ERRATA

for

Volume 134 of the Initial Reports of the Proceedings of the Ocean Drilling Program

After Vol. 134 of the Initial Reports of the ODP Proceedings had been printed, several typographical errors were discovered.

In the Site 828 chapter, page 145, the caption for Table 2 should read "Table 2. Lithostratigraphic units, Site 828." Another error appears in this table in the left column, third line from the bottom; this line should read "to -15N-2, 78 cm."

Site 829 chapter, page 188, Table 2, second column from the right, eighth line from the top: This line should read "Ig-lithic breccia" instead of "Volcanic breccia."

Site 830 chapter, page 269, Table 2: In the left column, the third and fourth lines from the bottom should read "Sections 134-830B-14R-1, 0 cm, to 134-830B-24R-CC, 15 cm."
PROCEEDINGS OF THE OCEAN DRILLING PROGRAM

VOLUME 134
INITIAL REPORTS
VANUATU (NEW HEBRIDES)

Covering Leg 134 of the cruises of the Drilling Vessel JOIDES Resolution,
Port of Townsville, Queensland, Australia, to Suva, Republic of Fiji, Sites 827–833,
11 October–17 December 1990

Jean-Yves Collot, H. Gary Greene, Laura B. Stokking, Kazumi Akimoto, Maria V.S. Ask,
Peter E. Baker, Louis Briqueu, Thierry Chabernaud, Margaret Goud Collins,
Massimo Coltori, Michael A. Fisher, Toshiaki Hasenaka, Michael A. Hobart,
Anton Krammer, John N. Leonard, Jonathan B. Martin,
Jose Ignacio Martinez-Rodriguez, Stefan Menger, Martin Meschede, Bernard Pelletier,
Russell C.B. Perembo, Terrence M. Quinn, Pamela Reid, William R. Riedel,
Pierrick Roperch, Thomas Scott Stærker, Frederick W. Taylor, Xixi Zhao

Shipboard Scientists

Laura B. Stokking
Staff Scientist

Prepared by the OCEAN DRILLING PROGRAM
TEXAS A&M UNIVERSITY

Lona Haskins Dearmont
Volume Editor

in cooperation with the NATIONAL SCIENCE FOUNDATION
and
JOINT OCEANOGRAPHIC INSTITUTIONS, INC.
The Ocean Drilling Program (ODP) is a major component of the National Science Foundation’s continuing commitment to the study of the geologic processes that have shaped our planet and modified its environment. The scientific problems being addressed range from the geologic history and structure of continental margins to the processes responsible for the formation and alteration of the ocean’s crust. In a time of enhanced public and scientific interest in problems of global change, ODP provides critical data on changes in ocean circulation, chemistry, and biologic productivity and their relation to changes in atmospheric circulation and glacial conditions. The Ocean Drilling Program has a unique role in addressing these problems, since it is the only facility for continuously sampling the geologic record of the ocean basins, which cover 70% of our planet.

The ODP is the successor to the Deep Sea Drilling Project (DSDP), which was a global reconnaissance of the ocean basins. DSDP began operations in 1968 at Scripps Institution of Oceanography, using a 400-foot drillship, the Glomar Challenger. DSDP was supported initially by only the National Science Foundation, with extensive involvement of international scientists who were invited to participate on drilling cruises. As this international interest continued to grow in the early 1970’s, formal participation in the project was offered to the international geoscience community. In 1975, five nations (France, the Federal Republic of Germany, Japan, the United Kingdom, and the Soviet Union) accepted this commitment to joint planning and conduct of the project, as well as to financial support for operations. This International Phase of Ocean Drilling (IPOD) continued to 1983. Although the Challenger had reached the limits of her capabilities, the remarkable scientific success of the DSDP and the new questions it had generated demanded a continuing capability for drilling in the oceans.

The Ocean Drilling Program was organized, international participation was coordinated, a new drillship (the JOIDES Resolution) was contracted and outfitted, and her first cruise sailed in early 1985, within 18 months of the retirement of the Challenger. This is a remarkable accomplishment that reflects the efforts and excellence of the Joint Oceanographic Institutions, Inc. (prime contractor for ODP), Texas A&M University (science and ship operator), Lamont-Doherty Geological Observatory (logging operator), and the international science community in organizing and planning the new program. It was argued in planning for the ODP that a larger drillship was required to provide space for the increasing U.S. and international demand for shipboard participation, improved and expanded laboratory capabilities, and improvements in coring and logging systems. A larger and better equipped vessel would also provide better stability and working conditions in high-latitude regions of the oceans. The success of the JOIDES Resolution has proven the wisdom of these early arguments.

