperation and assistance of the Japanese scientific community, the Ocean Research Institute, the University of Tokyo, and the Department of Education, Science and Culture (Monbusho) are gratefully acknowledged. We thank the JOIDES Planning Structure, especially the Western Pacific Regional Panel, for their support of Leg 126. Last of all, the support and enthusiasm of our many Japanese colleagues on shore, who saw us off to sea and greeted us on our return, will long be remembered.