7. HYDROTHERMAL MANGANESE MINERALS IN LEG 126 CORES

Akira Usui²

ABSTRACT

During Ocean Drilling Program Leg 126, which drilled in the forearc and backarc areas of the Izu-Bonin Arc, three substantial manganese deposits were recovered from deep stratigraphic levels. The characteristics of the fossil manganese deposits are similar to those of modern submarine hydrothermal manganese deposits occurring on the seafloor in this area. Two of these manganese deposits—a coating on Pliocene pumice at Site 788 and a fracture infilling in Oligocene volcanic rock at Site 792—are clearly hydrothermal. They have high Mn/Fe ratios, lack divalent stabilizing interlayer cations, have large crystal sizes, and have 10 Å d-spacings that are resistant to heating. Both of the manganese deposits were presumably deposited near the volcanic front during the initial rifting phases in the backarc and forearc areas. The third deposit consists of manganese minerals in semiconsolidated Miocene claystones at Site 793. This deposit may be the result of primary early-diagenetic manganese deposits that evolved into more stable hydrothermal-like minerals during later diagenesis after burial.

INTRODUCTION

Marine manganese deposits are genetically classified into three categories: hydrogenetic, diagenetic, and hydrothermal. Manganese deposits form nodules, crusts, stains, coating, impregnations, and veinlets on surface sediments and hard rocks in the modern deep-sea environment. Hydrogenetic (precipitated from normal seawater) and diagenetic (precipitated from mildly reduced surface sediments during early diagenesis) manganese deposits are rarely found near island arcs or mid-oceanic ridges, because of the rapid deposition of terrigenous and volcanogenic material. The growth of these two types of deposits requires very slow or no sedimentation in the deep-sea environment. Very few hydrothermal manganese deposits have been observed around the volcanically active areas, such as mid-oceanic ridges, backarc spreading centers, and submarine volcanos (Corliss et al., 1978; Lonsdale et al., 1980; Moorby et al., 1984; Usui et al., 1989).

In DSDP/ODP cores, various ancient buried manganese deposits have been described from deposits of most geologic ages younger than the Late Cretaceous (Cronan, 1973; Aumento and MacGillivray, 1975; Glasby, 1978). Previous chemical and mineralogical analyses have shown that the composition of these buried manganese nodules and crusts in the cores are within the range of modern hydrogenetic and diagenetic deposits on the seafloor. Very few hydrothermal manganese deposits, however, have been discovered at deep stratigraphic levels. Hydrothermal manganese deposits generally grow at rates 2 or more orders-of-magnitude faster than abyssal nodules and crusts. The hydrothermal deposits form at low-temperature (presumably <100°C) hydrothermal solutions circulating through subaerial sediments and rocks. Common evidence for fossilhydrothermal manganese deposits primarily consists of the basal metalliciferous sediments just above the basaltic rock basement and below the oldest sediments (Dymond et al., 1973; Cronan, 1976; Dymond and Eklund, 1978). Other fossil deposits, which are not basal metalliciferous sediments, are described from the Tonga arc region (Hein et al., in press) and the East Pacific (Steffers et al., 1985).

Because of recent volcanic activity, the Izu-Bonin Arc area does not provide optimal conditions for hydrogenetic or diagenetic deposits. Only a record of hydrothermal deposits can be expected in cores from this area. Six black samples that were described as manganese oxides on board Leg 126 were obtained for shore-based analyses. Three out of the six samples contained substantial manganese minerals, and the results of their mineralogical and chemical analyses are presented here (Fig. 1 and Table 1).

METHOD OF ANALYSIS

Several tens of milligrams of subsamples were carefully separated from sediment chips of the three deposits. Part of the untreated air-dried samples were powdered in acetone and subjected to X-ray diffraction (XRD) analysis. Additional sample splits were analyzed with a Cambridge 360 scanning electron microscope (SEM) and energy dispersive X-ray analyzer (EDX). I conducted XRD analyses on-air-dried powders and powders heated at 110°C and 280°C for 1 hr to examine mineralogical changes associated with dehydration. The chemical composition was determined quantitatively from ZAF-calibrated digital X-ray spectra data for six points on each sample. In the three samples (OM1, OM2, and OM3; Table 1), only nine elements (Mn, Fe, Si, Al, Na, K, Ca, Mg, and Ba) were detected with EDX during 180 sec of acquisition time. The compositions were calculated assuming full oxidation of all analyzed elements and no water content. The statistical limits of detection for the elements were approximately 0.5 wt% for Fe and Na, 0.1–0.4 wt% for Mg, 0.05–0.11 wt% for Al, 0.6–0.8 wt% for Cu and Ni, <0.5 wt% for Ca, and <0.3 wt% for Si and K.

