

STIE BUT HOU	LE A U	JURE 2H U	JRED INT	ERVAL 7.4-10.9 11051	807A-2H	2	3 4	5	6
LIME - BOCK ON LIME -	PALEOMAGNETICS PHYS. PROPERTIES CHEMISTRY	GRAPHIC LITHOLOGY	DRILLING DISTURB. SED. STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION	5				
PLEISTOCENE A/G N22 A/G N19 F/P ? R/P ?	N (Jaramillo) R (Matuyamal(inferred) N (Brunnes)(inferred.nof oriented) V-15660046552 00-0553 V-1553 00-153 V-1566005-89.9 0-1553 V-1553 00-153 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			NARRUPUSSIL CUCK with FORMMINERS to FORMMINERS to FORM Major inclosofy. This core contains NANNOFOSSIL OOZE with FORMMINERS to FORM MINEER NANNOFOSSIL COZE Bioturbation is evident throughout the core. In Bection 1, the ooze grades from yellowish while (10YR 81) above 43 cm to grayish while (7.5YR 80) below 43 cm. Trom the top 05 Section 2 downcard into a pale yellowish green (10GY 72) interval bounded by a share base. White bounds are between 5 and 100 cm thick. Light gray bands are between 5 and 20 cm thick. Pale yellowish green bands are 1 to 5 cm thick. SMEAR SLIDE SUMMARY (%): 2, 74 D TEXTURE: Sand 10 Sint 60 Clay 30 COMPOSITION: Accessory mineralis 2 Diatoms 7 Foramindies 20 Namodossils 75 Siliceous fragments 3	20 25 30 35 40 45 1 55 50 55 50 55 50 1 55 1 1 55 50 1 1 55 1 1 55 1 1 1 1 1 1 1 1 1 1 1 1 1				

982

SITE 807

7

cc

PALED

T.S.

NIT	BIO FO	SSIL	AT. CHA	ZONE/	R so	IES				URB.	S3		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETIC	PHYS, PROPERT	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
PLEISTOCENE	N22 FORAMIN	NN19 MANUFO	2 RADIOLAR	2 DIATONS	R (Matuyama)	V×1575 Ф21,55 V×1564 Ф21,58 V×1560 Ф269.3 V×1604 Ф268.4 Ф2168,10×153 Рнтв. РВ	•86.9 ФКСаСО ₃ •89.0 ФКСаСО ₃ •90.0 ФКСаСО ₃ •88.6 Ф ^K СаСО ₃ •89.1 снемизтя	1 2 3 4 5	set		** ** ** SED. STR	* *	FORAMINIFER NANNOFOSSIL OOZE to NANNOFOSSIL OOZE with FORAMINIFERS Major lithology: This core contains FORAMINIFER NANNOFOSSIL OOZE to NANNO- FOSSIL OOZE with FORAMINIFERS. The sediment is slightly biolutated, homogeneous and white (75478 b0). The tem burrows present are filled with softer material. Slightly gray zones, approximately 20 cm in length, are observed throughout the core (about one per section). SMEAR SLIDE SUMMARY (%): 3, 74 D TEXTURE: Sand 15 Sit 60 City 25 COMPOSITION: Accessory minerals 2 Diatoms Tr Foraminifers 28 Nannofossils 67 Siliceous fragments 3
	0	0	a	٩		V*1557 @ 2.0	•×cac03	6			1		

.

1	ž	-	1	
ŝ			ŝ	
ŝ			1	
3	Ļ	•	1	
k	ċ	×	5	
i	Ē	-	5	
9	2	2	٦	

-	FOS	SIL	CHAI	RACTI	ER		ŝ					8	50				
TIME - HOCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETICS	PHYS. PROPERTI	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTUR	SED. STRUCTURE	SAMPLES	LITHOLOGIC DESCRIPTION	5 — IO — I5 —	
UPPER PLIOCENE	N21 F0	NN18 NN18	Pterolnium prismatium [2017]	5 5 7 7		7 N (Olduvai) R (Matuyama) ex	V-1543@P_18.3 V-1608@P_18.2 V-1600@P_17.54 • V-1600 V-1533@P_18.5 @P_18.3V-1575 PH	=90.0 ●xcac0_3=90.8 ●xcac0_3=80.3 ●xcac0_3=88.2 ●xcac0_3=89.5 ●xcac0_3=89.5 ●xcac0_3=88.0 C	1 2 3 4 5 5	33			25 25 25 25 25 25 25 25 25 25 25 25 25 2	*	FORAMINIFER NANNOFOSSIL OOZE to NANNOFOSSIL OOZE with FORAMINIFERS Major lithology: This oper cantains homogeneous FORAMINIFER NANNOFOSSIL OOZE to NANNOFOSSIL OOZE with FORAMINIFERS. The sadiment is white (75 YH 80 grading into 10YR 81 in Section 6) and sightly belutbated, as indicated by a few watery, pyrite- filled burrows and by gray (10YR 61)) and light gray (10YR 72) mottles below Section 6. In Sections 2 through 5, several difluser cm scale, gray (75 YH 60) and bulking gray (68 61)) zones are present. In Section 6 and 7.1 a few diffuse, cm scale, blash gray, reddish gray (10R 61) and greening gray (68 71) zones, as well as greenish gray color bands (cm scale), are noted. SMEAR SLIDE SUMMARY (%): 3, 74 D TEXTURE: Sand 15 Sit 60 Clay 25 COMPOSITION: Accessory minerals 2 Datoms 7 Foraminfers 28 Nanotossils 67 Siliceous fragments 3	15 1	
	W/	/W	/W	-F/P		4	/-1597•0-68.	•%CaCO	7		+ <u>_</u> + <u>_</u> + +		1			130	and a second sec

L N	FOS	SSIL	CHA	ZONE/	8	LIES				URB.	ES		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETIC	PHYS PROPERI	CHEMISTRY	SECTION	c GY	DRILLING DIST	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
UPPER PLIOCENE	M N21	NN16	M Pterocanium prismatium	M NTD 15b Rhizosolenia praebergonii		808 9248-3 V×1575 924 83 V×1606 924 93 V×1608 924 934 V×1571 924 94 94 95 92 V×1593	•xcaco ₃ +a0.5 •xcaco ₃ +a1.5 •xcaco ₃ +a1.7 •xcaco ₃ +a2.6 •xcaco ₃ +a0.8 •xcaco ₃ -a0.4	1 2 3 3 4 5 6 6 7		000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	*	FORAMINIFER NANNOFOSSIL OOZE to NANNOFOSSIL OOZE with FORAMINIFERS Major tithology: This core contains while (7.5YR 80) FORAMINIFER NANNOFOSSIL OOZE with FORAMINIFERS, which grades into a 5 cm thick gray (N7 interval at Section 1, 145 cm and a pale purple (5P 62) interval at Section 5, 95 cm. The section 4, 15 cm. Faint to sharp, pale budiet (5PB 72), pale purple (5P 62), light green gray (5G 7/1), and pale green (5G 6/2) color bands are common throughout the core. SMEAR SLIDE SUMMARY (%): 3, 66 0 TEXTURE: Sand 14 Sht 82 Clay 4 COMPOSITION: Diatoms 7 Foraminters 25 Nannofossits 70 Radiolariants 2 Spicules 1

2	3	4	5
alles -			P.C.S.
s.T-	- Zinen		1-35
4		1 and 1	120
	A CONTRACT	monate	
Call of	-1225-	-	1-17
4	Prove	1 Part	32192
	1.	No.	1 100
-	-	-	
	A day see	No.S.	
			199.24
5 -	- 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	- Contraction	WELL R

807A-6H 1

	BIO	STRA	T. 2	TONE	/	Ť							-		
T INU	FOS	SIL SIL	CHA	RACT	ER	TICS	ERTIES		2		0.0000000000000000000000000000000000000	STURB.	TURES		
TIME-ROCH	FORAMINIFE	NANNOFOSSI	RADIOLARIA	DIATOMS		PALEOMAGNE	PHYS. PROP	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DI	SED. STRUC	SAMPLES	LITHOLOGIC DESCRIPTION
							N.C.	0 ₃ =91.5	1	0.5		00000	1 1		NANNOFOSSIL OOZE with FORAMINIFERS to FORAMINIFER NANNOFOSSIL OOZE Major lithology. This core contains NANNOFOSSIL OOZE with FORAMINIFERS to FORA MINIFER NANNOFOSSIL OOZE. The sediment is white (7 5YR 8 0 and 2 5Y 80) and slightly to moderately bloturbated, as indicated by light gray (5Y 7/1 and 5Y 7/2) motiles a mit to cm scale, pyrite filled burrows. Light greenish gray (5G 7/1), pale blue (5P 87.2), grayish blue (5 PB 5/2) color bands are present throughout the core and form concentral zones at Section 3, 90-105 cm. Section 5, 35-60 and 80-100 cm. Section 6, 22-27 cm, a Section 7, 0.26 cm.
						4 40	• • • • •	•%CaC	2	aline.			1 + -		3.80 D TEXTURE:
								3=91.5	2				1 1		Sand 25 Siit 70 Clay 5
ų.			as			6 60 F	V-1533 9 -1.54	6 •×CaCO,	3				+ ~ ~ ~ +	•	COMPOSITION: Foraminifets 15 Namolossils 82 Radiolarians 2 Silicottageillates 1
UFFER FLIDGES	N21	NN 1 6	Spongaster pent	2		4 60 6	V=15680 = 1.54	9.5 •× CaCO ₃ =90	4	at the factor of the			****		
							V-1593 0 -1.55	1.9 •**CaCO3=85	5				+ # - # -	ÓG TW	
							V-1593 5-07.7	•%CaC03=91	6	Terrelation and			~ ~ + ~ + ~		
	9	d	W	-C/P -M					7				10 + 1		

SITE	: 8	307	8	HOL	E	A	- 1	CO	RE	7H CC	RE	DI	NT	ERVAL 54.9-64.4 mbsf
H	BIO	STR	CHA	CONE/		us U					8			
TIME - ROCK UNI	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIE	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTUR	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
UPPER PLIOCENE	W N21	MN16	M Spongaster pentas	~		V=1586@2-15.0 V=1588@2-155 V=1583@2.0 V=1604@2-0 V=1578@2-69.6 02-67.5 V=1568	●XcacO ₃ -92.0 ●XCacO ₃ -90.9 ●XcacO ₃ -91.5 ●XcacO ₃ -91.5 ● \$20,50	2 3 4 5 6 6 7	0.5				*	NANNOFOSSIL OOZE with FORAMINIFERS to FORAMINIFER NANNOFOSSIL OOZE Major lithology. This core contains NANNOFOSSIL OOZE with FORAMINIFERS to FORA MINIFER NANNOFOSSIL OOZE. The sediment is while (2 SY 80), grading to light gay (57) 71) in the low part of Section To Tolltise pale buile (579 72), and grading to light gay (57) to heavy biouthalon is indicated by light gay (57 72) and gaysh blue (579 82), moting to heavy biouthalon is indicated by light gay (57 72) and gaysh blue (579 852), moting to heavy biouthalon is indicated by light gay (57 72) and gaysh blue (579 852), moting (22) and grayish blue (579 852), 0.5 to 1 cm wide color bands are present. SMEAR SLIDE SUMMARY (%) <u>3.</u> 70 D TEXTURE: Sand <u>10</u> Skit <u>86</u> City <u>4</u> COMPOSITION Foraminters <u>12</u> Nannofossi <u>8</u> <u>8</u> Radourans <u>2</u> Spicolles <u>1</u> Nannofossi <u>8</u> <u>1</u> Spicolles <u>1</u>
	A/A	A/1	A/1	R/F				cc				1		

TIME-ROCK UNIT

UPPER PLIOCENE

ITE	8	307	/	HC	LE	1	4	_	CO	RE	9Н СС	DRE	D	NT	ERVAL 73.9-83.4 mbsf
5	BI0 FOS	STR	CHA	RAC	TER		s					88.	60		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETICS	PHYS. PROPERTI	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTUR	SED. STRUCTURE	SAMPLES	LITHOLOGIC DESCRIPTION
LOWER PLIOCENE	N19 - N20 F04	NN13 - NN14 MAN	Spongaster pentas Ruo	base NTD 15a Rhizosolenia praebergonii 044		ЬЧГІ — — — — — — — — — — — — — — — — — — —	V-1560@2.924 V-1560@2.975 V-1550@2.924 V-1553@2.924 V-1557@2.92.92 V-1568@2.924 V-1559	•XCaCO ₃ ~93.0 •XCaCO ₃ ~91.5 •XCaCO ₃ ~90.5 •XCaCO ₃ ~91.9 •XCaCO ₃ ~91.9 •XCaCO ₃ ~91.6 •XCaCO ₃ ~91.0	1 1 2 2 4 5 6	5				WYS *	NANNOFOSSIL COZE with FORAMINIFERS to FORAMINIFER NANNOFOSSIL COZE Major liftiology. This core contains white (2.5Y 8.0) NANNOFOSSIL COZE with FORAMINI- FERS to FORAMINIFER NANNOFOSSIL COZE. Sight to moderate bolurbation is indicated by pyritable.commonly vertical dark gray (M4) burrows and associated grayish blue (SPB 5/2) motting and Thalos". Several cm scale. Ight grav (SY 7/1) burrows and associated grayish blue (SPB 5/2) motting and Thalos". Several cm scale. Ight grav (SY 7/1) burrows and associated grayish blue (SPB 5/2) motting and Thalos". Several cm scale. Ight grav (SY 7/1) burrows and associated grayish blue (SPB 5/2) motting and Thalos". Several cm scale. Ight grav (SG 7/1) color bands are common flow could be core. Grayish blue (SPB 5/2) bands are present but less common. SMEAR SLIDE SUMMARY (%): 1. 99 D TEXTURE: Sand 25 Sit 70 Clay 5 COMPOSITION: Foraminfers 20 Nannoforsis 76 Radolariane 3 Sitcoflagellates 1
	A/M	A/M	A/M	C/P-M					7	-			1 1		

TIE	810	STR	/ A.T	ZONE		A		0	RE	TOH CC	RE		NI	ERVAL 83.4-92.9 mbst
K UNIT	FOS	SSIL	CHA SZ	RAC	TER	ETICS	CHIES				ISTURB	TURES		
TIME - ROC	FORAMINIFE	NANNOF OSS	RADIOLARIA	DIATOMS		PALEOMAGN	CHEMISTRY	SECTION	WETERS	LITHOLOGY	DRILLING D	SED. STRUC	SAMPLES	LITHOLOGIC DESCRIPTION
						T	6			+++-	3			FORAMINIFER NANNOFOSSIL OOZE to NANNOFOSSIL OOZE with FORAMINIFERS
						66.6	•×caco91.	2 1	0.5			1		Major tithology: This core contains white (2.5Y 8/0) FORAMINIFER NANNOFOSSIL OOZE to NANNOFOSSIL OOZE with FORAMINIFERS. Moderate biofurbation is evident as cm scale, light gray (5Y 7/1) motiles and mm to cm scale, grayish blue (5PB 52) pyrite-filled burrows and halos. Diffuse light greenish gray (5G 7/1) color banding is common, and pale purple (5P 6/2) bands are present, but rare, SMEAR SLIDE SUMMARY (%):
						14.0	Š.	F	-			1		4, 75 D
							1.46			 				TEXTURE
						80	54 CO.s	2						Sand 15
						0.68	P=1.			L _		1		Clay 20
										+ +				COMPOSITION
	1					14-1		-						Foraminifers 25 Nannofossils 75
							1.6			_+_[_+_		•		Radiolarians Tr
				96		0	56	3						
			\$	use		0=67	%CaG		1			1		
SE	σ		enta	a j6										
ŏ	ź	5	r p	chi		14.1		⊢		+ \ -⊥ + , -		1		
ā.	60	NN	ste	125			10					1		
ΝE	N,		5 Duc	2		0	0.*9	4				1		
-			Spo	14		1415	%CaC		-			ł	*	
				10			•		1			•		
				Z				\vdash	_					
							5.5					1		
						0	00	5	-	+++		Ľ		
						. + 9 = 0	*1.6			+				
							0		1	► + - + 1 - ⊥		1		
						141 8	CI-A	L		+ 1-				
							E		1 3	+1-		1		
							6=0		1	+ +		Ľ		
						*67.0	-1.5	0		+1-		F		
						0000			1	-+-T		1		
		6				lave!		Ŀ	-	+ ! -		· ·		
				N-		-		7	1	+ + +				
	0	Σ	Σ	A/P				Ľ				1		
	A/	A	A/	U				CC		+ ! -		1		

LIN NIT	BIO	STR	АТ. СНА	ZONE/	R	IES.					RB.	sa		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	WETERS	GRAPHIC LITHOLOGY	DRILLING DISTL	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
						V-154300-66.7	•%CaCO3=91.8	1	0.5		000	2 2		FORAMINIFER NANNOFOSSIL OOZE to NANNOFOSSIL OOZE with FORAMINIFERS Major lithology: This core contains white (2.5Y 8/0) FORAMINIFER NANNOFOSSIL OOZ to NANNOFOSSIL OOZE with FORAMINIFERS. Common to abundant, 1 m thick interva of color banding are evident. The color bands are mostly pale yellowish green (10GY 7/2 Stight to moderate bioLurbation is indicated by mottles (2.5Y 8/2) and burrow infillings of pyrite with pale purple (5P 7/2) borders and streaks. SMEAR SLIDE SUMMARY (%) 3, 75 D
						-1553 € -1.57	•%CaC03=92.5	2		· + + · · - + · · - + · + · + · + +		***		TEXTURE: Sand 10 Sat 70 Clay 20 COMPOSITION:
OCENE	119		pentas	- 14		V-15570 5-68.3 V	•%CaC03=92.4	3					*	Foraminifers 25 Nannofossils 71 Radiolarians 1 Siliceous fragments 2
LOWER PLI	N18 - N	NN12	Spongaster	NTD 137		V=1568 0 = 65.7	•%CaC03=91.3	4						
						V-1578-9-67.1	•%CaCO3=93.1	5				1 + 1 + 1	MA	
						• 0-65.5 P-1.58	•%CaCO3=93.9	6				1 1		
	A/G	A/M	A/M	C-A/P-M				7		+ 		*		

ITE	8	307		HO	LE	A	_	co	DRE 12H	CORE	ED	INT	ERVAL 102.4-111.9 mbsf	
NI 1	BIC FO	STR	АТ. СНА	RACT	ER	5				.BB.	Sa		<i></i>	
TIME - ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	CHEMISTRY	SECTION	CRAPH LITHOLO	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION	
					1	1	N	T		1-0		T	NANNOFOSSIL OOZE with FORAMINIFERS	
						=64.9	*CaCO3*93	1			1		Major lithology: This core contains white (2.5Y 8/0) NANNOFOSSIL OOZE with FORAMINI- FERS, Greenish gray (5G 7/1), pale vellowish green (10GY 7/2), and pale purple (5P 6/2) color banding is common. Moderate to heavy biolutration is evident from abundant cm scale. light gray (2.5Y 7/2) mottles, pyrite-filled burrows, disseminated pyrite specks and pale purple (5P 6/2) mottles.	
						96.96	•		1.0 + +		1		SMEAR SLIDE SUMMARY (%):	
						1-1 e		-		<u>+</u>	Ľ		3, 75	
							92.1			-	1		TEXTURE	
						1.5	-200 ==	2					Sand 10 Sit 70	
						0=0	•×C3			-]	1		Clay 20	
						1532				-			COMPOSITION:	
						A	ry.			-	1		Foraminifers 20 Nannotossils 78	
				exa		4	03-92	1	++++	1			Radiolarians Tr Siliceous fragments 2	
			6	NUOC		Ø=64.	XCaC	ľ		-]	1	•		
CENE	0		enta	e'i		•	•			<u>+</u>				
L100	IN .	12	er p	SiDS				F		<u>_</u>	1			
R P	18	NN	1381	alas						1				
OWE	Z		uod	17				4		-	,			
72			S	13						1	ľ			
				NTD				-		L		OG		
							92.0			1				
						1.9	=C03e	5		-]	1			
						0-0-	•%C		144	<u>+</u>				
						1-154		L		1				
						[5			1	1			
						5	6= EO:	6		-]				
						0-65	*CaC			÷				
						1425								
				Σ		1/1	•	T		-	1			
	0	Σ	Σ	AIP-				7		-]				
	A/G	A/M	A/M	C-A/P				7			1			

16-14 (

	FOS	SIL	T. 2 CHAI	ONE/	0	ES					88.	s		
	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLDGY	DRILLING DISTU	SED. STRUCTURE	SAMPLES	LITHOLOGIC DESCRIPTION
LOWER PLIOCENE	N18 - N19 FORAM	NN12	Stichocorys peregrina Rabiou	Diatow	PALEON	• \$ 4.5 V-1552 \$ 1558 \$ 1558 \$ 1558 \$ 1558 \$ 1558 \$ 1559 \$	•xcaco ₃ •93.9 •xcaco ₃ =91.6 •xcaco ₃ =02.2 CHEMIS	1 2 3 4	NB1397		041111		SAMPL	NANNOFOSSIL OOZE with FORAMINIFERS Major lithology: This core contains white (2.5Y 8:0) NANNOFOSSIL OOZE with FORAMINI FERS. The sediment is modeled as indicated by white (2.5Y 8:2) and pale purple (5P 6:2) motiles, pyrite-filled burrows, and "halos". Very lew diffuse cm thick, greenish gray (5G 7/1) and pale purple (5P 6:2) color bands and zones are present throughout the core. SMEAR SLIDE SUMMARY (%):
				W-		V-1594 0 1 59	•×caco ₃ =92.0 •×caco ₃ =92.7	5				2 2		

TE 807 HOLE A	CORE 14H CORED INTERVAL 121.4-130.9 mbsf	807A-14H 1 2 3 4 5	6
BIOSTRAT. ZONE/ FOSSIL CHARACTER SUBJECTIONOLUCE SUBJECTIONOLU	STATES OF THE ST		
VM N17b VM NN11 VG Stichocorys peregrina -A/P-M NTD 13? Thalassiosira convexa	1 0.5 +		

150-

994

SITE 807

Line Line <thline< th=""> Line Line <thl< th=""><th>SITE</th><th>. 8</th><th>307</th><th>7</th><th>но</th><th>LE</th><th>А</th><th>1</th><th>_</th><th>COR</th><th>RE</th><th>15H CC</th><th>RE</th><th>D</th><th>INT</th><th>ERVAL 130.9-140.4 mbsf</th></thl<></thline<>	SITE	. 8	307	7	но	LE	А	1	_	COR	RE	15H CC	RE	D	INT	ERVAL 130.9-140.4 mbsf
DOG Bit Manuel Bit Manuel <td>T IN</td> <td>FOS</td> <td>STR</td> <td>CHA</td> <td>RACT</td> <td>EA</td> <td>S</td> <td>TIES</td> <td></td> <td></td> <td></td> <td></td> <td>URB.</td> <td>ES</td> <td></td> <td></td>	T IN	FOS	STR	CHA	RACT	EA	S	TIES					URB.	ES		
With the second secon	TIME-ROCK U	FORAMINIFERS	NANNOF OSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNE TI	PHYS. PROPER	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
With Ministry Min		-								1		1-1-	0	1	T	NANNOFOSSIL OOZE with FORAMINIFERS to NANNOFOSSIL OOZE
Image: Statuse in the second secon										2			0000	1 1		Major lithology: This core contains white (2.5Y 8-0) NANNOFOSSIL OOZE with FORAMINI FERS to NANNOFOSSIL OOZE. The sediment is moderately bioturbated, as indicated by light gray (25 7/2) and pale purple (5P 5/2) moties, print filed burrows, and halos Diffuse faint greenish gray (5G 7:1) and pale purple (5P 6/2) color bands (cm scale) are noted throughout the core. SMEAR SLIDE SUMMARY (%). 4, 74 D
ObEER WIOCENE MM MI11 MI11									o,				1	-		TEXTURE
Obecase									3=93	2	1÷		1	1		Sand 15 Silt 55 Clay 30
MIN Accessory minerals 2 MIN Accessory minerals 3 MIN Accessory minerals 3 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>66.6</td> <td>CaCO</td> <td>3</td> <td></td> <td></td> <td>i</td> <td></td> <td></td> <td>COMPOSITION</td>								66.6	CaCO	3			i			COMPOSITION
Obters 14 NM 14 Nanotossis 30 Nulli 1 Nulli								1.00	•	1						Accessory minerals 2
Operating Mindcases 1 Mindcases 1 Nimit Nimit								V-150			-			4		Diatoms Tr Foraminiters 14
UPPER MIOCENE UM UM<									-					•		Namorossis 80 Radiolanans 1 Silicenie framente 3
UPPER MIOCENE VM VM<								00	3=91	4	1					Supreme and address of
UM UM UM UM UM UM UM UM UM UM	ШN							-67.	Caco					1	*	
UM M17b VM M11b	OCEI							790	۲		1					
	ĨW	170	N11					V-15		_	-			1		
UM VM VM C-A/P-M	PER	Z	z						91.5			 				
VM VM C-A/P-M C-A/P-M C-A/P-M C-A/P-M Multiple C-A/P-M C-A/P-M Multiple C-A/P-M C-	UPI							8.9	=E00	5	Ľ.			1		
VM VM C-A/P-M C-A/P-M C-A/P-M Multiple C-A/P-M C-A								B=63	%Ca(1					
M/M M/M C-A/P-M C-A/P-M								554	•						og	
V/M C-A/P-M								1-1		-		L		1	W	
V/M V/M M/M M/M M/M M/M M/M M/M									92.8					1		
V/M V/M V/M C-A/P-								3.2	.co3	6		↓ ┝			1	
V/M W/I W/I W/I W/I W/I W/I W/I W/I							1011	-9-9-	•×Ca					L		
V/W W/I W/I W/I W/I W/W W/I W/I W								550						1		
V/M V/M V/M V/M V/M V/M V/M V/M								1		-		+				
W/W W-U/V-W W-U/V/W W-									92.8				1			
W/W W/W W/W W/W W/W W/W W/W W/W								3.9	\$C03	7			1	1	1	
								0-9-0	•×c]	ľ		
								1565					1	L		
					S			1		-				1		
					- d/					8		╡┷ ┶╶				
		M/W	W/W		A- 2					-	1	╞╼┶╶┷				

ITE 807 HOLE	A CORE 16H CORED INTERVAL	140.4-149.9 mbsf	807A-16H 1 2	3 4	5 6
TIME - ROCK UNIT FOSSIL CHARACTER FOSSIL CHARACTER MANNOE OSSILS DIATOMS DIATOMS	PALEOMADIGETICS PHYS. PROPERTIES CHEMISTRY SECTION METERS METERS Soluting Soluting SAMPLES SAMPLES	LITHOLOGIC DESCRIPTION			
UPPER MIOCENE N17b NN11 Stichocorys peregrina NTD 127 NTD 127	0 0 <td>SSIL OOZE with FORAMINIFERS to NANNOFOSSIL OOZE gy. This core contains white (2.5Y 80) NANNOFOSSIL OOZE with FORAMINI- NNOFOSSIL OOZE. Biolurbation is indicated by extensive white (2.5Y 82) rowshils, pyrke specks, pale purple streaks, and purple halos. Horizontal, 1 to aim pale purple (5P 82) and pale yellowish green (10GY 7/2) color bands are ghout the core. DE SUMMARY (%): 3, 74 0 15 55 30 ION: Internals 1 4 22 5 75 37 17 Igments 2</td> <td></td> <td></td> <td></td>	SSIL OOZE with FORAMINIFERS to NANNOFOSSIL OOZE gy. This core contains white (2.5Y 80) NANNOFOSSIL OOZE with FORAMINI- NNOFOSSIL OOZE. Biolurbation is indicated by extensive white (2.5Y 82) rowshils, pyrke specks, pale purple streaks, and purple halos. Horizontal, 1 to aim pale purple (5P 82) and pale yellowish green (10GY 7/2) color bands are ghout the core. DE SUMMARY (%): 3, 74 0 15 55 30 ION: Internals 1 4 22 5 75 37 17 Igments 2			
A/G A/M C/P-N					

996

SITE 807

7

12100

SITE	ξ	307	7	HC	LE	1	4		CO	RE	17H CC	RE	DI	NT	ERVAL 149.9-159.4 mbsf
F	810	STR	AT	ZONE	1		60								
TIME-ROCK UNI	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	1.E.R	PALEOMAGNETICS	PHYS. PROPERTIE	CHEMISTRY	SECTION	WETERS	GRAPHIC LITHOLOGY	DRILLING DISTUR	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
UPPER MIOCENE	/// N17b	/P NN11		-A/M NTD 12 Nitzschia miocenica			V-1624@9522 V-1594@92-236 • 92-2256 V-1568@92-237 V-1598@92-252 V-1598@92-234	•xcac0 ₃ =93.3 •xcac0 ₃ =92.8 •xcac0 ₃ =93.7 •xcac0 ₃ =93.1 •xcac0 ₃ =92.8 •xcac0 ₃ =94.03	1 2 3 3 4 5 6 6 7						NANNOFOSSIL OOZE with FORAMINIFERS to FORAMINIFER NANNOFOSSIL OOZE with FORAMINI- FERS to FORAMINIFER NANNOFOSSIL OOZE the sedment is moderately boturbated as indicated by left gray (2.5Y 7/2) motiles, pyrite-filed burrows and pare purple (5P 6/2) Thatos'. Diffuse tand greening gray (5G 7/1) and pale purple color bands (cm scale) are noted throughout the core. SMEAR SLIDE SUMMARY (%): 3, 75 0 TEXTURE: Sand 10 Sit 75 Cay 15 COMPOSITION: Accessory minerals Tr Foraminifers 25 Nannofossiis 74 Siliceous fragments 1
	A/M	A/P		C - A/M			V-162400-62.2	•%CaCO3=93.3	6 7 000				1		

Table all a la la la

-

150

7

CC

PALER

E.		501	<u></u>	HO	LE	A			¢0	RE	20H CC	THE	DI	NI	ERVAL 178.4-187.9 MDSt	
	810	STR	T	ZONE			50					8				
	ORAMINIFERS	ANNOFOSSILS	ADIOLARIANS	IATOMS	En	ALEOMAGNETICS	HYS. PROPERTIE	HEMISTRY	ECTION	ETERS	GRAPHIC LITHOLOGY	RILLING DISTUR	ED. STRUCTURES	AMPLES	LITHOLOGIC DESCRIPTION	
+	u.	z	æ	0	_	۵.	a.	0	60	2		0	40	60	NANNOFOSSIL COZE with FORAMINIFERS	
							9.0.63.5 P.1.64	• *CaC03	1	0.5			1++-		Major lithology: This core contains white (2.5.7/2) NANNOFOSSIL OOZE with FORAMINI- FERS. Pyritized burrows and light gray (2.5Y 7/2) motiles are abundant. Very faint greenish gray (63.7/1), 0.5 cm thick color bands are common. Microfaults are observed at 140-150 cm in Sections 4 and 6.4 large paie purple (5P 7/1) swith is observed between 95 and 135	
							160			1.0	<u>-</u>		1		cm in Section 5, possibly indicating that the color, in this case, is related to fluid migration.	
	1						>				<u>}</u>	1	i		SMEAH SLIDE SUMMAHY (%)	
								.66*					1		0,75 D	
							5.7	aco3				1	t	ĺ	TEXTURE:	
							60	•%C	2	1	Ţ	1	t		Sand 10 Silt 70	
							594					1	1	1	Clay 20	
							3					1	Ť		COMPOSITION:	
l								94.1	-				1		Diatoms Tr Foraminiters 20	
							4.0	c03*					1		Nannotossils 79 Radiolarians Tr	
							0-0	%Ca	3				+		Siliceous tragments 1	
١			ima				575	1				1	i	1		
			lint				1-1						+			
	10	_	pei	1.2				3.5	-				1			
	117	IN	115	0			14	03=9					1;			
1	1	~	DC YI	Z			69-63	%CaC	4				it			
			tyme				006	•			1		+			
١			Dic				V-15				1		+			
								9		3	┋╧╶╧		1/2			
							0.00	3=90			+		1			
۱							=60.	Cac		-			i			
							33.00	÷	5				1			
							158						1			
Ì							[-		1			1			
								3*94			<u>+</u>		+	1		
							61.8	CaCO					i			
							O	*•	6			1	+			
							-161			-	1	1	1			
							S				1	1	+			
				_					-	1	1	1	i			
	0	0	0	N-0					7		t	1	1			

SITE 807 HOL	LE A CORE 21H CORED IN	TERVAL 187.9-197.4 mbsf	807A-21H 1 2	3 4	5 6 7
BIOSTRAT. ZONE/	FR 00 00 00				
TIME-ROCK UNI FORAMINIFERS MANNOFOSSILS RADIOLARIANS DIATOMS		LITHOLOGIC DESCRIPTION			
UPPER MIOCENE N17a NN11 Didymocyrtis penultima NTD 11 Nitzschia porteri		NANNOFOSSIL OOZE with FORAMINIFERS Major lithology: This core contains slightly to moderately bioturbated, white (2 5Y 8:0) NANNOFOSSIL OOZE with FORAMINIFERS. The bioturbation structures include mm to cm spretten in individual Zoophycos trace forsais. Diffuse light greensh gray (5G 71), pale purple (FPR 72), and graysh biue (FPB 52) color bands are common to abundant, ranging in thickness from 0.5 cm to several cm. Individual color bands are microfaulted near the tops of Sections 3 and 4. SMEAR SLIDE SUMMARY (%) 4.69 D TEXTURE Sand 14 Sit 8.0 COMPOSITION Detoms 1 Foraminifers 1 Foraminifers 1 Sincoflagellates 3 Spicules 1			
A/ C/I			135-		1. to 1 1

145-

150-

ŧ	810 F05	STR	CHA	RACT	ER on	ES	Π				RB.	50		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTURE	SAMPLES	LITHOLOGIC DESCRIPTION
						-1590 -0-60.9	•%CaCO3=93.9	1	0.5			+ + + +		NANNOFOSSIL OOZE with FORAMINIFERS Major lithology: This core contains moderately biolurbated, white (2.5Y 8/0) NANNO- FOSSIL OOZE with FORAMINIFERS. Bioturbation structures include mm to cm scale, graysteh blue (5PB 5/2) pyrite-filed burrows, and light gray (2.5Y 7/2 and SY 7/1) mottling. Light greening ray (53 7/1), grayisth blue (5PB 5/2), and pale purple (5PB 7/2) diffuse color banding is present to abundant. SMEAR SLIDE SUMMARY (%): 3, 92
						A1579 0 1.62.1 V	•%CaCO3=94.4	2	and much men					D TEXTURE Sand 10 Sitt 86 Clay 4 COMPOSITION:
OCENE	e		penultima	hia porteri		1 609 0 40.7 V	•%CaCO3=93.5	3	and and and			* * * * *	•	Dations 1 Foraminifers 12 Nannofossils 81 Radolarans 3 Silcoflagelates 2 Spicules 1
UPPER MI	N17	INN	Didymocyrtis	NTD 11 Nitasc		V=1586 0 = 1.67 V	•xcaco3=93.5	4				- ++ +		
						V-157500-00-9	•xcaco3=94.5	5			-			
						V-1620-0-160.3	• •×caco3=94.1	6	the second s			+ + + +	LND	
	A/G	A/P	A/M	C/P-M				7				1 1		

	B10	STR	T. 2	TONE		1	Г		RE	238 00	INC.	T		ERVAL 200.9-210.4 most
UNIT	FOS	m	CHA	RACT	ER	RTIES					TURB	URES		
TIME - ROCK	FORAMINIFER	NANNOF OSSIL	RADIOLARIAN	DIATOMS		PALEOMAGNET	CHEMI STRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DIS	SED. STRUCT	SAMPLES	LITHOLOGIC DESCRIPTION
						V-1612-0-167	.5 •× caco ₃ =93.7	1	0.5			+ + + + + + + + + + + + + + + + + + + +		NANNOFOSSIL OOZE with FORAMINIFERS Major lithology: This core contains moderately biofurbated, white (2.5Y 8/0) NANNO- FOSSIL OOZE with FORAMINIFERS. Bioturbation structures include mm to cm scale, gravish blue (FSP 52), projectile biofurbation and light grav(2.5Y 7/2 and 5Y 7/2) moting. Light greenish grav (SG 7/1), gravish blue (5PB 5/2), and pale purple (5PB 7/2) diffuse color banding is present to abundant. SMEAR SLIDE SUMMARY (%): 3. 71 D TEXTLIDE.
						V-1590 0 = 52.6	•%caco3=93	2						Sand 10 Sitt B6 Clay 4 COMPOSITION: Diatoms Tr Foraminifers 10
IOCENE	a	1	ntepenultima	Ξ		V-1632 0 - 1 60.3	•%cac03=94.4	з	and confirm				*	Namotossils 86 Radiolarians 2 Silicoflageilates 1 Spicules 1
UPPER MI	V17	INN	Didymocyrtis a	NTD		V=163200=62.2	•xcaco3=93.5	4	a contraction			+++++++++++++++++++++++++++++++++++++++		
						V*1676●0=58.5	•×CaCO3-92.3	5	· · · · · · · · · · · · · · · · · · ·			1 1 1		
						V=16090 = 62.2	•%CaC03=92.9	6	· · · · · · · · · · · · · · · · · · ·			+++++		
	A/G	A/M	A/G	C/M-P				7				+		

S
TE
8
20

SITE	8	07	HOL	E	А		COR	RE	24H C	ORE	NI C	TERVAL 216.4-225.9 mbsf	807A-24H 1	2	3		4
TIME - ROCK UNIT	FORAMINIFERS	NANNOFOSSILS	ARACTI SWOLVIO	BAI FOMADAFTICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION	5				
UPPER MIOCENE	A/G N15 - N17a	A/M NNT NNT NNT NNT NNT NNT NNT NNT NNT NN	A/G NTD 11 Nitzschia porteri		•1/41640 •1/41594 •1/41644 •1/41644		1 2 3 4 5 6 7 CC					Major linkoigy: This core contains modurately to heavy book moves and the (25Y 80) MANNOCROSSIL COZE with FORAMINIFERS to FORAMINIFER NANNOFOSSIL COZE. Biotributors include rims to cm scale, graying biue (5FB 52), pyrite filed burrows and light gray mothing. Light greenish gray (SG 771), grayinb biue (5FB 52), and pair purpose (5FB 52) to banding is present to abundant. SMEAR SLIDE SUMMARY (%): 3.80					
													145			E	

PALEO

뇄

œ 144

NIT	BIO	STR	CHA	RAC	TER	50	IES.					IRB.	ES		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
UPPER MIOCENE	N16 - N17a	NN11 NANVOFG	Didymocyrtis antepenultima Rabiou.	NTD 11a Diatous		PALEON	●V=1598 ●V=1540 ●V=1612 ●V=1601 PHY8. P	CHEMIST	1 2 38 cc 10M			041F1IM		STIGNYS *	NANNOFOSSIL OOZE with FORAMINIFERS to FORAMINIFER NANNOFOSSIL OOZE Major tithology: This core contains white (2.5Y 8/0) NANNOFOSSIL OOZE with FORAMINI- FERS to FORAMINIFER NANNOFOSSIL OOZE, with alternating soft and semi-inducated intervals. The color grades locally to ingle drawn with the toolor grades locally to ingle results of the toolor grades locally to ingle drawn with the toolor grades locally to ingle drawn with the top software the burrows. A 10 cm long vertical privile dburrow was observed in Section 1. Diffuse light graes (S7 7/1), grayish blue (SPB 5/2) point filed burrow apparently causes grayish blue (SPB 5/2) color bands are common. In Section 2. a halo encircling a privized burrow apparently causes grayish blue (SPB 5/2) color bands to Tade' and beaves them graemist gray integrates the halo. A light gray (N7), 15 cm long patch in Section 5 may represent motiling or fluid migration. SMEAR SLIDE SUMMARY (%): 3. 79 D TEXTURE: Sand 15 Siit 80 Clay 5 COMPOSITION: Datoms Tr Foraminifers 25 Nannofossits 71 Radolanans 2 Slicoflagellates 1 Spicules 1
							• 1616		6						

SITE	80	7	HOLE	4		CC	RE	26H C	ORED	IN'	FERVAL 235.4-244.9 mbsf	807A-26H 1 2 3 4 5 6	7
LIN	BIOSTR	CHA	ZONE/ RACTER	m	IES				JRB.	53			
TIME-ROCK UN	FORAMINIFERS	RADIOLARIANS	DIATOMS	PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SEU. STRUCTUR	LITHOLOGIC DESCRIPTION		
UPPER MIOCENE	A/G N16 A/M N102	A/G Didymocyrtis antepenultima	A/P -M NTD107 - NTD 11		V+1616 • \$+62.0 V+1628 • \$+62.1 V+1628 • \$+1.64 V+1628 • \$+62.5 V+1628 • \$+1.64 V+1628 • \$+1.65	•xcaco3-92.39 •xcaco3-91.6 •xcaco3-92.3 •xcaco3-90.9 [7] [7] [7] [7] [7] [7] [7]	0.5 1.0 5 5 7 C				Maper lithology: This core contains where (25Y 80) FORAMINIFER NANNOFCSSIL OOZE to NANNOFC95SIL OOZE with FORAMINIFERS which has tomed drilling "biscults" in Sections 1 through 3. The sedement is slightly to moderately bioturbated, with mm scale, grayish bide (95B 52), purcher Ideo Darmos namon throughout the core. The more heavily bioturbated intervals also contain on scale, light gray (5Y 71 and 25Y 72) moting. Diffuse high greening frag (65 71), pale purgle (5P 62), and pale bide (95B 62) color bards generally become more abundant downcore. Microfaulted color bands are present at Section 5. 130 on, and Section 6. 37 on TEXTURE: Sand 18 Sila 78 Clay 4 COMPOSITION Foraminters 35 Ananofosolis 62 Raddarians 1 Spicules 1		XEI IIII
													- 0.

