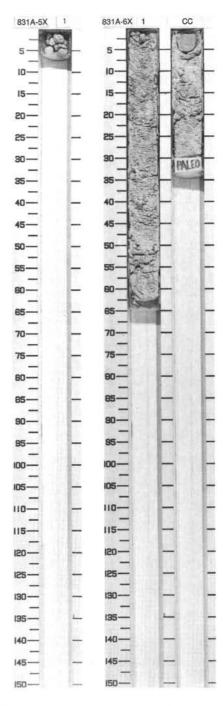
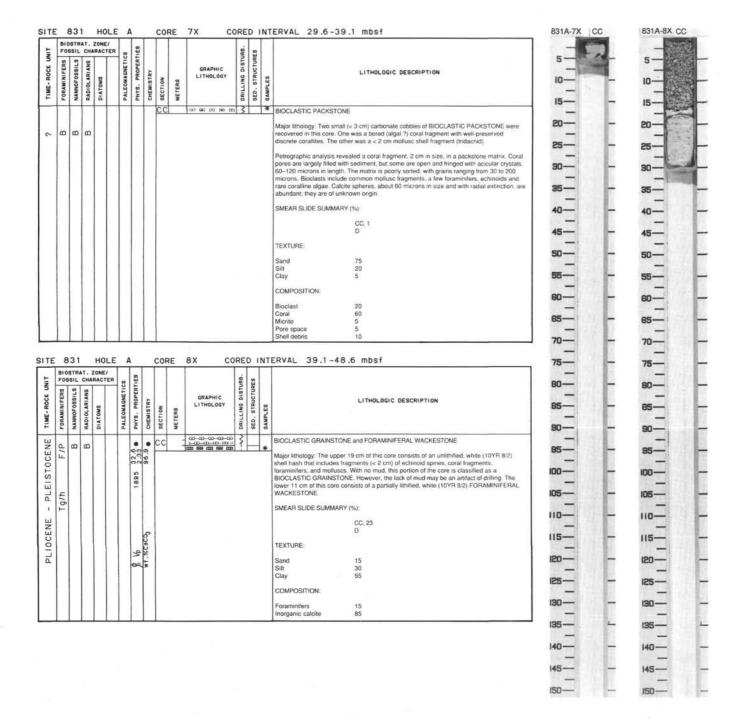


CNIT	FO	SSIL	CHA	ZONE/	ro l	83					/RB	Sa							
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Day Courselle	PALEOMAGNETICS PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB.	SED. STRUCTURES	SAMPLES		LITHO	LOGIC	DESCRIP	TION	
					2	65.81664	80.8	1	0.5	 	mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	00 80 8		BIOCLASTIC FORAMINIFERAL Major lithology: The entire core brown (10YR 6/4) BIOCLASTIC small bivalves, gastropod frag pteropods. Sections 2, 3, part SMEAR SLIDE SUMMARY (%)	consideration co	sts of gre AMINIFE occasio	RAL OO	ZE. Biocla	asts include a variety of
									=		owwo	0		2 0	, 34	2, 84 D	4, 18 D	6, 33 D	7, 35 D
					1	89.8	6.8		3		0 0		*	TEXTURE:					
			П		1				4		0			Sand 8 Silt 1		20 35	80 10	70 15	70 10
						1		2	-		0		*	Clay 1		45	10	15	20
										工二工	0			COMPOSITION:					
					1		1		=	т'т	0			Bioclast 3	0	-	30	35	30
							П	-	-1		0			Calcite Celadonite		43 Tr	***		***
						68.3	e.		1 3		0			Chlorite		Tr	***	5.000	
L				1					4	- ' ' -	0			Clay 1: Clinopyroxene		20 Tr	15	10	***
HOLOCENE				H		•	•	3	7		0			Feldspar Foraminifers 5		2 25	2 45	50	40
5									- 3		ļļ.			Glass	4	2	Tr	Tr	20
2			Ш		1				=	T'T	1			Nannofossils		8	1	***	Tr
1	~	4			1				1		ò			Opaques 1 Other		-	1	1	5
ш	N22	CNJ	Н		1				-	- ' ' -	0		*	Plagioclase 2		444	****	1	***
Į.	-	O			1	66.8	6		3	$T_{\perp}T_{\perp}$	3		*	Pteropod Spicules		Tr	2 Tr	Tr	1
SIDCENE							8 8 2	100		т'т	mmmm								
				Н	1	-	-	4		т т	3								
ų,					ı				4		3		1						
7					1		1		1	- ' ' -	0								
				l f					3		0		1						
									-	_TT_	0								
				П	1	64.7	00		=	'_	0								
				П				5	1		0								
				П				٦	1	- ' ' -	0								
							1		1 3		0								
							1		3	т'т	0								
	ĺ						1				9								
						0			1		1!								
						65.0	25.0		4	- ' ' -	1		*						
							•	6	- 3	TT	li								
								1	1 3	т'т	li								
							1				11								
									=	- ' ' -	11								
					1			_	-		11	1							
	A/G	U				φ.	0	100	=	т'т	1								
	A	0	B				100.	7	1		1		*						
						•		-			1.	1	_						
							wr.%caco	1											
						.0	\$C3												
	1	1	I	1 1	- 1	1	1.	1						l					

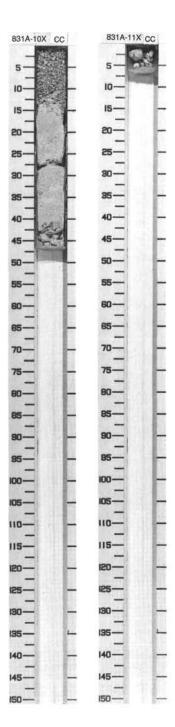

- IN				ZONE/ RACTE	R	1.63					JRB.	83								
IIME-HOCK OF	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES		SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES		LITH	OLOGIC	DESCRIP	TION		
						8.83.8	79.1	1	0.5		1 1 1 1 1 1	\(\)	*	BIOCLASTIC FORAMINII Major lithology: The entir BIOCLASTIC FORAMINI and CC. In portions of Si Minor lithology: a. Several black (10YR 2 b. The lower 50 cm of Se sediment with pteropods	a core cons FERAL OO ection 6, the	ists of gra ZE. Ptero sedimen	opods are nt consists 22 cm thi	especially s almost e ck. occur	abunda intirely o	ant in Sections of pteropods. ons 5 and 6.
								2	in the co	 	-00000		*	SMEAR SLIDE SUMMAR	Y (%): 1, 73 D	2, 60 D	4, 130 D	5. 100 M	6. 12 D	6, 56 M
						64.8	74.1				0000			Sand Silt Clay COMPOSITION:	60 20 20	80 10 10	80 15 5	70 30 	60 20 20	23 67 10
						•	•	3	attender.		1 1 1			Bioclast Clay Clinopyroxene Feldspar Foraminifers Glass	30 10 40	35 45	5 35 35	3 10 67	20 10 30	5 1 6 Tr 53
	N22	CN14			z			4	in the state of th	- ' - ' - 				Inorganic calcite Nannofossils Opaques Other Oxide Pteropod Rock fragment Spicules	10 5 2	5 10 Tr	2 10 	20	10	Tr 25 10 Tr
									The same of				*							
		1000000				73.9	8.66.8	5	Transfer of	-	1 1 1		*							
						• 47.5	23.5	6	a de constante	T T	1 1 1 1 1 1	0	*							
	A/G	5/3	В			69.2		7			1	8								
						% %														

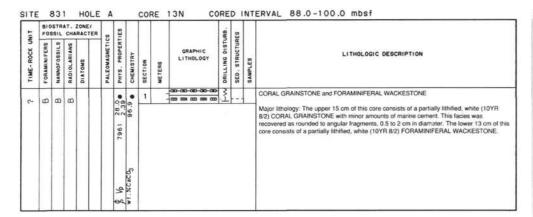


831A 4X NO RECOVERY

		STR			cs	831					RB.	ES		
INC. VOC.	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETIC	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
J.	C/M	8	8					1		an-an-an-an-an-an-	÷	()—'		BIOCLASTIC GRAINSTONE Major lithology: Five cm of pale yellow (2.5Y 8/4) BIOCLASTIC GRAINSTONE was
SIOCE	N22													recovered as rounded to angular fragments, 0.5 to 2 cm in diameter.