ODP now has operated in all oceans except the ice-covered Arctic. We have drilled above the Arctic circle and within sight of the Antarctic continent. Over 1000 scientists from 25 nations have participated in the initial ODP cruises. The larger scientific parties have allowed an increased emphasis on student participation and training aboard ship. The state-of-the-art laboratories support rapid and complete initial analyses of samples that provide both scientific results and guide subsequent shore-based studies. Nearly 1000 additional scientists have used these data and requested samples from the program’s core and data archives for continuing study. The geochemical and geophysical logging capability is unsurpassed in either academia or industry and has provided remarkable new data with which to study the Earth. New experiments to measure and monitor geologic processes have been deployed in ODP boreholes.

The international commitment to ocean drilling has increased in the ODP. In addition to our five partners in IPOD—France, the Federal Republic of Germany, Japan, the Soviet Union, and the United Kingdom—two consortia have joined ODP: Canada-Australia and the European Science Foundation (representing Belgium, Denmark, Finland, Greece, Iceland, Italy, The Netherlands, Norway, Spain, Sweden, Switzerland, and Turkey). The 20 countries of the ODP represent the community of nations that have a global interest in the geosciences and oceanography. This global scientific participation has assured the program’s scientific
excellence by focusing and integrating the combined scientific knowledge and capabilities of the program’s 20 nations. It has allowed problems of a global nature to be addressed by providing databases and background studies which are openly shared for planning and interpreting drilling results. It has eased problems of access to territorial waters, allowing comparative studies to be done among oceans. Finally, the international sharing of program costs has allowed this important and large program to proceed without detrimental impact to the research budgets of any one nation.

The Ocean Drilling Program, like its predecessor, DSDP, serves as a model for planning, conducting, and financing research to address problems of global importance. The National Science Foundation is proud to have a leading role in this unique international program, and we look forward to its continuing success.

Walter E. Massey
Director
National Science Foundation

Washington, D.C.
This volume presents results from the Ocean Drilling Program (ODP), where scientists use a specially equipped ocean drilling ship to sample and measure the properties of the submerged part of the Earth’s crust. These data are then synthesized with other information to yield new insights into earth processes.

These results address the scientific goals of the program, which include providing a global description of geological and geophysical structures and materials, studying in detail areas of major geophysical activity such as mid-ocean ridges and the associated hydrothermal circulations, and studying passive and active continental margins. In addition, the ODP data support the study of sea-level and ocean-circulation changes, the effects of the Earth’s orbital variations on climate, and the study of processes and mechanisms of evolution from the biological records in the cores which are recovered from drilling.

The Ocean Drilling Program is a partnership of scientists and governments. Overall scientific policy and management guidance is provided by Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES), which consists of committees and panels made up of representatives of the participating institutions and other scientific and engineering experts. The JOIDES Executive Committee (EXCOM) provides general oversight; the JOIDES Planning Committee (PCOM) is the focal point for all scientific planning for the ODP and is key to the scientific success of the program.

The PCOM has a network of panels and working groups which screen drilling proposals, evaluate instrumentation and measurement techniques, and assess geophysical survey data and other safety and siting information. PCOM uses the recommendations of these panels and committees to select drilling targets, to specify the major scientific objectives of each two-month drilling segment or leg, and to provide the science operator with nominations for co-chief scientists. The science operator, Texas A&M University, in turn is responsible for planning the detailed ship’s operations, actual drilling schedules, and final scientific rosters, which are developed in close cooperation with PCOM and the cognizant panels.

Many of the scientific goals can be met only with new technology. Thus the program has identified engineering goals, which include the ability to start a hole and to core on bare rock at mid-ocean-ridge sites, to drill in high-temperature and corrosive regions typical of hydrothermal areas, and to core in high latitudes with minimum interference from high seas and sea ice. To meet these needs, the program operates a specially equipped drillship, the JOIDES Resolution, which contains laboratories and equipment that are state-of-the-art, and carries a major new logging program.