L.	BIO	STR	CHA	RACT	ER	ES					RB.	ES		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	DAI EAMAGUETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTURI	SAMPLES	LITHOLOGIC DESCRIPTION
						• \$=61.3 \$=1.66	•%CaC03=93.4	1	0.5			1 # 1 # 1		FORAMINIFER NANNOFOSSIL OOZE Major lithology: This core contains white (2.5Y 8:0 to 10YR 8:1) FORAMINIFER NANNO- FOSSIL OOZE, which becomes more uniform in appearance downcore. Sections 1 through 5 are slightly to moderately bioturbated, with grayish blue (5PB 5/2) mm scale. pynte-filled burrows and light gray (2.5Y 7.2). cm scale. motifung. Sections 5 through Core Catcher are slightly bioturbated, with few distinct mottles. Faint light greenish gray (5G 7/1) pale purple (5P 6/2), and pale blue (5PB 7/2) color bands are present to abundant in Sections 1 through 5. SMEAR SLIDE SUMMARY (%):
								2	s. Selarenterre			1++		3,86 D TEXTURE: Sand 15 Sitt 81 Claw 4
ENE			epenultima			• 0=61.9 • 0=1.65	•xcac03=91.5	3		+ + + + + + + + + + + + + + + + + + +		~~~~~~~	•	COMPOSITION: Foraminiters 30 Nannotossits 65 Radiotarians 2 Silicollagellates 2 Spicules 1
UPPER MIOC	N16	0 I NN I O	Didymocyrtis ant	NTD 102		1664 .0 -1.61	•×caco3=91.4	4	a state of state of a	+ + - + + - - + + - + + + - - + + - - + + -		+ + +	OG	
						-A		5	the second second			++ -+	1 W	
				W				6				* * * *		
	A/G	A/M	A/G	C-A/P-				7		- + - - + - + + -				

BIOSTRAT, ZONE/			-
TIME- ROCK UNITEERS FORAMINITEERS MANNOF OSSILLS PADIOLARIANS PALEOMAGNETICS PALEOMAGNETICS	METERS SCIENCIAN METERS ADOTOHLIT ADOTOHLIT DRILLING DISTURE	LITHOLOGIC DESCRIPTION	Para Sa
ma aDDP/ sooo£1 ^{62,6} 4 V-1660 P sooo£1 ^{62,6} 4 V-1663 P	$\begin{array}{c} 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 &$	w NANNOFOSSIL OOZE with FORAMINIFERS to FORAMINIFER NANNOFOSSIL OOZE Major lithology: This core contains white (7.5YR 8/0) NANNOFOSSIL OOZE with FORAMINIFERS to FORAMINIFERS to FORAMINIFERS to FORAMINIFERS NANNOFOSSIL OOZE. The sedment is very stift to hard and is bisculated by the chiling process. The core is relatively homogeneous, with intrequent 0.2 to 0.5 cm thick, greensh gray (56.71), pate burgle (57.02), pate purgle (56.62), and pate privi (5RP 8/2) color bands. Only a few signs of bioturbation are evident in the form of occasional pythe filled traces with purgle borders, and small (0.5 to 1 cm thick), light gray (2.5Y 7/2) mottles. SMEAR SLIDE SUMMARY (%): 3, 75 D TEXTURE: Sand Sitt 60 Clay ComPOSITION: Foraminifers 23 Nannofossiis 77 Siliceous sponge spicules	「二」「「「」」
M 16 NN10 Didymocyrtis antepenulti M NTD 10 Coscinadiscus ya	9 		いっ そうに、「「「「「「」」」 いいてん

c	,	2	
		3	
t	I	j	
c	×	0	
5		S	
		0	

807A-29X	1	2	3	4	5	6	7
-			and the second		No. Cont		D. acci
5_		The second	Para la	2 miles	PALCING		2
10		(and the second	Kim		The state	Meret.	4
15-		1	1000			13	- atot
20-	Sales-	All and -	100	- 10-	- ANA		-
25			1.1	2505	100		
30-		100-	14,746	-	-		
35-		1	- Const			1	-
40-	1000 -		-	And the second			
45-	-					- Carrie	
50-		T	(- Contraction	1 (-	100	
	de la	a form	Sec.	- and		-	1200
60-					1	Strell.	
65-	-		1			and a	
70-		-			and the second	and the	CC
75-	1		the second		and the second	Sugar .	- Carl
- 00					R. R.	1000	
			Contraction of the second			12.00	
	1000		- the		No. Con	- AND AND A	-
	ARK	15 Sale	Calif.		Caller .		
- 35					Harris	1 And and a	PALEO
100-			- march		A REAL	2000	
105-	()	11	The second	Salar		100	
110	1 and		and a				
115-			-				
150-			A REAL			and the	
125-		E-I			Hall	1	
130-	1		1-1-	1		-	1
135-			1.3		- and	R	
140-	pres-			in Conget	Caller -	1	
145-			and the second		-	- Annotest	
150-		AS IN	-	-	1 -		-
and the second second	and the second se	No. of Concession, Name of Street, or other	And Contraction of the	and the second se	and the second second	and the second se	Concern and the

ITE	810	BO7	AT. 3	HOLI	E	A	Ē	CO	RE	29X CC	DRE	DI	NT	ERVAL 264.1-273.8 mbsf
TIME-ROCK UNIT	FORAMINIFERS	NANNOF OSSILS	RADIOLARIANS	SWOLVIG	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
						V=1647• 0=61.3	×CaC03	1	0.5		11111	1		NANNOFOSSIL ODZE with FORAMINIFERS and NANNOFOSSIL CHALK with FORAMINI FERS Major kitrology: This core contains 60% NANNOFOSSIL OOZE with FORAMINIFERS and 40% NANNOFOSSIL CHALK with FORAMINIFERS, both predominantly white (7.5YR 8.0) in color. The ozze is very stift and contains chalk biscuts. Pale pink (5RP 8.2), greenish gray (5G 7/1), and pale yellowish green (10GY 7.2), 1 to 10 cm thick color bands are common. Bioturbation is indicated by white (2.5Y 8.2) mottling SMEAR SLIDE SUMMARY (%): 3, 74 D
			ultima			V-164000-59.8	2.6 %CaCO3=93.2	2						TEXTURE Sand 12 Sit 55 Clay 33 COMPOSITION:
CENE			nocyrtis antepen	a		V-1612 0 -62.2	0 •XCaCO ₃ -9	з			10.0	1	*	Accessory minerais 2 Foraminifers 20 Nannofossis 75 Siliceous ragments 3 Siliceous sponge spicules Tr
UPPER MIO	N16	NN10	terssoni / Didyn	NTD 10		V-1 608 0 -61 .5	•%cac03=94.0	4	and and and			1		
			Diartus pet			/-1593 - 0-60.6	1 •×cac03=92.9	5				1		
							• %CaCO3-93.	6	the officers of			1		
	A/G	A/M	A/G	C/M				7 CC	-		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1		

ITE	٤	307	1	HO	LE	Α		4	COF	RE	30X C0	RE	DI	NT	ERVAL 273.8-283.5 mbsf
÷	810 F05	STRA	CHA	RACT	ER	0	ES					88.	60		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERTI	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTURE	SAMPLES	LITHOLOGIC DESCRIPTION
								2.06	1	0.5	- T-F-T-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-	m1/1m-	3		NANNOFOSSIL OOZE with FORAMINIFERS and NANNOFOSSIL CHALK with FORAMIN FERS Major Linkology. This core contains 60% NANNOFOSSIL OOZE with FORAMINIFERS and 40% NANNOFOSSIL CHALK with FORAMINIFERS, both predominantly white (7.5YR 6/0 in color. The ooze is very stift and contains biscuits of chalk. Only a few gray (7.5YR 6/0 to 3 mm thick color bands, and several pale purple (5P 6/2), 3 to 5 cm thick bands are present. Fairlin pale purple (5P 6/2) cones. 10 to 25 cm thick, also are present. SMEAR SLIDE SUMMARY (%):
						- @=£2.5	p=1.64	•%C3C0 ³ *8	2	entreur trease					3, 75 D TEXTURE: Sand 3 Silt 60 Clay 37
ENE			ssoni	scus yabei		- @-60 1	P=1.68	• %CaCO3 =92.6	3	o headaaa lea			3	•	COMPOSITION: Accessory minerals 1 Foraminiters 15 Nannotossils 79 Radolarians 2 Siliceous fragments 3 Siliceous sponge spicules Tr
UPPER MIOCE	N15	NN10	Diartus petter:	TD 10 Coscinadis		- Ø-60 9	Pe1.67	• % CaCO ₃ =93.0	4	ed arefored a				06	
				Z		- 6-63-7	· p.1.61	•%CaCO3=92.4	5				2	IW	
	A/G	A/M	A/M	F-C/P		0.02-0	P=1.64	•%CaCO3-93.9	6 7 CC			~	2		

SITE		307	/	HO	LE	A	_	COF	8E	33X C0	RE	DI	NT	ERVAL 302.3-312.0 mbsf
NIT	BIO	STRA	CHA	RACT	'ER	CS TIES					URB.	RES		
TIME-ROCK L	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	100000000000000000000000000000000000000	PALEOMAGNETI PHYS. PROPER	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
						V=1632 0=61.7	%CaC03.	1	0.5		>>>>>			NANNOFOSSIL CHALK with FORAMINIFERS Major lithology: This core contains NANNOFOSSIL CHALK with FORAMINIFERS. The pre- dominant color is white, with a few 10 cm thick, pale purple (5P 6/2) intervals. Thin (<1 mm), distinct, white color bands are abundant within these intervals. A few greenish gray (5G 7/1) color bands. It min to 1 cm thick, also are present. Slight bioturbation is indicated by small (<1 cm thick), taint mottles and trace tossils. SMEAR SLIDE SUMMARY (%): 3, 74
						•0=60.7 P=1.67	•%CaCO3=92.4	2			~ + ~ ~	1		D TEXTURE: Sand 15 Silt 70 Clay 15 COMPOSITION: Accessory munerals Tr
CENE		8	ssoni			•0=59.3 0=1.69	• * CaCO3	3			⊥ 1 > 1	*	Foraminiters 15 Nannofossilis 85 Radolarians Tr Siliceous tragments Tr	
MIDDLE MIOC	N14	NN6 - NN	Diartus petter	NTD 10		49 \$ \$ 50.7	•*CaCO ₃ =89.9	4			ドレント ト	1 1	TW	
						• 0-139.1 1-1543 1416	•×caco_3-90.6	5	restriction.		イント ト ノント	+ <u>+</u> +>> 1 +		
	A/G	A/M	A/M	C-A/M-G		• 0*64.1 • D.1 60	×CaC03	6 7 CC	the sector sector.			1		

-	8105		ZONE	ER			T	T	á				-	-	100	T
TIME-ROCK UNI	FORAMINIFERS	NANNOFOSSILS	DIATOMS		PALEOMAGNETICS	CHEMISTRY	SECTION	WETERS	GRAPHIC GRAPHI	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION	5-10-15-1			
			ar diorama)		0.59.5 V/1.61.00.57.5	%Caco_=92.1%Caco_3	1 1	0.5				NANNOFOSSIL CHALK with FORAMINIFERS Major lithology: This core contains white (2.5Y 8/0) NANNOFOSSIL CHALK with FORAMINI- FERS. Distinct mm thick, irregular, wavy, pale purple (5P 6/2) color bands are abundant in 10 to 50 cm thick intervals in Sections 1.4, 6 and 7. In the remaining sections, a few pale purple corb chards are observed and serveral greenish gray (55.5/2) color bands are noted throughout the core. The white sediment shows signs of boturbation, including motiles and pyritic specks. In some of the pale purple intervals, bioturbation is heavy as indicated by abundant burrows. The drilling process has resulted in moderately fractured biscuits in a still ooze matrix. SMEAR SLIDE SUMMARY (%): 3.75 D	20 25 30 40			
			inodiscus - (C. gigas v		2-65-0-0	0 \$ 1.68 V-1624 \$	7 3			Sand 15 Sit 65 Clay 20 COMPOSITION Foraminfers 20 Nannolossia 80 Radiolarians Tr						
	N13 - N14	NN6 - NN8	moronensis - C. Cosc		-55.3 • \$-57.8V-1601 V-15	03 %CaC0.92.3	ac03 •xcac03 •2.3						70			
			NTD 72 - NTD 9 A.			-XCa	5			1						
	A/G	A/M	A/M-G	-	0+61.0	- KCaCO-+01	7			1			120- 125- 130- 135-	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

5

LIN	BIO FOS	STR	CHA	ZONE/	R	5	IES	1				JRB.	SS		
	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTI	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
							•V=1547		1	0.5		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1 1		NANNOFOSSIL CHALK Major lithology. This core contains white (7.5YR 8/0) NANNOFOSSIL CHALK. Sections: and 5 each have two pale pink (SRP 8/0) intervals (10-50 cm long). The sediment is sligh boturbated as indicated by a few pyrite-filled motifies and specks. Distinct pale purple (5) 6/2) and greenish gray (55 52), mm scale color bands and a few om scale, pale purple zones are noted in Sections 3, 5 and 6. Drilling disturbance has resulted in moderately inclured biscuts in a stiff ooze matrix, except for Section 1, where the biscuts are highly fragmented. SMEAR SLIDE SUMMARY (%):
										Trees		1			2, 74 4, 57 D D
				snosipou			•/-1579		2	terel tere			1	*	TEXTURE: Sand 10 6 Siti 70 60 Clay 20 34
	N1 2	NN6 - NN8	artus petterssoni	pedodiscus coscil			• V=1576		3	the first second			1		Accessory minerals 2 Foraminifers 8 8 Nannotossils 92 87 Radolarians Tr Tr Siliceous fragments 3
			Dia	NTD 8 Cras			•V-1544		4	and marked and		H H			
							•/-1569		5	contact taxes			1	-	
	16	W/	W/	/M - G					6	and and		1	1		

1	BI0 FOS	STR	CHA	ZONE	/ TER	61	ES					RB	s		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC
												1			NANNOFOSSIL CHALK with FORAMINIFER

NN6 - NN8 Diartus petterssoni 6 Coscinodiscus lewisinus?

NTD

top

A/G A/P A/M A/M-G

MIDDLE MIDCENE

N12

DAY CONVENCTION	PHYS. PROPERTIES	CHEMISTRY	SECTION	METÉRS	GRAPHIC LITHOLOGY	DRILLING DISTURG.	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
	€¢=59.5	•%CaCo3=92.0	1	0.5		4	2		NANNOFOSSIL CHALK with FORAMINIFERS Major lithology: This core contains white (7.5VR 8:0) NANNOFOSSIL CHALK with FORA. MINIFERS. Sections 1 through 3 are white and homogenoous. From Section 4 to the base of the core, there are a low 20 to 30 cm thick intervals that exhibit time-scale color banding that is primarily pale pupile (F6 2) and to a lesser extent pale yellowish green (105V 72). Frie scale color banding imparts a pale pink (SRP 8.2) color to some intervals. A lew pink intervals exhibit significant traces of bioturbation. SMEAR SLIDE SUMMARY (%)
	•@=59.2	•×caco3=90.2	2				2		3. 75 D TEXTURE Sand 12 Sait 56 Clay 32 COMPOSITION
	V-1647-0-59.2 V-1645	•%CaCO3+88.5	3				2	* 0G	Accessory minerals 1 Foraminifers 12 Namofossis 84 Radiolarians Tr Siliceous fragments 3
	66-0-61.6	•×caco3=91.0	4						
	1865-0-57.9 Vat6	8 •×caco ₃ =89.1	5				***		
	1/1 504 0-60.9 1/1	•×caco3=87.	6				1 11		
			7			×××			

-	BIO	STR	CHA	CONE/	0	ES					88.	53		
	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETIC	PHYS, PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTURE	SAMPLES	LITHOLOGIC DESCRIPTION
					T				-	+++++	1	,		FORAMINIFER NANNOFOSSIL CHALK
						*61.4	4CaCO3+90.9	1	1.0		ユ エ ノ レ	1		Major lithology: This core contains while (7.5YR 8/0) FORAMINIFER NANNOFOSSIL CHALK. Thin (0.1-1 cm), pale yellowish green (10GY 7/2), greenish gray (5G 7/1), grayisi blue (5PB 5/2), and dark gray (NKP) color bands are common. At Section 5, 145 cm, gray bands begin to resemble flaser structures. Moderate bioturbation is evident from faint motifies and a few pyrife-filled burrows. SMEAR SLIDE SUMMARY (%):
						-1581-	3		1 111	+++++ +++++ +++++	/			3, 82 D
						1.3 V	co3=91.	2	and the		/ _	_		TEXTURE: Sand 15 Silt 50
						400 \$= 1	•%Ca		to the		1	٤		Clay 35 COMPOSITION:
			alata			1.3 V-16	100 ₃ =91.2	3	al mahan a		/// 4/ -	,	*	Foraminifers 25 Nannotossils 74 Radiolarians Tr Siliceous fragments 1 Siliceous sponge spicules Tr
	112	NN6	Dorcadospyris a	top NTD 62		1634 \$ = = = = = = = = = = = = = = = = = =	•%CaCO ₃ =89.3 •%Ca	4	antra ta a ta		+ + + / / / /	•		
						V=1585 = 0=61.5 V=	•*CaCO3=91.9	5				1		
	0	×	0	N				6			/ //////	*		

1	FOS	STRA	CHA	CONE/		LIES I					.88°	ES		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETIC	PHYS. PROPERI	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
						Ø=62.0	XCaCO3	2 1	0.5		+	1		FORAMINIFER NANNOFOSSIL CHALK Major lithology: This core contains white (7.5YR 8/1) FORAMINIFER NANNOFOSSIL OOZE. Moderate biourbation is indicated by small (1 cm thick), grayish purple (5P 4/2) mottles and occasional pyrite-filled burows. Color bands are rare, thin (<1 mm), distinct, and greenish gray (5G 7/1). SMEAR SLIDE SUMMARY (%):
						-1641-0-4	•%CaC03=90.5	2	and such as a second			1	OG	3. 55 D TEXTURE: Sand 15 Silt 70 Clay 15 COMPOSITION:
CENE				us lewisianus		•@=63.9 V	=90 \$%CaCO3 *90.7	3			+	1	*	Foraminiters 25 Nannofossils 72 Radiotarians Tr Siliceous fragments 2
MIDDLE MIC	LIN	NN6		D 6 Coscinodisc		V=1649 0 = 61.3	•XCaCO ₃	4			/ + / /	1		
				NTI		1.00.7	*CaC0 ₃ *85.7	5			トント	*		
	16			-A/M		V-1616		6			111	1		

FOSSI	RAT.	ZONE	ER	S S				88	53			Ser-	10
FORAMINIFERS	RADIOLARIANS	DIATOMS	our restantion to	PALEOMAGNETIC	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION	5 — 10 —	
				8.65.0.8	•×CaC03	1		1 11/ - 1	1		FORAMINIFER NANNOFOSSIL CHALK Major Ithology: This core contains white (7 5YR 8/0) FORAMINIFER NANNOFOSSIL CHALK, with pale purple (5P 6/2) intervals present in Sections 2 and 3. In the white parts of the core, bioturbation is slight to moderate, as indicated by several pyrite-filled burrows and specks. Signs of heavy bioturbation, nowever, are noted in the pale purple intervals. In Sections 3 and CC, a lew distinct, mm thick, greenish gray (5G 7/1) color bands are observed. Drifting disturbance is slight throughout the core.	20	a state
				(I-)	6.18= ₆	_			1		SMEAR SLIDE SUMMARY (%): 3, 75	30— 35—	一個
				5.0.58.5	•%CaCO	2			1		D TEXTURE:	40	Y A
				V-178	0.				1		Sand 20 Silt 65 Clay 15	45	
				59.2	0.059 0.003=91	-			1		Foraminiters 25 Nanotossiis 74 Badolarisine Tr		
	12			1691.	•**	3				•	Siliceous sponge spicules 1	60 — 	
	ris alat	67		2					1				
 1 IN SINN	adospy	NTD							11			75— — 80—	
Ì	Dorc			0,0	aco3=91.				11			85-	
				1638 0 0-5	•×C	-			1			90— — 95—	A.
				-7 0.8	CO3-93.0	5			1			100-	
				0.5	•×C4			Ň	1			105	1
					e.16=			V	1				
				0-56.9	•%cac03	6			1			120-	
		d/:		V-1610		7			1			130 -	1
A/G	C/P	1-0-1				cc		1	1			135-	

ç	2	
Ş	-	
ļ	T.	
ŝ	ŝ	
1	1	

12.5

SIT	ΓE	807	HOLE	Α		COP	۶E	41X C	ORED	1N	ITERVAL 379.5-389.2 mbsf	807A-41X	1	2	3	1	4		5	6	00
-	81 F(SSIL C	ARACTER	Es					. 9			12-	man -	Pa			1		Ro		
1	5 12	0	9	ERTI				11. 13. 14. 14. 14. 14. 14. 14. 14. 14. 14. 14	STUR	IURE		5-		-Passing		1	Sec.	H		-	
100		ISSO	S S	AGNE	TRY			GRAPHIC LITHOLOGY	D D	S RUC	DITHOLOGIC DESCRIPTION		-	17/2 Tak	11-		ALCON .			1000	- 1 0030
	UWV2	INOF	TON	EOM.	SIN	TION	TERS		E	S . ST		10			T	T	P.R.		1	1 aber	
Ē	FOI	NAN	DIA	PAI	CH	SEC	M		DRI	SEC	Z	15-	1	- Call	-33		Mar Sa		201		A DESCRIPTION
E					0				1	+	FORAMINIFER NANNOFOSSIL CHALK	1 and the second		- Settisu	6100	20	150			1.153	PALED
					3=94		-		1	1	Major lithology: This core contains moderately to highly bioturbated, white (7.5YR 8/0)	20-1	1400	The start	- 35	F	a la contra				
1				6.6	aco	,	0.5			1	not abundant. Minor intervals of light greenish gray (5G 7/1) color bands are present in	25-	-		S. ColE	1	And a			12315	1
1		11		00	X			+++++	1		Section 2.	_		1		80	1-2		+ +3	N.	C.C.W
				688			1.0	+++++	2		SMEAR SLIDE SUMMARY (%)	30-	Sector Sector	- Cotta	H		1	H		- (13	To Cart
				1	4					:	2, 100		Sec. 2		1	1	Set Sure			- 12	24/1
					16=		1		1	;	TEVTIDE			- 25		4	and the	11	5-27	1	118-22
				0.0	aco3				늰	3		40			-		and a		The second	- 4	the state of the s
				10-10-10-10-10-10-10-10-10-10-10-10-10-1	XC	2				i	Sint 60	100-	1000	1000		88			25		Sec.
				15	-		-			i.	Clay 5	45-	1910	a delants	1120		L. Alle		5 2 3	1. C. S. S.	1000
				-1-A			1.0	1,1,1,1	Ī	ŧ	COMPOSITION:	50-	1	1085	- 35	5-	5377		-	-	-
1					4			++++++	1	12	Foraminifers 32 Nannolossils 65	- C	132 C	- Hard			ares	11	1	S Setting	200
		11			= 89		1	++++++		1	Radiolarians 2 Silicofanellates 1	55-	ALL AND	- Bert	H.		Sine M				These
				9.6	aco		111	+++++	2	1	omeoningenauos.	60-	1000				不良			1000	100
					×c	3			1/1			1	Pare.	- Aller		~	đ.	11			13.12
1				775			3	+++++		5		65-	202				1.8			1 200	1000
N L				5			11	1 1 1 1				70-	Too the	150	200		R		1	15	1997
00	2				8		-	1 1 1 1		2		10-	Carl Carl	- Harris			1	1	1	1	1.50
2	1-17	SZ2	~		9=6			++++	1			75—	1000	-1)	-1-	1	RAF	H		- 188	1512
1	1		111	55.8	aco		1	++++++	2	1		- 00	ter line		010				7		65/3
					×	4			1/	1		-	12-12			1				1	Sec.
2				732			1			1		85	- 3-	-	-	1-	Ter a	H	1	-1	-12
				13			1.1.1		뷘	1		-		1 - 2		25	E.	11		1. 200	E E F
					~	-	-	+++++	1/	1				173		20	12-17		1		Call at
					= 84				-			95-		- Bayer	-		2.01	H	1. 2.25	-	-
				4.7	aco3		1	+++++++++++++++++++++++++++++++++++++++		:		_	1322	- Cin	1 1 7		64		Sec. 2	1 Sale	al de se
				0.5	XC	5				;		100-	Sal Sal			E	and the		Aurs	1 Caller	200
				766	-		-		K.	;		105-	Canton	-1-	-1	-	1 the	H	A. St	-	-
				1-			1			1		-	and the	ALC: NO	12	80	(Frank		1		15200
					0	-	-		11	1		110-	and a			80	1/2 m		and a		
					3=88			+++++		1		115-		-		1-	1	Н	C. C.		1-00
				22.5	aco	6		+++++		1				1-172			1-1-	11	1000	pa-	Carlor -
				60			-			1		150-	1223								02
			100	729			1		Ľ.	1		125-		1200	11	-1-	1				220
	CIN	A/N	F/P	13		CC			Í I	!		5 - C -	Sector 1	Sec.			1	1 1	E - Martin	Sul and	128.2
	1/2		- الله		4.				100 C			130-		- Cal	1	34	Are a	H	E - Su		Tantan
												135-		_			1000	1	100	and and	200
												-		1	100		AL		R. 1511	- Carlo	Stor -
												140-	Part	- 81	-	-	17	-	1 martin		
												145		1 Ale		and -	18			1000	200
												140		S ALES		-	1	4		Ser	813
												150-	T	an Marine	h-h-	-1-	- an-	1 1	Para -	- · · ·	-

NIT	BIO FO	SSIL	АТ. СНА	ZONE	ER	5	IES					. BRU	Es		
TIME - ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERI	CHEMISTRY	SECTION	NETERS	GRAPHIC LITHOLOGY	DRILLING DISTI	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
						A EE C	V-1688 9 - 1.75	.4 •%caco3=94.0	1	0.5		1/1/1/1/1			FORAMINIFER NANNOFOSSIL CHALK Major lithology: This core contains moderately to highly bioturbated, white (7.5YR 8/0) FORAMINIFER NANNOFOSSIL CHALK. Disseminated pyrite-filled burrows are present not abundant. Minor intervals of light greenish gray (5G 7/1) color bands are present in Section 2. SMEAR SLIDE SUMMARY (%): 2, 100
							V-1715 0.100	•%caco3=91.	2			+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$		•	TEXTURE: Sand 35 Sitt 60 Clay 5 COMPOSITION: Foraminifers 32
CENE						9 02-W	V-1775-5-1.68	•%CaCO3=89.4	з						Nannotossils 65 Radolarians 2 Silicoflageilates 1
MIDDLE MIO	N11	NN5		2			V=1732	•×caco3=32.8	4	والبيبية وموربا ومر		////// イ/			
						A-67.4	V=1766	•%caco3=84./	5			1 11 1 1	*******		
	C/M	A/M		F/P		2 22 Q	V=1729	•%CaCO ₃ =88.3	6			11/1/1	********		

-	810	STR	AT	ZONE	1		50								
TIME-ROCK UNI	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	ER	PALEOMAGNETICS	PHYS. PROPERTIE	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURE	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
							1848 9-55.3	•%CaC03*92.1	1	0.5			*****	*	FORAMINIFER NANNOFOSSIL CHALK Major lithology: This core contains white (7.5YR 8/0), moderately to highly bioturbated FORAMINIFER NANNOFOSSIL CHALK. Indistinct burrow motiles are present in Sections through 5. An interval of light greenish gray (156.71) color bands is present as Section 5. 110 cm. Below this level, the sediments are extensively stained with grayish blue (5PB 5: pyrite tilled burrows. SMEAR SLIDE SUMMARY (%).
							-V 85.55.1.78	•%CaCO3=90.5	2	and the barry		+ + + + + + + + + + + + + + + + + + +	******		TEXTURE: Sand 15 Sat 81 Clay 4 COMPOSITION: Foraminifers 30
CENE			s alata				• = = = = = = = = = = = = = = = = = = =	•%caco ₃ «90.6	3	and the officient		11/1/1/11	****		Gass Tr Namofossis 67 Radiolarians 1 Silicottagellates 1 Spicules 1
	NIO	NN5	Dorcadospyris	6			V=1765 = D=1.79	.0 •%CaCO3=90.1	4	and multiple		11/1/1/1/1		og	
							V=1722 - 2=1.77	•%C3C03*92	5				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	W	
	C/M	A/M	C/P	R/P					6 CC				11 11 11		

11	BI0 FO	SSIL	АТ СНА	RACT	ER	0	ES					88.	8		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTURE	SAMPLES	LITHOLOGIC DESCRIPTION
							• p. 1.75	19.5 •×CaC03	1	0.5		111111111	*****		FORAMINIFER NANNOFOSSIL CHALK Major lithology: This core contains white (7.5YR 8/0 and 5Y 8/1) FORAMINIFER NANNO- FOSSIL CHALK. The chalk is slightly to moderately biourbated throughout, and Section 1 is stained by moderate amounts of grayish blue (5PB 52) prite-filed burrows. Several ligh gray (N7/), thin (mm scale) color bands are present at Section 5, 130 cm. SMEAR SLIDE SUMMARY (%): 3, 80
						5	• = 1.74	•*caco ₃ =8	2	d'read-ared		シューシン	*****		D TEXTURE: Sand 20 Sit 75 Clay 5 ComPOSITION:
MIDCENE	6N .	5	yris alata				V-1887 0 24.7	.8 •%caco3=90.6	3	the form been and		/ -//- ///////	*****	*	Foraminiters 25 Nannofossils 70 Radicilarianis 4 Silicoffagellates 1
MIUULE	- 8N	NN	Dorcadosp	2		2 2 2 T	V=1863 9 2.1 81	.5 •**CaCO _{3*} 88	4	ered seed rese		VVF VVF			
							V=1824 • P=1.78	•×caco3*92	5	and real real		くてててくくくく			
	C/M	A/M	A/P	±/P					6	Teres Level		× × × × ×	*****		

S
E
8
3

IIE		50.	/	HU	LE	A		-	CO	RE	44X C0	REL	2	NI	ERVAL 408.0-418.3 MDSt	807A-44X	
TIME-ROCK UNIT	FORAMINIFERS	NANNOF OSSILS	RADIOLARIANS P. T.	ZONE RACI SMOLVIQ	TER	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION	5	
MIDDLE MIOCENE	64 - 8N	NN5	Calocycletta costata	3		A A	1.1 • • • • • • • • • • • • • • • • • •	c03=91.5 • • × cac03*91.3 • × cac03*92.5 • × cac03*88.6 • × cac03 • 88.6 0	3 3 4 5	9		NINNI FFXXXFF XXXFXXFXXFX/FFNNN/FNN/	3	-	FORAMINIFER NANNOFOSSIL CHALK Major fibrology: This core contains while (7/5/H Bi0, 2.5Y Bi0, and 5Y Br1) FORAMINIFER NANNOFOSSIL CHALK. The sediments are slightly to moderately bioturated, with in- distinct motifing and minor staining by grayish blue (SPB 5/2); pythe filled burrows. Several light gray (5Y 7/1) color bands are present is sediment and 5, and dip at angles of 10-30° across the core surface. These may represent sediment deformation zones. SMEAR SLIDE SUMMARY (%): 2.79 D TEXTURE: Sand 30 Sit 65 COMPOSITION: Foraminfers 25 Nannofossils 70 Radiolarians 4 Silcoftageliates Tr	15	
	A/G	A/M	C/P	F/P			.đ	• *(6			//////	****			115- 115-	