- IN				RACT!	on .	ES					88.	55		
	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
2000	C/P	8				2577 44.4		1 cc	0.5		1.1.4			PACKSTONE Major lithology: Sixty-two cm of unlithified, white (10YR 8/2) PACKSTONE was recovered this core. Well-rounded, pebble-sized clasts of carbonate grains sporadically occur in the PACKSTONE. A well-preserved, 4 cm wide coral fragment (Acropora) with minor amounts marine cement was recovered in the core catcher.
יוספרואר י בר	Tg/h													
7						8 No								1 *

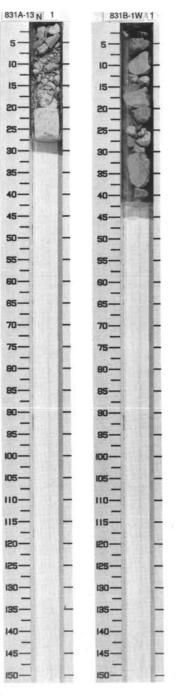


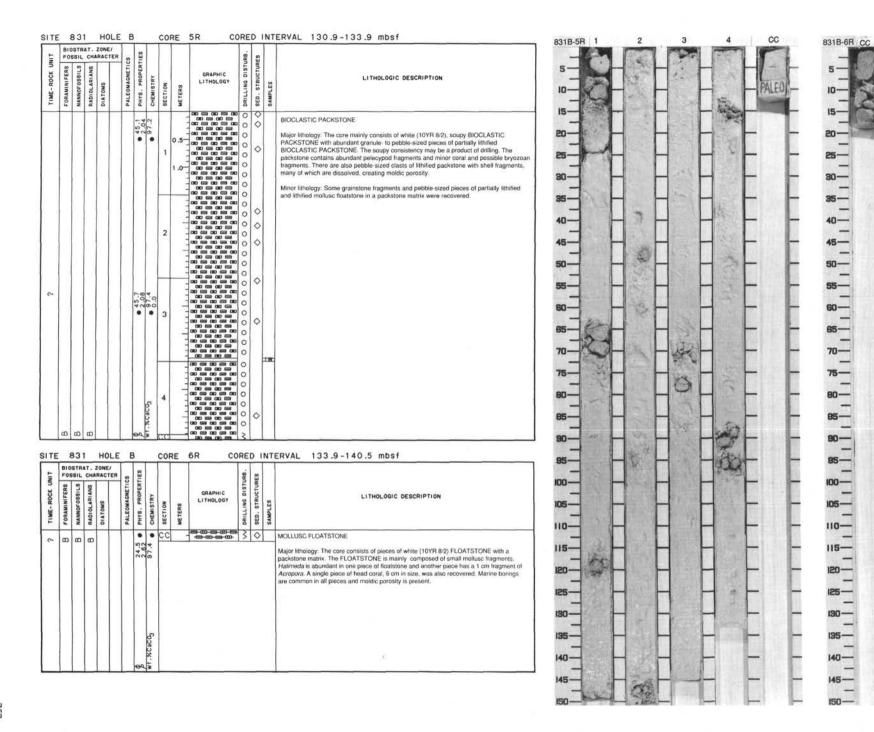

831A 9X NO RECOVERY

I INO				RACTI	67	ES					IRB.	Sa		
TIME-ROCK OF	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
	В	В	8			1953 28.1	97.5	сс			3			BIOCLASTIC GRAINSTONE and FORAMINIFERAL WACKESTONE Major lithology: The upper 12 cm of this core consists of an unlithified, white (10YR 8/2) shelf hash that includes fragments (< 2 cm) of echinoid spines, corals, foraminifers, and molluses. With no mud, his portion of the core is classified as a BIOCLASTIC GRAINSTONE. However, the lack of mud may be an artifact of drilling. The lower 36 cm of this core consists of a partially lithified, white (10YR 8/2) FORAMINIFERAL WACKESTON
						\$ Vp								

=				ONE/		ES					URB.	69		
TIME-ROCK UNI	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	WETERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTURE	SAMPLES	LITHOLOGIC DESCRIPTION
~	В	В	В		T			CC		an-an-an-an-an-an-	3			CORAL GRAINSTONE Major lithology: Rounded to angular fragments of white (10YR 8/2), partially calcitized

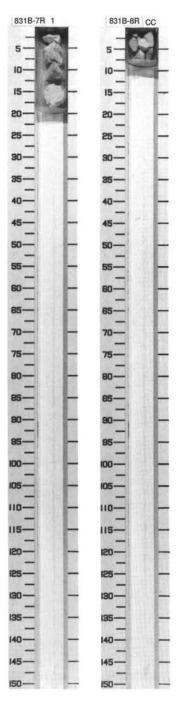
831A 12N NO RECOVERY



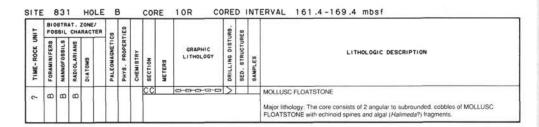

831A 14X NO RECOVERY

831A 15X NO RECOVERY

TINO				RACT	80	ES					RB.	69		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETIC	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
PLEISTOCENE	В	CN14 F/G	8					1			5			CORAL RUDSTONE Major lithology: The core consists of pieces of white (10YR 8/2) hermatypic coral, including Porites and Acropora, and undetermined head corals. The corals are dense, with pores filled with cement. The core is classified as CORAL RUDSTONE because no matrix was recovered, but these fragments may represent coral pieces in lagoonal sediment that was not recovered.
MIDDLE														

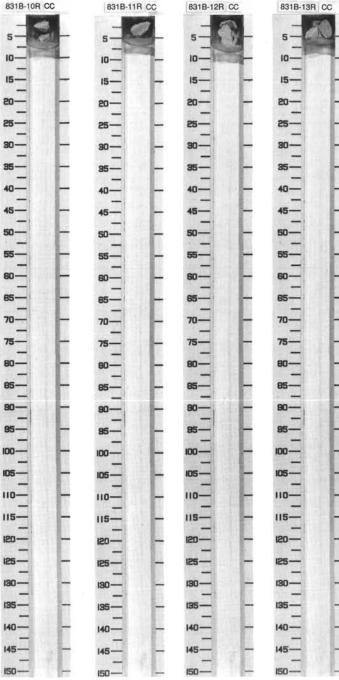


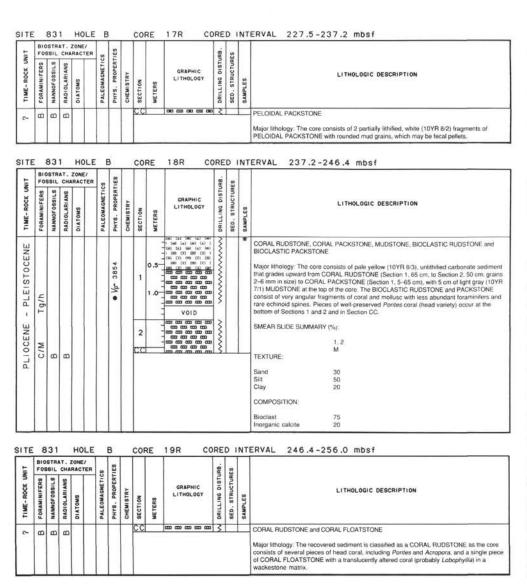
BIOSTR FOSSIL				80				80	-		1		The same of	1	.059
FORAMINIFERS NAMNOFOSSILS	1 1	SWO		PROPERTIES	STRY	52	GRAPHIC LITHOLOGY	ING DISTURB	SED. STRUCTURES	LITHOLOGIC DESCRIPTION	5-		5—	İ	5-
FORAN	RADIO	DIATO	PALE	PHYS.	SECTION	METERS		DRILLING	SED.		-		-	•	_
m a	В		Ħ	•	CC			3	\rightarrow	BIOCLASTIC WACKESTONE and CORALGAL RUDSTONE	15—	Г	15		15
5				Vp-2856						Major lithology: The core consists of pieces of lithified, light gray (10YR 7/2) BIOCLASTIC WACKESTONE with grains of coralline algae, coral, and gastropod fragments. There is also	20—	-	20-	4	20-
(2)				2						a piece of CORALGAL RUDSTONE and 1 piece of coral. 4–5 cm in diameter (possibly Porites), featuring a boring filled with sediment.	25	-	25—	-	25-
4	П										30-	_	30-	_	30
CN1											35—		35—	L	35—
		1									- -		-		_
	Н										40-		40—		40—
	Ш		Ш					-			45-	-	45—	-	45-
83		HOLE	В	_	CC	RE	3R C	DREI) IN	ERVAL 11.9-121.3 mbsf	50-	_	50-	-	50-
-	CHAP	RACTER	cs	TIES				DISTURB.	RES		55—		55_		55—
FORAMINIFERS NANNOFOSSILS	RIANS		AGNET	PROPERTIES	H.		GRAPHIC LITHOLOGY		SED. STRUCTURES	LITHOLOGIC DESCRIPTION	~_		-		_
RAMIN	RADIOLARIANS	DIATOMS	PALEOMAGNET	PHYS. P	SECTION	METERS	1200000012001	DRILLING	SED. STR		60—	lī.	60—	E	-08
+	+	ō	ā	å	c C				\$ 8	CORAL RUDSTONE	65—	H	65—	-	65—
F/G	8				-		1 111 211 211	1.6-1	- Testan	Major lithology. The core consists of pieces of white (10YR 8/2) coral, including Porites and	70—	-	70-	-	70-
	П		П							Acropora. The corals are dense, with pores and borings filled with cement and mud. The	75—	L.	75—	L	75—
4		1								fragments may represent coral pieces in lagoonal sediment that was not recovered.					-
CN1			П		1						80—		- 08		80—
					1						85—	-	85—	-	85—
										2.10	90-	-	90-	-	90-
83	1	HOL	FF	3	C	RE	4R C	ORF	D IN	TERVAL 121.3-130.9 mbsf	85—	_	95—	12	95—
BIOST	RAT.		T		Ť	T	1	1.	7.5	121.0 100.0 1001	-		_		- 000
			ETICS	PROPERTIES			GRAPHIC	DISTURB	STRUCTURES		-000	Г	- 000	1	_
FORAMINIFERS	RADIOLARIANS	SWO	PALEOWAGNETICS	PRO	ISTRY	82	LITHOLOGY	LING	STRUC	LITHOLOGIC DESCRIPTION	105—		105—		105—
FORA	RADIO	DIATOMS	PALE	PHYS.	CHEMISTS	METERS		DRILLING	SED. STR		110-	-	110-	-	110-
		П	T		С	c		3	0	CORALGAL WACKESTONE and CORALGAL RUDSTONE	115—	_	115—	_	115—
00 0	0 0									Major lithology: The core consists of pieces of white (10YR 8/2) CORALGAL WACKESTONE and pieces of coral, including <i>Porites</i> . The corals are dense, with pores and	-		-		-
										borings filled with cement and mud. The corals are classified as CORAL RUDSTONE because no matrix was recovered, but these fragments may represent coral pieces in lagoonal sediment that was not recovered.	- 021		- 021		- 021
	1	Ш	_	Ш				-		lagoonal sediment that was not recovered.	125—	-	125—	-	125—
											130—	-	130—	-	130-
											135—	_	- 135—	_	135—
											-	10	-		-
											-		140—		140—
											145—	-	145—	-	145—

