PROCEEDINGS
OF THE
OCEAN DRILLING
PROGRAM

VOLUME 133
INITIAL REPORTS
PART 1
NORTHEAST AUSTRALIAN MARGIN

Covering Leg 133 of the cruises of the Drilling Vessel JOIDES Resolution,
Apra Harbor, Guam, to Townsville, Australia, Sites 811–826,
4 August 1990–11 October 1990

Peter J. Davies, Judith A. McKenzie, Amanda A. Palmer-Julson,
Christian Betzler, Thomas C. Brachert, Min-Pen Philip Chen,
Jean-Pierre Crumière, George R. Dix, André W. Droxler, David A. Feary,
Stefan Gartner, Craig R. Glenn, Alexandra Isern, Peter D. Jackson,
Richard D. Jarrard, Miriam E. Katz, Kenji Konishi, Dick Kroon, John W. Ladd,
José Manuel Martín, Donald F. McNeill, Lucien F. Montaggioni,
Daniel W. Müller, Sheraz Khan Omarzial, Chris J. Pigram, Peter K. Swart,
Philip A. Symonds, Keith F. Watts, Wuchang Wei

Shipboard Scientists
Amanda A. Palmer-Julson
Shipboard Staff Scientist

Prepared by the
OCEAN DRILLING PROGRAM
TEXAS A&M UNIVERSITY

Sondra K. Stewart and Diana Kennett
Volume Editors

in cooperation with the
NATIONAL SCIENCE FOUNDATION
and
JOINT OCEANOGRAPHIC INSTITUTIONS, INC.
This publication was prepared by the Ocean Drilling Program, Texas A&M University, as an account of work performed under the international Ocean Drilling Program, which is managed by Joint Oceanographic Institutions, Inc., under contract with the National Science Foundation. Funding for the program was provided by the following agencies at the time of this cruise:

Canada/Australia Consortium for the Ocean Drilling Program, Department of Energy, Mines and Resources (Canada) and Department of Primary Industries and Energy (Australia)
Deutsche Forschungsgemeinschaft (Federal Republic of Germany)
European Science Foundation Consortium for Ocean Drilling (Belgium, Denmark, Finland, Iceland, Italy, Greece, the Netherlands, Norway, Spain, Sweden, Switzerland, and Turkey)
Institut Français de Recherche pour l’Exploitation de la Mer (France)
National Science Foundation (United States)
Natural Environment Research Council (United Kingdom)
University of Tokyo, Ocean Research Institute (Japan)

Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation, the participating agencies, Joint Oceanographic Institutions, Inc., Texas A&M University, or Texas A&M Research Foundation.

It is recommended that reference to the whole or to part of this volume be made in one of the following forms, as appropriate:

Effective Publication Dates of ODP Proceedings

According to the International Code of Zoological Nomenclature, the date of publication of a work and of a contained name or statement affecting nomenclature is the date on which the publication was mailed to subscribers, placed on sale, or when the whole edition is distributed free of charge, mailed to institutions and individuals to whom free copies are distributed. The mailing date, not the printed date, is the correct one.

The mailing dates of recent *Proceedings of the Ocean Drilling Program* are as follows:

- Volume 129 (Initial Reports): December 1990
- Volume 130 (Initial Reports): March 1991
- Volume 131/132 (Initial Reports): June 1991
- Volume 118 (Scientific Results): July 1991
- Volume 119 (Scientific Results): August 1991
- Volume 124 (Scientific Results): September 1991

Distribution

Copies of this publication may be obtained from Publications Distribution Center, Ocean Drilling Program, 1000 Discovery Drive, College Station, Texas 77845-9547. Orders for copies will require advance payment. See current ODP publication list for price and availability of this publication.

Printed September 1991

ISSN 0884-5883
Library of Congress 87-655-674

Foreword

By the National Science Foundation

The scientists of the Ocean Drilling Program (ODP) have embarked on what could prove to be one of the most important earth science initiatives of the decade—an initiative rivaling in scope and impact the exploration of the frontiers of outer space. The program explores our planet's last frontier—the Earth's structure and history as it is revealed beneath the oceans. The scope of the program's scientific goals excites the imagination, challenges the intellect, and enhances the spirit of cooperation among peoples in countries around the world.