SITE	Ξ 8	307	<u> </u>	HOLE	1	4	_	co	RE	47X CC	RE	DI	INT	ERVAL 437.5-447.1 mbsf
TIME-ROCK UNIT	FORAMINIFERS	STR SIL STISSOLONNAN	RADIOLARIANS 2	ZONE/ RACTER SWOLVIO	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
						661 - 0-56.5	•%CaC03=93.3	1	0.5-			****		FORAMINIFER NANNOFOSSIL CHALK Major lithology: The major portion of the core contains white (10YR 8.0 and 5Y 8.1) FORA- MINIFER NANNOFOSSIL CHALK. The upper 4 sections are homogeneous with minor horizontal upyrite-filed burrows. The entire core is moderately blotubated Minor lithology: Below Section 5, 121 cm. 10 to 30 cm thick, white (5Y 8.1) intervals NAN- NOFOSSIL CHALK with FORAMINIFERS are interbedded with the major lithology. SMEAR SLIDE SUMMARY (%)
						• \$=54.4 \$=1.78 V-1	•%CaC03=92.5	2				*****		3.80 D TEXTURE Sand 20 Sit 76 Clay 4 COMPOSITION:
DCENE	8		costata			• \$=53.2	•%CaCO ₃ =94.8	3	and see a		イ/////	*****	*	Foraminiters 35 Nannofossits 62 Radiolanans 1 Spicules 2
MIDDLE MIC	N 8 - N	NN4	Calocycletta			•0-51.9 P=1.81	•%CaCO3=93.7	4	and and have		///////	****		
						• 0=53.8 • 0=1.79	91.9 •%CaC03-92.5	5			111111	****		
	C/M	A/M	A/P			V=1864 0 = 54.3	•%CaC03*	6			X JJJJ			

10	810 F05	STR	АТ. СНА	ZONE	TER	vi l	ES				IRB.	ŝ		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTURI	SAMPLES	LITHOLOGIC DESCRIPTION
							-1777	•xcaco3=90.6	0.5-		111111	****		NANNOFOSSIL CHALK with FORAMINIFERS Major lithology: This core contains white (5V 8/1 and 10VR 8/1) NANNOFOSSIL CHALK with FORAMINIFERS. Bioturbation is heavy to slight throughout the core and decreases intensity downcore. The bioturbation is generally expressed as simple horizontal burrow motiling, although a <i>Zoophycos</i> trace fossil is present in Section 1, and <i>Chondrites</i> is present in Section 4. SMEAR SLIDE SUMMARY (%)
							V-1741	•%caco _{3*17.9}	-		///////	* * * *		a, 44 D TEXTURE: Sand 10 Sit 86 Clay 4 COMPOSITION: Exampler 15
OCENE			s wolffi				-1821 \$ 1.82 V	•×caco3=91.3			//×////	****	00	Foraminiers 15 Nannofossils B2 Radioanans 1 Skicoflagelates 1 Spicules 1
MIDDLE M	NB	NNA	Stichocory	2		0 Q-22 4	V=184500=1.81	•×caco3=92.8	-		/ 1/////	~ ~ ~ ~ ~	*	
						P === 0	V=176705=1.83	•×caco3=93.3			///////	*****		
						5 63-W	V=1784 • = 1.80	•%caco3 *95.0	5 -		/ 1//11 /	****		
	C/M	A/P	C/P	R/P				c	7 C		I> Y	1		

-	810	SUSTR	AT.	ZONE		Ľ	5	Γ		RE	497 00	In In			ERVAL 450.8-400.4 MDST
TIME-ROCK UNI	FORAMINIFERS	NANNOF OSSILS	RADIOLARIANS	DIATOMS	TEN	PALEOMAGNETICS	PHYS. PROPERTIE	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTUR	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
							78 V=1 702 0 = 1.74	:03*96.9 *CaC03	1	0.5-			* * * *		NANNOFOSSIL CHALK with FORAMINIFERS Major lithology: This core contains while (10YR 8-1), moderately to heavily bioturbated NANNOFOSSIL CHALK with FORAMINIFERS SMEAR SLIDE SUMMARY (%): 2, 116 2, 116 5 TEXTURE: Sand 9 Sit 85 Clay 6
LOWER MIOCENE	N6 - N7	ENN		2			V-1901 - 22.7 V-1829 - 24	1.6 •%CaCO3=96.0 •%CaC	3	and the second second second second		1111111111111111		*	COMPOSITION. Foraminifers 14 Nanofossis 85 Radolarians Tr Siliceous tragments 1 Silicoflagellates Tr
							V=1782 9 = 48.8 V=1817 9 = 1.82	•%CaCO ₃ *92.7 •%CaCO ₃ *94	4						
	F/P	A/M		R/P					6 CC			T	2 2		

LIN NILL	B10	STR	CHA	ZONE/ RACTER		1ES					RB.	ES		
TIME-ROCK U	FORAMINIFERS	NANNOF OSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETIC	PHYS. PROPERI	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
						• 0.50.8	•%CaCO ₃ =94.9	1	0.5			*****		FORAMINIFER NANNOFOSSIL CHALK to NANNOFOSSIL CHALK with FORAMINIFER Major lithology. This core contains white (2.5Y 8/0) FORAMINIFER NANNOFOSSIL CHAL to NANNOFOSSIL CHALK with FORAMINIFERS. In Sections 1 through 4, moderate to heavy bioturbation is indicated by abundant motiles and grayish blue (5PB 5/2) pythe III burrows. In Sections 5 through CC, only a two signs of bioturbation are visible. Sections 5, 6 and CC have several zones (a few cm thick) of light gray (5Y 7/1) flaser structures. SMEAR SLIDE SUMMARY (%)
			orys wolffii			• 0=53.4 0=1.79	•×caco ₃ =95.7	2	and and and			****	*	Z. 50 D TEXTURE: Sand 30 Sit 65 Clay 5 COMPOSITION
ER MIOCENE	N5	NN2	tensis - Stichoco	2		•0=54.0	• × CaCO3=95.4	3				1 1 1 2 11		Foraminiters 25 Nannofossilis 70 Radolanans 4 Sticoftagelates Tr Spicules Tr
LOW			tichocorys delmon			• 0-54.2	•%CaC03-96.0	4	and see here a			0P 1 1 1		
			S			• 0-47.4 D.1 90	•%CaCO3=92.4	5				L1 LL1		
	A/M	A/M	C/P	3/P				6			ンエン	2-1		

TE	80	7 H	IOLE	A	-	COF	RE	54X C0	RED	INT	ERVAL 505.1-514.8 mbsf	807A-54X 1	2	3
FORAMINIFERS 7	NANNOF OSSILS	CHARA SNBIBLIOIDER	CTER	PALEOMAGNETICS PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION	5	1 4 4 M 10	
				• 0=54.4 D=1 70	•%CaC03	1	0.5		/// + +/	ŧ	NANNOFOSSIL CHALK with FORAMINIFERS Major lithology: This core contains white (2.5Y B/0) NANNOFOSSIL CHALK with FORAMINI- FERS. There are occasional flaser structures observed as braided color bands. Bioturbation is slight, with only a few disseminated pyrite specks in the core; otherwise the core is structureless. SMEAR SLIDE SUMMARY (%):		E	
				•0=54.9 P=1-78	•%CaCO ₃ =95.7	2	and some services of the		シノ エノノノ エノノ	1	3.74 D TEXTURE: Sand 12 Sant 60 Cany 28 COMPOSITION Accessory minerals 2.	30 		
N4	NN2	corys delmontensis Rosiella paleacea		•0*53.9 •0*1.80	•%CaCO_3=96.9	з	and contracts		1 1 1/1/1 //	؛	Foraminifers 20 Nannotossis 75 Radiolarianis Tr Siliceous Iragments 3 Silicotlagellates Tr	55 — 60 — 65 — 70 —		
		Stichou		• 0-55.8 P=1.77	6 •%caco3-95.0	4	and the set of the set							
				7.2 0.57.3	sco ₃ •94 .4 ●%caco ₃ •96.	5	the second second second			1				
A/G	A/M	C/P D/D		V=1693 00=5	•×Ca	6 CC			⊥ ⊥	2		115		

t,	BIC FOR	STR	AT. CHA	RACT	ER		0	Τ			RB.	8		
TIME - ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	THE PACE	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
								1	0.5			******		NANNOFOSSIL CHALK with FORAMINIFERS Major lithology. This core contains white (10YR 8/0 and 10YR 8/1) NANNOFOSSIL CHALK with FORAMINIFERS. Boturbation is apparent on clean split faces as predominantly hori- contail motifies. The lower part of Sections 4 through CC are slightly inted with grayish blue (SPB 5/2), pyrite-filled burrows. Poorly developed, gray (Nér) flaser structures and light gray (N77) color bands appear in Section 4, 25:30 cm, in Section 5, 9 and 132 cm, and in Section 6, 9 cm. SMEAR SLIDE SUMMARY (%) 3, 78
Sal MIOCENE			ta			ar :-//	0 00- 00/1-/-	2				*****		TEXTURE. Sand 8 Sift 85 Clay 7 COMPOSITION:
LIGOCENE - bas	P22 - N4	NN1 - NN2	nocanoma elonga	2		74.7 4 0-53.5	64 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	3	e e l'este d'e e e e			*****	۲	Foraminifers 15 Nannofossils 83 Radiolarians t Siliceous tragments 1
UPPERMOST C			L YCh			1837_0=53.5 14.1		4	a constant a sub-			11211		
						1821-0-52.2 1/1		0're -Consort			シェンシューン	1111		
	A/M	A/M	A/P	R/P		11		6				111		

NIT.	BIO	STR	CHA	RACT	/ TER	90	IES					JRB.	ES.		
TIME-ROCK UI	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERI	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
UPPER OLIGOCENE	P22	NP25	Lychnocanoma elongata	Rocella vigilans			• 0=53.9 P=1.78	•%cac03*91.8	1 2 3	0.5				*	NANNOFOSSIL CHALK with FORAMINIFERS Major lithology. This core contains while (2.5Y 8/0) NANNOFOSSIL CHALK with FORAMINI- FERS, which is slightly to moderately bioturbated throughout. Zones with minor this of pale purple (5P 6/2) are present in Soctions 1 and 2. Gray (N6) mm scale color bands are present at Section 3. 133-137 cm, and light gray (N7) mm scale color bands are present at Section 3. 133-137 cm, and light gray (N7) mm scale color bands are present at Section 3. 133-137 cm, and light gray (N7) mm scale color bands are present at Section 4. The form the Core Cather that was processed for paleontologic analyses contained abundant volcanic ash: the volcanic ash was not obvious during inspection of the core itself. SMEAR SLIDE SUMMARY (%): 3, 56 D TEXTURE: Sand 30 Silt 65 COMPOSITION: Foraminifers 15 Namotosolis 80 Cuartz Tr Silcotlagellates 1 Spicules Tr
	A/G	A/P	A/P	C/P					4 CC	1			1		

ALT.	810 F0	SSIL	АТ. СНА	ZONE/	R 10	IES					JRB.	ES		
TIME-ROCK UI	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETIC	PHYS. PROPERI	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTI	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
			tata			• 0=51.4 P=1.84	•%CaCO3=93.3	1	0.5			1 1 1 1		NANNOFOSSIL CHALK with FORAMINIFERS Major lithology: This core contains while (2.5Y 8/0 to 7.5YR 8/0) to light gray (2.5Y 7/0) NANNOFOSSIL CHALK with FORAMINIFERS. Biourbation is moderate to heavy throughout the core, and is expressed as diffuse color moting and simple burrows. Section 2: 62-68 cm is gray (N6/) in color and contains discontinuous burrows and a distinc Zoophycos trace fossil. SMEAR SLIDE SUMMARY (%):
OCENE			ychnocanoma elong	lans		• 0=49.1 P=1.88	• % CaCO3=96.3	2	and and one		/// ++///////	1 11 11 11		3.80 D TEXTURE: Sand 10 Sit B6 Clay 4 COMPOSITION:
UPPER OLIG	P22	NP 25	ris ateuchus - L	Rocella vigi		• 0=51.1 P=1.84	•×caco3=91.3	3	and muchane		ンノノー ノノノ ーー	* ** *		Poraminers 12 Nannolossis B4 Silcottagellates 1 Spicules 2
			Dorcadospyi			•0-50.8 P=1.84	•%CaC0_3=92.4	4			/// エノノノ エー	* * * *		
	A/M	A/M	A/P	C/P				5 CC			11/1/1	1 1		

	FOS	STRA	CHA	RACT	ER	60	ES.					88	5		
	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTURE	SAMPLES	LITHOLOGIC DESCRIPTION
	P22	NP 25							1	0.5			11 11 11		NANNOFOSSIL CHALK with FORAMINIFERS Major lithology. This core contains while (5YR 8 1) to light gray (5YR 7 1), heavily bolur bated NANNOFOSSIL CHALK with FORAMINIFERS. The sediments are reliablely homogeneous: except for two cm scale, grayish red purple (5RP 4 2) burrow "halos" present in the Core Catcher.
	A/G	A/P	CIP	C-A/P					cc	1.0			**		SMEAR SLIDE SUMMARY (*o) 1. 54 D
5			D. ateuchus - L. elongata	Rocella vigilans											TEXTURE: Sand 14 Sit 82 Clay 4 COMPOSITION Diatoms Tr Foraminiters 15 Nannotossils 80 Silicoflagellates 1 Spicules 2

11	BIO	STR.	CHA	ZONE/	2 00	ES					RB.	s		
TIME - ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
								1	0.5		<<<<<	****		NANNOFOSSIL CHALK with FORAMINIFERS Major lithology: This core contains white (2.5Y 8/0 to 10YR 8/1) NANNOFOSSIL CHALK with FORAMINIFERS. The entire core is moderately to heavily boturbated with simple, min scale, horizontal burrows. Section 5, 109-116 cm, contains white (2.5Y 8/0) and gray (N5/) chalk, extensively mixed by burrowing. SMEAR SLIDE SUMMARY (%): 3, 77
			anoma elongata				-	2			~~~~~~	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		D TEXTURE Sand 20 Silt 75 Clay 5 COMPOSITION: Dotome To 10
PPER OLIGOCENE	P210 - P22	NP257	euchus - Lychnoc			• P=1.86	•%cac03=92.	3	· · · · · · · · · · · · · · · · · · ·		くくくくく		*	Craminilers 15 Nannofossis 80 Radolanans 2 Silcoflagellates Tr Spicules Tr
n			Dorcadopyris at					4				*****	OG	
						• \$-46.7	•%CaC03=92.1	5				***		
	C/G	A/P	C/P	R/P				6 CC			1222	****		

61 T	BIC	SSIL	CHA	ZONE/	ER	S					88.	sa		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
						123 . 0 = 49 . 4	•%CaCO ₃ =92.6	1	0.5		H X H X H H	n n n		NANNOFOSSIL CHALK Major lithology: This core is predominantly NANNOFOSSIL CHALK. The color is white (7.5YR 8/0) but grades to paie blue (5PB 7 2) in the lower parts of Section 2 and Section 5 and to grayish blue (5BP 52) over 5 cm intervals in Sections 3 and 4. Boturbation is moderate to heavy and dominated by Zoophycos burrows. White and grayish blue (5PB 5/2) motiles and cm scale, pyntized specks are also present. Section 2 and parts of Sections 1.3 and 4 contain densely spaced white and grayish blue (5PB 5 2) color bands. Single, greenish gray (5CY 61) bands are wispy and 2 to 3 mm wide. Minor lithology: NANNOFOSSIL CHALK with ASH is found in Section 5 between 63 and 70
						V-18			111		1	1		cm. The color grades from light gray (N7) at 53 cm to dark gray (N 4.) near 70 cm. The layer is moderately bioturbated, including <i>Chrondnites</i> burrows.
			ns			9.01-49.0	•%CaC03=93.2	2	- Constraints		1111	1 1		SMEAR SLIDE SUMMARY (%): 3.60 5.70 D M TEXTURE:
CENE	2		teuch	sue		V-182			-		1	+		Sand 5 6 Silt 70 74 Clay 25 20
UPPER OLIGO	P21b - P2	NP 25	rcadospyris at	Rocella vigili		180600=49.6	•×cac03=93.	3	- land - land		11111	8 + #	*	COMPOSITION: Diatoms Tr Feraminiters 5 Tr Nannofossils 94 89 Hadolatans 1 Spicules Tr Tr Volcanic ash Tr 10
			DO			V=184800=51.1	•%CaC03=94.0	4	a sector sector sector		11/1/1/1	1		
				/P		1/-1821-0-50.6	•%CaC03=94.5	5			1111111	*****	•	
	A/G	A/P	A/P	U L L				cc			1	1		

2
3
8
1.41
8
3

INIT	BIC FOS	STR	CHA	RACTI	ER	cs	TIES				URB.	SES		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETI	PHYS. PROPER	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
						9 0 F W	V=1 95 70 1.86	• *CaC03 *90.3	1					NANNOFOSSIL CHALK with FORAMINIFERS Major lithology. This core contains white (2.5Y 8.0), moderately to heavily biofurbated NANNOFOSSIL CHALK with FORAMINIFERS. Horizontal: min to cm scale, white to light gray (N6 liburrows are common throughout, Intervals of light gray (N6) libaser structures and wavy color bands are observed throughout. A few graysh blue (SPB 5.2), pyritized burrows were observed in Section 3. Minor lithology. NANNOFOSSIL CHALK with ASH is found in Section 4 between 66 and 69
			SD			A.E.A. 7	P=1.84	%CaC03=93.5				22 22 22	*	cm and between 94 and 98 cm. The color is gray (N6) in the upper ash tayer and grades between gray (N6) and dark gray (N 3) in the lower ash zone. Both ash tayers are bioturbated. SMEAR SLIDE SUMMARY (%):
IGOCENE	- P22	4	s ateuch	'igilans			V-1795		2			11	og	D M TEXTURE: Sand 12 16
UPPER OL	P21b -	NP2	cadospyri.	Rocella V		1 0 1	5*1.88 .1.88	%CaC03*91.0	3			**	IW	Set 65 60 Clay 23 24 COMPOSITION:
			Dor				V-2000	13.9				# # #		Foraminifers 10 5 Nannotossils 87 74 Radiolanans 2 1 Spicules Tr Tr Volcanic ash 1 20
						1 07 1	30 P=1.83	•%caco3=	4			1 1		
	A/G	A	A/P	A/M			81-7		сс				•	

ITE		80	7	HO	LE	A	_	_	CO	RE	73X CC	RE	DI	NT	ERVAL 687.8-697.5 mbsf
ME-ROCK UNIT	RAMINIFERS TO B	NNOFOSSILS	T. H SNEIBEIG	SHOLY	ER	LEOMAGNETICS	YS. PROPERTIES	EMISTRY	CTION	TERS	GRAPHIC LITHOLOGY	ILLING DISTURB.	D. STRUCTURES	WPLES	LITHOLOGIC DESCRIPTION
UPPER OLIGOCENE	P21b - P22 FORMWINEERS	NP23 - NP24 MANNOFOSSILS	RADIOLARIANS	Rocella vigilans		PALEOWAGNETIC	V-1978•92.50.85 V-1778•92.496 V-2074•92.50.6 V-2074•92.50.6 V-1842•92.52	=87.3	1 1 2 3 4 5	0.5		$P \vdash P \vdash V \land V \land V \land V \land V \land V \land V \vdash P \vdash P \vdash V \land V \land V \land V \land P H \vdash P$		* SAMPLES	LITHOLOGIC DESCRIPTION NANNOFOSSIL CHALK with FORAMINIFERS and FORAMINIFER MANNOFOSSIL CHALK Major lithology: This core contains white (10YR 8/1 and 2.5Y 8/0) NANNOFOSSIL CHALK with FORAMINIFER NANNOFORAMINIFER NANNOFOSSIL CHALK with FORAMINIFER NANNOFOSSIL CHALK with horopy by subject or diameter grayinsh pupel (5/42); Thalo: Several intervals, up to 20 cm thick, contain wspy flaser structures. A single color-banded, pale blue (5/PB 7/2) zone is noted in Section 5. Minor lithology: NANNOFOSSIL CHALK with ASH is found in the Core Catcher between 27 and 34 cm. The color grades from light gray (N7) near 27 cm to dark gray (N4) near 34. The layer is bolurbated. SMEAR SLIDE SUMMARY (%):
	C/M	M/M		c/P			V=2074 9 = 48.4	•×CaCO ₂	6 cc				1 元 1 1		

1053

NIT	BIO FOS	STR	Т. 3 СНА	CONE/	I S	TIES				URB.	SES		
TIME-ROCK U	FORAMINIFERS	NANNOF OSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETI	PHYS. PROPER	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
						• 47.8 P= 1.88	4.4 • KCaC03	1			*****		NANNOFOSSIL CHALK with FORAMINIFERS and FORAMINIFER NANNOFOSSIL CHALK. Major lithology: This core contains NANNOFOSSIL CHALK with FORAMINIFERS and FORAMINIFER NANNOFOSSIL CHALK. The sediment is white (2.5Y 80), with 5 to 15 cm thick intervals grading into light gray (2.5Y 70) in Section 2. The base of a light gray interval is often sharp. Moderate to heavy bioturbation is indicated by abundant motiling and sub-horizontal burrows. Thin (rim size), gray (N6), wispy color bands with flaser structures are common in conjunction with microstyloites.
WER OLIGOCENE	P21a	NP 23	idospyris ateuchus	5		V-202400-10.6	4.0 •%cac03=9	2			11 11 11 11 11 11 11 11 11 11 11 11 11	*	SMEAR SLIDE SUMMARY (%) 2. 67 D TEXTURE Sand 30 Sit 65 Clay 5 COMPOSITION
LO1			Dorce			• Ø=49.8 P.1.84	•%CaCO3=9	з			*****		Diatoms Tr Foraminifers 25 Namofossils 70 Ouartz Tr Radiolarians Tr Silicoffagellates Tr
	/W	/W	/P	d/				4					

TIN	BIO FO	OSTR SSIL	AT. CH	ZONE/	so	TIES					URB.	SES		
TIME - ROCK L	FORAMINIFERS	NANNOFOSSILS	RADIOL ARIANS	DIATOMS	PALEOMAGNETI	PHYS, PROPER	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTUI	SAMPLES	LITHOLOGIC DESCRIPTION
LOWER OLIGOCENE	P21a	NP23		2 di		V=20239 0=1.87 0=0.48.1 V=17710 0=50.8 V=20150 0=51.0	•xcaco ₃ =93.1 •xcaco ₃ =94.9 •xcaco ₃ =95.5 • x caco ₃	1 2 3 4 5	0.5				og	NANNOFOSSIL CHALK with FORAMINIFERS AND FORAMINIFER NANNOFOSSIL CHALK Major thirology: This core contains while (2.5Y 8/0) NANNOFOSSIL CHALK with FORA- MINIFERS and FORAMINIFER NANNOFOSSIL CHALK, which becomes more uniform appearance downcore. Gray (N6) styloites and distinct, mm thick, greenish gray (56 6r) color bands are common in Sections 1 and 2, and present in Section 3 Sections 1 through 3 are sightly to moderately boturbated; Sections 4 through Core Catcher are moderately to have have hybrid by the comparison of the Catcher are moderately to have hybrid by the comparison of the core D TEXTURE: Sand 30 Sit 65 Clay 5 COMPOSITION: Diatoms Tr Foramin/ters 25 Nannotossits 70 Quartz Tr Selicoftageliates Tr

111	810 F05	STR	СНА	ZONE/	R	IES					RB.	sa		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	and a second sec	PALEOMAGNETIC PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
						V-215600-49.6	•%CaCO3=92.4	1	0.5			* * *		NANNOFOSSIL CHALK with FORAMINIFERS Major lithology: This core contains NANNOFOSSIL CHALK with FORAMINIFERS. The cold grades between withit (2.5Y 8.0 and 5Y 8.1) light greenish gray [53.7.1), light gray (N7 and 5Y 7.1) and grayish blue (5PB 5.2), commonly with an overall wispy appearance. The sediment is slightly to heavily bolurbated throughout. Millimeter scale, predominantly horizontal, and apparently flattened burrows predominate. Several 3 cm thick intervals of greenish gray (5G.6.1), mm scale color bands enclose zones of weakly developed flaser structures with possible microstylolites. White (2.5Y 8.0), gray (N.5.1), and grayish blue (5PE 5.2) color bands also are present throughout the core.
ш			snu			• 0=46.8	•%CaCO3+92.4	2				111	*	SMEAR SLIDE SUMMARY (%) 2.80 D TEXTURE Sand 20 Silt 75 Clay 5
OWER OLIGOCEN	P21a	NP 23	cadospyris ateuct	Rocella vigilans		08600=50.0	•%CaCO3=92.3	, 3				1		COMPOSITION Diatoms Tr Foraminifers 15 Nannotossis 80 Quartz Tr Radolarans Tr Silicoflagellates Tr
1			Dor			/~2086 @ *47.7 V-2	•%CaCO ₂ =93.2	4			/ /+ + -	**	LND	
						• Ø=49.3	• %CaC0, -93.8	5			- / / /	*	1 111	
	A/M	A/M	A/P	C/P				6	-		1222-	**		

NIT	BIO	STR	AT.	ZONE/	R	SE					RB.	ES		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETIC	PMYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
						V=2055 • 0=48.4	• xCaCO3	1	0.5		H + X X + H	11 2111		NANNOFOSSIL CHALK with FORAMINIFERS AND FORAMINIFER NANNOFOSSIL CHALK CHALK Major thrology. This core contains NANNOFOSSIL CHALK with FORAMINIFERS and FORAMINIFER NANNOFOSSIL CHALK. The color grades between white (2:55 8 0, 5 9 1, and 7:578 8 0) and light gray (7:578 7 0). The sediment is quite uniform and moderately to heavily bioturbated, predominantly with subhorzontal. mm scale, simpl burrows. Discrete cm scale, horzontal burrows also are present in Section 1. Flaser structures with microstyloities are seen in Sections 1 and 3. Millimeter-scale faint colo bands occur in Section 5 and throughout Section 6. Section 4, 56 61 cm, contains an heavily bioturbated, gray (2:576 0) [ayer. which contains about 5% volcame ash.
							32.5				1	11		SMEAR SLIDE SUMMARY (%)
						9.6	5=E00	2				11		3.82 4.60 D M
						0-4	• XCa		1		1	8		TEXTURE:
						1						11		Sand 30 10 Sift 65 70
				ŝ			92.1				I	1		Clay 5 20
	P21a	NP23		Rocella vigilan		V-203000-19.6	8 •%caco ₃	3	and market		1111 (11 L 11	*	Diatoms Tr — Foraminifes 25 7 Nannofossils 70 86 Ouartz Tr Tr Radiolanans Tr 2 Sticoftagelates Tr — Volcanic ash — 5
						V-1981 - 2-50.7	•×cac03-92.	4	and see here		11111111	****	*	
						V-1982 0 - 49.9	•%CaCO3=93.5	5			11 11/1/11	1 1 1 1 1		
	A/M	A/M		C-A/P				6 CC			シノノノノー	1 1 2		

	FO	SSIL	CH	ARAC	TER	60	0	8					BB.	57				
	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOWAGNETIC	PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	NETERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTURE	SAMPLES	4	LITHO	LOGIC DESCRIPTION
LOWEN OLIGOUENE	M P21a	M NP23	Dorcadospyris afeuchus	M-G Rocella vigilans				V-2003 • \$1.7 • \$1.3 V-2001 V+1803 • \$1.7 \$1.48 • \$1.4 • \$1.8 • \$1.48 \bullet \$1.48	•xcac03-92.5 •xcac03+93.1 •xcac03-93.4 ×cac03 • • ×cac03	1 2 3 4 5 6	0.5				*	NANNOFOSSIL CHALK with I CHALK Major lithology. This core cont IFERS and FORAMINIFER N. prodominantly white (2.5% 40) styles of color banding; 5 to 15 (2.5% 41) bands that exhibit fit Minor lithology. Section 5.45. NANNOFOSSIL CHALK with SMEAR SLIDE SUMMARY (% TEXTURE: Sand Sat ComPOSITION: Accessory minerals Diatoms Foraminifers Nannofossils Opaques Radiolanans Sticeous stragments Sticeous sponge spicules Volcanic ash	FORAM tains bio ANNOFI 5 om thick asser stru- 47 om, ASH. 30 10 60 30 773 30 77 77 77 77 77 77 77 77 77 77 77 77 77	INIFERS and FORAMINIFER NANNOFOSSIL Nurbated NANNOFOSSIL CHALK with FORAMIN OSSIL CHALK in equal percentages. The chaik is innor pale pink (SRP &2) intervals. The chaik has two k, pale pink bands and 1 to 2 mm thick, dark gray ictures. contains a heavily bloturbated dark gray (2.5Y 4/0) 5, 45 M 10 60 30 5

111	BIC FO	SSIL	AT. CHA	ZONE/ RACTE	R						RB.	ES		
TIME-ROCK UN	FORAMINIFERS	NANNOF OSSILS	RADIOLARIANS	DIATOMS	ALL PARTAGENE	PHYS PROPERT	CHEM:STRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
LOWER OLIGOCENE	P21a	NP 23		Rocella vigilans		V#1995 @=51.5	×CaC03	1	0.5		エーシント	1 1		NANNOFOSSIL CHALK with FORAMINIFERS Major lithology. This core contains white (2 5Y 8 0) NANNOFOSSIL CHALK with FORAMINI- FERS. Several 10 cm thick, pale pirk (SIP 8 2) to pale purple (5P 62) intervals are present and contain numerous distanct hin (-1 mm) white color bands. Heavy bioluttations in indicated by numerous trace fossis. These structures appear to be compacted A 200phy- cos trace is present in Section 1, 98 cm. There are a few gray, wavy and braided color bands. that may be flaser structures. SMEAR SLIDE SUMMARY (%) 2.20
	A/M	A/M		A/M-G				cc			エノノ	1 1 1		TEXTURE: Sand 10 Sit 75 Clay 15 COMPOSITION Datoms Tr Foraminilers 20 Nannofossils 79 Sileepus frammits 1

	810	STR	IT. 3	ONE/									11	
	FOS	SIL	CHA	RACTER	CS	TIES					URB	RES		
	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNET	PHYS. PROPER	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTU	SAMPLES	LITHOLOGIC DESCRIPTION
					1				-	1 1 1	/			NANNOFOSSIL CHALK
MEN ULIQUENE	P20 - P21a	NP23	adospyris ateuchus	ocella vigilans		1917 \$ \$ 1.82 V-1707 \$ 52.9	•%CaCO3*91.4 %CaCO3•	2	0.5					Major lithology. This core contains white (2.5Y 8/0) NANNOFOSSIL CHALK. Heavy bioti ation is evident from numerous trace fossils. A few thin (<1 mm) horizontal, wavy, braider color bands are present. Several pale pink (SPB 6/2) zones, with thin (<1 mm) white, distinct. horizontal bands are also present. Minor lithology. Section 3, 48-50 cm contains a heavily bioturbated, dark gray (2.5Y 4/0) NANNOFOSSIL CHALK with ASH. SMEAR SLIDE SUMMARY (%): 3, 74 M TEXTURE! Sand 10 Silt 555 Clay 35
1	W		IP Dorca	-A/M-G R		6 \$ = 51.6 V-	•%CaCO3=91.0	3	readine a		-	١	*	COMPOSITION: Diatoms Tr Foraminifers 4 Qlass 20 Natrindfossils 66 Opaques 8 Sliceous traaments 2
TE	: 8	307	,	HOLE	. A	1		col	RE	81X CC	RE	DI	NT	ERVAL 764.9-774.5 mbsf
	FOS	0.75		A		1.4					i.			
		SIL	CHA	RACTER	47	1 m					8	5		
	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	SWOLUO	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURE	SED. STRUCTURES	SANPLES	LITHOLOGIC DESCRIPTION
	A/M FORAMINIFERS	A NANNOFOSSILS 10	T. CHA SNVIUVOIDUU	RACTER	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	1 SECTION	METERS	GRAPHIC LITHOLOGY	X/V DRILLING DISTUR	SED. STRUCTURES	SANPLES	LITHOLOGIC DESCRIPTION NANNOFOSSIL CHALK Major lithology: This core contains white NANNOFOSSIL CHALK. Heavy bioturbation is indicated by numerous mottles and trace tossils. The core is highly fractured by drilling a contains a large amount of drilling breccia.