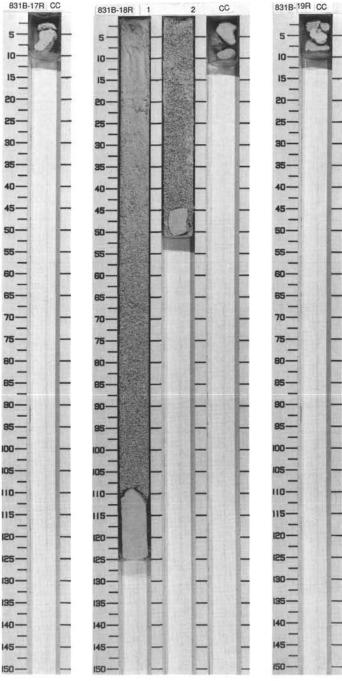


- N				ZONE/ RACTER	80	83					88	SH		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
	8	В	В					1		D-CD-CD CD CD	>		#	MOLLUSC FLOATSTONE and CORAL RUDSTONE
														Major lithology: Five cobbles of carbonate were recovered. Three of the them are white (10YR 8/2), partially lithified MOLLUSC FLOATSTONE with abundant primary porosity and minor amounts of carbonate cement. The other 2 pieces are whitle (10YR 8/2), partially lithified CORAL RUDSTONE (Acropora) with mairine claim borings (Lithophaga/?). Petrographic analysis indicates that the sediment is a poorly sorted mixture of sand- and silt-sized grains and micrite. Grains range from 4 mm to 20 microns in size, but most are 100 to 300 microns. Bioclasts include fragments of Hallmeda, bryozoan, mollusc, echinoi and coralline algae. Calcide sopheres, 30–50 microns in size and with radial extinction, are
														abundant; the origin of these spheres is unknown.
														THIN SECTION SUMMARY (%):
														1,8
														TEXTURE:
														Sand 60
					1	1								Silt 25
														Clay 15
														COMPOSITION:
														Bioclast 25
														Coral 10
					1									Foraminifers 5
					1									Halimeda 20 Micrite 15
					1	l								Pore space 10
					1	1								Shell debris 15

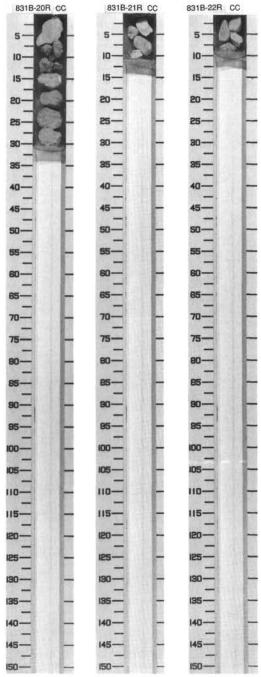
-				ZONE/ RACTE	2 00	53					RB.	82		
TIME-ROCK UNI	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
~	В	В	В					cc						CORAL RUDSTONE Major lithology: The core consists of 8, angular to subrounded, white (10YR 8/2), cobbles of CORAL RUDSTONE, <3 cm wide. The corals are well-preserved specimens with minor amounts of marine cement and marine claim borings (Lithophaga').

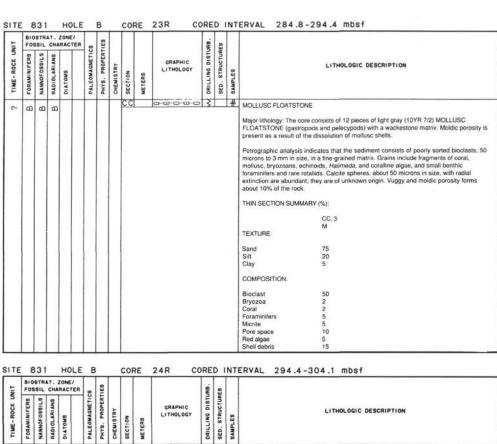

831B 9R NO RECOVERY


E E	810		AT.	HOLE ZONE/ RACTER	. E	83		COI	RE	11R C0	RE		NT	ERVAL 169.4-179.1 mbsf
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTI	CHEMISTRY	SECTION	WETERS	GRAPHIC LITHOLOGY	DRILLING DISTU	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
c-	80	В	В					CC			>			CORAL RUDSTONE Major lithology: The core consists of 1 cobble, 3 x 5 cm, of partially calcitized, angular to subrounded, white (10YR 8/2) CORAL RUDSTONE.


UNIT				ZONE/ RACTER	co	ES					88	60		
TIME-ROCK UN	FORAMINIFERS	NAMNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS 9	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
2	8	8	8					cc		ထားကား 3 ဆောတ	>			MOLLUSC RUDSTONE and MOLLUSC FLOATSTONE. Major lithology: The core consists of 4 cobbles of carbonate. Two of them are a MOLLUSC RUDSTONE consisting of fragments of a thick-shelled mollusc, most likely a tridacnid. The other two pieces are white (10YR 8/2), partially lithilited, porous MOLLUSC FLOATSTONE.

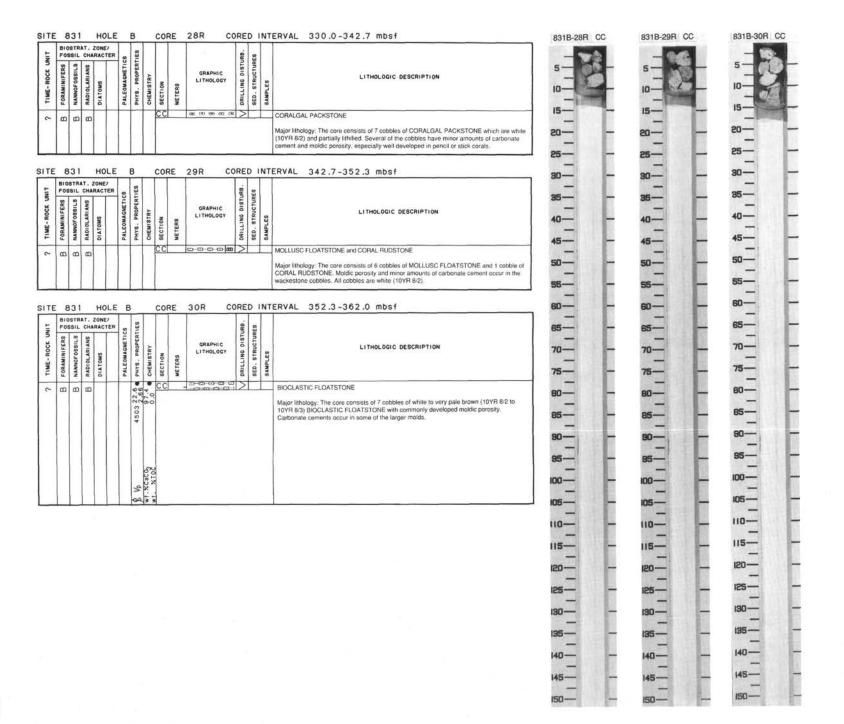
UNIT				RACTER		168					RB.	ES		
TIME-ROCK UP	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
2	8	В	В					ccl			>			CORAL RUDSTONE Major lithology: The core consists of 4 pieces of subrounded, white to light gray (10YR 8/2 to 2.5Y 7/2), partially lithified fragments of corat. The recovered pieces form a CORAL RUDSTONE, but the absence of matrix may be the result of drilling.