Between 1872 and 1876, HMS Challenger undertook the world's first major oceanographic expedition. That expedition greatly expanded man's knowledge of the world's oceans and revolutionized our ideas about planet Earth. From 1968 to 1983, another ship named Challenger logged more than 375,000 miles on 96 voyages across every ocean for the Deep Sea Drilling Project (DSDP), operated by Scripps Institution of Oceanography. Among the project's many remarkable discoveries were the confirmation of seafloor spreading and the establishment of the relative youth of the seafloor, thus verifying the dynamic and changing nature of the Earth's crust.

Today, the Ocean Drilling Program, which began in 1983, brings new resources to bear on scientific ocean drilling. A new drillship is in operation—the JOIDES Resolution—one of the world's most modern and best equipped drillships with enhanced capability for drilling and coring in polar areas and rough weather, expanded laboratory space, facilities for more scientists, and a major drill-hole logging program. The name of the ship was derived from the international scientific partnership that directs the program—the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES)—and from the flagship of Captain Cook's second voyage to the Pacific Ocean in the late 18th century. Texas A&M University is responsible for science operations in the program, and Lamont-Doherty Geological Observatory is responsible for the logging program.

The Ocean Drilling Program truly has international participation. In 1975, the International Phase of Ocean Drilling began with member nations—the U.S.A., U.S.S.R., Federal Republic of Germany, Japan, United Kingdom, and France—all providing funds and scientific guidance for the project. Today, ODP partners include the U.S.A., the Canada/Australia Consortium for the Ocean Drilling Program, France, the Federal Republic of Germany, Japan, the United Kingdom, and the European Science Foundation, which represents Sweden, Finland, Norway, Iceland, Denmark, Belgium, the Netherlands, Spain, Switzerland, Italy, Greece, and Turkey. The National Science Foundation, with funds contributed by the United States and international partners, supports the scientific operations and planning for the ODP through a contract with Joint Oceanographic Institutions, Inc. (JOI).

The information gained by the program leads to a better understanding of the Earth and its dynamic processes. Drilled sediment cores and logs reveal clues to past climatic history and tie into parallel studies of paleoclimates from glacial ice cores drilled on the continents. Understanding these sediment cores will enable scientists to complete the map of major geologically active regions of the Earth, and to identify processes that lead to dynamic change such as earthquakes, volcanic eruptions, and mountain and continental growth. We are far from being able to predict such changes accurately now; but with the new tools and understanding, the accuracy of such predictions can be improved. This better understanding of the Earth's system(s) will allow us to identify regions of potential mineral and energy resource development, an issue of worldwide human interest. The Ocean Drilling Program is not in itself aimed at finding resources, but the knowledge of the Earth's processes that is gained through such a basic research program will inevitably provide pieces of information required for such resource discovery and exploitation.

The program is fully under way in its aim to further the understanding of the Earth's dynamic systems. People of our planet will benefit directly and indirectly from this research in both their daily living and work activities. This multinational endeavor will perhaps foster other cooperative efforts in science or among societies. The Ocean Drilling Program has distinguished ancestors in the original Resolution and Challenger expeditions and the Deep Sea Drilling Project. The National Science Foundation is proud to be playing a leading role in this program, and we are looking forward to significant and innovative science for many years to come.

Erich Bloch
Director
National Science Foundation

Washington, D.C.
Foreword
By Joint Oceanographic Institutions, Inc.

This volume presents results from the Ocean Drilling Program (ODP), where scientists use a specially equipped ocean drilling ship to sample and measure the properties of the submerged part of the Earth's crust. These data are then synthesized with other information to yield new insights into earth processes.

These results address the scientific goals of the program, which include providing a global description of geological and geophysical structures and materials, studying in detail areas of major geophysical activity such as mid-ocean ridges and the associated hydrothermal circulations, and studying passive and active continental margins. In addition, the ODP data support the study of sea-level and ocean-circulation changes, the effects of the Earth's orbital variations on climate, and the study of processes and mechanisms of evolution from the biological records in the cores which are recovered from drilling.

The Ocean Drilling Program is a partnership of scientists and governments. Overall scientific policy and management guidance is provided by Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES), which consists of committees and panels made up of representatives of the participating institutions and other scientific and engineering experts. The JOIDES Executive Committee (EXCOM) provides general oversight; the JOIDES Planning Committee (PCOM) is the focal point for all scientific planning for the ODP and is key to the scientific success of the program.

