111	BI0 FO	SSIL	AT. CH	ZONE/		Sa					88.	s		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTURE	SAMPLES	LITHOLOGIC DESCRIPTION
						•9=72.0	-%CaCO3	1	0.5			•	*	PUMICEOUS GRANULE-PEBBLE GRAVEL AND PUMICEOUS PEBBLE-GRANULE GRAVEL Major lithologies: Dark gray (5Y 4/1, N3) and light brownish gray (2.5Y 6/2) PUMICEOUS GRANULE-PEBBL GRAVEL and PUMICEOUS PEBBLE-GRANULE GRAVEL. Sand/granule/pebble ratios range from 30/60/10 to 10/20/70. Maximum pebble sizes range from 21 to 48 mm, and met sizes of the ten largest clasts vary from 21 to 31 mm. Most pumice clast colors are gray (5 6/1) and light gray (N7), although two large clasts in Section 1, 96-104 cm, have greenish black (5GY 2/1) surface stains. Two intervals show crude inverse grading.
QUATERNARY		CN15					• % caco3 = 0.7	2	بيبيب البيبيا ليبيب					Minor lithologies: Section 1, 0-6 cm, (mudline layer) is grayish brown (10YR 5/2) NANNOFOSSIL-RICH VITRIC CLAYEY SILT grading upward into NANNOFOSSIL-RICH VITRIC SILTY CLAY. Section 1, 51-71 cm, is a soft intradeat of dark grayish brown (2.5Y 4/2), coarse-to very fining grained LITHIC VITRIC SAND. Section 1, 117-121 cm, is dark gray (5Y 4/1) very coarse-to Inne-grained VITRIC SAND. The core is undisturbed by drilling. SMEAR SLIDE SUMMARY (%):
	8/M	1/G	8/G					3						1, 1 1, 3 1, 55 M M M TEXTURE: Sand 20 5 Sit 50 25 20 Clay 50 55 75
	u	1	ι.											COMPOSITION: Accessory minerals Tr 2 1 Biotite Tr Clay 38 43 55 Diatomis 1 1 2 Feldspar 1 2 2 Foraminifers 2 2 3 Glass 40 40 10 Lithic fragments 1 1 Nannofossils 10 3 15 Opaques 1 2 Radiolarians 3 1 2

SITE 793

116	BIC	19.	5 A.T.	701	ILE I	-	-	_	CO	RE	2H CC	RE	D T		ERVAL 4.2-13.5 mbsf
TIME-ROCK UNIT	FORAMINIFERS	NANNOFOSSILS 15	RADIOLARIANS H	SWOLVIG	TER	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
								0.	1	0.5		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			PUMICEOUS PEBBLE-GRANULE GRAVEL AND PUMICEOUS GRANULE-PEBBLE GRAVEL Major lithologies: Dark gray (N3, 5Y 4/1) and dark greenish gray (10Y 4/1, 5/1) PUMICEOUS PEBBLE- GRANULE GRAVEL in Sections 1-3, and PUMICEOUS GRANULE-PEBBLE GRAVEL in Section 4-CC. Sand/granule/pebble ratios vary from 15/80/5 to 25/25/40. Maximum clast sizes are 30-50 mm across, and mean size of the ten largest clasts per section is 22-36 mm Pebble colors are gray, (5Y 6/1), dark greenish gray (10GY 4/1), very light gray (N8), and dark gray (5Y 4/1). Minor lithology: Section 1, 0-7 cm, is dark gray (5Y 4/1), medium-to fine-grained VITRIC
							-0-20.0	• %CaCO ₃ =1	2						SAND that probably represents cavings. Section 1 is very disturbed, and the rest of the core is moderately disturbed by drilling.
QUATERNARY		CN15							3						
									4						
	R/G	A/G	8						5						

ILE	1	193	<u> </u>	HO	LE	A	_	_	CO	RE	зн с	ORE	D	INT	ERVAL 13.5-23.0 mbsf
-	BI0 FOS	STR	CHA	RAC	TER	0	ES					88.	60		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTURE	SAMPLES	LITHOLOGIC DESCRIPTION
							• 1.10.0	• %CaCO3=22.6	1	0.5		0 0	2	*	PUMICEOUS GRAVEL, PUMICEOUS PEBBLY SAND AND FORAMINIFER-NANNOFOS- SIL SILTY CLAY Major Ilhologies: Section 1, 0-85 cm, and Sections 5 through CC consist of gray (5Y 6/1) and dark gray (5Y 4/1), structureless PUMICEOUS GRAVEL and PUMICEOUS PEBBLY SAND. The soupy nature of much of this material contributes to its homogeneous appearance. Pebbles locally account for 80% of the sediment. The rest of the core is predominantly dark gray (5Y clal) and light gray (N7), burrowed FORAMINIFER-NANNOFOSSIL SILTY CLAY with scattered clasts of pumice as large as 3 cm in diameter.
							9-71.73	• %caco ₃ =35.9	2	and and and a			\$ \$ \$ \$	*	Minor tithologies: The foraminifer-nannofossil sity clay contains graded interbeds, <10 cm thick, of olive black (5Y 2/1), grayish green (5G 5/2) and grayish black (N2) VITRIC SILT ar time-grained VITRIC SAND, particularly in VITRIC SILT, fine-grained VITRIC SAND, and GRANULE GRAVEL, all only a few centimeters thick. Section 1, 0-40 cm, and Sections 5 through CC are soupy. SMEAR SLIDE SUMMARY (%):
JATERNARY	N23	CN14b	•300Ka			z	• 9= 68.0 • 1.60	3. • × CaCO3	3	lou lou l			• ***	*	TEXTURE: Sitt 20 20 20 Clay 80 80 80 COMPOSITION:
o		A/G	c 9/0				9=70.0	%CaCO3 %CaCO3 %CaCC	4				<u>.</u>	OG IW	Accessory minerals Tr Tr Diatoms 3 Tr Foraminifers 10 5 15 Glass 64 45 45 Micrite 20 Nannolossils 20 30 40 Spicules 3
							• 9 - 1.60		5			0			
	16	16	16						6						

ITE	7	93	8	HOLI	E /	4	_	COF	E 4H (ORE	D	INT	ERVAL 23.0-32.5 mbsf
NIT	FOS	STRA	CHA	RACTER	2 00	SIL				BB.	83		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
					T	T		Π		0		t	PUMICEOUS GRAVEL, PUMICEOUS PEBBLY SAND AND NANNOFOSSIL CLAY
							3=29.7	1	0.5 1.0			*	Major lithologies: Section 1, 0 cm, to Section 2, 25 cm, and Sections 4, 95 cm to CC consist of soupy, dark gray (5Y 4/1) to medium gray (N5), structureless PUMICEOUS GRAVEL and PUMICEOUS PEBBLY SAND. Pebbles constitute as much as 80% of the sediment, and consist of clasts of black andesite and white rhyolite. The rest of the core is a soupy mixture of pieces of gr. (5Y 6/1) NANNOFOSSIL CLAY surrounded by envelopes of pumiceous gravel, with little evidence for or against primary interbedding.
						-9=68.0 -1.65	• %CaCO.			0			In Section 3, 32-42 cm, there is a fine-scale, primary interlayering of nannofossil clay and SCORIACEOUS GRAVEL. Some inferred drilling fragments consist of very light gray (N8) NANNOFOSSIL OOZE. In the fine-grained sediments, there are rare, very thin, grayish green (55 5/2) ash bods of VITRIC CLAVEY SILT.
								2		E 0		*	SMEAR SLIDE SUMMARY (%):
										0			1,66 2,68
									1	0			D D
								H		0			TEXTURE:
										0			Silt 20 20 Clay 80 80
1								2		1			COMPOSITION:
								ľ			Ľ		Clay 25 22
Ę										0			Diatoms 1 Fe oxide 1
NA		۵	Кa							0			Feldspar 1 Foraminifers 2 2
Ľ	N23	N14	000		-					0			Glass 20 20 Nannofossilis 50 50
LH		C	^							1 0			Opaques 1 1 Quartz 1
20						4.0		4		10			Spicules 1 2
			11			9-6-1		11			1	1	
						•							
								H		0			
										0		Ľ	
								5		0			
								1		0			
										0			
					1						1		
							2.3						
							- Co			0	Ł		
							%CaC	6		0			
							•			0			
										0		1	
								H		0			
								7					
	A/G	A/G	5/-					00		0			

ITE	810	79:	3 AT.	HOI ZONE/	LE	A	Г	co	RE	5H CO	RE	D	INT	ERVAL 32.5-42.0 mbsf
TIME-ROCK UNIT	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	SMOTAIO	ER	PALEOMAGNETICS	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
		A/G				0-11-0	• %CaCO3=46.8	1	0.5		www.www.www	22 22 23	*	NANNOFOSSIL SILTY CLAY, NANNOFOSSIL-RICH SILTY CLAY AND PUMICEOUS GRAVEL. Major lithologies: This core is a very disturbed jumble of stiff fragments, 5-15 cm thick, of gray (5Y 6/1) NANNOFOSSIL.BILTY CLAY, dark gray (5Y 4/1) NANNOFOSSIL-RICH SILTY CLAY. Bo of these lithologies are burrowed. The fragments are encased in a "matrix" of gray (5Y 6/1) PUMICEOUS GRAVEL. Pumice pebbles are as large as 11 macross. The arrangement. lithologies in this core is apparently not a result of drilling disturbance, because (a) long intervals of fine-grained lithologies are tilted, (b) there was a full stroke of the APC, and (c) recovery was is essentially 100%.
						-		2	o o la colta					Minor lithology: Section 3, 0-5 cm, and Section 4, 81-95 cm, consist of relatively undisturb horizons of medium gray (NS) and dark gray (5Y 4/1) VITRIC SILT (ash). The lower occur rence of this lithology is parallel laminated, and contains detrital maghemite (confirmed wit XRD). SMEAR SLIDE SUMMARY (%):
		A/G			-	• 0=29	58.9	3	artiontera se	ार्गेतात्रीय तेथा ति वितितत्वति विविधानित	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	• ≈ • ≈ •		TEXTURE: D<
UUA LEHNAHY	N23	CN14a	>300Ka			• \$=e8.0	•×caco3+	4			www.www.www	***		Casy Ta T To 30 20 Datoms 2 1 Feldspar 1 1 2 2 1 Foraminifers 1 1 Glass 30 59 80 59 69 Inorganic calcite 1 Nanolossis 50 25 5 3 Opaques 3 3 1 3 Quartz 1 1 Spicules 1 1 1
								5			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8 0 11		
					2	z		6	and and and		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	88 88	*	
						•Ø=64.0	• %CaCO3*28.7	7	location from		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
	A/G	A/G	F/G					8 CC			~			

SITE	7	93	2	HO	LE	4	1	i	COF	RE	6Н СС	RE	DI	NT	ERVAL 42.0-51.6 mbsf
1	BIO FOS	STRA	T. I	RAC	TER		S					8.	s		
TIME-ROCK UNI	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETICS	PHYS. PROPERTI	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTUR	SED. STRUCTURE	SAMPLES	LITHOLOGIC DESCRIPTION
						۳ ۳	• 0.0.0 • 1.73	• %CaCO3 • %CaCO3	1	0.5		~~		0G IW	NANNOFOSSIL CLAYEY SILT, NANNOFOSSIL CLAY, PUMICEOUS PEBBLY GRANULE GRAVEL AND PUMICEOUS SAND Major lithologies: About 50% of the core consists of variably burrowed, gray (5Y 6/1) to dark gray (5Y 4/1) NANNOFOSSIL CLAYEY SILT and NANNOFOSSIL CLAY with scattered pumice pebbles. The rest of the core is mainly dark gray (5Y 4/1) to gray (5Y 6/1), locally stratified and graded PUMICEOUS PEBBLY GRANULE GRAVEL, and dark gray (N3) to medium gray. (N5), fine-to medium-grained, graded beds of PUMICEOUS SAND, locally parallel lami- nated.
							• 9=66.0	• xCaCO3-47.4	2	and and and			*** ***		Minor lithologies: Section 3, 130-135 cm and Section 4, 18-34 cm, consist of thin graded beds of dark gray (N3, 5Y 4/1) VITRIC SILT and fine-grained VITRIC SAND. Section 2, 12-15 cm, consists of a graded ash bed of VITRIC SILT that is dark greenish gray (5G 4/1) at the top and olive black (5Y 2/1) at the base. It passes guward (7-12 cm) into an inversely graded horizon of pumice granules and pebbles encased in nannolossil clayey silt. Only small intervals in the core are very disturbed by drilling, or soupy. The rest of the core is undisturbed. SMEAR SLIDE SUMMARY (%):
		8					• 9=73.0	• %CaCO ₃ =59.4	3	and and and		1		*	2, 73 3, 70 3, 134 4, 28 4, 30 D D M M D TEXTURE: Sand 80 Silt 60 20 20 80 70 Clay 40 80 - 20 30
	N23	CN14				Z		6' 11	4	a real coord and a		000		**	ComPosition: Accessory minerals
							0.69-0	• × caco3-4	5	teritere for the		~ 00	*		Quartz 2 1 5 2 1 Spicules 2
									6	in the date of the second			F		
	A/G	A/G	R/M						7			000000			

11	BI0: FOS	STRA	CHA	ZONE/ RACTE	R	ES					RB.	s		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	ALL PARTA MATTER	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
X						0.4=67.0	• *CaC03	1	0.5			F		NANNOFOSSIL-RICH CLAYEY SILT, NANNOFOSSIL CLAYEY SILT, VITRIC SILT, VITRIC SILTY SAND AND VITRIC SAND Major lithologies: This core consists of approximately equal amounts of dark gray (5Y 4/1) to gray (5Y 8/1), burrowed NANNOFOSSIL-RICH CLAYEY SILT or NANNOFOSSIL CLAYEY SILT, and generally graded, locally parallel-or ipple-faminated, thin to medium beds of grayish black (N2), dark gray (N3. 5Y 4/1) VITRIC SILT, VITRIC SILTY SAND and VITRIC SAND. Some of these graded beds have eraolonal bases. Two of the virtic silt beds in Section 2, 55-65 cm and 94-101 cm, have a dusky green (5G 3/2), celadonite-rich cap that suggests that these are ash layers.
QUATERNAR	N23	CN14a			4	-71.0	• %CaCO3	2				1	*	Minor annoinges: Section 3, 35-36 cm, consists of light gray (N7) PUMICEOUS SAND (ash). SMEAR SLIDE SUMMARY (%): 2, 60 3, 118 M D TEXTURE:
	R/G	A/G	F/M			0-65.0	• %CaCO3	з					*	Sand 80 Silt 70 20 Clay 30 COMPOSITION: Accessory minerals Tr 10 Feldspar 5 15 Foraminifers Tr 5 Glass 83 70 Namolossils 10 Opaques 1

SITE 793

TIN	810 F05	STR	CHAI	CONE/	1 50	TIES	T				URB.	RES		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETH	PHYS. PROPER	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
						g=65.0	/=1.68	1	0.5		0 0 0		•	VITRIC SAND Major lithology: This core is very disturbed to soupy, and consists of probable flow-in of black (N1), fine-grained VITRIC SAND. There are local pieces of nannotossil-bearing sitly clay and scattered granules and pebbles in this material. Minor lithologies: In Sections 4 and 5, there are intervals of dritling-disturbed lithologies that may have form thin interbeds in the vitric sand. These now resemble drilling "biscuits". The lithologies represented are dark gray (5Y 4/1), parallel-laminated NANNOFOSSIL-BEARING VITRIC SILT and very fine-grained VITRIC SAND.
DUATERNARY		CN14a			Z	5		2			0 0 0			SMEAR SLIDE SUMMARY (%): 1, 50 4, 140 5, 30 D M D TEXTURE: Sand 80 10 70 Silt 20 80 15 Clay 10 15 COMPOSITION: Clay 10 15 Composition: Fe oxide Fe oxide 10 15
						-0-23-00	7-1-73	4			~~~ 0 0 0 0 0 0 0 0		*	Feldspar 15 2 2 Foraminiters 2 1 1 Glass 77 79 80 Inorganic calcite 1 Nannotossiis 2 5 3 Opaques 1 1 1 Quartz 1 1 Spicules Tr

NIT	FO	SSIL	AT. CH	ZONE/	2 00	TIES					URB.	SES		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETI	PHYS. PROPER	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
						• 9-63.0	• %CaCO3=2.1	1	0.5		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			VITRIC SAND, VITRIC SILT AND CLAYEY VITRIC SILT Major lithologies: 34% of the core is black (N1), structureless, fine-to very fine-grained VITRIC SAND, 32% is olive black (5Y 2/1), structureless VITRIC SILT, and 28% is olive black (5Y 2/1), structure- less VITRIC CLAYEY SILT. Minor lithologies: 5% of the core is olive black (5Y 2/1) NANNOFOSSIL-RICH VITRIC SANDY CLAY and 1% is black (N1) VITRIC SILTY SAND.
					z	• 9=66.0	• % C3C03=4.7	2	and and any		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			The entire core is very disturbed by drilling. SMEAR SLIDE SUMMARY (%): 3, 32 3, 107 3, 127 D M M TEXTURE:
QUATERNARY)	N21 - N22	CN14a	>300Ka			• 9=70.0	•%CaC03=9.7	3	anadianalara a				*	Sand 90 15 50 Silit 10 35 40 Clay 10 50 10 COMPOSITION: Accessory minerals Tr Tr 1 Clay 10 43 10 Diatoms Tr 2 Tr Fedspar 5 3 5 Foraminifers 1 2 Tr Glass 82 30 80
						• 9=64.0 1=1.79	•%CaCO3=12.7	4	contrastitues		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		OG	Opaques 1 Radiolarians - Tr Silicotingellates - Tr Spicules Tr Tr
	F/M	A/G	C/G		æ	• 9=64.0 • 7=1.78	%CaC03 • %CaC03•	5	a and a a fam.					

III	BIO	STR	CHA	RACI	/ TER	cs	TIES					URB.	SES		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETI	PHYS. PROPER'	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
THI	22					z	9-71.0		1	0.5				*	VITRIC SAND, VITRIC SILTY CLAY AND VITRIC CLAYEY SILT Major lithologies: 65% of the core is olive gray (5Y 3/2), brownish black (5YR 2/1), and light olive gray (5Y 5/ 2), structureless, very fine- to fine-grained, fine- to medium-grained, and medium-grained VITRIC SAND. 23% is gray (5Y 6/1), structureless VITRIC CLAYEY SILT and VITRIC SILTY CLAY.
NUA I ENVI	N21 / N2	CN14a				1		3*13.8	2			00000			Drilling disturbance varies from soupy to moderately disturbed. SMEAR SLIDE SUMMARY (%): 1, 25 CC, 6 M M
	R/G	A/G	R/G				• 9-64.0	• %CaCO	cc			~~~		*	TEXTURE: Sand 10 20 Silt 30 65 Clay 60 15 COMPOSITION:
															Accessory minerals Tr 1 Clay 48 15 Diatoms 2 Feldspar 2 1 Glass 35 83 Micrite 1 Namolosils 6 Tr Radiolarians 2 Tr Sticoflagellates 2

793A-10H	1	2	CC
	SUCCESSION .	10. 100	
5-			-
10		F.	
15-			
-			
-02	都是一		in a contraction
25			
30-	TRUN		
	रा देख		Carles Carles
-			
40-			
45	_	P Sel	
50-	-		
		t files i	
55-			
60—	-		
		23	
			Contraction in
70—	-	1	
75-		32.5	
-		Contractory of the local distribution of the	C. C
80-			C. B. Control Service
85—	-		
90-			
-			
95—		2-6	
100-			<u></u>
105-	_	- 1	
		0	and the second second
			A CONTRACTOR OF THE OWNER
115—	-	YO-TOP	
120-		And the second	<u> </u>
-	A A A A A A A A A A A A A A A A A A A		
-			
130		a leas	
135-		There are	
	-		
_		1 21	
145-		1 -1	-
150-	Acres 641	1-4-5	O B MONTH AND

SITE	793	HOLE	Α	CORE	11H	CORED INTERVAL	90.1-99.7	mbsf

5	BIO	STR	АТ. 2 СНА	ZONE/ RACTER		Es				88.	00		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTURE	SAMPLES	LITHOLOGIC DESCRIPTION
					æ	55.0 •	aco3-9.1 •XcaCo3	0			1	*	VITRIC SAND AND VITRIC SILT Major lithologies: Dark gray (5Y 4/1), medium to very fine-grained VITRIC SAND comprises 48% of the core. In Sections 1 and 2, which are only moderately disturbed by drilling, the sands display plana and cross lamination. In Sections 3 through CC, the sediment is very disturbed and the sand is homogenized. Structureless, gray (5Y 5/1) VITRIC SILT comprises 35% of the core. Minor lithology: The remaining 17% of the core is composed of gray (5Y 6/1, 5/1) NANNO- FOSSIL-RICH VITRIC SILTY CLAY, which occurs only in Sections 1 and 2. Some intervals in Section 1 are slightly burrowed. SMEAR SLIDE SUMMARY (%): 1,79 1,147 3,50 6,28 M M D D
						-6-	• %0	2			0		TEXTURE: Sand 5 5 75 Silt 15 25 80 20 Clay 85 70 15 5
INARY	N22	4 a	Ka			62	co ₃ =2.7	3		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		•	COMPOSITION: Accessory minerals Tr Tr 1 Clay 56 65 15 5 Diatoms 2 1 Tr Feldspar Tr 2 3 Foraminifers Glass 1 Tr 2 5 Glass 10 25 77 89 3 Glauconite Tr Little transments Tr
QUATER	N21 /	CN1	>300		-	• 9-64	• %CaC	4		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			Link raginents 11 2 Tr Tr Marchte 1 2 Tr Tr Nannofossils 15 Tr 1 Opaques 2 1 Pellets 2 Silicoflagellates Spicules 7r 1 Tr
					5			5		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
					æ		2.4	6		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		*	
	R/G	c/G	R/M			• 9=63.0	• %CaCO3=2	7		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			

R/P NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNET	rs. PROPER	TRY				5	5		
R/P		-		Hd	CHEMIS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DI	SED. STRUCT	SAMPLES	LITHOLOGIC DESCRIPTION
B			\$=13.01		[9-12.0] - [9-2.38] - [9-2.35] - [9-2.35]	2	0.5	IGNEOUS ROCK	×	2	*	128-7938-1R EPIDOTE-RICH CALCITE and MICROCRYSTALLINE QUARTZ Major lithologies: Light gray (N7), burrowed, recrystallized EPIDOTE-RICH CALCITE and Mi- CROCRYSTALLINE QUARTZ. There are granules and pebbies of basalt, as large as 1 cm across, in Section 1, 8-9 cm, just above the contact with olivine basalt that constitutes the rest of the core. There are vesicles in this sodiment just above the basalt contact. The original lithology of this material may have been carbonate-rich claystone, but the profominant components are now linely crystalline calcite and microcrystalline quartz. This sediment occurs as drilling fragments above the basalt. SMEAR SLIDE SUMMARY (%): 1, 5 M TEXTURE: Sift 30 Clay 70 COMPOSITION: Accessory minerals 5 Epidote 15 Gilass 5 Inorganic calcite 20 Silcia 55
					•9-120 •9-270	●¶=12.0 ●¶=2.77 ●¶=1.2.76	0 ² / ₂ / ₂ / ₂ 0 ² / ₂ / ₂ / ₂ 0 ² / ₂ / ₂ / ₂ 0 ² / ₂ / ₂ 3	• • • • • • • • • • • • • • • • • • •	2 001-2 001-2 0-21-2 0-21-2 3 IGNEOUS ROCK	2 901-2 0 0 0 0 0 0 0 0 0 0 0 0 0	CLCC CLCC CLCC CLCC CLCC CLCC CLCC CLC	CCC CCC CCC CCC CCC CCC CCC CCC CCC CC

12 /	00	<u>,</u>	nor		-	-	- 1	COR	NC.	211 0	T		1	ERTAL 594.70-004.50 mbst	7930
TIME-ROCK UNIT	NANNOFOSSILS SILS	RADIOLARIANS	SWOLVIO	R	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURG.	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION	5-
L L		ata			æ	7=1.63	%CaC03 •	1	0.5			- 11	*	NANNOFOSSIL CLAYSTONE Major lithology: Grayish green (5GY 6/1), burrowed NANNOFOSSIL CLAYSTONE with vi- thin, partly burrowed bands of mafic volcanic granules and pebbles as large as 9 mm across. Minor lithology: Section 1, 8-10 cm, consists of a drilling fragment of burrowed NANNOFC SIL-RICH VITRIC CLAYEY SILTSTONE. The core is moderately to highly fractured by drilling.	y 20- 3- 30-
NIO	CN4	D. alata - C. cost						2						SMEAR SLIDE SUMMARY (%): 1, 10 1, 33 M D TEXTURE: Sill 60 15 Clay 40 85 COMPOSITION:	35- 40- 45- 50- 55-
A/P	C/G	R/P						3	d'and and					Accessory minerals Tr Clay 30 47 Diatoms Tr Foldspar Tr 1 Glass 60 1 Nannofossils 10 50 Opaques 1	65

--

NIT	810 F05	STR	CHA	ONE/	u s	TIES				URB.	ES		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETI	PHYS. PROPER	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
NE					æ	5.0 •0=61.0	aco3=0.3 • % CaC03	1	0.5		ると	*	VITRIC SANDSTONE, VITRIC SILTSTONE and SILTY CLAYSTONE Major lithologies: The core is predominantly thin to medium graded beds, consisting of a lower, very thin to thin division of fine-grained, parallel- or ripple-tarninated VITRIC SANDSTONE or VITRIC SULTSTONE, overlain by a thicker division of parallel-tarninated SILTY CLAYSTONE that becomes strongly burrowed at the top. This uppermost sediment locally contains bands of scattered black voicanic sand that have been mixed into the sediment by burrowers. Minor lithology: Section 1, 73-107 cm, consists of a bed of poorly sorted, very coarse- granged DERBIN V MIDDY SANDSTONE with a share to and have the contains a cohing of
MIDDLE MIDCE	N9 -N10	- CN4				1=66.0	%CaCO3=11.1 • %C	2		111111		*	grane report problem of Monter with a memory top and upset in a consist-rich clayey sittstone. These are believed to be much larger than the core diameter, and their interpretation as clasts is not unequivocal. SMEAR SLIDE SUMMARY (%): 1, 68 2, 100 3, 52 D M D TEXTURE:
	0	0				• 9-67.0	03. ×caco3 .	3		1	1+1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	*	Sand 80 60 Silt 20 10 20 Clay 30 80 COMPOSITION: Accessory minerals Tr Clay 20 Feldspar 5 2 5 Foraminfers Tr Glass 95 38 95 Inorganic calcite 30 Nannofossilis 10

111	FOS	STR	CHA	ZONE	/ ER	\$	Es					RB.	S		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
MIDULE MIDCENE	N9 - N10	CN4				R	•9=58.0 •9=60.0 •9=67.0 •9=67.0	• x caco ₃ =2.0 • x caco ₃ =2.6 • x caco ₃ =27.1 • x caco ₃ =27.1 • x caco ₃ =27.1	1 2 3 4	0.5				*	VITRIC SANDSTONE, VITRIC SILTSTONE, VITRIC SILTY CLAYSTONE AND NANNO- FOSSIL-RICH CLAYSTONE Major lithologies: The core is predominantly thin to medium, graded beds, consisting of a lower very thin to tin division of fine-grained, parallel- or ripple-laminated VITRIC SANDSTONE or VITRIC SILTSTONE, overlain by a thicker division of parallel-iaminated VITRIC SANDSTONE or VITRIC SILTSTONE, overlain by a thicker division of parallel-iaminated VITRIC SLTY CLAY- STONE, overlain, in turn, by strongly burrowed NANNO-COSSIL-RICH CLAYSTONE. This uppermost sediment locally contains bands of scattered black volcanic sand that have bee mixed into the sediment by burrowers. Section 2, 70-115 cm, contains sub-vertical veloteds Most of the core is slightly fractured by drilling. Small intervals are moderately fractured. SMEAR SLIDE SUMMARY (%): 1, 38 2, 10 3, 79 D D M TEXTURE: Silt 80 15 80 Clay 20 85 20 COMPOSITION: Accessory minerals 2 Tr Clay
	N	P /	Ň						cc	-			Ha-		

.....

793B-4R 1 2 3 4 5 5-10-15-----20-25-30---35-40-45-50-55----60----65-1.4 70-75-100 2.0 80-85-181 3 3 1 2 1 2 3 2 3 90-..... -85--100a set 105------110-115-1 1 120-125-130-135-140-1 1 145-150-

SITE 793

11 I	FO	SSIL	АТ. СНА	RACT	/ TER	67	Sa					RB.	8		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTURI	SAMPLES	LITHOLOGIC DESCRIPTION
							70 0-1-08	• xcaco3	1	0.5		1111			VITRIC SANDSTONE, VITRIC SILTSTONE, VITRIC SILTY CLAYSTONE, SILTY CLAY- STONE AND NANNOFOSSIL CLAYSTONE Major lithologies: The core is predominantly thin to medium, graded beds, consisting of a lower very thin to thin division of the-grained, parallel-or ripple-laminated VITRIC SANDSTONE or VITRIC SILTSTONE; overfain by a thicker division of parallel-laminated VITRIC SILTY CLAY- STONE, overfain, in turn, by strongly burrowed SiLTY CLAYSTONE or NANNOFOSSIL CLAYSTONE. This uppermost sediment locally contains bands of scattered black volcanic sand that have been mixed into the sediment by burrowers. Bedding dips at 3°-4°. There are faults that dips at about 60° and have about 10° displays at 3°-4°. There are
CENE	0		ata				•9-60	• %CaCO3 = 3.2	2			1111	7/2	*	Section 3, 65-80 cm, and Section 4, 127-142 cm. Sub-vertical dewatering veinlets occur in Section 3, 65-75 cm. Most of the core is slightly fractured by drilling. SMEAR SLIDE SUMMARY (%): 2, 58 4, 10 5, 3 D M M
MIDDLE MIO	N9 - N1	CN4	D. alata - C. cost.			æ	• 9 = 0.0	• %CaCO ₃ =3.6	3			1111			TEXTURE: Sand 80 Sitt 30 20 20 Clay 70 80 COMPOSITION: Accessory minerals 2 Clay 10 2 30 Diatoms Tr Fieldspar 5 15 3
			1				• 9=45.0	" • %CaCO ₃ =1.4	4	the second s			「「「「「「「「」」	*	Foraminiters Tr 3 Glass 85 81 35 Inorganic calcite 7 Nannofossiis 20 Radiolarians Tr Tr
	S/P	c/6	R/M				•9 =59.0	• %CaCO3	5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		111	廿二	*	

N XOR Sign 2000	NIT	BIO	STR	АТ. СНА	ZON	E/	0	IES					JRB.	ES S3		
U 0	TIME-ROCK UI	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
UN UN <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>9-1-65.0</td><td>•Xcaco3</td><td></td><td>0.5</td><td></td><td>-</td><td>======</td><td>*</td><td>NANNOFOSSIL CLAYSTONE AND VITRIC SILTY CLAYSTONE Major lithologies: Beds of strongly burrowed, greenish gray (5G 5/1) NANNOFOSSIL CLAYSTONE, 2-29 cm</td></td<>								9-1-65.0	•Xcaco3		0.5		-	======	*	NANNOFOSSIL CLAYSTONE AND VITRIC SILTY CLAYSTONE Major lithologies: Beds of strongly burrowed, greenish gray (5G 5/1) NANNOFOSSIL CLAYSTONE, 2-29 cm
O X There are four back of greenish gray (56 5/1) and modulin light gray (N6) VITRIC: SANDSTONE, 6 M Y Y Y M Y	CENE	0							.24.6	1	1.0			た ##		mick, comprise 53% of the core. Another 29% of the core is dark gray (51 4/1) V1 HIC SILTY CLAYSTONE, in beds 3-15 cm thick, commonly planar taminated with less common cross famination.
Image: Section 2 contains a dewatering structure at 24 cm, a microfault at 75 cm, and a sr structure at 83-86 cm. Image: Section 2 contains a dewatering structure at 24 cm, a microfault at 75 cm, and a sr structure at 83-86 cm. Image: Section 2 contains a dewatering structure at 24 cm, a microfault at 75 cm, and a sr structure at 83-86 cm. Image: Section 2 contains a dewatering structure at 24 cm, a microfault at 75 cm, and a sr structure at 83-86 cm. Image: Section 2 contains a dewatering structure at 24 cm, a microfault at 75 cm, and a sr structure at 83-86 cm. Image: Section 2 contains a dewatering structure at 24 cm, a microfault at 75 cm, and a sr structure at 83-86 cm. Image: Section 2 contains a dewatering structure at 83-86 cm. Image: Section 2 contains a dewatering structure at 24 cm, a microfault at 75 cm, and a sr structure at 83-86 cm. Image: Section 2 contains a dewatering structure at 24 cm, a microfault at 75 cm, and a sr structure at 83-86 cm. Image: Section 2 contains a dewatering structure at 83-86 cm. Image: Section 2 contains a dewatering structure at 83-86 cm. Image: Section 2 contains a dewatering structure at 83-86 cm. Image: Section 2 contains a dewatering structure at 83-86 cm. Image: Section 2 contains a dewatering structure at 83-86 cm. Image: Section 2 contains at 85 cm.	DLE MIO	10 - N1	CN4				æ	· 9=62.0	•xcaco3.		11111		L X X	111	*	There are four beds of greenish gray (5G 5/1) and medium light gray (N6) VITHIC SLT, 4- 22 cm thick, and two beds of light gray (N7), fine-grained VITHIC SANDSTONE; 6 and 9 cr thick, that respectively comprise 15% and 5% of the core. These beds are planar laminated Two pumice clasts occur in the core, one 5 mm in diameter in Section 1, 97 cm, and one 10 x 35 mm in cross section in Section 2, 116 cm.
SMEAR SLIDE SUMMARY (%):	MID	2							3=19.6	2	Lunt			Minete	*	Section 2 contains a dewatering structure at 24 cm, a microfault at 75 cm, and a small slum structure at 83-86 cm. The core is slightly fractured to undisturbed by drilling.
1,20 1,37 2,39 2,83 D M D M									xcaco		-			10	og	SMEAR SLIDE SUMMARY (%):
								67.0	aco3 .	3					iw	1, 20 1, 37 2, 39 2, 83 D M D M

Sand

Silt

Clay Feldspar

Glass Micrite

Pellets

Spicules

Foraminifers

Nannofossils

Radiolarians

COMPOSITION:

Accessory minerals

Tr 35 65 60 30 10 15 85 5 85 10

Tr 62 Tr

30

1 1

з 2

1

1

Tr 10

1

86

74 1

1 15

Tr Tr 1

10 2 Tr 82 Tr

2

÷

1

SITE 793

R/M F/M R/P

-	BIO FOS	STRA	AT. 3	ZONE/	ER		ES					8.	00		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETICS	PHYS. PROPERTI	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTUR	SED. STRUCTURE	SAMPLES	LITHOLOGIC DESCRIPTION
MIDDLE MIOCENE	N9 - N10	CN4	ata - C. costata			Я	9=1:92	%CaCO3 •	1			×⊥⊶	*	*** **	NANNOFOSSIL CLAYSTONE Major lithology: Strongly bioturbated, greenish gray (5G 6/1) NANNOFOSSIL CLAYSTONE comprises 96% of the core. Minor lithology: Two layers of very dark gray (5Y 3/1) VITRIC SILTY CLAYSTONE, each 2 cm thick and probably representing ash falls, comprise the remaining 4% of the core. Drilling has highly fractured the top 10 cm of the core, and moderately fractured the rest. SMEAR SLIDE SUMMARY (%): 1, 8 1, 16 1, 25 CC, 1 CC, 13 M D D M M
	C/G	A/G	R/P D. al												TEXTURE: Sand 5 5 Tr 60 15 Silt 60 35 20 30 35 Clay 35 60 80 10 50 COMPOSITION:

SITE	793	HOLE	в	CORE	8R	CORED INTERVAL	652.4-662.1	mbsf
and the second								

Ę	FO	SSIL	AT. Z	ACTER	07	ES					R8.			
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTURI	SAMPLES	LITHOLOGIC DESCRIPTION
MIDDLE MIDCENE	8N	CN4	D. alata - C. costata		æ	9-64.0 • • 9-61.0	%CaCO3 • • %CaCO3 =6.2	1 2 CC	1.0		V I I I IXI		*	NANNOFOSSIL CLAYSTONE Major lithology: 75% of the core is composed of greenish gray (5G 6/1) NANNOFOSSIL CLAYSTONE, much of which is strongly bioturbated, in layers 5-40 cm thick. Minor lithology: Intervals of very dark gray (5Y 3/1) VITRIC SILTSTONE (13%), greenish black (5GY 2/1) VITRIC SANDSTONE (9%), very dark gray (5Y 3/1) CLAYEY SILTSTONE (4%) and SILTY CLAYSTONE (3%), all -12 cm thick, comprise the rest of the core. These lithologies are typically planar laminated. Two intervals have basal cross lamination, and one has a scoured base. Microfaults occur in Section 1, 10-15 cm, 43-49 cm, 96-100 cm and 117-122 cm, the latter with slickensided surfaces that dip 60°. Section 1, 6-30 cm, is highly fractured, and the rest of the core is moderately fractured. SMEAR SLIDE SUMMARY (%): 1, 76 2, 13 M M
	C/G	A/G	R/M I											TEXTURE: Sand 90 Tr Silt 10 40 Clay 60 COMPOSITION: Accessory minerals Tr Tr Clay 34 Foldspar Tr 2 Glass 99 60 Micrite 1 Nannofossils 1 2 Radiolarians Tr Spicules 1

793B-8R	1	2	CC
_			-
5	199 A	E water water	ALCO DE
		10000	10 St.
10-	10.00	I WARE	1.000
	i i i i i i i i i i i i i i i i i i i	145	and the second
15-	s = de	the same of	and the second second
	Start St		
20-	Const Inte		100 - 100 ·
	~	1.000	and the second
25-			
	Sec. 1	au and	
30-		a linear a	and the second second
_	Veres -	Statistics	
35-	Contraction of the local division of the loc	State of the second	
		a tarter of	
40-	100 million	The second se	5-10
1	1000	and the second second	entral to capital
45-	and the second second		
	1000	Control Control	President and a state of the
50-	1000		
-	State		
55	-		
60-	here -		and the second second
	0.00 C	Second Land	Section Sector
65-	- 10 M		
			Contraction of the second
70-	No.		
			1
/5-		the second second	
80-			
_	(Designed	Contraction (Second	Summer of Assession
85-			
		A	NOT THE DUCK
90	I DE LE COL	the second second	Ser Spin
11111			
95-			
-	No. State		
100-		-	
-			
105-	100 million (
	1000		· · · · · · · · · · · · · · · · · · ·
110-	Caller Inte		
115		Distance in the second	Contract Inc.
110	10	and a contract of	COLUMN STREET
120-0	and the second	74	
_	1000	1111111111	1000
125-		-	
-	1286		
130-	-		
	P	the state of the second	
135-			
	R She	a section of	
140-		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 192
145			1
110			
150-		makers in such	1.1.1

F	ossi	IL C	HAR	ACTER	8	LIES					Es sa							122
e o o	0 10	SILS	R.V.		NETI	OPER				GRAPHIC	CTUR							5-
1	10000	80 I 0		SWO	OMAG	84	II STR	NOI	Sa	LITHOLOGY	STRU	LES		IULUGIC	DESCRIP	TION		10-
E O D A		NANN		DIAT	PALE	PHYS	CHEN	SECT	METE		SED.	SAMP						-
T	T	T	T								-	T	NANNOFOSSIL-RICH CLAYSTON NANNOFOSSIL-RICH CLAYEY SIL	E, NANNO TSTONE	OFOSSIL	RICH	SILTY CLAYSTONE, AND	15
						9=61.0	%caco3	1	0.5	-			Major lithologies: Greenish gray (5G 6/1, 5/1), strong comprises 45% of the core. Slightly SILTY CLAYSTONE and NANNOF	y bioturba burrowed DSSIL-RI	ated NAN J. greenis CH CLAY	NOFOS h gray ('EY SIL	SIL-RICH CLAYSTONE 5G 5/1) NANNOFOSSIL-RICH TSTONE together comprise	25-
						•	3.		1.0		Lþ^	*	33% of the core.					30-
			t			65.	Cac				L.		Minor lithologies: Greenish gray (5G 5/1) VITRIC SII	TETONE	and alkin	black //		-
σ		*				à.	21				Ľ.		each comprise 7% of the core. The	remaining	g material	is dark	gray (5Y 4/1) SILTY CLAY-	35
2	5	ڌ				•	•				-		commonly planar or wedge laminate	i 5/1) SAI ed.	NDY SILT	STONE	(3%). These lithologies are	40
					z	80.4	CO3	2	1		١.		The entire core is moderately distur	bed by dr	illing.			
						9-0	2°0 190	4				1	SMEAR SLIDE SLIMMARY (%)					45
									-				UNERT SEIDE SOMMATT (19).			2020	204221228	
1						0.8				<u> </u>	L	*		1, 107 D	2,113 D	3,3 M	3, 110 D	50-
						9-0		-	-	4		*	TEXTURE:					55-
						<u></u>	2		-	in the second second	4		Sand	100	10	-	5	-
						00	3=1		1				Silt	Tr	35	60	65	60
						72.0	aco	3	-		- *		oay		55	40	30	85-
Z		N				9	2%		1		-	2	COMPOSITION:					
a	0	5 0				ě	1	CC	-		-	*	Accessory minerals Biotite	2	1 Tr			70
			1			0.1							Clay		48	24	25	1
						9-9-							Foraminifers	Tr	Tr	Tr		75—
													Glass Lithic fragments	91 Tr	40	55	58	00_
													Micrite			Tr		
													Nannofossils Opaques	Tr	7	20	15	85-
													Radiolarians	1	1	1		
													Spicules	***	1	****	244	90-
																		-
																		95
																		100-
																		-
																		105-
																		-
																		110-

SITE 793 HOLE B CODE 10R COPED INTERVAL 671 9-691 4 mbol

2

115--120-125-130-

-

140-

150-

-145-

-

-

-

-

3

CC

SITE	_	/93	_	HC	DLE	E	3	_	CO	RE	11R C0	DRE	D	INT	ERVAL 681.4-691.1 mbsf
5	FOS	STRA	CHA	RAC	TER		ES					88.	-		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERTI	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTURE	SAMPLES	LITHOLOGIC DESCRIPTION
							9-55.0	XCaCO3 .	1	0.5					NANNOFOSSIL-RICH SILTY CLAYSTONE AND SILTY CLAYSTONE Major lithologies: Dark gray (5Y 4/1), moderately to intensely bioturbated NANNOFOSSIL-RICH SILTY CLAYSTONE (40%), and structureless SILTY CLAYSTONE (25%) occur as couplets 6-34 cm thick. Minor lithologies: Bioturbation has disseminated sandy ash layers into finer lithologies, producing dark gray (5Y 4/1) SANDY MUDSTONE beds 2-29 cm thick (9% of the core). Olive black (5Y 2/1) and very dark gray (5Y 3/1) VITIC SANDSTONE layers, 2-17 cm thick, and VITIFIC
							• 9=50.0	•%CaC03=5.7	2			+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	- == 01====	*	SILTSTONE layers, 1-8 cm thick, comprise 7% and 6% of the core, respectively, and commonly display planar lamination and basal cross lamination. Section 3, 31-49 cm, is an interval of syn-sedimentary slumping. The core is moderately to slightly tractured by drilling. SMEAR SLIDE SUMMARY (%): 2, 77 3, 41 5, 123 M M M
ILE MIOCENE							•9-69.0 •9-2.16	• %CaCO3-10.7	з			4444		*	TEXTURE: Sand 70 5 Silt 25 10 55 Clay 72 20 40 COMPOSITION: Accessory minerals 1 Tr Tr Clay 71 15 33
LOWER - MIDD	6N	CNC				z	• 9-61.0		4				0 F+-=F	5	Perspan 1 2 1 Foraminifers
							• 9=60.0	• %CaCO ₃ =2.8	5	and the state of			2	*	
	R/P	C/M	8				9-58.0	• *CaC03	6				*****	5	

SITE 793 HOLE B CORE 12R CORED INTERVAL 691.1-700.8 mbsf

L.	BIC FOR	SSIL	AT. CHA	ZONE/	0	ES					88.	5		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	NETERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
OWER-MIDDLE MIDCENE	6N	CN3			æ	-0-57.0 =1.82	• %CaCO3 %CaCO3 • %CaCO3 •	2	1.0			<u>A</u>	*	CLAYSTONE AND SILTY CLAYSTONE Major lithologies: Dark greenish gray (10GY 4/1), heavily bioturbated CLAYSTONE and slightly bioturbated, medium greenish gray (10GY 5/1) SILTY CLAYSTONE comprise 37% and 31% of the core, respectively. Some of the coarser intervals are planar laminated, with rarer cross lamination. A dewatering structure occurs in Section 1, 20-24 cm. Minor lithologies: Locally, the principal lithologies are enriched in nannofossils, producing light greenish gray (10GY 6/1) NANNOFOSSIL-RICH CLAYSTONE and NANNOFOSSIL-RICH SILTY CLAY- STONE (17% and 6% of the core, respectively). Bioturbation of thin, sandy ash layers with the principal lithologies has produced dark greenish gray (10GY 5/1) NANNOFOSSIL-RICH SANDY MUDSTONE (6% of the core). Drilling has moderately fractured Section 1, and moderately to slightly fractured Section 2. SMEAR SLIDE SUMMARY (%):
1	C/M	C/G	R/P											1,3 1,58 M D TEXTURE: 5 Sand 15 Tr Silt 75 10 Clay 10 90 COMPOSITION:

NIT	BI0 FOS	SSIL	CHA	RACTER	1 57	TIES				GRB.	S3		
TIME-ROCK U	FORAMINIFERS	NANNOF OSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETIC	PHYS. PROPER	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
						9-64.0	4.0 %CaC03 •	1	0.5			* *	NANNOFOSSIL-RICH VITRIC SILTY CLAYSTONE AND VITRIC SILTSTONE Major lithologies: 51% of the core is grayish green (5GY 5/1, 6/1), moderately to intensely bioturbated NAN NOFOSSIL-RICH VITRIC SILTY CLAYSTONE. Another 23% is gray (5Y5/1), generally planar-laminated VITRIC SILTSTONE. These lithologies occur in layers 3-49 cm thick. Minor lithologies: Grayish green (5GY 5/1), structureless SILTY CLAYSTONE layers, 2-12 cm thick, compri 17% of the core. Gray (5Y 5/1) CLAYEY SILTSTONE, SANDY SILTY CLAYSTONE, and VITRIC SANDSTONE layers, mostly 1-8 cm thick, comprise 5%, 4%, and 1% of the core, respectively, and are associated with ash layers.
AI OCENE		CN3			я	.0 •9-64.0	03=1.8 • %CaC03=1	2			₩ <u>₹ K=KK</u>	*	Microfaults occur in Section 2, 20 cm; Section 3, 65, 95 and 120 cm; Section 4, 30-40 cm; and in the CC, 5 cm. Healed fractures occur in Section 1, 140 cm; Section 2, 40 cm; and Section 4, 22 and 97 cm. The entire core is moderately fractured by drilling. SMEAR SLIDE SUMMARY (%): 1, 35 1, 76 1, 128 2, 142
LOWER N						9-62	• %CaG	3					D D M M TEXTURE: Sand 20 10 50 Silt 65 30 40 30 Clay 15 70 50 20 COMPOSITION:
	R/P	C/G	8			• = = = 1 .0	• %CaCO3=12.6	4			No. 11 14 18		Accessory minerals 1 Tr Tr Tr Tr Clay 15 71 43 20 Fe oxide 1 2 Feldspar 1 1 1 2 Foraminifers Tr Glass 80 25 40 76 Lithic fragments Tr Tr Manofossils 2 1 15 Radiolarians Tr Tr Silicotfageliates Tr

SITE	793	HOLE	в	CORE	14R	CORED INTERVAL	710.4-720.1 n	nbsf

1	BIO	STR	CHA	RACI	/ ER	07	83					RB.	5		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTURI	SAMPLES	LITHOLOGIC DESCRIPTION
LOWER - MIDDLE MIOCENE	B	C/G CN3 A/M	8			ж	• 1.77 • 1.83	•XCaC03 • XCaC03=1.4	1 2 CC	1.0		+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$			NANNOFOSSIL-RICH SILTY CLAYSTONE Major lithology: Slightly to intensely bioturbated, grayish green (5GY 5/1) NANNOFOSSIL- RICH SILTY CLAYSTONE, in layers 4-25 cm thick, comprises 62% of the core. Minor lithologies: Very dark gray (5Y 3/1) VITRIC SILTSTONE and dark gray (5GY 4/1) VITRIC SILTY CLAYSTONE comprise 16% and 13% of the core, respectively, and occur in layers 1-15 cm thick. The remaining 8% of the core consists of very dark gray (5GY 3/1) SANDY MUDSTONE, in part namofossil-rich, and a grayish grave (5GY 5/1) VITRIC SANDSTONE layer, 4 cm thick, that probably represents an ash bed. Several of the coarser lithologies display planar lamination. One bed contains cross lamina- tion. Microfaults occur in Section 1, 45-53 cm, 56-60 cm, and 68-73 cm. The core is moderately fractured by drilling.