			T. ZONE/		99	T	1	1	Т.Т		ERVAL 198.5-208.2 mbsf	831B-14R CC		831B-15R	3	831B-16R
	FORAMINIFERS	-	SIANS	- 5	HYS. PROPERTIE	HEMISTRY	ETERS		RILLING DISTURB	IED. STRUCTURES	LITHOLOGIC DESCRIPTION	5-10-	F	5-10-	F	5—
Major Mindger, The one condition of finances of disagnment of condition of disagnment	+	-		-		32. 32.	300	0-0-0-0-0	1000	9 9	MOLLUSC FLOATSTONE and CORAL RUDSTONE	15—	-	15—	-	15-
Restauration Fig.											fragments are white (10YR 8/2), partially lithified MOLLUSC FLOATSTONE. The remaining carbonate fragment is CORAL RUDSTONE, a head coral, with minor amounts of marine	20—	E	20—	E	
Second Column Second Colum	-			_	_	_					22 (April 1)					_
STANDED 1	_	_	_	E	В	C	RE	15R C	ORE	INI	ERVAL 208.2-217.8 mbsf	- SU—		au—		30—
1	FOSS	SIL	CHARACTE	NETICS	OPERTIES	>			DISTURB.	JCTURES	LITHOLOGIC DESCRIPTION	_	-	35—	-	35—
MOLIUSC RUDSTONE Major inhology: The recover Ingrigant is classified as a MULLUSC RUDSTONE: it is a single? From one fragment of a fact-wheter moliuse, possibly a conditional production (Symmbus?). The post of carbonitate committee angraigh in closer from white (10VR 5/2) to pate which yielder (2.5 % 8G). SS	FORAMINI	NANNOFOS	RADIOLAR	PALEOMAG	PHYS. PR	CHEMISTR	METERS	LITHOLOGY	DRILLING					45—		40—
Major Imitodogy: The necovered fragment is classified as a MCLUSC RUPSTONE: 8 a single 7 cm long flagment of a this-shalled mortal, possibly a cord. (Strombus?) The risternal chambers of the morbusc hower marrier borneys and are lead with three generations of carbon branching control marriers and product from white (10/78 8/2) to grayish brown (10/78 8/2) to g	+ +	\rightarrow		1		C					MOLLUSC RUDSTONE		15			
Second Color Seco											a single 7 cm long fragment of a thick-shelled mollusc, possibly a conch (Strombus?). The			_		
	Ш										of carbonate cement ranging in color from white (10YR 8/2) to grayish brown (10YR 5/2) to	60—	L.	-	-	60—
	F 8	31	HOL	F	В		DE	16R C	ORF) IN	FRVAI 217.8-227.5 mbsf	65—	L	65—	L	65—
Section Sect	BIOS	STRA	T. ZONE/	Т		T	T	1	T	Т		_		_		
				- 5	ERTIE				STURB	TURES		70—		70—		70—
## CORAL RUDSTONE and BIOCLASTIC FLOATSTONE Major inthology: The core consists of 8 carbonate fragments. Five of these fragments are white (10YR 82), nonded to subconded so of CORAL RUDSTONE. Two of these fragments are white (10YR 82), nonded to subconded so of CORAL RUDSTONE. Two of these fragments are fragment is a partially whited BIOCLASTIC FLOATSTONE. Petrographic analysis indicates the occurrence of coral Acropsor. The last carbonate fragment is a partially whited BIOCLASTIC FLOATSTONE. Petrographic analysis indicates the occurrence of coral in agreements in a fine-grained matrix. One piece of coral is encusted with coralline alpase, That is itself encusted by a toralline twin port chambers fringed with accurate state of coral coral reports. About 50 micrors in length. Sediment surrounding the corals includes fine sand-to sill-steed grains and micrite. Calcite spheres, 40-60 microns is raze, with radial exists of micrors are abundant in the sediment but are of unknown origin. In places, micritic sediment has a clotted peloidal texture suggestive of micror. THIN SECTION SUMMARY (%):	MINIFE	OF0881	OLARIA	OMAGNE		USTRY	RS	LITHOLOGY	LING	STRUC	LITHOLOGIC DESCRIPTION	75—		75—	-	75—
Major lithology: The core consists of 8 carbonate fragments. Five of these fragments are white (10YR 82), rounded to subrounded cobbies of CORAI, NUDSTONE: Two of these fragments are do mit only, well-pressare depress of CoraI (Acropora). The last cubonate fragments are 8 cm in only, well-pressare depress of CoraI (Acropora). The last cubonate fragments are 8 cm in only, well-pressare depress of CoraI (Acropora). The last cubonate fragments are 8 cm in only in the cora in cora fragments in a fine-grained matrix. One piece of coral is encrusted with coralline algae, that is itself encrusted by a foraminine with open chambers fringed which coralline algae, that is itself encrusted by a foraminine with open chambers fringed which coralline algae, that is itself encrusted by a foraminine with open chambers fringed which coraline algae, that is itself encrusted by a foraminine with open chambers fringed which coralline algae, that is itself encrusted by a foraminine with open chambers fringed which coralline algae, that is itself encrusted by a foraminine with open chambers fringed with coralline algae, that is fixed encrusted by a foraminine with open chambers fringed with coralline algae, that is fixed encrusted by a foraminine with open chambers fringed with coralline algae, that is fixed encrusted by a foraminine with open chambers fringed with coralline algae, that is fixed encrusted by a foraminine with open chambers fringed with coralline algae, the fixed encrusted by a fix	FORA	NAM	RADI	PALE								80—	-	90—	-	90—
Petrographic analysis indicates the occurrence of two coral fragments in a fine-grained matrix. One piece of coral is encurated with carbline algae, that is itself encusted by a toraminister with open chambers fringed with acclular crystals, about 60 microns in length. Sediment surrounding the corals includes fine sand- os like-lized grains and micrite. Calcite spheres, 40-60 microns in size, with radial extinction are abundant in the sediment but are of unknown origin. In places, micritic sediment has a clotted peloidal texture suggestive of micritic cement. THIN SECTION SUMMARY (%): III	0	В	Φ 0			C				#		85—	-	85	-	85—
Texture: Sand 80 Sitt 10 Clay					Vp-49						white (10YR 8/2), rounded to subrounded cobbles of CORAL RUDSTONE. Two of these fragments are 6 cm long, well-preserved pieces of coral (<i>Acropora</i>). The last carbonate	80-	H	90-	-	90—
Sediment surrounding the corate includes fine sand- to sil-sized grains and micrite. Calcite spheres, 40–60 microns in size, with radial extinction are abundant in the sediment but are of unknown origin. In places, micritic sediment has a clotted peloidal texture suggestive of micritic cement. THIN SECTION SUMMARY (%):											matrix. One piece of coral is encrusted with coralline algae, that is itself encrusted by a	95—	H	85—	-	95—
of unknown origin. In places, micritic sediment has a clotted peloidal texture suggestive of micritic cement. THIN SECTION SUMMARY (%): TEXTURE: Sand 80 Sitt 10 Clay 10 COMPOSITION: Bioclast 10 Coral 60 Micrite 10 Red algae 10 Shell debris 10	Н										foraminifer with open chambers fringed with acicular crystals, about 60 microns in length. Sediment surrounding the corals includes fine sand to silt-sized grains and micrite. Calcite	100—	Н	100-	-	100-
CC, 11 D TEXTURE: Sand 80 Silt 10 Clay 10 ED————————————————————————————————————											of unknown origin. In places, micritic sediment has a clotted peloidal texture suggestive of	105—	H	105—	-	105—
TEXTURE: Sand 80 Sait 10 Clay 10 CompOsition: Bioclast 10 Coral 60 Micrite 10 Red algae 10 Shell debris 10	11		11								THIN SECTION SUMMARY (%):	110-	-	110—	-	110-
TEXTURE: Sand 80 Silt 10 Clay 10 CAMPOSITION: BIOCHARI 10 Coral 60 Micrite 10 Red algae 10 Shell debris 10 Shell debris 10														-		
Sand 80											TEXTURE:	-	6	-		-
Clay 10 125												ACTION .		4.00		
Bioclast 10 ISO											Sand 80	120-	100	150-		150—
Bioclast 10 Coral 60 Micrite 10 Red algae 10 Shell debris 10											Silt 10 Clay 10			-		-
Red algae 10 Shell debris 10											Sit 10 Clay 10 COMPOSITION:	25 <u>-</u>		- 125—		125—
											Silt 10 Clay 10 COMPOSITION: Bioclast 10 Coral 60 60	125—		125—		125—
											Silt 10 Clay 10 COMPOSITION: Bioclast 10 Coral 60 Micrite 10 Red algae 10 10 Red algae	125—		125—		125—