The PCOM has a network of panels and working groups which screen drilling proposals, evaluate instrumentation and measurement techniques, and assess geophysical survey data and other safety and siting information. PCOM uses the recommendations of these panels and committees to select drilling targets, to specify the major scientific objectives of each two-month drilling segment or leg, and to provide the science operator with nominations for co-chief scientists. The science operator, Texas A&M University, in turn is responsible for planning the detailed ship's operations, actual drilling schedules, and final scientific rosters, which are developed in close cooperation with PCOM and the cognizant panels.

Many of the scientific goals can be met only with new technology. Thus the program has identified engineering goals, which include the ability to start a hole and to core on bare rock at mid-ocean ridge sites, to drill in high-temperature and corrosive regions typical of hydrothermal areas, and to core in high latitudes with minimum interference from high seas and sea ice. To meet these needs, the program operates a specially equipped drillship, the JOIDES Resolution, which contains laboratories and equipment that are state-of-the-art, and carries a major new logging program.

The ship, registered as SEDCO/BP 471 after her owners and her length in feet (144 meters), is 70 feet (21 meters) wide, and has a displacement of 16,595 long tons. Her derrick towers 200 feet (61 meters) above the waterline, and a computer-controlled dynamic-positioning system stabilizes the ship over a specific location while drilling in water depths up to 27,000 feet (8230 meters). The drilling system collects cores from beneath the seafloor with a derrick and drawworks that can handle 30,000 feet (9144 meters) of drill pipe. More than 12,000 square feet (1115 square meters) of space distributed throughout the ship is devoted to scientific laboratories and equipment. The ship sails with a scientific and technical crew of 50 and a ship's crew of 65.

Logging is a major part of the overall operation. The program provides a full suite of geochemical and geophysical measurements for every hole deeper than 1300 feet (400 meters). For each such hole, there are lowerings of basic oil-industry tools: nuclear, sonic, and electrical. In addition, a borehole televiewer is available for imaging the well-bore wall, a 12-channel logging tool provides accurate velocity and elastic property measurements as well as sonic waveforms for spectral analysis of energy propagation near the well bore, and a vertical seismic profiler records reflectors from below the total depth of the hole.

Texas A&M University serves as science operator for the Ocean Drilling Program. In this capacity, they operate and staff the drillship to collect cores from JOIDES-designated sites from around the world. The science operator also ensures that adequate scientific analyses are performed on the cores by maintaining the shipboard scientific laboratories and by providing logistical and technical support for shipboard scientific teams. Onshore, Texas A&M manages scientific activities after each leg, is curator for the cores, distributes samples, and coordinates the editing and publication of the scientific results. Lamont-Doherty Geological Observatory (LDGO) of Columbia University manages the program's logging operations, which include processing the data and provision of assistance to scientists in data analysis. The ODP Data Bank, a repository for geophysical data, is also managed by LDGO. Core samples from ODP and the previous Deep Sea Drilling Project are stored for future investigation at three sites: ODP Pacific and Indian Ocean cores at Texas A&M University, ODP and DSDP Atlantic and Antarctic cores at Lamont-Doherty Geological Observatory, and DSDP Pacific and Indian Ocean cores at Scripps Institution of Oceanography.

International oversight and coordination are provided by the ODP Council, a governmental consultative body of partner country representatives, chaired by the United States, which periodically reviews the general progress of the program and discusses financial plans and other management issues. Joint Oceanographic Institutions, Inc., a nonprofit consortium of U.S. oceanographic institutions, serves as the National Science Foundation's prime contractor and manages the ODP. JOI is responsible for seeing that the scientific objectives and plans are translated into scientific operations consistent with JOIDES recommendations and budgetary constraints.

Scientific achievements of the ODP already include new data on early seafloor spreading and how continents separate and their margins evolve. We have new insight into glacial cycles and the fluctuations of currents throughout geological time. Technical achievements include the first bare-rock coring, and logging data more accurate and complete than ever before. JOI is pleased to have played a facilitating role in the Ocean Drilling Program.