ITE		80	7	HOL	.E	1	1		co	RE	84X CC	RE	DI	NT	ERVAL 793.9-803.6 mbsf	807A
5	BIO	SSIL	AT. CH/	ZONE	R	49	ES					88.	0			1
TIME - ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTURE	SAMPLES	LITHOLOGIC DESCRIPTION	5
LOWER OLIGOCENE	VG P19	V/M NP23	./P Dorcadospyris ateuchus / Theocyrtis tuberosa	2/P 3				• 60 57 88	2 3 4 5 6 7 7	0.5-		* * * * * * * * * * * * * * * * * * * *		*	NANNOFOSSIL CHALKOOZE with FORAMINIFERS Major lithology: This core contains white (2.5Y 8/0) NANNOFOSSIL CHALKOOZE with FORAMINIFERS The core consists of highly fractured ofling biscuts and breccia in an oozer matrix. As a result, the initiation is in thorwn. Structures are impossible to see as a result of this disturbance, though evidence for some of the ultra-thin gray bands (microstylolite?) (an be seen. SMEAR SLIDE SUMMARY (%):	11 21 21 31 31 31 31 31 31 31 31 31 31 31 31 31

Ē	÷.	
-	4	
-	4	
v	4	
0	0	
č	5	
-	5	

INN

ROCK

TIME

OLIGOCENE

LOWER

UNIT

ROCK

TIME

OLIGOCENE

LOWER

FORAMINIFERS

NP23

P19

P19

	810 F05	STR	AT. CHA	ZONE/	A	57	SBI					RB.	ŝ		
TIME-HOCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS C	GRAPHIC ITHOLOGY	DRILLING DISTU	SED. STRUCTURE	SAMPLES	LITHOLOGIC DESCRIPTION
FLEI S I VVENE	N22 - N23	NN20 -NN21	Buccinosphaera invaginata	0 17 Pseudoeunotia doliolus		Sruhnes)(inferred, not oriented)	3 \$ \$ 1.51 \$ \$ \$ \$ \$ 5 \$ 5		1					*	FORAMINIFER NANNOFOSSIL OOZE to NANNOFOSSIL OOZE with FORAMINIFERS Major lithology: This core contains FORAMINIFER NANNOFOSSIL OOZE to NANNO- FOSSIL OOZE with FORAMINIFERS. In the interval from the top of Section 1 through the base of Section 2 the color of the sediment grades from gale brown (10YR 6/8) to very pale brown (10YR 73) and into white (10YR 8/2); the remainder of the core is white (10YR 8/2). The core is slightly to heavily bioturbated, with light brownish gray (10YR 6/2 and 5Y 6/2) burrow motiling. SMEAR SLIDE SUMMARY (%): 2, 73 D TEXTURE: Sand 45 Sit 50 Clay 5
	A/G	A/G	A/G	C/M NT	10.00	S	V=1596		cc		- ! - <u>+</u>	0	1		COMPOSITION Foraminiters 45 Nannofossis 53 Radiolarians 1 Silcotlapellates Tr

SITE 807

SITE	. 8	807		HO	LE	В		CO	RE	2H CC	RE	D	INT	ERVAL 3.1-12.6 mbsf
2	BIC	STR	AT. 3	ONE	1		n							
IN NO	FOI	SSIL	CHA	RACI	ER		2				TURB	RES		
TIME-ROCK	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS			PHTS. PHOPEN	CHEMISTRY SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTU	SAMPLES	LITHOLOGIC DESCRIPTION
PLEISTOCENE	N22 N22	NN19 NN19	Anthocyrotidium angulare - Buccinosphaera invaginata an	M ? 014	I I I I I I I I I I I I I I I I I I I	Н NOVENAL 2010 1011010101010101010101010101010101	V=1368 \$ 153 V=137 \$ V=139 \$ 154 V=1390 \$ 157 V=1390 \$ 154 V=1370 \$ 145 V=1379 \$ 14	1 2 3 4 5 6	0.5		080			FORAMINIFER NANNOFOSSIL OOZE to NANNOFOSSIL OOZE with FORAMINIFERS Major lithology: This core contains slightly to moderately bioturbated FORAMINIFER NAN- NOFOSSIL OOZE to NANNOFOSSIL OOZE with FORAMINIFERS. The color from the top of Section 1. Section 2.12 count is whell of1910 tray (2.5 Y 70). Below Section 4. (pt) gray (5Y 71), miscale moltises were observed. Light greening ray (5G 71) color bands and rarer grayish blue (5PB 52) color bands are present in Sections 4 through 7. SMEAR SLIDE SUMMARY (%): 4, 72 D EXTURE: 5 Sand 40 Sill 55 Cay 5 COMPOSITION: 55 Foraminiers 30 Nannofossilis 65 Radiolarians 3 Silicotlagellates 7
	0/C	1/G	4/P	3-F/M		-		7			;	2 2 4		

LIN	For	STR	CHA	RACT	R	S	TIES					URB.	Sa		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS.		PALEOMAGNETIC	PHYS. PROPER'	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
						R	• \$=71.0		1	0.5		001	1 1 1 1		FORAMINIFER NANNOFOSSIL OOZE to NANNOFOSSIL OOZE with FORAMINIFERS. Major lithology: This core contains interbedded FORAMINIFER NANNOFOSSIL OOZE to NANNOFOSSIL OOZE with FORAMINIFERS. The color grades from light gray (N7) to write (25 Y 80). Dittuse intervals of gray (N6) with a slight purplish that are observed. Slight bioturbation is documented by grayish blue (5PB 5 2); pyrite-filled burrows and minor light gray (25 Y 7) i and gray (N6) motified, Diffuse light greenish gray (5G 7 10) color bands are evident in Sections 1, 2 and 6 SMEAR SLIDE SUMMARY (%)
						N (Jaramillo)	V-1586		2	erestrated a			****	•	2.75 D TEXTURE Sand 25 Sat 70 Clay 5 COMPOSITION.
DCENE	2	6					V-1583		3						Foraminifers 25 Nannolossis 70 Quartz Tr Radiolarians 2 Silicoftageilates Tr
PLEISTO	N2.	NN1	2	5		K (Matuyama)	V-1601 - 2-70.0		4						
							V-1594 \$ -67.6		5	the second se					
	A/G	A/M	RIP	R/P			V-158600=68.1		6			-			

	2	
	-	1
8	1. 10	F
	1	H
8		
1-	123	

-	BIO	STR	АТ. СНА	ZONE	TER		Es						s		
TIME-ROCK UNI	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETICS	PHYS. PROPERTI	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTUR	SED. STRUCTURE	SAMPLES	LITHOLOGIC DESCRIPTION
							18 \$ \$ = 5 6 .8		1	0.5		00	****		FORAMINIFER NANNOFOSSIL OOZE to NANNOFOSSIL OOZE with FORAMINIFERS. Major lithology. This core contains interbedded FORAMINIFER NANNOFOSSIL OOZE to NANNOFOSSIL OOZE with FORAMINIFERS. The color of the sediment is gradational between light grav (N7) and white (2.5Y 8/0). The sediment is slightly to moderately bio- turbated with light grav (N7) motiling. Famit light greenish gray (5G 7/1) color bands are observed in Sections 4 through 6. SMEAR SLIDE SUMMARY (%)
						(P	V-159		\vdash		타구		1		2,70 3,74 D D
						yam							1		TEXTURE
						Aatu	2.2		2				\$		Sand 48 15
						2	\$=63			1		1	ì		Clay 2 25
						L.	579.					1	i		COMPOSITION:
							1-1		⊢	-			i		Accessory minerals 2 Diatoms Tr
													1		Foraminifers 40 28 Nannotossils 55 67
									3				1		Quartz Tr Radiolarians 2
10							5.3					1	1	*	Siliceous fragments - 3 Silicoflagellates Tr -
ENE					Ľ		0=0						1		
100		80					575		L			1	1		
Ч	N2 2	IN					1-7					1	1		
ER	les	2				G.				-		1	1		
UPP	pa					VUD	69.0		4			1	1		
						0	-20			4		1	1		
						z	159.					1	1		
							5		-			1	1		
												1	+		
							0-		5			1	1		
							-1.5					1	1		
							9					1	1		
		1	1				-158					1	1		
						6	-					1	1		
						am				14		1	1		
						at uy	53		6			1	+		
						(Ma	-00			13		1	1		
						α	601					1	1		
							F		7		±_+-	1	1		
	1/G	W/W				F	1		00			12	1		

TIN	BIO	SSIL	CHA	RACT	ER	50	ES					RB.	ES		
TIME-ROCK UP	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTURI	SAMPLES	LITHOLOGIC DESCRIPTION
							579 \$ 579 5 1.56		1	0.5-			* * * * * *		FORAMINIFER NANNOFOSSIL OOZE to NANNOFOSSIL OOZE with FORAMINIFERS Major lithology. This core contains white (2.5Y 8.0) interbedded FORAMINIFER NANNO- FOSSIL OOZE to NANNOFOSSIL OOZE with FORAMINIFERS. Bioturbation is suppliet moderate in Sections. I through 5 and moderate to heavy in Sections 6 through Core Catcher. Bioturbation is expressed as both cm scale light gray (2.5Y 7.2) motiling and cm scale dark gray (N5 1 pyrite lifed burrows. Light greensh gray (5G 7.1), light gray (N7 1; pair purple(5P 6.2), and grays bit love (5PB 5.2) color banding is present to abundant core. SMEAR SLIDE SUMMARY (%).
							41579 0 = 66.5 V-1		2				~ + + ~ ~ ~ ~	•	2.92 D TEXTURE: Sand 45 Silt 50 Cay 5 COMPOSITION:
PLIDCENE	21	118					/-1565 \$ = = = = = = = = = = = = V		3				* * * * * * *		Foraminifers 38 Nannofossils 57 Quantz Tr Radiolanams 2 Silicoflagellates Tr
UPPER	z	NN					●\$=67.9 ▶=1.56		4				*****		
							537•\$*67.1		5	A CONTRACTOR OF A CONTRACTOR O		-			
	9	W					V-1572 00-07.1 V-15		6				+++++++		

BIO	STR	CHA	ZONE	E/ TER		ŝ					28.	57			the state of the
FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETICS	PHYS. PROPERTI	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTUR	SED. STRUCTURE	SAMPLES	LITHOLOGIC DESCRIPTION	s — 10 — 15 —
						• 0=68.1 P=1.55		1	0.5-		0000	***		FORAMINIFER NANNOFOSSIL OOZE to NANNOFOSSIL OOZE with FORAMINIFERS Major lithology. This core contains white (2.5Y 8/0 to 10YR 8/1) and pale pink (SRP 8/2) interbedded FORAMINIFER NANNOFOSSIL OOZE to NANNOFOSSIL OOZE with FORAMINIFERS. Core is alghtly to heavily bioturbated, with cm scale light gray (SY 7/2) motiles and grayish blue (SPB 5/2), pyrite filled burrows. Crayish blue (SPB 5/2), light greenish gray (SG 7/1), and pale purple (SP 6/2) to light gray (N7) color bands are present to abundant. A microfault at Section 6, 60 cm, offsets color bands. SMEAR SLIDE SUMMARY (%):	20 20 25 30
						590 \$ = 1.51		2				*****		5.5 D TEXTURE: Sand 15 Sit 80 Clay 5 COMPOSITION:	35 40 45 50
						50 \$ = 55.9 V-1		3	and and and					Foraminifers 10 Nancolossils 85 Ouartz Tr Radiolarians 2 Silicoftageitates Tr	55 60 65 70
N21	NN16					V-1579 0 = 67.2 V-15		4	a section of the sect				•		
						V-1583 - 5-1.55		5	the second second second second						85 00 05 10
						V-1565 0=66.8		6				+++++++++++++++++++++++++++++++++++++++			115 20 25 30
A/P	A/M							7							135-

SITE		801	7	HO	LE	В	<u> </u>		CO	RE	7H CC	RE	DI	NT	ERVAL 50.6-60.1 mbsf
1	BIC	STR	AT	ZONE	/		07								
CK UNI	ERS 2	SIL	SNN	RACI	TER	NETICS	DPERTIE				GRAPHIC	DISTURE	CTURES		
TIME - ROC	FORAMINIF	NANNOFOS	RADIOLARI	DIATOMS		PALEOMAG	PHYS. PRO	CHEMISTRY	SECTION	METERS	LITHOLOGY	DRILLING	SED. STRU	SAMPLES	LITHOLOGIC DESCRIPTION
										35		0			FORAMINIFER NANNOFOSSIL OOZE to NANNOFOSSIL OOZE with FORAMINIFERS
							90 0 = 58.0		1	0.5		000	1		Major lithology: This core contains while (2.5Y 8.0) interbedded FORAMINIFER NANNO- FOSSIL COZE to NANNOFOSSIL DOZE with FORAMINIFERS. The sediment is moder- ately to heavily bioturbated, with om scale, light gray (5Y 7.2), vertical and horizontail borrow: The burrow fills are often sandier than the surrounding sediment. Grayish blue (SPB 5.2), commonly vertical, mm size, pythe burrows are liss common. Light greenish gray (SG 7.1), and pale purple (SP 6.2) to grayish blue (PB 5.2) color bands are present to abundant.
							1-15			- 2			1		SMEAR SLIDE SUMMARY (%)
													- 11		4.79
										1					D
							5.0		2	- 9			1		TEXTURE.
							-67			- 3			1		Sand 30
							8.09			- 5					Silt 65
							156								Clay 5
							4		-	-	+ + +		#		COMPOSITION:
	6.5										1-1-		1		Foraminifers 35 Nemotossils 60
										- 3			11		Quartz Tr
							5.4		3	- 3			—		Radiolarians 2 Silicoflagellates Tr
							9-0			1			1		
Z							83			1			#		
CE							-15			. 3			1		
Ē	-	16					>								
٩	Z	NN											"		
EB		\sim					~			1.1			11		
dd							5.8		7		1 <u>+ </u> + _			٠	
2							64			1			1		
							79								
1							115						1		
							-						1		
													-	1	
1							0.0		5	1			1	1	
		1					1.5						1		
							60			-	+ +		1		
1							586								
							3		-				1		
1							1						+		
1		[0	1			(-		1	11	1	
							2.2		6		+ + -		5		
		L .					9-0								
							3.						1		
				1			158				+++	1	T		
							12		F		+++	1	1		
1									7		+		-		
	٩	N							L	-		1	+		
1	A	A							CC				11	1	

1071

S
-
T
H-Fi
L
8
0
-

SITE		807	7	HO	LE	В			COF	RE	вн со	RE	DI	NT	ERVAL 60.1-69.6 mbsf
5	BIC	STA	АТ СНА	RACI	TER		82					4B.	\$		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETICS	PHYS. PROPERTI	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTUR	SED. STRUCTURE	SAMPLES	LITHOLOGIC DESCRIPTION
						4 27 6	/-1554 0 - 07.57		1	0.5		~~~~	~~~ + + -		FORAMINIFER NANNOFOSSIL OOZE to NANNOFOSSIL OOZE with FORAMINIFERS Major lithology. This core contains white (2.5Y 8/0) interbedded FORAMINIFER NANNO- FOSSIL OOZE and NANNOFOSSIL OOZE with FORAMINIFERS. Slight to heavy biotur- bation is indicated by cm scale, light gray (2.5Y 7/2) and grayish blue (5PB 5/2) pyritized burrows. Light greenish gray (65 7/1) color bands are present to abundant throughout this core. Pale purple (5P 6/2) to grayish blue (PB 5/2) color bands are less common and are present in Sections 1 through 5. SMEAR SLIDE SUMMARY (%):
						1 42 F	V-15500 P=1.57		2		- - - - - - - 		# # + + # #		3,80 D TEXTURE: Sand 35 Sitt 60 Cay 5 COMPOSITION: Foraminifers 35
LIOCENE	- N20	116				A 2 4 4	V-1572 0 1.54		3		+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$		+++++++	*	Go Annotossils 60 Quatz Tr Radiolarans 2 Silicollageillates Tr
UPPER P	N19	NN				2 A 2 A 2	V-1550 0 1.58		4						
						0 L0 4	V-1554 9 1.56		5						
							V-1583 - 0 - 1.58		6	the state of the second se			+		
	A/P	A/G							сс	-	 		1		

ITE	8	30	7	HC	DLE	E	3		COR	RE	эн сс	RE	DI	NT	ERVAL 69.6-79.1 mbsf
5	BIO	STR	CHA	ZONE	E/ TER		ES					88.	5		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERTI	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTURE	SAMPLES	LITHOLOGIC DESCRIPTION
							/-1568 \$ =67.6		1	0.5		00	1 1 1		FORAMINIFER NANNOFOSSIL OOZE to NANNOFOSSIL OOZE with FORAMINIFERS Major lithology. This core contains while (2.5Y 8.0) interbedded FORAMINIFER NANNO- FOSSIL OOZE to NANNOFOSSIL OOZE with FORAMINIFERS. Slight to heavy biotur- bation is indicated by cm scale. Igibly gray (2.5Y 7.2 and 5Y7.1) motiling and grayish blue (5PB 5.2) igiblicated burrows. Light greenish gray (5G.7.1) color bands are present to abundant throughout the core, while pale purple (5P 6.2) to grayish blue (PB 5.2) color bands are less common. A color band at 52.55 cm in Section 5 is microfaulted. Pyrite nodules are present in Sections 3 and 6. SMEAR SLIDE SUMMARY (%):
							5.5		2				1 1		3, 79 D
							V-162800=6						+++++++++++++++++++++++++++++++++++++++		Sand 25 Sitt 70 Clay 5 COMPOSITION: 5
PLIOCENE	N19 - N20	- NN15					V-1596 0 = 1.63		3					*	Foraminifers 30 Nannolossils 69 Siliceous fragments 1
LOWER	N19	NN1 3					V-1558.0 - 1.63		4				11 11 11		
							V-1594 9-67.7		5				***		
							V-1550-0-65.4		6				- 0#0#==		
	A/P	A/G					-		7				0.===		

S	
Ξ	
7	
(LI)	
8	
9	
~	

11	BIC FO	SSIL	AT. CHA	ZONE/		SB					RB.	\$		
TIME - ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETIC	PHYS. PROPERT	CHEMIS"RY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTURI	SAMPLES	LITHOLOGIC DESCRIPTION
						V-1561 -0-566.3		1	0.5		0	1 1		FORAMINIFER NANNOFOSSIL OOZE to NANNOFOSSIL OOZE with FORAMINIFERS Major lithology. This core contains while (2.5Y 8/0) interbedded FORAMINIFER NANNO FOSSIL OOZE and NANNOFOSSIL OOZE with FORAMINIFERS. Sight to heavy blotur bation is indicated by om scale. Ight gray (25 77:2) motificitie, by individual, vertical and horizontal burrows, and by grayish blue (5PB 5/2), pyntized, commonly vertical, burrows uight greensity gray (55 7:1) color bands are common to abundant throughout this core, while pale purple (5P 6/2) to grayish blue (PB 5/2) color bands are present but less common. SMEAR SLIDE SUMMARY (%)
						1558-0-150		2	find to the second second			1		3.88 D TEXTURE: Sand 30 Sit 65 Clay 5 COMPOSITION
LUCENE	N19	NN 15				V-1554 0 = 5 - 9 V-		3	the first second			***	•	Foramoliers 28 Nanotossils 67 Radolarians 2 Siliceout fragments Tr Silicottagellates Tr
	N18 -	- EINN				V-1565		4				1 1 1		
						-0-65.4 D-1 60	20	5			-	1		
						-1590⊕0-55.7		6	the second second			1 1 1 1		
	4/P	M/M				A		7				#		

1	BIO	STR	AT. CHA	ZONE		Es					RB	09	Γ	
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETIC	PHYS, PROPERTI	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTURE	SAMPLES	LITHOLOGIC DESCRIPTION
						157200=65.4		1	0.5		000	* * *		FORAMINIFER NANNOFOSSIL OOZE to NANNOFOSSIL OOZE with FORAMINIFERS Major itihology. This core contains while (2.5Y.8.0) interbiedded FORAMINIFER NANNO FOSSIL OOZE and NANNOFOSSIL OOZE with FORAMINIFERS Slight to theavy boturbation is indicated by cm scale. Igit pary (2.5Y.7.2) motifing by individual, vertical and horizontal burrows, and by grayish blue (5PB 5.2) printeed, commonly vertical, burrows. Light greensh gray (5.6.7.1) color bands are common to abundant throughout this core, while pale purgle (5P 6.2) to grayish blue (PB 5.2) color bands are present but less common.
						X			-	 		1		2.79
						0.0		2	1			11		D
						501 - B-65		4	l	 		1 1	•	Sand 30 Salt 65 Clay 5
						1-10		-	-			1		COMPOSITION
						.2		3	in Lee	+ 		1		Foraminées 35 Nannolossils 60 Radiolarians 2 Siliceous fragments Tr
NE						-1590-0-1-68			1111			1 1		Silicoffageliates Tr
I OCE	N19	NN15				X			111			1		
OWER PL	N18 -	NN13 -				0-65.4		4	direct.			1 1		
LC						ľ			111			+		
									10.00			1 22	1	
						64.7		5	1111			1 52		
						065						1		
						V-1:		-				1		
						8.0		6	110		1	#		
						0=63			194			1		
						V-1586		L	-		1	1		
								7			1	1		
	W/W	W/W						CC			-	+	-	

5	810 F01	STR	АТ. СНА	ZON	E/	Γ.	5		Τ			RB.	60		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALFOMAGNETICS	PHYS. PROPERTI		CHEMISTRY	METERS	GRAPHIC LITHOLOGY	DRILLING DISTUR	SED. STRUCTURE	SAMPLES	LITHOLOGIC DESCRIPTION
LOWER PLIOCENE	N18 - N19	NINI 3 - NNI5	RaD	014			@*64.7 \\\sissa@\$*64.7 \\risota@\$*65.5 \\+ssa@\$*64.7 \\+ssa@\$*64.8 \\+isza@\$*64.8 \\+ 	19.1.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		1.0 ⁻ 1.0 ⁻ 2 2 5 5					FORAMINIFER NANNOFOSSIL COZE to NANNOFOSSIL OOZE with FORAMINIFERS Major linbidgy: This core contains white (2.5Y 8.0) instribuded of CORAMINIFER NANNO- FOSSIL COZE to NANNOFOSSIL OOZE with FORAMINIFERS Slight to heavy betur- bands are presented by creater. while gale purple (5P 6.2) todor bands are common to abundant through this come. while gale purple (5P 6.2) todor bands are present but less common. Microfaults are observed in Section 3, 135 cm, and in Section 6, 35 cm. 70 cm. 95 cm 100 cm. 112 cm: and 121 cm. SMEAR SLIDE SUMMARY (%) I 197 D TEXTURE Sand 10 Sit ComPOSITION: Datoms 1 Foraminters 20 Nannofossils 7 6 Radiolarans 2 Shicotlagellates 1
	W/	/6					1/-1605	2001-1		7					

-	BIO FOS	SSIL	AT.	ZONE/	0	ŝ					88.	57				
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNE TICS	PHYS. PROPERTI	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTUR	SED. STRUCTURE	SAMPLES		LITH	DLOGIC DESCRIPTION
LOWER PLIOCENE	n18 - N19	NN12 NN12	84	10	ad and an	4.30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C6	2 2 3 4 5 6	3 0.5 1.0			20 12 14 25 25 14 24 25 25 26 27 27 27 27 27 27 27 27 27 27 27 27 27		NANNOFOSSIL DOZE with Major linbiology. This core co MANNOFOSSIL OOZE with light grav (2.5Y 7 2 and 5Y 7 vertical. burrows. Light greet 521 color bands are commo SMEAR SLIDE SUMMARY (TEXTURE. Sand Sit ComPOSITION Feldspar Foraminiters Glass ComPOSITION Feldspar Foraminiters Glass Siliceous sponge spicules	FORAM Intains 31 FORAM In Microl 10 Microl 17 3%). 3, 74 D 17 53 20 70 70 70 71 70 71 77 77 77	INIFERS ightly to moderately bioturbated, white (2.5Y 8.0) INIFERS Bioturbation is represented by cm scale, ing and graysh blue (5PB 5.2) pynitzed, commonly (6G 7.1) and pale purple (5P 6.2) to graysh blue (Pf autis are observed at Section 6. 10-15 cm 3. 94 D 10 65 25 77 15 77 77 15 77 15 77 77 77 77 77 77 77 77 77 7
	A/M	A/M				×		7	-			+				

NIT	B10 F05	STR	CHA	ZONE/	R	S					JRB.	ES		
IIME-HOCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	CHEMISTRY	SECTION	WETERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
						9.0.65.8	BC' 1=4	ĭ	0.5		0	1		NANNOFOSSIL OOZE with FORAMINIFERS to FORAMINIFER NANNOFOSSIL OOZE Major lithology. This core contains slightly to moderately bioturbated, white (2.5Y 8/0) NANNOFOSSIL OOZE with FORAMINIFERS to FORAMINIFER NANNOFOSSIL OOZE. Bioturbation is represented by cm scale, light gray (2.5Y 72 and 5Y 71), commonly horizontal burrows, and by grayish blue (5PB 5/2) pyttized, commonly vertical, burrows. Pale outpie (5P 6/2) burrow halos' are also present. Light greensh gray (5S 7/1) and pali purple (5P 6/2) to grayish blue (PB 5/2) color bands are common.
						-160						1		SMEAR SLIDE SUMMARY (%)
						1						1		3.78 D
						1.			-			1		TEXTURE
						5.5	0	2		<u>_+</u>		+		Sand 5 Sat 90
							-] + <u>→</u> -		+		
						156				1+		1		Foramolers 15
						13	1		3	↓ <u>+</u> ,		+		Nannofossils 83 Barlolanans 2
							L			↓ <u>+</u>		1		Siliceous sponge spicules Tr
					1	2.5	80	3				1		
	0					9.00	1							
2	N1	5				558						1		
2	1	IN1				13		-		+ + -				
N L	N18	1										1		
5						-	2	4	3			5		
					÷	- 65						•		
						94 .						\$		
						V-15			3			Ŧ		
												1		
								5	1.45	++++		-		
						65	1,0	1		+_+	1	1	1	
							5		1	+_+		1		
									- 6	+++-		1		
												1		
						0.99	80.	6	1	+++++++++++++++++++++++++++++++++++++++		1		
							-			++++		1		
						1583				++++		1		
	16	N				3	•	7		+		22		

SITE	= 8	80	1	HOLE		в		co	RE	15H CC	RE	D	NT	ERVAL 126.6-136.1 mbsf
TIME-ROCK UNIT	FORAMINIFERS	NANNOFOSSILS 255	HADIOLARIANS	RACTER SMOLVIG	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
						0.00-64.4 V-1561 00-64.5		1	0.5		000		*	NANNOFOSSIL OOZE to NANNOFOSSIL OOZE with FORAMINIFERS Major lithology. This core contains slightly to moderately bolurbated, while (2.5Y 8.0) NANNOFOSSIL OOZE to NANNOFOSSIL OOZE with FORAMINIFERS. Bioturbation is represented by cm scale, light gray (2.5Y 7.2 and 5Y 7.1), commonly horizontal burrows, and by grayish blue (5PB 5.2) printed, mm scale, ventical burrows. Pale purple (5P 6.2) to grayish blue (19B 5.2) color bands are common throughout. In Section 4, some of color bands are microfaulted SMEAR SLIDE SUMMARY (%): 2, 87 D TEXTURE Sand 10 Sit 85
R MIDCENE	N17b	VN112				V-15720 2-55.7 V-1550		3				* * * * ~ ~ * *		Clay 5 COMPOSITION Foraminifers 8 Nannofossits 90 Radiolarians Tr Silicoflagellates Tr Silicoflagellates Tr
UPPE						V-15720 9-64.7		4				+ - # - # -		
						V-1579-0-64.8		5	and and and an			+++++		
	4/6					V-1558 0 - 66.1		6	the second second second			+ =======		

_	
_	
-	-
_	_
_	
_	-
\sim	
~	
-	-
_	

SITE	1	30	7	HO	LE	В		co	RE	16н со	RE	D	INT	ERVAL 136.1-145.6 mbsf
F.	BIO FOS	STR	АТ. СНА	RACT	ER of	Es					88.	s		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTURE	SAMPLES	LITHOLOGIC DESCRIPTION
						<1568●0=64.2		1	0.5					NANNOFOSSIL OOZE to NANNOFOSSIL OOZE with FORAMINIFERS Major lithology. This core contains slightly to moderately bioturbated, while (2.5Y 8/0) NANNOFOSSIL OOZE to NANNOFOSSIL OOZE with FORAMINIFERS. Biourbation is expressed as on scale, light gray (2.5Y 7/2) motiles and mm to cm scale grayish blue (5PB 5/2), pyrite filled burrows, Faint, light greenish gray (5G 7/1) and pale purple (5P 6/2) color bands are present to abundant through this core. Grayish blue (5PB 5/2) color bands are less common. SMEAR SLIDE SUMMARY (%):
						1 63.3		2				1 1 1		3.80 D TEXTURE: Sand 10
						V-157500-		-	11111			++++		Sitt 85 Clay 5 COMPOSITION: Foramitters 8
DCENE						V-1554 0 - 1 - 65 - 1		3	and a state of the			· + ± + F	*	Nannotossils 90 Radiolanans Tr Siliceous sponge spicules Tr Silicollagellates Tr
UPPER MIC	N17b	1 1 NN 1				V-159800-63.3		4				- + + + -		
						V-1550 00-53.2		5	an ann de Lann an Linte			+ + + + +		
						V*1565 0 = 53.0		6	and the set of the set			1 + + + -		
	A/G	A/M						7	indan 1			1 1		

ITE	8	30	7	но	LE	В	1	CO	RE	17H CO	RE	D	INT	ERVAL 145.6-155.1 mbsf
LIN	FOS	SIL	CHA	RACI	ER	LIES	1				URB.	SES		
TIME-ROCK U	FORAMINIFERS	NANNOF OSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETI	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
						1	Γ		-			1	_	NANNOFOSSIL OOZE with FORAMINIFERS
						V-1594@@=64.3		1	1.0			+ + + + + -		Major lithology: This core contains moderately to heavily biofurbated, white (2.5Y 8.0) NANNOFOSSIL OOZE with FORAMINIFERS. Bioturbation is expressed as tight gray (2.5Y 7.2) motiling and gravish blue (RPB 5.2) to bale purple (5 6.2) porter lited burrows and motiling. Diffuse light greensh gray (5G 7.1) and pale purple (5P.6.2) color bands are present to abundant SMEAR SLIDE SUMMARY (%) 4.81 D
									3			H,	1	TEXTURE
						1.	5	2				1	-	Sand 16
						9-0			-			4		Clay 20
						050]					1		COMPOSITION.
						-16			-			Ħ	1	Foraminiters 15
- 1					1	1			-			1	-	Glass Tr Nannofossils 84
									1			1		Ouartz Tr Badiolarians 1
						5.9	202	3				H		Siliceous sponge spicules Tr
						9-0			-			4	-	
R						28			1	+ +		t		
CE						1-16			-			t		
MIO	75	1				-						1		
œ	ĩ	ZZ							-			1		
E P						5		4				4		
õ						=64			3			1	*	
							1		1			i	=	
						160			1			i		
						13			1			4		
									1.3			1		
					11	6.		5	1		1	1		
						62.	2	10	1			1		
							4		1.5			4		
						620						1		
						3	•	F	-	L		1		
									1 3			1		
							_		1 7			1		
						63.	0	0			1	4		
				1			-				1			
						2.6.5			1.5			H		
						1.		\vdash		+ + -		1		
								-		+ + -	-	1		
								1			1	1		
	NG											L		
	IA	1	1	1			1	CC	-		11			

SITE 807 HOLE B CORE 18H	DRED INTERVAL 1551164.6 mbsf	807B-18H 1 2 3 4 5 6 7
BIOSTRAT. ZONE/	R8.	
TIME-ROCK UN NANNOF OSSLS NANNOF OSSLS RADIOLARIANS PALEONACHETIC PHYS: PROPERTIC CHEMISTRY SECTION METERS METERS	LITHOLOGIC DESCRIPTION	
	NANNOFOSSIL OOZE with FORAMINIFERS to FORAMINIFER NANNOFOSSIL OOZE	20
	Majer lithology: This core contains while (2.5% 8:0) NANNOFOSSIL OOZE with FORAMINI- FERS to FORAMINIFER NANNOFOSSIL OOZE. Moderate to heavy bioturbation is evident from abundant pyrite-lilled burrows, and light gray (2.5% 7/2) motiles. Pale purple (5P 6/2), greenish gray (5G 7/1), and reddish gray (5R 6/1) color bands, about 1 cm in width, are common, usually occurring together in pairs and triplets. The color bands are usually faint.	
	SMEAR SLIDE SUMMARY (%).	
	3,74 D	35
	1 TEXTURE	40
	Sand 12 Sit 55	45
	COMPOSITION	50
	Accessory minerals 1 Foraminifers 21	55
	Siliceous tragments 3	60
	3 ×	85
	8	
MIOC		75-1
ER NN NN	8	80-
++++++++++++++++++++++++++++++++++++++		
	1	
		PALEO
	5	
	ł	
	ž	
	12141	

145 150-

1082

SITE 807

BIOSTRAT, ZONE	/			
TIME-ROCK UNIT FORAMINIFERS MANNOF OSSILS RADIOLARIANS DIATOMS 01 ATOMS	PALEOMAGNETICS PHYS. PROPERTIES CHEMISTRY SECTION	GRAPHIC LITHOLOGY LITHOLOGY	LITHOLOGIC DESCRIPTION	
UPPER MIOCENE A/G N17a A/M NN11	V-15830\$		NAWNOFOSSIL OOZE with FORAMINIFERS to FORAMINIFER NANNOFOSSIL OOZE Major lithology: This core contains white (2.5Y 8 0) NANNOFOSSIL OOZE with FORAMINI FERS to FORAMINIFER NANNOFOSSIL OOZE. Light gray (2.5Y 7 2) burrows and pale purple (5P 6 2) motiles and pyrite fragments indicate extensive bioturbation. Pale green (5G 7 1) and pale purple (5P 6 2) horizontal. 1 to 3 cm thick color bands are present throughout. A few intervals (< 1 cm thick) are stiffer than the rest of the sediment. There is a slight H ₂ S door to the core. The base of Section 1 is microfaulted. SMEAR SLIDE SUMMARY (%) 3. 74 D TEXTURE Sand 15 Sit 55 Clay 30 COMPOSITION Accessory minerals 1 Foraminiers 22 Nannofossite 75 Siliceous fragments 2	

115-120-125-130-135-140-

145-

150-

CCI

PALE

L IN	FOS	SIL	CH4	RAC	TER	cs	TIES				URB	SES.			5-
TIME - ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETI	PHYS. PROPER	CHEMISTRY	SECTION	GRAPHIC LITHOLOG	DRILLING DIST	SED. STRUCTUF	SAMPLES	LITHOLOGIC DESCRIPTION	
							V-1601-0-62.3		1			1 1 1		NANNOFOSSIL OOZE with FORAMINIFERS to FORAMINIFER NANNOFOSSIL OOZE Major lithology. This core contains white (2.5Y 9/0) NANNOFOSSIL OOZE with FORAMINI- FERS to FORAMINIFER NANNOFOSSIL OOZE. Abundant cm thick, greenish gray (5G 7/1) pale purple (5P 6/2), and reddish gray (5R 6/1) color banding is noted. Pyrite-lilled burrows with purple borders also are abundant and indicative of heavy bioturbation. A slight H ₂ S odor was noted upon splitting the core. SMEAR SLIDE SUMMARY (%): 2, 75 D	20
1.122.11	N17a	1 1 NN 1					34 V-15900 0-1.68		2			1	•	TEXTURE: Sand 10 Silt 80 Clay 10 COMPOSITION: Diatoms Tr Foraminiters 15 Nannotossis 85	40
5							.0.8 \$\$*52.1\"159		3			1		Hadolarians Tr Siliceous fragments Tr	60
	A/G	4					V-1586		4			- 1			

1084

	BI0 FOS	SSIL	CHA	ZONE	TER	05	IES					. BB	ŝ		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS, PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
							• 0-10-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-		1	0.5			1		NANNOFOSSIL OOZE with FORAMINIFERS Major lithology: This core contains white (2.5Y 8/0) NANNOFOSSIL OOZE with FORAMIN FERS. Centimeter-scale greenish gray (56 6/1) color banding is common. The color bands are typically faint, though some are distinc A few gray (25 % 6/1) color bands are also noted. Heavy bioturbation is indicated by abundant pyrite filled burrows. Some pale purple swifts and halo structures were observed that appear to be related to fluid migration fronts. These features overprint the horizontal color bands. Centimeter-scale, slightly stiller intervals were noted, other corresponding to intervals of color banding.
							P=1.65		2				1		SMEAR SLIDE SUMMARY (%): 3, 75 D TEXTURE: Sand 5
							V-1582								Sit 75 Clay 20 COMPOSITION: Diatoms Tr
MIOCENE	17a	111					V-1572		3	Linitian			•	*	Foraminifers 10 Nannolossils 89 Radolatianis Tr Siliceous fragments Tr
UPPER	Z	ZZ					V-1590 \$ 1.65		4				1		
							-1583 - 1.64		5				1		
							1575 \$ 42.5 V		6				1		
	A/P	A					-^		7		 	2	1		

ALT.	BIO	STR	CHA	RACTE	ER	01	IES					RB.	ES		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
E	FOR	NAN	RAC	DIA		4 5 1 1 4 5 1 0 PAI	V-1579 \$ 1,70 V-1590 \$ 1.68	CHE .	1	ÿ 0.5		ING		SAN	NANNOFOSSIL OOZE with FORAMINIFERS Major lithology: This core contains intensely bioturbated, white (2.5Y 8.0) NANNOFOSSIL OOZE with FORAMINIFERS Evidence for bioturbation consists of light gray (2.5Y 7.2) biotrow-tills, and pyrite fragments, as well as patie purple (5P 6.2) haos, and moties Horizontal. 1 to 3 on thick color bands are present throughout the core and are either pale purple (5P 6.2) or pale green (5G 7.2) in color. The bands are often overprinted by the paid purple (5P 6.2) or pale green (5G 7.2) in color. The bands are often overprinted by the paid purple (5P 6.2) or pale green (5G 7.2) in color. The bands are often overprinted by the paid purple often are distinctly stiller than the surrounding ooze. SMEAR SLIDE SUMMARY (*a):
UPPER MIOCENE	N17a	1 1 NN 1 1				5 • • • • • •	V-16050 - 1.65 V-15720 - 1.67		4				1 1 1 1 1 1 1 1	*	Diatons' Tr Foraminiters 18 Narnolossis 79 Siliceous tragments 2
							V-1568 \$ 41.67		5	and and and and			2 2 2		
	A/G	A/P					V-1568 00-61.2		7				1 1 1 1		

	_	_	-		-		-	-	-					
	BIO	STR	CHA	ZONE/	ER	IES					CRB.	S		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETI	PHYS. PROPERI	CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
UPPER MIOCENE	/G N17a	IP NN11					V-1579@B-1662 V-1620@B-1633 V-1575@B-166 V-1580@B-1664 V-1580@B-1603		1 2 3 3 4 5 6 7					NANNOFOSSIL OOZE with FORAMINIFERS Major lithology: This core contains white (2 5Y 8 0) NANNOFOSSIL OOZE with FORAMINI FERS Faint horizontal color bands appear throughout. The bands are predominantly pale purple (5P 6.2) motifies and pyrite specks, as well as pale purple (5P 6.2) motifies. These motifies commonly overprint the lant color bands. Some of the color bands are slightly stiffer than the white ooze. SMEAR SLIDE SUMMARY (%) 3.74 D TEXTURE Sand 15 Sin 50 COMPOSITION Accessory minerals 1 Datoms 17 Foraminters 20 Accessiony minerals 2

v	5
Ē	1
H	1
\sim	ς.
õ	5
-	1

E	В	_	CORE		24H CO	RE	DI	NT	ERVAL 212.1-221.6 mbsf	807B-24H 1	2
R	PALEOMAGNETICS PHYS. PROPERTIES	CHEMISTRY	SECTION	WETERS	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION	5	
		+	1	-		-			NANNOFOSSIL OOZE with FORAMINIFERS to NANNOFOSSIL OOZE	13	Constant of
	₫=63.7	F0' 1-4	1	0.5					Major lithology. This core contains white (2.5Y 8/0) NANNOFOSSIL OOZE with FORAMIN- IFERS to FORAMINIFER NANNOFOSSIL OOZE. The sediment has faint, horizontal, pade purple (5P 6/2) and pale green (5G 7/2) color bands throughout. Bouthdanie is indicated by abundant light gray (2.5Y 7/2) and pale purple (5P 6/2) motiles. These motiles com- monly overprint the faint color bands. Microfiaulis are apparant in sections 1.2 and 4. Some of the color bands are signify stiller than white soze.	20	
	19.				+++	1			SMEAR SLIDE SUMMARY (%):	~	
	V-15				+1-		1		3.74 D		
				1.5	+ 1 -		1		TEXTURE	40	Carlos -
	62.1	00.1	2		+				Sand 15	45	- Alt
		1		1	+		1		Sitt 55 Clay 30	- /-	C. WAR
	159				_+		1		COMPOSITION	50-	Catholin
	3	1		-	+ + + -				Accessory minerals 1	55	- and the
					+ + +				Foraminiters 21	60-1	
	N	2	3		+ + + + + + + + + + + + + + + + + + + +		1		Siliceous tragments 3		
1	0-64			1			_			65-	47 M
	570			-			1			70	
	V-15		h	-			Ľ			75-	1000
							-			- distant	P. 1100
		N	4	1			7/2			80-	The second second
	-63	-		1,3			1			85	
	83.			1	+ + -		-			90	Characteria II
	V-15		-	-						-	A STATISTICS
ł					► _+ _ +					95-	(開始):
	0.0	20	5	3	+7-	1	1			100	北京市
	0=5					1					Lange Har
	010				+++	1					Contraction of the
h	N-1		_	-	+	1	1			110-	-
					+ + +					115-	
	an e		6		+		1				1022111
	63-		ľ		<u>+ i +</u>		F			120-	
	0.62			1	L+	1	-			125	1000
0	1-15		L				1			130-	Contraction of the
					+		7/2			-	Car Land
			7				F	1		135-	C- K
			co		++++	1	1			140-	1 Silt
			1.1				- Desis			145	Pring.