NIT	BIC FO	SSIL	AT. CHA	ZONE	TER	s	LIES					URB.	SB		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETI	PHYS. PROPER	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
						œ	9-56.0	%CaC03.	1	0.5		144 //	11 = 2 = 2 = 2 = 1 = 1	*	CLAYEY SILTSTONE. VITRIC SILTSTONE AND NANNOFOSSIL-RICH CLAYEY SILTSTONE Major tilhologies: Most of the core consists of dark gray (5GY 4/1) CLAYEY SILTSTONE, either parallel laminated, or strongly burrowed. The parallel-laminated variety generally forms the top of a graded bed that has a lower division, -5 cm thick, of dark gray (5Y 4/1) VITRIC SILTSTONI. In Sections 3 and 4, the burrowed facies is grayish green (5GY 6/1) ANNOFOSSIL-RICH CLAYEY SILTSTONE. All burrowed sediment contains scattered sand-sized grains of black vitric sand and local pebbles of pumice. The largest pumice pebble is 1.5 cm in diameter (Section 4, 65 cm).
LOWER MIDCENE		CN1c C/M				z	• 9=61.0 • 9=1.81 • 9=1.75	• • % CaCO ₃ = 0.3 • % CaCO ₃ = 0.3	2	advertised and a second second		11	-======================================	*	Million includges. Section 2, 47-87 cm, consists of SANDY MUDSTONE with a high content of sand-sized scoria and pumice. Color is dark gray (5GY 4/1). Section 4, 110 cm, through CC is grayish green (5GY 6/1), strongly burrowed NANNOFOSSIL SILTY CLAYSTONE. Section 1 is slightly to moderately fractured by drilling. Section 4 is slightly fractured. SMEAR SLIDE SUMMARY (%): 1, 112 2, 98 4, 130 M D D TEXTURE: Silt 90 90 30 Clay 10 10 70 COMPOSITION:
	0	C/M					-9=56.0 -9=1.97	• %CaC03 %CaC03 =30.9 =2.2	4	and most training		1111	****	*	Cuty 1 2 1 Glass 90 83 10 Inorganic calcite 2

SITE	793	HOLE	В	CORE	16R	CORED	INTERVAL	729.7-739.1	mbsf	
			_							-

Ę	810 F0	SSIL	AT. CH/	ZONE	E/ TER	0	ES					88.	6			
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	NETERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTURE	SAMPLES	LITHOLOGIC DESCRIPTION	
		C/M					-1.81 7-1.80	\$CaCO3 \$CaCO3 •	1	0.5		11 11	********	WIII *	ANNOFOSSIL-RICH VITRIC SILTY CLAYSTONE AND NANNOFOSSIL CLAYSTO ajor linbologies: ections 1 through 4 consist of grayish green (5GY 6/1), strongly burrowed NANNOF (CH VITRIC SILTY CLAYSTONE. There are extensional micro-faults in Sections 1. Below this lithology, there is a compositional and color change that is slightly grad at that is most striking between Sections 4 and 5. From Section 5 to CC, the sedime th reddish brown (SYR 6/4), strongly burrowed NANNOFOSSIL CLAYSTONE with sourdant, sub-vertical, extensional veintes. This part of the core also contains seve etensional micro-faults. Some of the fault surfaces have slickensides.	ONE OSSIL- 2 and ational, ent is ral
							9.0 9.0	• 1.0=c03	2			~ ~ ~ ~			inor lithologies: bout 10% of Sections 1 through 4 consists of graded beds, <10 cm thick, of gray (5/ kr gray (5/R 4/1), greenish black (5G 2/1) and medium gray (N5) VITRIC SANDS1 d VITRIC SILTSTONE. The thicker beds are parallel laminated or ripple laminated inner examples are probably ash beds. Section 5, 13-15 cm, consists of medium-gr UMICEOUS SANDSTONE. section 1 is slightly fractured by drilling. The rest of the core is moderately to highly fr red. MEAR SLIDE SUMMARY (%):	YR 6/1), TONE The ained ac-
CENE		c					.0 02	3 ³ 3 • ×ca	3	and the dates		× × × ×	11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 86	1, 80 1, 120 2, 42 5, 44 5, 53 D D M D M D EXTURE: and	
LOWER MIO		CN1				Z	• 9=54	• *CaC	4			ト ト/~ト	NI #//× 2/	W THIW J W	ticescory minerals Tr 5 5 ay 20 36 50 37 dispar 2 1 50 10 1 lass 48 30 43 5 ordpanic calcite 10 2 1 icrite 20 1 1 icrite 20 1 1 annofossils 20 25 2 15 50 paques 1 1 1	
							• 9=41.0 7=2.12	• %CaC03=32.2	5	and and and			AVIII X MAL	**	1917	
	C/G	A/M	8				9-39.0	• %CaCO3•38.8	6					9		

NI T	BI0 FOS	STR	AT. CHA	ZON	E/	57	IES					RB.	S		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERI	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
						æ	7 9=34.0	03 %CaC03 •	1	0.5		111111111111111	រះ ព រះ រ	*	NANNOFOSSIL CLAYSTONE, NANNOFOSSIL-RICH CLAYSTONE AND CLAYSTONE Major lithologies: Sections 1 and 2 consist of pale red (10R 6/4) and weak red (10R 5/4), strongly burrowed NANNOFOSSIL CLAYSTONE. Section 1, 84-86 cm, contains a nodule of gypsum, and Section 2, 10-70 cm, contains several intervals with diagenetic mangarese oxide (to- dorokite), locally as dendrites. Zoophycos is a common trace fossil. Sub-vertical dewaterin veinlets occur in Section 1, 0-45 cm, and Section 2, 60-55 cm. Section 3 through Section 5 50 cm, consists of pale yellowish brown (10YR 6/2) to light olive gray (5Y 5/2), burrowed NANNOFOSSIL-RICH CLAYSTONE. Section 6 and the core catcher are mainly slightly burrowed, dark yellowish brown (10YR 4/2) CLAYSTONE. Dip is about 10°.
		MM					• = 40	• %CaC	2				រ រ រ ព	*	Minor lithologies: The nannolossil-rich claystone contains numerous paie green (10G 6/2) SILTSTONE beds, <1 cm thick, that are parallel laminated or partly mixed by burrowers. Section 6, 12-4 cm, consists of four, grayish green (5G 5/2), graded beds of very fine-grained VITRIC SANDSTONE to VITRIC SILTSTONE. These are parallel laminated and ripple laminated. Sections 5 and 6 are moderately to highly tractured by drilling. SMEAR SLIDE SUMMARY (%):
٩E		A					• • • • • • • • • • • • • • • • • • •	•*caco3	з				*****		1, 75 2, 12 2, 80 3, 98 6, 70 M M D D D TEXTURE: Silt 10 20 10 15 Clay 90 80 90 85
LOWER MIOCEN		A/M CN1c					• 9=41	CaC03- 42.0	4				*****	*	COMPOSITION: Clay 28 70 57 56 Fe oxide 1 1 1 Foraminifers 3 1 Glass 3 5 Gypsym 99 Homblende 1 1 Inorganic calcite 1 1 Micritle 1
						z	• 9 - 4 7.0	•CaCO3 =0.5%	5				8		Nannotossils 20 20 25 25 Opaques 1 1 2 Pyroxene 2 Quartz Tr 1 1 1 Spicules 1
		/P						•CaC03" • CaC03 = 4.5%	6					*	

TIE	BLO	93	5 A.T.	HC	DLE	E	3		CO	RE	18R C0	RE	D		ERVAL 748.8-7	58.4	mbsf					
LIN	FOS	SSIL	CHA	RAC	TER	cs	TIES					URB.	SES									
TIME-ROCK L	FORAMINIFERS	NANNOFOGSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETI	PHYS, PROPER	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTU	SAMPLES		LITH	IOLOGIC	DESCRI	PTION			
			1						-			1	11		CLAYSTONE							
		A/M				z	• 49.0 - 2.12	•*CaC03	1	1.0		>> <	1	*	Major lithology: Most of the (10YR 6/2), dark gray (5G) brown (5YR 4/4) CLAYSTC benthic foraminifers. This dewatering veinlets, and sl parallel fissility. Minor lithologies: Section 1: 0:01 cm Scall	Arrange Core con (4/1), gra DNE that ediment ickenside	ayish gree is only slip contains r d surface	ght olive en (10GY ghtly bun numerou: s. In Sec	gray (5Y 5/2), oliv rowed. Se s extensi tion 6, th	5/2), pa re gray (action 1 onal mic e sedime	lle yellow 5Y 3/2) a contains rro-faults. ent has a	sh brown nd reddisl local large sub-verti bedding-
										100		2	7/2	*	colored beds of VITRIC SII parallel-and ripple-laminate	LTSTONE d VITRIC	E. Section	3, 20-80 ONE.) cm, con	tains 3 s	harp-bas	ed beds o
						æ			2	- Inter		4	9		Most of the core is modera are drilling breccia.	tely to hiç	phly fractu	ired by d	rilling. Se	ctions 5	80 cm, t	hrough Co
								2		1.		1	8	*	SMEAR SLIDE SUMMARY	(%);	1 100	0.00	0.000	2.02	4.05	4 107
							0.00	3=7		3		+	1/2			1, 28 D	1, 122 D	2,22 M	2, 103 D	3,90 D	4, 85 D	4, 127 D
						-	=13.	%CaC		-		5	1		TEXTURE:							
							•	•	3	1.150		$\left \right>$	FFIN		Silt Clay	5 95	20 80	7 93	10 90	20 80	10 90	100
RE								CaC03	Ĩ	1.1			1	*	COMPOSITION: Accessory minerals				Tr			
OCE		0				z	0.0	703 ×					ľ	0G	Clay Fe oxide	43 1	70 	90 	78	20	80 	95
Σ		CN1					9-68	KCaC		-	"		7/2	-	Feldspar Foraminifers	Tr		1	2	-		
E I		v					•	•				T	ĥ		Micrite	2	30	5	20	10	20	5
0		S								1		1	18		Nannofossils Opaques	50		1		10		1111 1211
-1									4	1		2	2/		Quartz	Tr	Tr	1		Tr		-
										111		××	1 1/2		Unknown SMEAR SLIDE SUMMARY	1 (%):				-		+++
									_			X	72				5, 98 M	5, 106 D	6, 72 D			
												5	12		TEXTURE:							
									5	1.3		X	1		Silt		25	10	10			
										-		X	17/2	*	Ciay		/5	90	90			
												X	7/2		COMPOSITION:							
									-			X			Accessory minerals				10			
												X			Clay Fe oxide			1	85			
												×			Feldspar		1	2	5			
									6	1.1.1		××	1	*	Glass Opaques Quartz		98 	94 1 2	1			
										1111		××	1									
									-			X	7/2									
									7			×	7/2									
		B	m						CC			X										_

NIT	FOS	STR	СНА	RACI	ER	5	LIES					URB.	Sa		
TIME-ROCK U	FORAMINIFERS	NANNOF OSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPER	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
												1			CLAYSTONE, SILTY CLAYSTONE AND VITRIC SANDSTONE
								9.6		0.5		1	1		Major lithologies: Section 1, 0-60 cm, consists of pale yellowish brown (10YR 6/2), slightly burrowed, fissile
							-9=53.0 -9=2.02	• %caco3=(1	1.0		1	**	*	CLAYSTONE. There is a sharp change below this level to slightly calcareous, grayish green (SGY 5/1), strongly burrowed CLAYSTONE. The rest of the core consists of equal amounts of grayish green (SGY 5/1), burrowed SILTY CLAYSTONE, and dark gray (N3), sharp- based, graded, generally thin to medium beds of VITRIC SANDSTONE. An exceptionally thick sandstone, 80 cm thick, occurs in Section 4.
									_	-		,	12		Section 1 and Section 2, 0-50 cm, are slightly fractured by drilling. The rest of the core is undisturbed.
		8					9 52.0	%cac03	2			/	1.0.1		SMEAR SLIDE SUMMARY (%): 1, 75 3: 57
										1			1		TEXTURE:
						z		0.3			辛辛多		***		Sand 20
							-	- Eo:	\vdash		=				Clay 70 20
							-34	%Ca(E		.11		COMPOSITION:
							•	•	3					*	Clay 30 20 Feldspar 1 2 Glass 66 72 Homblende
								0.3					1		Opaques 3 1 Quartz 2
	В						9-33.0	• %CaC03=1	4				F		

-			_	HOL	C	<u> </u>	_	CO	RE ZOR C	URE	.0	INI	ERVAL /68.0-/	17.7	mbsf						793B-20F
8	105	STRA	T. 2	ONE/		50															a mar
1	n T	0	60	T	- 2	RT				L BU	URE										5-
1	ž	SIL	IAN		EN EN	OPE	1		GRAPHIC	013	L'UCT			1174	01.0010	DESCO	RTION				-
		5	LAR	ş	MAG	R.	STR	N	49 LITHOLOGY	NG	TR	8		2.114	OLOGIC	DESCRI	FILON				10-
	YAN	N	010	AT0	LEO	χö.	EN	CTIC	TER	3	0.0	MPL									10-
1	2	X	RA	ā	PA	H	Ŧ	SE	¥	BO	SE	SAI									IC
F	+				1	0-	03		-0000			+	VITRIC SANDSTONE AND	CLAYE	SILTST	ONE					13-
						1.0	Ŭ,			EC.	12		12110-0010-0010-001								a restaur
						0	Xo			ΞĂ	1	7	Major lithologies:	dium ar	idad had	e of dark	aray ISC	2V A/L N	2) to erec	saich black	50-
L	1					•	•			11	T		(5G 2/1), parallel- to ripple-	aminated	VITRIC	SANDS	TONE an	nd dark gi	ray (5GY	4/1) to	Part and a second
L								11		Ξ'.	F		grayish green (5GY 6/1), bi	mowed (LAYEY	SILTSTO	ONE. A fe	ew sands	tone beds	shave	25-
L						1			1.0- E=	1/	11		scoured bases. The clayey scoria grains. In Section 6	silistone 71 cm to	CC the	concent	the clave	of sand-si	zed pumi e include	ce and	1
	1								1 1 EE	1/	H	-	yellowish brown (10YR 4/2	, olive gr	ay (5Y 3/	2), dark	greenish	gray (5G	4/1) and	light olive	30-
	1										1		gray (5Y 5/2). Extensional i	nicrofault	s occur is	n Section	ns 4 and	7.			A DESCRIPTION
								-		Ξ.	52		Minor lithologies:								35-
L										3-	H	-	Section 5, 65-125 cm, cons	ists of da	rk gray (8	5GY 4/1)	, poorly s	sorted PE	BBLE CO	ONGLOM-	1
L							0			리그	Ľ		ERATE with pumice pebble	s as larg	e as 5x2	cm in cro	oss sectio	on, and c	layey silts	stone clasts	40-
							Ŷ			1		•	Section 5, 125 cm, to Section	is the low	verparto misac	t a grade last-rich	ed congio	omerate-s	sandstone	SANDY	We allowed a
1						0.0	eo.	2			-		MUDSTONE and deformed	clasts. N	taximum	mud cla	st diamet	ter is at le	ast 20 cm	n. Section	45-
						40	Cac			3	1	1	7, 56-64 cm and 70-90 cm,	are grad	ed beds o	of light bl	uish gray	y (58 7/1)	, fine-to n	nedium-	-13
1						2	X			Ξ		-	grained POMICEOUS SAN	USTONE	82 10						50
						04	03			=/			Some of the core is slightly	fractured	by drillin	g.					
						44	Se.	-	2502	-	1.	1	SMEAR SLIDE & THIN SE		IMMAADY	1 10/ 3-					
						-	X		10000	1/	11		SING A THIN SE	511014 3	UNINUS PL1	(70).					- 36
						•	•		10	1	F	1		1, 105	3, 118	4,25	4,40	4,96	4, 135	5, 13	
1		-1	_					_		Ξ	T	1		D	D	D	D	D	D	D	60-
		1			Z			3		-	È		- CAN AND NO 1								
									-	Η,	f	•	TEXTURE:								65-
										11	-	1.	Sand		144	-	224	95			N Contraction
		1					N.			1-	-	1	Silt	85	80	80	65	5	80	80	70-
		1				L	2	_					Clay	15	20	20	35	1.00	20	20	(4) ((1173))
			- 1			280	00		143836日三	-	11		COMPOSITION:								75-
						00	Ca		1 EE	-	12										
						-				1	E	1	Accessory minerals	****		liter.		10		3440	80-
						1	[]	4		-	F		Clav	10	20	5	30	30	20	20	the product of
										-	F	1#	Fe oxide	1	+++	-			1		85-
										-		"	Feldspar	2	2	1	1	20	3	3	
										1	4	1	Glass	82	75	88	64	30	69	74	90-
L												*	Homblende			1	1				00
L									1.00550	-	F	-*	Inorganic calcite	***	****	1		1000			05
									1 1.30%	2	E	-	Opaques	3	2	1	2		3	1	- 35
1		1					2		- 2000	4	E	1	Quartz	1	1	1	1	Tr	3	1	100
1							10	5	1 1200	7	0	*	Rock fragment	and	+++	1000	1411	10			100-
						0.0	00		20000	ď	8		SMEAR SLIDE SUMMARY	(%):							Constanting
						00	C.		- Boon	a	0	1		1000	_						105-
1						5			Teoneor	1	0				5, 69 D	5,90 D					1. State 1.
						[-			1	h	4			8	2					110-
						1				-	0		TEXTURE:								-
1										-	0		Sand		30						115-
										1	1		Silt		60	75					mi en se
								6		-	1		Clay		10	25					(20-
					~		a new	1		-			COMPOSITION:								And Statement
					100		0.3			1	-	3	Some South Set								125-
						-	3		1		1	F	Accessory minerals		772 B	1					
						2.0	10	1		-	1	1	Clay		10	25					130-
						40	S.	1		-			Glass		81	69					130-
					-	-			1.E====	1	1/2		Homblende		3	1					105
						2	100		1:6	EL.	11		Opaques		1	3					135-
1									- HERE	Ē	-	-	i Juanz		1	1					
Ι.	- 1	- 1			Z			7	1 Street Street	1	H										140-
									••••••••••••••••••••••••••••••••••••		100	1									
										4-	1	٩.								1	

NIT	BIO	STR	CHA	ZONE	/ TER	20	LIES					JRB.	ES		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	LITHOLOGIC DESCRIPTION	LITHOLOGIC DESCRIPTION
						R	• 48.0	• %CaC03 =0.2	1	0.5-		$+++++\times+-$		* *#	VITRIC SILTSTONE, CLAYSTONE, AND CRYSTAL-VITRIC SANDSTONE Major lithologies: Olive black (57 2/1) VITRIC SILTSTONE (34% of the core), CLAYSTONE (32%), and grayish green (56 5/2) CRYSTAL-VITRIC SANDSTONE (28%) occur as divisions of normally graded bads. The vitric component has been largely altered. The sandstone- siltstone basal portions of the graded beds are planar laminated and commonly have socured bases. The classforme upper portions are slightly to heavily bioturbated. Trace fossils include Zoophycos. A healed fracture occur in Section 5, at 88-92 cm and 106-109 cm respectively.
							• • • • • • • • • • • • • • • • • • •		2						Minor lithologies: Dark gray (5Y 4/1) SILTY CLAYSTONE and CLAYEY SILTSTONE comprise 5% and 1% of the core, respectively. The core is moderately to slightly fractured by drilling. SMEAR SLIDE & THIN SECTION SUMMARY (%): 1,60 1,80 1,83 3,103 5,147 M D D D D
IGOCENE		9b					•9=36.0 =2.24	• %CaCO3=0.5	3				1 1	*	TEXTURE: Sand 100 95 100 Silt 5 5 15 Clay 95 85 COMPOSITION: Accessory minerals Tr 5 5 5 Tr Campot
UPPER OL		CP1				Z	• 9=52.0 =2.15	aco ₃ =4.3	4	-			2		Certifient
							9=62.0	• *0	5	-		1//////////////////////////////////////	出一、牛引、日四。	- Har - Ja-43	
	R/M	C/M	C/P				• 9=58.0 =2.13	• %CaCO3= 3.4	6	2		, / / / / /			

BI	OSTR	AT.	ZONE/		Ť	Т	T					NTAL 707.0 707.0 11031		/938-22H
FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	SWOLVIG	ER	PHYS PROPERTIES	CHEMISTRY	SECTION	GRAPHIC LITHOLOG SC U U U U U U U U U U U U U U U U U U	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC	DESCRIPTION	5
	F/M	Nuclei States			■ .0=46.0	k caco3	2 2 1	0.5			* IL	ITRIC SILTSTONE AND VITRIC SANDST fajor lithologies: irrensih black (5GY 2/1) VITRIC SILTSTO omprise 38% and 26% of the core. The vity andstone and siltstone are typically in grad minations. Load casts, dewatering structure incrofault in Section 2, 51-55 cm. finor lithologies: reensis black (5GY 2/1) VITRIC SANDY S	ONE NE and VITRIC SANDSTONE respectively ic component has been largely altered. The ed sequences with scoured bases and planar es, and fractures are present. There is a ILTSTONE comprises 11% of the core. Another	20
	CP19b				~	~ *0.5	2		「「「「「「」」」		10025544	1% is represented by a single bed of olive CONGLOMERATE with a maximum pebble lasts is 7 mm. Most clasts are the same co- nd very light gray (NB). The remaining 3%, ill.TY CLAYSTONE and SANDY MUDSTO NICH SILTY CLAYSTONE. The siltstone an ioturbated. SMEAR SLIDE SUMMARY (%):	black (5Y 2/1) GRANULE-PEBBLE VOLCANIC size of 8 mm. The mean size of the ten largest or as the matrix; 3% are colored red (10R 46) of the core consists of greenish black (5G 2/1) NE, and dark gray (5GY 4/1) NANNOFOSSIL- d silty claystone are slightly to moderately	35 40 45 50
					0.4.0	• %CaCO	3		0.00 2		*	1, 91 M EXTURE: iand — iit 10 iay 90 COMPOSITION:	3, 1 D 100	
в	R/P	R/P					cc			+15k		kcoessory minerals 1 joclast	5 1 5 10 	70
												Jaknown Scolite 5	59	90

STE 793 HOL	EB	CO	RE	23R C	ORED	INI	ERVAL 797.0-806.7 mbsf	793B-23R	1 2	3	4	5 CC
BIOSTRAT. ZONE/	RSS				URB.							
CCK U SSILS	OPER	~		GRAPHIC	DIST		LITHOLOGIC DESCRIPTION	5-		- 201 - 8		
E- RG AMINI NOFOS	EOMAG	TION	ERS	LITHOLOGY	LING	PLES		10		- Kennel I		
TIM FOR NAN RAD DIA	PAL	CHE	MET		DRIL	SAM						
	0.4	e03	14				VITRIC SANDSTONE AND VITRIC SILTY CLAYSTONE	15	7.		131 m	
	0.0	*Ca	0.5	B			Major lithologies: 69% of the core consists of dark reddish brown (5YR 3/2) VITRIC SANDSTONE, mostly	50-02		- 63 - 6		13 <u>-</u> Past-
×		•	1				interbedded with reddish brown (SYR 3/2) VITRIC SILTY CLAYSTONEIn 3-6 cm-thick, normally graded beds with scoured bases and slightly bioturbated tops. There are two thicker beds of sandstone, 97 cm thick in Sections 3 and 4, and 30 cm thick in Section 5.	25-	7-1-1-		-1	-2-
CI				털			in Section 3, one in Section 4, and one in Section 5 are filled with gypsum.	30		- 15 T		-5
		+		물	17		Minor lithologies: Dark reddish brown (5YR 3/2) CLAYSTONE and VITRIC SILTSTONE comprise 7% of the	35-				12 marsh
				莒	1/È		core. An isolated lump of greenish gray (5G 6/1) GYPSUM, 7 cm long, occurs in the core catcher.					
				e	1		The core is undisturbed to slightly or moderately fractured by drilling.	40-				-
		1		E.	1	$\left \right $	SMEAR SLIDE SUMMARY (%):	45				_
L R				冒		*	2, 113 2, 121	50-			and the second second	many
OCE		°.		-			D D					
19b	0.80	CO3		H			TextOHe:	55				
CP 0	4=4	×Ce	-	Ē	1/-		Salto 10 100 Silt 10	60				
ЪРЕ	•	• 3		3	1/	1	COMPOSITION					
5					1		Accessory minerals 1 7	-				
					1/1		Bioclast 1 Cement 20	70			-	
					1 1		Clay 72 Fe oxide Tr	75-				
			1		十指		Feldspar 2 7 Glass 5 56	-			1.0	All and the second second
		4		E E			Lithic fragments Tr 10 Micrite 2					
				Ē	11		Radiolarians Tr	85—			-	
	00	3=0		5	THM		activities in the second se	90			-	_
50	44.2	CaCa									the second	
BUCK	•	•	1								and developed	
		cc						100-				
								105			_	
										1.0	and the second	
								_	and the second		The second	
								115			-	
								120-	-	-	-	<u> </u>
								125-	No.	- 1-1 P		
								The Designation			and the second sec	
								130-				
								135-				
								140-	a particular			3
								-	States -	1000		A DESCRIPTION OF
								145-			-	
								150-	-	-		the second s

=	BIO	STR	T. 1	ONE	/ ER		ES						0	Γ				
TIME-ROCK UNI	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETICS	PHYS. PROPERTI	CHEMISTRY		METERS	GRAPHIC LITHOLOGY		SED. STRUCTURE	SAMPLES	LITHOLOGIC DESCRIPTION			
							• 9 =43.0	• % caco ₃ " 2.0	1	0.5				*	CRYSTAL-VITRIC SANDSTONE, VITRIC CLAYEY SILTSTONE AND VITRIC SILTY CLAYSTONE Major lithologies: Grayish black (N2), black (N1), and brownish black (5YR 2/1) CRYSTAL-VITRIC SAND- STONE comprises 49% of the core. The vitric component has been largely altered. The sandstone occurs in six beds, 20-79 cm thick, and as basal divisions, 2·18 cm thick, of thin graded bods that pass upward into VITRIC CLAYES SILTSTONE and slightly bioturbated caps of dark greenish gray (5G 4/1) VITRIC SILTY CLAYSTONE. Together, these last two lithologies constitute 37% of the core. The graded beds commonly have socured bases and planar laminations. One sandstone bed in Section 3, 31·106 cm, has basal inverse grading and upper parallel laminations. A sub-vertical fracture occurs in Section 1, and another in Section 6, where there is also a microfault at 100 cm. Minor lithologies: The rest of the core is greenish black (5G 2/1)SILTSTONE (5%), CLAYSTONE (4%), SANDY SILTSTONE (3%), and NANNOFOSSIL RICH SILTY CLAYSTONE (1%). The core is undamaged to slightly fractured by drilling. SMEAR SLIDE SUMMARY (%):			
				3			• 9=47.0	0.0=0.0	2	and and and and			~~~					
OLIGOCENE		CP19b				Z		• %CaC	3			11/1/1/	**** ••••		1, 85 4, 30 6, 66 D D M TEXTURE: Sand 75 80 Tr Sill 25 20 40 Clay 60 COMPOSITION:			
UPPER	ОСТРЕА	0							4	or the character				*	Accessory minerals 2 10 1 Cement 2 10 Clay Clay 49 Feldspar 10 15 2 Foraminifers Tr Glass 45 20 Lithic fragments 10 10 2 Nannofossils Tr Annofossils Tr 15 Opaques 1 Radiolarians 1 Zeolite 30 35 30			
							9=47.0	• %CaCO3 *3.0	5	and see here			E					
	B	F/M	В				9=54.0	• %CaCO ₃ =8.3	6	erel ered ered		///////////////////////////////////////		*				

SITE 793 HOLE B CORE 26R CORED INTERVAL 825.7-835.4 mbsf

0.T	810 F05	SSIL	AT. CHA	ZONE	/ TER	00	ES					RB.	67		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
							9=53.0	%CaC03 •	1	0.5			###8%00:	#	126-7938-26R CRYSTAL-VITRIC SANDSTONE Major lithology: Dark greenish gray (5G 4/1) and grayish black (N2) CRYSTAL- VITRIC SANDSTONE comprises 71% of the core, mostly in beds 45-249 cm thick. The vitric component has been largely altered. Most of the beds are fine grained and planar laminated. A massive, medium-grained bed in Section 3 contains volcanic-lithic clasts up to 15 mm in diameter and claystone clasts as large as 70 mm. Some of the sandstone occurs as basel divisions, 2-5 cm thick, of thin graded
							• 9-39.0		2	and confirm			IXIN JX	*	beds that pass upward into slightly bioturbated, dark greenish gray (5G 4/1) VITRIC SILTY CLAYSTONE and CLAYEY SILTSTONE, which logether constitute 22% of the core. Subvertical micro-fractures, some filled with gypsum, occur throughout the core. Minor lithologies: Dark greenish gray (5G 4/1) CLAYSTONE (3%), SANDY SILTSTONE (3%), and SILTSTONE comprise bioturbated or graded intervals in the upper parts of the sand-based graded beds. The core is unfractured to slightly fractured by drilling.
GOCENE		qp					8.0 • = 38.0	aco3=1.0 • %caco3=1.4	3	to date of the second		1//////		*	SMEAR SLIDE & THIN SECTION SUMMARY (%): 1, 127 2, 35 3, 116 6, 61 6, 85 D M M D D TEXTURE: Sand 98 100 Silt 2 25 25 40 Clay 75 75 60
UPPER OLI		CP15				æ	-40.0	:CaCO3=0.4 • %C	4	and and some		////////	••		COMPOSITION: Accessory minerals 2 Tr 10 Tr Cement 40 Clay 68 75 25 65 Fe oxide Feldspar 5 1 Tr 10 1 Glass 51 20 20 30 Micrite 1 Nannofossiis 10 2 30
							6.	•	5	seed seed seed		11/1/1/	++		Radidarians Tr Rock tragment 2 Zeolite 55
							• 9=40.0 • 9=38.0		6			111		*	
	В	A/M	R/P						7				++-		

NIT	BIO	SSIL	AT. CHA	ZONE	E/ TER	60	SEL					RB.	ŝ		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
						R?	- 9=34.0	• %CaC03	1	0.5	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		•		PEBBLE-GRANULE CONGLOMERATE, PEBBLY GRANULE SANDSTONE, VITRIC SANDSTONE AND CLAYEY SILTSTONE Major lithologies: Section 1, 0 cm, through Section 3, 82 cm, consists of greenish black (50 21), structureless PEBBLE-GRANULE CONGLOMERATE with 10% pebbles and 40% granules. Pebbles consist of dark green silly clayslone, clivine basalt, andesite, thyolife/ dacite, scoria and pumice. Section 5, 65 cm, to the end of the core consists of greenish black (56 21) PEBBLY GRANULE SANDSTONE with about 40% granules of dark green claystone. The vitric component has been largely altered. There are cobbles of burrowed dave sillstone larger than 6 cm long. The rest of medium beds of coresits black (56 21).
							21	co ₃ =0.5	2	and not been a	5 * 00000 * 5000 5 * 00000 * 5000 • 000000 * 50000				parallel-laminated to slightly burrowed CLAYEY SILTSTONE and parallel-to ripple-laminate beds of fine-to very fine-grained VITRIC SANDSTONE. There is no drilling deformation. SMEAR SLIDE SUMMARY (%): 4, 60 D TEXTURE:
IGOCENE		9b						• *Ca	3		0000 0000 0000 0000 0000 0000 0000 0000 0000		**		Sand 75 Silt 25 COMPOSITION: Clay 10 Feldspar 2 Glass 85 Opaques 1 Duart 1
UPPER UL		CP1				æ			4			The second s	**	*	
							• 9 = 50.0	• %CaCO3=1.0	5		<u>دیچې:</u> مړکنې		FE		
		/ W	g/p						6		20.00		•		

L IN	BIO FOR	SSIL	CHA	ZONE/	ER	97	SEL					JRB.	Es		
TIME-ROCK UI	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
						R7	9=35.0	*caco30	1	0.5		X			PEBBLY SANDSTONE, VITRIC SANDSTONE, VITRIC SILTSTONE, CLAYEY SILTSTON AND SILTY CLAYSTONE Major lithologies: Sections 1 through 3 consist of three beds of greenish black (5GY 2/1), structureless PEBBLY SANDSTONE and VITRIC SANDSTONE. Sand content is 60-70%. The vitric component has been largely altered. The rest of the core consists of interbedded thin to medium beds of dark gray, (5GY 4/1), parallel-laminated to slightly burrowed CLAYEY SILTSTONE or SILTY CLAYSTONE, and parallel-to ripple-laminated beds of fine- to very Ine-grained VITRIC SILTSTONE or VITRIC SANDSTONE. Bedding glos at 8°. Section 2, 100-150 cm, and Section 6, 60-70 cm, have mineral-filled fractures. Section 4, 90-100 cm, and Section 5, 140-150 cm.
		CP190						1.1	2		20000000000000000000000000000000000000		11.		Minor lithology: Section 5, 90-97 cm and 102-120 cm, consists of greenish gray (5G 6/1) NANNOFOSSIL-RICH SILTY CLAYSTONE. There is no drilling deformation. SMEAR SLIDE SUMMARY (%): 3, 137 5, 45 5, 104
PER OLIGOCENE		C/M			c	r	9-2-16	• %CaC03=	з	the free free to			00		D M D TEXTURE: Silt 10 10 20 Clay 90 90 80 COMPOSITION: Accessory minerals 1
10								• %CaCO ₃ =4.4	4				* ****	og	Casy 90 41 Glass 2 1 Glass 86 30 Inorganic calcite Tr 5 1 Micrite 1 Nannolossils 2 5 20 Opaques 1
						0 7 8 W	• 94-12 - 1 - 34	• * CaCO3	5				****	*	
		3/P							6				0 total 11 total		

TE	7	93		HO	LE	E	3	- 3	COF	RE	31R C0	RE	DI	NT	ERVAL 874.0-883.7 mbsf
L.	BIO FOS	STRA	CHA	RAC	E/ TER	07	IES					.88	Sa		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS, PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
							• 42.0 • 2.13	•×caco3	1	0.5		X//////			VITRIC SANDSTONE, VITRIC SILTSTONE, CLAYEY SILTSTONE AND NANNOFOSSIL- RICH CLAYEY SILTSTONE Major lithologies: There is a fine-scale interbedding of very thin to medium beds of dark gray (5GY 4/1) to greenish black (5GY 2/1), parallel-to ripple-tarninated, fine-grained VITRIC SANDSTONE or VITRIC SILTSTONE, parallel-tarninated to burrowed CLAYEY SILTSTONE of the same color, and gray (5Y 6/1), burrowed NANNOFOSSIL-RICH CLAYEY SILTSTONE. Sandstone plus siltstone form about 50% of the core. The vitric component has been largely altered. There are relatively steep normal faults that dip at >45° in Section 1, 35-50 cm, and Section 3 80-90.cm.
						æ	• • • • • • • • • • • • • • • • • • •	6,	2	and seed as a		444///			Minor lithologies: Section 4, 114-117 cm, consists of light bluish gray (58 7/1), medium-grained PUMICEOUS SANDSTONE (ash). Section 7, 50-87 cm, consists of olive black (5Y 2/1), coarse-grained, GRANULE-RICH SANDSTONE that grades upward into fine-grained sandstone. Sections 1, 2 and 4, and Section 6, 0-50 cm, are slightly to moderately fractured by drilling. SMEAR SLIDE & THIN SECTION SUMMARY (%):
CENE						[3=20.0]		c03=19.7 • %cac03=6	3	ter free free	P		F F F F F F F F F F F F F F F F F F F	*	Sand 100 Silt 20 Tr Clay 80 COMPOSITION:
UPPER OLIGO	P17 / P21	CP19a					9-3E	•%Ca	4						Accessory minerals 3 Cement 25 Clay 56 Fe oxide 1 Foldspar 1 20 Glass 20 52 Hornbiende 1 Nanofossils 15 Opaques 1
								5	5				888		Rock fragment Tr
						2	• 9-62.0	•%cac03 =0.	6						
	R/P	A/M	R/P						7				RT - F ==	#	

TE	793		HOLI	EE	3	-	OR	E	32R	COR	ED	INT	ERVAL 883.7-893.3 mbs	sf		793B-32R	4	-	4	
FORAMINIFERS	NANNÓFOSSILS	CHARIANS ANDIOLARIANS	SHOLEIO	PALEOWAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	WETERS	GRAPHIC LITHOLOGY	Source of the	SED. STRUCTURES	SAMPLES	LITHOLOGIC	IC D	DESCRIPTION	5 — 10 — 15 —				
	R/M				9:32.0	%caco3 •	2	2.5.5.5.5.5.5.1.1.1.1.1.1.1.1.1.1.1.1.1.		0.00 × × × ×		*	SANDSTONE, PEBBLY SANDSTONE AND Major lithologies: Sections 1 and 2 consist of greenish black (SANDSTONE to PEBBLY SANDSTONE as been largely altered. Sections 3 through CO SANDY CONGLOMERATE, with about 400 Section 5 contains three claystone clasts as congiomerate include: brick red rhyolite with magnetite; olivine-orthopyroxene-plagioclas pumice; and basaltic scoria. The core catcher is drilling breccia. Otherwi SMEAR SLIDE SUMMARY (%): 1, 3	ND S (5G as a C cc as la th qu ase t	ANDY CONGLOMERATE is 2/1), structureless, very coarse-grained single graded bed. The vitric component has onsist of greenish black (5G 2/1), structureless and matrix, 30% granules, and 30% pebbles. rge as 15 cm long. Volcanic pebbles in the uartz phenocrysts, orthopyroxere and asail; two-pyroxene andesite; white and red the core is undisturbed by dniling. 4, 38	15 20 25 30 35 40 45				
	CP19a			N?	• 9.27.0 • 2.29	• %CaCO3-0.3	3	and and an a second second	00000000000000000000000000000000000000				M TEXTURE: Silt 10 Clay 90 COMPOSITION: Clay 60 Feldspar Glass 40 Nannolossils Tr Oxide		M 	50		8		
					• 9=23.0 • 2.43	• %CaCO3=0.4	4		10,00,00,00,00 0,00,00,00,00 0,00,00,00,0			•				75				I I I I
a	R/M	8					5 CC		200-00-00 200-00-00	0.000	×× 本 本 本	4				95— 100— 105—				1 1 1