The ship, registered as SEDCO/BP 471 after her owners and her length in feet (144 meters), is 70 feet (21 meters) wide, and has a displacement of 16,595 long tons. Her derrick towers 200 feet (61 meters) above the waterline, and a computer-controlled dynamic-positioning system stabilizes the ship over a specific location while drilling in water depths up to 27,000 feet (8230 meters). The drilling system collects cores from beneath the seafloor with a derrick and drawworks that can handle 30,000 feet (9144 meters) of drill pipe. More than 12,000 square feet (1115 square meters) of space distributed throughout the ship is devoted to scientific laboratories and equipment. The ship sails with a scientific and technical crew of 50 and a ship’s crew of 65.

Logging is a major part of the overall operation. The program provides a full suite of geochemical and geophysical measurements for every hole deeper than 1300 feet (400 meters). For each such hole, there are lowerings of basic oil-industry tools: nuclear, sonic, and electrical. In addition, a borehole televiwer is available for imaging the well-bore wall, a 12-channel logging tool provides accurate velocity and elastic property measurements as well as sonic waveforms for spectral analysis of energy propagation near the well bore, and a vertical seismic profiler records reflectors from below the total depth of the hole.

Texas A&M University serves as science operator for the Ocean Drilling Program. In this capacity, they operate and staff the drillship to collect cores from JOIDES-designated sites from around the world. The science operator also ensures that adequate scientific analyses are performed on the cores by maintaining the shipboard scientific laboratories and by providing
logistical and technical support for shipboard scientific teams. Onshore, Texas A&M manages scientific activities after each leg, is curator for the cores, distributes samples, and coordinates the editing and publication of the scientific results. Lamont-Doherty Geological Observatory (LDGO) of Columbia University manages the program's logging operations, which include processing the data and provision of assistance to scientists in data analysis. The ODP Data Bank, a repository for geophysical data, is also managed by LDGO. Core samples from ODP and the previous Deep Sea Drilling Project are stored for future investigation at three sites: ODP Pacific and Indian Ocean cores at Texas A&M University, ODP and DSDP Atlantic and Antarctic cores at Lamont-Doherty Geological Observatory, and DSDP Pacific and Indian Ocean cores at Scripps Institution of Oceanography.

International oversight and coordination are provided by the ODP Council, a governmental consultative body of partner country representatives, chaired by the United States, which periodically reviews the general progress of the program and discusses financial plans and other management issues. Joint Oceanographic Institutions, Inc., a nonprofit consortium of U.S. oceanographic institutions, serves as the National Science Foundation's prime contractor and manages the ODP. JOI is responsible for seeing that the scientific objectives and plans are translated into scientific operations consistent with JOIDES recommendations and budgetary constraints.

Scientific achievements of the ODP already include new data on early seafloor spreading and how continents separate and their margins evolve. We have new insight into glacial cycles and the fluctuations of currents throughout geological time. Technical achievements include the first bare-rock coring, and logging data more accurate and complete than ever before. JOI is pleased to have played a facilitating role in the Ocean Drilling Program.

D. James Baker
President
Joint Oceanographic Institutions, Inc.

Washington, D.C.
MEMBER ORGANIZATIONS OF THE JOINT OCEANOGRAPHIC INSTITUTIONS FOR DEEP EARTH SAMPLING (JOIDES):
University of California at San Diego, Scripps Institution of Oceanography
Columbia University, Lamont-Doherty Geological Observatory
University of Hawaii, Hawaii Institute of Geophysics
University of Miami, Rosenstiel School of Marine and Atmospheric Science
Oregon State University, College of Oceanography
University of Rhode Island, Graduate School of Oceanography
Texas A&M University, College of Geosciences
University of Texas at Austin, Institute for Geophysics
University of Washington, College of Ocean and Fishery Sciences
Woods Hole Oceanographic Institution
Canada/Australia Consortium for the Ocean Drilling Program, Department of Energy, Mines and Resources (Canada) and Department of Primary Industries and Energy (Australia)
European Science Foundation Consortium for Ocean Drilling, Belgium, Denmark, Finland, Iceland, Italy, Greece, the Netherlands, Norway, Spain, Sweden, Switzerland, and Turkey
Federal Republic of Germany, Bundesanstalt für Geowissenschaften und Rohstoffe
France, Institut Français de Recherche pour l'Exploitation de la Mer
Japan, University of Tokyo, Ocean Research Institute
United Kingdom, Natural Environment Research Council
U.S.S.R., Academy of Sciences