SITE 807 HOLE B

BIOSTRAT. ZONE/ FOSSIL CHARACTER

FIME-ROCK UNI FORAMINFERS NAMNOFOSSILS RADIOLARIANS DIATOMS

UPPER MIOCENE N16 - N17a NN11

A/G A/P

UNIT
ITE	8	307	1	HO	LE	B	1		CO	RE	25H C0	RE	D	NT	ERVAL 221.6-231.1 mbsf
1	810 F05	STR	AT.	RACT	TER	05	ŝ					88.	50		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETICS	PHYS. PROPERTI	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTURE	SAMPLES	LITHOLOGIC DESCRIPTION
							1509 \$\$_1.3		1	0.5		~	1+++		FORAMINIFER NANNOFOSSIL OOZE to NANNOFOSSIL OOZE with FORAMINIFERS Major lithology: This core contains white (2.5Y 8.0) FORAMINIFER NANNOFOSSIL OOZE to NANNOFOSIL OOZE with FORAMINIFERS. The sediment has sub-horizontal. I to 2 cn thick, color bands throughout. The bands are predominantly palle pupile (5P 8.2), pale green (5G 7.2) and to a lesser extent, pale greenst gray (5G 7.1) and dark gray (2.5Y 5.0) in color interes bioturbation is indicated by abundant light gray (2.5Y 7.2) motiles, and pale pupile halos. Some intervals (1.2 cm thick) are quite stiff to hard. A porcellante noduli was found in Section 1.95 cm.
							A		2	area har e charac					3. 75 D TEXTURE: Sand 15 Sit 60 Clay 25 COMPOSITION
OCENE	N17a	1					/-1596 \$ = 63.0		3	and multiplication			1 1	*	Diatoms 1 Foraminifers 30 Nannotossils 65 Raddarians Tr Siliceous ragments 3 Siliceous sponge spicules Tr
UPPER MI	N16 - 1	INN					V-1586 9 = 64.5		4				2 2		
							V-1616 \$ 41.0		5				2		
							-1598 - 0-64.5		6						
	A/G	A/M					~		7				1 1		

E 807 HOLE	В	COR	E 26H (ORED		ERVAL 231.1-240.6 mbsf	807B-26H 1	2	3	4	5	
FOSSIL CHARACTER SSIL CHARACTER SSI SSI SSI SSI SSI SSI SSI SSI SSI SSI	PALEOMAGNETICS PHYS PROPERTIES CHEMISTRY	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION	5					and the second s
N109 N109	V+1583 @ \$53.0 V+1578 \$5.64 V+1583 \$5.62.9 V+1601 \$5.1.63	2 3 4			x x	NANNOFOSSIL COZE with FORAMINIFERS to FORAMINIFER NANNOFOSSIL COZE Major liftology. This core contains white (2.5Y 8:0) NANNOFOSSIL COZE with FORAMINI- FERS to FORAMINIFER NANNOFOSSIL COZE. Moderate to heavy bioturbation is indicated by light gray (2.5Y 7.2) mottles, pale purple (5.9 6/2) halos and pyrite-filled burrows. traces, and specks. Difuse irregular color bands, greening tray (5.077) and, less commonly, pale purple in color, are observed throughout the core. Some bands are subhorzontal. Very stift. 11: 2 cm thick intervals are distributed irregularly (spaced at 5-15 cm intervals) throughout the core. SMEAR SLIDE SUMMARY (%): 3.74 0 TEXTURE Sand 15 Sift 55 Clay 30. COMPOSITION: Accessory minerals 1 Diatoms 17 Foraminders 22 Nannotossils 75 Radolarians 17 Suiceous tragments 2						
A/G A/M	V-1565€\$* ^{61,2}	6 7 CC			1 1 1		115 115 120 125 1 130 1 135 1 140					and the second se

17

64

CC

PALE

F

5	BIO FOS	STR	АТ. СНИ	ZONE/	T.	Es	Γ			e e	5	Γ	
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PAI EQUACUETIC	PHYS. PROPERT	CHEMISTRY	SECTION	CRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTURE	SAMPLES	LITHOLOGIC DESCRIPTION
						4.1579.00 = 61.7 0.1579.00 = 0.1.66		1	0.5 + + + + 1.0 + + + + + + + + + + + + + + + + + + +		* * *		FORAMINIFER NANNOFOSSIL OOZE Major lithology: This core contains while (2.5Y 8.0) FORAMINIFER NANNOFOSSIL OOZE There are faint and distinct. 1 cm thick, greenish gray (5G 7.1) and pale purple (5P 6.2) color bands. Abundant evidence for bioturbation includes motifies, and pyrite-filled burrows. Frequent, stiff to hard. 1 to 2 cm thick intervals are present every 3 to 4 cm. Microfaults are noted in Sections 4 and 5 SMEAR SLIDE SUMMARY (*a): 2, 76
						-1557.00=62.6		2			1 2 2	•	TEXTURE Sand 20 Sitt 60 Clay 20 COMPOSITION
CENE						V-1590-0-166		3			2 2		Diatons Tr Foraminifers 30 Nannofossiis 70 Radiolarians Tr
UPPER MIO	N16	NN1 0				V~1594 ●0=61.8		4					
						V-1568 \$.0		5			1 + 1		
						V-1586-0-64.7		6					
	A/G	A/M						7		-	1		

.

\mathbf{v}
-
L+1
00
0
5

CC

PALEO

INO	FOSSI	IL CH	ZONE/	R	RTIES					JRES			5-		33	and the second	1		
TIME - HOCK	FORAMINIFER	RADIOLARIAN	DIATOMS	PAL FOMACNE	PHYS. PROPE	CHEMISTRY	SECTION		C GY	SED. STRUCT	SAMPLES	LITHOLOGIC DESCRIPTION		S. A.			- total		
					609 \$ 43.5		1	0.5	++++++	1		FORAMINIFER NANNOFOSSIL OOZE to NANNOFOSSIL OOZE with FORAMINIFERS Major lithology: This core contains white (2.5Y 8/0) FORAMINIFER NANNOFOSSIL OOZE to NANNOFOSSIL OOZE with FORAMINIFERS. The ooze is very still in numerous, 2 to 4 cm thick intervals. Some of the still intervals contain consolidated nodules. Color bands are present but very framt. The bands are to 10 2 cm thick and vary from pale pupel (5P 6/2) to pale green (5G 7/2) in color, Bioturbation structures include light gray (2.5Y 7/2) mottles, and pale purple halos. SMEAR SLIDE SUMMARY (%):			12, 20 1 2	and the second			NOA ALL MANDAL
					-1636 0 -63.2 V-1		2		+ + + + + + +	1		3, 75 D TEXTURE Sand 5 Sitt 80 Clay 15 COMPOSITION.	40 40 45 50	N. S. S.					
CENE					583 \$ 40.6		3		+ + + + + + + + + + + + + + + + + + + +	*	*	Diatoms 2 Foramitters 25 Namofossits 69 Radiolanans 1 Siliceous tragments 3 Siliceous sponge spicules Tr	55 60 65 70	The state					
UPPER MIO	N16				1583 0 = 63.9 V-		4		+ + + + + + + + + + + + + + + + + + + +	~ ~			75 75 75 75 75 75 75 75		-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		125 23 23 3	Carlor and the second second
					61600=63.9 V-		5		++++++	*			95 100 105		1.2.2.	A A A			A DOULERS AND A DOUL
					V-1572-8-61.6 V-1	201-2-2	6		+++++++	*					1				いたいであったののうろう
	A/G	A/M					7		+++++				130 135 140			ALL AND	1-4-1-4-	R BOTTE	The second

150-

SITE 807 HOLE B CORE 30H CORED INTERVAL 269.1-278.6 mbsf	807B-30H 1 2	3 4	5 6 7
NIOSTRAT.ZONE/ POSSIL CHARACTER SUBJECT AND	5		
U 0.3-1-1-1 1 JANNOTOSUL COZE with FORAMMEERS and MANNOFOSUL CHALK with FORAMEER View 1 1			
	145		

=	BIO FOS	SSIL	AT. CHA	ZONE/ RACTE	R	ES					RB.	s		
TIME-ROCK UI	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	WETERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
LOWER OLIGOCENE	P19 A/M	NP 23 A/M	Dorcadospyris ateuchus A/M	Rocella vigitans A/M				cc	-			1	*	NANNOFOSSIL CHALK with FORAMINIFERS Major lithology: This core contains slightly bioturbated, highly fragmented, white (2.5Y 8/1 NANNOFOSSIL CHALK with FORAMINIFERS. SMEAR SLIDE SUMMARY (%) CC: 6 D TEXTURE: Sand 20 Silt 75 Clay 5 COMPOSITION: Foraminiters 12 Nannofossils 80 Countz Tr Radiolarians 3 Slicofdapellates Tr
TE	BI0 F05	STRA	7 ат. ; сна	HOL CONE/ RACTE	E SS	C Sites		COF	E :	2R CC	RE	aes D	NT	ERVAL 789.7-799.3 mbsf
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADI OLARI ANS	DIATOMS	PALEOMAGNETI	PHYS. PROPER	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
LOWER OLIGOCENE	A/M P19	A/M NP23	oyris ateuchus / Theocotyle tuberosa	A/M Rocella vigilans?		V-1791 0.51.0 0=51.6	•xcaco3*96.1 × caco3 •	1	0.5		1111111111111111	2 # # 2 # # 2 % %	*	NANNOFOSSIL CHALK with FORAMINIFERS Major lithology. This core contains heavily bioturbated, white (2.5Y 8/0) to pale pink (SRP 8/2) NANNOFOSSIL CHALK with FORAMINIFERS. A well-developed Zoophycos trace tossil is present in Section 1, 110-130 cm. Gray (N4/) microstylolities are common below Sector 2, 30 cm. SMEAR SLIDE SUMMARY (%): 2, 39 D TEXTURE: Sand 20 Sitt 75 Clay 5 COMPOSITION: Foraminifers 15 Nannofossils 82 Ouantz Tr Badolariane 3

-	810 F05	STR	CHA	ONE/	2 00	ES					88.	s		
TIME - ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETIC	PHYS, PROPERT	CHEMISTRY	SECTION	WETERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
			osa	0										THE ENTIRE CORE CATCHER (3 cm) WAS USED FOR PALEONTOLOGICAL ANALYSI
LUWER ULIGUCE	P19	NP23	Theocotyle tuber	Rocella vigilans										
TF	W/W	W/W	A/M	C/M	F			COF	əF.	4R C0	RE	DI	NT	FRVAL 809.0-818.6 mbsf
	BIO	STR	CHAP	ONE/	2 00	s					88.	05		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTURE	SAMPLES	LITHOLOGIC DESCRIPTION
LOWER ULIGOCENE	P19	NP23	Theocotyle tuberosa	Rocella vigilans?		5=48.5 V=1857 0 = 52.0	xcaco ₃ =90.5 %cac03.	1	0.5		11111111111	****	OG TW	NANNOFOSSIL CHALK with FORAMINIFERS Major lithology: This core contains heavily to moderately bioturbated, white (2.5Y 8/0) NANNOFOSSIL CHALK with FORAMINIFERS. Diffuse and discontinuous, wavy, light gra (N7) color bands (~1 mm thick) are observed in Section 1. Gray (N6) microstylolites are common in Section 2. SMEAR SLIDE SUMMARY (%): 2, 60 D TEXTURE: Sand 20
	C/P	A/M	A/M	C/M		V-1809	•	2 CC			K			Sitt 70 Clay 5 COMPOSITION:
														Foraminilers 15 Nannofosils 80 Ouartz Tr Radiolarians 3 Silicoffagellates Tr
						1								

L.	FOS	SSIL	CHA	ONE/	5	IES.					JRB.	ES.		
TIME-ROCK UN	FORAMINIFERS	NANNOF OSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
LOWER OLIGOCENE	./M P19	/M NP23		IM Coscinodiscus excavatus										THE ENTIRE CORE CATCHER (2 cm) WAS USED FOR PALEONTOLOGICAL ANALYSIS

.

1	BI0 FOS	SSIL	CHA	ZONE/ RACTER	2 00	Es					88.	S		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTURI	SAMPLES	LITHOLOGIC DESCRIPTION
						V-1799-0-55.0	•%cac03*94.9	1	0.5		///////////////////////////////////////			NANNOFOSSIL CHALK with FORAMINIFERS Major lithology. This core contains white (2.5Y 8/0) to pale purple (5P 6/2) and grayish blue (5P8 5/2) NANNOFOSSIL CHALK with FORAMINIFERS. The entire core is moderately to heavily biotrybated. Intervals of discontinuous, thin (<1 mm thick), gray (N4 ¹) styloites recostyloites/flaser structures are common throughout the core. Well-developed, 1 mm to 1 cm thick, gray (N4 ¹) styloites are present in Sections 1 through 4. SMEAR SLIDE SUMMARY (%):
				S		1915 \$ \$ 4.2	•%CaC03=94.5	2			11/1/1/1		*	2,58 D TEXTURE: Sand 25 Sand 25 Sand 70 Clay 5 COMPOSITION:
UWER ULIGUCENE	P19	NP23	eccotyle tuberosa	inodiscus excavatu		/-1864. 0-53.2 V-	•%CaC03=92.7	з			///////////////////////////////////////	: = 1.2881 = 1.1		Foraminifers 20 Nannofossils 75 Ouartz Tr Radiolarians 3 Silicoflagellates Tr
			11	Cosc		V=1872 0 = 55.0	0 •%cac03 =94.5	4			///////////////////////////////////////			
	A/M	A/M	A/G	A/M -G		V=1886 0 = 53.5	•%CaCO3=93.0	5			///////////////////////////////////////	~ #		

TE	8	50 /		no		~			÷ • .				-	1.1.1	
1	BIO FOS	STR	AT. I	ZONE	/ ER		ES					.8	5		
TIME-ROCK UN	FORAMINIFERS	NANNOF OSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETICS	PHYS. PROPERTI	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTUR	SED. STRUCTURE	SAMPLES	LITHOLOGIC DESCRIPTION
	N	X		Σ					cc	2		\geq	1	*	NANNOFOSSIL CHALK with FORAMINIFERS
	A	A		A											Major lithology: This core contains white (2.5Y 8/0), highly fragmented NANNOFOSSIL CHALK with FORAMINIFERS.
				s											SMEAR SLIDE SUMMARY (%)
Щ				vatu											CC.5 D
CE				xca1											TEXTURE:
160	0	e		s e											Sand 20
б	P1	NP 2		nos											Silt 75 Clav 5
ш		6		dis											
NO				ino											COMPOSITION:
_				SC											Foraminders 20 Nannofossils 75
				ŭ											Ouartz Tr Badiolarians 2
															Silicoflagellates Tr
TE	810	307 STR	7 AT. 2	HO	LE	c			COF	RE	8R CC	DRE	DI	NT	ERVAL 847.7-857.4 mbsf
TE	BIO FOS	BO7	7 AT. 1 CHA	HO	LE / ER	rics O	RTIES		COF	RE	8R CC	DRE . SBUIL	URES C	INT	ERVAL 847.7-857.4 mbsf
TIME-ROCK UNIT T	FORAMINIFERS 34 8	NANNOFOSSILS	AADIOLARIANS	HO	LE / ER	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTPY	SECTION	WETERS	BR CC graphic Lithology	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	ERVAL 847.7-857.4 mbsf
ENE TIME-ROCK UNIT T	FORAMINIFERS 001	NANNOFOSSILS 1155	-058 RADIOLARIANS -2	HO DIATOMS BUATONS	LE	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTPY	SECTION	METERS 32	GRAPHIC LITHOLOGY	DRITCING DISTURG.	SED. STRUCTURES	SAMPLES	ERVAL 847.7-857.4 mbsf LITHOLOGIC DESCRIPTION THE ENTIRE CORE CATCHER (1 cm) WAS USED FOR PALEONTOLOGICAL ANALYSIS.
GOCENE TIME-ROCK UNIT T	FORAMINIFERS	NANNOFOSSILS	UDECOSA RADIOLARIANS 24 4	EXCAVATUS DIATOMS DATE OF	LE / ER	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTPY	SECTION	WETERS	GRAPHIC LITHOLOGY	DRITTING DISTURB.	SED. STRUCTURES	SAMPLES	ERVAL 847.7-857.4 mbsf LITHOLOGIC DESCRIPTION THE ENTIRE CORE CATCHER (1 cm) WAS USED FOR PALEONTOLOGICAL ANALYSIS.
DLIGOCENE TIME-ROCK UNIT T	19 FORAMINIFERS 34 0	223 MANNOFOSSILS 223	e tuberosa RabioLaRians	HO EXCAVATUS DIATOMS HO	LE	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTPY	SECTION	METERS 33	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	ERVAL 847.7-857.4 mbsf LITHOLOGIC DESCRIPTION THE ENTIRE CORE CATCHER (1 cm) WAS USED FOR PALEONTOLOGICAL ANALYSIS.
R OLIGOCENE TIME-ROCK UNIT H	P19 FORAMINIFERS	NP23 NANNOFOSSILS 112 0	tyle tuberosa RabioLARIANS	iscus excavatus piatoms and H	LE	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTPY	SECTION	RE	GRAPHIC LITHOLOGY	DRITCING DISTURB.	SED. STRUCTURES	SAMPLES	ERVAL 847.7-857.4 mbsf LITHOLOGIC DESCRIPTION THE ENTIRE CORE CATCHER (1 cm) WAS USED FOR PALEONTOLOGICAL ANALYSIS.
LOWER OLIGOCENE TIME-ROCK UNIT H	P19 FORAMINIFERS	NP23 NANNOFOSSILS 11555	Theocotyle tuberosa RabioLaRians	Scinodiscus excavatus piaroms and	LE / ER	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTPY	SECTION	METERS 33	BR CC GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	ERVAL 847.7-857.4 mbsf LITHOLOGIC DESCRIPTION THE ENTIRE CORE CATCHER (1 cm) WAS USED FOR PALEONTOLOGICAL ANALYSIS.
LOWER OLIGOCENE TIME-ROCK UNIT	P19 FORAMINIFERS	NP23 NANNOFOSSILS 250	Theocotyle tuberosa Rabiolanians	Coscinodiscus excavatus Diatoms 2282	LE	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	RELERS	BR CC GRAPHIC LITHOLOGY	DRITCING DISTURB.	SED. STRUCTURES	SAMPLES Z	ERVAL 847.7-857.4 mbsf LITHOLOGIC DESCRIPTION THE ENTIRE CORE CATCHER (1 cm) WAS USED FOR PALEONTOLOGICAL ANALYSIS.

807C-7R	00
Carrier 1	
5-	
-	
10-	
13-	6 1
15-	Para -
1.0	HALEO.
20-	-
	Carlor March
25-	-
-	Sec. 1
30-	1-1-1-1 L
00	Clust 1
30-	1000
40	
	Lines C
45	
11. (A. 17. (C. 17. (C	ESAN ES
50-	Sector Sector
of the second second	Semial Non-
55-	1000 m
	Land T
60-	Contract of the
	Cardon Press
65	Station States
70-	and the second second
	1000 La
75-	1000
A Designed in the	Contraction in
80-	Lines .
-	State of
85-	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
	States 1
90-	Courses PT
05	6-518 Z
	Conserved St.
100-	Constant of
	There is
105-	Section 1
	Barting R
110-	and the second
1 2442	C.L. BRAN
115-	Secold 3
100	A Lange
120-	Station P.
125-	100
_	participation of
130-	-
-	Section 1
195-	1000 PC
-	12130
140-	Second State
	1
145-	Barrelline Barr
150-	

807 C 10R NO RECOVERY

807 C 11R NO RECOVERY

1100

			-					-		1	121 0				ERVAL 876.6-881.9 mDSt
11	FOR	SSIL	AT. CHA	ZONE	/ ER	01	ŝ					88.	ŝ		
TIME-ROCK UN	FORAMINIFERS	NANNOF OSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED, STRUCTURI	SAMPLES	LITHOLOGIC DESCRIPTION
ENE	C/M	A/M	A/M	A/M			0.52.5 • 0.1.83 •	\$CaC03 .	1				LIL	*	NANNOFOSSIL CHALK with FORAMINIFERS Major lithology: This core contains white (2.5Y 8-0) NANNOFOSSIL CHALK with FORAMINI- FERS. Heavy biofurbation is evident from faint motiles, burrows and disseminated pyrite specks. Ultra-thm (< <t and="" are="" bands="" braded="" color="" core.<="" mm)="" present="" td="" the="" throughout="" wavy=""></t>
ER OLIGOC		2	tuberosa	s excavatus			1221-A								SMEAR SLIDE SUMMARY (%): 1.30 D TEXTURE:
LOW	P16	NP 2	oecotyle	nodiscus											Sand 8 Sit 80 Clay 12
			The	COSCI											Diatoms Tr Foraminifers 12 Nannolossits 87 Radiolanians Tr
						_			-				_		Siliceous fragments
TE	BIC	BO TR	7 AT.	HO	LE /		C S3		COF	RE	13R C	ORE	DI	NT	Siliceous tragments Tr
TIME-ROCK UNIT	FORAMINIFERS	NANNOF OSSIL STISSO	T . HA SNUT AL	HO	LE / ren	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	ERVAL 881.9-888.9 mbsf
E TIME-ROCK UNIT	C/M FORAMINIFERS	A/P NANNOFOSSILS 200	A/M RADIOLARIANS 2. 4	HO	LE / rea	PALEOMAGNETICS	PHYS. PROPERTIES C)	CHEMISTRY	O SECTION	RE	GRAPHIC LITHOLOGY	CR DRILLING DISTURB.	SED. STRUCTURES	* SAMPLES X	ERVAL 881.9-888.9 mbsf ERVAL 881.9-888.9 mbsf LITHOLOGIC DESCRIPTION NANNOFOSSIL CHALK with FORAMINIFERS NannoFOSSIL CHALK with FORAMINIFERS
OWER DLIGOCENE TIME-ROCK UNIT	P18 C/M FORAMINIFERS	NP21 A/P NANNOFOSSILS 1550 00	tyle tuberosa A/M RADIOLARIANS 22 1	SCUS BXCAVATUS DIATOMS DIATOMS	ILE / ren	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	D section	RE	13R C GRAPHIC LITHOLOGY	A DRILLING DISTURG.	SED. STRUCTURES	* SAMPLES	Silicous tragments Tr ERVAL 881.9-888.9 mbsf LITHOLOGIC DESCRIPTION NANNOFOSSIL CHALK with FORAMINIFERS Major lithology: This core contains bioturbated, white (2.5Y 8/0) NANNOFOSSIL CHALK with FORAMINIFERS A few specks of an opaque mineral are scattered over the few chert nodules in the core. SMEAR SLIDE SUMMARY (%): 1.9 D TEXTURE

80	7C-12R	1		807	C-13R	CC	275
	1911				_		100
	5-	1000	_		5-		
			8		-		
	10-			174	10-	E.	-
	1000	20	10		-		
	15-	and the second	-		15-	1	-
				1		Alex-	1
	50-	1	10	122	20-	1	
	25	~ ~	12				-
			m	201	co		
	30-	and so the		12	30-		1
	-				-		
	35-			100	35-		-
	-	271.2	12		-		122
	40-			62	40-		-
		and a second			-		100
	45-	-	10		45-	-	120
	50-		-	199	50-		
		h	6				1000
	55-			-	55-		-
			12	121			10
	60-	1000	-	100	60-	2.00	
		1.23		1	10.05		2 21
	65	a second	10	100	65-	in the second	100
	70	1001	17	0.01	-	1112	212
	10-	inere i	100		/0	1000	0.025
	75	1111	1	100	75-	1	100
			100	(Sector	-		100
1	80-	1.25	-	10.0	80-	100	
	-		11	12		1.11	and the second
14	85-	1.1.1.1	100	113	85-	100	1
14		1.110107	12	133	and II	a series	10
间	80-	Carden .	he.	100	90		2.50
21	95-		101	1.5	05_	1010	-
		Longer 1	69	170	~		1.5
	100-	-249	4 -		100-	- sta	
68	-	1127			-		100
2	105-		H		105-	z a still	
0	1000	112	5	172	192	1 31	
	110-		1	122	110-	- 	100
21		[land	1			1823	- and
12	113	合くたけた	12	1	115-	dece)	4.4 100
2	120-	Cate:	-	-	120-	10.5	1
5		S-CHE	12			100	
iii)	125-	1	-	-	125-	- 257	-
21		1000	12		ALL	- 444	
10	130-	and the			130-	- OT	-
1		and the second			-	- Constant	1
Rie	135-	de - Arres			135-	and the second	20
14	140-		1		140	Deares!	80
	-	-	1			10	40 24
H	145-	a because	-	-	145-	-0	2
	ACCESSION OF	Printer and	1	1	11 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	91-201
1	150-		-	-	150-	-1	-
	and the second second			1000			

SITE 807

E.	FO	SSIL	CHA	RACTER	0	IES					BB	ŝ		
TIME-ROCK UN	FORAMINIFERS	NANNOF OSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
LOWER OLIGOCENE	P18 C/M	NP21 A/P	Theocotyle tuberosa A/P	Coscinodiscus excavatus A/M-G				cc			×	1	*	NANNOFOSSIL CHALK with FORAMINIFERS Major lithology. This core contains bioturbated while (2.5Y 8.0) NANNOFOSSIL CHALK with FORAMINIFERS. A lew specks of an opaque mineral are scattered over the few chert nodules in the core. SMEAR SLIDE SUMMARY (%): CC. 5 D TEXTURE: Sand 8 Sit 65 Clay 27 COMPOSITION: Accessory minerals 1 Foraminifers 18 Nannofossits 80 Siliceous fragments 1

-	B10	STR	CHA	RACT	rER	57	IES					88	5		
IIME-ROCK OF	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
	A/M	A/M	A/G						1 CC	0.5		No.	1.1.500	1	NANNOFOSSIL CHALK Major lithology: This core contains white (2.5Y 8.0) NANNOFOSSIL CHALK. Moderate to heavy biolurbation is evident from burrows and abundant trace fossils that appear compacted. One thin zone (1 cm thick) of braded. ultra-thin. ight olive gray (5Y 6/2) color bands is present in Section 1. 34 cm. Styloites are noted throughout the core
LOWER OLIGOCENE	P18	NP21	Theocotyle tuberosa												

TE	8	30	/	HC	LE	- 1	C _	_	COF	RE	16R CC	RE	D	INT	ERVAL 898.9-903.9 mbsf
E I	FOS	SSIL	CHA	RAC	TER	97	IES					JRB.	SS		
TIME-ROCK U	FORAMINIFERS	NANNOF OSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS, PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
LOWERMUSI ULIGOCENE	F/P P187	A/P NP21	A/M	Theocotiye tuberosa	M-G basal Coscinodiscus excavatus		V=2005 • 0=46.0	• xcac03	1	0.5		1111111		*	NANNOFOSSIL CHALK with FORAMINIFERS Major lithology: This core contains white (2.5Y 8/0) NANNOFOSSIL CHALK with FORAMINI FERS Numerous ultra-thin, braided, light olive gray (5Y 6/2) color bands/stylolites are located in Section 1 at 65-78 cm and 109-115 cm. Heavy biofurbation is indicated by trace lossils that appear to have been compacted. SMEAR SLIDE SUMMARY (%): L 85 D TEXTURE: Sand 3 Sitt 75 Clay 22 COMPOSITION: Foraminfers 10 Namofossils 89 Radolarians Tr Siliceous fragments 1
TE	FORAMINIFERS 3 2	STR. STR. STR.	RADIOLARIANS	HO	LE /	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION NO	WETERS	CRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES	Z SAMPLES	ERVAL 903.9-908.9 mbsf
LIGUCENE	82	PLOCK NP21 NP21 NANNOF STATE OF COMPLEX PROPERTIES PR			V=1752 0=51.4	-92.6 %CaC03	1	0.5		11/1/1/1/	****	1W	NANNOFOSSIL CHALK with FORAMINIFERS to FORAMINIFER NANNOFOSSIL CHALK Major lithology: This core contains white (2.5Y 8/0) NANNOFOSSIL CHALK with FORAMIN FERS to FORAMINIFER NANNOFOSSIL CHALK. There are several 5 to 10 cm thick zone of braided. light olive gray (5Y 6/2) color bands. Several gray bands are very distinct. Bioturbation structures are common and include motiles and trace fossis. The lowermost part of the core contains abundant faint, pale purple (5P 6/2) to greenish gray (5G 6/1) color bands. The base of the core has a 5 cm thick interval of very distinct, thin (<<1 mm), horizontal, straight color bands. SMEAR SLIDE SUMMARY (%):		
	P	N	[= upper T	Bacterio			V-18350 50.5	•%caco3	2			11/1/1/1	**************************************	•	2, 75 D TEXTURE: Sand 10 Sit 80

807C-16R	1	807C-17R	1		2		3	
5-		5-				H		
10-		10-						_
15-	- 62	15-		-		H	-	
20-		20-	ALC:				-	
25-	-	25-						6
30-		90-	1				ingen and	1
35-	1	35-	and an				-	
40-	-	40-		-		-E		1
45-	-	45-			Alexand I			
50-		50-			1	F		
55—	<u>-</u>	55—				-		
60-	H	60-	~			-	8	1
65-		65-			1	-		-
70—	-	70-	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		diaman and a	-		-
75—		75—		\vdash		-	-	-
80-		80-	-		AD NO.	-	ł	-
85—		85—				-		7
90-	-	90-			>	-		100
85—	-	95— —				1910		
100	-	100-			Interview	-		5
105-		105-			1	-		-
110-		110						
115-		115—				-		
120-	ÒI	120-				-		100
125-		125-			North State			
130-		130-						
135—		135-	-		5	-		-
140-		140-		10.00	1			
145-		145-	140			-	ľ	
150-	110 A	150-	100			-	1	-

	BI0 FOS	SSIL	CHA	RACTE	R	\$7	153					88.	55			
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	ME TERS	GRAPHIC LITHOLOGY	GRAPHIC LITHOLOGY LITHOLOGY 2035		SAMPLES		LITHOLOGIC DESCRIPTION
CTTER EVVENE	P17 C/M	NP19 - NP20 A	yptopora ornata [upper Thyrosocyrtis bromia] A/G	Baxteriopsis brunii C-A/M-G			0 *48 .5 • P*1 .84 •	%CaC03e =87.5	cc			\geq	1	*	NANNOFOSSIL CHALK with Major lithology: This core con NANNOFOSSIL CHALK with I structures are common. SMEAR SLIDE SUMMARY (% TEXTURE: Sand Silt Clay COMPOSITION: Foraminters Nannotossils Radolarians Sillceous sponge spicules	FORAMINIFERS tains white (2.5Y 8:0), moderately bioturbated FORAMINIFERS. Gray (N6/) microstylolites and flaser. 6): CC, 10 D 15 81 4 15 83 1 1

.

FC	SSIL	CHI	ARACTE	R	0	ES					88.	ES.		
FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PHOPERI	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTURI	SAMPLES	LITHOLOGIC DESCRIPTION
P17 A/M	upper Thyrosocyrtis bromia NP19 - NP20 A/P	ora ornata [=upper Thyrosocyrtis bromia] A/M	Baxteriopsis brunii C-A/M		- []] - 0.000	68'1" 2 191 M	*******	1	0.5				•	NANNOFOSSIL CHALK Major lithology. This core contains white (2.5Y 8/0), moderately bioturbated NANNOFOSSIL CHALK. Gray (N8/) microstyloities and color bands with flaser structures are common. SMEAR SLIDE SUMMARY (%): 1.30 TEXTURE: Sand 10 Sitt 85 ComPOSITION Diatons 1 Foraminifers 5 Nannolossils 87 Radiolarians 3 Siticotlagellates 2

807C-19R	1
10000	
5-	
10-	
15-	-
20-	12/0/1-
	Kah-
25-	1
30-	
35—	Part-
40-	
45-	-
50-	m_
55-	
60-	1000
	1
70—	Contract of Contract
75-	For the State
_	And And And
80-	a set of the
85—	-
-	and a contract of
90-	and a state of the
85—	and the second second
- 00	And a state of the
_	CEPT OF
105-	
110-	
	and a re-
115-	a sub- r
150-	
125-	-
190-	Carlos III
	a shipped by
135-	and at the
140-	STATE OF
and the second second	1
145-	
150-	1
II A III A A	10000

	FOG	SIL C	HARA	CTER	s	TIES					URB.	SES						
	FORAMINIFERS	NANNOFOSSILS	NAUTOLANIANS DIATOMS		PALEOWAGNETI	PHYS. PROPER	CHEMISTRY	SECTION	WETERS	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTUR	SAMPLES		LITHOLOGIC DESCRIPTION			
T.	_		N	i i	Γ	0.0	03.	1			2	1		NANNOFOSSIL CHALK				
	AIN	A/P	AIM	5		0.4-	XCaC				12	1		Major lithology: This core co NANNOFOSSIL CHALK. A g	ntains white (2.5Y 8/0), moderately bioturbated gray (N6/) color band with flaser structure is noted at 17-20 cm.			
	11	P20	DIN	-		1838								SMEAR SLIDE SUMMARY (%):			
Ľ I	P I	N - N	1010			12									1, 20 D			
10	9	61	2 4 0	2										TEXTURE				
		NP NP	1An	eda										Sand	10			
		000	ter.	5										Clay	4			
		1	Bay	× D										COMPOSITION:				
		1			t									Diatoms	1			
		0	2											Nannofossils	82			
		1	5											Radiolarians Siliceous sponge spicules	5			
		H	-											Silicoflagellates	2			
		-	0															
		2	5															
	1	2	D			1												
		0	2										- 1					
		-	2															
		9	2															
		1 c	5										- 1					

807C-21R	1	
E LEL		1
-	1	1
5	-	
10	100	4
10-	1	
ALCO DO	1	
15-	4	
a vier and	-	1
50-		
14.0018		1
25		1
Con the Real Property lies	VISIO	
30-		
and the second second	Y	10
35-	and the	
		10
40-	Second Press	r
	1	1
45-		-
1000	-	
50-	\$1000T	1
1000		
55-	E uha	
		82
60-	a data a series	
1000		E
65-		F
1 Marine T		12
10-	Sector 1	
		10
75-		
		13
80-		10
		e
65-		160
	1.0	10
80-		10
- Marker		10
85-		
100	SALARY!	11
100-		1
105		
105-	20-16 2	100
115	-ielas	200
110-		1
		13
113-	1.	
100	a charged	10
120-	5-20	
196	No.	10
160		
120	5 Com	En
100		
195	a and	12
100	and and	100
140-		
HO	and a state of the	A.
145		10
140-	in the second	1
150-	L rall	
100	T-MARK	2
		-

NIT	B10	STR	AT. CHA	ZONE/	R	8	LIES					URB.	Es			
TIME-ROCK UI	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERI	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTUR	SAMPLES		LITHOLOGIC DESCRIPTION
UPPER EOCENE	P14 - P17 C/P	NP17 - NP19 A/P	ryptopora ornata [=upper Thyrosocyrtis bromia] AIP	Asterolampra marylandica? F-CIP-M					1				LN	*	NANNOFOSSIL CHALK with Major lithology: This core con FERS. Moderate to heavy bio burrows. SMEAR SLIDE SUMMARY (% TEXTURE: Sand Silt Clay COMPOSITION: Diatoms Foraminiders Nannotossils Radiolarians Suliccolus sponge spicules Siliccolus sponge spicules	FORAMINIFERS tains white (2.5Y 9:0) NANNOFOSSIL CHALK with FORAMINI sturbation is indicated by mottling and mm scale pyrite-filled (%) 1, 19 D 15 81 4 1 10 78 4 5 2

807C-22R 1 5-10-15-20-25-30-35--40--45--50-55--60--65----70--75--80--85--90-1 85--100--105----110-1 115--120-20-125-1 130--135----140------145-----150---

LIN NIT	810 F0	STR	CHA	RACI	TER	s	TIES					URB.	Es .			
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETI	PHYS. PROPER	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTUR	SAMPLES		LITHOLOGIC DESCRIPTION
OFTEX ECCENE	F/M P15 - P17	A/M NP17 - NP19	C. bandyca [=middle T. bromia] A/M	Asterolampra marylandica? FIP-M			V=1902 0=47.1 •	%CaCO3• *87.5	cc	0.5		////// X	* * * * * *		NANNOFOSSIL CHALK Major lithology: This core con heavy bioturbation is indicate SMEAR SLIDE SUMMARY (% TEXTURE: Sand Sift Clay COMPOSITION. Diatoms Foraminifers Nannofossils Quartz Radiolarians Sifticeous sponge spicules	tains white (2.5Y 8:0) NANNOFOSSIL CHALK. Moderate to d by mottling in shades of white. (

	810 F05	SSIL	CHA	RACI	/ ER	cs	TIES					URB.	SES		
	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETI	PHYS. PROPER	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
In the second seco	R/P 2	A/P NP17 - NP19	C. bandyca [=middle T. bromia] R/P	8			V=2003 ●0=35.6	**CaC03	1 CC	1.0		111111111		*	NANNOFOSSIL CHALK Major ithology: This core contains while (2.5Y 8:0) NANNOFOSSIL CHALK Moderate to heavy biotrobation is indicated by mottling in shades of while. A single stylolite is present in Section 1.45 cm, and zones with flaser structures are noted in Section 1.50 57 cm and 78.85 cm. Chart nodules surrounded by thin, parity slicitied nms are found near the bottom of the core. SMEAR SLIDE SUMMARY (%): 1, 100 D TEXTURE Sand 10 Sit 85 Clay 5 COMPOSITION: Diatoms Tr Foraminters 8 Nannotossits 85 Quartz Tr Radolarians 3 Siliceous sponge spicules Tr
TE	BIG	807	7 AT. 1 CHA	HO	LE 7	0	ES		COF	RE	27R C	DRE	DI	NT	ERVAL 967.8-977.5 mbsf
ME-HULK W	RAMINIFERS	MNOFOSSILS	DIOLARIANS	A TOMS		LEOMAGNETIC	YS. PROPERT	EMISTRY	CTION	TERS	GRAPHIC LITHOLOGY	ILLUNG DISTU	D. STRUCTURE	MPLES	LITHOLOGIC DESCRIPTION

TIME-ROC	FORAMINIFE	NANNOFOSSI	RADIOLARIA	DIATOMS	PALEOMAGN	PHYS. PROF	CHEMISTRY	SECTION	METERS	LITHOLOGY	DRILLING D	SED. STRUC	SAMPLES	LITHOLOGIC DESCRIPTION
MIDDLE EOCENE?		NP17 - NP19 A/P	8	B				ccl						CHERT Major lithology: The core contains two tragments of gray (N5:) CHERT, probably of nodular origin. The larger tragment is 6 cm in diameter. The smaller tragment is 3 cm in diameter. Minor lithology: White (2.5Y 8:0) NANNOFOSSIL CHALK occurs around the perimeter of the chert and is present as 5 mm wide inclusions in the chert.