110-115--150-125-130--140

145-

150-

11111111

5	BI	OSTR	AT. CH	ZONE	E/		8	Г	CO	RE	33R C	GRI g	=D		IERVAL 893.3-903.0 mbsf
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERTI	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTUR	SED. STRUCTURE	SAMPLES	LITHOLOGIC DESCRIPTION
							• 9-25.0	• % CaCO3	1	0.5		/ / / /	##		CRYSTAL-VITRIC SANDSTONE AND VITRIC SILTY CLAYSTONE Major lithologies: Grayish black (N2) CRYSTAL-VITRIC SANDSTONE and VITRIC SILTY CLAYSTONE comprise 46% and 35% of the core, respectively. The vitric component has been largely altered. Much of the sandstone occurs in six fine- or medium-grained, graded beds with laminated tops, 24-35 cm thick. The rest of the sandstone forms the basal divisions, 1-7 cm thick, of thin, graded beds with slightly (locally intensely) bioturbated caps of greenisi black (SGY 211), olive black (SY 211), or grayish black (N2) VITRIC SILTY CLAYSTONE Classite dikes occur in Sections 1, 5 and 6; gypsum-filed tractures, 0.5 mm thick, occur in
									2						Minor lithologies: The remainder of the core consists of textural variants of the major lithologies: CLAYEY SILTSTONE (8%), NANNOFOSSIL-RICH CLAYEY SILTSTONE (6%), VITRIC SANDY SILTSTONE (8%), NANNOFOSSIL-RICH CLAYEY SILTSTONE (6%), VITRIC SANDY SILTSTONE (3%), and VITRIC SILTSTONE (3%), Most of the core is undisturbed to slightly fractured by drilling.
										-			×		3,25 3,86 6,138 D M D
GOCENE		CP19a						• %CaCO ₃ =8.5	3	indiandari				*	TEXTURE: Sand 80 10 100 Silt 20 20 Clay 70
UPPER OLI		C/M				z		P.	4			///////////////////////////////////////	11 - F		Accessory minerals 10 1 7 Cerment 20 20 Clay 56 Feldspar 10 2 25 Glass 50 48 Lithic fragments 10 1 Micrite 1 Nannofossiis 1 Opaques 1 Radiolarians 1 Zeolite 25
							•9=34.0 -2.23	caco3=0.6 •%caco3=0	5			///////////////////////////////////////			
			atel					=0.7	6	the development		//////	王王王	#	
		8/P	C/P (indetermin)				• 7=2.01	• %CaC03	7	and and here		///////////////////////////////////////			

SITE 793 HOLE B CORE 34R CORED INTERVAL 903.0-912.6 mbsf

NI 1	BI0 F03	SSIL	CHA	ZONE/		1169					LRB.	Es	Γ	
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETIC	PHYS, PROPERI	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
						9=42.0	%CaC03	1	0.5			日本のない	* * *	CRYSTAL-VITRIC SANDSTONE AND VITRIC SILTY CLAYSTONE Major lithologies: Greenish black (5G 2/1), olive black (5Y 2/1), and brownish black (5YR 2/1) CRYSTAL- VITRIC SANDSTONE comprises 45% of the core. The vitric component has been largely altered. The sandstone occurs in six beds, 23-51 cm thick, all but one of which are fine grained, parallel laminated, and grade upward into siltstone. One bed, in Section 2, is inverse graded from fine to medium sand and contains pumice granules. The rest of the sandstone occurs as the basal divisions of thin graded beds that are capped by slightly to heavily bioturbated, dark gray (5GY 4/1, 5Y 4/1) VITRIC SLITY CLAYSTONE. Two micro- faults occur in Section 1. Two sub-vertical sandstone dikes are located in Section 4. A prosum-filed fracture occurs in Section 3. An ash haver in Section 1. 70-27 cm. choose
						12 5	4.7	2			11/11	***	*	convolution due to wet-sediment deformation. Minor lithologies: The remainder of the core consists of textural variants of the major lithologies: SILTSTONE (10%), SANDY MUDSTONE (9%), and CLAYEY SILTSTONE (3%), together with two intervals of NANNOFOSSIL-RICH CLAYEY SILTSTONE (2%). The core is undisturbed to slightly or moderately fractured by drilling. SMEAR SLIDE SUMMARY (%):
CENE		C/P				• 9=33.0	• %CaCO3=	з			11/1/1			1,28 1,69 1,119 2,50 D M D D TEXTURE: Sand Tr 5 100 80 Silt 25 25 20 Clay 75 70 COMPOSITION:
UPPER OLIGO		CP19a			z			4			111111	(第二二)		Accessory minerals 2 1 2 15 Cement Tr Tr Cr Clay 71 61 Feldspar 5 1 5 15 Glass 15 20 90 55 Lithic fragments 2 1 Tr 15 Micrite 1 Namofossils 5 15 2 Radiolarians 1
						• 9-21.0	• %CaCO3 * 0.2	5				••••		
		A/M				0.1	03=0.4	6						
	В					• 9=37	• % CaC	7			1	•••		

SITE	79	93	HOLE	EB	-	c	OR	E 35R CC	RE	DI	NTERVAL 912.6	-922.3 m	bsf				793B-35R	1 2	3	4	5
TIME-ROCK UNIT	BIOST FOSSI C SUBJUNIVENCE	RADIOLARIANS	ZONE/ ARACTER	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LITHOL	OGIC	DESCRIF	PTION		5 — 10 — 15 —				
				N2	• 4= 30.0	•%caco3 =0.5	1	8-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	/		VITRIC SILTY CLAYS Major lithologies: Dark gray (5Y 4/1), slig 48% of the core. Trace greenish black (5G 2/1 SILTSTONE comprise very coarse-to medium thick; tour siltstone bee as thin (1-10 cm) divisi vitric component has I	TONE, CRYSTA ghtly to intensely a lossils include 1, 5GY 2/1) CRY 27% and 25% of 1-grained sandst ds are 25-23 cm ions of graded b been largely alte	biotur Chond /STAL of the c one be thick. red.	bated VIT rites and VITRIC S ore, resp ed; four of The rest of at contain	DSTONE TRIC SIL Zoophyc SANDST ectively, ther sand of the sand of the sand of the sand	AND VITRIC SILTSTONE TY CLAYSTONE comprises os. Grayish black (N2), ONE and VITRIC Section 1 is a crudely graded, istone bod's are 22-27 cm vistone and siltstone occurs nd wavy laminations. The	20 25 30 35				
				1			2	-FIFt	112	* * * * * * * * * * *	Convolute bedding occ Section 4, and two hea Most of the core is slig SMEAR SLIDE SUMM	curs in Section 5 aled microfractur intly fractured by IARY (%):	, 80-85 es in S drilling	s cm. A g lection 5.	ypsum-fil	led microfracture occurs in	40				
					5.0	aco3=10.5	+		11/1	Ŧ	TEXTURE:	;	4, 44 M	5,67 D	5, 96 M	6, 30 M	50— — 55—				
CENE	10 A	A/M			• 4 -3	• *C	3		111	1	Sand Silt Clay COMPOSITION: Accessory minerals	3 6 1		20 80	100	5 15 80	60 — 65 — 70 —				
UPPER OLIGOC	50102	CF130		z			4		ファノノノノノノ	₩=#	Cement Clay Foldspar Foraminiters Glass Inorganic calcite Linorganic calcite Linorganic calcite Namofossils Opaques		Fr 3 5 7 95 7 7 95	70 2 1 10 Tr 15 1	5 20 40 20	75 2 10 5 8	75 75 80 85 80				
						•xcaco3	5		///////	XX- 8:8:	*						85 100 105 110				
					• 44.0	•xcaco3	6		////	-	*						115 120 125 125 130				
	8	R/P					7			n .							135- 140-				

145--1506 7

810	STR	Т. 3	ZONE	,		5	-						T		1000-01
FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	SWOLVIG	TER	PALEOMAGNETICS	PHYS. PROPERTIE	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION	5- 10- 15-
					-	9-25.0	xcac03.	1	0.5					VITRIC SILTSTONE AND CRYSTAL-VITRIC SANDSTONE Major tithologies: VITRIC SILTSTONE, slightly to heavily burrowed, in various shades of gray, green and black (5Y 41; 5GY 21, 41, 61; 5G 41, 51, 61) and generally darker CRYSTAL-VITRIC SANDSTONE (5GY 21, N2, N3, N4, 5G 51, 41, 5B4 41), comprise 30% and 24% of the core, respectively. The vitric component has been largely altered. Each of these tithologies occurs as a few bads several decimeters thick, and in graded intercalations, 1-10 cm thick, with each other and with the minor lithologies. Planar lamination is common; cross lamina- tion and wavy lamination are rare. Post-depositional structures include small dikes filled with the sandstone in Section 1, two microfractures (one filled with gypsum) in Section 2, a dewatering structure and microfault in Section 3 and two microfaults in Section 6. Minor lithologies:	20- 25- 30- 35-
								2	to the second			大法 4:1-1		The rest of the core consists of similarly colored SILTY CLAYSTONE (14%), CLAYSTONE (13%), NANNOFOSSIL-RICH SILTY CLAYSTONE (12%), SANDY MUDSTONE (5%) and CLAYEY SILTSTONE (2%). Drilling deformation is absent in Sections 1-3; Section 4 is moderately to highly fractured, and Sections 5-7 are slightly fractured. SMEAR SLIDE SUMMARY (%):	45- 50- 55-
						• 9=34.0		3			×	小学ージートに見る。	*	3, 63 4, 100 D M TEXTURE: Sand 100 Silt 15 Clay 85	65- 70- 75- 80-
	CP19a				я			4	and a second second		1 >1		*	Accessory minerals 5 Tr Clay	85- 90- 95-
						- 42.0 	• %CaC03=7.3	5			//////	- 1 1 1 4 B			105- 110- 115- 120-
								6			//////	2 2 2 4 4 4 4 4 4 4 4 4 5 1 4 1 4 1 4 1 4 1 4			125- 130- 135- 140- 145-
	-					43.0	•×caco3=15.8	7			///////////////////////////////////////	-4 === +			150-

SITE	793	HOLE	в	CORE	38R	CORED INTERVAL	941.6-951.3 mbsf

TIN	BIO	STR	CHA	ZONE	E/ TER	\$	Sal	1				RB.	ŝ		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
						œ	• 9=32.0	• %CaC03=28.9	1	0.5		11/1/	= ///	*	POLYMICTIC CONGLOMERATE Major lithology: The lower 58% of the core consists of dark greenish gray (5G 4/1) and olive black (5Y 2/1) POLYMICTIC CONGLOMERATE with pumice and volcanic lithic clasts, and claystone and siltstone intraclasts larger than 10 cm. Maximum sizes of volcanic clasts are 7-13 mm. Mean sizes of the ten larges clasts in each section are 3-10 mm, and sand/ granule/pebble ratios are 40/40/20, 25/40/35, and 45/30/25 in Sections 1 to 3, respectively. Structures features are microfaults in Section 1, microfractures in Section 3, and zeolite-filled tractures in Sections 5 and 6. Minor lithologies:
						Z		0.	2	and and and		× / / / /			In Sections 1 and 2, thin, graded beds of dark gray (5Y 4/1) VITRIC SILTY CLAYSTONE, 7- 19 cm thick, with planar laminations and less common wedge and cross laminations are intercalated gradationally with dark greenish gray (5G 4/1), greenish gray (5G 5/1, 5SG 6/1, 5/1), slightly to intensely bioturbated NANNOFOSSIL-RICH CLAYSTONE layers, 3:30 cm thick. These lithologies respectively comprise only 16% and 12% of the core. Related lithologies comprise the rest of the core: VITRIC SANDSTONE (6%), VITRIC SANDY SILTSTONE (4%), VITRIC SILTSTONE (3%), and VITRIC CLAYEY SILTSTONE (1%). Most of the core is slightly fractured by drilling. SMEAR SLIDE SUMMARY (%):
PPER OLIGOCEN		CP19a				2	• 9=44.0	• %CaC03*2	3			1111	₩•		1, 45 1, 139 D M TEXTURE: Sand 25 Tr Silt 75 25 Clay 70
n									4			1111	•		COMPOSITION: Accessory minerals Tr 1 Clay
							9=52.0	*caco3=5.5	5			1111	さずす		
	в	C/M	8				•	•	6	1.1.1			****		

NIT	BI0 F05	STRA	CHA	RACI	TER	57	IES					JRB.	S3		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERI	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
PPER OLIGOCENE		M CP19a				6	9-2.18			0.5	2	×××	7		PEBBLY PUMICEOUS SANDSTONE, SANDSTONE AND SILTY CLAYSTONE Major lithologies: 65% of the core is greenish black (5GY 2/1), crudely laminated PEBBLY PUMICEOUS SANDSTONE and medium-grained SANDSTONE with shale intraclasis flattened parallel to bedding. The rest of the core is greenish black (5GY 2/1) SILTY CLAYSTONE. The silty claystone is cut by a fault that dips at 45°. This short core consists of drilling breccia.

NIT	810 F05	STR	CHA	ZONE	TER	67	1158					.88.	ŝ		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERI	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
							0) ₃ = 3 ,5	1	0.5			7/2 7/2 7/2 *		CLAYEY SILTSTONE, SILTY CLAYSTONE, VITRIC SILTSTONE AND PUMICEOUS SANDSTONE Major lithologies: About 2/3 of the core consists of parallel-laminated, less commonly burrowed, very thin to medium bads of CLAYEY SILTSTONE and SILTY CLAYSTONE. These lithologies are interbedded with very thin to thick graded bads of parallel- to ripple-laminated VITRIC SILTSTONE, or medium- to very the graded PUMICEOUS SANDSTONE. The colors of al sodiment are variable due to strong diagenetic alteration, and the vitric component has bee largely altered. Colors include dark gray (5G 4/1), dark greenish gray (5G 4/1), light olive gray (55 5/2), orgenish black (5GY 2/1) and dusky green (5G 3/2). Redifine dins at 6°
							• • • • • •	• %CaC(2			1111111	E E		Normal faults that dip at about 60° and that separate different lithologies occur in Section 1, 25-40 cm, and Section 3, 10-25 cm and 65-75 cm. In Section 1, a sub-vertical, anastomos- ing fracture, 65 cm long, offsets strata about 1 cm. Minor lithology: Section 1, 13 cm and 20 cm, and Section 2, 54-56 cm, consist of thin horizons of sharp-topped or burrowed VITRIC SANDSTONE (ash). About half of the core is slightly fractured by drilling. The rest is undisturbed.
SOCENE		8						0.4	3	and seed on the			3 // F // FF		
UPPER OLIC		CP19				œ	• 9 40.0	•%caco ³ =	4	and see here.		///	- 13 I		
									5	see 1 a sta 1 s stal		A THE TRANSPORT	F		
							9=45.0	• %CaCO _{3"} 1.5	6				8		
	В	C/M	8						7				- F		

III	BI0 FOS	STR	CHA	ZONE/	R	IES				.88	ŝ		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
						9-45.0	%CaC030	1	0.5	XXXXXX	동 31 34 3		SILTY CLAYSTONE, VITRIC SILTSTONE AND PUMICEOUS SANDSTONE Major lithologies: About 75% of the core consists of very thinly and thinly interbedded dark greenish gray (5G 4/1) and greenish black (5G 2/1), parallel-laminated to burrowed SILTY CLAYSTONE and parallel-to ripple-laminated VITRIC SILTSTONE. The vitric component has been largely altered. Most of the siltstone has the same color as the silty claystone, be some beds are medium bluish gray (5B 5/1). The rest of the core consists of medium to thi beds of greenish black (5G 2/1), dark greenish gray (5G 4/1) and medium bluish gray (5B 1), parallel-to ripple-laminated PUMICEOUS SANDSTONE. The lower part of these beds may be inversely graded due to the occurrence of relatively large, low-density pumice class well above the base of the bads.
							2	2			第11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	*	Bedding dips at 7°. Section 2, 5-15 cm, contains a normal microfault. Most of Section 1 is highly fractured by drilling, or is a drilling breccia. Parts of Sections 4 and 5 are slightly fractured. SMEAR SLIDE SUMMARY (%):
L						0.00	aco3=0.			्यतम		*	2, 15 2, 40 2, 122 D D D D
R OLIGOUE		CP19a			œ	-9-	• %0	3			N		TEXTURE: Sift 40 30 20 Clay 60 70 80 COMPOSITION:
UPPE											Ŷ		Clay 40 64 20 Fe oxide 1 Feldspar 1 1 Tr Glass 48 30 75
						• 9=49.0 • 9=46.0		4			=======================================		Glass 40 50 73 Inorganic calcite 1 Micrite 1 Nanofossils 6 3 2 Opaques 1 1 1 Quartz 1 1 Tr
		0	0			• 9=42.0	8 > 4	5			E ==		

ILE	810	STRA	NT. 1	TONE			5		COL	4E	43R CC	RE .	T		ERVAL 989.7-999.4 MDSt
TIME-ROCK UNIT	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	BIATOMS SMOTAIG	TER	PALEOMAGNETICS	PHYS. PROPERTIE	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURE	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
							9-40.0	%CaC030	1	0.5	20250	×			PUMICEOUS SANDSTONE, PUMICEOUS AND SCORIACEOUS PEBBLY SANDSTONE, VITRIC SILTSTONE, SILTY CLAYSTONE AND NANNOFOSSIL-RICH SILTY CLAY- STONE Major linkologies: About 50% of the core consists of thick to very thick beds of dusky blue green (5BG 3/2) to greenish black (5GY 2/1) to grayish blue green (5BG 5/2) to pale green (10G 6/2) to dark greenish gray (5G 4/1), structureless or parallel: to rople-laminated, very coarse-to fine- grained PUMICEOUS SANDSTONE and PUMICEOUS AND SCORIACEOUS PEBBLY SANDSTONE. Some levels in these beds are rich in pumice pebbles as large as 1.3 cm across; the upward transitions into these levels show inverse grading. The rest of the core consists of a very thin-to medium-scele interbedding of greenish black (5GY 2/1), parallel- iaminated to burrowed SILTY CLAYSTONE, graded beds of paralle-1 to ripple-laminated VITRIC SILTSTONE, and light olive gray (SY 5/2), burrowed NANNOFOSSIL-RICH SILTY
								.2	2			2		*	CLAYSTONE. The vitric component has been largely altered. Bedding dips at 7 th . Short intervals in Sections 2, 3 and 7 are highly fractured by drilling. SMEAR SLIDE SUMMARY (%): 2, 107 3, 70 3, 96
OCENE							• 41.0	• xcaco ₃ -3.	3			4 ~~~	Har 11 11 11 11 11	× *	D D D TEXTURE: Silt 30 30 30 Clay 70 70 70 COMPOSITION: Clay 55 69 62 Feldspar 1 2 1
UPPER OLIG		CP19a		•		æ			4				1 4444 4	a 171 a a 1	Glass 30 20 30 Hornblende 1 Nannofossils 10 3 3 Opaques 1 2 2 Quartz 1 2 1
							42.0	*CaCo3 •*Caco3=0.7	5		67.35		YIIII IIII	7	
	8	R/P					•9-42.0	•%CaCO3=3.4	6	-		\sim		II 8	

CC

6

-	BI0 F05	STRA	CHA	RACTE	R	50	ES					88.	-		
IIME-HOCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
IGOCENE		9a F/M				5	9-42.0 • 9-37.0 •	%CaCO3 % CaCO30 #3.0	1	0.5		1111	3月 11 11 1-	•	SILTY CLAYSTONE AND SANDSTONE Major lithologies: Section 1, 0-25 cm and 89-131 cm, consists of two different colors (greenish black, 5GY 2/1; medium bluish gray, 5B 5/1) of SILTY CLAYSTONE. The upper interval is structureless, whereas the lower one is locally laminated and contains very thin interbeds of more sity, rippled sedment. This lower interval is rich in volcanic glass, which has been largely altered. The rest of the core consists of a graded bed of greenish black (5GY 2/1), coarse- to very line-grained SANDSTONE, with local horizons of dark green shale granules. The entire core is slightly fractured by drilling. SMEAR SLIDE SUMMARY (%):
UFFER UL	B	B CP1	Β												TEXTURE: Silt 30 Clay 70 COMPOSITION: Clay 60 Feldspar Tr Glass 30 Lithic fragments Tr Nannofossils 5 Opaques 1

SITE 793 H	OLE B	CORE	46R CC	RED IN	FERVAL 1018.7-1028.0 mbsf	793B-46R 1	2 3	4	5 6	7	8
TIME ROCK UNIT FORAMINIFERS FORAMINIFERS AMANOF OSSIL & UNIT RADIOLARIANS OLATOMS	PALYNOMORPHS 2 TH PALYNOMORPHS 2 PALEOMAGNETICS PHYS. PROPERTIES CHEMISTRY	SECTION METERS	GRAPHIC LITHOLOGY	ORILLING DISTURG. SED. STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION	5-	7				
	\$=3.0 } \$€210 \$€8603	0.5		×	CRYSTAL-VITRIC SANDSTONE AND VITRIC SILTSTONE Major lithologies: Greenish black (5G 3/1, 2/1), grayleh green (5G 5/2), dark greenish gray (5BG 4/1; 5G 4/2), grayleh black (N2), and black (N1) CRYSTAL-VITRIC SANDSTONE (42% of the core) and VITRIC SILTSTONE with the same and additional colors (graysh green, SG 5/2; greenish black, 5GY 2/11 (25% of the core) occur as single beds 20-66 om thick, but more commonly as thin (2-10 cm thick) divisions of graded bode. Planar lamination is common: wedge-planar lamination, may lamination, mores lamination and convolute bedding are less common. The vitric component has been largely altered.						
	1.46.0 ∰.46.0 1.98 ∯.2.00 *0.00311.1	2			Minor tithologies: SILTY CLAYSTORE (15% of the core), SANDY SILTSTORE (9%), and CLAYSTORE (9%), in the same colors as the major lithologies and with local slight bioturbation, occur as the upper division of graded beds. Drilling disturbance varies from undisturbed to highly fractured. SMEAR SLIDE & THIN SECTION SUMMARY (%): 2,26 2, 120 5, 149 CC, 62 M D D D	35					
ω	• •	3			TEXTURE: Sand - - 100 100 Sit 40 60 - Tr Clay 60 40 - - COMPOSITION: - - 4 3 Accessory mineralis Tr - 4 3 Cernent - - 15 29	50 — 55 — 60 — 85 —					
UPPER OLIGOCEN CP19a	R 35 •9-41.0 35 •9-41.88	4			Clay 59 40 — Foldspar Tr Tr 5 3 Fordanianifers — Tr 5 3 Foranianifers 40 59 76 65 Nannolossits 1 1 — 1	70 — 75 — 80 —					
		5				85 90 95					
	• 9 = 2.7.0	6				105- 110- 110- 115-					
	9-13-0 9-2-08	7							5		-
B F/M R/P		8			4	135 					

INIT	FO	SSIL	CHI	ZONE/	R	8	TIES				URB.	SES		
I WE-ROCK O	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETI	PHYS. PROPER	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
					c)		• * CaCO3	1	0.5 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	120 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	* *		SANDY GRANULE-PEBBLE VOLCANIC-LITHIC CONGLOMERATE, CRYSTAL- VITRIC SANDSTONE AND VITRIC SILTSTONE Major lithologies: The uppermost 114 cm (18%) of the core is a single bed of greenish black (5GY 2/1), SANDY GRANULE-PEBBLE VOLCANIC-LITHIC CONGLOMERATE. It contains siltstone clasts, larger than 20 cm, in its middle portion; aside from these, the sand/ pebble/granule ratio ranges from 40/40/20 to 10/40/50; the maximum clast size is 15 mm, and the mean size of the ten largest pebbles is 9 mm. Grayish black (N2) and dari gray (5Y 4/1) CRYSTAL-VITRIC SANDSTONE and dark greenish gray (5G 4/1) VITRIC
									2		111114	888	*	SILTSTONE comprise 28% and 18% of the core, respectively, as the coarser compo- nents of graded beds. The virtic component has been largely altered. These rocks display common planar lamination and less common cross lamination and wavy lamination. A dewatering structure and a zeolite-filled fracture occur in Section 3. Minor lithologies: Finer-grained parts of the graded beds comprise the rest of the core: greenish black (5 211) and dark gray (5GY 4/1) VITRIC SILTY CLAYSTONE (16%), VITRIC CLAYET SILTSTONE (9%), and VITRIC SANDY SILTSTONE (4%). Sections 4 and 5 are slight/ fractured by drilling.
					0	1	-2.05	 %CaCO₃=0.5 	3			● 祖X ■		SMEAR SLIDE SUMMARY (%): 2, 75 2, 75 D D TEXTURE: Sand 90 Sili 10 75 Clay 25
						A. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	11. 97.1.97	903 •×caco3	4		くノノノノノ	40		COMPOSITION: Accessory minerals 7 — Cement 20 — Clay — 25 Foldspar 10 — Glass 53 72 Lithic fragments 10 — Micrite — Tr Narnofossils — 3
		3/P	3/P				-4-4-	*0*	5					

SITE 793 HOLE B CORE 48R CORED	INTERVAL 1037.6-1047.3 mbsf	793B-48R 1	2 3	4 5	6
TIME - ROCK UNIT FORAUINIFERS LORAUINIFERS PALEOMADIRE PALEOMADIRE PALEOMADIRE PALEOMADIRE PALEOMADIRE PALEOMADIRE PALEOMADIRE PALEOMADIRE CHEMISTRY RADIOLARIANS PHYS. PROPERTIES PHYS. PROPERTI	LITHOLOGIC DESCRIPTION	5			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	VITRIC SILTSTONE AND CRYSTAL-VITRIC SANDSTONE Major lithologies: Dark greenish pray (55 4/1), dark gray (5GY 4/1), and greenish black (5YR 2/1), graysh green (5G 5/2), and grayish black (N2) CRYSTAL-VITRIC SANDSTONE comprise 30% and 24%, of the core respectively, as the coarser members of graded beds. The vitric component has been largely altered. Planar lamination is common: cross lamination, wavy lamination, load casts, and convolute bedding are also present. Minor lithologies: The rest of the core is composed of the filter divisions of graded beds: greenish gray (5G 5/1), dark greenish gray (5G 5/1), dark greenish gray (5G 5/1), dark greenish gray (5G 5/1), and greenish gr				

6

-	810	STRA	Т.	ZONE/		0	Т									evozen are en
TIME-ROCK UNI	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOWAGNETICS	PHYS. PROPERTIE	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTUR	SED. STRUCTURES	SAMPLES		,	LITHOLOGIC DESCRIPTION
ш						0.85-0	• %CaC01.0	1	0.5		1 X X H H H H H H H	==== ====	*	VITRIC SILTSTONE A Major lithologies: Greenish black (5G 2/1 and greenish black (5G core, respectively, occo The vitric component h and the claystone is sl Minor lithologies:	ND CLA 5GY 2/ 2/1, 5G urring pri as been lightly to	YSTONE 1) VITRIC SILTSTONE and dark greenish gray (5G 4/1) Y 2/1) CLAYSTONE comprise 49% and 23% of the ncipally as thin (4-20 cm thick) divisions of graded beds. largely altered. The sitistone is partly parallel laminated, intensely bioturbated.
UPPER OLIGOCEN		CP19a			0	0-24=0	1.5 0%CaC01.5	2			//×///	*		Minor infoidges: 12% and 14% of the or VITRIC SANDSTONE dark greenish gray (5G gies. Microfaults and zeolite The core is slightly to n SMEAR SLIDE SUMM	ore, respe as the th i 4/1) SIL filled mid noderate ARY (%)	ectively, consist of olive black (5Y 2/1) CRYSTAL- in (2-16 cm thick) basal divisions of graded beds, and .TY CLAYSTONE transitions between the major litholo- crofractures occur in Sections 1 and 4. iy fractured by drilling.
						0	2 ×CaCO1	3				***	*	TEXTURE: Sand Silt Clay	1, 14 M 80 20 	3, 4 M 80 20
	æ	C/M	B			. 9=48.	/=/-	4				1- 1-		COMPOSITION: Accessory minerals Cement Clay Feldspar Glass Lithic fragments Nannofossils Opaques Radiolarians	10 10 10 65 Tr 5	Tr 20 1 76 7 7 3

SIT	E 7	93	HOLE	В		COR	E !	50R CC	RED	IN	TERVAL 1057.0-1066.7 mbsf	793B-50R	1	2	3	4	5	6	CC	155
TIME-ROCK UNIT	BIOSS FORAMINIFERS	ANNOFOSSILS SIT CHAI RADIOLARIANS	ZONE/ RACTER SMOLVIQ	PALEOMAGNETICS	PHTS, PHOPERTIES	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION	5 — 10 — 15 —				X				
UPPER OLIGOCENE	σ	C/M CP19a B		R 40-28.0 - 40-40.0 - 40-68.0 - 40-68.0	7-2.38 7-2.35 7-2.27 • XCaCO ₂ =0.4 • XCaCO ₂ =0.7 • XCaCO ₂ =0.7						WTRIC SILTSTONE AND CRYSTAL-VITRIC SANDSTONE Major illhologies: Dark greening harg (5G 41), dark gray (5YR 411), grayish black (N2), olive black (5Y 21) TONE respectively comprise 43% and 39% of the core. In the form of alternating divisions of graded beds, most of which have source bases. Most of the core consists of graded beds are thickethan 15 cm. These thicker beds are thickethan 15 cm. The top half of the core is composed of CLAYEY SILTSTONE (9%), SILTY CLAY-STORE (9%), and CLAYSTONE (1%). Each section has one or two zeoller-filled fractures. The top half of the core is undisturbed, and the lower half is slighthy fractured by drilling. State 100 cm. The section 100 c							A STATE A REAL AND A STATE OF A S		
												140 — 145 — 150 —							1.1.1	

150-

5	810 F05	STRA	Т. СНА	ZONE/ RACTE	R	Es					88.	5		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTI	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTURE	SAMPLES	LITHOLOGIC DESCRIPTION
						-64.0	scaco3=2.2	1	0.5		3	X	*	CRYSTAL-VITRIC SANDSTONE and VITRIC SILTSTONE Major tithologies: 70% of the core consists of grayish black (N2), olive black (5Y 2/1) and greenish bla (5G 2/1) CRYSTAL-VITRIC SANDSTONE; manhy as a single layer with its base in Section 6 and its top in Soction 2 (40 cm), it has crude basal inverse-to-normal gradi- and contains volumic hiting bedbies in the top part of Section 6 and intraclasts of siltstone at the base of Section 2. In Section 7, sandstone occurs as thin basal divisi 1-15 cm titlick, or gradied bads, intercalated with throwinsh black (5YR 2/1) VITRIC SILTSTONE, which constitutes 30% of the core and also occurs as larger, 8c cm trick, in Section 6. The graded bads are planar larminated to cross taminated, and hr
						9-40.0	•	2			Ş	0 TH 0		slightly bioturbated tops. The virtic component is altered. Fluid-escape pillars and di structures occur in Sections 2 through 4, and zeolite-filled fractures occur near the b of Section 2. Minor tithologies: Oflive black (SY 211) VITRIC CLAYEY SILTSTONE and CLAYSTONE respectively or strute 5% and 1% of the core, mainly as slightly bioturbated cops above the graded beds. The top of the core is highly fractured by drilling, but most of the core is undis- turbed or only sightly fractured.
					1				-			41:		SMEAR SLIDE SUMMARY (%):
									1010			ñ		1,40 5,1 D D
								3	1111					TEXTURE: Sand 20 70
									1.1					Sitt 80 30
CENE					~	0.0	0.1*60	-	-					Accessive minerals - 7
LIGO						9-26.	xcac					==		Glass 100 78
PER 0						•	•	4	- I I I					Lithic fragments — 5
B								L					*	
						9-29.0	0.4	5			11111	+1+		
						9-45.0	• %CaCO3=4.2	6	1 to the total of the		//////	+ 0		
						0.95-0	69.7 1	7					1 11 1 1 11 1 11 1	
							5.1.5					नाधामन	- Hell	
						9-42.0	• %CaCO ₁ .	8			11	FF	4	

ITE	1	793	}	HOL	E	В		co	RE	53R C0	RE	DI	NT	ERVAL 1086.1-1095.7 mbsf
TIME-ROCK UNIT	FORAMINIFERS	STR STR STR STR	RADIOLARIANS 2	RACTE SWOLVIQ	PALEOMAGNETICS	DUVE DRAFETTES	ruculorby	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED, STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
						Q-38.0	XCaC02	0.1	0.5		×	= 3+4		VITRIC SANDSTONE, VITRIC SILTSTONE AND SILTY CLAYSTONE Major iithologies: Most of the core consists of interbedded thin to medium beds of grayish black (N2) to greenish black (SGY 2/1), graded, parallel- to ripple-taminated VITRIC SILTSTONE or VITRIC SANDSTONE, and laminated, structureless or burrowed beds of greenish black (SGY 2/1) SILTY CLAYSTONE. The rest of the core consists of three medium to thick graded beds of grayish black (N2) and greenish black (SGY 2/1), parallel-to ripple- laminated, medium-to time-grained VITRIC SANDSTONE.
ER OLIGOCENE		CP19a			۵			2				3-4 2 単位で		There are clastic dikes and a fracture in Section 2, 90-135 cm. Parts of Sections 3 and 4 are highly fractured by drilling. SMEAR SLIDE SUMMARY (%): 4, 52 4, 52 M TEXTURE: Silt 20 Clay 80
UPPE						Q=44.0	T-2.10	3			> <	5# 5000		COMPOSITION: Clay 70 Feldspar Tr Glass 20 Inorganic caloite 2 Nannofossila 5 Quartz Tr
	B	F/M	B			.0=52.0	7-2.06	4 C			~~~~	+ : 1	*	

i.	F	ossi	L CH	RACI	TER	ce	TIES				URB.	RES		
TIME-ROCK 1	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNET	PHYS. PROPER	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTU	SAMPLES	LITHOLOGIC DESCRIPTION
UPPER OL GOCENE		CP19a				N	•9:34.0 •2:23	• % CaCO ₃ =0.5 • % CaCO ₃ =1.4	1 2 3 4 5				*	VITRIC SANDSTONE AND CLAYEY SILTSTONE Major lithologies: This core consists of very thin to very thick interbeds of dark gray (5GY 4/1) and olive black (57 2/1), generally parallel-laminated and graded VITRIC SANDSTONE, and structureless to parallel laminate bdas of CLAYEY SILTSTONE of the same color. The thickest sandstone bed is 115 cm thick. Minor lithologies: In some cases, the tops of the graded sandstone beds line to VITRIC SILTSTONE. Section 3, 50-58 cm, and Section 4, 110-122 cm, consist of a cross-bedded and a parallel-laminated graded bed of PUMICEOUS SANDSTONE. The pumice is colored pale green (106 6/2), and occurs as flattened clasts in the upper part of the bed in Section 4. Section 1 is dnilling breecia, and Section 2, 0-30 cm, is slightly fractured by drilling. SMEAR SLIDE SUMMARY (%): 2, 108 D TEXTURE: Sand 90 Silt 10 COMPOSITION: Accessory minerals Accessory minerals 15 Foldspar 10 Glass 75

SITE 793

LINO	FO	SSIL	CHA	RACTE	R	1100	2				URB.	RES		
TIME-ROCK L	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETI	030000 0000	PHTS. PHOPEN	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTUI	SAMPLES	LITHOLOGIC DESCRIPTION
LOWER-UPPER OLIGOCENE					Z	0.0*=0*=		2	0.5				0G IW	SANDSTONE AND SILTY CLAYSTONE Major lithologies: Section 1 through Section 3, 7 cm, consist of thinly interbedded, graded beds of parallel-to ripple-laminated, very line-grained SANDSTONE and burrowed SiLTY CLA STONE. All this sediment is brownish black (SYR 21), Sections 3 through CC consist a 2.4 m-thick graded bed of gravish black (N2), structureless, medium-to very fine- grained SANDSTONE. Section 1 consists of drilling breccia. SMEAR SLIDE SUMMARY (%): 3, 100 D TEXTURE: Sand 10 Sit 85 Clay 5 COMPOSITION: Clay 5 Feldspar 3 Glass 87 Opaques 1 Out 2

BIOSTRAT. ZONE/								(And the second		and the	1 1000
LIME - ROCK UNI FORAMI NI FERS NANNOF OSSILS RADIOLARIANS DI A TOMS DI A TOMS	PALEOMAGNETICS PHYS. PROPERTIE CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURE	SED. STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION	5- I0			
	•9*25.0	1	0.5		×××		VOLCANIC PEBBLE-GRANULE CONGLOMERATE, VOLCANIC GRANULE-PEBBLE CONGLOMERATE, SANDSTONE AND CLAYEY SILTSTONE Major lithologies: Section 1 through Section 2, 105 cm, is a graded bed of olive black (5Y 2/1) VOLCANIC PEBBLE GRANULE CONGLOMERATE, coarsening downward at the base to VOL- CANIC GRANULE CONGLOMERATE. This bed is 2.55m thick, and forms about 40% of the core. Pebbles at the base are as large as 6 cm across, and consist of highly vesicular two-pyroxene andesite, two-pyroxene dactes, gray and brick-red pumice. About 50% of the core, below the conglomerate, consists of grayish black (N2) and cravity hile graen (R56 5/2) thick to yvery thick back of leither structureles or par-	20 - 25 - 30			
	₽.25.0 ₽.2.30	2	mann			••	allel-to ripple-taminated, very coarse to medium (basal size) SANDSTONE. The thickest bed is 2.75 m thick. The remaining 10% of the core consists of thin to medium beds of graded, fine-grained SANDSTONE, parallel-and ripple-laminated or burrowed CLAYEY SILTSTONE. Section 1, 0-30 cm, is drilling breccia. The rest of the core is undisturbed by drilling. SMEAR SLIDE SUMMARY (%):	35 — 40 — 45 — 50 —			
OLIGOCENE	N • 9=43.0 • % caco, = 1.5	3				304	3, 100 D TEXTURE: Silt 80 Clay 20	55 — 60 — 65 —			-
OWER-UPPER	¶=37.0 • ¶=41.0 •			==		* *	COMPOSITION: Clay 10 Feldspar 2 Glass 81 Nannolossils Tr Opaques 3 Quartz 2	70 — 77 — 75 — 80 —			
	04	4						85			-
	-9=26. -2.4	5			×						-
B B C/P		cc	11			TH					

120-

125-130-

145-

150-

-

INIT	810 F05	STR	CHA	RACT	ER	cs	TIES					URB.	RES		
TIME-ROCK L	FORAMINIFERS	NANNOF OSSILS	RADIOLARIANS	DIATOMS		PARE CONCOMENT GRADHIC CONCOMENTAL GRADHIC S JINICION BUILLING DISIL SAMPLES SED STRUCTUR SAMPLES SAMPLES		LITHOLOGIC DESCRIPTION							
LOWER OLIGOCENE	В	C/G CP17 - 18				Z	• 9=34.0 • 1=2.26	• %CaCO3 • 0.5 * 2.2 •	1	1.0	CURE 80.805.000 80.805.00 20.805.000000000000000000000000000000000	-	◆ ◆ ◆ [→] → → → → → → → → → → → → → → → → → →	*	VITRIC SANDSTONE, VITRIC SILTSTONE, SILTY CLAYSTONE AND INTRACLAST CONGLOMERATE Major lithologies: About 75% of the core consists of two graded beds, one formed of a lower division of parallel-laminated ourse-to medium-grained VITRIC SANDSTONE that grades upward into parallel-laminated VITRIC SILTSTONE, overfain by a cap of burrowed SILTY CLAYSTONE. All this addiment is greenish black (5G 21). The lower bed has a base of INTRACLAST CONSLOMERATE with cobbles of silty claystone as large as about 25 cm set in a matrix of coarse sandstone. The sed of beas upward from structureless to parallel-to ripple-laminated sandstone, eventually passing into parallel-laminated siltstone and silty claystone. This bed is 2.3 m thick. The rest of the core consists of thin to medium beds of fine-grained sandstone, siltstone and clayey siltstone in graded couplets. SMEAR SLIDE SUMMARY (%): Sand 60 Silt 30 Clay 10 COMPOSITION:

NIT	810 F05	STR	АТ. СНА	ZONE	/ TER	83	TIES					JRB.	Es		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETI	PHYS. PROPER	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTI	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
							7=2.26	%CaCO3 .	1	0.5		×~~	4F 4C	*	VITRIC SANDSTONE, VITRIC SILTSTONE AND CLAYEY SILTSTONE Major lithologies: Sections 1, 2 and 7 contain thick graded beds of olive black (5Y 2/1), dark greenish gray (5G 4/1), greenish black (5Y 2/1) and brownish black (5YR 2/1), structureless of parallel- to ripple-laminated, coarse- to fine-grained VITRIC SANDSTONE. The rest of the core is a fine-scale interbedding of thin to very thin beds of similar vitric sandstone VITRIC SILTSTONE, and parallel-laminated to slightly burrowed CLAYEY SILTSTONI The interbedded facies are color banded; colors include grayish blue green (5BG 5/2), greenish black (5C 2/1, 5GY 2/1), grayish black (N2), dark gray (N3), moderate blue green (5BG 4/6) and dark greenish gray (5BG 4/1).
									2					*	Section 1, 0-30 cm, is drilling breccia or highly fracturedby drilling. Sections 4 through are all slightly fractured. SMEAR SLIDE SUMMARY (%): 1, 75 2, 96 3, 80 D M D TEXTURE:
LENE .		8					• 7-2.02	• %CaCO ₃ =1.3	з				=:]] :] = ;;;~	*	Sand — 30 — Sit 54 70 30 Clay 46 — 70 COMPOSITION: Clay 40 — 70 Foldspar 1 — Tr Glass 54 99 28 Manufacture 70
LUWER ULIGU		CP17 - 1				z		• %caco ₃ =0.9	4					O G	Namuossis 2 — 11 Opaques 1 — Tr Zeolite 1 — —
							• 9-32.0	• %CaCO3 =0.3	5			///////////////////////////////////////	3 3		
									6			///////////////////////////////////////			
		R/P	0				9.25.0	• %CaCO3=0.4	7			1>/////	*		

normal real real

FOS	STRA	CHA	RACT	ER	9	LIES					JRB.	83		
FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPER1	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
						9-24.0	%CaC03 ● =0.3	1	0.5			<1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		CRYSTAL-VITRIC SANDSTONE AND VITRIC SILTSTONE Major lithologies: Grayish black (N2) and brownish black (SYR 2/1) CRYSTAL-VITRIC SANDSTONE an VITRIC SILTSTONE respectively comprise 71% and 27% of the core. The sandstone occurs in six beds, 24-61 cm thick, and as thin basal divisions, 1-18 cm thick, of beds that grade upward into VITRIC SILTSTONE. some of which is slightly bioturbated. This vitric component has been largely altered. Some of the graded bade have scoured bases; the thicker beds are planar laminated. Cross lamination is also present. A graded bed in Section 7, 48-73 cm, has basal siltstone clasts 5-20 mm in diameter, an
								2	the second s					a nonzonial initraciasi, rmm trick and wider man the core barrel. A zeointe-med mi- crofracture occurs in Section 3, and a clastic dike is located in Section 7. Minor hthologies: Slightly bioturbated NANNOFOSSIL-RICH SILTY CLAYSTONE and CLAYEY SILTSTONE each comprise 1% of the core. In Section 3, 132-135 cm, there is a clot of plant debris. The top two sections are undisturbed by drilling, and the rest of the core is slightly fractured.
						-9-26.0	• %CaCO3-1.5	3			1111			SMEAR SLIDE SUMMARY (%): 3,104 3,132 6,48 D D M TEXTURE: Sand 40 70 —
					z		<pre>%CaCO3=0.2 ●</pre>				11111	主殺や至于	*	Silt 30 30 55 Clay 30 - 45 COMPOSITION: - 20 - Accessory minerals 2 2 Tr Cement - 20 - Clay 30 - 40
							¢ €.0=	4			1111			Feldspar Ir I
					1000	• 7=26.0	• %CaC03	5			1111	4		
								6			///////////////////////////////////////		*	
						· 9-27.0	CaCO3=0.3	7			/// ×/			