PRIME CONTRACTOR
Joint Oceanographic Institutions, Inc.
Washington, D.C.
Thomas E. Pyle
Director, Ocean Drilling Programs

OPERATING INSTITUTION
College of Geosciences
Texas A&M University
College Station, Texas
Melvin Friedman
Principal Investigator

OCEAN DRILLING PROGRAM
Philip D. Rabinowitz
Director
Timothy J.G. Francis
Deputy Director
Richard G. McPherson
Administrator
Audrey W. Meyer, Manager
Science Operations
Barry W. Harding, Manager
Engineering and Drilling Operations
Russell B. Merrill, Curator and Manager
Science Services
Robert E. Olivas, Manager
Technical and Logistics Support

LOGGING OPERATOR
Borehole Research Group
Lamont-Doherty Geological Observatory
Columbia University
Palisades, New York
Roger N. Anderson, Head
PARTICIPANTS ABOARD THE JOIDES RESOLUTION FOR LEG 134*

Jean-Yves Collot
Co-Chief Scientist
Laboratoire de Géodynamique
ORTSTOM
B.P. 48
06220 Villefranche-sur-Mer
France

H. Gary Greene
Co-Chief Scientist
U.S. Geological Survey, MS 999
345 Middlefield Road
Menlo Park, California 94025

Laura B. Stokking
ODP Staff Scientist/Paleomagnetist
Ocean Drilling Program
Texas A&M University
1000 Discovery Drive
College Station, Texas 77845-9547

Kazumi Akimoto
Paleontologist (foraminifers)
Nagoya Jiyu Gakuin Junior College
281 Furui, Kumanoshō
Shikatsus-cho, Nishikasugai-gun
481 Aichi Prefecture
Japan

Maria V.S. Ask
Physical Properties Specialist
Division of Rock Mechanics
Luleå University of Technology
S-95187 Luleå
Sweden

Peter E. Baker
Igneous Petrologist
Department of Earth Sciences
University of Leeds
Leeds LS2 9JT
United Kingdom

Louis Briquéu
Igneous Petrologist
Laboratoire de Géochimie Isotopique
C.N.R.S.
U.S.T.L., C.P. 066
34095 Montpellier Cedex 2
France

Thierry Chabernaud
Logging Scientist
Borehole Research Group
Lamont-Doherty Geological Observatory
Columbia University
Palisades, New York 10964

Margaret Goud Collins
Sedimentologist
Coastal Research Center
Woods Hole Oceanographic Institution
Woods Hole, Massachusetts 02543

Massimo Coltorti
Igneous Petrologist
Istituto di Mineralogia
Università degli Studi di Ferrara
Via Erolo 1 d'Este, 32
44100 Ferrara
Italy

Michael A. Fisher
Geophysicist/Logging Scientist
U.S. Geological Survey, MS 999
345 Middlefield Road
Menlo Park, California 94025

Toshiaki Hasenaka
Igneous Petrologist
Department of Petrology and Mineralogy
Faculty of Science
Tohoku University
Aoba, Sendai
Miagi 980
Japan

Michael A. Hobart
LDCO Logging Scientist
Borehole Research Group
Lamont-Doherty Geological Observatory
Columbia University
Palisades, New York 10964

Anton Krammer
Logging Scientist
Geophysical Institute
Herzzstrasse 16
D-7500 Karlsruhe 21
Federal Republic of Germany

John N. Leonard
Physical Properties Specialist
Department of Oceanography
Texas A&M University
College Station, Texas 77843

Jonathan B. Martin
Inorganic Geochemist
Scripps Institution of Oceanography, A-008
University of California, San Diego
La Jolla, California 92037-0145

*Addresses at time of cruise.
Jose Ignacio Martinez-Rodriguez
Paleontologist (foraminifers)
Department of Geology
Australian National University
G.P.O. Box 4
Canberra City, ACT 2601
Australia