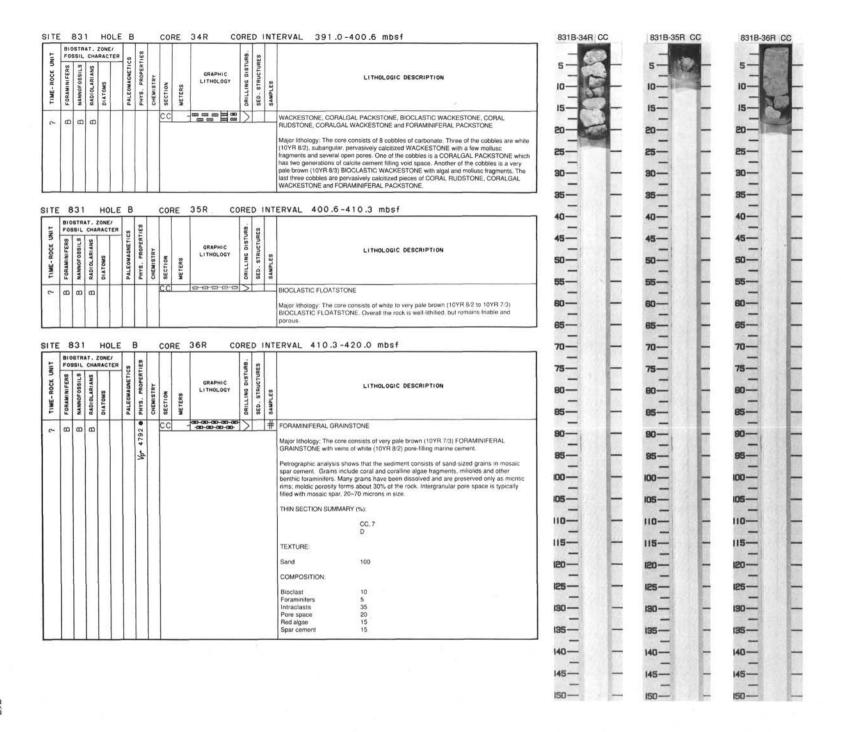


SITE 831

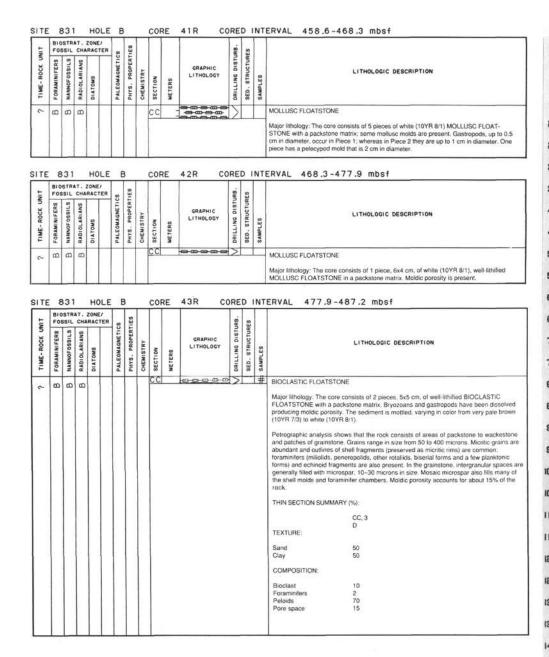
				ZONE/		3					URB.	831		
IIME-ROCK O	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALE OMANNETICS		SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
	m	6	8		T		T	cc			3			INTRACLAST MOLLUSC FLOATSTONE
														Major lithology: The core consists of several pieces of light gray (10YR 7/2) INTRACLAST MOLLUSC FLOATSTONE with moldic porosity and 2 pieces of very pale brown (10YR 8/4) massive <i>Acropora</i> .
Έ	8		_	HOLI	L E	В		COI	RE	21R C0	RE	DI	NT	ERVAL 265.5-275.2 mbsf
	FOS	SIL	CHA	RACTER	00	7159					DISTURB.	RES		
	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	Dat EAMAGNETICS	PHYS PROPERTIES	Voletin e Yex	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
•	В	В	В			T	T	CC			>			INTRACLAST CORAL MOLLUSC RUDSTONE
														Major lithology: The core contains an INTRACLAST CCRAL MOLLUSC RUDSTONE of four pieces: (1) a piece of white (10YR 8/2) Portes (3 x 5 cm head coral that is all or nearly all aragonite with largely untilled pore space, (2) a piece of white (10YR 8/2) Indacmd clam shell (3 x 5 cm) that is very well preserved, and which comes from a clam estimated to be at least 25 cm in length, (3, 4) pieces of white (10YR 8/2) coral mollusc floatstone with moldic porceity produced by dissolution of mollusc shells.
ΓE	8	331		HOL	E	В		со	RE	22R C0	RE	D I	NT	ERVAL 275.2-284.8 mbsf
				ZONE/				T			89.	00		
IME-ROCK ON	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	100	DESCRIPTION OF THE PERSON OF T		SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
	В	В	8			1		CC			>			CORAL RUDSTONE
						V. ARER								Major lithology: The core consists of four pieces of CORAL RUDSTONE. Pieces 1 and 2 are white (2.5 Y 8/2) head coral with round corallities in which porosity is nearly occluded by cement. Piece 3 is a Porties head coral that retains much of its primary porosity. Piece 4 is a third species of head coral. Most of the coral material is still aragonitic.

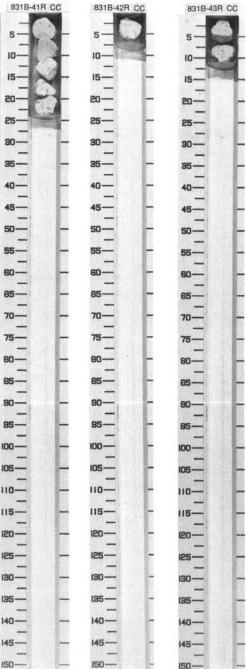


TINO				ONE/	on	TIES					RB.	83		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETIC	PHYS. PROPERT	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
0	8	8	8					CC			3			CORAL RUDSTONE, MOLLUSC FLOATSTONE and SPICULE GRAINSTONE Major lithology: The core contained 7 pieces. There are 3 pieces of coral comprising a CORAL RUDSTONE: including 2 cobbles of well-preserved, while (10YR 8/2) Porities head coral. The other cobbles include 2 pieces of light gray (2.5Y 7/2) MOLLUSC FLOATSTONE with a packstone matrix and 2 pieces of SPICULE GRAINSTONE, composed of coarse sand-sized calcareous spicules.