D. James Baker
President
Joint Oceanographic Institutions, Inc.
Washington, D.C.
MEMBER ORGANIZATIONS OF THE JOINT OCEANOGRAPHIC INSTITUTIONS FOR DEEP EARTH SAMPLING (JOIDES):
University of California at San Diego, Scripps Institution of Oceanography
Columbia University, Lamont-Doherty Geological Observatory
University of Hawaii, Hawaii Institute of Geophysics
University of Miami, Rosenstiel School of Marine and Atmospheric Science
Oregon State University, College of Oceanography
University of Rhode Island, Graduate School of Oceanography
Texas A&M University, College of Geosciences
University of Texas at Austin, Institute for Geophysics
University of Washington, College of Ocean and Fishery Sciences
Woods Hole Oceanographic Institution
Canada/Australia Consortium for the Ocean Drilling Program, Department of Energy, Mines and Resources (Canada) and Department of Primary Industries and Energy (Australia)
European Science Foundation Consortium for Ocean Drilling, Belgium, Denmark, Finland, Iceland, Italy, Greece, the Netherlands, Norway, Spain, Sweden, Switzerland, and Turkey
Federal Republic of Germany, Bundesanstalt für Geowissenschaften und Rohstoffe
France, Institut Français de Recherche pour l'Exploitation de la Mer
Japan, University of Tokyo, Ocean Research Institute
United Kingdom, Natural Environment Research Council

PRIME CONTRACTOR
Joint Oceanographic Institutions, Inc.
Washington, D.C.
Thomas E. Pyle
Director, Ocean Drilling Programs

OPERATING INSTITUTION
College of Geosciences
Texas A&M University
College Station, Texas
Melvin Friedman
Principal Investigator

OCEAN DRILLING PROGRAM
Philip D. Rabinowitz
Director
Timothy J.G. Francis
Deputy Director
Richard G. McPherson
Administrator
Audrey W. Meyer, Manager
Science Operations
Barry W. Harding, Manager
Engineering and Drilling Operations
Russell B. Merrill, Curator and Manager
Science Services
Robert E. Olivas, Manager
Technical and Logistics Support

LOGGING OPERATOR
Borehole Research Group
Lamont-Doherty Geological Observatory
Columbia University
Palisades, New York
Roger N. Anderson, Head
PARTICIPANTS ABOARD THE JOIDES RESOLUTION FOR LEG 133*

Peter J. Davies
Co-Chief Scientist
Division of Marine Geosciences
Bureau of Mineral Resources, Geology and Geophysics
P.O. Box 378
Canberra City, ACT 2601
Australia

Judith A. McKenzie
Co-Chief Scientist
Geologisches Institut
Eidgenossische Technische Hochschule
Sonneggstrasse 5
CH-8092 Zurich, Switzerland

Amanda A. Palmer-Julson
ODP Staff Scientist/Sedimentologist/Physical Properties Specialist
Ocean Drilling Program
Texas A&M University
1000 Discovery Drive
College Station, Texas 77845-9547

Christian Betzler
Paleontologist (foraminifers)
Geologisch-Paläontologisches Institut
Johannes Wolfgang Goethe-Universität Frankfurt
Senckenberganlage 32-34
D-6000 Frankfurt am Main 11
Federal Republic of Germany

Thomas C. Brachert
Sedimentologist
Institut für Geowissenschaften
Johannes Gutenberg Universität Mainz
Postfach 3980
D-6500 Mainz
Federal Republic of Germany

Min-Pen Philip Chen
Physical Properties Specialist
Institute of Oceanography
National Taiwan University
P.O. Box 23-13 Taipei
Taiwan, Republic of China

Jean-Pierre Crumière
Organic Geochemist
Laboratoire de Sédimentologie
Université Claude Bernard
27-43 Bd du 11 Novembre
F 69622 Villeurbanne
France

George R. Dix
Sedimentologist
Department of Geological Sciences
University of British Columbia
6339 Stores Road
Vancouver, British Columbia V6T 2B4
Canada

André W. Droxler
Sedimentologist
Department of Geology and Geophysics
Rice University
P.O. Box 1892
Houston, Texas 77251-1892

David A. Feary
Sedimentologist
Division of Marine Geosciences
Bureau of Mineral Resources, Geology and Geophysics
P.O. Box 378
Canberra City, ACT 2601
Australia