ITE	8	307	7	HO	LE	0	2		CO	RE	28R C	ORE	D	INT	ERVAL 977.5-987.1 mbsf
=	810 F05	STR	AT	RACI	/ ER		ES					88.	50		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETICS	PHYS. PROPERTI	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTUR	SED. STRUCTURE	SAMPLES	LITHOLOGIC DESCRIPTION
MIDDLE EOCENE?	NP17 - NP19 A/P		8						CC						CHERT Major lithology: The majority of the recovered core is gray (NS) CHERT, probably of nodula orgin. The fragments are 2 to 5 cm in diameter. Minor lithology: White (2.5Y 8/0) NANNOFOSSIL CHALK occurs around the perimeter of the chert and as inclusions in the chert.
ITE	BIO	STR	7 AT. 1	HO	LE /	0	ES		cor	RE	29R C	ORE	D	INT	ERVAL 987.1-996.8 mbsf
TIME-ROCK UN	FORAMINIFERS	NANNOF OSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETICS	PHYS. PROPERTI	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTUR	SED. STRUCTURE	SAMPLES	LITHOLOGIC DESCRIPTION
NE		A/P	CENE R/P	Ð									885	•	NANNOFOSSIL CHALK and CHERT Major lithology. The dominant lithology of this core is white (2.5Y 8/0) NANNOFOSSIL CHALK. It is slightly to moderately bioflurbated with litatened horizontal burrows. Flaser structures and microstylolities are observed in Section 1, 13-15 cm. Gray (NS) CHERT, probably of nodular origin, constitutes the second major lithology. The chert has a horizontal contact with the chalk and contains mm scale chalk inclusions.

1, 10 D

10 85 5

Tr 6 90 Tr

Siliceous sponge spicules Tr

TEXTURE:

COMPOSITION:

Diatoms Foraminifers Nannofossils

Quartz Radiolarians

Sand Silt Clay

SITE 807

MIDDLE EOCENE

NP 1 UPPER

MIDDLE

LITHOLOGIC DESCRIPTION

Major lithology: This core contains white (5Y 8/1) NANNOFOSSIL CHALK with FORA-

MINIFERS. They are abundant, very thin (<< 1 mm), wavy, braided, gray (5Y 6/1) color

Minor lithology: Dark gray (5Y 6/1) CHERT is present as cobbles within the core.

2.40

D

4

86

10

10

NANNOFOSSIL CHALK with FORAMINIFERS

SMEAR SLIDE SUMMARY (%):

TEXTURE:

COMPOSITION

Foraminifers

Sand Silt

Clay

i,	BIO FOS	STR	CHA	ZONE/ RACTE	R .	07	ES					88.	ES		
TIME-ROCK UI	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNE TIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIĆ LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
	C/P	A/M	в	8	T	T			1		• • <u>•</u> · <u>·</u>	×	0		NANNOFOSSIL CHALK, LIMESTONE, and CHERT
EOCENE	P14	NP 1 6													Major innology. This core contains several coddles of CHALK, LIMESTONE, and CHERT The chalk and limestone are white (2.5Y 8.0), and the chert is mostly gray to dark gray t5Y 6(1).
	1	1													
AI UDLE	P12	NP15													

NIT.	FO	SSIL	AT.	RACI	/ TER	67	IES.					JRB.	. 53		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
щ		F/P	R/P	В					1			2	10		CHERT, LIMESTONE, and CHALK
DLE EOCEN		- NP16	T. bromia												Mapritinology: This core contains several cobletes of CHEAT, LIMESTONE, and CHALK. The limestone and chaik are mostly white (25 % 80). The chert is gray to dark gray (5Y 6.1) The limestone cobbles have inclusions of chert.
MID		NP15	triacantha -												
			τ.												

E.	BI0 FOS	STRA	CHA	RACTE	ER	50	ES					RB.	8		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
MIDDLE EOCENE	P10 - P14 F/P	NP15 - NP16 A/P	8	B					1 CC			××	-00		CHERT and LIMESTONE Major lithology: This core contains pebbles of LIMESTONE and CHERT. The limestone is light gray (SY 3r1) and biolurbated. The chert is very dark gray (SY 3r1). The limestone pebbles contain pieces of chert.

807C-32R	1/260	807C-33R	1	807C-34R	1	CC	12m
	1	122-	inen l	Sterie -		616	
s—	No-	5-	20	5-		10.0	1
10-	-2-	10-	-	10-	2	-00	
15-	12-	15-	16 M _	- 15-	3	- HELE	
-	100	-		-	0		
20-		20-	P	- 20-	-		3
25—		25—	-	25	in the second		-
30—		30—	- 60	- 30-			2
35—	S. 1	35-		35-	Contraction of	1.5	
	123		-	40-	33	3	5
	536	40-		+0	1.5.1		8
45-	100	45-		45-	1000		5.
50—	38	50—	100	50-	6.6	-	-
55-	1	55-		- 55-	0.5	100	
60-	200	60-	340	- 60-	and a		8
	100		238	-		1.1	
65-		65-		65-	1.1.1		
70—		70—		70—	535		-
75—	1	75—	SIL	75-	33		
- 08	335	80-	100	80-	131	5.3	2
-	153 8		258				2
85-		- 68	5	85-			
90—	1	90—		90-	23	State State	100
95-		85—		95—			1
	100	100-	532	- 100	301	2.34	8
-	100	-	120		2.72		5
	A CONTRACT	- 601	Sugar E.	- 00	33		
-011	1.00	110-		110-		The second	100
115—	1	115—		115-	833	-	100
120-	332	120-		120-		233	2
	100	125-	513	125-	1931		
-		-		_			
130-		130-	100	130			10
135-		135-		135-	Carlos I		1
140-		140-	520	140-	330		-
	-	145-	1	145-			-
	10.00			150-	1	100	
100	Contraction of the local division of the loc		S. M. BHY	100-	Chan Pr	.0	

-	BI0 FOS	STR	CHA	RACT	ER	5	ES					88.	00		
TIME-ROCK UN	FORAMINIFERS	NANNOF OSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
EOCENE	A/M	6 A/M	B	8			1772 P=1.94		1	0.5		1	***	*	NANNOFOSSIL CHALK with FORAMINIFERS Major lithology: This core contains white (2.5Y 8/0) NANNOFOSSIL CHALK with FORAMINI FERS. Moderate bioturbation is indicated from abundant compacted motilies. Steeply dipping stylolites are observed in Section 6, 10 cm, It is not clear if the dip is natural or the result of chiling disturbance. Several mottles appear to be aligned with the dipping stylolites
MIDDL	- P14	- NP1					-A								Minor lithology: Several pieces of dark gray (2.5Y 4/0) CHERT are present at the top of Section 1 and in the CC.
	P10	NP15													1, 25 D
															TEXTURE
															Silt 80 Clay 20 COMPOSITION:
															Accessory minerals Tr Foraminifers 20 Nannofossils 80

t	BI0 F05	STR	CHA	RAC	E/ TER	67	Es					88.	s		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTURE	SAMPLES	LITHOLOGIC DESCRIPTION
RE	A/M	R/P	R/P	æ					1 CC	-		×			NANNOFOSSIL CHALK with FORAMINIFERS and CHERT Major lithology. This core contains white (5Y 8/1) NANNOFOSSIL CHALK with FORAMIN- IFERS and dark oray (2.5Y 400) CHERT. Drillon has breccaded the section.
WIDDLE EOCE	P10 - P14	NP15 - NP16	Podocyrtis chalara												

80	7G-35H	and the second	UL I	8	07C-36R	1	CC	
10	5-	-		_	5-			
10.0	10-		-	4	10-			
	15-		-	_		and and a		
		er henrie henrie	_	_	- 05			_
	25-	and a state of the						23
	-	et catila			25-	in		
	30-	~			30-		-	-
	35	-	-	-	35—		-	-
	40	T	-	-	40-		_	-
	45-			-	45-		_	_
	-				_	121		12
	50-	and a feature			50-	123		-
	55	-		-	55—		-	-
	60-		-	-	60-		_	-
	65-	1	_	_	65-		_	-
	70-	1.1			70-			-
		1100		-				
	75-	1000		100	75-			1
	80-		-	-	80—		-	-
	85—	-		-	85—	10	-	-
	90-	1		-	90-			-
		1	dian of some					
	-	135	1		-	1000		
	-000				100-	-1-1	100	
1	105-				105-			100
	110-			-	110-	1000		-
2							1981	1019 1010
			日本の日本		113	2018-04 	1711 - V 1.1	6.0
	120-				150-		-	-
100	125-		-	-	125-		-	-
1414	130-			-	130-		<u> </u>	E .
	135-			-	135—		The second	-
			-					_
	-	property of			-	-	2	
22.2		-	10 000		-	a halfer		
	150-	the local	No. State		150-			100

TE	8	307	7	HO	LE	0	2		COP	RE	37R CC	RE	D	INT	ERVAL 1063.7-1073.2 mbsf
E	BI0 FOS	STR	AT. 2 CHA	ZONE	TER		ES					8.	0		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETICS	PHYS. PROPERTI	CHEMISTRY	SECTION	WETERS	GRAPHIC LITHOLOGY	DRILLING DISTUR	SED. STRUCTURE	SAMPLES	LITHOLOGIC DESCRIPTION
	4	٩	٩				•		1	1		\geq	1	*	NANNOFOSSIL LIMESTONE 10 CHALK
MINULL LUNCING	2 R/	NP15 - NP16 C/	T. triacantha - T. bromia RI	B			Ø-29 Ø-22								Major lithology. The recovered material contains white (2.5Y 8-0) NANNOFOSSIL LIME: STORE to CHALK. Moderate bioturbation is indicated by compacted horizontal burrows. The hardness probably varies with silica content. Minor lithology. A piece of reddisting gray (1018-51) CHERT is present in Section 1, 26-29 c It has a sharp contact with the chalk and also contains cm scale inclusions of chalk. SMEAR SLIDE SUMMARY (%): 1, 15 0 TEXTURE: Sand 10 Siti 86 Clay 4 COMPOSITION Carbonate particles 42 Foraminifers 8 Nannofossils 50
E	8	107	,	но	LE	С			COF	E	38R CC	RE	DI	NT	ERVAL 1073.2-1082.4 mbsf
2	BIO	STR	CHAI	RACT	/ TER	\$	E8					RB.	s		
	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS, PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
OCENE	P11	NP15							1	0.5		>>>	1 1 1	*	NANNOFOSSIL CHALK to SILICIFIED LIMESTONE Major lithology: This core contains white (2.5Y 8 0) NANNOFOSSIL CHALK to SILICIFIED LIMESTONE. It is moderately bioturbated with horizontal, compacted burrows.
MIDDLE E	C/M	A/P	в	в											Minor Ithology: The core also contains gray (N6) CHERT, which may be nodular in origin and which contains cm scale bands and inclusions of chalk, timestone. SMEAR SLIDE SUMMARY (%):

TEXTURE Sand Silt Clay

COMPOSITION: Carbonate particles Foraminifers Nannotossils 1.30 D

10 86 4

45 5 50

07C-37R 1	807C-38R 1
5-0-	5- 4-
10	10
15	15
20-09-	20-09-
25	25
30	30
35	35
40	40
45	45
50	50
55	55
60— — —	60
76	70-
- -	
	85-
90	
120	120
125	125
130	130
135	135
140	140
145— —	145
150— —	150

SITE 807

1117

TIME-ROCK UNIT	FORAMINIFERS A G	NANNOFOSSILS 250	AT CHA SNUINE SNUINE SNUINE	RACTI SMOLUIO	ER	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	WETERS	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
MIDDLE EOCENE	2 R/M	NP15 A/P	Thyrosocyrtis triacantha AIM	Ð					ĩ			××		*	CHERT and SILICIFIED LIMESTONE Major Imploit of the recovered material is dominated by CHERT, which may be nodular as contains up to om size inclusions of limestone. The chert pieces are gray (N5 and 5YR 5/ and dark reddsh gray (SYR 4/2), and have chaik along some of the outer rims. The chert pieces vary between 1 to and 5 cm in diameter. The remainder of the recovered material is slightly bioturbated, white (2 SY 8/0) SILICIFIE LIMESTONE SMEAR SLIDE SUMMARY (%): 1, 23 D TEXTURE: Site 95 Clay 5 COMPOSITION: Contracts endicing 44
															Foraminifers 1 Nannofossils 50 Siliceous fragments 5

Ę	BIO FOS	STR	AT. 2 CHAI	RACT	ER	57	IES			 88.	ES.		
TIME-ROCK UN	TIME-ROCK UN FORAMINFERS INAMOFOSSILS PRADIOLARIANS PLALEOMACHETIC PHYS. PROPENTIC PHYS. PROPENTIC CHEMISTRY ACTION ACTION BRILLING DISTU	SAMPLES	LITHOLOGIC DESCRIPTION										
MIDDLE EOCENE	R/P ?	A/P NP14 - NP15	FIP Theocotyle cryptocephala - Pterocodon ampla	B			• 0-21.8 • 72.8	2	0.5		1 1 1 1 1 1 L	*	NANNOFOSSIL CHALK to SILICEOUS NANNOFOSSIL LIMESTONE and CHERT Major lithology: The recovered material contains white (2.5Y 8/0 and 5Y 8/1) and moderately bioturbated NANNOFOSSIL CHALK to SILICEOUS NANNOFOSSIL LIMESTONE. Compacted horizontal burrows are common. The core also contains reddish gray (10R 5/1) to gray (16%) CHERT, possibly of nocular origin. It has thin layers and inclusions of chalk. Some of the chalk pieces contain layers and cm scale inclusions of chalk. Some of the chalk pieces contain layers and cm scale inclusions of chert. SMEAR SLIDE SUMMARY (%): 1, 38 D TEXTURE Silt 95 Clayy 5 COMPOSITION: Carbonate particles 34 Poraminifers 4 Nannofossils 60 Siliceous fragments 2

807C-39R	1	807C-40R	1	2
	Aug	all street	1.0	
	State .	all reall		
9	9.37	5	100	
10	0.0	10	125.77	m
10-		10-		a second of
10	Contract -		1	hand
15-	38 -	15-	1.20	-
-		-	1.5	and the second
-05		-05		-
	and the second		F	
25-		25-	WF	
-				All and a set
30-	200 mg	30-	IN-	-
_	A.	-	100	and the second second
35-		35-		
-	A	_	and .	
40-	100000	40-	Carlos and	
-		and the sector	1	A CONTRACTOR OF A CONTRACTOR OFTA CONTRACTOR O
45	ALC: NO.	45-	1 10	
		_	and in	and the second second
50-		50-	and a	
-	100	_		STO A
55		55-		
		-		State of the local division of the
00	and the second	60	4	
-uo		00		
		-	1.10	Acres in the second
65-		05-	4.00	Sector Sector
Contraction of the local	10.0 C (10.0)		10 m	1
70-	-	/0	1000	
		The Market	- 11	And the second second
75—		75-	12-	
-		_		
80-	-	80-	1	and show a state
-	and States	-		and the second second
85-		85-	100 -	-
-	1000	-	No.	and a second second
90-	-	90-	- X	
	100 C			
95-		85-	5-	-
-		-		and the second second
100-		100-	- 65	Sector Sector Sector
a starting		-	1000 m	States and states
105		105	Case -	
	1.1.1	-	ACC 10	and a real of the local
110-		110-	100 m	
a state of	1000		987 5	Englishing in a
115-		115-	M-	and the second second
	22	_		BOAD AND BOAT
120-		120-		Statement Street
IEU-	100			The second second
100		125-		And the second second
169-				States and states and states
100	apple been	190-	mersel.	States Inc.
130-		100		and the line of the
	indiana.	195		Sheer Karld State
135-	perfect and	155	-	and the party of the second
- Carlos - Street	100 - 15 K	140	100	3
140-	H	140-		and the second second
-	And the state	145		
145-		145-	19	-
1985 A				ALTO THE MORE
150	-	150-	COURSES	1

111	BI0 FOS	STR	CHA	RACT	ER	65	Es					JRB.	5		
TIME-ROCK UN	FORAMINIFERS	NANNOF OSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
OCENE?		NP14	2				P=2.25		1	0.5		333	+++++	*	LIMESTONE Major lithology: This core contains white (2.5Y 8:0) LIMESTONE with flaser structures and relict bioturbation structures. Miror lithology: The limestone pieces have 0.5 cm thick rims of light greenish gray (SGY 7/1)
MIDDLE E		C/P	R/P	8											CHAIK. Gray (SY 5-1) and reddish gray (SYH 5/2) CHERT nodules (up to 2 cm thick) with mm size inclusions of timestone comprise about 5% of the recovered material. SMEAR SLIDE SUMMARY (%): 1, 47 1, 84 D D
															TEXTURE: Sand 5

SITE 807 HOLE C CORE 42R CORED INTERVAL 1102.4-1106.4 mbsf

11	BIOSTRAT. ZONE/				JRB.	S						
TIME-ROCK UN	I I IME - FACLA ANANGOR SSILS FORAMINITERS I MANNOFOS SSILS OIATOMS PALEOMAGNETTC: PHYS: PROPERTITC: PHYS: PROPERTITC: ADDINATOR SECTION METERS SECTION BRILLING DISTU	SAMPLES	LITHOLOGIC DESCRIPTION									
LOWER EOCENE	2	NP12	2			\$=26.0 •	1	0.5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	****	*	LIMESTONE and CHERT Major lithology: This core contains while (5Y 8/1) LIMESTONE and light brownish gray (19YR 6/2) and gray (2.5YR 5/0) CHERT. The limestone is moderatinly bioturbated with compacted horizontal burrows and laint liase structures. The limestone pieces contain as much as 50% chert in the form of thin stringers and inclusions. The chert is present as nodules (ca. 3 cm in diameter) with cm scale chalk/limestone inclusions. SMEAR SLIDE SUMMARY (%):
	R/P	C/P	R/P	æ			2	-	15	1		TEXTURE: Sand 30 Sat 65 Clay 5 COMPOSITION: Accessory minerals Tr Carbonale particles 35 Foraminiters Tr Nannolossils 60

TE	ξ	307		HO	LE	C			COF	RE	47R CC	RE	DI	NT	ERVAL 1140.2-1145.2 mbsf
-	810	STR	T. 3	ZONE	/		m					÷			
TIME-ROCK UNI	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	EH	PALEOMAGNETICS	PHYS PROPERTIE	CHEMISTRY	SECTION	WETERS	GRAPHIC LITHOLOGY	DRILLING DISTUR	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
UPPER PALEOCENE	R?	C/P NP9	8	B			-3799 • P=16.5 V-4305 • V-4772		1	0.5			8-8 8 8 S 8 8 - 8 8 8 8 8 9 8 8 8 9 8 8 8 8 8	**	LIMESTONE Major lithology. This core contains white (2.5Y 8 0 and 5Y 8 1) LIMESTONE. Moderate bolurbation is evident as elongate, compacted burrow traces. Faint, small-scale flaser structures are abundant. Thin (<1 mm thick) styloites are present to abundant. Minor lithology. Dark gray (5YR 51), gray (N5) and light gray (N6) CHERT is observed in three forms.1) horizontally discontinuous 1 to 2 mm thick layers. 21 continuous horizontall layers, up to 12 cm thick, and 3) irregularly shaped masses in limestone: up to 2 cm in diameter. A layer of gray (N4). Enely laminated VOLCANIC ASH, approximately 1 cm thick, is present at Section 1, 40 cm. SMEAR SLIDE SUMMARY (%): 1, 37 1, 40 M M
							->								Sand 5 Sit 90 93 Clay 10 2 COMPOSITION 2 Calcaneous fragments 55 3 Nannofossiti 2 Volcanic ash 45 95
TE	810	BO	7 AT.	HO	LE	(2	_	cor	RE	48R CC	RE	DI	NT	ERVAL 1145.2-1150.2 mbsf
TIME-ROCK UNIT	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	SWOTAID	TER	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
LEOCENE	FOR	0					•V-4158		1	0.5		>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	1888 1888 1888 1 1888 1		LIMESTONE Major lithology. This core contains white (2.5Y 8.0 and 5Y 8:1) LIMESTONE. Moderate bid turbation is evident as elongate compacted burrows. Faint, small scale flaser structures an present in Socion 2. Thin (<1 mm thick) stylolites are common throughout the core. Minor tithology: Gray (N5) is not brownish gray (SYR 6.1) CHERT is observed in Socions 1 horizontally discontinuous layers (1-2 cm thick) or in continuous horizontal layers up to 5 c thick. The chert appears spotly with light gray (N7.2) and very light gray (N8.2) cm scale inclu- ions. In Section 2. limestone inclusions are present in the chert layer.
UPPER PA	2	P NP					V-3726 0 = 14.8		2				1 200 200 200 200 200 200 200 200 200 20	8	

m LL m B

SITE 807 HOLE C CORE 57R CORED INTERVAL 1216.3-1222.5 mbsf BIOSTRAT. ZONE/ FOSSIL CHARACTER UNIT BBL RES 1810 PALEOMAGNET PHYS, PROPE CHEMISTRY SECTION ROCK CRAPHIC LITHOLOGIC DESCRIPTION RADIOLARIA FORAMINIF LITHOLOGY STR DIATOMS METERS TIME. SEO. ñ 1 LIMESTONE 10 0 Major lithology: This core contains white (2.5Y 8/0 and 10YR 8/1) LIMESTONE. Two thirds 16= AN of the limestone contains flattened carbonate grains (<1 mm diameter) or compacted 9 £ burrows with diffuse parallel lamination/flaser structures. Larger (0.5 cm thick, 3-5 cm long) MAASTRICHTI sub-horizontal, compacted burrows were observed in Section 2. Low-angle truncation 2 surfaces and the well-sorted nature of grains suggest that some parallel laminae are primary. One third of the limestone is silicified, exhibiting smooth cut surfaces and minor to ven v .0 ť moderate mottling. Stylolites are common and are usually located on the tops and bottoms V-4293 of limestone pieces. SI Minor lithology: CHERT constitutes 5% of the core and is, present in 1 to 8 cm thick intervals 5 à throughout the core. The chert is dark reddish gray (5YR 4/2) and dark brown (10YR 4/3) 16 and commonly contains dark and light bands and chalk inclusions up to 1 cm in diameter. UPPER •×CaCO₃ 2 Abat 1 R/P C/M V-4261 2025

.

٠

щ

MIDDLI

Σ ۵.

A mm 2

3

H

. .

5

NIT N	BIO FOS	STRA	CHA	RACT	/ ER	99	IES.					.830	Es		
TIME-ROCK U	FORAMINIFERS	NANNOF OSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	NETERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
MIDDLE MAASTRICHTIAN	R/P	A/P	8	8					cc						LIMESTONE Major lithology: This core contains white (10YR 8:0) LIMESTONE. The limestone has a few elongate, mm scale, white (2.5Y 8:0) clasts. Tiny dark specks of pyrite(?) are abundant throughout. Minor lithology: Chert comprises about 40% of the CC.

TIME-ROCK UNIT	FORAMINIFERS 0 0	NANNOF OSSILS	RADIOLARIANS 2	ZONE/ RACTER	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURD.	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
UPPER CAMPANIAN - LOWER MAASTRICHTIAN	R/P	B	ß			• \$=18.9 V-3895 V-3673 • \$=2.43	•×CaC03 =97.2 •×CaC03	2	0.5-					LIMESTONE Major lithology: This core contains white (10YR 8/0) to gray (2.5Y 8/0) LIMESTONE. Dis- seminated pyrite specks are abundant throughout the core. Small (<1rmm) compacted clasts appear to have a parallel alignment. A few trace fossils are apparent. Well-developed stylolites are also present. Minor lithology: CHERT occurs as three concretions in Section 1. It is dusky blue (5PB 3/2 and dark brown (7.5YR 4/2) in color.

SITE 807

SITE 807

FORAMINIFERS 0 0	OFOSSILS STR	CHA SNV	RACI	TER	50	ES								
FORAMINIFERS	OF OSSILS	SNA	RACI	TER	00	ω.					1.1			
FORAMINIFERS	OFOSSILS	ANS			2	E					URB	RES		
-	NANN	RADIOLARI	DIATOMS		PALEOMAGNETI	PHYS. PROPER	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTU	SAMPLES	LITHOLOGIC DESCRIPTION
						V-3805 - 19.5	3=96.7 •%CaC03=96.4	1	0.5			• • • • • • •	•	LIMESTONE Major lithology. This core contains white (2.5Y 8/0) LIMESTONE. While, rounded to slightly flattened chaik clasts are common to abundant in Section 1, Section 2, 0-120 cm, Section 3, 15-59 cm, and Core Catcher. These clasts form parallel to subparallel horizontal bands, and range up to approximately 4 mm in diameter. Several of the largest clasts contain burrows that terminate at the clast edge. Fewer than 1% of the clasts are gray (NS) to light gray (N7) in color and are composed of isotropic to slightly biretingent noncelacareous material. These clasts may be redeposited and variably altered volcanic ash. Section 2, 120 cm to Section 3, 15 cm contains flaser structures and moderate amounts of bioturbation; the presence of elongated burrow outlines suggests that this interval may have been deformed slightly. Stylolites are common to abundant in Sections 1 and 2.
						V-3393 - 2-40	•%CaCO	2	and the state			**************************************		Minor lithology: A 2 cm thick fragment of dark reddish gray (5YR 4/2) CHERT is present at Section 2, 113-115 cm. SMEAR SLIDE SUMMARY (%): 2, 25 D
	A/P	8	8					3 CC			シェートン			TEXTURE: Sand 10 Sit 85 Clay 5 COMPOSITION.
														Calcareous fragments 90 Nannofossils 5
810 F05	SSIL	7 AT. 1 CHA	ZONE	DLE		Es l	Γ	CON	RE	65R CC	RE	s I O	NT	ERVAL 1290.1-1299.8 mbsf
FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETICS	PHYS. PROPERTII	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTUR	SED. STRUCTURE:	SAMPLES	LITHOLOGIC DESCRIPTION
						V=351500=22.5	=96.9 •%CaC03	1	0.5		⊥ ⊥	なしたいして		LIMESTONE Major lithology. This core contains white (2.5Y 8/0 and 10YR 8/1) LIMESTONE. The limestone alternates between intervals of uniform, slightly bioturbated silicitied (7) limestone and limestone with common to abundant. rounded to slightly elongate. I to 5 mm diameter, while limestone clasts. A minor portion (<5%) of the clasts are light gray (N7). The clasts are arranged in parallel to sub-parallel intervals. Section 3.20-30 cm also contains angular clasts of dusky blue green (5BG 3/2) color. Flaser structures were observed Section 1. Inverse graded bedding is present in Section 2. 51-57 cm. Styloites are common throughout the core.
	WW					V-36650 - 2.3.2	•%CaC03	2			⊥ ⊥ ⊥	r		Minor lithology: Section 1, 77-85 cm, contains dark reddish gray (5YR 4/2) CHERT The chert contains chalk/limestone inclusions up to 1 cm in diameter.
	E ORAMINICAL STREET	A/M BIEROSSIL SURSOLS ANNINING ANNINI ANNING POSSIL SURSOLS ANNINI	BIODUTRAT. TO BIODUTRAT. SUCCESSIL CALA	A/M BIODILETATY: TOWIC LONGARMINICERS BIOLOGILE CHARAC BIOLICARSING BIOLICARS BIOL	BIODTRAT., ZONE/ FOSSIL CHARACTER STUSSOL CHARAC		A/M A/P A/M А/P Микиогозана В Алининская В Воданинская В Воданиская В Воданиская В Воданиская В Воданиская В Воданиская В В В В В В В В В В В В В В В В В В В В В В В В В В <	A/M Foldaministrea A/M A/P B A/P RatioLatinas RatioLatinas B B Pointowersis B Pointowersis B Pointowersis B Pointowersis B Pointowersis B Pointowersis B Pateowersis B PALEOWAGE A/P PALEONAGE B PALEONAGE B PALEONAGE B PALEONAGE	A/M A/P B А/Р Munorossis, B A/P Munorossis, B A/P A/M Raunurress Raunoundans, B A/P A/P A/P B B B A/P B Autorossis, B B B <td>BO7 HOLE C CORE BO7 HOLE C CCC CCC BO5 FOR CORE SUBJECT SUBJECT SUBJECT SUBJECT BO7 HOLE C CORE CCC SUBJECT SUBJECT BU05 FIGE SUBJECT SUBJECT</td> <td>BO7 HOLE C CORE 65 R CO BO7 HOLE C CORE 65 R CO BO8 SINUBOOD SIN</td> <td>BO7 HOLE C CORE 65 R CORE BO7 HOLE C CORE 65 R CORE BO5 FINE SINNWY SINNWY SINNWY SINNWY SINNWY C SINNWY SINNWY<</td> <td>BO7 HOLE C CORE 65 R CORE OF BO7 HOLE C CORE 65 R CORE OF BO7 HOLE C CORE 65 R CORE OF BO7 HOLE C CORE 65 R CORE OF BU05 FINAL TAMINICOL TAMINICOL TAMINICOL BU05 FINAL FINAL FINAL FINAL FINAL BU05 FINAL FINAL FINAL FINAL FINAL CC SUBJONNIN SUBJONN SUBJONN SUBJONN FINAL FINAL FOSSIL FINAL FINAL FINAL FINAL FINAL FINAL FOSSIL FINAL <td< td=""><td>BO7 HOLE C CORE 65 R CORED INT BO7 HOLE C CORE 65 R CORED INT BO8 BO7 HOLE C CORE 65 R CORED INT B00 B00 SUBJORD SUBJORD SUBJORD SUBJORD SUBJORD SUBJORD SUBJORD SUBJORD B00 B00 SUBJORD SUBJORD SUBJORD SUBJORD SUBJORD SUBJORD SUBJORD B00 SUBJORD SUBJORD</td></td<></td>	BO7 HOLE C CORE BO7 HOLE C CCC CCC BO5 FOR CORE SUBJECT SUBJECT SUBJECT SUBJECT BO7 HOLE C CORE CCC SUBJECT SUBJECT BU05 FIGE SUBJECT SUBJECT	BO7 HOLE C CORE 65 R CO BO8 SINUBOOD SIN	BO7 HOLE C CORE 65 R CORE BO5 FINE SINNWY SINNWY SINNWY SINNWY SINNWY C SINNWY SINNWY<	BO7 HOLE C CORE 65 R CORE OF BU05 FINAL TAMINICOL TAMINICOL TAMINICOL BU05 FINAL FINAL FINAL FINAL FINAL BU05 FINAL FINAL FINAL FINAL FINAL CC SUBJONNIN SUBJONN SUBJONN SUBJONN FINAL FINAL FOSSIL FINAL FINAL FINAL FINAL FINAL FINAL FOSSIL FINAL FINAL <td< td=""><td>BO7 HOLE C CORE 65 R CORED INT BO7 HOLE C CORE 65 R CORED INT BO8 BO7 HOLE C CORE 65 R CORED INT B00 B00 SUBJORD SUBJORD SUBJORD SUBJORD SUBJORD SUBJORD SUBJORD SUBJORD B00 B00 SUBJORD SUBJORD SUBJORD SUBJORD SUBJORD SUBJORD SUBJORD B00 SUBJORD SUBJORD</td></td<>	BO7 HOLE C CORE 65 R CORED INT BO8 BO7 HOLE C CORE 65 R CORED INT B00 B00 SUBJORD SUBJORD SUBJORD SUBJORD SUBJORD SUBJORD SUBJORD SUBJORD B00 B00 SUBJORD SUBJORD SUBJORD SUBJORD SUBJORD SUBJORD SUBJORD B00 SUBJORD SUBJORD

UPPER

SITE 807

135 -140 -145 -150 -

LIN I	BIO	SSIL	AT. CHA	RACT	ER	\$2	IES					JRB.	ŝ		
	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
UPPER ALDIAN - LOWER CENOMANIAN		8	B I [UPPER ALBIAN - LOWER CENOMANIAN] A/P A/P C/P	B			V~2269@2415	•XCaCO ₃ =0.2	1					*	CLAYSTONE and RADIOLARIAN SILTSTONE Major Ithology: Approximately 65% of the core consists of dark brown (10YR 3/2) CLAY- STONE: The rock is interbedded with RADIOLARIAN SILTSTONE: Slight biourbation is indicated by faint mm to cm scale burrows in none layers. Faiser structures and waxy discontinuous thin layers are common. The interbedd sipplay either sharp contacts or normal grading with the scale lamination. Evidence of microlauting is observed in Section 2. 122 cm. Approximately 35% of the core is composed of pinkish gray (7 SYR 7/2) and light gray (N7) RADIOLAR. IAN SILTSTONE: This thinding grading. Faint burrowing indicates slight biolurbation. Smear slide analysis indicates that the non-radiolanian fragments are fine-grained slicic particles of undetermined origin. SMEAR SLIDE SUMMARY (%) L 10 2, 87 M D TEXTURE Sand 20 10 Sit 75 70 Clay 5 20 COMPOSITION Accessory minerals Tr Tr Clay 99 Glass 91 ComPOSITION Accessory minerals 70 Fine 71 Radiolanians 30 Fine Radiolanians Fine Fine Radiolanians Fine Radiolanians Fine Fine Radiolanians Fine Fine Fine Fine Fine Fine Fin

SITE 807

		~ ~		nu	LC		-		COF	RE JOR	CUR	ED	10	411	RVAL 1367.4-13/5	4 mC	DST
E	BI	OSTR	RAT.	ZONE	E/ TER		ES				1	. 88	T				
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETICS	PHYS. PROPERTI	CHEMISTRY	SECTION	GRAPHIC LITHOLOG	Y	SELLING DISTUR		SAMPLES	LITH	LOGIC	DESCRIPTION
APTIAN - ALBIAN LOWER CENOMANIAN TIM	101	A/P C/P NM	B Acasniotyle umbilicata - O. somphedia [UPPER ALBIAN - LOWER CENOMANIAN] • A/P Rub	8		Par	W-2773 9 200 1 0 2021 9 242.7 PHY	●XCaCO ₃ -0.2 ● ² CaCO ₃ Ove	2					* * 840	CLAYSTONE and RADIOLARIAN SA Major lithology: Approximately 60% o is interbedded on a 2 mm to 2 cm sca and light brownish gray (10% 62) R about 35% of the core. The contacts gradational but sharp contacts are all brown (7.5YR 5/4) burrows occur in 1 can be discerned in some of the lam Minor lithology: Below Section 2, 82 c LIMESTONE: Steeply dipping. very 1 96 cm. Black (2.5YR 2.5/0) cm scale CHERT 2, 105 cm. SMEAR SLIDE SUMMARY (%) 1, 81 CTEXTURE Sand 2 Sit 20 CIAY 78 COMPOSITION: Accessory minerals - Catbornale grains 1 Clay 93 Glass 1 Nannofossits - Oxide 5 Radolarians 1 Siliceous fragments -	INDY SI this cor le with g ADIOLA ADIOLA ADIOLA Section 2 m, the d section 2 m, the d sec	LTSTONE overlying LIMESTONE te is very dark gray (10YR 3/1) CLAVSTONE. It rayich trown (10YR 5/2) to gray (10YR 6/1) RLN SANDY SULTSTONE, which comprises the two sediment types are mostly on. Graded bedding is seen in upper part of not all layers are continuous across the core, es was found. Very dark gray (10YR 6/1) tomosing fractures are seen below Section 2, sore is moderately bioturbated gray (10YR 6/1) tomosing fractures are seen below Section 2, s are seen in Section 1, 10 cm and in Section 2, 98 D 3 96

SITE		30		HC	LE			-	CO	RE	74R C0	DRE	D	INT	ERVAL 1375.4-1385.2 mbsf	_
i	FOS	SIL	CHA	RAC	TER	99	ES					RB.	s			
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION	
		d/N	d/							1		L	2	*	LIMESTONE AND CHERT	
- ALBIAN		A	AN ? R	æ					1	0.5					Major lithology: This core contains 25 cm of moderately tragmented, dark gray (NS) CHERT and dark grayish brown (10YR 4/2) to light gray (10YR 7/2) LIMESTONE. The chert contains limestone inclusions, breccauded fragments, and external coatings, and appears to have formed post-depositionally as nodules. The limestone exhibits pervisive flaser structures on a scale of 5 mm to 3 cm. The largest piece of limestone, which is located at Section 1. 19-25 cm, contains three major microfaults and abundant heated tensional cracks.	s
z			NN				1			1					SMEAR SLIDE SUMMARY (%):	
PTIA			MON							111					1, 14 D	
A			GE	~					2						TEXTURE:	
			2						-						Sitt 50 Clav 50	
			TIA												COMPOSITION:	
			AP												Carbonate grains 92 Chert 2 Glass 1 Nannolossils 5	
									3	1 marte	BASALT					
												1				
									4							
									cc	1111						

807 C 75R HARD ROCK 807 C 76R HARD ROCK 807 C 77R HARD ROCK 807 C 78R HARD ROCK 807 C 79R HARD ROCK

807 C 81R HARD ROCK

1	B10	STR	AT. CHA	ZONI	E/ TER	0	IES .					RB.	sa		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTUR	SAMPLES	LITHOLOGIC DESCRIPTION
									1	0.5	BASALT				CLAYEY LIMESTONE Major lithology: One piece of olive brown CLAYEY LIMESTONE is present in Section 3, 72-79 cm. The day is probably smechtle, and iron oxides are common to abundant. The limestone contains 5-10% graysh green (55-52) clasts that are 2-3 mm in diameter and range in shape from elongate and angular to pelletal. These clasts could be glauconite o basaltic debris.
CEOUS									2	in the second second					
LOWER CRETA									3						
									4		BASALT				
									5						
									6						

1146

UNIT 4A: APHYRIC BASALT

Pieces 1-3

CONTACTS: None. PHENOCRYSTS: Aphyric. GROUNDMASS: Fine grained with glass margins. VESICLES: Nonvesicular. COLOR: Dark gray to medium gray.