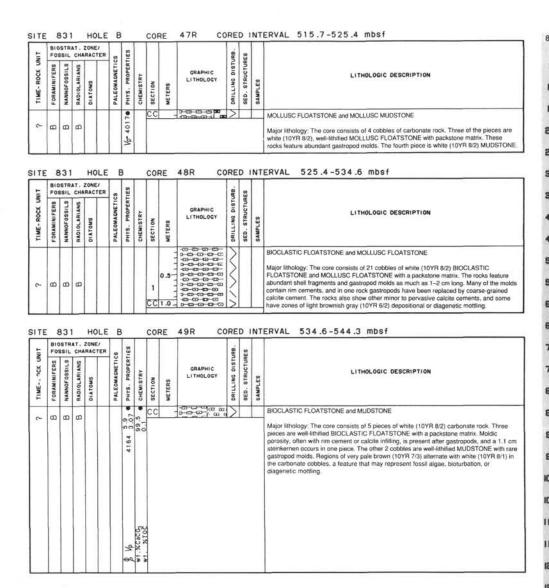


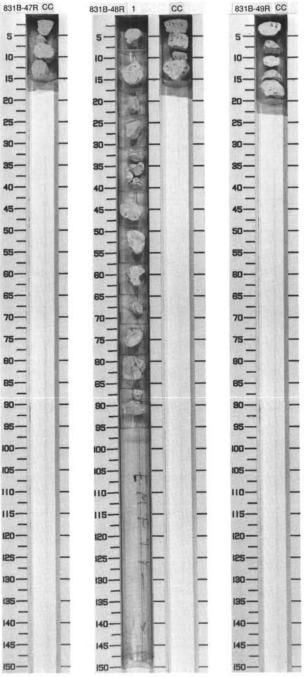
831B-27R CC

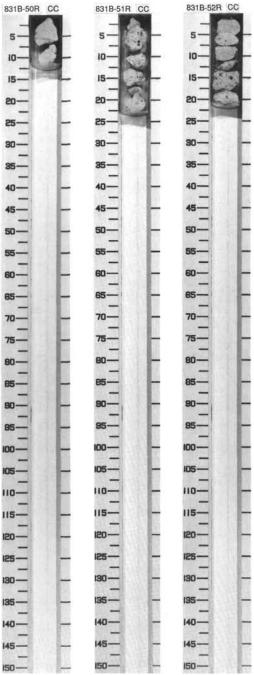

		T. ZO	NE/		9		1				100			831B-25R C		831B-26F	. 00
FORAMINIFERS	-T	SIANS	SMOTATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION	5-10-	F	5—	
В	8	m	+				cc		m m 00 G 0	Z	#	F	MOLLUSC PACKSTONE, CORAL RUDSTONE, and ALGAL RUDSTONE	15-		15-	
												1	Major lithology: The core consists of 12 cobbles, 2–4 cm in size. Seven are MOLLUSC PACKSTONE with moldic perosity. Four are CORAL RUDSTONE, including Porties head coral and massive Acropora. One is an ALGAL RUDSTONE, composed of grain-supported plates of Halimeda, 0.5 cm in size.	20— 25—		20—	
													Petrographic analysis indicates that the sediment consists of poorly sorted bioclasts, up to 4 mm in size, in a fine-grained matrix. Halimedia is abundant, other grains include fragments of coral, molluscs, bryozoans and echinoids, as well as smaller benthic foraminiters and rotalids (Operculina and Cyclopeus). Yuggy and moldic porosity forms about 15% of the rock.	30—		30— - 35—	
												1	THIN SECTION SUMMARY (%):			_	
						.						1	OC,2	40—		40—	
												1	TEXTURE:	45-	-	45-	
													Sand 80 Silt 15	50—		50-	ы
													Clay 5	1		_	383
													COMPOSITION:	55—		55-	
													Bioclast 25 Bryozoa 5	60—	-	60-	Ekr.
												- 1	Coral 15 Foraminiters 5	_			Ш
												- 1	Halimeda 15 Micrite 5	65—		65—	
													Pore space 15 Shell debris 10	70—		70-	
														75—		75_	
															10	_	W
	2507						sten	285	.comes means	100	151	ola s	minoral Vergons are experient in statems	80—		80—	9.1
_	331	AT. Z	HOLE		В	-	COF	₹E	26R COF	RE	DIN	ITE	ERVAL 313.7-323.4 mbsf	85—	-	85-	
	SSIL	CHAR	ACTER	PALEOMAGNETICS	PROPERTIES	STRY	NC	es	GRAPHIC LITHOLOGY	NG DISTURB.	SED. STRUCTURES	ES	LITHOLOGIC DESCRIPTION	90—	E	90—	
ORAM	IANNO	ADIOL	DIATOMS	ALEO	PHYS.	CHEMISTRY	SECTION	WETERS		DRILLING	ED. 8	SAMPLES		-	ю.	-	
8		\vdash	-	a.	a.	-	CC	2	00000	27	1.50	S	MOLLUSC FLOATSTONE	100—	10	100-	M
	80	٦									5 AI		Major lithology: The core consists of four pieces of lithilfied white (10YR 8/2) MOLLUSC FLOATSTONE with a wackestone matrix. Moldic porosity is present.	105—	L	105—	
	331	F 2	HOLE	F			COF	0F	27R COF	2F	D IN	ITI	ERVAL 323.4-333.0 mbsf	_		-011	
	STRA	AT. Z	ONE/	_				-		4		T	22017 -00010 111001	115—		115—	
810	SSIL		ACTER	1108	PROPERTIES					DISTURB	URES			120-	-	120-	
810 FO	09	RIAN	w	AGNE	PROPE	TRY	,				TRUCT	99	LITHOLOGIC DESCRIPTION	-			
810 F0	871680	4 1	2	PALEOMAGNET	PHYS. F	CHEMISTRY	SECTION	WETERS		DRILLING	SED. STRUCTURES	SAMPLES		125—		125—	
810 F0	MNOFOSSILS	IDIOLA	<	1 6	á	Ó				2	8 8		MOULUICO WACKECTONIC and CODAL DUDCTONIC	130-	-	130-	
810	NANNOFOSSILS	RADIOLARIANS	DIATOMS	-	9		nal		7 000 000 000 0	2	1 1		MOLLUSC WACKESTONE and CORAL RUDSTONE			-	1111
FORAMINIFERS			DIA		515		CC		10000101	_			Major lithelessy. The core consists of 4 celthics of the board. The celthic celthing	135		125-	
810 F0			DIA		Vp- 4515 @		cc		100 12 100 11 001	_			Major lithology: The core consists of 4 cobbles of carbonate. Three of the cobbles are white (10YR 8/2), partially lithified MOLLUSC WACKESTONE that has minor moldic porosity and minor amounts of carbonate cement infilling small pores. The remaining cobble is white (10YR 8/2) subrounded to rounded, well-preserved CORAL RUDSTONE:	140—		135— — 140—	

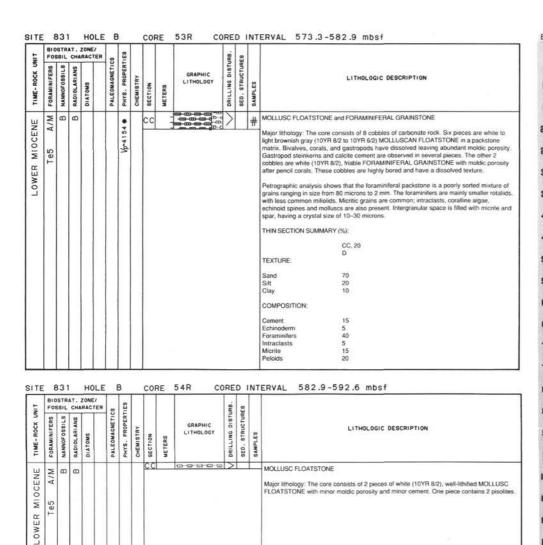


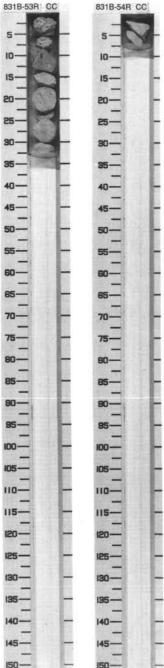
SITE 831 HOLE B	CORE 31R CORED INTERVAL 362.0-371.6 mbsf	831B-31P CC	831B-32R CC	831B-33R CC
	GRAPHIC LITHOLOGY STAMPLES SED. STAMPLES SED	5	5-10-	5-
	CC MODITION MINISTRAL MOLLUSC FLOATSTONE and PELECYPOD RUDSTONE	15—	15—	15—
~ 8 8 8	Major lithology: The core consists of 2 cobbles of MOLLUSC FLOATSTONE and 2 cobbles of PELECYPOD RUDSTONE. The rudstone cobbles are fragments of a thick-shelled pelecypod, most likely a tridacnid. The floatstone is lithified, but remains friable. Cobbles	20— -	20	20—
	are white to very pale brown (N9 to 10YR 8/3). Petrographic analysis shows that the sediment consists of abundant sand-sized (2 mm–60 microns) grains in mosaic cement. Micritic grains and molds of grains represented only by micrite rims are abundant; coral, echinoid, and molluse tragments are also present. Inter-	ao	30	30—
	and intragranular spaces are typically filled with spars are asso present. Inter- and intragranular spaces are typically filled with sparsy mosaic crystals 20-30 microns in size. Moldic and vuggy porosity accounts for about 15% of the rock; open pores are often fringed with bladed spar cement.	35—	35—	35
	SMEAR SLIDE SUMMARY (%):		10	
	CC, 8 D TEXTURE:	45—	45—	45—
	Sand 50	50—	50—	50-
	Silt 50	55—	55—	55
	COMPOSITION: Bioclast 15 Coral 10	60	60-	60-
	Foraminiters 1 Micrite 30	65—	65—	65
	Peloids 10 Pore space 20 Shell debris 10	70	70	70—
		75—	75— —	75—
BITE 831 HOLE B	CORE 32R CORED INTERVAL 371.6-381.3 mbsf	80	80—	80-
FOSSIL CHARACTER	GRAPHIC 10 53 LITHOLOGIC DESCRIPTION	85—	85—	85—
TIME-ROCK UNIT	GRAPHIC LITHOLOGY SUBJECT OF STREET S	90—	90—	90-
FORAMINI NANNOFOR RADIOLAS DIATOMS		95—	95—	95—
~ 8 8 8	Major Inhology: The core consists of 6 cobbles of BIOCLASTIC FLOATSTONE which are white (N9), subrounded to subangular, well-lithified and have abundant cements. Minor	100-		100-
	amounts of skeletal material occur in the floatstone including molluscan debris, algal fragments, and pellets.	105—	105—	105-
SITE 831 HOLE B	CORE 33R CORED INTERVAL 381.3-391.0 mbsf	110-	110 <u> </u>	110-
BIOSTRAT, ZONE/		115—	115—	115—
NIFERS OSSILS TREAS	GRAPHIC LITHOLOGIC DESCRIPTION	120-		120-
	LITHOLOGIC DESCRIPTION		- - -	125—
	CC BE BE SEED > COOM REPORTONE ALCAH MEDOTONE ALCOHARAN FLOATOTONE	130—	130—	130-
~ 888	Major lithology: The core consists of 1 cobble each of CORAL RUDSTONE, ALGAL MUDSTONE, and CORALGAL FLOATSTONE. The CORAL RUDSTONE ALGAL MUDSTONE, and CORALGAL FLOATSTONE. The CORAL RUDSTONE is pervasively calcitized and much of the internal skeletal structures of the coral have been obliterated.	135—	135—	135—
	The ALGAL MUDSTONE has minor amounts of modic porosity, a well-rounded open pore, and a void-filling rind of carbonate cement. Moreover, the majority of this cobble is very pale brown (10YR 7/4) and has wavy parallel laminations across its upper surface. Lastly,	140 — -	140—	140—
	the CORALGAL FLOATSTONE is white to very pale brown, pervasively calcitized, and exhibits minor moldic porosity.	145—	145—	145—