Stefan Gartner
Paleontologist (nannofossils)
Department of Oceanography
Texas A&M University
College Station, Texas 77843

Craig R. Glenn
Sedimentologist
Hawaii Institute of Geophysics
University of Hawaii
2525 Correa Road
Honolulu, Hawaii 96822

Alexandra Isern
Inorganic Geochemist
Graduate School of Oceanography
University of Rhode Island
Narragansett Bay Campus
Narragansett, Rhode Island 02882-1197

Peter D. Jackson
Logging Scientist
British Geological Survey
Keyworth, Nottingham NG12 5GG
United Kingdom

Richard D. Jarrard
LDGO Logging Scientist
Borehole Research Group
Lamont-Doherty Geological Observatory
Columbia University
Palisades, New York 10964

Miriam E. Katz
Paleontologist (foraminifers)
Lamont-Doherty Geological Observatory
Columbia University
Palisades, New York 10964

Kenji Konishi
Sedimentologist
Department of Earth Sciences
Kanazawa University
Kanazawa City 920
Ishikawa
Japan

*Participants at time of cruise.
Dick Kroon
Paleontologist (foraminifers)
Grant Institute of Geology
University of Edinburgh
West Mains Road
Edinburgh EH9 3JW
United Kingdom

John W. Ladd
Physical Properties Specialist
Ocean Drilling Program
National Science Foundation
1800 G Street, NW
Washington, DC 20550

José Manuel Martín
Sedimentologist
Departamento de Estratigrafía y Paleontología
I.A.G.M. Universidad Granada-C.S.I.C.
Camp de Fuente Mueña s.n.
18002 Granada
Spain

Donald F. McNeill
Paleomagnetist
Division of Marine Geology and Geophysics
Rosenstiel School of Marine and Atmospheric Science
University of Miami
4600 Rickenbacker Causeway
Miami, Florida 33149-1098

Lucien F. Montaggioni
Sedimentologist
Centre de Sédimentologie et Paléontologie
U.R.A.-C.N.R.S.
Université de Provence
Place Victor Hugo
13331 Marseille Cedex 3
France

Daniel W. Müller
Sedimentologist
Geologisches Institut
Eidgenossische Technische Hochschule
Sonneggstrasse 5
CH-8092 Zurich
Switzerland

Sheraz Khan Omarzai
Paleomagnetist
Earth Sciences Board of Studies
University of California, Santa Cruz
Santa Cruz, California 95064

Chris J. Pigram
Sedimentologist
Department of Geology
Australian National University
G.P.O. Box 4
Canberra City, ACT 2601
Australia

Peter K. Swart
Inorganic Geochemist
Division of Marine Geology and Geophysics
Rosenstiel School of Marine and Atmospheric Science
University of Miami
4600 Rickenbacker Causeway
Miami, Florida 33149-1098

Philip A. Symonds
Geophysicist
Division of Marine Geosciences
Bureau of Mineral Resources, Geology and Geophysics
P.O. Box 378
Canberra City, ACT 2601
Australia

Keith F. Watts
Sedimentologist
Department of Geology and Geophysics
University of Alaska
Fairbanks, Alaska 99775

Wuchang Wei
Paleontologist (nannofossils)
Department of Geology
Florida State University
Tallahassee, Florida 32306

SEDGO OFFICIALS

Captain Anthony Ribbens
Master of the Drilling Vessel
Underseas Drilling, Inc.
707 Texas Avenue South
Suite 103D
College Station, Texas 77840-1917

Jack Tarbutton
Drilling Superintendent
Underseas Drilling, Inc.
707 Texas Avenue South
Suite 103D
College Station, Texas 77840-1917
ODP ENGINEERING AND OPERATIONS PERSONNEL

Jack Pheasant
Development Engineer
Eugene Pollard
Operations Superintendent

ODP TECHNICAL AND LOGISTICS PERSONNEL

Roger Ball
Electronics Technician
Daniel Bontempo
Marine Technician
Jim Briggs
Electronics Technician
Scott Chaffey
Chemistry Technician
Jo Claesgens
Yeoperson
Joe DeMorett
Marine Technician
Edwin Garrett
Computer Systems Manager
Burney Hamlin
Laboratory Officer
Gretchen Hampt
Curatorial Representative
Chester Jones
Marine Technician/Storekeeper
Kazushi (“Kuro”) Kuroki
Marine Technician
Eric Meissner
Electronics Technician
Michael Moore
Marine Technician
Frank Peerdeman
Marine Technician
Joan Perry
Marine Technician
Joe Powers
Assistant Laboratory Officer
Ahmet Tandircioglu
Marine Technician
John Tenison
Photographer