STRUCTURE: Pillow lava.

ALTERATION: Slightly altered near margin to moderately altered interior.

VEINS/FRACTURES: <1%; 0.5-2 mm; subvertical and subhorizontal; calcite filled with minor clays and/or iron oxides.

ADDITIONAL COMMENTS: Piece 1A is a banded limestone vein filling. The upper 1-1.5 cm contains a green mineral (epidote?). It shows a sharp contact with a light brownish band (~2.5 cm thick), very fine grained at top, coarser (~1 mm grain size) at bottom.

UNIT 4A: APHYRIC BASALT

Pieces 4-8

CONTACTS: None. PHENOCRYSTS: Aphyric. GROUNDMASS: Fine grained to glassy at margins. VESICLES: Nonvesicular. COLOR: Dark to medium gray with blotchy appearance in interior. STRUCTURE: Pillow lava. ALTERATION: Slight to moderate, some brown-red Fe-oxide staining. VEINS/FRACTURES: <1%; 1-2 mm; several at 30°-45°; calcite and brown clay and/or Fe-oxides; glass altered to celadonite (?) and brown clay.

UNIT 4A: APHYRIC BASALT

Pieces 9-12

CONTACTS: None. PHENOCRYSTS:

Plagioclase - <1%; 3 mm; very rare subhedral laths.

GROUNDMASS: Fine grained to glassy at margins.

VESICLES: Nonvesicular.

COLOR: Medium gray to dark gray.

STRUCTURE: Pillow lava.

ALTERATION: Slight to moderate, blotchy alteration in Piece 10A.

VEINS/FRACTURES: <1%; 0.5-2 mm; near vertical; calcite filled, small amounts of green mineral and dark brown Fe-oxides and/or clay.

CORE/SECTION

130-807C-74R-4

UNIT 4A: APHYRIC BASALT

Pieces 1-3

CONTACTS: None. PHENOCRYSTS: Aphyric. GROUNDMASS: Fine grained with glassy margin at bottom. VESICLES: Nonvesicular. COLOR: Dark gray. STRUCTURE: Massive top, chilled bottom. ALTERATION: Slight to moderate, gray staining near veins. VEINS/FRACTURES: <1%; 0.5-5 mm; mostly subhorizontal; calcite, celadonite (?), brown clay and/or Fe-oxides.

UNIT 4A: APHYRIC BASALT

Pieces 4-7

CONTACTS: None. PHENOCRYSTS: Aphyric. GROUNDMASS: Fine grained with glassy margins. VESICLES: Nonvesicular. COLOR: Medium gray. STRUCTURE: Pillow lava. ALTERATION: Slight to moderate. VEINS/FRACTURES: <1%; up to 2 mm; subvertical to subhorizontal; calcite.

UNIT 4A: APHYRIC BASALT

Pieces 8, 9

CONTACTS: None. PHENOCRYSTS: Plagioclase - <1%; up to 3 mm; euhedral laths. GROUNDMASS: Fine grained, glassy top. VESICLES: Nonvesicular. COLOR: Medium gray. STRUCTURE: Pillow to massive. ALTERATION: Slight to moderate. VEINS/FRACTURES: <1%; 2-3 mm; subvertical to 45°; calcite.

CORE/SECTION

130-807C-75R-1

UNIT 4A: APHYRIC BASALT

Pieces 1, 2

CONTACTS: None. PHENOCRYSTS: Aphyric. GROUNDMASS: Fine grained, horizontal flow banding in Pieces 2B and 2C. VESICLES: Nonvesicular. COLOR: Medium gray. STRUCTURE: Massive. ALTERATION: Slight to moderate. VEINS/FRACTURES: <1%; <0.5 mm; irregular; calcite, clay and or Fe-oxides.

UNIT 4A: APHYRIC BASALT

Pieces 3-8

CONTACTS: None. PHENOCRYSTS: Aphyric. GROUNDMASS: Glassy at top of Piece 3, otherwise fine grained. VESICLES: Nonvesicular. COLOR: Medium gray. STRUCTURE: Massive. ALTERATION: Slight to moderate. VEINS/FRACTURES: <1%; ~1-2 mm; subhorizontal to subvertical; calcite with minor clay and chlorite (?).

130-807C-75R-3

UNIT 4A: APHYRIC BASALT

Pieces 1-3

CONTACTS: None. PHENOCRYSTS: Aphyric. GROUNDMASS: Fine grained. VESICLES: Nonvesicular. COLOR: Medium gray with green and brown blotches. STRUCTURE: Pillow? ALTERATION: Moderate to high. VEINS/FRACTURES: <1%; up to 5 mm; varied orientation; calcite and minor dark green mineral.

UNIT 4A: APHYRIC BASALT

Pieces 4-11

CONTACTS: None. PHENOCRYSTS: Plagioclase - <<1%; ~1 mm; cluster of euhedral laths. GROUNDMASS: Fine grained. VESICLES: Nonvesicular. COLOR: Medium to dark gray, mottled in places. STRUCTURE: Massive. ALTERATION: Moderate. VEINS/FRACTURES: <1%; ~0.5 mm; varied orientation; calcite with lesser brown clay and/or Fe-oxides.

UNIT 4A: APHYRIC BASALT

Pieces 12-19

CONTACTS: None. PHENOCRYSTS: Plagioclase - <1%; 1-3 mm; euhedral. GROUNDMASS: Fine grained with glassy top and bottom. VESICLES: Nonvesicular. COLOR: Medium gray. STRUCTURE: Pillow to massive. ALTERATION: Slight to moderate. VEINS/FRACTURES: <1%; 0.5-1 mm; varied orientation; calcite and minor green clay.

130-807C-75R-5

UNIT 4A: APHYRIC BASALT

Pieces 1-10

CONTACTS: None. PHENOCRYSTS: Rare.

Plagioclase - <<1%; 1-2 by 1-2 mm; euhedral to subhedral. GROUNDMASS: Fine grained. VESICLES: Irregular amygdules filled with calcite and green clay in Pieces 3 and 4. COLOR: Medium gray. STRUCTURE: Massive. ALTERATION: Slick to medicate

ALTERATION: Slight to moderate. VEINS/FRACTURES: <<1%; 0.5 mm; subhorizontal; calcite and light green clay.

130-807C-77R-2

UNIT 4A: APHYRIC BASALT

Pieces 1-6

CONTACTS: None. PHENOCRYSTS: Aphyric. GROUNDMASS: Fine grained to glassy margins (Pieces 5 and 6). VESICLES: Nonvesicular. COLOR: Medium gray with brown-green color patches. STRUCTURE: Pillow lava. ALTERATION: Slight to moderate. VEINS/FRACTURES: <<1%; 1-2 mm thick; varied orientation; minor clay and calcite filling.

UNIT 4A: APHYRIC BASALT

Pieces 7-16

CONTACTS: Glass. PHENOCRYSTS: Aphyric. GROUNDMASS: Fine grained, glassy rim on Piece 7. VESICLES: Nonvesicular. COLOR: Medium to light gray, slight amount of greenish staining. STRUCTURE: Pillow lava. ALTERATION: Slight to moderate. VEINS/FRACTURES: <<1%; <0.5 mm; varied orientation; fractures with minor clay; calcite near glass on Piece 7.

UNIT 4A: APHYRIC BASALT

Pieces 17-22

CONTACTS: Glass. PHENOCRYSTS: Aphyric. GROUNDMASS: Fine grained to glassy at the rims. VESICLES: Nonvesicular. COLOR: Light to medium gray. STRUCTURE: Pillow lava. ALTERATION: Slight to moderate. VENSIGERACTURES: co15 mm: varied orientation: fractures with minor calcite

VEINS/FRACTURES: <<1%; <0.5 mm; varied orientation; fractures with minor calcite and brown clay; calcite matrix invades glassy rims on Pieces 17, 18, 19.

130-807C-77R-3

UNIT 4A: APHYRIC BASALT

Pieces 1-5

CONTACTS: None. PHENOCRYSTS: Sparse. Plagioclase - <1%; 2-3 mm; euhedral. GROUNDMASS: Glassy to fine grained. GROUNDMASS: Glassy to fine grained. VESICLES: Nonvesicular. COLOR: Medium to light gray. STRUCTURE: Pillow. ALTERATION: Slight to moderate. VEINS/FRACTURES: <<1%; 0.5 mm or less; varied orientation; calcite veins with minor clay; inter-pillow calcite on glass rim of Piece 2.

130-807C-78R-1

UNIT 4A: APHYRIC BASALT

Pieces 1-6

CONTACTS: None. PHENOCRYSTS: Aphyric. GROUNDMASS: Fine grained. VESICLES: Nonvesicular. COLOR: Medium gray. STRUCTURE: Thick pillow or massive flow. ALTERATION: Slight to moderate. VEINS/FRACTURES: <<1%; <0.5 mm; subvertical.

UNIT 4A: APHYRIC BASALT

Pieces 7-13

CONTACTS: Glass. PHENOCRYSTS: Very rare. Plagioclase - <<1%; ~1 mm; subhedral. GROUNDMASS: Fine grained, glassy at top. VESICLES: Nonvesicular. COLOR: Medium gray. STRUCTURE: Massive. ALTERATION: Slight to moderate. VEINS/FRACTURES: <<1%; ~1-3 mm thick; varied orientation; calcite near glassy top, contains minor green clays; fractures sparse, with minor brown clay and/or iron oxide.

130-807C-78R-3

UNITS 4A: APHYRIC BASALT

Pieces 1-17

CONTACTS: Glass. PHENOCRYSTS: Very sparse. Plagioclase - <<1%; -2 mm across; euhedral. GROUNDMASS: Fine grained. VESICLES: Nonvesicular. COLOR: Light to medium gray. STRUCTURE: Massive with pillow top. ALTERATION: Slight to moderate. VEINS/FRACTURES: <<1%; 1-2 mm thick; horizontal and vertical; calcite and clay veins, one horizontal 0.5-mm-thick red-brown Fe-oxide or clay (?) vein.

130-807C-79R-1

UNIT 4A: APHYRIC BASALT

Pieces 1-6

CONTACTS: None. PHENOCRYSTS: Aphyric. GROUNDMASS: Fine grained. VESICLES: Nonvesicular. COLOR: Medium gray. STRUCTURE: Massive. ALTERATION: Slight. VEINS/FRACTURES: <<1%; 1-2 mm; varied orientation; calcite.

UNIT 4A: APHYRIC BASALT

Pieces 7,8

CONTACTS: Glass. PHENOCRYSTS: Aphyric. GROUNDMASS: Fine grained to glassy (Piece 7). VESICLES: Nonvesicular. COLOR: Medium to dark gray. STRUCTURE: Pillow. ALTERATION: Slight. VEINS/FRACTURES: None.

UNIT 4A: APHYRIC BASALT

Pieces 9-14

CONTACTS: Glass. PHENOCRYSTS: Aphyric. GROUNDMASS: Fine grained to glassy (Piece 9). VESICLES: Nonvesicular. COLOR: Medium to dark gray. STRUCTURE: Pillow to massive. ALTERATION: Slight. VEINS/FRACTURES: 2%; 0.5 - 2 mm; varied orientation; calcite and green and brown clay.

UNIT 4A: APHYRIC BASALT

Pieces 15-17

CONTACTS: Glass. PHENOCRYSTS: Aphyric. GROUNDMASS: Fine grained. VESICLES: Nonvesicular. COLOR: Light to medium gray. STRUCTURE: Pillow. ALTERATION: Moderate. VEINS/FRACTURES: 2-3%; 1-2 mm; varied orientation; calcite and clay.

UNIT 4A: APHYRIC BASALT

Pieces 18,19

CONTACTS: Glass. PHENOCRYSTS: Aphyric. GROUNDMASS: Fine grained to glassy. VESICLES: Nonvesicular. COLOR: Light to dark gray. STRUCTURE: Pillow. ALTERATION: Slight to moderate. VEINS/FRACTURES: ~1%; 0.5 mm; varied orientation; green clay. ADDITIONAL COMMENTS: Piece 18 is a breccia consisting of green altered basalt fragments in a calcite and clay matrix.

UNIT 4A: APHYRIC BASALT

Pieces 1-7

CONTACTS: Glass. PHENOCRYSTS: Aphyric. GROUNDMASS: Fine grained; Piece 1 has a glassy rim. VESICLES: Nonvesicular. COLOR: Medium gray. STRUCTURE: Massive with pillow top. ALTERATION: Slight to moderate. VEINS/FRACTURES: <1%; 0.5-4 mm; varied orientation; calcite and clay.

UNIT 4A: APHYRIC BASALT

Pieces 8-12

CONTACTS: Glass. PHENOCRYSTS: Very rare. Plagioclase - <1%; 1-2 mm; euhedral laths. GROUNDMASS: Fine grained; Piece 8 has glassy rim. VESICLES: Nonvesicular. COLOR: Light to dark gray. STRUCTURE: Massive with pillow top. ALTERATION: Moderate. VEINS/FRACTURES: 2-3%; 0.5-4 mm; varied orientation; calcite and clay.

UNIT 4A: APHYRIC BASALT

Pieces 13-15

CONTACTS: Glass. PHENOCRYSTS: Aphyric. GROUNDMASS: Fine grained. VESICLES: Nonvesicular. COLOR: Medium gray. STRUCTURE: Pillow. ALTERATION: Moderate. VEINS/FRACTURES: 2-3%; 0.3-3 mm; varied orientation; calcite, green and brown clay.

UNIT 4A: APHYRIC BASALT

Piece 16

CONTACTS: None. PHENOCRYSTS: Very rare. Plagioclase - <1%; 1 mm; euhedral laths. GROUNDMASS: Fine grained, glassy rim. VESICLES: Nonvesicular. COLOR: Medium to dark gray. STRUCTURE: Pillow. ALTERATION: Moderate. VEINS/FRACTURES: <1%; 0.5-1 mm; varied orientation; calcite and clay.

CORE/SECTION

CORE/SECTION

130-807C-79R-4

UNIT 4A: APHYRIC BASALT

Pieces 1-4

CONTACTS: None. PHENOCRYSTS: Very rare. Plagioclase - <<1%; 1-2 mm; euhedral laths. GROUNDMASS: Fine grained to glassy (Piece 2). VESICLES: Nonvesicular. COLOR: Medium to dark gray. STRUCTURE: Pillow lava. ALTERATION: Slight to moderate. VEINS/FRACTURES: 1-2%; 0.5-10 mm; varied orientation; clay and calcite

UNIT 4A: APHYRIC BASALT

Pieces 5-13

CONTACTS: Glass. PHENOCRYSTS: Aphyric. GROUNDMASS: Fine grained to glassy (Pieces 5, 6, and 7). VESICLES: Nonvesicular. COLOR: Medium to dark gray. STRUCTURE: Massive. ALTERATION: Slight to moderate. VEINS/FRACTURES: <1%; 0.5-1 mm; varied orientation; clays.

UNIT 4A: APHYRIC BASALT

Pieces 14, 15

CONTACTS: None. PHENOCRYSTS: Aphyric. GROUNDMASS: Fine grained, glassy margin. VESICLES: Nonvesicular. COLOR: Gray. STRUCTURE: Pillow margin fragments. ALTERATION: Slight to moderate. VEINS/FRACTURES: <1%; <0.5 mm; varied orientation; Piece 14 has breccia margin of altered glass shards up to 1.5 cm long in calcite matrix.

130-807C-79R-5

UNIT 4A: APHYRIC BASALT

CONTACTS: None. PHENOCRYSTS: Aphyric. GROUNDMASS: Fine grained. VESICLES: Nonvesicular. COLOR: Medium to dark gray. STRUCTURE: Massive. ALTERATION: Slight to moderate. VEINS/FRACTURES: <1%; up to 2 mm; subhorizontal; calcite and clay.

130-807C-80R-1

SUBDIVISION 4A: APHYRIC BASALT

VEINS/FRACTURES: <1%; 0.3 mm; varied orientation; brown clay.

UNIT 4A: APHYRIC BASALT

Plagioclase - <1%; up to 3 mm; euhedral laths. GROUNDMASS: Fine grained, glassy at top of Piece 2A.

VEINS/FRACTURES: 2-3%; up to 2 mm; varied orientation; calcite and clay filled; Pieces 2B and 2C contain irregular vugs up to 4 cm in width, infilled with calcite, quartz, zeolites(?), green mineral. Rim of vug consists of 5-mm-thick dark-green clay

COMMENTS: Major lithology: Breccia pieces of LIMESTONE interbedded with CLAYEY VITRIC TUFF with OXIDES comprise the material in section 1, 70-120 cm. The limestone is white (10YR 8/1 to 10YR 8/2) and contains angular fragments and clasts of altered vitric tuff and basaltic glass. Rounded fragments of altered vitric tuff, 1-2 mm thick concentrations of carbonate, and lensoid concentrations of sandsized grains, including vitric tuff and basaltic clasts, are also obsereved. Some pieces have have fracture fills of sparry calcite. The clayey vitric tuff is dark reddish brown (5YR 3/3) to reddish brown (5YR 4/3). The clays are probably smectice. One piece of the tuff contains long, vertical and horizontal, corbonate-filled fractures, up to 1 cm wide, and

UNIT 4C: APHYRIC BASALT

COLOR: Light to medium gray; top 1-2 cm of Piece 10B is yellow-brown.

ALTERATION: Moderate; top of Piece 10B is highly altered to highly weathered, top of

VEINS/FRACTURES: 1-2%; 0.5-3 mm; subvertical to subhorizontal; calcite, brown clay, red-brown mineral (Fe-oxides?) stains on some fracture surfaces.

CORE/SECTION

CORE/SECTION

130-807C-80R-3

UNIT 4C: APHYRIC BASALT

Pieces 1-13

CONTACTS: None.

PHENOCRYSTS:

- Plagioclase <1%; up to 1 mm; subhedral to euhedral. Olivine? 1-3%; 0.3-1 mm; subhedral. Clinopyroxene? <1%; 0.3-1 mm; subhedral. GROUNDMASS: Fine grained.

VESICLES: Nonvesicular.

COLOR: Medium to light gray, gray-green.

STRUCTURE: Massive.

ALTERATION: Slight to high. VEINS/FRACTURES: <1-4%; <0.5-5 mm; varied orientation; mostly green-brown clay with some calcite. Piece 12 has ~2-cm-thick horizontal vein mainly consisting of calcite with dark green and brown-red minerals at vein/basalt contact. Pieces 1 and 6 have 3-4% veins.

UNIT 4C: APHYRIC BASALT

Pieces 1-3

CONTACTS: None.

PHENOCRYSTS: Plagioclase - <1%; 1 mm; subhedral to euhedral laths. Olivine? - ~1%; 1 mm; subhedral to euhedral laths. Clinopyroxene? - <1%; 1 mm; subhedral. GROUNDMASS: Fine grained. VESICLES: Nonvesicular. COLOR: Medium to light gray to gray-green. STRUCTURE: Massive. ALTERATION: Slight to high.

VEINS/FRACTURES: Piece 3 heavily fractured (5%), subvertical to subhorizontal, filled with calcite and brown clay.

UNIT 4C: APHYRIC BASALT

Pieces 4-9

CONTACTS: None.

PHENOCRYSTS: Plagioclase - <1%; 0.5-1 mm; subhedral to euhedral. Olivine? - ~1%; 1 mm; subhedral. Clinopyroxene? - <1%; 1 mm; subhedral. GROUNDMASS: Fine grained to glassy (bottom of Piece 8B). VESICLES: Non-vesicular. COLOR: Medium to light gray. STRUCTURE: Massive. ALTERATION: Slight to moderate.

VEINS/FRACTURES: <5%; <0.5-6 mm; varied orientation; up to 5% in Pieces 7 and 8, filled by calcite with some clay and/or Fe-oxide.

ADDITIONAL COMMENTS: Piece 4 is a breccia consisting of angular, green altered glass fragments (celadonite?) up to 2 cm, in matrix of calcite and clay.

130-807C-81R-2

UNIT 4C: APHYRIC BASALT

Pieces 1-6

CONTACTS: None.

PHENOCRYSTS: Plagioclase - <1%; <1 mm; subhedral to euhedral laths. Olivine? - ~1%; 0.2-1 mm; subhedral.

Clinopyroxene? - <1%; 0.2-1 mm; subhedral.

GROUNDMASS: Fine grained to glassy (top of Piece 1A, bottom of Pieces 5E and 6).

VESICLES: Nonvesicular.

COLOR: Dark to light gray. STRUCTURE: Massive.

ALTERATION: Slight to high.

VEINS/FRACTURES: <1-7%; 0.2 - 8 mm; varied orientation; up to 7% in Piece 1B. Mostly calcite with some green and red-brown clay. Piece 5A has 8 mm red-brown clay vein. ADDITIONAL COMMENTS: Section through a thick pillow?

130-807C-81R-3

UNIT 4C: APHYRIC BASALT.

Pieces 1-4

CONTACTS: None PHENOCRYSTS: Glomeroporphyritic texture.

Plagioclase - 1%; 0.5 mm; subhedral to euhedral. Clinopyroxene? - <1%; <0.2-1 mm; subhedral. Olivine? - ~1%; 0.2-1 mm; subhedral.

GROUNDMASS: Fine grained.

VESICLES: Nonvesicular.

COLOR: Dark to medium gray.

STRUCTURE: Massive.

ALTERATION: Slight to moderate. VEINS/FRACTURES: 2-3%; <0.3-3 mm; varied orientation; filled with calcite and greengray to brown clay.

UNIT 4C: APHYRIC BASALT

Plagioclase - <1%; 1 mm; euhedral. Olivine - ~1%; 0.2-1 mm; subhedral. GROUNDMASS: Fine grained, coarsest in Pieces 2 and 3. VESICLES: Nonvesicular. COLOR: Gray to gray-green. STRUCTURE: Massive. ALTERATION: Slight to moderate. VEINS/FRACTURES: <2-3%; 0.5-3 mm; varied orientation; filled with calcite, green and

130-807C-82R-1

UNIT 4C: APHYRIC BASALT

- Plagioclase <1%; 0.2-0.75 mm; subhedral to euhedral.
- Olivine? ~1%; 0.2-0.75 mm; subhedral. Clinopyroxene? <1%; 0.2-0.75 mm; subhedral.
- GROUNDMASS: Fine grained with glassy rinds (Pieces 5 and 11). VESICLES: Nonvesicular. Piece 9 has several irregular vugs up to 1 cm wide containing
- COLOR: Medium to light gray.
- ALTERATION: Slight to moderate.
- VEINS/FRACTURES: <5%; 0.5-4 mm; varied orientation; up to 5% in Pieces 7 and 10A, mostly calcite filled but also red-brown and dark gray-green clay.

Pieces 1, 2

CONTACTS: None. PHENOCRYSTS: Glomeroporphyritic texture, aggregates up to approximately 3 mm. Plagioclase - <1%; <0.2-0.75 mm; euhedral to subhedral. Olivine? - ~1-2%; <0.2-0.75 mm; euhedral to subhedral. Clinopyroxene? - ~1-2%; 0.2-0.75 mm; euhedral to subhedral. GROUNDMASS: Fine-grained to glassy (rims of Pieces 1A and 2C). VECICI ES: Newspirelation

130-807C-82R-2

UNIT 4C: APHYRIC BASALT

- VESICLES: Nonvesicular. COLOR: Medium gray. STRUCTURE: Massive.
- ALTERATION: Slight to moderate.
- VEINS/FRACTURES: <5%; <0.2-10 mm; varied orientation; most are subvertical or subhorizontal and are infilled with calcite, brown and green-blue clays (?). Brown clay (?) fillings at 40 and 58 cm contain small (0.5 to 1.0 mm) pieces of native copper.

130-807C-82R-3

UNIT 4C: APHYRIC BASALT

Pieces 1, 2

CONTACTS: None. PHENOCRYSTS:

Plagioclase - <1%; <0.2-0.75 mm; subhedral to euhedral laths. Olivine? - ~1%; <0.2-0.75 mm; anhedral to subhedral.

Clinopyroxene? - <1%; 0.2-0.75 mm; anhedral to subhedral.

GROUNDMASS: Fine grained to glassy (top of Piece 1A).

VESICLES: Nonvesicular.

COLOR: Medium gray.

STRUCTURE: Massive.

ALTERATION: Slight to moderate.

VEINS/FRACTURES: <2-3%; <3 mm; varied orientation; calcite and brown clay fill.

UNIT 4D: SEDIMENT

Piece 3

COMMENTS: 72-79 cm; Olive brown (2.5YR 4/4) clayey limestone; clay is probably smectite and iron oxides are common to abundant. Limestone contains ~ 5-10% clasts that are 2-3 mm in diameter, range in shape from elongate and angular to pelletal, and are grayish green (5G 5/2) in color. There appears to be glauconite, although there may also be basaltic debris.

UNIT 4E: APHYRIC BASALT

Pieces 4-8

CONTACTS: None.

PHENOCRYSTS: Glomeroporphyritic texture. Plagioclase - ~1%; <0.2-1.0 mm; anhedral-euhedral.

Olivine? - ~1-2%; <0.2-1.0 mm; anhedral-subhedral.

GROUNDMASS: Fine grained.

VESICLES: Nonvesicular.

COLOR: Medium gray.

STRUCTURE: Massive.

ALTERATION: Slight.

VEINS/FRACTURES: Thin (0.5 mm) vein in Piece 5A, filled with green-brown clay.

UNIT 4E: SPARSELY OLIVINE-PHYRIC BASALT

Pieces 9, 10, 11

CONTACTS: None. PHENOCRYSTS: Plagioclase - <1%; <0.2-1.0 mm; anhedral to euhedral. Olivine? - ~2%; <0.2-1.0 mm; anhedral to subhedral. Clinopyroxene? - <1%; 0.2 to 1 mm; anhedral to subhedral. GROUNDMASS: Fine grained. VESICLES: Nonvesicular. COLOR: Medium gray. STRUCTURE: Massive. ALTERATION: Slight. VEINS/FRACTURES: 1%; 0.2-1.0 mm; varied orientation; filled with calcite and green and brown clays.

Shipboard Studies Lithological Unit Graphic Representation Piece Number Orientation cm 0 1A 1B 10 2 3A 50 Unit 4E 3B XD 3C 3D 4 5 100 . 6 7A 7B 70 8

150

CORE/SECTION

130-807C-82R-4

UNIT 4E: APHYRIC BASALT

Pieces 1, 2

CONTACTS: None.

PHENOCRYSTS: Plagioclase - <<1%; <0.5 mm; subhedral to anhedral.

Olivine? - 1%; 0.2-0.5 mm; subhedral.

Clinopyroxene? - <1%; 0.2-0.5 mm; subhedral. GROUNDMASS: Fine grained.

VESICLES: Nonvesicular.

COLOR: Medium gray.

STRUCTURE: Massive.

ALTERATION: Moderate; greater near veins with Fe-oxide staining.

VEINS/FRACTURES: <1%; 0.3-2 mm; varied orientations; calcite with minor green clay and reddish Fe-oxide.

UNIT 4E: APHYRIC BASALT

Pieces 3-6

CONTACTS: None. PHENOCRYSTS: Plagioclase - <1%; <0.5 mm; anhedral to subhedral. Olivine? - ~1%; 0.2-1.0 mm; subhedral. Clinopyroxene? - <1%; 0.2-1.0 mm; subhedral. GROUNDMASS: Fine grained with glassy top and bottom. VESICLES: Nonvesicular. COLOR: Medium gray. STRUCTURE: Massive (could be a thick pillow). ALTERATION: Slight to moderate. VEINS/FRACTURES: 2%; 0.5-8 mm; subhorizontal; calcite filling. One vein has a 2-3mm-thick red zone (Fe-oxide rich?), another has interior zone of dark green clay. UNIT 4E: APHYRIC BASALT

Pieces 7, 8

CONTACTS: None. PHENOCRYSTS: Plagioclase - <<1%; <0.5 mm; subhedral. Olivine? - ~1%; 0.2-0.5 mm; subhedral. GROUNDMASS: Fine grained with glassy margin. VESICLES: Nonvesicular. COLOR: Medium gray. STRUCTURE: Massive. ALTERATION: Slight to moderate. VEINS/FRACTURES: <1%; 0.5-2 mm; varied orientation; calcite filled.

130-807C-82R-6

UNIT 4E: APHYRIC BASALT

Pieces 1-4

CONTACTS: None.

PHENOCRYSTS: Plagioclase - <<1%; <0.5 mm; subhedral, mostly associated with olivine/clinopyroxene.

Olivine? - 1%; 0.25-1 mm; euhedral to subhedral.

GROUNDMASS: Fine grained.

VESICLES: Nonvesicular

COLOR: Medium gray, slight greenish to darker gray mottling.

STRUCTURE: Massive.

ALTERATION: Slight to moderate (in coarser grained areas).

VEINS/FRACTURES: 2%; <1-6 mm; varied orientation; dark brown clay and/or oxide veins in Pieces 1 and 2, one with dark blue-green clay edges and secondary veinlets (earlier, non-crosscutting). Also calcite with greenish clay and reddish Fe-oxide(?).

UNIT 4F: APHYRIC BASALT

Pieces 5, 6

CONTACTS: None.

PHENOCRYSTS:

Plagioclase - <1%; 0.2-0.5 mm; subhedral.

Olivine? - 1%; 0.25-1.0 mm; subhedral to euhedral. GROUNDMASS: Fine grained, glassy at top.

VESICLES: Nonvesicular.

COLOR: Medium gray. STRUCTURE: Pillow to massive.

ALTERATION: Slight to moderate. VEINS/FRACTURES: <1%; 0.5-1.0 mm; varied orientation; dark green clay and calcite; minor dark brown clay and green clay in Piece 6.

1182

130-807C-83R-2

UNIT 4F: APHYRIC BASALT

Pieces 1, 2

green clay.

CONTACTS: None. PHENOCRYSTS: Olivine? - ~1%; 0.5-1.0 mm; subhedral. GROUNDMASS: Fine grained. VESICLES: Nonvesicular. COLOR: Medium gray. STRUCTURE: Massive. ALTERATION: Slight, moderate in places (blotches). VEINS/FRACTURES: <1%; 0.5-3 mm; varied orientation; calcite with lesser brown or green clay.

130-807C-83R-3

ALTERATION: Slight. VEINS/FRACTURES: <1%; <0.5-5 mm; horizontal and at 45°; calcite and nearly black to dark brown clays. ADDITIONAL COMMENTS: Piece 3 consists of two vein fragments; one a brown clay, the

130-807C-83R-4

UNIT 4F: APHYRIC BASALT

Piece 1

CONTACTS: None. PHENOCRYSTS: Olivine? - <1%; 0.5-1.0 mm; subhedral to anhedral. GROUNDMASS: Fine grained (coarser than Core 83R-3). VESICLES: Nonvesicular. COLOR: Medium gray. STRUCTURE: Massive. ALTERATION: Relatively fresh to slightly altered. VEINS/FRACTURES: <<1%; 0.5-2mm; horizontal and at 45°; calcite filled.

130-807C-83R-5

UNIT 4F: APHYRIC BASALT

Pieces 1, 2, 3

CONTACTS: None. PHENOCRYSTS: Olivine? - <1%; up to 1 mm; subhedral. GROUNDMASS: Fine grained. VESICLES: Nonvesicular. COLOR: Medium gray. STRUCTURE: Massive. ALTERATION: Slight. VEINS/FRACTURES: <1%; 0.5-10 mm; subhorizontal to subvertical; calcite with lesser black and olive green clay.

Shipboard Studies Lithological Unit Graphic Representation Piece Number Orientation cm 0 50 -Unit 4F 2 100

150 .

CORE/SECTION

130-807C-83R-6

UNIT 4F: APHYRIC BASALT

Pieces 1, 2

CONTACTS: None.

PHENOCRYSTS:

Olivine? - 1%; 0.3-1 mm; subhedral. GROUNDMASS: Fine grained.

VESICLES: Nonvesicular.

COLOR: Light to medium gray with dark gray and greenish patches toward the bottom.

STRUCTURE: Massive.

ALTERATION: Slight to high (near large veins). VEINS/FRACTURES: 5%; <1-25 mm; varied orientation; large vein (~2.5 mm thick) at 45° (at interval 75-87 cm) consisting of outer zone of black clay with an inner zone of a yellow-brown mineral containing angular black clay clasts. Other veins of black clay, yellow brown clay, and minor calcite. Sediment injected into fracture?

1188

UNIT 4F: APHYRIC BASALT

Pieces 1-3

CONTACTS: None. PHENOCRYSTS: Olivine? - <1%; 0.5-1 mm; subhedral. GROUNDMASS: Fine grained. VESICLES: Nonvesicular. COLOR: Medium gray. STRUCTURE: Massive. ALTERATION: Slight. VEINS/FRACTURES: <<1%; <1-5 mm; varied orientation; calcite with minor black and ADDITIONAL COMMENTS: Piece 1 contains 3 fragments: (i) chert, probably washed downhole; (ii) brown clay vein; (iii) fine-grained basalt.

UNIT 4F: APHYRIC BASALT

Piece 1

CONTACTS: None. PHENOCRYSTS:

- - Olivine? ~1%; 0.5-1 mm; subhedral to euhedral. Clinopyroxene? <1%; 0.5-1 mm; subhedral to euhedral. Plagioclase <1%; 0.5-1 mm; subhedral to euhedral.

GROUNDMASS: Fine grained.

VESICLES: Nonvesicular.

- COLOR: Medium gray.
- STRUCTURE: Massive.
- ALTERATION: Slight.

VEINS/FRACTURES: <<1%; 0.5-4 mm; varied orientation; mostly dark gray clay, thin (1 mm) pyrite vein near bottom of Piece 1C.

UNIT 4F: APHYRIC BASALT

Piece 1

CONTACTS: None.

CONTACTS: None. PHENOCRYSTS: Olivine? - ~1%; 0.5-1 mm; subhedral to euhedral. Clinopyroxene? - <1%; 0.5-1 mm; subhedral to euhedral. Plagioclase - <1%; 0.5-1 mm; subhedral to euhedral. GROUNDMASS: Fine grained. VESICLES: Nonvesicular. COLOR: Medium gray. STRUCTURE: Massive. ALTERATION: Slight. VEINS/FRACTURES: <1%; 1-10 mm; varied orientation; dark gray-green clay. From the bottom of Piece 1B and continuing into Piece 1D is a 10 mm thick composite vein, the bottom half consisting of calcite with minor pyrite and clays, and the top half of a ~5 mm thick basalt dike.

UNIT 4F: APHYRIC BASALT

ALTERATION: Slight. VEINS/FRACTURES: <<1%; 0.2-1 mm; varied orientation; dark gray clay, calcite.

UNIT 4F: APHYRIC BASALT

Pieces 1-3

CONTACTS: None. PHENOCRYSTS:

- Olivine? ~1%; 0.5-1 mm; subhedral to euhedral.
- Clinopyroxene? <1%; 0.5-1 mm; subhedral to euhedral. Plagioclase <1%; 0.5-1 mm; subhedral to euhedral. GROUNDMASS: Fine grained.