IN	BI0 F05	STRA	CHA	RACT	ER		2				RB.	83					
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	DAT COMPANY		CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOL	DGIC DESCRIPTION		
							5		1					CRYSTAL-VITRIC SANDSTONE	e of armich block (NN) and exception block (ZOM		
						-0=25.0	• XCaCO,=0	1	1.0				*	2/1), medum-grained CRYSTAL-VITRIC SANDSTONE. The vitric component has been largely altered. The sandstore has planar-laminated divisions in Sections 1 and 2, In Section 3, it is medium to coarse grained with a well rounded claystone pubble 21 mm in diameter. In Section 4, it is normally graded from coarse to medium sand. Section 4, ed do cm, to Section 5, 110 cm, is the upper, main part of a normally graded bed that has a basai division of conglomerate (see Minor lithology). This upper part of the bed grades upward from very coarse-grained sandstone with volcanic granules to medium-grained sandstone. Post-depositional structures include two zeolite-filled subvertical fractures and a diventione nine.			
								2	or box			14		Minor lithology: Gravish black (N2) VOL constitutes 10% of the core. Sand/grant 40/30/30 in Section 7. Maximum clast si clasts is 3-5 mm. Siltstone clasts 12-20	CANIC CONGLOMERATE in Sections 6 and 7 ule/pebble ratios are 65/30/5 in Section 6 and ize is 5-7 mm; mean size of the ten largest mm in size are present in Section 6.		
							1							The core is undisturbed to slightly fractu	ured by drilling.		
							4.0**	<u> </u>						SMEAR SLIDE & THIN SECTION SUM 1, 148	MARY (%): 3, 128		
						0=28.0	*CaCO		1					D TEXTURE:	D		
						-	•	3				0		Sand 80	100		
												1		COMPOSITION: 20	-		
					Z			╞			1	•	#	Accessory minerals 3 Cement 30 Feldspar 5 Class 5	10 35 10		
								4	- the		11	t		Lithic fragments 5	_		
							2				11						
						*25.0	-2.66 CaC0,-0.	5			111	F					
											111						
								F			11						
								6			11	•					
						2.0	.53				1						
S		3/P	~			0-0-	• × Ca	7	form.	0.00	11						
		-	u					1	1	1000 V.C	1/	Ĩ					

Using Stress State CRAPHIC LITHOLOGY State State Using State State State State State Using State State State State State Using State State State State State State State State State State State State State State State State State State State State State State State State State State State		FO	SSIL	CH/	ZON	E/	89	LIES					URB.	ES		
VITRIC SILTSTONE AND CRYSTAL-VITRIC SANDSTONE Major lithologies: Greenish black (SGY 21, SG 21) and brownish black (STR 21), slightly burrowed VITRIC SILTSTONE and greenish pray (SG 51), dark gray (SGY 41) and brownish black (STR 21) CHYSTAL-VITRIC SANDSTONE respectively comprise 58% and of the core. Three illistone beds are 24, 32 and 50 cm thick, one sandstone bed indick. These illistone beds are 24, 32 and 50 cm thick, one sandstone bed indick. These illistone beds are 24, 32 and 50 cm thick, one sandstone bed indick. These illistone beds are 24, 32 and 50 cm thick, one sandstone bed indick. These illistone beds are 24, 32 and 50 cm thick, the sandstone divisions 1-11 cm thick. The thicker beds are planar li nated; some cross lamination is also present. Two microtractures and a fluid-esca pillar occur in Section 3. Minor lithology: Four brownish black (SYR 2/1), intensely burrowed SILTY CLAYS LAYERS, 1-21 cm thick, comprise 9% of the core. ** The core is undisturbed to slightly fractured by drilling. SMEAR SLIDE SUMMARY (%): ** 3 TEXTURE: 3 COMPOSITION: Accessory minerals 1 5 10 20 70 20 8 Accessory minerals 1 5 10 20 20 11 - 20 20 11 - 20 20 11 - 20 20	TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERI	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
Pied Could To. Minor lithology: Four brownish black (5YR 2/1), intensely burrowed SILTY CLAYS Minor lithology: Four brownish black (5YR 2/1), intensely burrowed SILTY CLAYS Winor lithology: Four brownish black (5YR 2/1), intensely burrowed SILTY CLAYS Winor lithology: Four brownish black (5YR 2/1), intensely burrowed SILTY CLAYS SMEAR SLIDE SUMMARY (%): The core is undisturbed to slightly fractured by drilling. SMEAR SLIDE SUMMARY (%): TEXTURE: Sand 10 20 70 Sit 60 80 30 Clay 30 COMPOSITION: Accessory mineralis 1 5 10 Cerent - 20 20 Clay 30 Clay 3								9=43.0	*CaCO3.	1	0.5		>		*	VITRIC SILTSTONE AND CRYSTAL-VITRIC SANDSTONE Major lithologies: Greenish black (SGY 2/1, 5G 2/1) and brownish black (SYR 2/1), slightly burrowed VITRIC SILTSTONE and greenish gray (5G 5/1), dark, gray (5G/Y 4/1) and brownish black (SYR 2/1) CRYSTAL-VITRIC SANDSTONE respectively comprise 58% and 33%, of the core. Three siltstone beds are 24, 32 and 50 cm thick; one sandstone bed is 61 cm thick. These lithologies occur mainly as divisions of graded beds, the siltstone 4-15 cm thick, and the sandstone divisions 1-11 cm thick. The thicker beds are planar lami- nated; some cross lamination is also present. Two microfractures and a fluid-escape
3 TEXTURE: 3 Sand 10 20 70 3 Sit 60 80 30 Clay 30 - - COMPOSITION: Accessory minerals 1 5 10 Cement - 20 20 20 Clay 30 - - 10 Feldspar Tr 5 10							z	• 9=34.0	• %caco ₃ =0.4	2			111111	単し、「茶」	*	Minor lithology: Four brownish black (5YR 2/1), intensely burrowed SILTY CLAYSTONE LAYERS, 1-21 cm thick, comprise 9% of the care. The care is undisturbed to slightly fractured by drilling. SMEAR SLIDE SUMMARY (%): 1, 23 2, 63 2, 126 M D M
Glass 67 60 55 Glass 1 10 5								2.34	caco ₃ =0.3	3			11111111	-78219- + +		TEXTURE: Sand 10 20 70 Sitt 60 80 30 Clay 30 COMPOSITION: 20 20 Clay 30 Feldspar 1 5 10 Glass 67 60 55 Lithic tragments 1 10 5

SITE 793

NIT	810 F05	STR	CHA	RACT	ER	s	TIES					URB.	SES				
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNET	PHYS, PROPER	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTUR	SAMPLES	LITHO	DLOGI	C DESCRIPTION
						-	• 9 = 39.0	• *CaC03	1	0.5		5	- Same and	*	CRYSTAL-VITRIC SANDSTONE, VI STONE Major lithologies: The core consists of dark gray (SGY - (SY 41) ORYSTAL-VITRIC SANDST dark gray (SY 41) VITRIC SILTY CLJ 127 cm, is a single, parallel-laminate contains numerous bioclasts, includin foraminiters. The rest of the sandstor foraminiters. The grade beds comm	4/1), o ONE AYST d, me ng tes ne occ nonly	SILTSTONE AND VITRIC SILTY CLAY- dark greenish gray (5BG 4/1), and dark gray (54%) and VITRIC SILTSTONE (22%), and ONE (19%), Section 2, 129 cm, to Section 3, dium-to fine, grained sandstone bed that its of <i>Discocyclina</i> and other large benthic zurs as basail divisions, 2-18 cm thick, of have socured bases. The siltstone layers are
						ж	4.0		2	er droot con			村に 当社主主義	*	slightly burröved, and the sitly clayst and 4 each contain a fracture filled wi of Section 2. Minor lithology: Bioturbated, greenish of the core. Section 1, 0-28 cm, is highly fractured SMEAR SLIDE SUMMARY (%):	one b ith ze n gray d by c	reds are strongly bioturbated. Sections 2, 3 olite. A dewatering structure occurs at the top (5G 4/1) SILTY CLAYSTONE comprises 5% trilling. The rest of the core is undisturbed.
						3	• 0=5		з	dundara			 ↓ ↓	*	TEXTURE: Sand 20 Sit 80 Clay -	24	3, 2 D 50 30 20
	B	в	R/P			Я	• 9=40.0	• %CaCO3=0.5	4	aftered ere			12-11-12 VIB 1-12 VIB		COMPOSITION: Accessory minerals — Bioclast — Cement 20 Clay — Feldspar 10		10 20 5 3

NIT	BIO FOS	STRA	CHA	ZONE	E/ TER	s	LIES				JRB.	55	-		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERI	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR		SAMPLES	LITHOLOGIC DESCRIPTION
						2	9=22.0	• *CaC03	1	0.5 0.5 1.6 1.6	lia and control				FORAMINIFER-BEARING SANDY GRANULE CONGLOMERATE, VITRIC SAND- STONE, VITRIC SILTSTONE AND SILTY CLAYSTONE Major tithologies: Section 1 through Section 3, 60 cm, consists of two beds of greenish black (5GY 2/1), structurelese FORAMINIFER-BEARING SANDY GRANULE CONGLOMERATE, with 40% sand, 40% granules, and 20% pebbles. Maximum pebble diameters 1.4 cm. Three are scattered, large benthic foraminifers in this conglomerate. The basal 40 cmd the lowest conglomerate is inversely graded. Section 3, 30 cm, to Section 4, 95 cm, and Section 5, 115 cm, to Section 6, 68 cm, consist of two greenish black (SGY 2/1), and greenish black (SGY 2/1), graded beds of medium: to very fine-grained VITRIC SAND-
									2	0.000000000000000000000000000000000000	20-0-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7	> > >			STONE: The rest of the core consists of a fine-scale interbedding of graded beds of olive black (5/21) and greenish black (562 V21) VTRIC SLITSTONE and parallel- laminated to burrowed SILTY CLAYSTONE. Bedding dips at 5°. Section 4, 80-110 cm, contains a brecciated and injected, cross-cuting zone with sitly claystone clasts as large as 2 cm. Porosity is filled with calcile and zeolite cements. There are small clastic dikes in Section 3, 60-85 cm, and Section 5, 90-95 cm. Sections 2, 5, 6 and 7, plus part of Section 3, are highly fractured by drilling. SMEAR SLIDE SUMMARY (%):
							• 9=18.0		3		1:1:8:0.020	+ (日日	C # #		4,97 6,74 D D TEXTURE: Sand 10 Sitt 80 70 Clay 10 30 CCMPOSITION:
						Z		1 ₃ = 0.3	4			# #	#	*	Clay 10 30 Foldspar 1 Tr Glass 83 65 Inorganic calcite 1 — Nannofossils — 3 Opaques 2 Tr Quartz 1 Tr
							-0=30.0	•%CaCO	5			III A SALIT LEVE			
							00	3=0.3 • %CaC03=1.9	6				1 1	*	
	в	В	8				·9=42.	•%CaCO	7			TIMIT	1 1	ļ	

SITE	793	HOLE	в	CORE	66R	CORED INTERVAL	1211.1-	1220.8 mbsf
------	-----	------	---	------	-----	----------------	---------	-------------

1		-	TOUT	. 1			T	1		-	-		-		793B-00H	Cardina and
	FOSS	IL CI	HARACT	ER	S	TIES					URB.	SES				
5	FERS	SILS			NET	OPER	-		GRAPHI	c	DIST	UCTUR		LITHOLOGIC DESCRIPTION	5	1.00
	INIW	NOFOS	SMO		EOMAG	8. PR	MISTR	LION	S LITHOLO	GY	TING	STR	PLES		10-1-1-	1055
	FOR	NAN	DIAT		PAL	PHY	B	SEC	MET		DRIL	SED	SAM		15	122
												The second		SILTY CLAYSTONE, VITRIC SILTSTONE, VITRIC SANDSTONE AND FORAMINIFER-	-	123
						2.33	2		,===	日間間		T		Major lithologies:	20	
					*	4.		1	100	1-		T		About 75% of the core consists of finely interbedded, dusky green (5G 3/2) and olive black (5Y 2/1), parallel-laminated to burrowed SILTY CLAYSTONE and graded beds of	25- 25-	
											E	1		VITRIC SILTSTONE. Silty claystone constitutes 70-90% of this interbedded facies. A few of the vitric siltstone beds are dusky blue green (5BG3/2). The rest ofthecore		
l									-	-		TT		consists of five medium to thick, graded beds of VITRIC SANDSTONE, and a 1.65 m- thick graded bed of FORAMINIFER-BEARING VITRIC SANDSTONE that has a lower		
							ł	+		5.č	10	222		structureless division, followed successively upward by parallel- and ripple-laminated divisions. The lower 20 cm of this bed is inversely graded. Benthic foraminifers as large	35-	-
									100		Ĩ			as 2-3 mm across are scattered throughout the lower part of the bed. There is a sandstone dike, 2-3 mm wide, in Section 5, 20-25 cm.	40-	1 Cont
								2			Ē			Section 6, 60-140 cm, is slightly fractured by drilling. With minor exceptions, the rest of		Ten I
									1		Ē			ina cura is unuisiurbad.	45-	Cars -
												N.4			50	-
								+		· ··		-			55	ALC: NO
						200	3=0		122		Ē	Ŧ			-	
					001	22	Cact	3			-	ï			60	Barriel .
					ſ	•			-			1			65	123
															70	1
					200	2.2.2	0	+	_		1	1			- 1000	No.
					-	-	0			3		117			75-	News C
								4				TT			80	- Inclin
								1	E	51					85-	
					< 9	.75	7 3		EEE	5	Ē	Ŧ				
						2	-	_				+			90-	A STATE
									主王王		t	1			95-	
									-		10	38			100	
								5	3			H			-	
											F	0			105	
									-			°			110-	122
									1			F			115-	122
									-			c				1000
							5.0	6		n.		Ŧ			120-	Bara
						20.03	aco3			Ē		Tu			125-	The state
					-	-	• * 0		100	1		=			130-	
							T	7				TT				13-1
		9	d/								Ē				135	Terter -

150-

CC

INIT	FOS	STRA	CHA	RACI	TER	cs	TIES					URB.	SES		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETI	PHYS. PROPER	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
							• 9=29.0	• %CaCO3 =0.4	1	0.5			*	*	VOLCANIC-LITHIC SANDY GRANULE CONGLOMERATE, GRANULE- RICH VITRIC SANDSTONE, VITRIC SANDSTONE, VITRIC SILTSTONE AND CLAYEY SILTSTONE Major lithologies: There is a 4.1 m-thick graded bed, from Section 1, 55 cm, to Section 4, 75 cm, that has a lower part consisting of VOLCANIC-LITHIC SANDY GRANULE CONGLOMERATE, grading upward into GRANULE-RICH VITRIC SANDSTONE, and then into fine- to very fine-grained sandstone and siltstore. Except for laminated siltstore at the top, the bed is structureles. The base of the bed is inversely graded. Maximum clasts size is 6 mm. Sediment color is greenish black (SGY 2/1, 50 2/1). The rest of the core consists of think interbedded araded baded of line, arguined VITBIC SANDSTONE VITBIC.
									2	and configure	Let South South		F		SILTSTONE and paralle-laminated to slightly burrowed CLAYEY SILTSTONE. Section 4, 125-150 cm, and Section 5, 40-50 cm, contain fine-grained clastic dikes and normal microflaults. Parts of Sections 4 through 7 are moderately to slightly fractured by drilling. SMEAR SLIDE SUMMARY (%): 1, 9 6, 80 D D
OCENE		8					• = 29.0	03 •%CaCO3=1.6	3	and and see	00000000000000000000000000000000000000				TEXTURE: Silt 30 25 Clay 70 75 COMPOSITION: Clay 70 72 FedSpar 2 2 Chara 2 0
LOWER OLIG		CP17 - 1				z		• %CaC(4				+ c		Utass 24 20 Nannofossils Tr — Opaques 1 3 Quartz 2 2
							-0-39.0	• % CaCO3=0.4	5						
									6	-			a= #14	1100-1 III II	
		R/M	R/P				0-1-0-	• %CaCO3 =0.6	7	-				111 11 1 1111 111	

SITE	793	HOLE	в	CORE	68R	CORED INTERVAL	1230.5-1240.2	mbsf
------	-----	------	---	------	-----	----------------	---------------	------

L.	FOS	STR	AT. CHA	ZONE	TER	05	IES					RB.	03		
TIME-ROCK UP	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	NETERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
							9-38.0	• %CaCO ₃ =2.1	1	0.5		11/1/1/1			VITRIC SILTSTONE AND CRYSTAL-VITRIC SANDSTONE Major lithologies: Greenish black (5GY 2/1), dark gray (5Y 4/1) and grayish green (5G 5/2) VITRIC SILTSTONE and greenish black (5GY 2/1, 5G 2/1), and grayish green (5G 5/2) CRYSTAL-VITRIC SANDSTONE respectively comprise 55% and 42% of the core. mostly as divisions of thin, graded beds, although one siltstone layer is 43 cm thick and one sandstone layer is 101 cm thick. The thicker beds are planar laminated, with some cross lamination, and have slightly burrowed tops.
							0.0	0.9*0.9	2	and reached		11/1/11			10 cm thick, comprise 6% of the core. 10 cm thick, comprise 6% of the core. Most of the core is slightly fractured by drilling.
							• 9*27.0	• %CaCO	3			11/1/1	加ました		
							• • • • 3.0	• %CaCO3=0.8	4			11/1/1	8 8		
							7.0	aco ₃ = 0.8	5			11/1/1/			
		8/P	1/P				9-2	• *0	6				H : : : F-		

SITE	7	93	н	IOLE	E	3		CO	RE	69R CC	RE	DI	NT	ERVAL 1240.2-1249.8 mbsf	793B-69R 1	2
÷	BIO:	STRAT	T. ZO	NE/		ES					88.	57			- Sand	(SO)
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTURE	SAMPLES	LITHOLOGIC DESCRIPTION	5 — — IO — I5 —	
									3			1		CRYSTAL-VITRIC SANDSTONE	-	1 2.4
						• 9=38.0 -2.04	• * CaCO3	1	0.5		>	-34 FR Fr	*	Major lithology: Dark gray (5GY 4/1), grayish black (N2), dark greenish gray (5BG 4/1, 5G 4/1), greenish black (5G 2/1, 5GY 2/1) CRYSTAL-VITRIC SANDSTONE comprises 81% of the core, most of it in four beds, 85-243 cm thick, that vary from structureless, coarse-grained sandstone to very fine-grained and thinly laminated sandstone. The thickest bed, in Sections 2 and 3, is normally graded. Greenish black (5G 2/1), altered volcanic-lithic grains provide crude lamination in coarser intervals. There are a few calcareous bioclasts, about 1 mm in diameter.	20— 25— 30—	
								2			111			In Sections 1, 4 and 5, some of the sandstone occurs as thin (1-16 cm) basal divisions of graded beds, capped by slightly to intensely bioturbated SILTSTONE and SANDY SILTSTONE divisions 2-15 cm thick. These lithologies respectively comprise 16% and 3% of the core.	40	
								1			1			Most of the core is slightly fractured by drilling.	45-	1000
											1			SMEAR SLIDE SUMMARY (%):	50-	- 3.
							se.				1			1,59 3,113 D D	-	-
						00	0= 60				1	1		TEXTURE:	-	
						-26.	CaC		1		1			Sand — 80	60-	-
							•	3			1			Silt 80 20 Clay 20 —	65-	
									1.5		1	¢		COMPOSITION:	- 6	and the
												tu	1	Accessory minerals — 15	70-	
					z						1	+		Cement – 20	75-	-
					1						1	200		Feldspar — 10 Glase 77 42	80-	Hard -
								4			1	#		Lithic fragments 5 Micrite 1	Anna - Article	Lean and
											1	F		Nannofossils 2 — Opaques — 5	85-	- Carlos
							6.4				1	1			90-	The second
						0.0	CO3	-			1	200			95	Trass Da
						9-4	xca				1	1	1			100
						•	•	5			1	-777			100-	
								1			1	5			105-	
											1	T				
								L	1		1	4F				
									8	1	1	111			115-	
										1	1	1			120-1	
							5	6			1				-	
						0-	0=0			1	1	F			125-	C. C. C.
						-26.	CaCo			1	1				130-	-
						5	• *	F			1				135-0	i in
										1	1					
								7			5		-		140	
	100								1.3		X				LAE -	

SITE 793 HOLE B CORE 70R CORED INTERVAL 1249.8-1259.4 mbsf

1.	BIO FOS	STR	АТ. СНА	ZONE	E/ TER	50	Es					RB.	ŝ		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
							• 9=26.0	• %CaC03=2.1	1	0.5					CRYSTAL-VITRIC SANDSTONE AND VITRIC SILTY CLAYSTONE Major lithologies: Greenish black (5GY 2/1), dark greenish gray (5BG 4/1, 5G 4/1), and dark gray (5GY 4/ 1) CRYSTAL-VITRIC SANDSTONE and dark greenish gray (5BG 4/1) and dark gray (5Y 4/1) VITRIC SILTY CLAYSTONE comprise 54% and 20% of the core, respectively. Much of the sandstone is in seven layers, 23-104 cm thick. The thickset bed (Sections 5 and 6) is graded from structureless, medium-grained sandstone to fine-grained, parallel- laminated sandstone. Other layers are basal divisions, several centimeters thick, of graded beds. The sitstone, in layers 1-16 cm thick, consists of slightly to intensely burrowed caps of graded beds. There are water-escape features in Section 2, a micro-
								2	2	the second s		<			fault in Section 3, and fractures in Sections 1, 2, 4 and 5. Minor lithologies: VITRIC SILTY SANDSTONE (7%), CLAYSTONE (6%), and VITRIC SILTY SANDSTONE (2%) comprise the remainder of the core, as middle or upper divisions of the graded beds. Most of the core is undisturbed to slightly fractured by drilling.
IGOCENE		18				z	9-24.0	• % CaCO3 - 1	з	tered second second		<	「四季ます		
LOWER OL		CP17 -						6	4			11/1/1			
							• 9=39.0	• %CaC03"2.	5			///XX///	VE#-8X8 EM		
						ж		• %CaCO3=0.9	6			///////////////////////////////////////	新聞は		
	8	C/M	B				9-33.0	*CaC03 •	7			111	F MA		

SITE 793

867

LIN	BIO FOS	STRA	CHA	ZONE/		LIES					URB.	ES		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETH	PHYS. PROPER	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTI	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
						9-36.0	%CaC03 .	1	0.5		/////			VOLCANIC-LITHIC GRANULE CONGLOMERATE, GRANULE RICH VITRIC SAND- STONE, VITRIC SANDSTONE, VITRIC SILTSTONE AND CLAYEY SILTSTONE Major lithologies: Two very thick beds, spanning parts of Sections 1, 2, 5, 6 and 7, consist of olive black (SY 2/1) VOLCANIC-LITHIC GRANULE CONGLOMERATE, grading upward into GRANULE-RICH VITRIC SANDSTONE, and then into VITRIC SANDSTONE. This rock is structureless or parallel laminated. The upper bed has an inversely graded base. The rest of the core (about 40% of recovery) consists of very thin to thick beds of parallel- and ripple-laminated, olive black (SY 2/1) and pale green (UG6 6/2), fine-for overy fine- grained VITRIC SANDSTONE, VITRIC SILTSTONE and CLAYEY SILTSTONE.
								2		2-22	/	H 14 01/2		There and extensional microfaults, sub-vertical fractures and veinlets in Sections 2, 3 and 4. Minor tithologies: Section 5, 25.90 cm, consists of very fine-grained grayish green (SG 5/2) CARBONATE VITRIC SANDSTONE, with calcite of unknown origin. Section 3, 70-115 cm, Section 4, 110-128 cm, and Section 4, 140 cm to Section 5, 25 cm, consist of beds of grayish green (SG 5/2), fine- to very fine-grained MUDDY SANDSTONE with a lower division of convolute laminae.
SOCENE		18				• 9=44.0	• %CaCO3=0.7	3	and the states of		/		*	Some intervais are slightly fractured by drilling. SMEAR SLIDE & THIN SECTION SUMMARY (%): 3, 100 4, 34 5, 65 5, 92 D D D D D TEXTURE: Sand
LOWER ULI		CP17 -						4					*	Sitt 54 20 90
						0.95.0	• %CaC03=2.7	5					* #	Name 1 3 1 Quartz Tr 1 Tr Rock fragment 5
						9-24.0	%caC0 ₃ =0.5	6		0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000	////	F		

ī	FOS	SSIL	CHA	ZONE	E/ TER	s	1158					JRB.	ES		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
							• 9=35.0	• %CaC03=1.2	1	0.5		111111	=4: 14		BIOCLAST-BEARING VITRIC SANDSTONE, VITRIC SANDSTONE, VITRIC SILTSTONE AND SILTY CLAYSTONE Major lithologies: Section 3, 118 cm, through Section 5 consists of a 2 m-thick graded bed of greenish black (5G 2/1), coarse- to line-grained BIOCLAST-BEARING VITRIC SANDSTONE, with parallel and ripple famination at the top. The bioclasts are as large as 2-4 mm across, and appear to be calcareous red algae. About 20% of the core consists of medium to thick graded beds of VITRIC SANDSTONE and VITRIC SILTSTONE. The color of these is greenish black (SGY 2/1), dark greenish gray (5G 4/1) or blackish red
							0.0	0.0=0.7	2			111	= ¶\$		(SR 22), The rest of the core is mainly thinky interbedded graded beds of VITRIC SILTSTONE and SILTY CLAYSTONE with similar colors. These facies are parallel laminated, ripple laminated or burrowed. Bedding dips at 8°. Minor lithology: Section 1, 0-31 cm, consists of greenish black (SGY 2/1) to blackish ret (SR 22), inversely graded SANDY GRANULE CONGLOMERATE with a maximum clast diameter of 1.8 cm. Section 1, part of Section 2, and most of Section 3 are slightly fractured by drilling.
						Я	• 9=39	• %CaC	3	and see here		11 1111	88 本本 11 出出		
								• %CaC03	4			1	5055	00	
			0				-9=29.0	• %CaC03	5	fines a				IW	

m

• 7=29.0 • %CaC03

CI

TIE	/	93	-	HC	LE	5	5	_	CO	RE	75R CC	RE	D	INT	ERVAL 1297.7-1307.3 mbsf
NIT	BI0 FOS	STRA	CHA	RAC	TER	50	ES.					RB.	SU		
TIME-ROCK UI	FORAMINIFERS	MANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
						5	• = 28.0 = 2.44	• *CaC03	1	0.5		1111111	F		BIOCLAST-BEARING LITHIC CONGLOMERATE, VITRIC SANDSTONE, VITRIC SILTSTONE AND SILTY CLAYSTONE Major fithologies: Sections 1, 0 cm, through 3, 20 cm, consist of greenish black (5GY 2/1), structureless, inversely to normally graded BIOCLAST-BEARING LITHIC CONGLOMERATE. The upper part of this bed occurs in Core 74R. Volcanic clasts are aptyric andesites. Maximum peoble size is 1.7 cm. Sand/granula/peoble ratio is 20/40/40. The bioclastic grains are pebbles of calcareous red algae. Sections 6 through CC consist of one very thick bed and two medium beds of greenish black (5GZ 1/1), fine to very time-grained VITRIC SANDSTONE with "snowlike"-like alteration spots, and diffused dewatering fractures. The rest of the core consists of this to medium instreked of the organized vitric
							• 9=26.0		2			11/1/1	F	**	sandstone, VITRIC SILTSTONE. and parallel-laminated to burrowed SILTY CLAY- STONE. Sections 3, 4 and 5 contain steep fractures, mineral-filled fractures and microfaults. Most of the core is slightly fractured by drilling. SMEAR SLIDE SUMMARY (%): 2,50 2,51 5,63
IGOCENE		- 18				œ			3	and and and		1111111			M D D TEXTURE: Sand 10 Silt 80 20 Clay 10 80 COMPOSITION: Accessory minerals 1
LOWER OL		CP17							4			11/1/1			Clay 10 80 Feldspar 2 Tr Glass 80 10 Hornblende 1 Inorganic calcite 100 2 2 Nannofossils 3 Opaques 3 2 Quartz 2 Tr
		C/M				2	• • • = 31.0	• %CaC0_35.4	5	and the set of the set		/ // //	14 A	*	
							-21 -2.35	<ceco3=1.1< td=""><td>6</td><td></td><td></td><td>11/1/1</td><td>F</td><td>2</td><td></td></ceco3=1.1<>	6			11/1/1	F	2	
	8	R/M	B				•	•	7	-					

150-

ITE	1	793	3	HOLE		В	_	CO	RE	77R C0	RE	D	INT	ERVAL 1317.0-1326.7 mbsf
TIME-ROCK UNIT	FORAMINIFERS	NANNOF DSSILS	RADIOLARIANS 7 1	SWOLUO	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
						• 9-13.0	• * CaCO3	1	0.5	F	11111	P P P P P	#	VITRIC SANDSTONE AND BIOCLAST-BEARING VITRIC-LITHIC PEBBLY SAND- STONE Major lithologies: The sediment consists of greenish black (SGY 2/1), structureless VITRIC SANDSTONE and BIOCLAST-BEARING VITRIC-LITHIC PEBBLY SANDSTONE. Grain size fluctu- ates ass result of variations in the content of volcanic and bioclastic granules and pubbles. The bioclastic grains consist of calcarcous red algae. The vitic sandstone has "snowtlake"-like alteration spots. A mudstone intraclast at the base of Section 3 is at least 7 cm across. The maximum clast size of pebbles is 2 cm. Bioclastic grains are as large as 1 cm in diameter.
								2	the second s					Parts of Sections 1, and 3 through 6 are slightly fractured by drilling. SMEAR SLIDE & THIN SECTION SUMMARY (%): 1, 25 1, 36 D D TEXTURE: Sect. 05
						•¶=18.0	• %CaCO3=4.7	3	the second second second	0 (185) 500 (197	111	•		Satio — 96 Siti 35 5 Clay 65 — COMPOSITION:
					2			4	the second s	0:520 0.00 scale	/// ///			Inorganic caloite 2 Micrite 1 Opaques 5 Quartz 3
						-0-11-0 -01-0	• %CaCO3=0.7	5	the second se	00 780 50 000 000	///			
	8	R/M	8					6	the second second	o Manas Canol	111111			

SIT	E 79	93 +	IOLE	B		CO	RE	79R C	ORE	DI	NT	ERVAL 1336.4-1346.0 mbsf	793B-79R 1	2	3	4	5
TIME-ROCK UNIT	FORAMINIFERS	TRAT . ZO IL CHARA STIL CHARA	CTER	PALEOMAGNETICS	PHYS. PROPERTIES	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION	5				
					-7-2.45	2 0,2=	0.5-	Conc. S. da		* * * *		CRYSTAL-VITRIC PEBBLY SANDSTONE WITH CLAYSTONE INTRACLASTS Major lithology: 91% of the core consists of greenish black (5GY 2/1), massive CRYS- TAL-VITRIC PEBBLY SANDSTONE with CLAYSTONE INTRACLASTS. Sand/granule/ pebble ratio is 55/30/15; excluding intraclasts, the maximum class taize is 40 mm, and the mean size of the ten largest clasts ranges from 5 to 10 mm. Pebbles consist of highly vesicular two-pyroxene andesile, two-pyroxene dacite, and gray and brick-red pumice. Intraclasts of sedimentary rock, mostly claystone and silly claystone, occur in Sections 1-5, with concentrations in Sections 1 and 5. Typical intraclast sizes are 2-5 cm, but one in Section 5				1 - - - -	
SOCENE		10				2	-	20000000000000000000000000000000000000	NO(1/1/1/1/	•		occupies at least 32 cm of the core. A dewatering structure occurs in Section 5. Minor lithology: Section 6, 60 cm, through CC consists of greenish black (5GY 2/1), massive VOLCANIC-LITHIC SANDY GRANULE CONGLOMERATE, which constitutes 9% of the core. The core is undisturbed to moderately fractured by drilling.	35 40 45 50				
LOWER OLIG	- 100			6	9-2-35	3	-	2002 00 00 00 00 00 00 00 00 00 00 00 00	/ / / / / /	•			55 60 85 70				
						4	-	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.		•			75 80 85 90				
						5		201-00-00 201-00-00		***			95				
	8	R/P B			-9-10.0	6	-	0.000									

| |30 | | |35 | | |40 | | |45 |

150-

TTTTTTTTTTTT

SITE	5 7	793	3	HOL	.E	в			CO	RE	81R C0	RE	DI	NT	ERVAL 1355.7-1	365.3	mbsf		793B-81R 1
Е	BIO	STR	AT. CHA	ZONE/	R	_	ŝ					ġ							-10
OCK UNI	FERS	SBILS	RIANS			GNETICS	ROPERTI	RY			GRAPHIC	DISTUR	RUCTURES			LITHOLO	GIC DES	CRIPTION	s —
TIME-R	ORAMIN	VANNOFO	SADIOLA	DIATOMS	100	ALEOMA	HYS. P	CHEMIST	SECTION	LETERS	Lindcour	BILLING	SED. STR	SAMPLES					10
	-	-	-		-	22	-			-		/	zen	~	CRYSTAL-VITRIC SANDSTO	ONE AND	VITRIC SI	LTSTONE	15-
										0.5		/	いた		Major lithologies: Greenish black (5G 2/1), olive	black (5Y	2/1) and	brownish black (5YR 2/1) CRYSTAL-	-05
									1	1.0		/	後に	*	the core. About 80% of the sa fine-grained beds, 39-222 cm	TRIC SILT indistone of thick; the t	STONE n cours in fo thickest o	espectively comprise 60% and 27% of pur, planar-laminated, medium- to very f these (Sections 5 and 6) contains	25
												/	ų.		siltstone layers, 1-23 cm thick graded beds. Several microfa	c pebbles , are plana jults occur	and grani Ir-, wavy-, In Section	les. The thinner sandstone and and cross laminated divisions of is 1, 2, 3 and 6. There are numerous	30-
												1	好		Minor lithologies:	ures.			35-
					0	Y			2			1	5025	*	The rest of the core is compo VITRIC SILTY CLAYSTONE STONE (1%), which occur as	sed of simi (3%), VITF slightly to	larly color RIC SAND intensely	ed VITRIC SILTY CLAYSTONE (7%), Y SILTSTONE (2%), and CLAY- burrowed caps above graded beds	40-
						0.00	20.0		1			1	4		and as bioturbated mixtures of	of the majo	r lithologie	95.	45-
						N. No.						/		*	The entire core is slightly frac	tured by dr	rilling.		50-
						0 00	2.27		-			/	Ĩ.		SMEAR SLIDE SUMMARY (%);	0.50	0.400	55-
						-w	•					1			TEXTURE-	1,86 D	2,58 D	2, 120 M	60-
Ш					1				3		<u> </u>	1	また		Sand	-	50	-	65-
GOCE		18										,	11-11-		Silt Clay	15 85	30 20	30 70	70-
OLI		- 1				~						1	-		COMPOSITION:				75—
VER		CP1										1	F		Accessory minerals Cement	1	3 2	1 Tr	80-
LOV									4			1	177		Clay Feldspar	83 5	20 10	71 2	-
												1			Inorganic calcite Lithic fragments	2 Tr 1	53 Tr 10		85-
							4 50			ŝ	-				Micrite Nannofossils	1 3			90-
						A D A	¥=2				1	1			Radiolarians	4	2	ī	95-
							50		5	EX IS]	1							100-
							9-32			-	-	1	F						105-
							0.6		_			1	••						110-
						ŀ	-4-				-	1	*						115-
							•		6		<u> </u>	1	000						150-
	В	C/M	в				9-33		cc	-		1	**						125-

6

7

CC

879

-	_	30	8	HOL	-E	В	<u>.</u>	_	CO	RE	83R C0	DRE	D	INT	ERVAL 1374.9-1384.5 mbsf
-	BIO FOS	STRA	CHA	ZONE/	ER		ES					38.	s		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETICS	PHYS. PROPERTI	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTUR	SED. STRUCTURE	SAMPLES	LITHOLOGIC DESCRIPTION
					1		2.37				0.000	K	7/2	*	VOLCANIC BRECCIA AND VOLCANIC MICROBRECCIA
							5 9-43.0-9-	.03 •×CaC03	1	0.5- 1.0-			0 1/ 00 00	TS	Major tithology: The core consists entirely of grayish green (SG 5/2), very poorly sorted VOLCANIC BRECCIA and VOLCANIC MICROBRECCIA with a matrixof zeolitic claystone. The matrix forms about 10% of the rock in Section 1, whereas in Section 2; there is little claystone matrix between sand- and granule-sized volcanic grains. All clasts are angular. Clasts in Section 1 are as large as 30 cm in diameter and consist of vesicular andesite with chilled margins. The larger clasts are olive black (5Y 2/1). There are fault surfaces with slickensides in Section 1, 15-20 cm and 50-55 cm.
							9=29	%CaC			80,00	K			The core is highly fractured by drilling.
						1	•	•	2		0.800	K			1, 20
		60							cc		0.0000	X	°		M
															TEXTURE:
															Clay 95
															COMPOSITION:
															Feldspar Tr Glass 99
															Opaques 1 Quartz Tr
TE	7 810 F08	93 STRA	CHA	HOL	E	в			COF	RE	84R C0	RE	Es O	NT	ERVAL 1384.5-1394.2 mbsf
D X	Rs.		_		ER	9	ũ.						C C		
TIME-ROC	FORAMINIFE	NANNOF OSSILS	RADIOLARIANS	DIATOMS	ER	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTI	SED. STRUCTU	SAMPLES	LITHOLOGIC DESCRIPTION
TIME-ROC	FORAMINIFE	NANNOFOSSILS	RADIOLARIANS	DIATOMS	ER	7 PALEOMAGNETICS	· PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTI	SED. STRUCTU	SAMPLES	LITHOLOGIC DESCRIPTION
TIME-ROC	FORAMINIFE	NANNOFOSSILS	RADIOLARIANS	DIATOMS	ER	? PALEOMAGNETICS	9-29.0 . PHYS. PROPERTIES	%CaC03 CHEMISTRY	L SECTION	0.5-	GRAPHIC LITHOLOGY		SED. STRUCTU	SAMPLES	LITHOLOGIC DESCRIPTION VOLCANIC BRECCIA AND VOLCANIC MICROBRECCIA Major lithology: The core consists entirely of grayish green (5G 5/2), very poorly sorted VOLCANIC BRECCIA and VOLCANIC MICROBRECCIA. All clasts are angular. Clasts in Sections 1 and 2 are as large as 4 and 15 cm in diameter, respectively. Clasts are predominantly vesicular, plagioclase-rich andesites with smecifie in 1 e vesicles and with zoned plagioclase. The larger clasts are olive black (5Y 2/1).
TIME-ROC	FORAMINIFE	NANNOFOSSILS	RADIOLARIANS	DIATOMS	ER	7 PALEOMAGNETICS	9=2.32 • PHYS. PROPERTIES	%CaCO3 CHEMISTRY	1 SECTION	0.5-	GRAPHIC LITHOLOGY	\vdash \vdash \vdash \times \times \vdash \vdash Drilling distribution	SED. STRUCTU	SAMPLES	LITHOLOGIC DESCRIPTION VOLCANIC BRECCIA AND VOLCANIC MICROBRECCIA Major lithology: The core consists entirely of grayish green (5G 5/2), very poorly sorted VOLCANIC BRECCIA and VOLCANIC MICROBRECCIA. All clasts are angular. Clasts in Sections 1 and 2 are as large as 4 and 15 cm in diameter, respectively. Clasts are predominantly vesicular, plagioclase-rich andesites with smectle in t e vesicles and with zoned plagioclase. The larger clasts are olive black (5Y 2/1). Section 1 is moderately fractured by drilling. Section 2 is slightly fractured.
TIME- ROC	FORAMINIFE	NAMNOFOSSILS	RADIOLARIANS	DIATOMS	ER	PALEOMAGNETICS	9=2.32 • PHYS. PROPERTIES	%CaCO3 CHEMISTRY	1 SECTION	METERS 1.0-	GRAPHIC LITHOLOGY	$(+ + + \times \times + +)$ drilling distribution	♦ SED. STRUCTU	SAMPLES	VOLCANIC BRECCIA AND VOLCANIC MICROBRECCIA Major lithology: The core consists entirely of grayish green (5G 5/2), very poorly sorted VOLCANIC BRECCIA and VOLCANIC MICROBRECCIA. All clasts are angular. Clasts in Sections 1 and 2 are as large as 4 and 15 cm in diameter, respectively. Clasts are predominantly vesicular, plagloclase-rich andesites with smeche in t e vesicles and with zoned plagloclase. The larger clasts are olive black (5Y 2/1). Section 1 is moderately tractured by drilling. Section 2 is slightly tractured. SMEAR SLIDE SUMMARY (%):
TIME-ROC	FORAMINIFE	NANNOFOSSILS	RADIOLARIANS	DIATOMS	ER	PALEOMAGNETICS	3.0 9=29.0 PHYS. PROPERTIES	aco3*0.3 %CaC03 . CHEMISTRY	2 SECTION	0.5- 1.0-	GRAPHIC LITHOLOGY	$\land \land \land \land \vdash \vdash \vdash \land \land \land \vdash \vdash \vdash \land \land \land$	♦ ♦ SED. STRUCTU	Samples *	LITHOLOGIC DESCRIPTION VOLCANIC BRECCIA AND VOLCANIC MICROBRECCIA Major lithology: The core consists entirely of grayish green (5G 5/2), very poorly sorted VOLCANIC BRECCIA and VOLCANIC MICROBRECCIA. All clasts are angular. Clasts in Sections 1 and 2 are as large as 4 and 15 cm in diameter, respectively. Clasts are predominantly vesicular, Jagioclase-rich andesites with smechte in te vesicles and with zoned plagioclase. The larger clasts are olive black (5Y 2/1). Section 1 is moderately fractured by drilling. Section 2 is slightly fractured. SMEAR SLIDE SUMMARY (%): 1, 20 M TEXTURE:
TIME-ROC	FORAMINIFE	NANNOFOSSILS	RADIOLARIANS	DIATOMS	ER	PALEOMAGNETICS		• %CaCO3*0.3 %CaCO3 • CHEMISTRY	C 1 SECTION	88339 0.5- 1.0-	GRAPHIC LITHOLOGY	VICTOR PARA	♦ ♦ ♦ ♦ SED. STRUCTU	SAMPLES * SAMPLES	VOLCANIC BRECCIA AND VOLCANIC MICROBRECCIA Major lithology: The core consists entirely of grayish green (5G 5/2), very poorly sorted VOLCANIC BRECCIA and VOLCANIC MICROBRECCIA. All clasts are angular. Clasts in Sections 1 and 2 are as large as 4 and 15 cm in diameter, respectively. Clasts are predominantly vesicular, plagicolase-rich andesites with smecifie in te vesicles and with zoned plagioclase. The larger clasts are olive black (5Y 2/1). Section 1 is moderately tractured by drilling. Section 2 is slightly fractured. SMEAR SLIDE SUMMARY (%): 1, 20 M TEXTURE: Silt 70 Clav 30
TIME-ROC	FORAMINIFE	NANNOFOSSILS	RADIOLARIANS	DIATOMS	ER	PALEOMAGNETICS	●¶=23.0 ¶=2.48 ¶=2.32 ● PHYS. PROPERTIES	• %CaCO3*0.3 %CaCO3 • CHEMISTRY	2 SECTION	SELEN 0.5- 1.0-	GRAPHIC LITHOLOGY	V V V V V V P P P X X P P DRITTING DISLI	◇ ◇ ◇ ◇ SED. STRUCTU	SAMPLES * SAMPLES	VOLCANIC BRECCIA AND VOLCANIC MICROBRECCIA Major lithology: The core consists entirely of grayish green (5G 5/2), very poorly sorted VOLCANIC BRECCIA and VOLCANIC MICROBRECCIA. All clasts are angular. Clasts in Sections 1 and 2 are as large as 4 and 15 cm in diameter, respectively. Clasts are predominantly vesicular, plagioclase-rich andesites with smechle in 1 e vesicles and with zoned plagioclase. The larger clasts are olive black (5Y 2/1). Section 1 is moderately fractured by drilling. Section 2 is slightly fractured. SMEAR SLIDE SUMMARY (%): 1, 20 M TEXTURE: Silt 70 Clay 30 COMPOSITION:
TIME-ROC	FORAMINIFE	B NANNOFOSSILS	RADIOLARIANS	DIATOMS	ER	PALEOMAGNETICS	• 1=2.0 • 2.48 1=2.32 • PHYS. PROPERTIES	• % CaCO3" 0.3 % CaCO3 • CHEMISTRY	2 CC	0.5- 1.0-	GRAPHIC LITHOLOGY	X / / / / / H H H X X H H DRILLING DISTI	◇ ◇ ◇ ◇ SED. STRUCTU	SAMPLES * SAMPLES	LITHOLOGIC DESCRIPTION VOLCANIC BRECCIA AND VOLCANIC MICROBBRECCIA Major lithology: The core consists entirely of grayish green (5G 5/2), very poorly sorted VOLCANIC BRECCIA and VOLCANIC MICROBBRECCIA. All clasts are angular. Clasts in Sections 1 and 2 are as large as 4 and 15 cm in diameter, respectively. Clasts are predominantly vesicular, plaquicotase-rich andresites with smeetle in te vesicles and with zoned plagioclase. The larger clasts are olive black (5Y 2/1). Section 1 is moderately fractured by drilling. Section 2 is slightly fractured. SMEAR SLIDE SUMMARY (%): 1, 20 M TEXTURE: Sift 70 Clay 30 COMPOSITION: 1 Clay 30
TIME - ROC	FORAMINIFE	B NANNOFOSSILS	RADIOLARIANS	DIATOMS	ER	PALEOMAGNETICS	9=23.0 7=2.48 7=2.48	• % CaCO3 0.3 % CaCO3 • CHEMISTRY	1 2 CC	0.5- 1.0-	GRAPHIC LITHOLOGY	$X \land \land$	♦ ♦ ♦ SED. STRUCTU	S31dWVS * TS	LITHOLOGIC DESCRIPTION VOLCANIC BRECCIA AND VOLCANIC MICROBRECCIA Major likhology: The core consists entirely of grayish green (5G 5/2), very poorly sorted VOLCANIC BRECCIA and VOLCANIC MICROBRECCIA. All clasts are angular. Clasts in Sections 1 and 2 are as large as 4 and 15 cm in diameter, respectively. Clasts are predominantly vesicular, plaquoclase-rich andvesites with smechte in te vesicles and with zoned plagioclase-rich andvesites with smechte in te vesicles. and with zoned plagioclase-rich andvesites with smechte in te vesicles. Section 1 is moderately tractured by drilling. Section 2 is slightly fractured. SMEAR SLIDE SUMMARY (%): 1, 20 M TEXTURE: Sit 70 Clay 30 COMPOSITION: 1 Clay 30 Feldspar 1 Glass 62 Opanues 2
TIME-ROC	FORAMINIFE	B NANNOFOSSILS	RADIOLARIANS	DIATOMS	ER	PALEOMAGNETICS	●¶=23.0 ¶=2.48 ¶=2.32 PHVS. PROPERTIE	• XCaCO3*0.3 XCaCO3 • CHEMISTRY	2 CC	0.5- 1.0-	GRAPHIC LITHOLOGY		♦ ♦ ♦ SED. STRUCTU	S31dWVS * TS XRFTS	LITHOLOGIC DESCRIPTION VOLCANIC BRECCIA AND VOLCANIC MICROBRECCIA Major lithology: The core consists entirely of gravish green (5G 5/2), very poorly sorted VOLCANIC MICROBRECCIA. All clasts are angular. Clasts in Sactions 1 and 2 are as large as 4 and 15 cm in diameter, respectively. Clasts are predominantly vesicular, plagioclase-rich andesites with smechte in t e vesicles and with zone d plagioclase. The larger clasts are olive black (5Y 2/1). Section 1 is moderately tractured by drilling. Section 2 is slightly tractured. SMEAR SLIDE SUMMARY (%): 1, 20 M TEXTURE: Silt 70 Clay 30 COMPOSITION: 1 Clay 30 Feldspar 1 Glass 62 Opaques 2 Quartz 1
TIME-ROC	FORAMINIFE	B	RADIOLARIANS	DIATOMS	ER	PALEOMAGNETICS	●¶=23.0 1=2.32 ● PHYS. PROPERTIE	• XCaCO3"0.3 %CaCO3 • CHEMISTRY	2 CC	Section 2.5-	GRAPHIC LITHOLOGY		♦ ♦ ♦ SED. STRUCTU	S3TdWVS * TS XRFS	LITHOLOGIC DESCRIPTION VOLCANIC BRECCIA AND VOLCANIC MICROBRECCIA Major lithology: The core consists entirely of grayish green (5G 5/2), very poorly sorted VOLCANIC BRECCIA and VOLCANIC MICROBRECCIA. All clasts are angular. Clasts in Sections 1 and 2 are as large as 4 and 15 cm in diameter, respectively. Clasts are predominantly vesicular. Jagoicolase-rich andesibes with smechte in te vesicles and with zoned plagioclase. The larger clasts are olive black (5Y 2/1). Section 1 is moderately fractured by drilling. Section 2 is slightly fractured. SMEAR SLIDE SUMMARY (%): 1, 20 M TEXTURE: Sift 70 Clay 30 COMPOSITION: 1 Claps 30 Feldspar 1 Glass 62 Opaques 2 Quartz 1