Stefan Menger
Borehole TV Technician
Deutsche Montan Technologie
Institut für Angewandte Geophysik
Hernerstrasse 45
D-4630 Bochum
Federal Republic of Germany

Martin Meschede
Structural Geologist/Sedimentologist
Institut und Museum für Geologie und Paläontologie
Universität Tübingen
Sigwartstrasse 10
D-7400 Tübingen
Federal Republic of Germany

Bernard Pelletier
Structural Geologist/Sedimentologist
ORSTOM
B.P. A5
Noumea, New Caledonia
(France)

Russell C.B. Perembo
Paleontologist (foraminifers)
Department of Geology
University of Western Australia
Nedlands, W.A. 6009
Australia

Terrence M. Quinn
Sedimentologist
Department of Geological Sciences
University of Michigan
1006 C. C. Little Building
Ann Arbor, Michigan 48109-1063

Pamela Reid
Sedimentologist
Rosenstiel School of Marine and Atmospheric Science
University of Miami
4600 Rickenbacker Causeway
Miami, Florida 33149-1098

William R. Riedel
Sedimentologist/Paleontologist (radiolarians)
Scripps Institution of Oceanography, A-020
University of California, San Diego
La Jolla, California 92030-0215

Pierrick Roperch
Paleomagnetist
Laboratoire de Géodynamique
ORSTOM
B.P. 48
06230 Villefranche-sur-Mer
France

Thomas Scott Staerker
Paleontologist (nannofossils)
Department of Geology
Florida State University
Tallahassee, Florida 32306

Frederick W. Taylor
Sedimentologist
Institute for Geophysics
University of Texas at Austin
8701 MoPac Boulevard
Austin, Texas 78759-8345

Xixi Zhao
Paleomagnetist
Earth Sciences Board of Studies
University of California, Santa Cruz
Santa Cruz, California 95064

SEDCO OFFICIALS

Captain Edwin G. Oonk
Master of the Drilling Vessel
Undersea Drilling, Inc.
707 Texas Avenue South
Suite 103D
College Station, Texas 77840-1917

Kenneth D. Home
Drilling Superintendent
Undersea Drilling, Inc.
707 Texas Avenue South
Suite 103D
College Station, Texas 77840-1917
ODP ENGINEERING AND OPERATIONS PERSONNEL
Glen N. Foss Operations Superintendent
David P. Huey Engineer

ODP TECHNICAL AND LOGISTICS PERSONNEL
Wendy J. Autio Marine Scientist
Valerie Clark Marine Scientist
MaryAnn Cusimano Marine Scientist
Stacey Cervantes DuVall Marine Scientist
Ted ("Gus") Gustafson Photographer
Laura Heintschel Marine Scientist
Michiko Hitchcox Yeoperson
Robert Kemp Curatorial Representative
Matt Mefferd Assistant Laboratory Officer
William M. Meyer Computer Systems Manager
William G. Mills Laboratory Officer
Daniel Quoidbach Curatorial Representative
Mark C. Simpson Marine Scientist
Don Sims Marine Scientist
William Stevens Electronics Technician
Mark Watson Electronics Technician
Barry Weber Electronics Technician

Ocean Drilling Program Publications Staff

Publications Supervisor
William D. Rose

Chief Editor
Norman J. Stewart

Editors
Eva M. Barbu
Lona Haskins Dearmont
Sondra K. Stewart
William R. Winkler

Bibliographer
Nancy K. McQuistion (part-time)

Chief Production Editor
Jennifer Pattison Hall

Publications Coordinator
Janalisa Braziel Soltis

Assistant Publications Coordinator
Gudelia ("Gigi") Delgado

Publications Distribution Specialist
Fabiola Muñoz Byrne

Data Entry/Copier Operator
Carrie Jo Parris

Senior Photographer
John W. Beck

Production Assistants
Mary Elizabeth Betz
Carrie R. Castillón
Laura Hammond Young

Production Editors
Janna C. Abel (this volume)
Jaime A. Gracia

Photographer
Stacey Cervantes DuVall

Chief Illustrator
Deborah L. Partain

Illustrators
Michelle Curtis
Linda C. De Leon
Garnet D. Gaither
Cynthia M. Mullican
Lisa L. Tirey