Ocean Drilling Program Publications Staff

Publications Supervisor
William D. Rose

Chief Editor
Norman J. Stewart

Editors
Eva M. Barbu
Lona Haskins Dearmont
Sondra K. Stewart
William R. Winkler

Bibliographer
Nancy K. McQuistion (half-time)

Chief Production Editor
Jennifer Pattison Hall

Production Editors
Janna Abel
Jaime A. Gracia (this volume)

Publications Coordinator
Janalisa Braziel Soltis

Assistant Publications Coordinators
Gudelia (“Gigi”) Delgado
Jill Mutschler-Fontenot

Publications Distribution Specialist
Fabiola Muñoz Byrne

Publications Distribution Assistant
Cheryl Rendon

Senior Photographer
John W. Beck

Photographer
Roy T. Davis

Chief Illustrator
Deborah Partain

Illustrators
Michelle Curtis
Linda C. De Leon
Garnet D. Gaither
Cynthia M. Mullican
Lisa L. Tirey

Production Assistants
Carrie R. Castillón
Mary Elizabeth Betz
Laura Hammond Young
TABLE OF CONTENTS

VOLUME 133 (PART 1)—INITIAL REPORTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgments</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>SECTION 1: INTRODUCTION</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>1. Introduction</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Shipboard Scientific Party</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>2. Explanatory Notes</td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>Shipboard Scientific Party</td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>3. Principal Results and Summary</td>
<td></td>
<td>59</td>
</tr>
<tr>
<td>Shipboard Scientific Party</td>
<td></td>
<td>59</td>
</tr>
<tr>
<td>SECTION 2: SITE REPORTS</td>
<td></td>
<td>73</td>
</tr>
<tr>
<td>4. Sites 811/825</td>
<td></td>
<td>73</td>
</tr>
<tr>
<td>Shipboard Scientific Party</td>
<td></td>
<td>73</td>
</tr>
<tr>
<td>Site summary</td>
<td></td>
<td>73</td>
</tr>
<tr>
<td>Principal results</td>
<td></td>
<td>74</td>
</tr>
<tr>
<td>Background and scientific objectives</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>Site 811 operations</td>
<td></td>
<td>76</td>
</tr>
<tr>
<td>Site 825 operations</td>
<td></td>
<td>79</td>
</tr>
<tr>
<td>Site geophysics</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>Site 811 lithostratigraphy</td>
<td></td>
<td>84</td>
</tr>
<tr>
<td>Site 825 lithostratigraphy</td>
<td></td>
<td>91</td>
</tr>
<tr>
<td>Site 811 biostratigraphy</td>
<td></td>
<td>95</td>
</tr>
<tr>
<td>Site 825 biostratigraphy</td>
<td></td>
<td>98</td>
</tr>
<tr>
<td>Site 811 paleomagnetism</td>
<td></td>
<td>99</td>
</tr>
<tr>
<td>Site 825 paleomagnetism</td>
<td></td>
<td>101</td>
</tr>
<tr>
<td>Site 811 sedimentation rates</td>
<td></td>
<td>101</td>
</tr>
<tr>
<td>Site 811 inorganic geochemistry</td>
<td></td>
<td>101</td>
</tr>
<tr>
<td>Site 825 inorganic geochemistry</td>
<td></td>
<td>105</td>
</tr>
<tr>
<td>Site 811 organic geochemistry</td>
<td></td>
<td>105</td>
</tr>
<tr>
<td>Site 825 organic geochemistry</td>
<td></td>
<td>107</td>
</tr>
<tr>
<td>Site 811 physical properties</td>
<td></td>
<td>108</td>
</tr>
<tr>
<td>Site 825 physical properties</td>
<td></td>
<td>109</td>
</tr>
<tr>
<td>Site 825 downhole measurements</td>
<td></td>
<td>110</td>
</tr>
<tr>
<td>Site 811 seismic stratigraphy</td>
<td></td>
<td>111</td>
</tr>
<tr>
<td>Sites 811/825 summary and conclusions</td>
<td></td>
<td>114</td>
</tr>
<tr>
<td>5. Site 812</td>
<td></td>
<td>135</td>
</tr>
<tr>
<td>Shipboard Scientific Party</td>
<td></td>
<td>135</td>
</tr>
<tr>
<td>Site summary</td>
<td></td>
<td>135</td>
</tr>
<tr>
<td>Principal results</td>
<td></td>
<td>135</td>
</tr>
<tr>
<td>Background and scientific objectives</td>
<td></td>
<td>136</td>
</tr>
<tr>
<td>Operations</td>
<td></td>
<td>139</td>
</tr>
<tr>
<td>Site geophysics</td>
<td></td>
<td>141</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Lithostratigraphy</td>
<td>143</td>
<td></td>
</tr>
<tr>
<td>Biostratigraphy</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>Paleomagnetism</td>
<td>153</td>
<td></td>
</tr>
<tr>
<td>Sedimentation rates</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td>Inorganic geochemistry</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td>Organic geochemistry</td>
<td>155</td>
<td></td>
</tr>
<tr>
<td>Physical properties</td>
<td>157</td>
<td></td>
</tr>
<tr>
<td>Downhole measurements</td>
<td>158</td>
<td></td>
</tr>
<tr>
<td>Seismic stratigraphy</td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>Summary and conclusions</td>
<td>168</td>
<td></td>
</tr>
</tbody>
</table>