Ę	BI0 FOS	STR	CHA	RAC	E/ TER	50	ES					RB.	2		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
							9=24.0	*CaCO3 •	1	0.5		エーエーケン		TS	VOLCANIC BRECCIA and VOLCANIC MICROBRECCIA Major lithology: The core consists entirely of grayish green (5G 5/2), very poorly sorted VOLCANIC BRECCIA and VOLCANIC MICROBRECCIA. All clasts are angular. Clasts in Sections 1, 2 and 3 are as large as 12, 30 and 9 cm in dimeter, respectively. There is no muddy matrix, only sand-and granule-sized grains of volcanic rock. Clasts are pre- dominantly vesicular, highly porphyritic andesites with phenocrysts of plagiclase (predominant), clinopyroxene and orthopyroxene. The larger vesicles are filled with smectite. The more altered class have flattened vesicles. A few clasts appear to be welded andesits tuith. The larger clasts are olive black (5Y 2/1).
						2	-9-29.0 -2.55		2			SVVVV	0	XRF	Most of Section 1 is moderately fractured by drilling, and Section 2 is highly fractured.
									3		0.0000	1	0		

126 793B 91R NO RECOVERY

126-793B-1R-1

UNIT II: DIABASE

Pieces 1-7

CONTACTS: Upper baked; lower chilled.
 PHENOCRYSTS: In glomeroporphyritic clos and at lower chilled margin. Olivine - 5-7%; 1-3 mm; subhedral; altered to smectite. Clinopyroxene - 2-15%; 2-6 mm; euhedral; twinned, with exsolution lamellae. Orthopyroxene - 1%; 1-2 mm; sometimes rounded.
 GROUNDMASS: Plagioclase (41%, 0.1-0.5 mm); clinopyroxene (18%, 0.1-0.5 mm); orthopyroxene (<1%, 0.1 mm); opaque (4%, 0.05-0.5 mm); glass (26%); vesicles (8%).
 VESICLES: 8%; 0.1 mm; equant; random. Miaroles: In bands and inclusions.
 COLOB: Grav.

Miarones: in particle and inclusions. COLOR: Gray. STRUCTURE: Sill. ALTERATION: Smectite. VEINS/FRACTURES: 1%; 5-10 mm; subhorizontal; roughly at 10 cm spacing.

150

CORE/SECTION

126-793B-1R-2

UNIT II: DIABASE

Pieces 1-5

CONTACTS: Upper baked; lower chilled.

- PHENOCRYSTS: In glomeroporphyritic clots, and at lower chilled margin.
- PHENOCRYSTS: In glomeroporphyritic clots, and at lower chilled margin. Olivine 5-7%; 1-3 mm; subhedral; altered to smectite Clinopyroxene 2-15%; 2-6 mm; euhedral; twinned, with exsolution lamellae. Orthopyroxene 1%; 1-2 mm; sometimes rounded.
 GROUNDMASS: Plagioclase (41%, 0.1-0.5 mm); clinopyroxene (18%, 0.1-0.5 mm); orthopyroxene (<1%, 0.1 mm); opaque (4%, 0.05-0.5 mm); glass (26%); vesicles (8%).
 VESICLES: 8%; 0.1 mm; equant; random. Miaroles: In bands and inclusions
 COLOR: Grav.

- COLOR: Gray.

- COLOH: Gray. STRUCTURE: Sill. ALTERATION: Smectite. VEINS/FRACTURES: 1%; 5-10 mm; subhorizontal; roughly at 10 cm spacing.

UNIT II: DIABASE

Pieces 1A-F

CONTACTS: Upper baked; lower chilled. PHENOCRYSTS: In glomeroporphyritic clots, and at lower chilled margin. Olivine - 5-7%; 1-3 mm; subhedral; altered to smectite.

Clinopyroxene - 2-15%; 2-6 mm; euhedral; twinned, with exsolution lamellae.

Orthopyroxene - 1%; 1-2 mm; sometimes rounded.

GROUNDMASS: Plagioclase (41%, 0.1-0.5 mm); clinopyroxene (18%, 0.1-0.5 mm); orthopyroxene (<1%, 0.1 mm); opaque (4%, 0.05-0.5 mm); glass (26%); vesicles (8%). VESICLES: 8%; 0.1 mm; equant; random. Miaroles: In bands and inclusions.

COLOR: Gray.

STRUCTURE: Sill.

ALTERATION: Smectite.

VEINS/FRACTURES: 1%; 5-10 mm; subhorizontal; roughly at 10 cm spacing.

126-793B-86R-1

UNIT 1: VERY FRACTURED VOLCANIC BRECCIA

CONTACTS: Clasts of andesite lava.

PHENOCRYSTS: Clasts of volcanic breccia with angular fragments of altered glassclinopyroxene crystals up to 5-6 mm. Vesicles filled with smectites, quartz and/or calcite.

Plagioclase - 5-10%; 0.5-1.0 mm; euhedral.

Plagioclase - 5-10%; 0.5-1.0 mm; euhedral. Clinopyroxene - 5-20%; 0.5-2.0 mm; euhedral. Orthopyroxene - 1-5%; 0.5-2.0 mm; euhedral. **GROUNDMASS:** Fine-grained with tiny (<0.1 mm) plagioclase laths. **VESICLES:** 2-5%; rounded; mostly filled with clays or with smectite lining. **COLOR:** Greenish gray. **ALTERATION:** Groundmass altered to clay and orthopyroxene altered to hematite and iron ovide. Plagioclase and clinopyroyane are generally trash

ADJITION: Grounomass allered to clay and orthopyroxene allered to nematite and iron oxides. Plagioclase and clinopyroxene are generally fresh. ADDITIONAL COMMENTS: Very fractured volcanic breccia with clasts as large as 11 cm. Matrix appears deformed and there are some mineral-filled fractures. Could be a fault zone. Rounded clasts of clinopyroxene-plagioclase-altered olivine or orthopyroxene vesicles filled with smectites, quartz and/or calcite. Perhaps chilled fragments of the same composition (nillow fragments). Some clasts look like budeclastites same composition (pillow fragments). Some clasts look like hyaloclastites.

126-793B-86R-2

UNIT 1: VERY FRACTURED VOLCANIC BRECCIA

CONTACTS: Clasts of andesite lava.

PHENOCRYSTS: Clasts of volcanic breccia with angular fragments of altere glassclinopyroxene crystals up to 5-6 mm. Vesicles filled with smectites, quartz and/or calcite.

Plagioclase - 5-10%; 0.5-1.0 mm; euhedral.

Clinopyroxene - 5-20%; 0.5-2.0 mm; euhedral.

Orthopyroxene - 1-5%; 0.5-2.0 mm; euhedral.

GROUNDMASS: Fine-grained with tiny (-0.1 mm) plagioclase laths. VESICLES: 2-5%; rounded; mostly filled with clays or with smectite lining.

 VESICLES: 2-5%; rounded; mostly filled with clays or with smectite lining.
 COLOR: Greenish gray.
 ALTERATION: Groundmass altered to clay, and orthopyroxene altered to hematite and iron oxides. Plagioclase and clinopyroxene are generally fresh.
 ADDITIONAL COMMENTS: Very fractured volcanic breccia with clasts as large as 6 cm. Matrix appears deformed and there are some mineral-filled fractures. Could be a fault zone. Rounded clasts of clinopyroxene- plagioclase-altered olivine or orthopyroxene vesicles filled with smectites, quartz and/or calcite. Perhaps chilled fragments of the same composition (pillow fragments). Some clasts look like hyaloclastites. same composition (pillow fragments). Some clasts look like hyaloclastites.

126-793B-86R-CC

UNIT 1: VERY FRACTURED VOLCANIC BRECCIA

CONTACTS: Clasts of andesite lava. PHENOCRYSTS: Clasts of volcanic breccia with angular fragments of altered glass-clinopyroxene crystals up to 5-6 mm. Vesicles filled with smectites, quartz and/or

Plagioclase - 5-10%; 0.5-1.0 mm; euhedral.

Clinopyroxene - 5-20%; 0.5-2.0 mm; euhedral.

Orthopyroxene - 1-5%; 0.5-2.0 mm; euhedral. **GROUNDMASS:** Fine-grained with tiny (<0.1 mm) plagioclase laths. **VESICLES:** 2-5%; rounded; mostly filled with clays or with smectite lining.

COLOR: Greenish gray.

ALTERATION: Groundmass altered to clay, and orthopyroxene altered to hematite and iron oxides. Plagioclase and clinopyroxene are generally fresh.

ADDITIONAL COMMENTS: Very fractured volcanic breccia with clasts as large as 5 cm. Matrix appears deformed and there are some mineral-filled fractures. Could be a fault zone. Rounded clasts of clinopyroxene- plagioclase-altered olivine or orthopyroxene vesicles filled with smectites, quartz and/or calcite. Perhaps chilled fragments of the same composition (pillow fragments). Some clasts look like hyaloclastites.

UNIT 1: VOLCANIC BRECCIA

- PHENOCRYSTS: Orthopyroxene-clinopyroxene-plagioclase andesite with vesicles filled
- GROUNDMASS: Angular clasts of the same rocks with opaque minerals looking like chalcopyrite. The groundmass of the smaller clasts is altered to blue smectites. Cement is a chemical percipitate (native?). Silicified. Native copper is in the cement or at the
- border of the clasts. ADDITIONAL COMMENTS: Very poorly sorted, angular volcanic breccia with clasts from granule to 10 cm and 5% porosity filled in with pale green and clear mineral cements (heulandite-clinoptilolite). Clasts are oligomictic, 2 pyroxene andesite. The cement contains rare crystals of native copper. Some clasts include altered olivine or orthopyroxene with smectites-opaque minerals (magnetite or ilmenite). The main difference that exists between the clasts is the abundance of vesicles in the groundmass. These vesicles are filled with smectites, perhaps zeolites.

UNIT 1: VOLCANIC BRECCIA

PHENOCRYSTS: Orthopyroxene-clinopyroxene-plagioclase andesite with vesicles filled with smectites.

GROUNDMASS: Angular clasts of the same rocks with opaque minerals looking like chalcopyrite. The groundmass of the smaller clasts is altered to blue smectites. Cement is a chemical percipitate (native?). Silicified. Native copper is in the cement or at the

 is a chemical percipitate (native?). Silicified. Native copper is in the cement or at the border of the clasts.
 VESICLES: "Vug" filled with heulandite/clinoptilolite (mixture).
 ADDITIONAL COMMENTS: Very poorly sorted, angular volcanic breccia with clasts from granule to 6 cm and 5% porosity filled in with pale green and clear mineral cements (heulandite-clinoptilolite). Clasts are oligomictic, 2 pyroxene andesite. The cement contains rare crystals of native copper. Some clasts include altered olivine or orthopyroxene with smectites-opaque minerals (magnetite or ilmenite). The main difference that exists between the clasts is the abundance of vesicles in the groundmase. These vesicles are filled with smectites. groundmass. These vesicles are filled with smectites, perhaps zeolites.

UNIT 1: VOLCANIC BRECCIA

PHENOCRYSTS: Orthopyroxene-clinopyroxene-plagioclase andesite with vesicles filled

- GROUNDMASS: Angular clasts of the same rocks with opaque minerals looking like chalcopyrite. The groundmass of the smaller clasts is altered to blue smectites. Cement is a chemical percipitate (native?). Silicified. Native copper is in the cement or at the
- ADDITIONAL COMMENTS: Very poorly sorted, angular volcanic breccia with clasts from granule to 12 cm and 5% porosity filled in with pale green and clear mineral cements (heulandite-clinoptilolite). Clasts are oligomictic, 2 pyroxene andesite. The cement contains rare crystals of native copper. Some clasts include altered olivine or attenues with specifies opeque minerals (magnetite or illmenite). The main orthopyroxene with smectites-opaque minerals (magnetite or ilmenite). The main difference that exists between the clasts is the abundance of vesicles in the groundmass. These vesicles are filled with smectites, perhaps zeolites.

UNIT 1: VOLCANIC BRECCIA

PHENOCRYSTS: Orthopyroxene-clinopyroxene-plagioclase andesite with vesicles filled

- with smectites. **GROUNDMASS:** Angular clasts of the same rocks with opaque minerals looking like chalcopyrite. The groundmass of the smaller clasts is altered to blue smectites. Cement is a chemical percipitate (native?). Silicified. Native copper is in the cement or at the
- ADDITIONAL COMMENTS: Very poorly sorted, angular volcanic breccia with clasts from granule to 10 cm and 5% porosity filled in with pale green and clear mineral cements (heulandite-clinoptilolite). Clasts are oligomictic, 2 pyroxene andesite. The cement contains rare crystals of native copper. Little pore-filling cement and more sandy matrix than 126-793B-87R-1. Some clasts include altered olivine or orthopyroxene with smectites-opaque minerals (magnetite or ilmenite). The main difference that exists between the clasts is the abundance of vesicles in the groundmass. These vesicles are between the clasts is the abundance of vesicles in the groundmass. These vesicles are filled with smectites, perhaps zeolites.

UNIT 1: VOLCANIC BRECCIA

- PHENOCRYSTS: Orthopyroxene-clinopyroxene-plagioclase andesite with vesicles filled
- with smectites. GROUNDMASS: Angular clasts of the same rocks with opaque minerals looking like chalcopyrite. The groundmass of the smaller clasts is altered to blue smecitles. Cement is a chemical percipitate (native?). Silicified. Native copper is in the cement or at the border of the clasts.
- ADDITIONAL COMMENTS: Drilling breccia. Very poorly sorted, angular volcanic breccia with clasts from granule to 10 cm and 5% porosity filled in with pale green and clear mineral cements (heulandite-clinoptilolite). Clasts are oligomictic, 2 pyroxene andesite. The cement contains rare crystals of native copper. Some clasts include altered olivine or orthopyroxene with smectites-opaque minerals (magnetite or ilmenite). The main difference that exists between the clasts is the abundance of vesicles in the groundmass. These vesicles are filled with smectites, perhaps zeolites.

126-793B-88R-1

UNIT 1: VOLCANIC BRECCIA

PHENOCRYSTS: Intersertal-porphyritic andesite with clinopyroxene and above all orthopyroxene and plagioclase. VESICLES: Vesicular orthopyroxene-plagioclase andesite. The vesicles are filled with

- VESICLES: Vesicular orthopyroxene-plagioclase andesite. The vesicles are filled with zeolites, smectites and copper. Some vesicles are flattened and filled with smectite. One clast contains a vesicle filled with zeolites and native copper. Some clasts contain altered orthopyroxene in smectites.
- ADDITIONAL COMMENTS: 1-57 cm: Volcanic breccia with clasts as large as 6 cm. Matrix is a crystal-shard tuff. The shards are altered glass with smectite and chlorite; 57 to 143 cm: Volcanic Breccia with clasts up to ~8 cm. Average diameter of 10 largest clasts is ~6 cm. Matrix is composed of granules and fine pebbles of the same material and small amounts of mineral cement. Clasts are vesicular lava. Some vesicles are filled with white zeolite and flecks of native copper. Clasts have chilled margins.

126-793B-88R-2

UNIT 1: VOLCANIC BRECCIA

PHENOCRYSTS: Intersertal-porphyritic andesite with clinopyroxene and above all orthopyroxene and plagioclase. VESICLES: Vesicular orthopyroxene-plagioclase andesite. The vesicles are filled with

ESICLES: Vesicular orthopyroxene-plagioclase andesite. The vesicles are filled with zeolites, smectites and copper. Some vesicles are flattened and filled with smectite. One clast contains a vesicle filled with zeolites and native copper. Some clasts contain altered orthopyroxene in smectites.

ADDITIONAL COMMENTS: Volcanic breccia with clasts to ~6 cm. Average diameter of 10 largest clasts is ~4 cm. Matrix is composed of granules and fine pebbles of the same material and small amounts of mineral cement. Clasts are vesicular lava. Some vesicles are filled with white zeolite and flecks of native copper. Clasts have chilled margins.

126-793B-88R-CC

UNIT 1: VOLCANIC BRECCIA

PHENOCRYSTS: Intersertal-porphyritic andesite with clinopyroxene and above all orthopyroxene and plagioclase.
 VESICLES: Vesicular orthopyroxene-plagioclase andesite. The vesicles are filled with zeolites, smectites and copper. Some vesicles are flattened and filled with smectite. One clast contains a vesicle filled with zeolites and native copper. Some clasts contain altered orthopyroxene in smectites.
 ADDITIONAL COMMENTS: Volcanic breccia with clasts up to ~8 cm. Average diameter of 10 largest clasts is ~6 cm. Matrix is composed of granules and fine pebbles of the same material and small amount of mineral cement. Clasts are vesicular lava. Some vesicles are filled with white zeolite and flecks of native copper. Clasts have chilled margins.

126-793B-89R-1

UNIT 1: BASALTIC ANDESITE

Pieces clasts

- CONTACTS: Chilled margins are common at the edge of clasts, often paler in color (more altered) with a finer-grained texture. Margins are truncated by matrix. Possible pillowtalus breccia deposit.
- talus breccia deposit. PHENOCRYSTS: Virtually aphyric, with less than 2% phenocrysts. GROUNDMASS: Commonly trachytic texture, flow aligned plagioclase microphenocrysts diverging around vesicles and crystal clots. VESICLES: Vesiculation is around 5%. Vesicles range between 1-10 mm and between spherical/rounded and elongate/almond-shaped. Vesicles filled (0-100%) with various microls. These are deminantly over some zeolites and smectite. minerals. These are dominantly gypsum, some zeolites, and smectite.
- ALTERATION: Phenocrysts are in varying states of alteration:
 - Clinopyroxene 95%, fresh, some celadonite smectite.
 - Orthopyroxene 60%, fresh celadonite smectite crystobalite(?).
- Plagioclase 70%, fresh smectite. VEINS/FRACTURES: Gypsum veins are present, crossing the matrix.
- ADDITIONAL COMMENTS: Breccia matrix: angular shards of altered glass, fresh crystals, and basalt fragments.

126-793B-89R-2

UNIT 1: BASALTIC ANDESITE

Pieces clasts

CONTACTS: Chilled margins are common at the edge of clasts, often paler in color (more altered) with a finer-grained texture. Margins are truncated by matrix. Possible pillow-talus breccia deposit.

PHENOCRYSTS: 20% clinopyroxene and orthopyroxene, clinopyroxene up to 7 mm in length.

GROUNDMASS: Commonly trachytic texture, flow aligned plagioclase microphenocrysts

VESICLES: Vesiculation is around 5%. Vesicles range between 1-10 mm and between spherical/rounded and elongate/almond-shaped. Vesicles filled (0-100%) with various minerals. These are dominantly gypsum, some zeolites, and smectite.
 ALTERATION: Phenocrysts are in varying states of alteration:

Clinopyroxene - 95%, fresh, some celadonite - smectite. Orthopyroxene- 60%, fresh - celadonite - smectite - crystobalite(?).

Plagoclase -70%, fresh - smectite. VEINS/FRACTURES: Gypsum veins are present, crossing the matrix.

ADDITIONAL COMMENTS: Breccia matrix: Angular shards of altered glass, fresh crystals, and basalt fragments.

126-793B-89R-3

UNIT 1: BASALTIC ANDESITE

Pieces clasts

- CONTACTS: Chilled margins are common at the edge of clasts, often paler in color (more altered) with a finer-grained texture. Margins are truncated by matrix. Possible pillow-talus breccia deposit.
- PHENOCRYSTS: 15-25% crystals, The proportions are orthopyroxene 55%, clinopyroxene 43%, and plagioclase 2%.
- clinopyroxene 43%, and plagioclase 2%.
 GROUNDMASS: Commonly trachytic texture, flow aligned plagioclase microphenocrysts diverging around vesicles and crystal clots.
 VESICLES: Vesiculation is around 5%. Vesicles range between 1-10 mm and between spherical/rounded and elongate/almond-shaped. Vesicles filled (0-100%) with various minerals. These are dominantly gypsum, some zeolites, and smectite.
 ALTERATION: Phenocrysts are in varying states of alteration: Clinopyroxene 95%, fresh, some celadonite smectite. Orthopyroxene 60%, fresh celadonite smectite crystobalite(?). Plagioclase -70%, fresh smectite.

 - Plagioclase -70%, fresh smectite.

VEINS/FRACTURES: Gypsum veins are present, crossing the matrix. ADDITIONAL COMMENTS: Breccia matrix: angular shards of altered glass, fresh crystals, and basalt fragments.

126-793B-89R-4

UNIT 1: BASALTIC ANDESITE

Pieces clasts

- CONTACTS: Chilled margins are common at the edge of clasts, often paler in color (more altered) with a finer-grained texture. Margins are truncated by matrix. Possible pillow-talus breccia deposit.

- pillow-talus breccia deposit.
 PHENOCRYSTS: 15-25% crystals. The proportions are orthopyroxene 55%, clinopyroxene 40%, plagioclase 5%.
 GROUNDMASS: Commonly trachytic texture, flow aligned plagioclase microphenocrysts diverging around vesicles and crystal clots.
 VESICLES: Vesiculation is around 5%. Vesicles range between 1-10 mm and between spherical/rounded and elongate/almond-shaped. Vesicles filled (0-100%) with various minerals. These are dominantly gypsum, some zeolites, and smectite.
 ALTERATION: Phenocrysts are in varying states of alteration: Clinopyroxene 95%, fresh, some celadonite smectite. Orthopyroxene 60%, fresh celadonite smectite.
 VEINS/FRACTURES: Gypsum veins are present, crossing the matrix.
 ADDITIONAL COMMENTS: Breccia matrix: angular shards of altered glass, fresh crystals, and basalt fragments.

and basalt fragments.

126-793B-90R-CC

UNIT 1: IGNEOUS ROCKS

COLOR: 54R 3/1, 2.5Y 5/2, 2.5Y 4/2. Matrix 1064 3/2 to 56 2/1. ADDITIONAL COMMENTS: Very irregular shaped volcanic clast with some "attached" medium-to coarse crystal-vitric matrix, clast is mottled.

126-793B-92R-1

UNIT 2: VOLCANIC BRECCIA (0-140 CM); PLAGIOCLASE-BASALTIC ANDESITE (140-150 CM)

Pieces N/A

CONTACTS: Not observed.

PHENOCRYSTS: Clinopyroxene and orthopyroxene phenocrysts.

GROUNDMASS: Sand to cobble-size clasts.

VESICLES: Vesicles are filled with zeolites and smectites; vesicles are flattened.

COLOR: 5G 3/2 matrix with dark gray and gray/light gray clasts (0-140 cm).

STRUCTURE: Massive.

ALTERATION: No alteration.

VEINS/FRACTURES: No veins/fractures.

ADDITIONAL COMMENTS: Zeolite cements; some of the clasts have chilled margins; orthopyroxene crystals up to 5-6 mm; clinopyroxene crystals as large as 2-3 mm; native copper in the matrix with smectites and zeolites.

126-793B-92R-2

UNIT 2: VOLCANIC BRECCIA (28-70 CM); VOLCANIC LAVA (0-28,70-150 CM)

Pieces N/A

CONTACTS: Not observed.

PHENOCRYSTS: Clinopyroxene and orthopyroxene phenocrysts.

GROUNDMASS: Clasts up to 4 cm diameter at 53-60 cm; clinopyroxene up to 5-15 mm at 7-150 cm.

VESICLES: Stretched at 70-90,130-150 cm, equant vesicles at 90-130 cm; 1-3 mm in diameter.

COLOR: (5G 3/2) matrix with dark gray (5Y 4/1) clasts (28-70 cm); black? (5Y 2/1) at 0-28, 70-150 cm.

STRUCTURE: Laminated cement at base of flow at 28 cm.

ALTERATION: Orthopyroxene is more altered to smectite at 70-150 cm. VEINS/FRACTURES: Not observed.

ADDITIONAL COMMENTS: Cavities are filled with zeolite cement (28-70 cm); no chilled margin (70-150 cm); orthopyroxene and clinopyroxene are fresh; large vug with zeolite and native copper at 101 cm.

126-793B-92R-3

UNIT 2: VOLCANIC BRECCIA (35-80 CM); ANDESITE (0-35

PHENOCRYSTS: Clinopyroxene and orthopyroxene phenocrysts.

GROUNDMASS: Clasts up to 6 cm size.

VESICLES: Flat to elongated vesicles filled with smectites and zeolites at 0-35 cm; 1-5 cm and ~0.02 mm diameter vesicles.

COLOR: Black? (5Y 2/1) at 0-35 cm; (5G 3/2) matrix with black? (5Y 2/1) clasts at 35-80 cm. STRUCTURE: None observed.

ADDITIONAL COMMENTS: No evidence of chilled margin; zeolite cemented zone at 35-37 cm; clinopyroexe-orthopyroxene-plagioclase porphyritic basicandesite at 0-35

UNIT 2: VOLCANIC BRECCIA

Pieces N/A

CONTACTS: Not observed. PHENOCRYSTS: Clinopyroxene and orthopyroxene phenocrysts; some Plagioclase

PHENOCRYSTS: Clinopyroxene and orthopyroxene phenocrysts; some Plagioclase microphenocrysts.
 GROUNDMASS: Fine grained.
 VESICLES: Open to completely filled with smectite; bands of flattened vesicles; rounded and elongated vesicles filled with smectites and zeolites in the altered groundmass.
 COLOR: (5GY 3/2) matrix with gray (N5) clasts, pebbles and cobbles.
 STRUCTURE: Not observed.
 ALTERATION: Altered shards of glass; groundmass altered; hexagonal smectite pseudomorphs after orthopyroxene and olivine; orthopyroxene altered to smectites.
 VEINS/FRACTURES: None observed.
 ADDITIONAL COMMENTS: Angular clasts; matrix is composed of mm size angular shards of glass or rocks/crystals; cement is partly vesicular filled with zeolites and smectites.

126-793B-93R-2

UNIT 3: VOLCANIC BRECCIA/LAVA

Pieces N/A

CONTACTS: Not observed. PHENOCRYSTS: Clinopyroxene and orthopyroxene phenocrysts. GROUNDMASS: Felsicmicrolites.

VESICLES: 1-2 mm diameter, elongate vesicles at 0-42 cm. COLOR: Dark gray (N4) clasts (0-42 cm); greenish gray (5GY 6/1) clasts (42-142 cm). STRUCTURE: Not observed. ALTERATION: Altered clasts; phenocrysts fresh. VEINS/FRACTURES: Fractured clasts cemented by zeolite.

ADDITIONAL COMMENTS: Most clasts are sparsely phyric from 0-100 cm; color contrast in clasts probably cooling or alteration feature.

126-793B-93R-3

UNIT 3: VOLCANIC BRECCIA AND ANDESITE

Pieces N/A

CONTACTS: Not observed.

PHENOCRYSTS: Clinopyroxene and orthopyroxene phenocrysts. GROUNDMASS: Clasts 0.5 to 3 mm in size.

VESICLES: Vesicles are flattened and filled with smectites.

COLOR: Dark greenish gray (5GY 4/1) and very dark gray (N3) clasts.

STRUCTURE: Not observed.

ALTERATION: Angular shards of altered glass; altered orthopyroxene

VEINS/FRACTURES: Veins in the lower part of the section are filled with zeolites. ADDITIONAL COMMENTS: Porphyritic. Clinopyroxene>Orthopyroxene-Plagioclase andesite; Clinopyroxene is fresh: clasts from 33-43 cm have lobate contours with lighter rims indicating chilled margins.

126-793B-94R-1

UNIT 3: VOLCANIC BRECCIA AND LAVA

Pieces N/A

CONTACTS: Not observed.

PHENOCRYSTS: Clinopyroxene and orthopyroxene phenocrysts. GROUNDMASS: Trachytic alignment of Plagioclase; chilled margins of glass (devitrified);

many small feldspar laths partly siliceous. VESICLES: Spherical, elongate vesicles filled with zeolites, smectites and gypsum;

vesicles are elongated along the margins, rounded in the interior. COLOR: Gray (N5) to dark greenish gray (5G 4/1) to pale gray/green clasts.

STRUCTURE: Broken pillows.

ALTERATION: Some altered orthopyroxene and glass.

VEINS/FRACTURES: Radial pillow-style fractures within clasts; some gypsum and zeolite veins.

ADDITIONAL COMMENTS: Clasts are all with chilled margins; native copper; zeolite cement; Clinopyroxene>Plagioclase; sparsely phyric (less than 5%).

126-793B-94R-2

UNIT 3: PILLOW-BRECCIA WITH HYALOCLASTIC MATRIX

CONTACTS: None. PHENOCRYSTS: All fresh, some orthopyroxene alteration. Plagioclase - < 1%; 0.5 - 1.0 mm. Clinopyroxene - 1%; 0.5 - 1.0 mm.

Orthopyroxene - 1%; 1.0 mm.

GROUNDMASS: Trachyltic alignment of plagioclase in groundmass. Original vitrophyric texture? Devitrified glass.

VESICLES: Spherical, rounded at chilled margins; filled with smectite.

COLOR: Pale gray - green. STRUCTURE: Broken pillows in a shard-glass and lava fragment matrix. Very poorly sorted, clasts 0.5 - 10.0 cm.

ALTERATION: Smectite replaces orthopyroxene. Glass devitrified. ADDITIONAL COMMENTS: Clast-lava type: sparse-phyric basaltic-andesite to andesite.

910

126-793B-95R-1

UNIT 3: PILLOW-BRECCIA WITH HYALOCLASTIC MATRIX

CONTACTS: None. PHENOCRYSTS: All fresh, some orthopyroxene alteration. Plagioclase - < 1%; 0.5 - 1.0 mm. Clinopyroxene - 1%; 0.5 - 1.0 mm.

Orthopyroxene - 1%; 1.0 mm. GROUNDMASS: Trachytic alignment of plagioclase in groundmass. Original vitrophyric texture? Devitrified glass. VESICLES: Spherical, rounded at chilled margins; filled with smectite.

COLOR: Pale gray - green. STRUCTURE: Broken pillows in a shard-glass and lava fragment matrix. Very poorly sorted, clasts 0.5 - 10.0 cm.

ALTERATION: Smectite replaces orthopyroxene. Glass devitrified. ADDITIONAL COMMENTS: Clast-lava type: sparse-phyric basaltic-andesite to andesite.

912

126-793B-95R-CC

UNIT 3: PILLOW-BRECCIA WITH HYALOCLASTIC MATRIX

CONTACTS: None. PHENOCRYSTS: All fresh, some orthopyroxene alteration. Plagioclase - < 1%; 0.5 - 1.0 mm. Clinopyroxene - 1%; 0.5 - 1.0 mm. Orthopyroxene - 1%; 1.0 mm. GROUNDMASS: Trachytic alignment of plagioclase in groundmass. Original vitrophyric texture? Devitrified glass. VESICLES: Spherical, rounded at chilled margins; filled with smectite. CCI OR: Pale grav - green

VESICLES: Spherical, rounded at chiled margins, lined with structure.
 COLOR: Pale gray - green.
 STRUCTURE: Broken pillows in a shard-glass and lava fragment matrix. Very poorly sorted, clasts 0.5 - 10.0 cm.
 ALTERATION: Smectite replaces orthopyroxene. Glass devitrified.
 ADDITIONAL COMMENTS: Clast-lava type: sparse-phyric basaltic-andesite to andesite.

126-793B-96R-1

UNIT 3: PILLOW-BRECCIA WITH HYALOCLASTIC MATRIX

CONTACTS: None.

PHENOCRYSTS: All fresh, some orthopyroxene alteration.

Plagioclase - < 1%; 0.5 - 1.0 mm.

Clinopyroxene - 1%; 0.5 - 1.0 mm.

Orthopyroxene - 1%; 1.0 mm.

GROUNDMASS: Trachyltic alignment of plagioclase in groundmass. Original vitrophyric texture? Devitrified glass.

VESICLES: Spherical, rounded at chilled margins; filled with smectite.

COLOR: Pale gray - green. STRUCTURE: Broken pillows in a shard-glass and lava fragment matrix. Very poorly sorted, clasts 0.5 - 10.0 cm.

ALTERATION: Smectite replaces orthopyroxene. Glass devitrified. ADDITIONAL COMMENTS: Clast-lava type: sparse-phyric basaltic-andesite to andesite.

UNIT 4: PORPHYRITIC BASALTIC ANDESITE

CONTACTS: None. PHENOCRYSTS:

Plagioclase - < 1%; 0.5 - 2.0 mm; euhedral.

Clinopyroxene - 5%; 1.0 - 5.0 mm; euhedral.

Orthopyroxene - 5%; 1.0 - 5.0 mm; euhedral.

GROUNDMASS: Aligned plagioclase microphenocrysts. Trachyitic texture.

VESICLES: Elongate, almond-shaped; vesicles are empty, 1-4 mm.

COLOR: Medium bluish gray, 5B 5/1.

STRUCTURE: None.

ALTERATION: Orthopyroxene altered at margins and along cleavages to smectite and celadonite - filled fractures.

ADDITIONAL COMMENTS: Above description applies to interval from 33 cm to 95 cm.

UNIT 4: APHYRIC BASALTIC-ANDESITE

CONTACTS: None.

PHENOCRYSTS: No phenocrysts present.

GROUNDMASS: Aligned plagioclase microphenocrysts, trachyitic texture.

VESICLES: 8%; Up to 1.0 cm; elongate; vesicles are empty.

COLOR: Medium bluish-gray.

STRUCTURE: None.

ALTERATION: Orthopyroxene altered at margins and along cleavages to smectite and celadonite - filled fractures.

ADDITIONAL COMMENTS: Above description applies to clast at 100 cm.

126-793B-96R-CC

UNIT 4: PILLOW BRECCIA WITH HYALOCLASTIC MATRIX

 CONTACTS: None.
 PHENOCRYSTS: All fresh, some orthopyroxene alteration.
 Plagioclase - < 1%; 0.5 - 1.0 mm.
 Orthopyroxene - 1%; 1.0 mm.
 Clinopyroxene - 1%; 0.5 - 1.0 mm.
 GROUNDMASS: Trachytic alignment of plagioclase in groundmass. Original vitrophyric texture? Devitrified glass.
 VESICLES: Spherical, rounded at chilled margins; vesicles filled with smectite.
 COLOR: Pale gray-green.
 STRUCTURE: Broken pillows in a shard-glass and lava fragment matrix, very poorly sorted.
 ALTERATION: Smectite replacing orthopyroxene. Glass devitrified.
 ADDITIONAL COMMENTS: Clast-lava type: sparse-phyric basaltic-andesite to andesite. Clasts 2-3 cm. Clasts 2-3 cm.

126-793B-97R-1

UNIT 5: BASALTIC ANDESITE MASSIVE LAVA

Pieces 1-23

CONTACTS: None. PHENOCRYSTS:

Clinopyroxene - 5%; 0.5 - 5.0 mm; euhedral. Orthopyroxene - 5%; 0.5 - 5.0 mm; euhedral. GROUNDMASS: Fine-grained with plagioclase laths. VESICLES: 0.5-5.0 mm; elongated; random; vesicles empty, but walls are coated

with celadonite and/or zeolites.

COLOR: Medium light gray, N6.

STRUCTURE: Massive.

ALTERATION: Both orthopyroxene and clinopyroxene altered at margins and along cleavages to celadonite and smectite. Some orthopyroxene crystals completely altered.

126-793B-98R-1

UNIT 6: HYALOCLASTIC - MONOMICTIC CLASTS

PHENOCRYSTS: Sparsely phyric clinopyroxene-andesite. Clinopyroxene - 1%; 4.0 mm; fresh. Plagioclase - 0.1 mm; fresh.
 GROUNDMASS: Fine-grained.
 VESICLES: Rounded to elongated; vesicles filled with smectite.
 STRUCTURE: Chilled rim with no phenocrysts, very flattened vesicles. Groundmass invaded by smectites.
 ADDITIONAL COMMENTS: Matrix: zeolites and copper. Clasts: 0.2-6.0 cm.

126-793B-98R-3

UNIT 6: MONOMICTIC HYALOCLASTITE

CONTACTS: None. PHENOCRYSTS: Almost aphyric.

Clinopyroxene - < 1%.

Feldspar - 1%; 2 mm.

GROUNDMASS: Light colored groundmass. Smectite veins in groundmass.

VESICLES: Flattened.; vesicles are flattened and filled with smectites. On the chilled rims the vesicles are filled with zeolites and/or calcite.

VEINS/FRACTURES: Smectite veins in the groundmass.

ADDITIONAL COMMENTS: Matrix: zeolites and copper. Some matrix looks more ferrous and the intervals are filled with zeolites. Clasts: size ranges from 0.2-10 cm. All the clasts are rimmed with a chilled margin. Elongated-shaped vesicles also occur in the core of the biggest clasts. Only the smaller (0.1 mm) clasts are rounded. Open cracks cutting through the clasts and the matrix is filled with zeolites.

126-793B-98R-CC

UNIT 6: HYALOCLASTITE

CONTACTS: None. ADDITIONAL COMMENTS: Clasts: andesite with sparse phenocrysts of clinopyroxene and plagioclase. Small, rounded vesicles filled with smectites and zeolites.

126-793B-99R-1

UNIT 6: BRECCIA

PHENOCRYSTS: Both porphyritic and aphyric clasts in zeolite and smectite cement. Clinopyroxene - 5-10%; 1-4 mm; partially fresh. Orthopyroxene - 3-5%; 1-2 mm; very altered.