Production Assistants
Mary Elizabeth Betz
Carrie R. Castillón
Laura Hammond Young
TABLE OF CONTENTS

LEG 134—INITIAL REPORTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgments</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>SECTION 1: INTRODUCTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Introduction</td>
<td>1. Introduction</td>
<td>5</td>
</tr>
<tr>
<td>Shipboard Scientific Party</td>
<td>Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>2. The d'Entrecasteaux Zone–New Hebrides Island Arc Collision Zone: an Overview</td>
<td>2. The d'Entrecasteaux Zone–New Hebrides Island Arc Collision Zone: an Overview</td>
<td>19</td>
</tr>
<tr>
<td>J.-Y. Collot and M. A. Fisher</td>
<td>J.-Y. Collot and M. A. Fisher</td>
<td></td>
</tr>
<tr>
<td>3. Quaternary Vertical Tectonics of the Central New Hebrides Island Arc</td>
<td>3. Quaternary Vertical Tectonics of the Central New Hebrides Island Arc</td>
<td>33</td>
</tr>
<tr>
<td>F. W. Taylor</td>
<td>F. W. Taylor</td>
<td></td>
</tr>
<tr>
<td>4. Observation of Forearc Seafloor Deformation along the North d'Entrecasteaux Ridge–New Hebrides Island Arc Collision Zone from Nautilus Submersible</td>
<td>4. Observation of Forearc Seafloor Deformation along the North d'Entrecasteaux Ridge–New Hebrides Island Arc Collision Zone from Nautilus Submersible</td>
<td>43</td>
</tr>
<tr>
<td>H. G. Greene, J.-Y. Collot, B. Pelletier, and S. Lallemand</td>
<td>H. G. Greene, J.-Y. Collot, B. Pelletier, and S. Lallemand</td>
<td></td>
</tr>
<tr>
<td>5. Underway Geophysics</td>
<td>5. Underway Geophysics</td>
<td>55</td>
</tr>
<tr>
<td>M. A. Fisher</td>
<td>M. A. Fisher</td>
<td></td>
</tr>
<tr>
<td>Shipboard Scientific Party</td>
<td>Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>SECTION 2: SITE REPORTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Site 827</td>
<td>7. Site 827</td>
<td>95</td>
</tr>
<tr>
<td>Shipboard Scientific Party</td>
<td>Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>Site summary</td>
<td>Site summary</td>
<td>95</td>
</tr>
<tr>
<td>Principal results</td>
<td>Principal results</td>
<td></td>
</tr>
<tr>
<td>Background and objectives</td>
<td>Background and objectives</td>
<td>96</td>
</tr>
<tr>
<td>Seismic stratigraphy</td>
<td>Seismic stratigraphy</td>
<td>98</td>
</tr>
<tr>
<td>Operations</td>
<td>Operations</td>
<td>100</td>
</tr>
<tr>
<td>Lithostratigraphy</td>
<td>Lithostratigraphy</td>
<td>101</td>
</tr>
<tr>
<td>Biostratigraphy</td>
<td>Biostratigraphy</td>
<td>108</td>
</tr>
<tr>
<td>Sediment and fluid geochemistry</td>
<td>Sediment and fluid geochemistry</td>
<td>110</td>
</tr>
<tr>
<td>Structural studies</td>
<td>Structural studies</td>
<td>115</td>
</tr>
<tr>
<td>Paleomagnetism</td>
<td>Paleomagnetism</td>
<td>115</td>
</tr>
<tr>
<td>Sediment accumulation rates</td>
<td>Sediment accumulation rates</td>
<td>118</td>
</tr>
<tr>
<td>Physical properties</td>
<td>Physical properties</td>
<td>118</td>
</tr>
<tr>
<td>Downhole measurements</td>
<td>Downhole measurements</td>
<td>122</td>
</tr>
<tr>
<td>Summary and conclusions</td>
<td>Summary and conclusions</td>
<td>123</td>
</tr>
<tr>
<td>8. Site 828</td>
<td>8. Site 828</td>
<td>139</td>
</tr>
<tr>
<td>Shipboard Scientific Party</td>
<td>Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>Site summary</td>
<td>Site summary</td>
<td>139</td>
</tr>
<tr>
<td>Principal results</td>
<td>Principal results</td>
<td></td>
</tr>
<tr>
<td>Background and objectives</td>
<td>Background and objectives</td>
<td>140</td>
</tr>
<tr>
<td>Subject</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Seismic stratigraphy</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>Operations</td>
<td>143</td>
<td></td>
</tr>
<tr>
<td>Lithostratigraphy</td>
<td>144</td>
<td></td>
</tr>
<tr>
<td>Biostratigraphy</td>
<td>149</td>
<td></td>
</tr>
<tr>
<td>Igneous petrology</td>
<td>152</td>
<td></td>
</tr>
<tr>
<td>Igneous geochemistry</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td>Sediment and fluid geochemistry</td>
<td>156</td>
<td></td>
</tr>
<tr>
<td>Structural studies</td>
<td>158</td>
<td></td>
</tr>
<tr>
<td>Paleomagnetism</td>
<td>158</td>
<td></td>
</tr>
<tr>
<td>Sediment accumulation rates</td>
<td>161</td>
<td></td>
</tr>
<tr>
<td>Physical properties</td>
<td>161</td>
<td></td>
</tr>
<tr>
<td>Summary and conclusions</td>
<td>165</td>
<td></td>
</tr>
</tbody>
</table>