VESICLES: Nonvesicular.

COLOR: Medium gray. STRUCTURE: Massive.

ALTERATION: Slight. VEINS/FRACTURES: ~1%; 0.5-5 mm; subvertical to subhorizontal; filled with dark gray-green clay.

UNIT 4F: APHYRIC BASALT

Pieces 1, 2

CONTACTS: None. PHENOCRYSTS: Olivine? - ~1%; 0.5-1 mm; subhedral to euhedral. Clinopyroxene? - <1%; 0.5-1 mm; subhedral to euhedral. Plagioclase - <1%; 0.5-1 mm; subhedral to euhedral. GROUNDMASS: Fine grained. VESICLES: Nonvesicular. COLOR: Medium gray. STRUCTURE: Massive. ALTERATION: Slight. VEINS/FRACTURES: <<1%; 0.2-1 mm; varied orientation; filled with dark gray clay.

UNIT 4F: APHYRIC BASALT

Piece 1

CONTACTS: None. PHENOCRYSTS:

Olivine? - ~1%; 0.5-1 mm; subhedral to euhedral.

Clinopyroxene? - <1%; 0.5-1 mm; subhedral to euhedral. Plagioclase - <1%; 0.5-1 mm; subhedral to euhedral. GROUNDMASS: Fine grained.

VESICLES: Nonvesicular.

COLOR: Medium gray.

STRUCTURE: Massive.

ALTERATION: Slight. VEINS/FRACTURES: ~1%; 0.2-3 mm; subvertical to subhorizontal; filled with calcite and dark green-gray clay.

UNIT 4F: APHYRIC BASALT

Piece 1

CONTACTS: Piece 1G is the base of this flow.

PHENOCRYSTS: Glomeroporphyritic texture, crystal aggregates up to 3 mm. Olivine? - ~1%; 0.5-1 mm; subhedral to euhedral.

Clinopyroxene? - <1%; 0.5-1 mm; subhedral to euhedral.

Plagioclase - <1%; 0.5-1 mm; subhedral to euhedral.

GROUNDMASS: Fine grained, becoming finer grained in Pieces 1F and 1G.

VESICLES: Nonvesicular.

COLOR: Medium gray.

STRUCTURE: Massive, base of flow slightly brecciated (Piece 1G).

ALTERATION: Slight, moderate in Piece 1G.

VEINS/FRACTURES: <1%; 0.2-2 mm; horizontal and high angle; filled with calcite and dark clays; irregularly orientated vein in Piece 1G contains calcite and brown clay and/or Fe-oxide (?).

UNIT 4G: APHYRIC BASALT

Pieces 2-4

CONTACTS: Fine-grained to glassy flow margin.

PHENOCRYSTS:

Olivine? - ~1%; 0.5-1 mm; subhedral to euhedral.

Clinopyroxene? - <1%; 0.5-1 mm; subhedral.

Plagioclase - <1%; 0.5-1 mm; subhedral to euhedral, associated with livine and/or clinopyroxene phenocrysts.

GROUNDMASS: Fine grained to glassy.

VESICLES: Nonvesicular.

COLOR: Medium to dark gray.

STRUCTURE: Flow margin, slightly brecciated.

ALTERATION: Slight to moderate.

VEINS/FRACTURES: 2-3%; 0.2-5 mm; varied orientation; mainly calcite with green and brown clays; veins concentrated in the very fine grained to glassy margins of Pieces 2 and 3.

1203

Plagioclase - <1%; 0.2-0.5 mm; subhedral. Clinopyroxene - ~1%; 0.2-0.8 mm; subhedral to euhedral. VEINS/FRACTURES: <<1%; <0.5 mm; varied; one calcite vein (~2 mm) at glass margin.

ADDITIONAL COMMENTS: Piece 4 consists of small chips of altered glass and basalt; Piece 5 has top of inter-pillow calcite breccia with glass clasts totally altered to green

130-807C-86R-3

UNIT 4G: APHYRIC BASALT

Pieces 1.2

CONTACTS: Glassy

PHENOCRYSTS: Some plagioclase is associated with olivine and/or clinopyroxene. Plagioclase - <1%; 0.3-0.5 mm; euhedral to subhedral. Olivine? - ~1%; 0.3-0.8 mm; euhedral to subhedral. Clinopyroxene? - <1%; 0.3-0.8 mm; euhedral to subhedral. GROUNDMASS: Fine grained. VESICLES: Nonvesicular. COLOR: Medium gray. STRUCTURE: Pillow lava.

ALTERATION: Slight.

VEINS/FRACTURES: ~2%; <0.5-2 mm; varied orientation; filled with brown and green clay, calcite.

UNIT 4G: APHYRIC BASALT

Pieces 3.4

CONTACTS: Glassy PHENOCRYSTS: Plagioclase - <1%; 0.3-0.8 mm; subhedral to euhedral. Olivine? - ~1%; 0.3-1 mm; subhedral to euhedral. Clinopyroxene? - <1%; 0.3-0.8 mm; subhedral to euhedral. GROUNDMASS: Fine grained, glassy at top margin. VESICLES: Nonvesicular. COLOR: Medium gray. STRUCTURE: Pillow lava. ALTERATION: Slight to moderate. VEINS/FRACTURES: <1%; <1 mm; subhorizontal to about 45°; a few radial pillow cracks. Filled with brown and green clays. UNIT 4G: APHYRIC BASALT

Pieces 5-8

CONTACTS: Glassy. Plagioclase - <1%; 0.2-1 mm; euhedral to subhedral.

Olivine - ~1%; 0.2-0.8 mm; subhedral to euhedral.

GROUNDMASS: Fine grained to glass (highly altered) in Piece 5.

VESICLES: Nonvesicular.

COLOR: Medium gray.

STRUCTURE: Pillow lava.

ALTERATION: Slight to moderate, high in chips from Pieces 5 and 7.

VEINS/FRACTURES: ~1%; <1 mm; varied orientation; highly fractured; filled with brown clay, minor calcite.

130-807C-87R-2

UNIT 4G: APHYRIC BASALT

Pieces 1-13

CONTACTS: Glassy rim fragments. PHENOCRYSTS: Plagioclase - <1%; 0.3-0.8 mm; subhedral, some in association with olivine and/or clinopyroxene.

Olivine? - ~1%; 0.3-1 mm; subhedral to euhedral. Clinopyroxene? - <1%; 0.3-1 mm; subhedral to euhedral. GROUNDMASS: Fine grained to glassy near several rims.

VESICLES: Nonvesicular.

COLOR: Medium gray with blotchy, black areas of alteration in Piece 1. STRUCTURE: Pillow lava fragments. ALTERATION: Slight to high in Piece 1, irregular blotches of black to dark green clay up to

3 cm across in Piece 1. VEINS/FRACTURES: ~1%; <0.5-2 mm; varied; highly fractured; veins filled with dark green to black clay, some Fe-oxide (?), minor calcite.

130-807C-87R-3

UNIT 4G: APHYRIC BASALT

Pieces 1-4

CONTACTS: None. CONTACTS: None. Plagioclase - <<1%; 0.3-0.5 mm; subhedral. Olivine? - ~1%; 0.3-1 mm; euhedral to subhedral. GROUNDMASS: Fihe grained; some very altered glass in Piece 1. VESICLES: Nonvesicular. COLOR: Medium gray. STRUCTURE: Pillows. ALTERATION: Slight in Pieces 2 and 4. VEINS/FRACTURES: ~3%; <0.5-3 mm; original orientation unknown; filled with brown clay and/or Fe-oxide.

130-807C-88R-2

UNIT 4G: APHYRIC BASALT

Piece 1

CONTACTS: Glass at top and bottom.

PHENOCRYSTS:

Olivine? - <1%; 0.2-0.8 mm; subhedral.

Clinopyroxene? - <<1%; 0.2-0.5 mm; subhedral. Plagioclase - <<1%; 0.2-0.5 mm; subhedral.

GROUNDMASS: Fine grained, coarser in interior.

VESICLES: Nonvesicular.

COLOR: Medium gray.

STRUCTURE: Massive, thick pillow (?).

ALTERATION: Slight except near vein at 34 cm.

VEINS/FRACTURES: <1%; <0.5-3 mm; subhorizontal; irregular brown and black blotches up to 6 mm across.

UNIT 4G: APHYRIC BASALT

Pieces 2-4

CONTACTS: Upper glassy margin. PHENOCRYSTS: Clinopyroxene? - <1%; 0.2-1 mm; subhedral. Olivine? - <1%; 0.2 mm; subhedral. GROUNDMASS: Fine grained to glassy at top of Piece 2. VESICLES: Nonvesicular. COLOR: Medium gray to dark gray and brown in altered patches. STRUCTURE: Massive. ALTERATION: Slight to high in central portion. VEINS/FRACTURES: 2%; <0.5-3.0 mm; varied orientation; one subhorizontal calcite vein; one subvertical dark brown oxide and/or clay vein.

UNIT 4G: APHYRIC BASALT

Pieces 5-7

CONTACTS: Piece 5 has glassy margin. PHENOCRYSTS: Olivine? - 1%; 0.2-1 mm; euhedral to subhedral. Clinopyroxene? - <1%; 0.2-1 mm; euhedral to subhedral. GROUNDMASS: Fine grained to glassy at top. VESICLES: Nonvesicular. COLOR: Medium gray.

STRUCTURE: Pillow lava.

ALTERATION: Slight. VEINS/FRACTURES: <1%; ~1 mm; minor radial fractures' calcite in glass (Piece 5).

130-807C-88R-3

UNIT 4G: APHYRIC BASALT

Pieces 1-11

CONTACTS: Glassy margins in Pieces 2, 3, and 6. PHENOCRYSTS:

Olivine? - ~1%; 0.2-1 mm; subhedral to euhedral. Clinopyroxene? - <<1%; 0.2-1 mm; subhedral.

Plagioclase - <<1%; 0.2-0.5 mm; subhedral

GROUNDMASS: Fine grained to glassy margins.

VESICLES: Nonvesicular.

COLOR: Medium gray to dark gray in patches. STRUCTURE: Pillow to massive.

ALTERATION: Slight to high.

- VEINS/FRACTURES: Piece 2 has part of a vein ~1-3 cm thick between two inter-pillow glass and calcite rims. The vein material is light gray-green, hard, and effervesces only slightly in HCI (baked sediment?). Pieces 3-6 have <1% veins/fractures, <0.5 mm-1.5 mm, varied orientations between horizontal and 45°, infilled by orange-brown mineral; Piece 9 has 2 veins (one 3 cm wide) of a blue-green mineral with blebs of an orange-brown mineral, along with black clay.
- ADDITIONAL COMMENTS: Piece 11 has veins at upper and lower contacts with basalt. Vein material nearest the contact with the basalt consists of a dark-green to blue-green mineral, 0.5-1 cm thick. The material which forms the center of the vein consists of a dark blue-gray mineral with patches of a red-brown mineral that has a slight metallic to waxy luster on fresh cut surfaces.

Shipboard Studies Lithological Unit Graphic Representation Piece Number Orientation cm 0 1A 1B 1C 50 Unit 4G 2 3 4 XD 5 100 6 7 8 150 CORE/SECTION

130-807C-88R-4

UNIT 4G: APHYRIC BASALT

Pieces 1-4

CONTACTS: None.

PHENOCRYSTS:

Olivine? - ~1%; 0.2-0.8 mm; subhedral to euhedral. Clinopyroxene? - <<1%; 0.2-0.8 mm; subhedral.

Plagioclase - <<1%; 0.2-0.8 mm; subhedral.

GROUNDMASS: Fine grained.

VESICLES: Nonvesicular.

COLOR: Medium gray to bluish or greenish gray in altered patches.

STRUCTURE: Massive. .

ALTERATION: Slight to high, especially top of Piece 1.

VEINS/FRACTURES: ~3%; <0.5 mm to >3 cm; varied orientation; thin veins consist of green and brown minerals;one thick vein at the top with ~ 6-10 mm dark green mineral (clay?) in layer nearest basalt, top 1.5 cm contains dark-gray and reddish-brown minerals.

UNIT 4G: APHYRIC BASALT

Pieces 5-8

CONTACTS: Glass on Piece 7 (pillow margin). PHENOCRYSTS:

Olivine? - ~1%; 0.2-1 mm; subhedral.

Clinopyroxene? - <<1%; 0.2-0.5 mm; subhedral.

Plagioclase - <<1%; 0.2-0.5 mm; subhedral.

GROUNDMASS: Fine grained to glassy at margin of Piece 7.

VESICLES: Nonvesicular.

COLOR: Medium gray.

STRUCTURE: Massive-pillow.

ALTERATION: Slight.

VEINS/FRACTURES: <1%; <1 mm; varied orientation; filled with brown clay.

ADDITIONAL COMMENTS: Piece 5 is an interflow limestone breccia with green altered glass shards on either side of a 2.5-4 cm thick vein with irregular margins. Vein filling is light brown on top, non-effervescing in HCI, darker brown in middle, with calcite and light green mineral on bottom.

CORE/SECTION

130-807C-89R-1

UNIT 4G: APHYRIC BASALT

Pieces 1-10

CONTACTS: None. PHENOCRYSTS:

- Olivine? <1%; 0.2-0.8 mm; euhedral to subhedral. Clinopyroxene? <<1%; 0.2-0.8 mm; subhedral.

GROUNDMASS: Fine grained.

VESICLES: Nonvesicular.

COLOR: Medium gray, bluish tinge in altered zone near veins.

STRUCTURE: Massive.

ALTERATION: Slight, moderate in a few small patches, minor pyrite in groundmass. VEINS/FRACTURES: <<1%; <0.5-1 mm; varied orientation; dark blue clay, calcite and pyrite (fracture in Piece 5).

UNIT 4G: APHYRIC BASALT

Pieces 11,12

CONTACTS: Glassy upper and lower margins. PHENOCRYSTS:

Olivine? - ~1%; 0.2-0.8 mm; euhedral to subhedral.

Clinopyroxene? - <1%; 0.2-1 mm; subhedral. Plagioclase - <1%; 0.2-1 mm; subhedral.

GROUNDMASS: Fine grained to glassy at margins.

VESICLES: Nonvesicular.

COLOR: Medium gray. STRUCTURE: Small pillow.

ALTERATION: Slight.

VEINS/FRACTURES: ~5%; 2-5 mm; varied orientation; calcite vein; <0.5 mm brown clay and/or Fe-oxide (?) vein.

ADDITIONAL COMMENTS: Piece 12 is a vein of a dark-olive green mineral, as in Piece 2, Core 130-807C-88R. Non-effervescent in HCI. Contains 0.5-2 mm clasts (?) of calcite which look like subhedral pseudomorphs of another mineral. Upper and lower portions of this piece are glassy-calcite inter-pillow breccias. Could be baked clay sediment.

130-807C-89R-2

UNIT 4G: APHYRIC BASALT

Pieces 1-6

CONTACTS: Glassy top.

PHENOCRYSTS: Olivine? - ~1%; 0.2-1 mm; euhedral to subhedral. Clinopyroxene? - <<1%; 0.2-0.5 mm; subhedral. Plagioclase - <<1%; 0.2-0.5 mm; subhedral, associated with olivine and/or clinopyroxene. GROUNDMASS: Fine grained, glassy at top margin. VESICLES: Nonvesicular. COLOR: Medium gray; bluish gray in altered patches. STRUCTURE: Massive. ALTERATION: Slight to moderate; bluish patches in Pieces 1 and 2. VEINS/FRACTURES: ~1%; <0.5-2 mm; varied orientation; mostly in Piece 1; filled with brown clay and dark brown to dark blue-gray clay; minor calcite.

UNIT 4G: APHYRIC BASALT

Pieces 7-10

CONTACTS: Lower glassy margin. PHENOCRYSTS: Olivine? - ~1%; 0.2-0.5 mm; euhedral to subhedral. GROUNDMASS: Fine grained, glassy at bottom. VESICLES: Nonvesicular. COLOR: Medium gray. STRUCTURE: Pillow or thin, massive. flow. ALTERATION: Slight to moderate. VEINS/FRACTURES: <1%; <1 mm wide; varied orientation; filled with brown or dark blue-green clays.

CORE/SECTION

130-807C-89R-3

UNIT 4G: APHYRIC BASALT

Pieces 1-8

CONTACTS: None.

PHENOCRYSTS:

PHENOCRYSTS: Plagioclase - <<1%; 0.2-0.8 mm; subhedral. Olivine? - ~1%; 0.2-0.8 mm; subhedral to euhedral. Clinopyroxene? - <1%; 0.2-0.8 mm; subhedral to euhedral. GROUNDMASS: Fine grained. VESICLES: Nonvesicular. COLOR: Medium gray. STRUCTURE: Massive or thick pillow lava. ALTERATION: Slight. VEINS/FRACTURES: ~2%; <1-3 mm; subvertical; Pieces 2 and 3 have brownish mineral and dark blue-green to black clays.

130-807C-90R-2

UNIT 4G: APHYRIC BASALT

Pieces 1, 2

CONTACTS: Glassy pillow margin, Piece 2. PHENOCRYSTS: Olivine mainly altered to dark green clay. Olivine - ~1%; 0.2-0.6 mm; subhedral to eudedral.

Plagioclase - <1%; 0.2-1 mm; subhedral to euhedral

GROUNDMASS: Fine grained to glassy (margin of Piece 2).

VESICLES: Nonvesicular.

COLOR: Medium gray

STRUCTURE: Pillow.

ALTERATION: Slight to moderate.

VEINS/FRACTURES: 1%; 0.5-3 mm; subvertical to subhorizontal; calcite, green blue (clay?) mineral, orange-brown mineral (goethite).

UNIT 4G: APHYRIC BASALT

CONTACTS: None.

Olivine - <1%; 0.2-0.6 mm; subhedral to euhedral.

Plagioclase - <<1%; 0.2-1 mm; subhedral to euhedral.

GROUNDMASS: Fine grained.

VESICLES: ~1%; up to 4 mm; oval to irregular; top of Piece 8A; infilled with green/brown

COLOR: Medium gray.

STRUCTURE: Pillow.

ALTERATION: Moderate.

VEINS/FRACTURES: ~1%; 1-3 mm; varied orientation; infilled with calcite, green-blue clay (?), an orange-brown mineral (goethite?). Piece 4 and 5 have a subhorizontal 1 cm vein containing calcite and a light green mineral, with lesser amounts of orange-brown mineral. The margin of the vein consists of very dark gray-green mineral (0.5 mm thick). Veins also are located in Pieces 1B and 8B.

UNIT 4G: APHYRIC BASALT

Pieces 9, 10

Olivine - ~1%; 0.2-0.5 mm; subhedral to euhedral. Plagioclase - <1%; 0.2-1mm; subhedral to euhedral. GROUNDMASS: Fine grained to glassy (margin Piece 9). VESICLES: Nonvesicular. COLOR: Medium gray STRUCTURE: Pillow. ALTERATION: Slight to moderate. VEINS/FRACTURES: <1%; 0.5-1 mm; varied orientation; filled with calcite, clays and orange-brown mineral (goethite?).

CORE/SECTION

130-807C-90R-4

UNIT 4G: APHYRIC BASALT

Pieces 1-5

- CONTACTS: Glassy pillow margin (Piece 4). PHENOCRYSTS: Olivine ~1%; 0.2-0.8 mm; subhedral to euhedral. Plagioclase <<1%; 0.2-0.8 mm; subhedral to euhedral. GROUNDMASS: Fine grained. VESICLES: Nonvesicular. COLOR: Medium to dark gray. STRUCTURE: Pillow. ALTERATION: Slight to moderate. VEINS/FRACTURES: <1%; ~0.5 mm; varied orientation; frac VEINS/FRACTURES: <1%; ~0.5 mm; varied orientation; fracture surfaces stained black (manganese?), yellow-brown (Fe-oxides?) and/or dark green.

1221

130-807C-92R-1

UNIT 4G: APHYRIC BASALT

Pieces 1-5

CONTACTS: Glassy flow margin, bottom of Piece 5C. PHENOCRYSTS: Olivine - ~1%; 0.2-1 mm; subhedral to euhedral. GROUNDMASS: Fine grained to glassy (bottom of Piece 5C). VESICLES: Nonvesicular. COLOR: Medium to dark gray. STRUCTURE: Massive. ALTERATION: Slight.

VEINS/FRACTURES: <<1%; <1 mm; subhorizontal and 45°; filled with clay and calcite.

130-807C-92R-2

UNIT 4G: APHYRIC BASALT

Piece 1

CONTACTS: None.

PHENOCRYSTS:

Olivine - <1%; 0.2-0.8 mm; anhedral to euhedral.

Plagioclase - <<1%; 0.2-1mm; subhedral to euhedral.

GROUNDMASS: Fine grained.

VESICLES: Nonvesicular.

COLOR: Medium gray.

STRUCTURE: Pillow.

ALTERATION: Slight to moderate.

VEINS/FRACTURES: 1%; <0.5-2 mm; varied orientation; infilled by an orange-brown mineral (goethite?), minor calcite, and green clays.

UNIT 4G: APHYRIC BASALT

Pieces 2-5

CONTACTS: Glassy flow margins, Pieces 2, 4, and 5. PHENOCRYSTS:

Olivine - <1%; 0.2-0.8 mm; subhedral to euhedral.

Plagioclase - <<1%; 0.2-1 mm; subhedral to euhedral. GROUNDMASS: Fine grained to glassy (Pieces 2, 4, and 5).

VESICLES: Nonvesicular.

COLOR: Medium gray to gray-black. STRUCTURE: Thick pillow or massive.

ALTERATION: Slight to moderate.

VEINS/FRACTURES: ~1%; <0.5-2 mm; mostly subvertical and subhorizontal; infilled by blue-gray clays, and an orange-brown mineral. Glass in Piece 4 heavily veined by calcite.

UNIT 4G: APHYRIC BASALT

Pieces 1-18

CONTACTS: Glassy rims on Pieces 6 and 7. PHENOCRYSTS:

PHENOCRYSTS: Olivine - ~1%; 0.2-0.8 mm; subhedral to euhedral. Plagioclase - <<1%; 0.2-0.5 mm; subhedral. GROUNDMASS: Fine grained to glassy (rims of Pieces 6 and 7). VESICLES: Nonvesicular. COLOR: Medium gray. STRUCTURE: Fragments of pillow lava. ALTERATION: Slight, to moderate in Pieces 11 and 12 (near veins). VEINS/FRACTURES: ~1%; <1->6 mm; varied orientation; filled with clay and small amounts of purite: 1 mm thirk calcite veiss in glass on Piece 6

amounts of pyrite; 1 mm thick calcite veins in glass on Piece 6.

130-807C-93R-2

UNIT 4G: APHYRIC BASALT

Pieces 1-14

CONTACTS: None. Olivine - ~1%; 0.2-1 mm; euhedral to subhedral. Plagioclase - <<1%; 0.2-1 mm; subhedral. GROUNDMASS: Fine grained. VESICLES: Nonvesicular. COLOR: Medium gray. STRUCTURE: Pillow lava fragments; Pieces 7-14 are possibly fragments of more massive* flow

flow. ALTERATION: Slight to moderate in a few patches. VEINS/FRACTURES: <<1%; <1 mm; varied orientation; filled with dark gray clay and minor

130-807C-93R-3

UNIT 4G: APHYRIC BASALT

SITE 807

130-807C-74R-01 (Piece 6D,124-127 cm) OBSERVER: JJM

WHERE SAMPLED: Pillow

ROCK NAME: Aphyric basalt GRAIN SIZE: Fine grained

TEXTURE: Intersertal

_____ PERCENT PERCENT SIZE COMPO-SITION PRIMARY MINERALOGY PRESENT ORIGINAL (mm) MORPHOLOGY COMMENTS PHENOCRYSTS <1 <1 0.3-1 euhedral Plagioclase Clinopyroxene <1 <1 ~0.3 subhedral GROUNDMASS 40 40 Plagioclase <0.5-0.1 laths anhedral 15 20 5 5 Clinopyroxene <0.1 anhedral Opaques <0.05 REPLACING/ PERCENT FILLING SECONDARY MINERALOGY . COMMENTS Clays 35 glass Brownish. Clays clinopyroxene Greenish to brown. 5 Clays <1 Bright green celadonite and black clay. vein . VESICLES/ SIZE CAVITIES PERCENT LOCATION (mm) FILLING SHAPE Vesicles 0 _____ 130-807C-75R-02 (Piece 6D,60-61 cm) OBSERVER: STO WHERE SAMPLED: Pillow interior ROCK NAME: Aphyric basalt GRAIN SIZE: Fine grained TEXTURE: Intergranular _____ PRIMARY PERCENT PERCENT SIZE COMPO-DAT DOM MODDUOLOGY COMMENTS

MINERALOGI	LUTPENL	ORIGINAL	(mm)	SITION	MORPHOLOGI	COMPENTS
Plagioclase	30	30 (0.05-0.5		subhedral to euhedral	
Clinopyroxene	10	10 -	~0.05		anhedral	
SECONDARY MINERALOGY Clays	PERCENT 50	REPL/ FILL	ACING/ ING			COMMENTS
VESICLES/ CAVITIES Vesicles	PERCENT 0	LOCATION	SIZE N (mm)		FILLING	SHAPE

130-807C-77R-01 (Piece 7,46-48 cm) OBSERVER: JJM WHERE SAMPLED: Pillow interior

ROCK NAME: Aphyric basalt

GRAIN SIZE: Fine grained

TEXTURE: Intersertal

MINERALOGY		PERCENT	SIZE	COMPO-			
	PRESENT	ORIGINAL	(mm)	SITION	MORPHOLOGY	COMMENTS	
PHENOCRYSTS							
Plagioclase	<1	<1	0.5-1		euhedral		
Clinopyroxene	<<1	<<1	0.3-0.5		anhedral		
GROUNDMASS							
Plagioclase	30	30	?		subhedral		
Clinopyroxene	10	20	?		anhedral		
Glass	10	47	?		2		
Opaques	3	3	?		2		
SECONDARY		DEDI	ACTNC/				
MINERALOGY	PERCENT	FILI	TNC			COMMENTS	
Clave and	10	clinops	TOYODO		Padabrown	CONTENTS	
oxides	10	crinopy	Tovene		Neu-Drown.		
Clays	37	glass			Dark brown.		
VESICLES/			SIZE				
CAVITIES	PERCENT	LOCATIO	N (mm)	F	ILLING	SHAPE	
Vesicles	0						
GRAIN SIZE: Fi		6					
	ne graineo	d					
TEXTURE: Subop	ne graineo	đ					
TEXTURE: Subop	ne grained hitic	DERCENT	STZE	COMPO-			
TEXTURE: Subop PRIMARY MINERALOGY	ne grained hitic PERCENT PRESENT	d PERCENT ORIGINAI	SIZE (mm)	COMPO- SITION	MORPHOLOGY	COMMENTS	
TEXTURE: Subop PRIMARY MINERALOGY	ne grained hitic PERCENT PRESENT	d PERCENT ORIGINAJ	SIZE (mm)	COMPO- SITION	MORPHOLOGY	COMMENTS	
TEXTURE: Subop PRIMARY MINERALOGY PHENOCRYSTS	ne grained hitic PERCENT PRESENT	d PERCENT ORIGINAL	SIZE (mm)	COMPO- SITION	MORPHOLOGY	COMMENTS	
TEXTURE: Subop PRIMARY MINERALOGY PHENOCRYSTS Plagioclase Clinopyroxene	ne grained hitic PERCENT PRESENT <1 <1	PERCENT ORIGINAJ <1 <1	SIZE (mm) ~0.5 ~0.4	COMPO- SITION	MORPHOLOGY euhedral laths anhedral	COMMENTS	
PRIMARY MINERALOGY PHENOCRYSTS Plagioclase Clinopyroxene	ne grained hitic PERCENT PRESENT <1 <1	PERCENT ORIGINAN <1 <1	SIZE (mm) ~0.5 ~0.4	COMPO- SITION	MORPHOLOGY euhedral laths anhedral	COMMENTS	
TEXTURE: Subop PRIMARY MINERALOGY PHENOCRYSTS Plagioclase Clinopyroxene GROUNDMASS Plagioclass	ne grained hitic PERCENT PRESENT <1 <1	d PERCENT ORIGINAN <1 <1	SIZE (mm) ~0.5 ~0.4	COMPO- SITION	MORPHOLOGY euhedral laths anhedral	COMMENTS	
PRIMARY MINERALOGY PHENOCRYSTS Plagioclase Clinopyroxene GROUNDMASS Plagioclase	ne grained hitic PERCENT PRESENT <1 <1 40 40	PERCENT ORIGINAI <1 <1 40	SIZE (mm) ~0.5 ~0.4	COMPO- SITION	MORPHOLOGY euhedral laths anhedral thin euhedral laths	COMMENTS	
PRIMARY MINERALOGY PHENOCRYSTS Plagioclase Clinopyroxene GROUNDMASS Plagioclase Clinopyroxene Obaquee	ne grained hitic PERCENT PRESENT <1 <1 40 40 40	PERCENT ORIGINAJ <1 <1 <1 40 40 40	SIZE (mm) ~0.5 ~0.4 0.1-0.4 0.05-0.3 0.01-0.1	COMPO- SITION	MORPHOLOGY euhedral laths anhedral thin euhedral laths anhedral	COMMENTS	(1]mon(+o?).
PRIMARY MINERALOGY PHENOCRYSTS Plagioclase Clinopyroxene GROUNDMASS Plagioclase Clinopyroxene Opaques	ne grained hitic PERCENT PRESENT <1 <1 <1 40 40 10	d PERCENT ORIGINAJ <1 <1 <1 40 40 10	SIZE (mm) ~0.5 ~0.4 0.1-0.4 0.05-0.3 0.01-0.1	COMPO- SITION	MORPHOLOGY euhedral laths anhedral thin euhedral laths anhedral anhedral	COMMENTS Some thin skeletal grains	(ilmenite?).
PRIMARY MINERALOGY PHENOCRYSTS Plagioclase Clinopyroxene GROUNDMASS Plagioclase Clinopyroxene Opaques SECONDARY	ne grained hitic PERCENT PRESENT <1 <1 <1 40 40 10	d PERCENT ORIGINAJ <1 <1 <1 40 40 10 REPI	SIZE (mm) ~0.5 ~0.4 0.1-0.4 0.05-0.3 0.01-0.1 LACING/	COMPO- SITION	MORPHOLOGY euhedral laths anhedral thin euhedral laths anhedral anhedral	COMMENTS Some thin skeletal grains	(ilmenite?).
PRIMARY MINERALOGY PHENOCRYSTS Plagioclase Clinopyroxene GROUNDMASS Plagioclase Clinopyroxene Opaques SECONDARY MINERALOGY	ne grained hitic PERCENT PRESENT <1 <1 <1 40 40 10 PERCENT	d PERCENT ORIGINAL <1 <1 <1 40 40 10 REPI FILI	SIZE (mm) ~0.5 ~0.4 0.1-0.4 0.05-0.3 0.01-0.1 LACING/ LING	COMPO- SITION	MORPHOLOGY euhedral laths anhedral thin euhedral laths anhedral anhedral	COMMENTS Some thin skeletal grains COMMENTS	(ilmenite?).
PRIMARY MINERALOGY PHENOCRYSTS Plagioclase Clinopyroxene GROUNDMASS Plagioclase Clinopyroxene Opaques SECONDARY MINERALOGY Clays	ne grained hitic PERCENT PRESENT <1 <1 <1 40 40 10 PERCENT 10	d PERCENT ORIGINAJ <1 <1 <1 40 40 10 REP: FILI glass?	SIZE (mm) ~0.5 ~0.4 0.1-0.4 0.05-0.3 0.01-0.1 LACING/ LING	COMPO- SITION	MORPHOLOGY euhedral laths anhedral thin euhedral laths anhedral anhedral	COMMENTS Some thin skeletal grains COMMENTS	(ilmenite?).
TEXTURE: Subop PRIMARY MINERALOGY PHENOCRYSTS Plagioclase Clinopyroxene Opaques SECONDARY MINERALOGY Clays	ne grained hitic PERCENT PRESENT <1 <1 <1 40 40 10 PERCENT 10	d PERCENT ORIGINAJ <1 <1 <1 40 40 10 REP: FILI glass?	SIZE (mm) ~0.5 ~0.4 0.1-0.4 0.05-0.3 0.01-0.1 LACING/ LING	COMPO- SITION	MORPHOLOGY euhedral laths anhedral thin euhedral laths anhedral anhedral	COMMENTS Some thin skeletal grains COMMENTS	(ilmenite?).
PRIMARY MINERALOGY PHENOCRYSTS Plagioclase Clinopyroxene GROUNDMASS Plagioclase Clinopyroxene Opaques SECONDARY MINERALOGY Clays VESICLES/ cAVITIES	ne grained hitic PERCENT <1 <1 <1 40 40 10 PERCENT 10 PERCENT	d PERCENT ORIGINAL <1 <1 40 40 10 FIL glass?	SIZE (mm) ~0.5 ~0.4 0.1-0.4 0.05-0.3 0.01-0.1 LACING/ LING SIZE	COMPO- SITION	MORPHOLOGY euhedral laths anhedral thin euhedral laths anhedral anhedral	COMMENTS Some thin skeletal grains COMMENTS SHAPE	(ilmenite?).

SITE 807

130-807C-79R-05 (Piece 3,28-30 cm) OBSERVER: STO WHERE SAMPLED: Part of massive flow ROCK NAME: Aphyric basalt GRAIN SIZE: Fine grained TEXTURE: Intergranular PRIMARY PERCENT PERCENT SIZE COMPO-PRESENT ORIGINAL (mm) MINERALOGY SITION MORPHOLOGY COMMENTS PHENOCRYSTS Plagioclase <1 <1 ~1 euhedral laths GROUNDMASS Plagioclase 60 60 0.1-0.5 thin euhedral laths Opaques 0.02-0.1 anhedral-subhedral 5 5 Clinopyroxene 20 20 0.02-0.2 anhedral-subhedral SECONDARY REPLACING/ MINERALOGY PERCENT FILLING COMMENTS Clays 15 glass? -----VESICLES/ SIZE CAVITIES PERCENT LOCATION (mm) FILLING SHAPE Vesicles 0 130-807C-80R-01 (Piece 6,49-51 cm) OBSERVER: STO WHERE SAMPLED: Near flow top ROCK NAME: Aphyric basalt GRAIN SIZE: Fine grained TEXTURE: Intergranular PRIMARY PERCENT PERCENT SIZE COMPO-MINERALOGY PRESENT ORIGINAL (mm) SITION MORPHOLOGY COMMENTS Plagioclase 35 35 0.1-0.5 euhedral thin laths Clinopyroxene 30 30 0.02-0.1 anhedral Opaques 5 5 0.01-0.1 equant and skeletal SECONDARY REPLACING/ MINERALOGY PERCENT FILLING COMMENTS Clays 30 glass Green smectite. ----VESICLES/ SIZE CAVITIES PERCENT LOCATION (mm) FILLING SHAPE Vesicles 0 130-807C-81R-02 (Piece 4A,74-77 cm) OBSERVER: STO WHERE SAMPLED: Part of massive flow ROCK NAME: Aphyric basalt GRAIN SIZE: Fine grained TEXTURE: Intergranular-subophitic PRIMARY PERCENT PERCENT SIZE COMPO-MINERALOGY PRESENT ORIGINAL (mm) SITION MORPHOLOGY COMMENTS PHENOCRYSTS euhedral-subhedral Altered to smectite. ? Clinopyroxene <1 <1 up to 0.8 GROUNDMASS Plagioclase ? 55 55 2 Clinopyroxene 10 10 ? Opaques 3 3 2 subhedral-anhedral Equant and skeletal. SECONDARY REPLACING/ MINERALOGY PERCENT FILLING COMMENTS Clays 32 mainly glass Green and yellow-green smectites. VESICLES/ SIZE CAVITIES PERCENT LOCATION FILLING SHAPE (mm)

Vesicles

0

130-807C-83R-02 (Piece 1B,28-30 cm) OBSERVER: STO WHERE SAMPLED: Part of massive flow

ROCK NAME: Aphyric basalt

GRAIN SIZE: Fine grained

TEXTURE: ??

VESICLES/ CAVITIES Vesicles	PERCENT 0	LOCATIO	SIZE DN (mm)		FILLING	SHAPE
SECONDARY MINERALOGY Clays	PERCENT 13	REPLACING/ FILLING glass?				COMMENTS
Opaques	7	7	0.05-0.2		anhedral-subhedral	
Clinopyroxene	40	40	0.1-0.3		anhedral-subhedral	
GROUNDMASS Plagioclase	40	40	0.1-1		thin euhedral laths	
Clinopyroxene	<1	<1	~0.8		subhedral	
Plagioclase	<1	<1	~1		euhedral	1114 1130 A DE A +
PHENOCRYSTS Olivine	<1	<1	~0.6		subhedral-euhedral	Completely replaced by olive-green
PRIMARY MINERALOGY	PERCENT PRESENT	PERCENT ORIGINAL	SIZE , (mm)	COMPO- SITION	MORPHOLOGY	COMMENTS