Plagioclase - < 1%; 0.5 mm.

Olivine? - Now smectite pseudomorphs. GROUNDMASS: Fine-grained laths.

VESICLES: Elongated; lineations of smectite-filled, elongated vesicles cross the pillows; also smectite and zeolite-filled fractures.

COLOR: Gray.

ADDITIONAL COMMENTS: Hyaloclastite texture. Isolated pyroxene crystals plus mostly nonvesicular aphyric shards.

UNIT 7: BRECCIA

CONTACTS: Lower pillow contact missing.

PHENOCRYSTS: Both porphyritic and aphyric clasts in zeolite and smectite cement. Clinopyroxene - 5-10%; 1-4 mm; partially fresh. Orthopyroxene - 3-5%; 1-2 mm; very altered.

Plagioclase - < 1%; 0.5 mm.

Olivine? - Now smectite pseudomorphs.

GROUNDMASS: Fine-grained laths.

VESICLES: Elongated; lineations of smectite-filled, elongated vesicles cross the pillows; also smectite and zeolite-filled fractures (especially at 90 cm.).

COLOR: Gray.

ADDITIONAL COMMENTS: Hyaloclastite texture. Isolated pyroxene crystals plus mostly nonvesicular aphyric shards. Possibly glassy rims of pillows in lower portion of section, despite relative absence of phenocrysts.

126-793B-99R-2

UNIT 8: BRECCIA

ADDITIONAL COMMENTS: Breccia: 0.5-5.0 cm clasts of clinopyroxene, orthopyroxene, and plagioclase lava.

126-793B-100R-1

UNIT 9: HETEROLITHIC BRECCIA

CONTACTS: Glassy rims are noticeable on the aphyric clasts.
 PHENOCRYSTS: Porphyritic clasts contain plagioclase, trace; orthopyroxene, 3-8%, 0.5-2 mm; smectite pseudomorphs; clinopyroxene, 5-10%, 2-6 mm. Aphyric clasts contain plagioclase, <1%, 0.5 mm, fresh; clinopyroxene, <1%, <=4 mm, fresh; orthopyroxene, <1%, <=4 mm, fresh; orthopyroxene, <1%, <=4 mm, fresh; orthopyroxene, <1%, <=2 mm, fresh; orthopyroxene, <1%, <=4 mm, fresh; orthopyroxene, <1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1%, <=1\%, <=1\%, <=1\%, <=1\%, <=1\%, <=1\%, <=1\%, <=1\%, <=1\%, <=1\%, <=1\%, <=1\%, <=1\%, <=1\%, <=1\%, <=1\%, <=1\%, <=1\%, <=1\%, <=1\%, <=1\%, <=1\%, <=1\%, <=1\%, <=1\%, <=1\%, <=1\%, <=1\%, <=1\%, <=1\%, <=1\%, <=1\%, <=1\%, <=1\%, <=1\%, <=1\%, <=1\%, <=1\%, <=1\%, <=1\%, <=1\%, <=

COLOR: See groundmass. ALTERATION: See main comments. ADDITIONAL COMMENTS: Clasts: 0.5-10 cm in diameter. Matrix: Altered glass shards plus clinopyroxene plus orthopyroxene crystals. Cement: zeolite, not calcite.

126-793B-100R-2

UNIT 9: HYALOCLASTITE

CONTACTS: Chilled lobate highly vesicular contact at about 12 cm. PHENOCRYSTS: Plagioclase - 1-2%; 1 mm. Clinopyroxene - 1-2%; ~4 mm; sparsely phyric.

Orthopyroxene - 1-2%. GROUNDMASS: The contact with the groundmass is marked by a white border.

VESICLES: 10%; up to 16 mm; elongated to rounded.; rounded vesicles up to 1 mm are filled with zeolites. Elongated partially-filled vesicles up to 16 mm.

COLOR: Light green, with a dark green-gray groundmass. STRUCTURE: Matrix is like the previous section, only difference is more abundant crystallized zeolites.

ADDITIONAL COMMENTS: Clasts are sometimes more porphyritic (30% of phenocrysts opx=cpx, altered olivine?).

126-793B-100R-CC

UNIT 9: HYALOCLASTITE

STRUCTURE: Matrix is like the previous section (126-793B-100R-2). ADDITIONAL COMMENTS: Clasts in top part of the pillow.

126-793B-101R-1

UNIT 9: HYALOCLASTIC-PORPHYRITIC

CLINOPYROXENE-ORTHOPYROXENE-PLAGIOCLASE **BASIC ANDESITE**

PHENOCRYSTS:

Clinopyroxene - 10-30%; up to 5 mm. Orthopyroxene - 10-30%; altered to smectites.

Plagioclase - A few plagioclase phenocrysts. GROUNDMASS: Crystal and shards of altered glass. Crystals in the mature clinopyroxene (fresh, up to 5 mm). Shards of altered glass. Cement is composed of zeolites and

smectites. VESICLES: 1-3 mm; flattened; chilled rim with flattened vesicles filled with smectites. COLOR: N3 to 5GY 4/1.

STRUCTURE: In some clasts the chilled margin is perfectly visible. Very fine cooling fractures filled with zeolites are perpendicular to the chilled rims. Color is greenish white. The core of the chilled clasts are richer in small plagioclase laths (0.1-0.3 mm).

ADDITIONAL COMMENTS: Clasts are 0.1 - 6.0 cm.

126-793B-102R-1

UNIT 9: HYALOCLASTITE BRECCIA/APHYRIC LAVA

PHENOCRYSTS:

Clinopyroxene - 2-4%; 1-3 mm.

Orthopyroxene - 2-4%; 1-3 mm.

GROUNDMASS: Consists of glass shards and pyroxene crystals cemented by zeolites (heulandite-clinoptilolite); thoroughly green (smectite not chlorite). More matrix than

clasts.

VESICLES: < 5%

VESICLES: < 5%.
 COLOR: Green.
 ADDITIONAL COMMENTS: Breccia: 0-20 cm. 1-2 cm clasts with mostly aphyric hyaloclastic textures. 40-140 cm, mostly (entirely?) aphyric clasts. Here the aphyric lava pieces are clearly clasts with chilled margins; clasts 0.5-7.0 cm diameter. Aphyric lava pieces: 20-40 cm. Clinopyroxene and orthopyroxene together comprise 2-4%.

126-793B-102R-2

UNIT 9: HYALOCLASTITE BRECCIA

GROUNDMASS: More matrix than clasts. ADDITIONAL COMMENTS:Mostly (entirely?) aphyric clasts; clasts 1.0-4.0 cm diameter.

126-793B-102R-CC

UNIT 9: HYALOCLASTITE BRECCIA

GROUNDMASS: Matrix consists of glass shards and pyroxene crystals cemented by zeolites (heulandite-clinoptilolite); thoroughly green (smectite not chlorite). More matrix than clasts.

COLOR: Green. ADDITIONAL COMMENTS: Mostly (entirely?) aphyric clasts; clasts 0.5-7.0 cm diameter.

UNIT 9: HYALOCLASTITE

PHENOCRYSTS: Plagioclase - 2%; 0.2-1.0 mm; euhedral, partially altered.

Plagioclase - 2%; 0.2-1.0 mm; euhedral, partially altered.
Clinopyroxene - 2%; 0.2-2.0 mm; euhedral, partially altered.
Orthopyroxene - 2%; 0.2-2.0 mm; euhedral, partially altered.
GROUNDMASS: Fined-grained. Altered glass with clinopyroxene-orthopyroxene-plagioclase crystals in zeolite cement. Glass is altered to smectite. Zeolite vein at 84 cm, 2 mm thick. Greenish black. Matrix is more abundant than clasts, but clasts increase in size and abundance downward through core 126-793B-103R.
VESICLES: 5%; round; random; filled with smectite or zeolite coating on walls.
COLOR: Medium light gray.
ALTERATION: All phenocrysts are partially altered to smectite (orthopyroxene, clinopyroxene) or sericite (plagioclase).

UNIT 9: HYALOCLASTITE

PHENOCRYSTS: Plagioclase - 2%; 0.2-1.0 mm; euhedral, partially altered. Clinopyroxene - 2%; 0.2-2.0 mm; euhedral, partially altered. Orthopyroxene - 2%; 0.2-2.0 mm; euhedral, partially altered.
 GROUNDMASS: Fined-grained. Altered glass with clinopyroxene-orthopyroxene-plagioclase crystals in zeolite cement. Glass is altered to smectite. Greenish black. Matrix is more abundant than clasts, but clasts increase in sizeand abundance downward through core 126-793B-103R.
 VESICLES: 5%; round; random; filled with smectite or zeolite coating on walls.
 COLOR: Medium light grav.

COLOR: Medium light gray. ALTERATION: All phenocrysts are partially altered to smectite (orthopyroxene, clinopyroxene) or sericite (plagioclase).

UNIT 9: HYALOCLASTITE

PHENOCRYSTS:

- PHENOCRYSTS: Plagioclase 2%; 0.2-1.0 mm; euhedral, partially altered. Clinopyroxene 2%; 0.2-2.0 mm; euhedral, partially altered. Orthopyroxene 2%; 0.2-2.0 mm; euhedral, partially altered.
 GROUNDMASS: Fined-grained. Altered glass withclinopyroxene-orthopyroxene-plagioclase crystals in zeolite cement. Glass is altered to smectite. Greenish black. Matrix is more abundant than clasts, but clasts increase in size and abundance downward through core 126-793B-103R.
 VESICLES: 5%; round; random; filled with smectite or zeolite coating on walls.
 COLOR: Medium light gray.
 ALTERATION: All phenocrysts are partially altered to smectite (orthopyroxene, clinopyroxene) or sericite (plagioclase).

126-793B-103R-CC

UNIT 9: HYALOCLASTITE

PHENOCRYSTS: Plagioclase - 2%; 0.2-1.0 mm; euhedral, partially altered. Clinopyroxene - 2%; 0.2-2.0 mm; euhedral, partially altered. Orthopyroxene - 2%; 0.2-2.0 mm; euhedral, partially altered.
 GROUNDMASS: Fine-grained. Altered glass with clinopyroxene - orthopyroxene-plagioclase crystals in zeolite cement. Glass is altered to smectite. Greenish black. Matrix is more abundant than clasts, but clasts increase in size and abundance downward through core 126-793B-103R.
 VESICLES: 5%; round; random; filled with smectite or zeolite coating on walls.
 COLOB: Medium light grav.

COLOR: Medium light gray. ALTERATION: All phenocrysts are partially altered to smectite (orthopyroxene,

clinopyroxene) or sericite (plagioclase).

Shipboard Studies Lithological Unit

UNIT 10: BASALTIC ANDESITE

Pieces 1-9

CONTACTS: Clear contact between altered glass (green) and gray chilled margin of lava in Piece 4A and 4B. PHENOCRYSTS:

PHENOCRYSTS: Plagioclase - 5%; 0.3-2.0 mm; euhedral. Clinopyroxene - 10%; 0.5-8.0 mm; euhedral. Orthopyroxene - 3%; 0.3-5.0 mm; euhedral. GROUNDMASS: Fine-grained with plagioclase laths < 0.3 mm. VESICLES: 5%; 0.2 - 100 mm; elongated; random; filled with clays or zeolites. Some vesicles open with secondary minerals on vesicle walls. Native copper found in a few. COLOR: Medium bluish gray. STRUCTURE: Massive lava with alteration along fissures. ALTERATION: Phenocrysts are generally fresh throughout core, but within the green bands, the clinopyroxene and orthopyroxene phenocrysts are altered along margins

bands, the clinopyroxene and orthopyroxene phenocrysts are altered along margins

and cleavages. VEINS/FRACTURES: Thin (0.1-1.0 mm) white zeolite veins throughout section. Thick, 1-5 cm vein in altered zone in Pieces 2, 3, 4, and 6B.

CORE/SECTION

UNIT 10: BASALTIC ANDESITE

Pieces 1-4

PHENOCRYSTS:

 PHENOCRYSTS:

 Plagioclase - 5%; 0.3-2.0 mm; euhedral.

 Clinopyroxene - 10%; 0.5-8.0 mm; euhedral.

 Orthopyroxene - 3%; 0.3-5.0 mm; euhedral.

 GROUNDMASS: Fine-grained with plagioclase laths < 0.3 mm.</td>

 VESICLES: 5%; 0.2 - 100 mm; elongated; random; filled with clays or zeolites. Some vesicles open with secondary minerals on vesicle walls. Native copper found in a few.

 COLOR: Medium bluish gray.

 STRUCTURE: Massive lava with alteration along fissures.

 ALTERATION: Phenocrysts are generally fresh throughout core, but within the green bands, the clinopyroxene and orthopyroxene phenocrysts are altered along margins and cleavages.

 and cleavages. VEINS/FRACTURES: Zeolite vein through Pieces 1B and 1C.

UNIT 10: BASALTIC ANDESITE

Pieces 1-4

PHENOCRYSTS:

Plagioclase - 5%; 0.3-2.0 mm; euhedral. Clinopyroxene - 10%; 0.5-8.0 mm; euhedral.

Orthopyroxene - 3%; 0.3-5.0 mm; euhedral. GROUNDMASS: Fine-grained with plagioclase laths < 0.3 mm.

VESICLES: 5%; 0.2 - 100 mm; elongated; random; filled with clays or zeolites. Some vesicles open with secondary minerals on vesicle walls. Native copper found in a few.

COLOR: Medium bluish gray. STRUCTURE: Massive lava with alteration along fissures. ALTERATION: Phenocrysts are generally fresh throughout core, but within the green bands, the clinopyroxene and orthopyroxene phenocrysts are altered along margins and cleavages.

UNIT 10: BASALTIC ANDESITE

Pieces 1-6

PHENOCRYSTS:

- Plagioclase 5%; 0.3-2.0 mm; euhedral. Clinopyroxene 10%; 0.5-8.0 mm; euhedral. Orthopyroxene 3%; 0.3-5.0 mm; euhedral.

Orthopyroxene - 3%; 0.3-5.0 mm; euhedral. GROUNDMASS: Fine-grained with plagioclase laths < 0.3 mm. VESICLES: 5%; 0.2 - 100 mm; elongated; random; filled with clays or zeolites. Some vesicles open with secondary minerals on vesicle walls. Native copper found in a few. COLOR: Medium bluish gray. STRUCTURE: Massive lava with alteration along fissures. ALTERATION: Phenocrysts are generally fresh throughout core, but within the green bands, the clinopyroxene and orthopyroxene phenocrysts are altered along margins and cleavages. ADDITIONAL COMMENTS: Green hyaloclastite band in Pieces 2 and 3A.

150

CORE/SECTION

126-793B-104R-CC

UNIT 10: BASALTIC ANDESITE

Pieces 1-2

PHENOCRYSTS:

Plagioclase - 5%; 0.3-2.0 mm; euhedral. Clinopyroxene - 10%; 0.5-8.0 mm; euhedral. Orthopyroxene - 3%; 0.3-5.0 mm; euhedral. GROUNDMASS: Fine-grained with plagioclase laths < 0.3 mm. VESICLES: 5%; 0.2 - 100 mm; elongated; random; filled with clays or zeolites. Some vesicles open with secondary minerals on vesicle walls. Native copper found in a few. COLOR: Medium bluish gray.

STRUCTURE: Massive lava with alteration along fissures.

ALTERATION: Phenocrysts are generally fresh throughout core, but within the green bands, the clinopyroxene and orthopyroxene phenocrysts are altered along margins and cleavages. ADDITIONAL COMMENTS: Glassy margin at bottom of Piece 2.

UNIT 10: MONOMICTITE HYALOCLASTITE BRECCIA

Piece 3

CONTACTS: Glassy margin at top of Piece 3 which is the contact to the basaltic andesite. PHENOCRYSTS: Plagioclase phyric basic andesite. GROUNDMASS: Chilled glassy shards, clinopyroxene, altered orthopyroxene crystals.

Zeolite and smectite cement. ADDITIONAL COMMENTS: Volcanic clastics 35%, chilled glassy shards 50%, cement

20%.

UNIT 11: BASALTIC ANDESITE PILLOW LAVAS

Pieces 1, 4-5B

CONTACTS: Chilled, darker glassy margins mark pillow rims. PHENOCRYSTS: Plagioclase - 5%; 1-3 mm; euhedral. Clinopyroxene - 8%; 2-10 mm; euhedral.

Orthopyroxene - 5%; 1-3 mm; euhedral. GROUNDMASS: Fine-grained, non-aligned laths of plagioclase.

VESICLES: < 1%; spherical to tabular; sporadic; filled with radiating, white zeolite

(heulandite-clinoptilolite). Some vesicles remain open.

COLOR:Medium bluish gray.

ALTERATION: Orthopyroxene rims are altered to smectite.

ADDITIONAL COMMENTS: Stellate/spherulitic arrangement of clinopyroxene, often nucleated around orthopyroxene pseudomorphs.

UNIT 11: HYALOCLASTITE BRECCIA

Pieces 2, 5C

PHENOCRYSTS: Orthopyroxene - 5%; 1-2 mm. Clinopyroxene - 10%; 2-5 mm. GROUNDMASS: Altered glass shards, 1-10 mm pyroxene crystals. VESICLES: 2-4 cm; sparse; zeolite and native copper in vesicles. COLOR: Greenish black. ADDITIONAL COMMENTS: Highly altered clasts of porphyritic andesite.

UNIT 11: HYALOCLASTITE BRECCIA

Pieces 1-5

PHENOCRYSTS: Clasts: porphyritic basaltic andesite, 5-20 cm diameter. Orthopyroxene - 5%; 0.5 - 3.0 mm; euhedral. Clinopyroxene - 10-15%; 2-6 mm; euhedral, stellate clusters. Plagioclase - 2%; 0.5-1.0 mm; euhedral.
 GROUNDMASS: Felty feldspar.
 VESICLES: < 5%; elongate; filled with white and orange zeolite and native copper.

COLOR: Medium bluish gray. ADDITIONAL COMMENTS: Matrix: hyaloclastite mixture of altered glass shards (1-10mm), pyroxene crystals, and zeolite+smectite cement.

UNIT 11: HYALOCLASTITE BRECCIA

Piece 1A

PHENOCRYSTS: Clasts: porphyritic basaltic andesite.

Orthopyroxene - 5%; 0.5 - 3.0 mm; euhedral. Clinopyroxene - 10-15%; 2-6 mm; euhedral, stellate clusters. Plagioclase - 2%; 0.5-1.0 mm; euhedral.

GROUNDMASS: Felty feldspar.

VESICLES: < 5%; elongate; filled with white and orange zeolite and native copper. COLOR: Medium bluish gray.

ADDITIONAL COMMENTS: Matrix: hyaloclastite mixture of altered glass shards (1-10 mm), pyroxene crystals, and zeolite+smectite cement.

UNIT 11: PILLOW LAVA

Pieces 1B-10A

CONTACTS: Chilled margins at both pillows (see comments).

PHENOCRYSTS: Amygdules 2-20 mm diameter, filled with zeolite and native copper. Stellate clinopyroxene clusters.

Orthopyroxene - 5%; 0.5 - 3.0 mm;euhedral.

Clinopyroxene - 10-15%; 2-6 mm; euhedral, stellate clusters.

Plagioclase - 2%; 0.5-1.0 mm; euhedral. ADDITIONAL COMMENTS: Piece 1 to 3 and Piece 6 to 10G are separate pillows with chilled margins.

UNIT 11: HYALOCLASTITE BRECCIA

Pieces 10B and 11

PHENOCRYSTS:

Orthopyroxene - 5%; 0.5 mm; altered.

Clinopyroxene - 10%; 1-5 mm; serrate occasionally.

Plagioclase - 10%; 0.5 mm; euhedral, fresh

GROUNDMASS: Trachytic feldspar. Matrix: glass shards, 1-4 mm, plus pyroxene and feldspar crystals with orange zeolite cement.

VESICLES: < 2%; filled with smectite.

COLOR: Greenish black

ADDITIONAL COMMENTS: Clasts about 4 cm in diameter.

UNIT 11: HYALOCLASTITE BRECCIA

Pieces 1-3

PHENOCRYSTS:

PHENOCRYSTS: Plagioclase - 10%; 0.5 mm; euhedral, fresh. Clinopyroxene - 10%; 1-5 mm; serrate occasionally. Orthopyroxene - 5%; 0.5 mm; altered.
 GROUNDMASS: Trachytic feldspar. Matrix: glass shards, 1-4 mm, plus pyroxene and feldspar crystals with orange zeolite cement.
 VESICLES: < 2%; filled with smectite.

COLOR: Greenish black.

ADDITIONAL COMMENTS: Clasts about 4 cm in diameter.

UNIT 11: HYALOCLASTITE BRECCIA

Pieces 1-9

PHENOCRYSTS:

Plagioclase - 10%; 0.5-1.0 mm; euhedral, fresh. Clinopyroxene - 10%; 1.0 mm; euhedral, fresh. Orthopyroxene - 2%; 0.5 mm; altered, fresh.

GROUNDMASS: Intersertal? Matrix: hyaloclastite, altered glass shards, 1-3 mm. Cement is zeolite. Smectite in interstices up to 1 cm in diameter.

VESICLES: 1-2 mm diameter; elongate; filled with smectite, zeolite, and native copper. COLOR: Greenish gray. ADDITIONAL COMMENTS: Clasts 1 - 10 cm in diameter.

UNIT 11: HYALOCLASTITE BRECCIA

Pieces 1-2

PHENOCRYSTS:

Plagioclase - 10%; 0.5-1.0 mm; euhedral, fresh.

Clinopyroxene - 10%; 1.0 mm; euhedral, fresh.

Orthopyroxene - 2%; 0.5 mm; altered, fresh.

GROUNDMASS: Intersertal? Matrix: hyaloclastite, altered glass shards, 1-3 mm. Cement is zeolite. Smectite in interstices up to 1 cm in diameter.

VESICLES: 1-2 mm diameter; elongate; filled with smectite, zeolite, and native copper. COLOR: Greenish gray. ADDITIONAL COMMENTS: Clasts 1 - 10 cm in diameter.

UNIT 11: PORPHYRITIC ANDESITE LAVA

Piece 3

CONTACTS: No contacts observed.

PHENOCRYSTS:

Plagioclase - 8%; 0.5-2.0 mm; euhedral, fresh.

Clinopyroxene - 12%; 1.0-5.0 mm; euhedral, fresh.

Orthopyroxene - 10%; 1.0-3.0 mm; euhedral, fresh.

GROUNDMASS: Intersertal plagioclase and clinopyroxene.

VESICLES: < 5%; 0.2 - 0.3 mm; vesicles are open, lined with smectite, or filled with zeolite (no native copper). ADDITIONAL COMMENTS: Very fresh.

UNIT 11: CLINOPYROXENE-ORTHOPYROXENE-PLAGIOCLASE PHYRIC ANDESITE

Pieces 1-4

PHENOCRYSTS:

Plagioclase - 20%; 3.0 mm; euhedral, fresh.

Clinopyroxene - 10%; ~ 4.0 mm; euhedral, fresh. Orthopyroxene - 5%; ~ 4.0 mm; euhedral. Partially altered to smectite, clustered with clinopyroxene.

GROUNDMASS: Fine-grained.

VESICLES: ~ 10%; circular, sometime elongate; partly filled with smectites.

UNIT 11: HYALOCLASTITE BRECCIA

Piece 5

CONTACTS: Chilled contact at top of Piece 5 with andesite lava above. This contact is marked by a chilled rim, rich in flattened vesicles and filled with zeolites and smectites. VESICLES: 30%; flattened vesicles filled with zeolites and smectites. VEINS/FRACTURES: Vertical fractures filled with zeolites.

UNIT 12: ANDESITIC BRECCIA

Pieces 6-7

PHENOCRYSTS: Clasts from 0.5-7.0 cm. These clasts are formed of clinopyroxene, orthopyroxene, plagioclase andesite similar to Pieces 1-4. Chilled rims very rich in vesicles that are filled with zeolites and smectites.

Plagioclase - 20%; 3.0 mm; euhedral, fresh.

Clinopyroxene - 10%; ~ 4.0 mm; euhedral, fresh. Orthopyroxene - 5%; ~ 4.0 mm; euhedral, fresh.

GROUNDMASS: Chilled glass shards with clinopyroxene crystals from 0.1 up to 6.0 mm. Cement is zeolite and smectite.

VESICLES: Filled with zeolites and smectites.

UNIT 12: ANDESITIC BRECCIA WITH HYALOCLASTITE

UNIT 12: BRECCIA WITH CRYSTAL TUFF MATRIX

Pieces 1-9

PHENOCRYSTS: Clasts increase in size (2-20 cm) down section in Pieces 1-5

("minipillow"). In Pieces 6-9, clasts are smaller (0.5-2.0 cm). In Pieces 6-9 the clasts have inclusions rich in smectites.

inclusions rich in smectites.
 Plagioclase - 5%; ~ 2.0 mm; euhedral.
 Clinopyroxene - ~ 10%; 3.00 mm; euhedral, fresh.
 Orthopyroxene - 5%; ~ 10.0 mm; euhedral, altered in smectites.
 GROUNDMASS: Gray, with small plagioclase laths. Matrix: Crystal tuff, glassy shards and clinopyroxene-plagioclase crystals. Cement is smectite.
 VESICLES: ~ 12%; flattened or rounded; filled with zeolites and smectites.
 COLOR: Gray.
 ADDITIONAL COMMENTS: Inclusions composed of smectite mantled by clinopyroxene.

UNIT 12: CLINOPYROXENE-ORTHOPYROXENE ANDESITE

Pieces 1-3, 5-7

PHENOCRYSTS: Clasts size ranges from 0.5-7.0 cm. These clasts are chilled.

Plagioclase - 5%; ~ 1.0 mm; euhedral.

Clinopyroxene - 10%; Up to 5.0 mm; euhedral. Orthopyroxene - 8%; Up to 7.0 mm; euhedral, altered to smectites, often clustered with clinopyroxene.

GROUNDMASS: Cement is composed of zeolites and smectites. Matrix is composed of glass shards altered to smectites.

UNIT 12: CLINOPYROXENE-ORTHOPYROXENE ANDESITE

Pieces 4, 8 - 10

PHENOCRYSTS: "Big clasts" of clinopyroxene-orthopyroxene andesite. Plagioclase - 5%; ~ 1.0 mm; euhedral. Clinopyroxene - 10%; Up to 5.0 mm; euhedral.

Orthopyroxene - 8%; Up to 7.0 mm; euhedral, altered to smectites, often clustered with clinopyroxene. GROUNDMASS: Microcrystalline with tiny feldspar microlites. Cement is composed of

zeolites and smectites.

VESICLES: 15%; Up to 4.0 mm; rounded or slightly flattened; filled with zeolites and/or smectites. Copper is present in the vesicles.

UNIT 12: BRECCIA

Pieces 1-4, 5(A, D, E)

PHENOCRYSTS: "Pillows" chilled against the matrix.

 PHENOCRYSTS: "Pillows" chilled against the matrix.
 Plagioclase - 3%; Up to 1.0 mm; euhedral.
 Clinopyroxene - 10%; Up to 5.0 mm; euhedral, fresh.
 Orthopyroxene - 5%; Up to 3.0 mm; euhedral, altered to smectites.
 GROUNDMASS: Groundmass with small feldspars (feldspars seem more abundant in the groundmass of these pieces). The matrix that is present in Pieces 4A and 4B is a tuff very similar to core 126-7938-107R-3, formed of small shards of glass. Piece 4B contains a reworked "clast" formed of a pillow-clast with its rims surrounded by

fine-grained tuffs. VESICLES: 10%; circular, slightly elongated; filled with smectites. VEINS/FRACTURES: Veins or cracks filled with smectites.

UNIT 12: BRECCIA

Pieces 5 (B,C,F,G) - 6

PHENOCRYSTS: "Clasts" 0.5-10.0 cm, andesite, similar to Pieces 1-4. Plagioclase - 3%; Up to 1.0 mm; euhedral.

Clinopyroxene - 10%; Up to 5.0 mm; euhedral, fresh.

Orthopyroxene - 5%; Up to 3.0 mm; euhedral, altered in smectites.

GROUNDMASS: Matrix is crystal tuff with glassy shards. The crystals are mainly clinopyroxene, similar to core 126-793B-107R.

UNIT 12: ANDESITIC CLASTS IN A CRYSTAL TUFF MATRIX

Pieces 1-6

PHENOCRYSTS: Andesitic clasts are chilled. Similar to section 793B-108R-1.
 Plagioclase - 3%; Up to 1.0 mm; euhedral.
 Clinopyroxene - 10%; Up to 5.0 mm; euhedral, fresh.
 Orthopyroxene - 5%; Up to 3.0 mm; euhedral, altered to smectites.
 GROUNDMASS: Matrix is crystal tuff with glassy shards. The crystals are mainly clinopyroxene, similar to core 126-793B-108R.

UNIT 12: ANDESITIC BRECCIA

Pieces 1-9

PHENOCRYSTS: Clinopyroxene>orthopyroxene>plagioclase with very big clinopyroxene crystals up to 1 cm in diameter. GROUNDMASS: "Matrix" contains crystals, glassy shards, and gray lithic fragments.

UNIT 12: ANDESITE BRECCIA IN HYALOCLASTITIC MATRIX

Pieces 1-5

- CONTACTS: None internally visible within clasts. PHENOCRYSTS: Clasts of 1 8 cm in size in a greenish gray to dark greenish gray matrix. Plagioclase 5%; 0.5 mm; euhedral, fresh. Clinopyroxene 5%; 0.5-3.0 mm; euhedral, fresh. Orthopyroxene 2%; 0.5-1.0 mm; euhedral, altered. GROUNDMASS: Altered, with plagioclase microlites, smectites, and celadonite. Matrix contains clasts of lava, altered glass shards and crystal fragments/phenocrysts. VESICLES: 0-2%; filled with zeolites. COLOR: Dark greenish gray

COLOR: Dark greenish gray. ALTERATION: Groundmass altered to smectite and celadonite. Orthopyroxene altered to celadonite and smectite plus an iron oxide mineral (brown). ADDITIONAL COMMENTS: About 20% of the clasts have broken chilled margins.

UNIT 12: ANDESITE BRECCIA IN HYALOCLASTITIC MATRIX

Pieces 1-5

- CONTACTS: None internally visible within clasts. PHENOCRYSTS: Clasts of 1 8 cm in size in a greenish gray to dark greenish gray matrix. Plagioclase - ~ 5%; 0.5 mm; euhedral, fresh.
 - Clinopyroxene 5%; 0.5-3.0 mm; euhedral, fresh.

Orthopyroxene - 2%; 0.5-1.0 mm; euhedral, altered.

GROUNDMASS: Altered, with plagioclase microlites, smectites, and celadonite. Matrix

contains clasts of lava, altered glass shards and crystal fragments/phenocrysts. VESICLES: 0-2%; filled with zeolites.

COLOR: Dark greenish gray.

ALTERATION: Groundmass altered to smectite and celadonite. Orthopyroxene altered to celadonite and smectite plus an iron oxide mineral (brown).

ADDITIONAL COMMENTS: About 20% of the clasts have broken chilled margins.

UNIT 12: ANDESITE BRECCIA IN HYALOCLASTITIC MATRIX

Pieces 1-7, 9-11

- CONTACTS: None internally visible within clasts. PHENOCRYSTS: Clasts of 1 8 cm in size in a greenish gray to dark greenish gray matrix. Plagioclase - ~ 5%; 0.5 mm; euhedral, fresh.
 - Clinopyroxene 5%; 0.5-3.0 mm; euhedral, fresh.
 - Orthopyroxene 2%; 0.5-1.0 mm; euhedral, altered.

GROUNDMASS: Altered, with plagioclase microlites, smectites, and celadonite. Matrix contains clasts of lava, altered glass shards and crystal fragments/phenocrysts.

- VESICLES: 0-2%; filled with zeolites.
- COLOR: Dark greenish gray.

ALTERATION: Groundmass altered to smectite and celadonite. Orthopyroxene altered to celadonite and smectite plus an iron oxide mineral (brown).

ADDITIONAL COMMENTS: About 20% of the clasts have broken chilled margins.

UNIT 12: BASALTIC ANDESITE CLAST

Pieces 8 (A & B)

CONTACTS: None.

PHENOCRYSTS:

Plagioclase - 1%; < 1.0 mm; lath.

Clinopyroxene - 1%; 1.0 mm; fresh, green.

Orthopyroxene - 3%; 1.0-3.0 mm; altered to Fe oxide and clay.

GROUNDMASS: Fine-grained, < 0.2 mm plagioclase laths, microlites.

VESICLES: 3%; 4 mm; elongate; aligned, empty,

COLOR: Dusky yellow-green. STRUCTURE: None.

ALTERATION: Groundmass altered mostly to clays.

ADDITIONAL COMMENTS: Similar alteration to Core 126-793B-110R and lower in the section.

UNIT 13: MASSIVE BASALTIC ANDESITE LAVA

Pieces 1-7

CONTACTS: None.

PHENOCRYSTS:

PHENOCRYSTS: Clinopyroxene - 10%; 0.3-10.0 mm; euhedral, generally fresh. Orthopyroxene - 10%; 0.3-10.0 mm; euhedral, 80% altered.
 GROUNDMASS: Fine-grained altered glass with plagioclase laths.
 VESICLES: 1-5%; 0.2-5.0 mm; elongated; concentrated in certain zones. Mostly empty with smectite and celadonite lining on vesicle walls. Some zeolite filled.
 COLOR: Medium bluish ₉ ay.
 STRUCTURE: Massive lava flow.
 ALTERATION: Orthopyroxene altered to a brown clay mineral. Native concert present in

ALTERATION: Orthopyroxene altered to a brown clay mineral. Native copper present in orthopyroxene pseudomorphs. Clinopyroxene 40% altered to smectite. Plagioclase laths are fresh. Alteration along cleavages and margins, but alteration from interior and out to surface is not uncommon.

VEINS/FRACTURES: Zeolite and smectite-filled veins (< 1 mm in size) are common.

SITE 793

126-793B-110R-2

UNIT 13: MASSIVE BASALTIC ANDESITE LAVA

Pieces 1-2

CONTACTS: None. PHENOCRYSTS:

Clinopyroxene - 10%; 0.3-10.0 mm; euhedral, generally fresh. Orthopyroxene - 10%; 0.3-10.0 mm; euhedral, 80% altered.

- GROUNDMASS: Fine-grained altered glass with plagioclase laths.
- VESICLES: 1-5%; 0.2-5.0 mm; elongated; concentrated in certain zones. Mostly empty with smectite and celadonite lining on vesicle walls. Some zeolite filled.

COLOR: Medium bluish gray. STRUCTURE: Massive lava flow.

ALTERATION: Orthopyroxene altered to a brown clay mineral. Native copper present in orthopyroxene pseudomorphs. Clinopyroxene 40% altered to smectite. Plagioclase laths are fresh. Alteration along cleavages and margins, but alteration from interior and out to surfaces is not uncommon.

VEINS/FRACTURES: Zeolite and smectite-filled veins (< 1 mm in size) are common.

UNIT 13: MASSIVE BASALTIC ANDESITE LAVA

Pieces 1-2

CONTACTS: None. PHENOCRYSTS:

Clinopyroxene - 10%; 0.3-10.0 mm; euhedral, generally fresh.

Orthopyroxene - 10%; 0.3-10.0 mm; euhedral, 80% altered.

GROUNDMASS: Fine-grained altered glass with plagioclase laths.

VESICLES: 1-5%; 0.2-5.0 mm; elongated; concentrated in certain zones. Mostly empty with smectite and celadonite lining on vesicle walls. Some zeolite filled.

COLOR: Medium bluish gray. STRUCTURE: Massive lava flow.

ALTERATION: Othopyroxene altered to a brown clay mineral. Native copper present in orthopyroxene pseudomorphs. Clinopyroxene 40% altered to smectite. Plagioclase laths are fresh. Alteration along cleavages and margins, but alteration from interior and out to surfaces is not uncommon.

VEINS/FRACTURES: Zeolite and smectite filled veins (< 1 mm in size) are common. Zeolite veins in Piece 2 are less than 1 mm thick.

Lithological Unit

126-793B-110R-4

UNIT 13: MASSIVE BASALTIC ANDESITE LAVA

Pieces 1-2

- CONTACTS: None.
 PHENOCRYSTS: Phenocryst more altered towards the bottom of section through 126-793B-110R-05 Piece 6B.
 Clinopyroxene 10%; 0.3-10.0 mm; euhedral, generally fresh.
 Orthopyroxene 10%; 0.3-10.0 mm; euhedral, 80% altered.
 GROUNDMASS: Fine-grained altered glass with plagioclase laths.
 VESICLES: 1-5%; 0.2-5.0 mm; elongated; concentrated in certain zones. Mostly empty with smectite and celadonite lining on vesicle walls. Some zeolite filled.
 COLOR: Brown, olive gray.
 STRUCTURE: Massive lava flow.
 ALTERATION: Orthopyroxene altered to brown clay mineral. Native copper present in orthopyroxene pseudomorphs. Clinopyroxene 40% altered to smectite. Plagioclase laths are fresh. Alteration along cleavages and margins, but alteration from interior and out to surfaces is uncommon. out to surfaces is uncommon.

VEINS/FRACTURES: Zeolite and smectite filled veins (< 1 mm in size) are common.

UNIT 13: MASSIVE BASALTIC ANDESITE LAVA

Pieces 1-3

CONTACTS: None.

- PHENOCRYSTS: Phenocrysts more altered towards the bottom of section Clinopyroxene - 10%; 0.3-10.0 mm; euhedral, generally fresh. Orthopyroxene - 10%; 0.3-10.0 mm; euhedral, 80% altered.
- GROUNDMASS: Fine-grained altered glass with plagioclase laths.
- VESICLES: 1-5%; 0.2-5.0 mm; elongated; concentrated in certain zones. Mostly empty with smectite and celadonite lining on vesicle walls. Some zeolite filled.
- COLOR: Brown, olive gray. STRUCTURE: Massive lava flow.
- ALTERATION: Orthopyroxene altered to brown clay mineral. Native copper present in orthopyroxene pseudomorphs. Clinopyroxene 40% altered to smectite. Plagioclase laths are fresh. Alteration along cleavages and margins, but alteration from interior and out to surfaces is not uncommon.

VEINS/FRACTURES: Zeolite and smectite filled veins (< 1 mm in size) are common.

UNIT 13: MASSIVE BASALTIC ANDESITE LAVA

Pieces 4-6B

CONTACTS: None

PHENOCRYSTS: Down section decrease in phenocryst abundance to Piece 6B. Clinopyroxene - 3%; 0.3-10.0 mm; euhedral, generally fresh. Orthopyroxene - 3%; 0.3-10.0 mm; euhedral, 80% altered. GROUNDMASS: Fine-grained altered glass with plagioclase laths. VESICLES: 1-5%; 0.2-5.0 mm; elongated; concentrated in certain zones. Mostly empty

with smectite and celadonite lining on vesicle walls. Some zeolite filled.

COLOR: Brown, olive gray.

STRUCTURE: Massive lava flow.

ALTERATION: Orthopyroxene altered to brown clay mineral. Native copper present in orthopyroxene pseudomorphs. Clinopyroxene 40% altered to smectite. Plagioclase laths are fresh. Alteration along cleavages and margins, but alteration from interior and out to surfaces is not uncommon.

VEINS/FRACTURES: Zeolite and smectite filled veins (< 1 mm common in size) are common

UNIT 14: APHYRIC-SPARSELY PHYRIC BASALTIC ANDESITE

Pieces 7-15

CONTACTS: None, not present with overlying flow. PHENOCRYSTS: Phenocrysts are < 1% of total.

Plagioclase - < 0.5 mm; fresh.

Clinopyroxene - 0.5 mm; fresh.

Orthopyroxene - 0.3 mm; semi-fresh.

GROUNDMASS: Trachyitic alignment of feldspars, also some dark laths - quenched VESICLES: 1-7%; elongate; sub-parallel alignment, in bands, open. COLOR: Light olivine gray. STRUCTURE: Bands of vesiculation.

ALTERATION: Semi-alteration of rare orthopyroxene at margins.

126-793B-111R-1

UNIT 14: BASALTIC ANDESITE, SETTLED FLOW

Pieces 1-9

CONTACTS: None. PHENOCRYSTS: There is an increase in crystal density towards the base of the flow. Pieces 1-3 contain 7-10% phenocrysts (upper section). Pieces 4-9 contain 15%

phenocrysts. Settling of crystals within the flow. Plagioclase - 2%; 0.5-1.0 mm; fresh, euhedral.

Clinopyroxene - 10%; 1.0-10.0 mm; fresh, some alteration, euhedral.

Orthopyroxene - 5%; 1.0-3.0 mm; fresh, euhedral.

GROUNDMASS: Fine-grained, plagioclase laths, not orientated, intersertal texture(?).

VESICLES: 0.5-2%; 1.0-3.0 mm; spherical to slightly elongate.; vesicles are open.

COLOR: Dusky yellowish green.

STRUCTURE: None.

ALTERATION: Some hydrothermal veining recognized by smectite-celadonite rich zones. Orthopyroxene altered to smectite-celadonite-Fe oxides-etc.

ADDITIONAL COMMENTS: Native copper present as small grains in oxidized crystals.

150

126-793B-111R-2

UNIT 14: BASALTIC ANDESITE, SETTLED FLOW

Pieces 1-11

CONTACTS: None.

PHENOCRYSTS: Plagioclase - 2%; 0.5-1.0 mm; fresh, euhedral.

Clinopyroxene - 10%; 1.0-10.0 mm; fresh, some alteration, euhedral.

Orthopyroxene - 5%; 1.0-3.0 mm; fresh, euhedral.

GROUNDMASS: Fine-grained, plagioclase laths, not orientated, intersertal texture(?). VESICLES: 0.5-2%; 1.0-3.0 mm; spherical to slightly elongate; vesicles are open. COLOR: Dusky yellowish green. STRUCTURE: None.

ALTERATION: Some hydrothermal veining recognized by smectite-celadonite rich zones. Orthopyroxene altered to smectite-celadonite-Fe oxides-etc.

ADDITIONAL COMMENTS: Native copper present as small grains in oxidized crystals.

126-793B-111R-3

UNIT 14: BASALTIC ANDESITE, SETTLED FLOW

Pieces 1-5

CONTACTS: None. PHENOCRYSTS:

Plagioclase - 2%; 0.5-1.0 mm; fresh, euhedral. Clinopyroxene - 10%; 1.0-10.0 mm; fresh, some alteration, euhedral. Orthopyroxene - 5%; 1.0-3.0 mm; fresh, euhedral.

GROUNDMASS: Fine-grained, plagioclase laths, not orientated, intersertal texture(?).

VESICLES: 0.5-2%; 1.0-3.0 mm; spherical to slightly elongate; vesicles are open. COLOR: Dusky yellowish green. STRUCTURE: None.

ALTERATION: Some hydrothermal veining recognized by smectite-celadonite rich zones. Orthopyroxene altered to smectite-celadonite-Fe oxides-etc.

ADDITIONAL COMMENTS: Native copper present as small grains in oxidized crystals.

126-793B-112R-1

UNIT 14: PORPHYRITIC LAVA

Piece 1

CONTACTS: None.

PHENOCRYSTS: Phenocryst content decreases from about 20% in Piece 1A to 8% in Piece 1J.

Plagioclase - 1-2%; 0.5 mm.

Clinopyroxene - 5%; 1.0 mm.

Orthopyroxene - 1-2%; 1.0 mm; rusty.

GROUNDMASS: Fine-grained, plagioclase laths, not orientated, intersertal texture(?).

VESICLES: ~ 2%; 1.0-3.0 mm; spherical to slightly elongate; vesicles are open.