GEOLOGICAL SETTING

Drilling during Leg 126 focused on geologic processes associated with recent active arc spreading at the Sumisu Rift and eastern forearc areas (see Taylor, Fujioka, et al., 1990, and Leg 126 Shipboard Scientific Party, 1989a, 1989b, for details). Manganese deposits were found in the cores at Site 788 on the eastern summit of the Sumisu Rift, and at Sites 792 and 793 in the forearc basin areas (Fig. 1). Both the backarc and forearc basins formed by rifting (Taylor, Fujioka, et al., 1990, pp. 97–126). The Sumisu Rift has been opening since 2 ±0.5 Ma, following intensive volcanism that began about 5 Ma. Based on the benthi foraminifer data, the basement of Site 788 experienced 200–1700 m of uplift by 275 k.y. During this period of uplift, the upper pumiceous sediments eroded away.

The forearc basin, to the east of the recent volcanic front, formed by mid-Oligocene (28–31 Ma) rifting. Seismic and drilling evidence suggest that a sedimentary basin did not exist in the forearc area before...
31 Ma. After 31 Ma, the forearc basin started to form and was rapidly filled by turbidites and debris-flow deposits produced by the concurrent volcanism of the northern volcanos and erosion of the surrounding highs. Sedimentation rates decreased significantly during the Miocene. Sedimentation rates increased again during the Pliocene, a direct result of increased volcanic input.

Extensively altered pore waters were extracted from the volcanicogenic sediments at deeper levels of 500 m below seafloor (mbsf) at Site 792 and below 800 mbsf at Site 793. However, pore-water studies detected no evidence of high-temperature hydrothermal circulation at any Leg 126 sites.

OCCURRENCE OF MANGANESE MINERALS

The three major deposits of manganese minerals were discovered by the scientific party and are briefly described in the Leg 126 Initial Reports volume (Taylor, Fujioka, et al., 1990). The location and lithostratigraphy of these deposits are summarized below.

Hole 788C (Sumisu Rift Flank)

Site 788 is located near the top of the eastern flank of the north-trending asymmetric rift. Hydrothermal manganese deposits were discovered in the middle of the wall and on the basin floor during previous shipboard surveys and during submersible observations (Taylor et al., 1990).

The black coating of manganese minerals was identified at one horizon (61.3 mbsf) within the rapidly deposited Pliocene pumice gravel of the Unit I in Hole 788C (Table 1 and Fig. 2). Unit I (220 m thick) consists of massive pumice gravels and partly vitric pumiceous sandstone deposited from submarine calderas about 1.2 Ma (Fig. 2). The coating of manganese on pumice gravels generally is <1 mm thick. SEM observations revealed that the manganese minerals are well developed in the small cavities on the pumice surface. Single crystals of lath, flake, and petal-like shapes are dominant on a micrometer scale and commonly form aggregates with bumpy and reniform surfaces (Fig. 3).
The manganese deposits at Hole 792E are located near the boundary of Units IV and V. The black manganese deposit forms the matrix of volcanic conglomerate or sandstone in the small fault zone. Unit IV is composed of upper Oligocene sandy mudstone, sandstone, and nannofossil-rich claystone, and Unit V is composed of altered volcanic sandstone and claystone of unknown age. Unit V is underlain by basement andesitic rock at 804 mbsf. The strong alteration of the volcanic sandstone and claystone of unknown age. The black manganese deposit forms the matrix of volcanic material is indicated by the common occurrence of zeolites flakelike shaped, and several micrometers long. The texture of the volcanic material is indicated by the common occurrence of zeolites and gypsum and by the composition of pore waters (Fujioka et al., 1990, pp. 315-403).

The stains and irregular aggregates of manganese minerals are distributed throughout several tens of centimeters in the 740.6-759.0 mbsf. The strong alteration of the volcanic material is indicated by the common occurrence of zeolites and gypsum and by the composition of pore waters (Fujioka et al., 1989; Taylor, Fujioka, et al., 1990, pp. 221-314).