6. Site 813 177
Shipboard Scientific Party
 Site summary 177
 Principal results 177
 Background and scientific objectives . 178
 Operations 178
 Lithostratigraphy 180
 Biostratigraphy 185
 Paleomagnetism 187
 Sediment accumulation rates 188
 Inorganic geochemistry 188
 Organic geochemistry 191
 Physical properties 193
 Seismic stratigraphy 195

7. Site 814 203
Shipboard Scientific Party
 Site summary 203
 Principal results 203
 Background and scientific objectives . 204
 Operations 204
 Site geophysics 204
 Lithostratigraphy 206
 Biostratigraphy 210
 Paleomagnetism 213
 Sedimentation rates 215
 Inorganic geochemistry 215
 Organic geochemistry 218
 Physical properties 219
 Downhole measurements 222
 Seismic stratigraphy 226

8. Site 815 243
Shipboard Scientific Party
 Site summary 243
 Principal results 243
 Background and scientific objectives . 244
14. Site 821

Shipboard Scientific Party

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site summary</td>
<td>569</td>
</tr>
<tr>
<td>Principal results</td>
<td>569</td>
</tr>
<tr>
<td>Background and scientific objectives</td>
<td>570</td>
</tr>
<tr>
<td>Operations</td>
<td>571</td>
</tr>
<tr>
<td>Site geophysics</td>
<td>572</td>
</tr>
<tr>
<td>Lithostratigraphy</td>
<td>573</td>
</tr>
<tr>
<td>Biostratigraphy</td>
<td>578</td>
</tr>
<tr>
<td>Paleomagnetism</td>
<td>580</td>
</tr>
<tr>
<td>Inorganic geochemistry</td>
<td>581</td>
</tr>
<tr>
<td>Organic geochemistry</td>
<td>585</td>
</tr>
<tr>
<td>Physical properties</td>
<td>587</td>
</tr>
<tr>
<td>Downhole measurements</td>
<td>589</td>
</tr>
<tr>
<td>Seismic stratigraphy</td>
<td>592</td>
</tr>
<tr>
<td>Summary and conclusions</td>
<td>592</td>
</tr>
</tbody>
</table>