COLOR: Dusky yellowish green. STRUCTURE: None.

ALTERATION: Some hydrothermal veining recognized by smectite-celadonite rich zones. Orthopyroxene altered to smectite-celadonite-Fe oxides-etc.

ADDITIONAL COMMENTS: Native copper present as small grains in oxidized crystals.

UNIT 14: SPARSELY-PHYRIC, NON-VESICULAR LAVA

Pieces 2-3A

PHENOCRYSTS:

Plagioclase - 2%; 0.5 mm; fresh, euhedral.

Clinopyroxene - 1%; 1.0-2.0 mm; fresh, euhedral.

Orthopyroxene - 1%; Up to 1.0 mm; highly altered.

VESICLES: Non-vesicular.

ADDITIONAL COMMENTS: Piece 3A changes from sparsely phyric to 10% crystals (with 2-3 mm diameters) at 94 cm; Sharp contact with broken crystals.

UNIT 14: PORPHYRITIC LAVA

Pieces 3B-5

PHENOCRYSTS:

Plagioclase - 1%; < 1.0 mm; euhedral, fresh.

Clinopyroxene - 10%; 3.0-15.0 mm; euhedral, fresh.

Orthopyroxene - 5%; 2.0-3.0 mm; euhedral, altered to smectite.

GROUNDMASS: Fairly holocrystalline.

VESICLES: 5%; 1 mm; elongate.

ADDITIONAL COMMENTS: Similar to Core 126-793B-111R.

Shipboard Studies Graphic Representation Lithological Unit Piece Number Orientation cm 0 1A 1B 1C 1D 1E 2 50 -3 4 Unit 14 5 6A 6B 00 7 00 100 000 8A 8B 8C 9 10 11

CORE/SECTION

150

126-793B-112R-2

UNIT 14: PORPHYRITIC LAVA

Pieces 1-7

PHENOCRYSTS: Plagioclase - 1%; < 1.0 mm; euhedral, fresh. Clinopyroxene - 10%; 3.0-15.0 mm; euhedral, fresh. Orthopyroxene - 5%; 2.0-3.0 mm; euhedral, altered to smectite. GROUNDMASS: Fairly holocrystalline. VESICLES: 5%; 1 mm; elongate. ADDITIONAL COMMENTS: Similar to Core 126-793B-111R.

UNIT 14: SPARSELY-PHYRIC LAVA

Pieces 8-11

PHENOCRYSTS:

Plagioclase - 5%; 0.5 mm; long, fresh, euhedral. Clinopyroxene - 1%; 1.0-2.0 mm; fresh, euhedral. Orthopyroxene - < 1%; 1.0 mm; altered. GROUNDMASS: Looks fresh, intersental. VESICLES: ~ 5%; up to 10 mm long and 1 mm wide; elongate.

126-793B-113R-1

UNIT 15: HYALOCLASTITE BRECCIA

Pieces 1-3

PHENOCRYSTS: Plagioclase - 1%; 0.5-1.0 mm; euhedral, fresh. Clinopyroxene - 5%; 1.0-3.0 mm; euhedral, fresh. Orthopyroxene - 1%; 0.5-1.5 mm; euhedral, altered. GROUNDMASS: Trachytic feldspar laths. Matrix is altered glass shards, (1-10 mm in size), and crystals of pyroxene in smectite > zeolite cement. Medium bluish gray in color. VESICLES: < 2%; smectite filled. COL OB: Medium gray.

COLOR: Medium gray. ADDITIONAL COMMENTS: Clasts: 1-10 cm with chilled margins (good example at 58 cm).

CORE/SECTION

126-793B-113R-2

UNIT 15: MASSIVE LAVA

Piece 1

CONTACTS: No contacts. PHENOCRYSTS:

PHENOCHYSIS: Plagioclase - 5%; 0.5-1.0 mm; euhedral, fresh. Clinopyroxene - 8%; 2.5-5.0 mm; euhedral, fresh. Orthopyroxene - 5%; 0.5-1.0 mm; euhedral, fresh. GROUNDMASS: Intersertal, fresh. VESICLES: 3%; 0.5-1.0 mm; filled with smectite > zeolite > native copper.

UNIT 15: HYALOCLASTITE BRECCIA

Pieces 2-3E

CONTACTS: No contacts.

PHENOCRYSTS: Highly altered.

Plagioclase - 5%: 0.5-1.0 mm.

Clinopyroxene - 8%; 2.5-5.0 mm.

Orthopyroxene - 5%: 0.5-1.0 mm.

GROUNDMASS: Intersertal, highly altered. Matrix is zeolite dominated in Piece 2 and smectite dominated in Piece 3.

VESICLES: 3%; 0.5-1.0 mm; filled with smectite > zeolite > native copper. ADDITIONAL COMMENTS: Clasts are 1-6 cm in size. Highly altered version of Piece 1.

UNIT 15: HYALOCLASTITE BRECCIA

Pieces 3F-4

CONTACTS: No contacts.

PHENOCRYSTS: Plagioclase - 5%; 0.5-1.0 mm.

Clinopyroxene - 8%; 2.5-5.0 mm.

Orthopyroxene - 5%; 0.5-1.0 mm.

GROUNDMASS: Intersertal.

VESICLES: 3%; 0.5-1.0 mm; filled with smectite > zeolite > native copper. ADDITIONAL COMMENTS: Pieces 3F and 4 contain a 20 cm pillow Piece of same lava

type but intermediate in freshness between Piece 1 and 2-3E.

UNIT 15: HYALOCLASTITE BRECCIA

Pieces 1-6

CONTACTS: No contacts. PHENOCRYSTS: Plagioclase - 5%; 0.5-1.0 mm.

Clinopyroxene - 8%; 2.5-5.0 mm. Orthopyroxene - 5%; 0.5-1.0 mm.

GROUNDMASS: Intersertal. Zeolite cement at 45-50 cm, but mostly smectite cement. ADDITIONAL COMMENTS: Mostly 10 cm-sized clasts (also at base of section 2) of porphyritic lava.

UNIT 16: APHYRIC LAVA

Piece 7

CONTACTS: No contacts.

PHENOCRYSTS:

Clinopyroxene - < 1%; 1.0 mm; partly altered to smectite.

GROUNDMASS: Groundmass is composed of felty feldspar laths and pyroxene. VESICLES: 2%; 1-2 mm diameter; elongate; partly filled with smectite and native copper, glassy rims on vesicles.

UNIT 16: APHYRIC LAVA

CONTACTS: No contacts. PHENOCRYSTS:

Clinopyroxene - < 1%; 1.0 mm; partly altered to smectite. GROUNDMASS: Groundmass is composed of felty feldspar laths and pyroxene. VESICLES: 2%; up to 10 mm; elongate; partly filled with smectite and native copper, glassy rims on vesicles.

UNIT 17: HYALOCLASTITE BRECCIA

Pieces 1-4

- CONTACTS: Clasts are 1-10 cm in diameter; Pieces 1C and 1D contain one pillow Piece greater than 40 cm in diameter. Next lower contact is in Piece 3. Pieces 4A-4C contain one pillow Piece 20 cm in diameter.
- PHENOCRYSTS: Most clasts are from 0-130 cm in size. Clast at bottom of Piece 4D is more typical of clasts in Unit 15 (Core 126-793B-113) with clinopyroxene >/=
- more typical of clasts in Unit 15 (Core 126-793B-113) with clinopyroxene >/= orthopyroxene > plagioclase.
 Plagioclase 5%; 1-2 mm; fresh, euhedral.
 Clinopyroxene 2-5%; 1-6 mm; altered, euhedral.
 Orthopyroxene 1-2%; < 0.5 mm; very altered.
 GROUNDMASS: Quite fresh. Matrix is composed of glass shards, pyroxene and plagioclase crystals with smectite and zeolite cement. Color is darkgreenish gray.
 VESICLES: 1%; 1 mm; zeolite and smectite filling.
 COLOR: Medium gray.
 ADDITIONAL COMMENTS: Coarse, heterolithic.

UNIT 17: HYALOCLASTITE BRECCIA

Piece 1

CONTACTS: Clasts are 1-4 cm, with two ~20 cm in diameter at 40-60 and 88-108 cm.
 PHENOCRYSTS: All clasts are clinopyroxene > orthopyroxene >/= plagioclase, similar to those at the base of Section 126-793B-114R-1.
 Plagioclase - 2%; 0.5 mm; fresh, euhedral.
 Clinopyroxene - 5%; 1-6 mm; euhedral.
 Orthopyroxene - 2%; 1.0 mm; fresh and altered.
 GROUNDMASS: Quite fresh. Matrix is a hyaloclastite.
 VESICLES: 2%; 1 mm; filled with smectite greater than zeolite.
 COLOR: Medium gray.

UNIT 17: HYALOCLASTITE BRECCIA

Pieces 1-6

- PHENOCRYSTS: All clasts are clinopyroxene >/= orthopyroxene >/= plagioclase, similar to those at the base of Section 126-793B-114R-1. Clasts are 1-8 cm in diameter, and largest in Pieces 3C and 4C-5.
 Plagioclase 2%; 0.5 mm; fresh, euhedral.
 Clinopyroxene 5%; 1-6 mm; euhedral, fresh.
 Orthopyroxene 2%; 1.0 mm; fresh and altered.
 GROUNDMASS: Quite fresh. Matrix of glass, pillow shards and crystals in smectite, zeolite and native conper cement
- ADDITIONAL COMMENTS: Similar to Sections 126-793B-114R-1 and 2.

CORE/SECTION

UNIT 17: HYALOCLASTITE BRECCIA

Pieces 1-7

PHENOCRYSTS: All clasts are clinopyroxene >/= orthopyroxene >/= plagioclase, similar to those at the base of section 1. Clasts are typically 1-5 cm in size, but 15 cm in Piece 1,

and 18 cm in Piece 6.

- Plagioclase 2%; 0.5 mm; fresh, euhedral. Clinopyroxene 5%; 1-6 mm; euhedral, fresh. Orthopyroxene 2%; 1.0 mm; fresh and altered. GROUNDMASS: Quite fresh. Matrix of glass, pillow shards and crystals in smectite, zeolite, and native copper cement. VESICLES:2%; 1 mm; filled with smectite greater than zeolite.

COLOR: Medium gray. ADDITIONAL COMMENTS: Similar to Sections 126-793B-114R-1 and 2.

UNIT 17: HYALOCLASTITE BRECCIA

Pieces 1-8

PHENOCRYSTS: All clasts are clinopyroxene >/= orthopyroxene >/= plagioclase, similar to those at the base of Section 126-793B-114R-1. Clasts are typically 1-8 cm in diameter. Plagioclase - 2%; 0.5 mm; fresh, euhedral. Clinopyroxene - 5%; 1-6 mm; euhedral, fresh. Orthopyroxene - 2%; 1.0 mm; fresh and altered.
 GROUNDMASS: Quite fresh. Matrix of glass, pillow shards and crystals in smectite, zeolite and native corport corport.

and native copper cement. VESICLES: 2%; 1 mm; filled with smectite greater than zeolite.

COLOR: Medium gray. ADDITIONAL COMMENTS: Similar to Sections 126-793B-114R-1 and 2. Piece 6 is drilling hash. Pieces 7 and 8 are isolated clasts of the same lava type.

126-793B-1R-01 (Piece 5,102-104 cm)

OBSERVER: TOR

WHERE SAMPLED: Unit 7

ROCK NAME: Plagioclase-clinopyroxene-olivine diabase

GRAIN SIZE: Medium

TEXTURE: Subophitic-intersertal

PRIMARY	PERCENT	PERCENT	SIZE	COMPO-		
MINERALOGY	PRESENT	ORIGINA	L (mm)	SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Olivine	0	2.9	N/A		N/A	
Plagioclase	41	41	N/A		N/A	
Clinopyroxene	18.3	18.3	N/A		N/A	
Ores	4.2	4.2	N/A		N/A	
GROUNDMASS						
Glass	0	33.6	N/A		N/A	
SECONDARY MINERALOGY Clays	PERCENT 36.5	REP: FIL: Olivin	LACING/ LING e and glass			COMMENTS
VESICLES/ CAVITIES Vesicles	PERCENT 8	LOCATIO	SIZE ON (mm)		FILLING	SHAPE

COMMENTS: Point counting of described thin section.

126-793B-1R-01 (Piece 5,102-104 cm) OBSERVER: LTP WHERE SAMPLED:

ROCK NAME: Olivine-clinopyroxene-diabase

GRAIN SIZE: Medium

TEXTURE: Intersertal-intergranular

PRIMARY	PERCENT	PERCENT	SIZE	COMPO-		
MINERALOGY	PRESENT	ORIGINAI	2 (mm)	SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Olivine	0	3	2		Sub-euhedral	Altered to smectites.
Plagioclase	40	40	0.1-1		Subhedral	Fresh, intersertal texture.
Clinopyroxene	20	0	0.1-0.5		Sub-euhedral	Fresh, intersertal texture.
Opaques	5	5	0.05-0.2		Subhedral	
Orthopyroxene	<0.5	<0.5	0.1		Subhedral	Fresh, minor groundmass phase.
GROUNDMASS						
Glass	35	N/A	N/A		10%	Smectites replacing probably glass.
						Plagioclase and clinopyroxene in dark band.
SECONDARY		REPI	ACING/			
MINERALOGY	PERCENT	FILI	ING			COMMENTS
Clays					Smectites fil	ling up vesicles or replacing glass.
Zeolites					Intersertal,	in between the plagioclase laths.
VESICLES/			SIZE			
CAVITIES	PERCENT	LOCATIO	ON (mm)		FILLING	SHAPE
Vesicles	10	Random	1-4		Smectites	Rounded or
						polygonal

COMMENTS: Darker bands or inclusions are formed of the same rocks but finer grained and the groundmass was more rich in glass, now transformed to smectites. Minerals like feldspars and clinopyroxene are quenched. Vesicles are more abundant, bigger and lined by smectites. Around the vesicles, the groundmass is formed of glass now recrystallized to brown opaque material with few small feldspars microlites formed during devitrification. The darker color is due to smectites replacing the glass.

126-793B-1R-02 (Piece 5B,115-116 cm) OBSERVER: TOR

WHERE SAMPLED: Unit 1, middle

ROCK NAME: Plagioclase-clinopyroxene-olivine-diabase

GRAIN SIZE: Fine

TEXTURE: Porphyritic-intersertal

PERCENT PRESENT	PERCENT ORIGINAI	SIZE COMPO- (mm) SITION	MORPHOLOGY	COMMENTS
0	7	0.2-1	Euhedral	Altered to smectite.
37	37	0.1-1	Subhedral	
20	20	0.1-2	Subhedral	Glomeroporphyritic clots with
				orthopyroxene.
5	5	0.05-0.2	N/A	
1	1	=1</td <td>Subhedral</td> <td></td>	Subhedral	
0	30	N/A	N/A	Altered to smectite.
	REPI	ACING/		
PERCENT	FILL	ING		COMMENTS
37	Olivine	, orthopyroxene, glass		
Tr	Olivine			
		STZE		
PERCENT	LOCATIO	N (mm)	FILLING	SHAPE
		(unit)		
	PERCENT PRESENT 0 37 20 5 1 0 9 PERCENT 37 Tr PERCENT	PERCENT PERCENT PRESENT ORIGINAL 0 7 37 37 20 20 5 5 1 1 0 30 0 30 PERCENT FILL 37 Olivine Tr Olivine PERCENT LOCATIO	PERCENT PERCENT SIZE COMPO- PRESENT ORIGINAL (mm) SITION 0 7 0.2-1 37 37 0.1-1 20 20 0.1-2 5 5 0.05-0.2 1 1 -1<br 0 30 N/A REPLACING/ PERCENT FILLING 37 Olivine, orthopyroxene, glass Tr Olivine SIZE PERCENT LOCATION (mm)	PERCENT PERCENT SIZE COMPO- PRESENT ORIGINAL (mm) SITION MORPHOLOGY 0 7 0.2-1 Euhedral 37 37 0.1-1 Subhedral 20 20 0.1-2 Subhedral 5 5 0.05-0.2 N/A 1 1 5 5 0.05-0.2 N/A 1 1 N/A 0 30 N/A N/A REPLACING/ PERCENT FILLING 37 Olivine, orthopyroxene, glass Tr Olivine N/A SIZE PERCENT LOCATION (mm) FILLING

126-793B-1R-03 (Piece 1A,86-89 cm) OBSERVER: LTP WHERE SAMPLED: Chilled margin of the sill

ROCK NAME: Olivine-clinopyroxene-orthopyroxene basalt

GRAIN SIZE: Fine

TEXTURE: Porphyritic

PRIMARY PERCENT PERCENT SIZE COMPO-MINERALOGY PRESENT ORIGINAL (mm) SITION MORPHOLOGY COMMENTS PHENOCRYSTS

Olivine	N/A	10	2	Sub-euhedral	Altered to calcite and smectites.
Plagioclase	N/A	5	0.2-0.5	Euhedral	Zoned-clustered (corroded).
Clinopyroxene	N/A	15	up to 6	Euhedral	Zoned, twinned + inclusions-lamellae often clustered with olivine.
Orthopyroxene	N/A	5	3	Sub-euhedral	Clustered with clinopyroxene and olivine.
GROUNDMASS					
Plagioclase	N/A	N/A	0.1	N/A	Quenched minerals-crystallites.
Clinopyroxene	N/A	N/A	0.2	N/A	Microcrystalline.
SECONDARY		REP	LACING/		
MINERALOGY	PERCENT	FIL	LING		COMMENTS
Clays				Replacing ol	livine.
Carbonate				Calcite, rep	placing olivine.
VESICLES/			SIZE		
CAVITIES	PERCENT	LOCATI	ON (mm)	FILLING	SHAPE
Vesicles	5		0.1	Smectites	Rounded

COMMENTS: Glomeroporphyritic aggregates suggesting cumulate process with olivine + clinopyroxene + orthopyroxene. Plagioclase may be an inclusion as small laths in orthopyroxene. Glass is caught in between the phenocrysts. Groundmass is 60%.

126-793B-3R-01

OBSERVER: TOR

WHERE SAMPLED:

ROCK NAME: Plagioclase-clinopyroxene-basalt

GRAIN SIZE: Fine

TEXTURE: Vesicular-porphyritic-intersertal

.C0101C0	65	Random	0.2-4	NO	ne	elongated
VESICLES/ CAVITIES	PERCENT	LOCATIO	SIZE ON (mm)	F	ILLING	SHAPE
Clinopyroxene	N/A	N/A	<0.1		N/A	
lagioclase	N/A	N/A	<0.2		Laths	
GROUNDMASS	N/A	N/A	N/A		N/A	Devitrified.
linopyroxene	3	3	0.2-1		Euhedral	Fresh.
PHENOCRYSTS lagioclase	5	5	0.3-2		Euhedral	Glomeroporphyritic clots, fresh.
IINERALOGY	PRESENT	ORIGINAL	2 (mm)	SITION	MORPHOLOGY	COMMENTS
RIMARY	PERCENT	PERCENT	SIZE	COMPO-		

126-793B-30R-03 (129-131 cm) OBSERVER: LTP WHERE SAMPLED:

ROCK NAME: Clinopyroxene-orthopyroxene-plagioclase andesite

GRAIN SIZE: Fine

TEXTURE: Porphyritic

DDIMADY	DEDGENE	DEDOEMS	CTOP	COMPO		
MINERALOGY	PRESENT	ORIGINAL	5125 5 (mm)	SITION M	ORPHOLOGY	COMMENTS
PHENOCRYSTS						
Plagioclase	N/A	30	=1</td <td>Eul</td> <td>hedral</td> <td>Clustered in glomerophyritic aggregates, zoned.</td>	Eul	hedral	Clustered in glomerophyritic aggregates, zoned.
Clinopyroxene	N/A	10	=2</td <td>Sul</td> <td>bhedral</td> <td>Fresh, zones, partly corroded.</td>	Sul	bhedral	Fresh, zones, partly corroded.
Orthopyroxene	1	N/A	<0.5	Eul	hedral	Altered in smectites and or zeolites.
GROUNDMASS						
Plagioclase	N/A	N/A	0.1	65	8	Groundmass altered in a brown-opaque
						material.
SECONDARY		REPI	LACING/			
MINERALOGY	PERCENT	FILI	LING			COMMENTS
Clays					Replacing	orthopyroxene.
Zeolites					Replacing vesicles.	orthopyroxene-partly plagioclase/filling up
VESICLES/			SIZE			
CAVITIES	PERCENT	LOCATIO	ON (mm)	FILLING		SHAPE
Vesicles	4		=0.4</td <td>Zeolites</td> <td></td> <td>Lobate</td>	Zeolites		Lobate

COMMENTS: Clast in a conglomerate. Isolated clinopyroxene crystals sometimes clustered with orthopyroxene, never with plagioclase. Orthopyroxene: altered in smectite and/or zeolites. Plagioclase beginning to be replaced by zeolites. No piece # given.

126-793B-32R-03 (125-128 cm)

OBSERVER: LTP

WHERE SAMPLED:

ROCK NAME: Clinopyroxene-orthopyroxene-plagioclase andesite

GRAIN SIZE:

TEXTURE: Porphyritic

PRIMARY	PERCENT	PERCENT	SIZE	COMPO-	
MINERALOGY	PRESENT	ORIGINAI	(mm)	SITION MORPHOLOGY	COMMENTS
PHENOCRYSTS					
Plagioclase	~10	N/A	<1	Euhedral	Altered to smectites and zeolite.
Clinopyroxene	2	N/A	=1</td <td>N/A</td> <td>Fresh. Includes opaques.</td>	N/A	Fresh. Includes opaques.
Orthopyroxene	~1	N/A	0.5	N/A	Replaced by smectite/zeolite.
GROUNDMASS					
N/A	N/A	N/A	N/A	N/A	Groundmass. Replaced by opaque, reddish
					material.
10010100/					
CAVITIES/	DEDCENT	LOCATIO	NT S	ZE ETILING	SHADE
Vasicles	O	DOCALIC	714	du) FIBLING	SHAFE
vestores					
COMMENTS: Clot:	s of cline	opyroxene	-orth	pyroxene plagioclase. Andesitic clasts are	
cline	opyroxene	-orthopy1	oxene	plagioclase. Zeolite cement. No piece # given	. Groundmass is 87%.
	2.505 (2.102) (2.102) (2.102)				
126-793B-37R-0	1 (68-69 (cm)		OBSERVER: LTP WHERE SAMPLED:	
ROCK NAME: Horn	nblende-da	acitic cr	ystal	tuff	
GRAIN SIZE:					
TEXTURE:					
PRIMARY	PERCENT	PERCENT	SIZE	COMPO-	
MINERALOGY	PRESENT	ORIGINAL	(mm)	SITION MORPHOLOGY	COMMENTS
PHENOCRYSTS					
Plagioclase	N/A	N/A	N/A	N/A	Fresh/oscillatory zoned.
Clinopyroxene	N/A	N/A	N/A	N/A	Fresh.
Opaques	N/A	N/A	N/A	N/A	Enclosed in clinopyroxene and
					hornblende.
Hornblende	N/A	N/A	N/A	N/A	Fresh.
Quartz	N/A	N/A	N/A	Subhedral	Embayed.
GROUNDMASS		0.012/0		× (>	
			A 4 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N/A	
N/A	N/A	N/A	N/A		
N/A	N/A	N/A	N/A	4D	
VESICLES/	N/A	N/A	N/A 5	ZE mm) FILLING	SHAPE
VESICLES/ CAVITIES Vesicles	N/A PERCENT	N/A LOCATIO	N/A SN S	ZE m) FILLING	Shape

COMMENTS: Crystal tuff of hornblende-augite dacite. No piece # given.

126-793B-56R-02 (Piece 1,75-76 cm)

OBSERVER: LTP

WHERE SAMPLED:

ROCK NAME: Clinopyroxene-plagioclase andesite

GRAIN SIZE: Fine

TEXTURE: Porphyritic/flow aligned

PRIMARY	PERCENT	PERCENT	SIZE	COMPO-		
MINERALOGY	PRESENT	ORIGINAL	L (mm)	SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Plagioclase	5	N/A	0.5		Euhedral	Altered to smectite and zeolite.
Clinopyroxene	5	N/A	=1</td <td></td> <td>Euhedral</td> <td>Fresh.</td>		Euhedral	Fresh.
00000000000						
GROUNDMASS	N/A	N/A	N / A		NI / 3	Groundmass altored to brown onaque iron
17 A	N/A	N/A	N/A		N/A	stained material.
SECONDARY		REPI	LACING/			2014/JUNE
MINERALOGY	PERCENT	FIL	LING		One ability (E)	COMMENTS
Clays Smectite/filling up vess Zeoliter						acioclase/filling vesicles
					Nepracing pr	
ÆSICLES/			SIZE			
CAVITIES	PERCENT	LOCATIO	ON (mm)	F.	LLING	SHAPE
			-0.2</td <td>Sme</td> <td>ctite, zeolite</td> <td>Lobate.</td>	Sme	ctite, zeolite	Lobate.
/esicles	20		-/-0.2			flattened
Vesicles	20					flattened
Vesicles COMMENTS: Clasi porpl 126-793B-56R-0:	20 ts in a sa hyritic an 2 (85-86)	andstone, nd with a cm)	/conglomera a fluidal t	ute. Some andesiti(exture. Clinopyro: OBSERVER: LTP	clasts look fresher ene-plagioclase clot WHERE SAMPLED:	flattened with glass still present, more s. Zeolite cement. Groundmass is 70%.
COMMENTS: Clast porpl 126-793B-56R-0 ROCK NAME: Cli	20 ts in a sa hyritic as 2 (85-86 nopyroxen	andstone, nd with ; cm) e-orthop	/conglomera a fluidal t yroxene-pla	ate. Some andesiti(exture. Clinopyro; OBSERVER: LTP agioclase andesite	clasts look fresher ene-plagioclase clot WHERE SAMPLED:	flattened with glass still present, more s. Zeolite cement. Groundmass is 70%.
COMMENTS: Clast porp 126-793B-56R-0: ROCK NAME: Cli GRAIN SIZE: Fi	20 ts in a sa hyritic an 2 (85-86 nopyroxen ne	andstone, nd with (cm) e-orthop	/conglomera a fluidal t yroxene-pla	ute. Some andesiti(exture. Clinopyro; OBSERVER: LTP agioclase andesite	clasts look fresher tene-plagioclase clot WHERE SAMPLED:	flattened with glass still present, more s. Zeolite cement. Groundmass is 70%.
Vesicles COMMENTS: Clasi porpl 126-793B-56R-0. ROCK NAME: Clii GRAIN SIZE: Fi TEXTURE: Porph	20 ts in a sa hyritic an 2 (85-86 nopyroxen ne yritic/fl	andstone, nd with (cm) e-orthop ow align	/conglomerr a fluidal t yroxene-pla	ate. Some andesitio exture. Clinopyro: OBSERVER: LTP agioclase andesite	: clasts look fresher :ene-plagioclase clot WHERE SAMPLED:	flattened with glass still present, more s. Zeolite cement. Groundmass is 70%.

FRIMARI	FERCENT	PERCENT	STUD	COMPO-		
MINERALOGY	PRESENT	ORIGINAL	(mm)	SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Plagioclase	N/A	15	0.7		Euhedral	Fresh-zoned/flow aligned.
Clinopyroxene	N/A	5	0.7		Euhedral	Fresh/clustered with orthopyroxene.
Orthopyroxene	N/A	2	0.5		Euhedral	Sometimes fresh/replaced.
GROUNDMASS						
N/A	N/A	N/A	N/A		N/A	Groundmass replaced by an opaque-brown material (iron stained).
VESICLES/			SIZE		ann	
CAVITIES	PERCENT	LOCATIC	N (mm)		FILLING	SHAPE
Vesicles	2		0.2		Smectite	Rounded

COMMENTS: Other clasts altered intersertal quenched basalt (uncommon). The other clasts are clinopyroxene-orthopyroxene-plagioclase andesite. Clinopyroxene-plagioclase crystals or clots. Zeolite cement. Very similar to sample 126-793B-83R-02, 39-40cm. No piece # given.

126-793B-82R-07 (80-82 cm)

OBSERVER: LTP

WHERE SAMPLED:

ROCK NAME: Clinopyroxene-orthopyroxene-plagioclase andesite

GRAIN SIZE: Fine

TEXTURE: Porphyritic

PRIMARY	PERCENT	PERCENT	SIZE	COMPO-		
MINERALOGY	PRESENT	ORIGINA	L (mm)	SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
lagioclase	30	N/A	~0.6		Euhedral-subhedral	Isolated or clustered with clinopyroxene and orthopyroxene beginning to alter.
Clinopyroxene	10	N/A	~0.5		Euhedral	Zoned-isolated or clustered with orthopyroxene.
xides	N/A	1	N/A		N/A	
rthopyroxene	N/A	6	=0.6</td <td></td> <td>Euhedral</td> <td>Altered to Fe-oxides and smectites.</td>		Euhedral	Altered to Fe-oxides and smectites.
						Clustered with clinopyroxene and
						plagioclase.
GROUNDMASS						
lagioclase	N/A	0.1	N/A		N/A	Microphenocrysts.
linopyroxene	N/A	0.1	N/A		N/A	Microphenocrysts.
ECONDARY		DED	LACINC/			
INERALOGY	PERCENT	FIL	LING			COMMENTS
lays					Replacing orthop	pyroxene and glass.
ESTCLES/			ST7F			
AVITIES	PERCENT	LOCATI	ON (mm)	3	FILLING	SHAPE
esicles	0	DOORLE	(mail)		1001110	STREET A
OMMENTS: Clast the o groun	t in a vol glomeropor ndmass alt	lcanicla rphyriti tered to	stic sedime c clots are smectites.	nt. ?? clinopyro: orthopyroxene, j	xene crystals. Cement is s plagioclase, clinopyroxene	smectite. The order of appearance in a, oxides. No piece # given. 53% of
26-793B-83R-01	l (120-121	cm)		OBSERVER: LTP	WHERE SAMPLED: In a	a sedimentary unit
OCK NAME: Clir	nopyroxene	-orthop	vroxene-pla	gioclase andesite	2	

GRAIN SIZE:

TEXTURE:

PRIMARY MINERALOGY	PERCENT PRESENT	PERCENT ORIGINAI	SIZE . (mm)	COMPO- SITION MORPH	OLOGY COMMENTS
PHENOCRYSTS					
Plagioclase	20	N/A	1	N/A	Partly altered-zoned (zeolites?).
Clinopyroxene	N/A	10	0.5	Euhedr	al Zoned-very fresh.
Oxides	N/A	1	0.1	Euhedr	al
Orthopyroxene	3	N/A	0.5	Euhedr	al Mantled by clinopyroxene-altered to smectite (some are preserved).
GROUNDMASS					
N/A	N/A	N/A	N/A	N/A	Altered groundmass rather rich in glass: now replaced by smectites.
VESICLES/			SIZE		
CAVITIES Vesicles	PERCENT 0	LOCATIO	ON (mm)	FILLING	SHAPE

COMMENTS: Very similar to sample 126-793B-82R-07, 80-82 cm. But main differences: (1) less porphyritic, (2) clinopyroxene + orthopyroxene clustered but no plagioclase present. Seems less differentiated than sample 126-793B-82R-07, 80-82 cm. No piece ≢ given. Groundmass is 66%.

126-793B-84R-01 (75-78 cm)

OBSERVER: REX

WHERE SAMPLED: As clast in breccia

ROCK NAME: Clinopyroxene-phyric basalt-andesite

GRAIN SIZE: Fine (1 mm phenocrysts)

TEXTURE: Porphyritic

PRIMARY	PERCENT	PERCENT	SIZE	COMPO-		
MINERALOGY	PRESENT	ORIGINAL	. (mm)	SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Plagioclase	0	0	N/A		N/A	May not be any-possibly clinopyroxene phyric.
Clinopyroxene	7	7	0.2-1		Subhedral-euhedral	Fresh.
Oxide	<1	<1	0.2		Anhedral	
GROUNDMASS						
Glass	0	93	N/A		N/A	Completely replaced by clays and cristobalite.
SECONDARY		PPDI	ACTNG/			
MINERALOGY	PERCENT	FILI	TNG			COMMENTS
Clays	47	Replaci	ng		Groundmass glass	
Cristobalite	45	Replaci	ing		Groundmass glass	(+ feldspar?).
VESICLES/			SIZE			
CAVITIES	PERCENT	LOCATIC	ON (mm)		FILLING	SHAPE
Vesicles	0					

COMMENTS: Clast is dominantly clinopyroxene phyric. Matrix to whole breccia contains clinopyroxene, altered orthopyroxene, and replaced plagicclase. Clinopyroxene looks pale green in PPL. Na or Cr? in clinopyroxene? Plagicclase replaced by isotropic mineral, (zeolite of some kind?). No piece # given.

WHERE SAMPLED:

OBSERVER: LTP

126-793B-84R-02 (39-40 cm)

ROCK NAME: Clinopyroxene-orthopyroxene-plagioclase andesite

GRAIN SIZE: Fine

TEXTURE: Porphyritic/flow aligned

PRIMARY	PERCENT	PERCENT	SIZE	COMPO-		
MINERALOGY	PRESENT	ORIGINAL	(mm)	SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Plagioclase	30	N/A	<1		Euhedral	Altered to smectites/zeolites/calcite.
Clinopyroxene	N/A	10	1		Euhedral	Fresh, includes opaques.
Opaques	N/A	1	0.1		Subhedral	Early crystallizing phase present in inclusions and also in the groundmass.
Quartz	N/A	Tr	0.3		Subhedral	Rounded.
Orthopyroxene	5	N/A	0.5		N/A	Altered to smectite.
GROUNDMASS						
N/A	N/A	N/A	N/A		N/A	49% groundmass is altered to smectites.
SECONDARY		REPI	ACING/			
MINERALOGY	PERCENT	FILI	ING			COMMENTS
Clays					Groundmass/r	eplacing plagioclase and orthopyroxene.
Zeolites					Filling vesi	cles/replacing plagioclase.
VESICLES/			SIZE			
CAVITIES	PERCENT	LOCATIO	ON (mm)		FILLING	SHAPE COMMENTS
Vesicles	5		=1.5</td <td></td> <td></td> <td>Lobate or Filled with</td>			Lobate or Filled with
			-040 / TODAO			flattened zeolites/smectites.

COMMENTS: Very similar to 126-793B-85R-03, 39-40 m but much more altered. Looks like basement at Hole 792E. No piece # given.

126-793B-85R-01 (8-10 cm)

OBSERVER: LTP

WHERE SAMPLED:

ROCK NAME: Orthopyroxene-clinopyroxene-plagioclase andesite

GRAIN SIZE: Fine

TEXTURE: Porphyritic-"fluidal"

VESICLES/			SIZE			
SECONDARY MINERALOGY Clays	PERCENT	REPL FILL	ACING/ ING		Replacing t	COMMENTS
GROUNDMASS N/A	N/A	N/A	N/A		N/A	"Pseudo-welded" trachytic textures with flattened vesicles. Altered to smectites. Groundmass + vesicles = 87%.
Orthopyroxene	N/A	3	1		Euhedral	corroded. Partly altered to smectites.
Clinopyroxene	N/A	5	0.5		Euhedral	Fresh-zoned/clustered with orthopyroxene, some crystals are
PHENOCRYSTS Plagioclase	N/A	5	0.3-0.5		Euhedral	Fresh-zoned, sometimes altered in
PRIMARY MINERALOGY	PERCENT PRESENT	PERCENT ORIGINAL	SIZE (mm)	COMPO- SITION	MORPHOLOGY	COMMENTS

Vesicles 17 </=2 Smectites, zeolites Elongated

COMMENTS: "Clasts" in a sandstone. Type of clasts: rounded. Predominant:

clinopyroxene-orthopyroxene-plagioclase-andesite with two textures; fluidal see petrographic description, or more porphyritic (up to 30% phenocrysts and crystals). Crystals are clinopyroxene-plagioclase, entire or broken. Clinopyroxene and orthopyroxene may show intergrowths. Minor: clinopyroxene-plagioclase intersertal flow-aligned basalt. No piece # given.

126-793B-85R-02 (39-40 cm) OBSERVER: LTP WHERE SAMPLED:

ROCK NAME: Clinopyroxene-orthopyroxene plagioclase andesite

GRAIN SIZE:

TEXTURE: Porphyritic/fluidal

PRIMARY	PERCENT	PERCENT	SIZE	COMPO-		
MINERALOGY	PRESENT	ORIGINAL	L (mm)	SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Plagioclase	N/A	35	=1</td <td></td> <td>Euhedral</td> <td>Zoned, rather fresh, clustered, sometimes altered to smectites.</td>		Euhedral	Zoned, rather fresh, clustered, sometimes altered to smectites.
Clinopyroxene	N/A	10	0.8		Subhedral	Fresh, corroded, embayed, sometimes clustered with orthopyroxene.
Oxides	N/A	1	0.4		Euhedral	and the second of the second second of the second
Orthopyroxene	N/A	8	1		Euhedral	Partly altered to smectites, some crystals are fresh.
GROUNDMASS						
Plagioclase	N/A	N/A	0.1		N/A	42% groundmass, microcrystalline.
VESICLES/			SIZE			
CAVITIES	PERCENT	LOCATIO	ON (mm)		FILLING	SHAPE
Vesicles	5		1		Zeolites, smectites	Lobate

COMMENTS: Vesicles are lobated or flattened, lined by smectites, and filled by zeolites. Oxides are included in

clinopyroxene. Early crystallizing phase. Looks like basement at Hole 792E. No piece # given.

126-793B-86R-01 (117-119 cm)

OBSERVER: REX

WHERE SAMPLED: In breccia-conglomerate horizon (clast)

ROCK NAME: Porphyritic basalt

GRAIN SIZE: Phenocrysts 0.5-4 mm

TEXTURE: Porphyritic to glomeroporphyritic

PRIMARY	PERCENT	PERCENT	SIZE	COMPO-		
MINERALOGY	PRESENT	ORIGINAL	(mm)	SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Olivine	0	4	1-4		Sub-euhedral	Totally pseudomorphed-probably olivine.
lagioclase	10	10	0.5-2		Subhedral	Zoned, many fluid inclusions.
linopyroxene	6	6	0.5-3		Euhedral	Zoned, twinned.
rthopyroxene	1-2	2	0.5-1		Euhedral	Some alteration, SiO2?, could be two
						generations of orthopyroxene growth?
CROUNDMACC						
GROUNDMASS	70	70	21 / 2			
lass	70	/0	NZA		N/A	a glassy matrix-some patches of less microlitic glass.
ECONDARY		REPT	ACTNC/			
INERALOGY	PERCENT	FILL	TNG			COMMENTS
lematite-clay	4	Replaci	na		Olivine?	COMPENIS
ESICLES/			SIZE			
AVITIES	PERCENT	LOCATIO	N (mm)		FILLING	SHAPE COMMENTS
esicles	2	Random	0.5-1		Some	Rounded- Walls lined with cla moderately elongate
26-793B-86R-0	2 (29-30 nopyroxen	cm) e-orthopy	roxene-pla	OBSERVER: LTP	WHERE SAMPLED:	
GRAIN SIZE:						
TEXTURE: Porph	yritic					
RIMARY	PERCENT	PERCENT	SIZE	COMPO-		
INERALOGY	PRESENT	ORIGINAL	(mm)	SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
lagioclase	N/A	5	=0.3</td <td></td> <td>Hedral</td> <td>Oscillatory zoned-fresh.</td>		Hedral	Oscillatory zoned-fresh.
linopyroxene	N/A	20	=0.5</td <td></td> <td>Euhedral</td> <td>Fresh/zoned, clustered with orthopyroxene.</td>		Euhedral	Fresh/zoned, clustered with orthopyroxene.
rthopyroxene	3	2	=1</td <td></td> <td>Euhedral</td> <td>Partly altered to smectites, sometimes fresh.</td>		Euhedral	Partly altered to smectites, sometimes fresh.
GROUNDMASS						
eldspar	N/A	0	0.1		67%	Groundmass: microcrystalline.
ESICLES/			SIZE			
AVITIES	PERCENT	LOCATIC	N (mm)		FILLING	SHAPE
/esicles	5	Groundm	ass 0.2		Smectites	Rounded

COMMENTS: Orthopyroxene mantled by clinopyroxene. Clots of orthopyroxene + clinopyroxene or clinopyroxene + plagioclase. Two types of orthopyroxene: bigger phenocrysts altered to smectites. Smaller phenocrysts fresh and mantled by clinopyroxene. No piece # given.