In places, the manganese minerals cement clastic grains and commonly coat them completely. Each crystal is lath, needle, or flake-like shaped, and several micrometers long. The texture of the deposit suggests that manganese minerals filled the spaces in the rocks during water circulation.

Hole 792B (Forearc Basin)

The black manganese deposits described above are characteristic of the large manganese crystals that form lath, plate, needle, or bladelike shapes in the samples. Their maximum length is on the order of several micrometers, and they are <1 µm in thickness. The size and shape of these crystals resemble those of recent marine hydrothermal manganese minerals and ancient hydrothermal manganese deposits on land, rather than diagenetic or hydrogenetic minerals.

The mineralogy of the manganese deposits is an important piece of data that is necessary in determining the origin and depositional processes of manganese deposits. Vernadite, a disordered iron-manganese mineral, is a hydrogenetic mineral that commonly forms crusts and nodules on seamounts (Ostwald, 1984). It has a mixed-layer structure with only two diffuse XRD lines at d = 2.4 Å and 1.4 Å. On the other hand, the iron-free 10 Å manganates, todorokite and buserite, are common both in diagenetic and hydrothermal manganese deposits. Recent investigations of the marine 10 Å manganates divide the minerals into two series: the buserite and the todorokite series. The former is a sheet 10 Å manganate that can be stabilized by interlayer hydrated cations (Ni2+, Cu2+, and Zn2+), typical of diagenetic, high-grade nodules on the abyssal floor. In this article, I refer to Ni-, Cu-, or Zn-rich buserite simply as buserite. The unsaturated sheet manganate with stabilizing interlayer cations can contract to 7 Å manganate in the air. Todorokite is a tunnel-structured manganate stabilized by walls of manganate octahedrons with variable dimensions (Arrhenius and Tsai, 1981; Bish and Post, 1989; Usui et al., 1989).

Chemical analysis and the contraction-expansion tests in the XRD analyses (see Paterson, 1981; Arrhenius and Tsai, 1981) are necessary to discriminate todorokite and buserite. Some todorokites are heat-resistant above 100°C, even up to 400°C (Miura and Hatoya, 1984). However, buserite contracts at 100°C or less. Heating the mineral does not always produce unambiguous results in case the todorokite has a larger dimension (Chukhrov et al., 1976) and may also contract to 7 Å (Usui et al., 1989). Chemical analysis must be used in conjunction with heating tests.

Samples OM1, OM2, and OM3 were examined with XRD and EDX and by thermal gravimetric analysis (TGA). The XRD patterns for air-dried, 110°C-dried, and 280°C-dried samples are shown in Figure 4 and the EDX analyses in Table 2. None of the three samples contains detectable Ni, Cu, or Zn. The sum of the three elements may not exceed 1% (Table 2). Their chemical composition does not indicate the presence of stabilizing cations in buserite. In turn, Ba, and possibly Ca, concentrations are higher than the buserite-or vernadite-rich marine manganese deposits. The results of heating the samples at 110°C shows that the 10 Å d-spacing decreases slightly but does not collapse to 7 Å. These results, together with the chemical composition data, indicate a hydrothermal origin for OM1, OM2, and OM3.

The TGA results reveal that the loss of water at 100°C for OM2 is only 7.0 wt% (Fig. 5). The compositions (Table 2) and correlation plots (Fig. 6) show that the samples are nearly pure manganese containing alkali and alkali-earth elements. Some linear dependency of minor elements on Si, typically for Mg, indicates contamination from ambient silicate particles. Only Ba is negatively correlated with Si. An attempt to extrapolate the linear dependency suggests that Ba and possibly Ca are essential elements in the manganese phase whereas Mg is not. Both types of todorokites from land-based hydrothermal manganese mines and the manganese deposits studied are clearly enriched in Ba and Ca in comparison with abyssal nodules (Haynes, 1986; Ebihara and Usui, unpublished data, 1988).
Figure 2. Graphic lithology of Sites 788, 792, and 793 with the location of manganese deposits indicated by arrows. Original illustration is from Taylor, Fujioka, et al. (1990).
Further structural analyses would provide another constraint, although these mineralogical and chemical characteristic strongly indicate their hydrothermal origin.