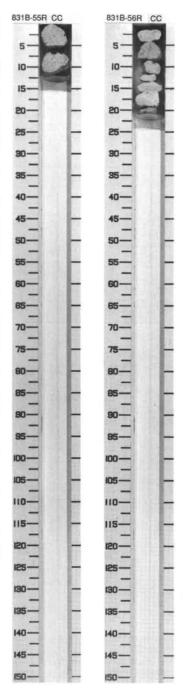


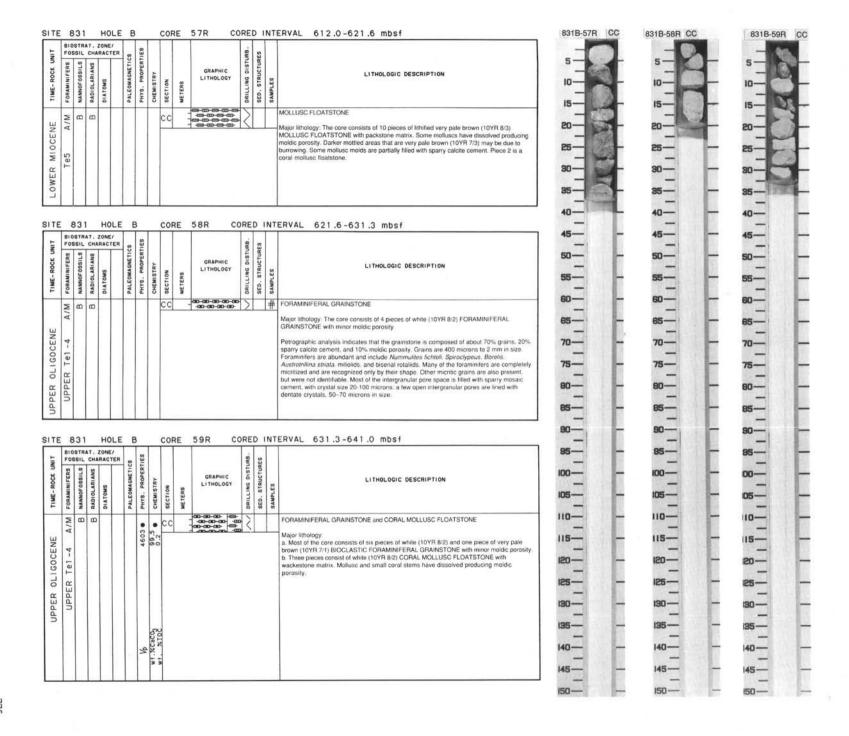

SITE 831 HOLE B CORE 37R CORED IN	TERVAL 420.0-429.6 mbsf	831B-37R , CC	831B-38R CC	831B-39R CC	004P 40P 00
TIME-ROCK UNITERS NAMNOGOSSILS NAMNOGOSILS NAMNOGOSI	LITHOLOGIC DESCRIPTION	5-10-	5-10-15-15	5-10-15-15-1	831B-40R CC 5 — 10 — 15
- a a a a	MOLLUSC FLOATSTONE Major lithology: The core consists of 1 well-rounded piece of very pale brown (10YR 8/3) MOLLUSC FLOATSTONE with a packstone matrix.	=	20-	50	20-
SITE 831 HOLE B CORE 38R CORED IN	FERVAL 429.6-439.3 mbsf	25— —	25— —	25— —	25—
PALECOMANIFERS SECTION WETERS SECTION STRUCTURES SE	LITHOLOGIC DESCRIPTION	30— — 35— — 40— —	30— — — — — — — — — — — — — — — — — — —	30— — 35— — 40— —	30— 35— 40—
CC	MOLLUSC FLOATSTONE Major lithology: The core consists of 3 pieces of white [10YR 8/1] MOLLUSC FLOATSTONE with a packstone matrix; some moldic porosity is present.	45— — — 50— —	50—	45— 50— —	45— 50—
TITE 831 HOLE B CORE 39R CORED IN	TERVAL 439.3-448.9 mbsf	55—	55—	55—	55—
PALE OMALING DISTURBS SED. STRUCTURES SED. STR	LITHOLOGIC DESCRIPTION	60— — 65— — 70— —	60— — 65— — 70— —	60— — 65— — 70— —	60— - 65— - 70— -
	MOLLUSC FLOATSTONE Major lithology: The core consists of 7 pieces of white (10YR 8/1) MOLLUSC FLOATSTONE with a packstone matrix; some mollusc molds are present.	75— — — 80— —	75— — — 90— —	75— — — 80— —	75— — 80—
ITE 831 HOLE B CORE 40R CORED IN	TERVAL 448.9-458.6 mbsf	85— —	85—	85— —	85—
PALECMACHIFE S PALECMACHETES PALEC	LITHOLOGIC DESCRIPTION	90— — 95— — 100— —	90— — 95— — 100— —	95— — 95— —	90— 95— 100—
C B B B B C C C C C C C C C C C C C C C	MOLLUSC FLOATSTONE Major lithology: The core consists of 8 pieces of white (10YR 8/1) MOLLUSC FLOATSTONE with a packstone matrix; some mollusc molds are present.	110— —	115—	110— —	105— 110— 115—
			150—	120— —	120—
		125— —	125—	125— —	125—
0.01% 1.000		135—	195— — — — — — — — — — — — — — — — — — —	_	_
00 ¥ ¥ 20 ½ 1		135— — 140— — 145— —	140 — —	135— — 140— — 145— — 150— —	140—
		140— —	145—	145—	140—
		150—	150—	145— — — 150— —	150—