15. Site 822

Shipboard Scientific Party

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site summary</td>
<td>615</td>
</tr>
<tr>
<td>Principal results</td>
<td>615</td>
</tr>
<tr>
<td>Background and scientific objectives</td>
<td>616</td>
</tr>
<tr>
<td>Operations</td>
<td>616</td>
</tr>
<tr>
<td>Site geophysics</td>
<td>617</td>
</tr>
<tr>
<td>Lithostratigraphy</td>
<td>619</td>
</tr>
<tr>
<td>Biostratigraphy</td>
<td>627</td>
</tr>
<tr>
<td>Paleomagnetism</td>
<td>629</td>
</tr>
<tr>
<td>Sedimentation rates</td>
<td>631</td>
</tr>
<tr>
<td>Inorganic geochemistry</td>
<td>632</td>
</tr>
<tr>
<td>Organic geochemistry</td>
<td>639</td>
</tr>
<tr>
<td>Physical properties</td>
<td>641</td>
</tr>
<tr>
<td>Downhole measurements</td>
<td>642</td>
</tr>
<tr>
<td>Seismic stratigraphy</td>
<td>649</td>
</tr>
<tr>
<td>Summary and conclusions</td>
<td>651</td>
</tr>
</tbody>
</table>

16. Site 823

Shipboard Scientific Party

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site summary</td>
<td>679</td>
</tr>
<tr>
<td>Principal results</td>
<td>679</td>
</tr>
<tr>
<td>Background and scientific objectives</td>
<td>681</td>
</tr>
<tr>
<td>Operations</td>
<td>682</td>
</tr>
<tr>
<td>Site geophysics</td>
<td>683</td>
</tr>
<tr>
<td>Lithostratigraphy</td>
<td>685</td>
</tr>
<tr>
<td>Biostratigraphy</td>
<td>703</td>
</tr>
<tr>
<td>Paleomagnetism</td>
<td>705</td>
</tr>
<tr>
<td>Sedimentation rates</td>
<td>707</td>
</tr>
<tr>
<td>Inorganic geochemistry</td>
<td>707</td>
</tr>
<tr>
<td>Organic geochemistry</td>
<td>710</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

VOLUME 133 (PART 2)—INITIAL REPORTS

SECTION 3: CORES

Core description forms and core photographs for:

Sites 811/825 ... 813
Site 812 ... 859
Site 813 ... 889
Site 814 .. 933
Site 815 .. 955
Site 816 .. 1007
Site 817 .. 1027
Site 818 .. 1095
Site 819 .. 1127
Site 820 .. 1169
Site 821 .. 1225
Site 822 .. 1287
Site 823 .. 1335
Site 824 .. 1455
Site 826 .. 1483

SECTION 4: POLICY

JOIDES advisory groups 1491
Sample-Distribution Policy 1495

Back-pocket Microfiche

Formation microscanner images for Leg 133 (fiche 1–13):

Hole 812B: Pass 1 depth range, 88–297.8 mbsf
Hole 814A: Pass 2 depth range, 48–294 mbsf
Hole 816B: Pass 2 depth range, 80.6–204.4 mbsf
Hole 817D: Pass 2 depth range, 88.2–268.2 mbsf; Pass 1 depth range, 254.6–695.4 mbsf
Hole 820B: Pass 2 depth range, 64–357 mbsf
Hole 821A: Pass 1 depth range, 78–389 mbsf
Hole 822A: Pass 1 depth range, 84–177 mbsf
Hole 823C: Pass 1 depth range, 188–954.2 mbsf
ACKNOWLEDGMENTS

Leg 133’s record-breaking success in drilling on the northeast Australian margin was the culmination of many years of planning. We greatly appreciate the efforts of all those involved in the pre-drilling phases of the leg, particularly the JOIDES Sediments and Ocean History and Pollution Prevention and Safety panels and the operational and technical staff of the Rig Seismic. The seismic data collected by the Australian Bureau of Mineral Resources (BMR) provided the basis for selecting drill sites. We extend our thanks to the Australian Federal Government for permission to drill in territorial waters and acknowledge our sincere gratitude to the Great Barrier Reef Marine Park Authority for providing us permission to drill in an environmentally sensitive World Heritage marine park.

The success of Leg 133 is directly related to the enthusiastic efforts and professional skill of the SEDCO drilling crew and the marine operations staff of the JOIDES Resolution. In addition, we particularly appreciate the dedication and untiring support of the shipboard technical staff under the supervision of Lab Officer Burney Hamlin. Fabiola Byrne and Laura Young coordinated the compilation of the site chapters during the post-cruise meeting. The text was finalized with the editorial assistance of Sondra Stewart and Diana Kennett, and the illustrations were prepared for production under the direction of Debbie Partain.