DEPOSITIONAL ENVIRONMENT

The results of this study suggest that the three manganese deposits studied are hydrothermal in origin. The large size and chemical composition of the single crystals of manganates are typical of marine hydrothermal manganese deposits (Stoffers et al., 1985; Usui et al., 1986). The resistance of the 10 Å d-spacing to dehydration and the chemical features indicate a hydrothermal origin. One probable interpretation is that OM3 was originally deposited as diagenetic buserite in small nodules or micronodes within oxidized hemipelagic surface sediments before it was covered and buried by subsequent sedimentation. The buserite was then transformed into more stable todorokite (tunnel-structured) at higher temperatures during later, more intensive, diagenesis of the unconsolidated sediments.

The anomalously high Ca/Mg ratio of some EDX analyses on OM3 (Table 2) are consistent with similar high Ca/Mg ratios of interstitial waters of the basement volcanogenic sediments and suggests strong alteration after burial.

CONCLUSIONS

In the Izu-Bonin Arc area, present and past geological conditions are not optimal for the deposition of hydrogenic or diagenetic manganese minerals. Hydrothermal manganese deposits have been the dominant manganese deposits, as recorded in the Leg 126 cores analyzed in this study. The characteristics of the buried manganese deposits are similar to those of modern hydrothermal manganese deposits on the seafloor around submarine volcanos and rifts in this area.

The two manganese deposits (i.e., a coating on Pliocene pumice at Site 788 and a fracture filling in the Oligocene volcanic rock at Site 792) are clearly hydrothermal, with a high Mn/Fe ratio, a lack of divalent stabilizing interlayer cations, a large crystal size, and resistivity to structural collapse during heating. Both of these manganese deposits were presumably deposited near the volcanic front during the initial stage of opening of rifts in the backarc and forearc areas.

The manganese minerals in the Miocene semiconsolidated claystone at Site 788 are compositionally hydrothermal, although they may have been deposited in hemipelagic sediment on the basin floor. The primary early-diagenetic manganese deposits may have changed into a more stable hydrothermal-like mineral during low-temperature, late-stage diagenesis of sediments.

ACKNOWLEDGMENTS

The author acknowledges A. Nishimura of the Geological Survey of Japan for helpful discussions, information, and on-board descriptions of samples. K. Fujioka, Ocean Research Institute, University of Tokyo, kindly provided this opportunity and encouraged this study.
Figure 3. Scanning electron micrographs of various morphologies of todorokites. A. Upper left: globular surface of Sample OM1, with reniform surfaces forming in places; other photos: close-ups of the globular surface showing aggregation of plate and bladelike flakes producing a boxwork structure. B. Upper left: dense layers of Sample OM2; other photos: close-ups of broken surfaces showing bundles of blades and needles of single crystals. C. Upper two photos: bladelike single crystals of Sample OM2; lower two photos: poorly developed single crystals of Sample OM3.
Figure 3 (continued).
Figure 3 (continued).
Figure 4. X-ray powder diffraction patterns of manganate samples. The small open circles and the letters P, Q, C, and S denote peaks of 10 Å manganate, plagioclase, quartz, calcite, and smectite, respectively. All three samples are resistant to collapse on heating to 110°C for 2 hr. Sample OM2 remains as a 10 Å manganate even on heating to 280°C. The heat-resistant nature suggests that the manganese mineral is tunnel-structured todorokite.

G. Arrhenius, W. Paplawsky, and B. Gedulin, Scripps Institution of Oceanography, are also acknowledged for fruitful discussions and encouragement during this study.

REFERENCES

Figure 6. Scatter plots of element concentration, demonstrating dependent and independent variations of minor elements to Mn, Fe, and Si. Coefficients of correlations (R1, R2, and R3) were calculated for each six-data set of Samples OM1, OM2, and OM3, respectively. Weight percent concentrations are listed in Table 2. A. Relationship between Mn, Si, and Fe. Aluminosilicate minerals dilute manganate components, whereas Fe concentration varies independently. B–F. Mg, Na, and K concentrations are correlated with Si concentration, whereas Ca and Ba are correlated with Mn.

Date of initial receipt: 2 January 1991
Date of acceptance: 17 May 1991
Ms 126B-122
Figure 6 (continued).