9. Site 829
 Shipboard Scientific Party
 Site summary | 179 |
 Principal results | 179 |
 Background and objectives | 181 |
 Seismic stratigraphy | 182 |
 Operations | 183 |
 Lithostratigraphy | 183 |
 Biostratigraphy | 194 |
 Igneous petrology | 198 |
 Igneous geochemistry | 199 |
 Sediment and fluid geochemistry | 202 |
 Structural studies | 206 |
 Paleomagnetism | 211 |
 Sediment accumulation rates | 218 |
 Physical properties | 218 |
 Downhole measurements | 223 |
 Summary and conclusions | 229 |

10. Site 830
 Shipboard Scientific Party
 Site summary | 261 |
 Principal results | 261 |
 Background and objectives | 262 |
 Seismic stratigraphy | 263 |
 Operations | 264 |
 Lithostratigraphy | 265 |
 Biostratigraphy | 273 |
 Igneous petrology | 276 |
 Igneous geochemistry | 277 |
 Sediment and fluid geochemistry | 278 |
 Structural studies | 281 |
SECTION 3: SUMMARY AND CONCLUSIONS

14. Summary and Conclusions .. 561
 Shipboard Scientific Party

SECTION 4: CORES

Core description forms and core photographs for:
 Site 827 .. 581
 Site 828 .. 621
 Site 829 .. 643
 Site 830 .. 713
 Site 831 .. 749
 Site 832 .. 857
 Site 833 .. 971

SECTION 5: POLICY

JOIDES Advisory Groups .. 1131
Sample-Distribution Policy 1135

Back-pocket Microfiche

Formation microscanner images for Leg 134:
 Hole 829A: Main pass depth range, 70–754.5 mbsf
 Main pass depth range, 248–467 mbsf
 Hole 831B: Main pass depth range, 79–260 mbsf
 Main pass depth range, 256–755 mbsf
 Main and repeat passes (merged) depth range, 715–750 mbsf
 Hole 832B: Main pass depth range, 628.6–858.6 mbsf
 Main pass depth range, 856.8–1086 mbsf
 Hole 833B: Main pass depth range, 557.4–830 mbsf
 Main pass depth range, 821–929.6 mbsf
ACKNOWLEDGMENTS

The Scientific Party of Leg 134 expresses its thanks to Captain Edwin G. Oonk and his officers and crew for all of their help during Leg 134. We thank Glen Foss, the ODP operations superintendent; Ken Horne, the drilling superintendent; and the SEDCO drilling crew for their enthusiastic efforts throughout the leg. We are indebted to Bill Mills, the laboratory officer, and the staff of ODP marine scientists and technicians for their major contribution to the scientific success of the cruise. The government of Vanuatu kindly granted us permission to operate in their waters. We are grateful to the editors and illustrators of the Ocean Drilling Program for all their assistance in composing this volume.