126-793B-87R-04 (21-22 cm)

OBSERVER: LTP

WHERE SAMPLED:

ROCK NAME: Clinopyroxene-orthopyroxene-plagioclase andesite

GRAIN SIZE: Fine

TEXTURE: Porphyritic

11111 T L L L L L L L L L L L L L L L L	TO PROPERTY AND A PROPERTY.	man contarts					
MINERALOGY	PERCENT	ORIGINAL	SIZE (mm)	SITION	MORPHOLOGY	COMMENTS	
		on our out the	(man)	011101			
PHENOCRYSTS							
Plagioclase	N/A	10	0.5		Subhedral	Fresh-oscillatory	zoned.
Clinopyroxene	N/A	20	=2</td <td></td> <td>Euhedral</td> <td>Fresh.</td> <td></td>		Euhedral	Fresh.	
Orthopyroxene	N/A	10	=3</td <td></td> <td>Eunedral</td> <td>Fresh or slightly Clustered with ort clinopyroxene.</td> <td>altered to smectites. thopyroxene and</td>		Eunedral	Fresh or slightly Clustered with ort clinopyroxene.	altered to smectites. thopyroxene and
GROUNDMASS							
Feldspar	N/A	N/A	0.1		N/A	65%. Groundmass: m	nicrocrystalline.
CAVITIES	DEDCENT	LOCATIO	SIZE		PILLING	CURDE	COMMENTS
Vesicles	5	DOCATIO	1		FILLING	Rounded	Filled with zeolites an smectites.
COMMENTS: Orth	opyroxene	-clinopyr	oxene cl	ots-??. No piece	# given.		
				OPCEDUED. IM	WHERE SAMPLED.		
126-793B-87R-0	4 (21-22 (cm)		OBSERVER: LIP	WILLIAD OFFICE DOD.		
126-793B-87R-0	4 (21-22 (cm)		OBSERVER: LI	WILLIAG SHEELEDD.		
126-793B-87R-0 ROCK NAME: Cli	4 (21-22 d nopyroxend	cm) e-orthopy	roxene-p	lagioclase andes	site		
126-793B-87R-0 ROCK NAME: Cli	4 (21-22 (nopyroxen)	cm) e-orthopy	roxene-p	lagioclase andes	site		
126-793B-87R-0 ROCK NAME: Cli GRAIN SIZE: Fi	4 (21-22 (nopyroxen(ne	cm) e-orthopy	roxene-p	lagioclase andes	site		
126-793B-87R-0 ROCK NAME: Clin GRAIN SIZE: Fi TEXTURE: Porph	4 (21-22 (nopyroxen) ne yritic	cm) e-orthopy	roxene-p	lagioclase andes	site		
126-793B-87R-0 ROCK NAME: Cli GRAIN SIZE: Fi TEXTURE: Porph	4 (21-22 (nopyroxen) ne yritic	cm) e-orthopy	roxene-p	lagioclase ande:	site		
126-793B-87R-0 ROCK NAME: Cli GRAIN SIZE: Fi TEXTURE: Porph PRIMARY	4 (21-22) nopyroxen ne yritic PERCENT	e-orthopy PERCENT	SIZE	COMPO-	site		
126-793B-87R-0 ROCK NAME: Cli GRAIN SIZE: Fi TEXTURE: Porph PRIMARY MINERALOGY	4 (21-22 (nopyroxen) ne yritic PERCENT PRESENT	e-orthopy PERCENT ORIGINAL	SIZE (mm)	COMPO- SITION	MORPHOLOGY	COMMENTS	
126-793B-87R-0 ROCK NAME: Clin GRAIN SIZE: Fin TEXTURE: Porph PRIMARY MINERALOGY PHENOCRYSTS	4 (21-22 (nopyroxen) ne yritic PERCENT PRESENT	e-orthopy PERCENT ORIGINAL	SIZE , (mm)	COMPO- SITION	MORPHOLOGY	COMMENTS	
126-793B-87R-0 ROCK NAME: Cli GRAIN SIZE: Fi TEXTURE: Porph PRIMARY MINERALOGY PHENOCRYSTS Plagioclase	4 (21-22 (nopyroxen) ne yritic PERCENT PRESENT N/A	e-orthopy PERCENT ORIGINAL	SIZE (mm)	COMPO- SITION	MORPHOLOGY Subhedral	COMMENTS	zoned.
126-793B-87R-0 ROCK NAME: Cli GRAIN SIZE: Fi TEXTURE: Porph PRIMARY MINERALOGY PHENOCRYSTS Plagioclase Clinopyroxene	4 (21-22 d nopyroxend yritic PERCENT PRESENT N/A N/A	e-orthopy PERCENT ORIGINAL 10 20	SIZE (mm) 0.5 =2</td <td>COMPO- SITION</td> <td>MORPHOLOGY Subhedral Euhedral</td> <td>COMMENTS Fresh-oscillatory Fresh.</td> <td>zoned.</td>	COMPO- SITION	MORPHOLOGY Subhedral Euhedral	COMMENTS Fresh-oscillatory Fresh.	zoned.
126-793B-87R-0 ROCK NAME: Clin GRAIN SIZE: Fi TEXTURE: Porph PRIMARY MINERALOGY PHENOCRYSTS Plagioclase Clinopyroxene Orthopyroxene	4 (21-22 d nopyroxend yritic PERCENT PRESENT N/A N/A N/A	e-orthopy PERCENT ORIGINAI 10 20 10	SIZE (mm) 0.5 =2<br =3</td <td>COMPO- SITION</td> <td>MORPHOLOGY Subhedral Euhedral Euhedral</td> <td>COMMENTS Fresh-oscillatory Fresh. Fresh or slightly Clustered with ort clinopyroxene.</td> <td>zoned. altered to smectites. thopyroxene and</td>	COMPO- SITION	MORPHOLOGY Subhedral Euhedral Euhedral	COMMENTS Fresh-oscillatory Fresh. Fresh or slightly Clustered with ort clinopyroxene.	zoned. altered to smectites. thopyroxene and
126-793B-87R-0 ROCK NAME: Clin GRAIN SIZE: Fin TEXTURE: Porph PRIMARY MINERALOGY PHENOCRYSTS Plagioclase Clinopyroxene Orthopyroxene	4 (21-22 d nopyroxend ne yritic PERCENT PRESENT N/A N/A N/A	PERCENT ORIGINAL 10 20 10	SIZE (mm) 0.5 =2<br =3</td <td>COMPO- SITION</td> <td>MORPHOLOGY Subhedral Euhedral Euhedral</td> <td>COMMENTS Fresh-oscillatory Fresh. Fresh or slightly Clustered with or clinopyroxene.</td> <td>zoned. altered to smectites. thopyroxene and</td>	COMPO- SITION	MORPHOLOGY Subhedral Euhedral Euhedral	COMMENTS Fresh-oscillatory Fresh. Fresh or slightly Clustered with or clinopyroxene.	zoned. altered to smectites. thopyroxene and
126-793B-87R-0 ROCK NAME: Cli GRAIN SIZE: Fi TEXTURE: Porph PRIMARY MINERALOGY PHENOCRYSTS Plagioclase Clinopyroxene Orthopyroxene GROUNDMASS Feldspar	4 (21-22 d nopyroxend ne yritic PERCENT PRESENT N/A N/A N/A	PERCENT ORIGINAL 10 20 10	SIZE (mm) 0.5 =2<br =3</td <td>COMPO- SITION</td> <td>MORPHOLOGY Subhedral Euhedral Euhedral</td> <td>COMMENTS Fresh-oscillatory Fresh. Fresh or slightly Clustered with ort clinopyroxene. 65%. Groundmass: f</td> <td>zoned. altered to smectites. thopyroxene and microcrystalline.</td>	COMPO- SITION	MORPHOLOGY Subhedral Euhedral Euhedral	COMMENTS Fresh-oscillatory Fresh. Fresh or slightly Clustered with ort clinopyroxene. 65%. Groundmass: f	zoned. altered to smectites. thopyroxene and microcrystalline.
126-793B-87R-0 ROCK NAME: Cli GRAIN SIZE: Fi TEXTURE: Porph PRIMARY MINERALOGY PHENOCRYSTS Plagioclase Clinopyroxene Orthopyroxene GROUNDMASS Feldspar	4 (21-22 d nopyroxend ne yritic PERCENT PRESENT N/A N/A N/A	PERCENT ORIGINAL 10 20 10 N/A	SIZE (mm) 0.5 =2<br =3</td <td>COMPO- SITION</td> <td>MORPHOLOGY Subhedral Euhedral Euhedral N/A</td> <td>COMMENTS Fresh-oscillatory Fresh. Fresh or slightly Clustered with or clinopyroxene. 65%. Groundmass: r</td> <td>zoned. altered to smectites. thopyroxene and microcrystalline.</td>	COMPO- SITION	MORPHOLOGY Subhedral Euhedral Euhedral N/A	COMMENTS Fresh-oscillatory Fresh. Fresh or slightly Clustered with or clinopyroxene. 65%. Groundmass: r	zoned. altered to smectites. thopyroxene and microcrystalline.
126-793B-87R-0 ROCK NAME: Cli GRAIN SIZE: Fi TEXTURE: Porph PRIMARY MINERALOGY PHENOCRYSTS Plagioclase Clinopyroxene Orthopyroxene GROUNDMASS Feldspar	4 (21-22 d nopyroxend ne yritic PERCENT PRESENT N/A N/A N/A N/A	PERCENT ORIGINAL 10 20 10 N/A	<pre>roxene-p SIZE (mm) 0.5 <!--=2 </=3 0.1 SIZE N (mm)</pre--></pre>	COMPO- SITION	MORPHOLOGY Subhedral Euhedral Euhedral FILLING	COMMENTS Fresh-oscillatory Fresh. Fresh or slightly Clustered with or clinopyroxene. 65%. Groundmass: r	zoned. altered to smectites. thopyroxene and microcrystalline. COMMENTS

COMMENTS: Orthopyroxene-clinopyroxene clots-??. No piece # given.

984

126-793B-88R-01 (Piece 1,69-70 cm)

OBSERVER: GIL

WHERE SAMPLED:

ROCK NAME: Plagioclase-clinopyroxene andesite

GRAIN SIZE: Fine

TEXTURE: Porphyritic, intersertal

PRIMARY	PERCENT	PERCENT	SIZE	COMPO-		
MINERALOGY	PRESENT	ORIGINAL	(mm)	SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS			0 5 0		- 7 N - 7	where the second second second second
Clipopurovopo	5	6	0.5-2		Euhedral	Fresh, relatively simple growth history.
CITHODALOXEUE	5	4	0.5-2		Eunedral	Twinned
Orthopyroxene	2	2	N/A		N/A	None fresh.
or enopyronene	-	2			M/H	NORCE LEGNIT
GROUNDMASS						
Plagioclase +	88	N/A	N/A		N/A	Trachytic alignment.
magnetite +						
clinopyroxene						
VESTCLES/			ST7F			
CAVITIES	PERCENT	LOCATIO	N (mm)		FILLING	SHAPE
Vesicles	5	Zeolite	+		Round	
		smectit	es		10000000	
COMMENTS: Grou	ndmass qu	ite fresh	. with some	smectite glas	s between plagioclase +	/- clinopyroxene clots devitrified.
Samp	le is a c	last: the	zeolite.	mectite, clinc	nyrovene and plagioclase	e matrix is seen in one corner, as well
as p	art of an	adjacent	clast.	meeerce, errie	pyroxene and pragroorabe	c matrix is seen in one corner, as not
126-793B-89R-0	2 (3-4 cm)		OBSERVER: GIL	WHERE SAMPLED:	
ROCK NAME: Cli	nopyroxen	e-orthopy	roxene and	esite		
GRAIN SIZE:						
TEXTIDE . Bornh	unitio i		3			
TEXTORE, FOIDU	ATTOIC' T	ncerserce				
PRIMARY	PERCENT	PERCENT	SIZE	COMPO-		
MINERALOGY	PRESENT	ORIGINAL	(mm)	SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Plagioclase	N/A	1	0.5-1		Euhedral	we at the second of the second s
Orthopyroxene	12	15	0.5-4		Euhedral	Twinned, unzoned.
ortnopyroxene	1	13-5	N/A		N/A	5-10% smectite-altered pyroxene snapes,
						no orthorhombic OA ligures.
GROUNDMASS						
Plagioclase +	84	N/A	N/A		N/A	Flow aligned (trachytic) alteration is
pyroxene +					aya	patchy.
magnetite						Partoni i
VESICLES/			SIZE			
CAVITIES	PERCENT	LOCATIO	N (mm)		FILLING	SHAPE
Vesicles	2	Smectit	e, 0.2-2		Round	
		zeolite	s			

COMMENTS: No piece # given.

126-793B-89R-03 (111-113 cm)

OBSERVER: GIL

WHERE SAMPLED:

ROCK NAME: Clinopyroxene-orthopyroxene andesite

GRAIN SIZE: Fine

TEXTURE: Porphyritic, intersertal

CAVITIES Vesicles	PERCENT 2	LOCATIO	N (mm) 0.5-4		FILLING	SHAPE	COMMENTS Smectite and ze	olite.
VESICLES/			SIZE					
Plagioclase + pyroxene + magnetite	74	N/A	N/A		N/A	Intersertal, p alteration is	lagioclase laths 0.0 patchy.	5 mm,
CROUNDWACC						overgrowths.		
Orthopyroxene	N/A	10	0.5-3		Euhedral	Fresh (smectit	e at edges); zoned o	r
Clinopyroxene	N/A	15	0.5-8		Euhedral	Fresh, twinned		
PHENOCRYSTS Plagioclase	N/A	1	0.5		Euhedral	Fresh.		
MINERALOGY	PRESENT	ORIGINAL	(mm)	SITION	MORPHOLOGY	COMME	NTS	
RIMARY	PERCENT	PERCENT	SIZE	COMPO-		71270-9-07046		

126-793B-93R-01 (Piece 4A,84-85 cm) OBSERVER: TOR WHERE SAMPLED:

ROCK NAME: Orthopyroxene-clinopyroxene-andesite

GRAIN SIZE: Fine

TEXTURE: Porphyritic, intersertal

PRIMARY	PERCENT	PERCENT	SIZE	COMPO-		
MINERALOGY	PRESENT	ORIGINAL	(mm)	SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Clinopyroxene	7	7	0.2-2		Euhedral	Fresh, with fluid inclusions.
Orthopyroxene	15	18	0.3-7		Euhedral	Altered along cleavages and margins to smectite.
GROUNDMASS						
Glass	N/A	N/A	N/A		N/A	Devitrified.
Orthopyroxene	N/A	N/A	0.1		N/A	Altered to smectite.
Clinopyroxene	N/A	N/A	0.1		N/A	
Plagioclase	N/A	N/A	<0.1		Laths	
SECONDARY		REPL	ACING/			
MINERALOGY	PERCENT	FILL	ING			COMMENTS
Clays	3	Orthopy	roxene			
VESICLES/			SIZE			
CAVITIES	PERCENT	LOCATIO	(nun)		FILLING	SHAPE COMMENTS
Vesicles	5	Random	1-2			Round, Smectite on vesicle elongated walls.

COMMENTS: Plagioclase laths aligned around crystals and vesicles (trachytic texture). Groundmass is 75%.

126-793B-93R-01 (Piece 4A,84-85 cm)

) OBSERVER: GIL

WHERE SAMPLED:

ROCK NAME: Clinopyroxene-orthopyroxene andesite

GRAIN SIZE: Fine

TEXTURE: Porphyritic, intersertal

PRIMARY	PERCENT	PERCENT	SIZE	COMPO-		
MINERALOGY	PRESENT	ORIGINAL	(mm)	SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Plagioclase	N/A	1	0.5		Euhedral	Fresh.
Clinopyroxene	N/A	10	0.5-5		Euhedral	Fresh, twinned, unzoned.
Orthopyroxene	N/A	15	0.5-4		Euhedral	Generally fresh; some smectite +/-
						calcite alteration.
GROUNDMASS						
Plagioclase +	74	N/A	N/A		N/A	Flow aligned, intersertal.
pyroxene +						
magnetite						
VESTCIES/			CT7F			
CAVITIES	PERCENT	LOCATIO	N (mm)		FILLING	SHADE
Vesicles	2	DUCATIC	0.5		Smectite linings	SHALL
126-793B-93R-02	2 (27-28	cm)		OBSERVER: RE	X WHERE SAMPLED: Flo	w top
ROCK NAME: And	esite					
and the second second second						
GRAIN SIZE: Fin	ne graine	d with 1	mm phenoc	ryst		
TEXTORE: Porphy	yritic, i	eity grou	indmass			
PRIMARY	PERCENT	PERCENT	SIZE	COMPO-		
MINERALOGY	PRESENT	ORIGINAL	(mm)	SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Plagioclase	2	2	0.3-1		Euhedral	Fresh.
Clinopyroxene	1	1	0.5-1.5		Euhedral	Fresh, zoned.
Orthopyroxene	0.5	1	0.5-1.5		Euhedral	Cores fresh, margins to smectite.
GROUNDMASS						
Plagioclase	60				Eubedral	Laths are 0.05 by 0.5 mm.
Glass	60	60	N/A		D GITC GE GE	bacing are 0.05 by 0.0 mint
Pvroxene/clino	0	60 30	N/A N/A		N/A	Lacino di e 0.00 by 0.0 min.
	0 pyroxene	60 30 6	N/A N/A 6	N/A	N/A Subhedral	Latin are 0.00 by 0.0 mill
CECONDADY.	0 pyroxene	60 30 6	N/A N/A 6	N/A	N/A Subhedral	Latin are 0.00 by 0.0 mill
SECONDARY	0 pyroxene	60 30 6 REPI	N/A N/A 6 LACING/	N/A	N/A Subhedral	
SECONDARY MINERALOGY	0 pyroxene PERCENT	60 30 6 REPI FILI	N/A N/A 6 LACING/ LING	N/A	N/A Subhedral	COMMENTS
SECONDARY MINERALOGY Clays	0 pyroxene PERCENT 0.5	60 30 6 REPI FILL Replace	N/A N/A 6 LACING/ LING	N/A	N/A Subhedral (Smectite) orth	COMMENTS opyroxene.
SECONDARY MINERALOGY Clays Clays	0 pyroxene PERCENT 0.5 30	60 30 6 REPI FILI Replaci	N/A 6 LACING/ LING Ling	N/A	N/A Subhedral (Smectite) orth (Smectite) glas	COMMENTS opyroxene. s in interstitial.
SECONDARY MINERALOGY Clays Clays VESICLES/	0 pyroxene PERCENT 0.5 30	60 30 6 REPI FILI Replaci Replaci	N/A N/A 6 LACING/ LING ling SIZE	N/A	N/A Subhedral (Smectite) orth (Smectite) glas	COMMENTS opyroxene. s in interstitial.
SECONDARY MINERALOGY Clays Clays VESICLES/ CAVITIES	0 pyroxene PERCENT 0.5 30 PERCENT	60 30 6 REPI Replaci Replaci	N/A N/A 6 LACING/ LING ing SIZE SIZE	N/A	N/A Subhedral (Smectite) orth (Smectite) glas	COMMENTS opyroxene. s in interstitial.
SECONDARY MINERALOGY Clays Clays VESICLES/ CAVITIES Vesicles	PERCENT 0.5 30 PERCENT 2	60 30 6 REPI FILI Replaci Replaci LOCATIO Bandom	N/A N/A 6 LACING/ LING ing ing SIZE DN (mm) 1-2	N/A	N/A Subhedral (Smectite) orth (Smectite) glas FILLING Smectite	COMMENTS opyroxene. s in interstitial. SHAPE COMMENTS Spherical Walls coated with

COMMENTS: Some vesicles filled with zeolite (newlandite). Some glomeroporphyritic clots of plagioclase-clinopyroxene. Groundmass plagioclase is aligned in trachyitic texture (felty). No piece # given.

126-793B-96R-01 (81-83 cm)

OBSERVER: TOR

WHERE SAMPLED:

ROCK NAME: Orthopyroxene-clinopyroxene-plagioclase-andesite

GRAIN SIZE: Fine

TEXTURE: Porphyritic, intersertal

PRIMARY	PERCENT	DERCENT	STTE	COMPO-			
MINERALOGY	PRESENT	ORIGINAL	(mm)	SITION	MORPHOLOGY	COMMENTS	
				0111000			
PHENOCRYSTS							
Plagioclase	3	3	0.2-2		Euhedral		
Clinopyroxene	5	5	0.2-4		Euhedral	Fresh, with fluid	inclusions, zoned.
Orthopyroxene	12	15	0.2-2		Euhedral	Partly altered to	smectite along margins
						and cleavages.	
GROUNDMASS							
Glass	N/A	N/A	N/A		N/A	Devitrified.	
Plagioclase	N/A	N/A	<0.05		Laths		
SECONDARY		REPI	ACING/				
MINERALOGY	PERCENT	FILL	ING			COMMENTS	
Clays	60	Orthopy	roxene,	glass	And fractures	in the thin section.	
Carbonate	Tr	Orthopy	roxene	an e rala san san san san san san san san san sa			
VESICLES/			SIZ	E			
CAVITIES	PERCENT	LOCATIC	N (mm)	FILLING	SHAPE	COMMENTS
Vesicles	5	Random	0.5-	5	Empty	Elongated	Smectite lining on
							vesicle walls.
1/6=/918=9/8=1	L (Piece ,	20,123-12	(4 Cm)	OBSERVER: T	OR WHERE SAMPLED:		
ROCK NAME: Orth	nopyroxen	e-clinopy	roxene-	andesite			
ROCK NAME: Orth	nopyroxen	e-clinopy	roxene-	andesite			
ROCK NAME: Orth GRAIN SIZE: Fin TEXTURE: Porphy	nopyroxena ne yritic, in	e-clinopy nterserta	vroxene-	andesite			
ROCK NAME: Ortl GRAIN SIZE: Fin TEXTURE: Porphy	nopyroxen ne yritic, in	e-clinopy nterserta	vroxene-	andesite			
ROCK NAME: Ortl GRAIN SIZE: Fin TEXTURE: Porphy PRIMARY	nopyroxen ne yritic, in PERCENT	e-clinopy nterserta PERCENT	vroxene-	andesite COMPO-			
ROCK NAME: OrtI GRAIN SIZE: Fin TEXTURE: Porphy PRIMARY MINERALOGY	nopyroxend ne yritic, in PERCENT PRESENT	e-clinopy nterserta PERCENT ORIGINAI	SIZE	andesite COMPO- SITION	MORPHOLOGY	COMMENTS	
ROCK NAME: OrtI GRAIN SIZE: Fin TEXTURE: Porphy PRIMARY MINERALOGY PHENOCRYSTS	nopyroxend pe yritic, in PERCENT PRESENT	e-clinopy nterserta PERCENT ORIGINAI	SIZE (mm)	andesite COMPO- SITION	MORPHOLOGY	Comments	
ROCK NAME: Ortl GRAIN SIZE: Fin TEXTURE: Porphy PRIMARY MINERALOGY PHENOCRYSTS Clinopyroxene	nopyroxena ne yritic, in PERCENT PRESENT 7	e-clinopy nterserta PERCENT ORIGINAI	SIZE (mm)	andesite COMPO- SITION	MORPHOLOGY	COMMENTS Fresh.	
ROCK NAME: Ortl GRAIN SIZE: Fin TEXTURE: Porphy PRIMARY MINERALOGY PHENOCRYSTS Clinopyroxene Orthopyroxene	nopyroxena pritic, in PERCENT PRESENT 7 6	e-clinopy nterserta PERCENT ORIGINAI 7 8	vroxene-	andesite COMPO- SITION	MORPHOLOGY Euhedral Euhedral	COMMENTS Fresh. Partly altered to	smectite.
ROCK NAME: Ortl GRAIN SIZE: Fin TEXTURE: Porphy PRIMARY MINERALOGY PHENOCRYSTS Clinopyroxene Orthopyroxene	nopyroxena ne yritic, in PERCENT PRESENT 7 6	e-clinopy nterserta PERCENT ORIGINAI 7 8	vroxene-	andesite COMPO- SITION	MORPHOLOGY Euhedral Euhedral	COMMENTS Fresh. Partly altered to	smectite.
ROCK NAME: Ortl GRAIN SIZE: Fin TEXTURE: Porphy PRIMARY MINERALOGY PHENOCRYSTS Clinopyroxene Orthopyroxene GROUNDMASS	nopyroxena me yritic, in PERCENT PRESENT 7 6	e-clinopy nterserta PERCENT ORIGINAI 7 8	SIZE (mm) 0.2-4 0.2-2	andesite COMPO- SITION	MORPHOLOGY Euhedral Euhedral	COMMENTS Fresh. Partly altered to	smectite.
ROCK NAME: Ortl GRAIN SIZE: Fir TEXTURE: Porphy PRIMARY MINERALOGY PHENOCRYSTS Clinopyroxene Orthopyroxene GROUNDMASS Glass	PERCENT PERCENT 7 6 N/A	e-clinopy nterserta PERCENT ORIGINAI 7 8 N/A	SIZE (mm) 0.2-4 0.2-2 N/A	COMPO- SITION	MORPHOLOGY Euhedral Euhedral N/A	COMMENTS Fresh. Partly altered to Devitrified.	smectite.
ROCK NAME: Ortl GRAIN SIZE: Fin TEXTURE: Porphy PRIMARY MINERALOGY PHENOCRYSTS Clinopyroxene Orthopyroxene GROUNDMASS Glass Plagioclase	nopyroxena ne yritic, in PERCENT PRESENT 7 6 N/A N/A	e-clinopy nterserta PERCENT ORIGINAI 7 8 N/A N/A	Vroxene- Al SIZE (mm) 0.2-4 0.2-2 N/A <0.05	andesite COMPO- SITION	MORPHOLOGY Euhedral Euhedral N/A Laths	COMMENTS Fresh. Partly altered to Devitrified. Alignment of laths	smectite.
ROCK NAME: Ortl GRAIN SIZE: Fin TEXTURE: Porphy PRIMARY MINERALOGY PHENOCRYSTS Clinopyroxene Orthopyroxene GROUNDMASS Glass Plagioclase Clinopyroxene	nopyroxena ne yritic, in PERCENT PRESENT 7 6 N/A N/A N/A	e-clinopy nterserta PERCENT ORIGINAI 7 8 N/A N/A N/A	Vroxene- Al SIZE (mm) 0.2-4 0.2-2 N/A <0.05 <0.05	COMPO- SITION	MORPHOLOGY Euhedral Euhedral N/A Laths N/A	COMMENTS Fresh. Partly altered to Devitrified. Alignment of laths	smectite.
ROCK NAME: Ortl GRAIN SIZE: Fin TEXTURE: Porphy PRIMARY MINERALOGY PHENOCRYSTS Clinopyroxene Orthopyroxene GROUNDMASS Glass Plagioclase Clinopyroxene Orthopyroxene	PERCENT PERCENT 7 6 N/A N/A N/A N/A	e-clinopy nterserta PERCENT ORIGINAI 7 8 N/A N/A N/A N/A N/A	VIOXENE- SIZE (mm) 0.2-4 0.2-2 N/A <0.05 <0.05 <0.05	COMPO- SITION	MORPHOLOGY Euhedral Euhedral N/A Laths N/A N/A	COMMENTS Fresh. Partly altered to Devitrified. Alignment of laths	smectite.
ROCK NAME: Ortl GRAIN SIZE: Fin TEXTURE: Porphy PRIMARY MINERALOGY PHENOCRYSTS Clinopyroxene Orthopyroxene GROUNDMASS Glass Plagioclase Clinopyroxene Orthopyroxene SECONDARY	PERCENT PERCENT 7 6 N/A N/A N/A N/A	e-clinopy nterserta PERCENT ORIGINAI 7 8 N/A N/A N/A N/A N/A N/A REPI	VIOXENE- Al SIZE (mm) 0.2-4 0.2-2 N/A <0.05 <0.05 <0.05 <0.05 CACING/	andesite COMPO- SITION	MORPHOLOGY Euhedral Euhedral N/A Laths N/A N/A	COMMENTS Fresh. Partly altered to Devitrified. Alignment of laths	smectite. around crystals.
ROCK NAME: Ortl GRAIN SIZE: Fin TEXTURE: Porphy PRIMARY MINERALOGY PHENOCRYSTS Clinopyroxene Orthopyroxene GROUNDMASS Glass Plagioclase Clinopyroxene Orthopyroxene SECONDARY MINERALOGY	PERCENT 7 6 N/A N/A N/A N/A N/A PERCENT	e-clinopy nterserta PERCENT ORIGINAI 7 8 N/A N/A N/A N/A N/A REPI FILI	xi xize xi	andesite COMPO- SITION	MORPHOLOGY Euhedral Euhedral N/A Laths N/A N/A	COMMENTS Fresh. Partly altered to Devitrified. Alignment of laths COMMENTS	smectite.
ROCK NAME: Ortl GRAIN SIZE: Fin TEXTURE: Porphy TEXTURE: Porphy PRIMARY MINERALOGY PHENOCRYSTS Clinopyroxene Orthopyroxene GROUNDMASS Glass Plagioclase Clinopyroxene Orthopyroxene Orthopyroxene SECONDARY MINERALOGY Clays	PERCENT 7 6 N/A N/A N/A N/A N/A PERCENT 39	e-clinopy nterserta PERCENT ORIGINAI 7 8 N/A N/A N/A N/A N/A FILI FILI Orthopy	VIOXENE- Al SIZE (mm) 0.2-4 0.2-2 N/A <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	andesite COMPO- SITION	MORPHOLOGY Euhedral Euhedral N/A Laths N/A N/A	COMMENTS Fresh. Partly altered to Devitrified. Alignment of laths COMMENTS	smectite.
ROCK NAME: Ortl GRAIN SIZE: Fin TEXTURE: Porphy PRIMARY MINERALOGY PHENOCRYSTS Clinopyroxene Orthopyroxene GROUNDMASS Glass Plagioclase Clinopyroxene Orthopyroxene Orthopyroxene SECONDARY MINERALOGY Clays Zeolites	PERCENT PERCENT 7 6 N/A N/A N/A N/A N/A PERCENT 39 1	PERCENT ORIGINAI 7 8 N/A N/A N/A N/A FILI Orthopy Crack	VIOXENE- Al SIZE (mm) 0.2-4 0.2-2 N/A <0.05 <0.05 <0.05 <0.05 S0.05 JING VIOXENE	andesite COMPO- SITION and glass	MORPHOLOGY Euhedral Euhedral N/A Laths N/A N/A	COMMENTS Fresh. Partly altered to Devitrified. Alignment of laths COMMENTS	smectite.
ROCK NAME: Ortl GRAIN SIZE: Fin TEXTURE: Porphy PRIMARY MINERALOGY PHENOCRYSTS Clinopyroxene Orthopyroxene Orthopyroxene Orthopyroxene Orthopyroxene Orthopyroxene SECONDARY MINERALOGY Clays Zeolites 	PERCENT PERCENT 7 6 N/A N/A N/A N/A N/A PERCENT 39 1	PERCENT ORIGINAI 7 8 N/A N/A N/A N/A REPI FILI Orthopy Crack	Vroxene- Al SIZE (mm) 0.2-4 0.2-2 N/A <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	andesite COMPO- SITION and glass	MORPHOLOGY Euhedral Euhedral N/A Laths N/A N/A	COMMENTS Fresh. Partly altered to Devitrified. Alignment of laths COMMENTS	smectite.
ROCK NAME: Ortl GRAIN SIZE: Fin TEXTURE: Porphy PRIMARY MINERALOGY PHENOCRYSTS Clinopyroxene Orthopyroxene Orthopyroxene GROUNDMASS Glass Plagioclase Clinopyroxene Orthopyroxene SECONDARY MINERALOGY Clays Zeolites VESICLES/ CAVITIES	PERCENT 7 6 N/A N/A N/A N/A PERCENT 39 1	PERCENT ORIGINAI 7 8 N/A N/A N/A N/A N/A EPI FILI Orthopy Crack	VIOXENE- Al SIZE (mm) 0.2-4 0.2-2 N/A <0.05 <0.05 <0.05 <0.05 .ACING/ JING VIOXENE SIZE N/A	andesite COMPO- SITION and glass	MORPHOLOGY Euhedral Euhedral N/A Laths N/A N/A N/A	COMMENTS Fresh. Partly altered to Devitrified. Alignment of laths COMMENTS	smectite.
ROCK NAME: Ortl GRAIN SIZE: Fin TEXTURE: Porphy PRIMARY MINERALOGY PHENOCRYSTS Clinopyroxene Orthopyroxene Orthopyroxene Orthopyroxene SECONDARY MINERALOGY Clays Zeolites VESICLES/ CAVITIES VesicLes	PERCENT PERCENT 7 6 N/A N/A N/A N/A N/A PERCENT 39 1 PERCENT	e-clinopy nterserta PERCENT ORIGINAI 7 8 N/A N/A N/A N/A N/A N/A N/A N/A Crack LOCATIO	VIOXENE- Al SIZE (mm) 0.2-4 0.2-2 N/A <0.05 <0.05 <0.05 <0.05 Construction ACING/ LING VIOXENE SIZE (mm)	andesite COMPO- SITION and glass E	MORPHOLOGY Euhedral Euhedral N/A Laths N/A N/A N/A	COMMENTS Fresh. Partly altered to Devitrified. Alignment of laths COMMENTS SHAPE Bound	smectite. a around crystals. COMMENTS One vesicle in this

COMMENTS: Alteration of orthopyroxene along margins and cleavages. Present groundmass is 45%, original was 85%.

126-793B-99R-01 (54-55 cm)

OBSERVER: REX

WHERE SAMPLED:

ROCK NAME: Basaltic andesite

GRAIN SIZE: Fine groundmass 1-3 mm phenocrysts

TEXTURE: Porphyritic

PRIMARY	PERCENT	ORIGINAL	SIZE (mm)	COMPO-		MORPHOLOGY		COMMENTS		
HINGKABOGI	FRESHI	UNIGINAL	(nun)	SITION		MORPHOLOGI		COMMENTS		
PHENOCRYSTS										
Olivine	0	1	1			Rounded-subhedral	Possible	reabsorbed	i.	
Clinopyroxene	5	5	1-4			Euhedral-subhedral	Zoned, fl	luid inclus	sion.	
Orthopyroxene	2	4	1-2			N/A				
GROUNDMASS										
Plagioclase	50	50	0.2			Laths				
Clinopyroxene	2	2	0.3			Laths				
Glass	10	38	N/A			N/A	Some inte	erstitial o	glass may be	fresh.
SECONDARY	DDDDDDD	REPL	ACING/				COMPNIE			
MINERALOGI	PERCENT	Pibb	ING			0	COMMENTS			
Clays	20	Replaci	ng			Orthopyroxene.				
Zaalitaa	28	Replaci	.ng			Glass.				
Fe	0 5	Paplaci	0.0			oliving vesicles.				
hudrovide/ovide	0.5	Repider	ing			orronne.				
Celadonite	0.5	Replaci	ng			Olivine.				
VESICLES/	-		SIZE						0000000000	
CAVITIES	PERCENT	LOCATIC	N (mm)		FILLIN	IG	SI	HAPE	COMMENTS	1/2 filled
Vesicles	5	Random	1-4		50		E.	longate	Aligned and	1/2 filled
							to	o shawi aa l	by zeolices	and crays in
							s	pherical	some cases.	
COMMENTS: No pi	ece # gi	ven.								
126-793B-100R-0	1 (28-29	cm)		OBSERVER: RE	х	WHERE SAMPLED:				
POCK NAME, Ando	site									
ROCK MARE. Ande	SILE									
GRAIN SIZE: Fin	e graine	d <0.5 mm	n							
	an in the second									
TEXTURE: Aphyri	c, trach	ytic grou	indmass							
			110000000							
PRIMARY	PERCENT	PERCENT	SIZE	COMPO-		MODDINALOGY		COMMENTE		
MINERALOGY	PRESENT	ORIGINAL	u (mm)	SITION		MORPHOLOGY		COMMENTS		
PHENOCRYSTS										
Plagioglass	0.2	0.2	0.3			Fundral-subhedral				
Clinopyroyene	0.5	0.5	0.1-0.5			Fubedral				
Orthopyroxene	0.1	0.3	0.3			Euhedral				
or enopy remains		0.0								
GROUNDMASS										
Glass	10	50	N/A			Interstitial				
Plagioclase	48	48	N/A	1		Laths	Aligned	in trachyt.	ic texture.	
Clinopyroxene	1	1	N/A			Laths				
Oxide	<0.1	<0.1	N/A			Cubes	Red brow	n in ppl.		
			10220074							
SECONDARY	222 1	REPI	LACING/							
MINERALOGY	PERCENT	FIL	LING			52 S S	COMMENTS			
Clays	4.0	Replaci	ing			Glass in groundma	155.			
VESICLES/			SIZE							
CAVITIES	PERCENT	LOCATIO	ON (mm)		FILLIN	NG	S	HAPE	COMMENTS	
Vesicles	5	Random	0.5-3		Vesicle	es	S	pherical	Zeolites on	walls,
	2550	250000000000000000000000000000000000000	0.13 R		100000000000	5355		80	smectite to	center.

COMMENTS: Generally aphyric vesicular andesite. No piece # given.

126-793B-104R-02 (Piece 1D,48-49 cm) OBSERVER: REX

WHERE SAMPLED:

ROCK NAME: Andesite

GRAIN SIZE: Fine groundmass

TEXTURE: Porphyritic-groundmass intersertal-microphyric

VESICLES/ CAVITIES	PERCENT	LOCATIO	SIZE ON (mm)	FIL	LING		SHAPE	COMMENTS
Clays	1	Replaci	.ng		Orthopyroxene ri	ms. 		
Clays	47	Replaci	ng		Glass within the	groundm	ass.	
SECONDARY MINERALOGY	PERCENT	REPI FILI	ACING/			COMMEN	TS	
		22242	1211111					
Oxide	0.5	0.5	N/A		N/A			
Clinopyroxene	5	5	0.01		Subhedral			
Plagioclase	30	30	0.05		Euhedral			
GROUNDMASS Glass	0?	47	N/A		N/A	Domina	ntly altere	d or hydrated.
Orthopyroxene	0.5	1.5	0.5-1		Euhedral			
crinopyroxene	0	0	0.5-5		Eunedral-Subhedral	lamell	ae.	usions and exsolution
Clicentureuene	0	0	0.5-5		Euneurar Rubadaal aubbadaal	Zoned,	fluid inclu	inclusions.
PHENOCRYSTS	0	0	0 5 3		Pubadral	Zonod	uith fluid	inducions
MINERALOGY	PRESENT	ORIGINAL	. (mm)	SITION	MORPHOLOGY		COMMENTS	
PRIMARY	PERCENT	PERCENT	SIZE	COMPO-				

Vesicles	1	Random	1	No	Spherical	Thin coating of smectite
						on walls.

COMMENTS: Some clinopyroxene tend towards acicular habit. Length:width = 8:1.

126-793B-105R-01 (Piece 5B,126-127 cm) OBSERVER: REX WHERE SAMPLED:

ROCK NAME: Porphyritic andesite

GRAIN SIZE: Fine groundmass ~ 2 mm phenocrysts

TEXTURE: Porphyritic

VESICLES/ CAVITIES Vesicles	PERCENT 4	LOCATIO Random	SIZE N (mm) 1-10		FILLING Vesicles	SHAPE Round-elongate	COMMENTS Zeolite or clay filling.
Clays	22	Replaci	ng 		Glass and alone	g fracture.	
SECONDARY MINERALOGY	PERCENT	REPL	ACING/ ING		1442-1443 (1974) (1974)	COMMENTS	
Orthopyroxene	2	2	0.03		Laths		
Glass	15	37	N/A		N/A		
Clinopyroxene	4	4	0.03		Laths	Acicular.	
GROUNDMASS Plagioclase	37	37	<0.01		Laths		
Orthopyroxene	5.9	6	0.8-2		Euhedral		
Clinopyroxene	4	4	0.5-6		Euhedral		
PHENOCRYSTS Plagioclase	10	10	0.5-2		Subhedral	Zoned, fluid inclusi	on.
MINERALOGY	PRESENT	ORIGINAL	(mm)	SITION	MORPHOLOGY	COMMENTS	
PRIMARY	PERCENT	PERCENT	SIZE	COMPO-			

COMMENTS: Some glomeroporphyritic clots. Some orthopyroxene phenocrysts rimmed by clinopyroxene.

OBSERVER: REX

WHERE SAMPLED:

ROCK NAME: Andesite

GRAIN SIZE: Fine groundmass

TEXTURE: Porphyritic

PRIMARY	PERCENT	PERCENT	SIZE	COMPO-			
MINERALOGY	PRESENT	ORIGINAL	(mm)	SITION		MORPHOLOGY	COMMENTS
PHENOCRYSTS							
Plagioclase	7	7	0.5-4	Anorthite	70	Euhedral	Zoned, with fluid inclusions.
Clinopyroxene	5	5	0.5-3			Euhedral-subhedra	
Orthopyroxene	0.2	1	0.5-1			Euhedral	Dominantly altered to smectite.
GROUNDMASS							
Plagioclase	55	55	0.1			Euhedral	Laths in glass.
Glass	10	22	N/A			N/A	ALLER DE LE CELLE
Oxide	1	N/A	N/A			N/A	
SECONDARY		REPI	ACING/				
MINERALOGY	PERCENT	FILI	ING				COMMENTS
Clays	0.8	Replaci	.ng			Smectite repl	acing orthopyroxene.
Clays	3	Replaci	ng			Celadonite re	placing groundmass and orthopyroxene.
Zeolites	2	Filling	I			Vesicles.	
Smectite	16	Replaci	.ng			Glass in grou	ndmass.
VESICLES/			SIZE				
CAVITIES	PERCENT	LOCATIO	ON (mm)		FI	LLING	SHAPE COMMENTS
Vesicles	3	Random	1-5		Ves	icle	Sub-spheri Filled with zeolites and
							cal smectite.

COMMENTS: Groundmass texture intersertal to microphyric. Some veins of celadonite (2 mm) crossing section. Some orthopyroxene phenocrysts rimmed by clinopyroxene laths.

126-793B-110R-01 (Piece 1A, 4-5 cm)

OBSERVER: REX

WHERE SAMPLED: Orange spot lava flow

ROCK NAME: Boninitic basaltic andesite

GRAIN SIZE: Fine groundmass, 5 mm phenocrysts

TEXTURE: Porphyritic

PRIMARY MINERALOGY	PERCENT PRESENT	PERCENT ORIGINAL	SIZE (mm)	COMPO- SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Olivine	0	4	1-6		Euhedral and subrounded	Altered to clays, calcite, Fe-oxide.
Clinopyroxene	9	9	0.2-3		Euhedral	Rare chromium-spinel inclusions.
Spinel	0.1	0.1	.0055		Euhedral cubes	Reddish tint in ppl.
Orthopyroxene	6	7	0.2-2		Euhedral	Altered along fractures, rimmed by clinopyroxene.
GROUNDMASS						
Plagioclase	30	30	0.1		Subhedral	
Clinopyroxene	25	25	0.1-0.2		Subhedral-quench	
					acicular	
Orthopyroxene	4	4	0.2		Subhedral-quench	
					acicular	
Spinel	1	1	0.02		Subhedral	Some cubes.
Glass	~20	20	N/A		N/A	Interstitial, possibly zeolite replaced.
SECONDARY		REPL	ACING/			
MINERALOGY	PERCENT	FILL	ING			COMMENTS
Clays	0.5	Replaci	ng		Olivine.	
Clays	1	Replaci	ng		Orthopyroxene.	
Carbonate	0.5	Replaci	ng		Olivine (calcite).
Zeolites	1	Replaci	ng		Glass.	
Fe-oxide	2	Replaci	ng		Olivine. Fe-oxid	e + hydroxide.
Celadonite	1	Replaci	ng		Olivine.	
Native copper	<0.1	Replaci	ng		Olivine.	
VESICLES/			SIZE			
CAVITIES	PERCENT	LOCATIO	N (mm)	FILLI	NG	SHAPE
Vesicles	0.1	Random	1	No		Sub-spherispherical

COMMENTS: "Orange spots" may represent cumulate mineral cluster. In this slide rounded euhedral pseudomorphs after olivine cluster in alignment, and are "cemented" by orthopyroxene and clinopyroxene. Chromium-spinel inclusions present in pseudomorphs and "cement" native copper present within the orange spot region.

WHERE SAMPLED:

126-793B-112R-01 (Piece 1G,63-64 cm) OBSERVER: TOR

ROCK NAME: Basaltic andesite

GRAIN SIZE: Fine grained groundmass

TEXTURE: Porphyritic, intersertal, trachytic

PRIMARY	PERCENT	PERCENT	STZE	COMPO-		
MINERALOGY	PRESENT	ORIGINAL	(mm)	SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Clinopyroxene	7	7	0.3-2		Euhedral	
Orthopyroxene	5	10	0.3-2		Euhedral	Partly altered to smectite along margins and fractures.
GROUNDMASS						
Plagioclase	40	40	N/A		Laths	
Glass	20	43	N/A		N/A	Devitrified.
SECONDARY		REPL	ACING/			
MINERALOGY	PERCENT	FILL	ING			COMMENTS
Clays	5	Replaci	ng		Orthopyroxer	ne.
Clays	13	Replaci	ng glass	and filling fracture	es.	
Zeolites	10	Filling			Vesicles and	d replacing glass.
VESICLES/			SIZE			
CAVITIES	PERCENT	LOCATIC	N (mm)	FI	LLING	SHAPE
Vesicles	2	Random	0.2-1	Zeo	lites	

126-793B-113R-03 (Piece 7,136-137 cm)

cm) OBSERVER: TOR

WHERE SAMPLED:

ROCK NAME: Andesite

GRAIN SIZE: Fine

TEXTURE: Aphyric with trachytic, groundmass

VESICLES/ CAVITIES Vesicles	PERCENT 5	LOCATIC Random	SIZE DN (mm) 0.3-2		FILLING Empty	SHAPE Elongated	COMMENTS Zeolites on vesicle
Zeolites	10						
Clays	30	Replaci	ng glass.				
Clays	9	Filling	3		Fractures.		
MINERALOGY	PERCENT	FILI	ING			COMMENTS	
SECONDARY		REPI	ACING/				
Magnetite	N/A	N/A	<0.05		N/A		
Clinopyroxene	N/A	N/A	N/A		N/A		
Plagioclase	N/A	N/A	<0.1		N/A	Aligned around cry	ystals.
GROUNDMASS Glass	N/A	N/A	N/A		N/A	Devitrified.	
Clinopyroxene	1	1	0.1-0.3		Euhedral	Altered along clea	avages.
DUPNOCDVCTC							
MINERALOGY	PRESENT	ORIGINAL	(mm)	SITION	MORPHOLOGY	COMMENTS	
PRIMARY	PERCENT	PERCENT	SIZE	COMPO-			

COMMENTS: Present groundmass is 50%, original was 99%.