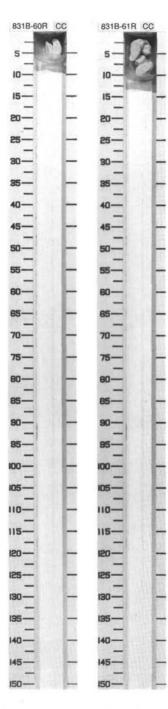


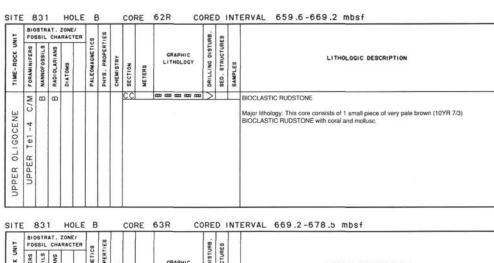

1	CHAR	RACTER		00							dis		831B-46F
FORAMINIFERS NANNOFOSSILS	SNA	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB		LITHOLOGIC DESCRIPTION	5-10-	5-0-	5-
8 8	8			9	CC		co - co - co - co	P >		MOLLUSC FLOATSTONE and BIOCLASTIC GRAINSTONE	15—	15—	15—
				Vp=4882						Major lithology: The core consists of 5 cobbles of white (10YR 8/2) carbonate rocks. Three of the cobbles are well-lithified MOLLUSC FLOATSTONE with packstone matrix and moldic porosity. Two of the cobbles are BIOCLASTIC GRAINSTONE with friable white micritic cement infilling small vigs.	20— —	20— —	20—
										Petrographic analysis show that the matrix of the mollusc floatstone is packstone consisting of grains 50–800 microns in size. Mccritic grains are abundant and outlines of grains preserved only as micritic rims are common. Benthic foraminifers, coralline algae, and molluscs are also present. Intergranular space is filled with microspar (10–30 microns)	ao — —	30-	30—
										and micrite. Moldic porosity after molluscs accounts for about 10% of the rock.	35—	35—	35—
										THIN SECTION SUMMARY (%):	40	40	40-
				ľ						CC.3 D	45	45— -	45—
										Sand 60	50-	50—	50—
1										Clay 40 COMPOSITION			55—
										Bioclast 10			
	1									Foraminiters 2 Micrite 10 Peloids 50	60-	60—	60—
										Pore space 10 Red algae 3	65—	65—	65—
										Shell debris 10	70	70—	70—
\perp	ш	- 1											
				+	_				_		75—	75— -	75—
	_	HOLE	В	_	COI	RE	45R C	ORE	11 0	TERVAL 496.4-506.0 mbsf	75— — 	75— — 80— —	75—
IOSTRA OSSIL	T. Z	ONE/		83128	COI	RE	45R C	T .		TERVAL 496.4-506.0 mbsf	-	75— — 80— —	80-
IOSTRA OSSIL	CHAR	ONE/	103	PROPERTIES			45R C	DISTURB.		LITHOLOGIC DESCRIPTION	85— —	75— — — — — — — — — — — — — — — — — — —	80—
ARTROI JUESO JOEOSSI P. S.	OLARIANS DE LA	ONE/	IAGNETICS	HYS. PROPERTIES			GRAPHIC	DISTURB.		LITHOLOGIC DESCRIPTION	-	75— — — — — — — — — — — — — — — — — — —	80-
NANNOFOSSILS TIESO TIESO	RADIOLARIANS Z. T.	ONE/	IAGNETICS	CHEMISTRY		METERS	GRAPHIC	DRILLING DISTURB.	STRUCTURES	LITHOLOGIC DESCRIPTION	85— —	75— — — — — — — — — — — — — — — — — — —	80—
NANNOFOSSILS TIESO TIESO	RADIOLARIANS Z. T.	ONE/	IAGNETICS	PHYS. PROPERTIES	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB.		LITHOLOGIC DESCRIPTION MOLLUSC FLOATSTONE Major lithology: The core consists of 4 cobbles of well-lithified, white (10YR 8/2) MOLLUSC	85— — 90— —	-	80— 85— 80—
NANNOFOSSILS NANNOFOSSILS	RADIOLARIANS Z. T.	ONE/	IAGNETICS	PHYS. PROPERTIES CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB.		LITHOLOGIC DESCRIPTION MOLLUSC FLOATSTONE	85— — 90— — 85— —	95—	80— 85— 80— 80—
NANNOFOSSILS TIESO	B RADIOLARIANS Z . T	ONE/ PACTER	PALEOMAGNETICS	PHYS.	SECTION	METERS	GRAPHIC LITHOLOGY □	DRILLING DISTURB.	SED. STRUCTURES	LITHOLOGIC DESCRIPTION MOLLUSC FLOATSTONE Major ilthology: The core consists of 4 cobbles of well-lithified, white (10YR 8/2) MOLLUSC FLOATSTONE with packstone matrix. The cobbles have numerous molds of gastropods	85— — 95— —	85— — — 100— —	80— 85— 80— 85— 100—
NANNOFOSSILS	RADIOLARIANS	NOOLY IN THE CONE	CD PALEONAGNETICS	PHYS.	SECTION	METERS	GRAPHIC LITHOLOGY □ □ □ □ □ □	AND DRILLING DISTURB.	SED. STRUCTURES	LITHOLOGIC DESCRIPTION MOLLUSC FLOATSTONE Major ilthology: The core consists of 4 cobbles of well-lithified, white (10YR 8/2) MOLLUSC FLOATSTONE with packstone matrix. The cobbles have numerous molds of gastropods and pelecypods, some up to 2 cm long.	85— — — — — — — — — — — — — — — — — — —	95— — — — — — — — — — — — — — — — — — —	80— 85— 80— 85— 85— 100—
OSTRA OSSIL S S S S S S S S S S S S S S S S S S S	RADIOLARIANS Z. T.	NOOLY IN THE CONE	CD PALEONAGNETICS	PERTIES PHYS.	O SECTION	METERS	GRAPHIC LITHOLOGY □ □ □ □ □ □	AND DRILLING DISTURB.	SED. STRUCTURES	LITHOLOGIC DESCRIPTION MOLLUSC FLOATSTONE Major iithology: The core consists of 4 cobbles of well-lithified, white (10YR 8/2) MOLLUSC FLOATSTONE with packstone matrix. The cobbles have numerous molds of gastropods and pelecypods, some up to 2 cm long. ITERVAL 506.0-515.7 mbsf	95— — — — — — — — — — — — — — — — — — —	95— — — — — — — — — — — — — — — — — — —	80— 85— 80— 85— 100— 1005—
OSTRA OSSIL S S S S S S S S S S S S S S S S S S S	RADIOLARIANS Z. T.	HOLE	IAGNETICS CD PALEOMAGNETICS	PROPERTIES PHYS. CHEMIS	Nortoge C	A METERS	GRAPHIC LITHOLOGY	DISTURB. THE DISTURB.	uctures SED. STRUCTURES	LITHOLOGIC DESCRIPTION MOLLUSC FLOATSTONE Major lithology: The core consists of 4 cobbles of well-lithified, white (10YR 8/2) MOLLUSC FLOATSTONE with packstone matrix. The cobbles have numerous molds of gastropods and pelecypods, some up to 2 cm long. ITERVAL 506.0 – 515.7 mbsf	85— — — — — — — — — — — — — — — — — — —	95— — — — — — — — — — — — — — — — — — —	80— 85— 80— 85— 85— 100—
OSTRA OSSIL S S S S S S S S S S S S S S S S S S S	B RADIOLARIANS Z . T	NOOLY IN THE CONE	IAGNETICS CD PALEOMAGNETICS	PHYS.	SECTION O SECTION	METERS THE METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB.	uctures SED. STRUCTURES	LITHOLOGIC DESCRIPTION MOLLUSC FLOATSTONE Major ilthology: The core consists of 4 cobbles of well-lithified, white (10YR 8/2) MOLLUSC FLOATSTONE with packstone matrix. The cobbles have numerous molds of gastropods and pelecypods, some up to 2 cm long. ITERVAL 506.0-515.7 mbsf	95— — — — — — — — — — — — — — — — — — —	85— — — — — — — — — — — — — — — — — — —	80— 85— 80— 85— 100— 105— 115—
NAMNOFOSSILS NAMNOF	RADIOLARIANS TATE TO THE RADIOLARIANS TO THE STATE TO THE	HOLE	IAGNETICS CD PALEOMAGNETICS	PROPERTIES PHYS. CHEMIS	Nortoge C	METERS THE METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB.	uctures SED. STRUCTURES	LITHOLOGIC DESCRIPTION MOLLUSC FLOATSTONE Major lithology: The core consists of 4 cobbles of well-lithified, white (10YR 8/2) MOLLUSC FLOATSTONE with packstone matrix. The cobbles have numerous molds of gastropods and pelicypods, some up to 2 cm long. ITERVAL 506.0-515.7 mbsf LITHOLOGIC DESCRIPTION	90— — — — — — — — — — — — — — — — — — —	85— — — — — — — — — — — — — — — — — — —	80— 85— 80— 85— 100— 105— 110— 115—
NANNOFOSSILS TESSON NANNOFOSSI NA	RADIOLARIANS TATE TO THE RADIOLARIANS TO THE STATE TO THE	HOLE	IAGNETICS CD PALEOMAGNETICS	PROPERTIES PHYS. CHEMIS	SECTION O SECTION	METERS THE METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB.	uctures SED. STRUCTURES	LITHOLOGIC DESCRIPTION MOLLUSC FLOATSTONE Major lithology: The core consists of 4 cobbles of well-lithified, white (10YR 8/2) MOLLUSC FLOATSTONE with packstone matrix. The cobbles have numerous molds of gastropods and pelecypods, some up to 2 cm long. ITERVAL 506.0-515.7 mbsf LITHOLOGIC DESCRIPTION MOLLUSC FLOATSTONE Major lithology: The core consists of 3 cobbles of well-lithified, white (10YR 8/2) MOLLUSC FLOATSTONE with packstone matrix. Thin-shelled pelecypods have been dissolved	85— — — — — — — — — — — — — — — — — — —	95— — — — — — — — — — — — — — — — — — —	80— 85— 80— 85— 100— 105— 115— 120—
NANNOFOSSILS TESSON NANNOFOSSI NA	RADIOLARIANS TATE TO THE RADIOLARIANS TO THE STATE TO THE	HOLE	IAGNETICS CD PALEOMAGNETICS	PROPERTIES PHYS. CHEMIS	SECTION O SECTION	METERS THE METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB.	uctures SED. STRUCTURES	LITHOLOGIC DESCRIPTION MOLLUSC FLOATSTONE Major lithology: The core consists of 4 cobbles of well-lithified, white (10YR 8/2) MOLLUSC FLOATSTONE with packstone matrix. The cobbles have numerous molds of gastropods and pelecypods, some up to 2 cm long. ITERVAL 506.0-515.7 mbsf LITHOLOGIC DESCRIPTION MOLLUSC FLOATSTONE Major lithology: The core consists of 3 cobbles of well-lithified, white (10YR 8/2) MOLLUSC	85— — — — — — — — — — — — — — — — — — —	95— — — — — — — — — — — — — — — — — — —	80— 85— 80— 85— 100— 105— 115— 120— 125— 135—
PORAMINIPERS IN THE STATE OF TH	RADIOLARIANS TATE TO THE RADIOLARIANS TO THE STATE TO THE	HOLE	IAGNETICS CD PALEOMAGNETICS	PROPERTIES PHYS. CHEMIS	SECTION O SECTION	METERS THE METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB.	uctures SED. STRUCTURES	LITHOLOGIC DESCRIPTION MOLLUSC FLOATSTONE Major lithology: The core consists of 4 cobbles of well-lithified, white (10YR 8/2) MOLLUSC FLOATSTONE with packstone matrix. The cobbles have numerous molds of gastropods and pelecypods, some up to 2 cm long. ITERVAL 506.0-515.7 mbsf LITHOLOGIC DESCRIPTION MOLLUSC FLOATSTONE Major lithology: The core consists of 3 cobbles of well-lithified, white (10YR 8/2) MOLLUSC FLOATSTONE with packstone matrix. Thin-shelled pelecypods have been dissolved	85— — — — — — — — — — — — — — — — — — —	85— — — — — — — — — — — — — — — — — — —	80— 85— 80— 85— 100— 105— 115— 120— 125—
FORAMINIFERS 118504 WANNOFOSSILS 118504	RADIOLARIANS TATE TO THE RADIOLARIANS TO THE STATE TO THE	HOLE	IAGNETICS CD PALEOMAGNETICS	PROPERTIES PHYS. CHEMIS	SECTION O SECTION	METERS THE METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB.	uctures SED. STRUCTURES	LITHOLOGIC DESCRIPTION MOLLUSC FLOATSTONE Major lithology: The core consists of 4 cobbles of well-lithified, white (10YR 8/2) MOLLUSC FLOATSTONE with packstone matrix. The cobbles have numerous molds of gastropods and pelecypods, some up to 2 cm long. ITERVAL 506.0-515.7 mbsf LITHOLOGIC DESCRIPTION MOLLUSC FLOATSTONE Major lithology: The core consists of 3 cobbles of well-lithified, white (10YR 8/2) MOLLUSC FLOATSTONE with packstone matrix. Thin-shelled pelecypods have been dissolved	85— — — — — — — — — — — — — — — — — — —	95— — — — — — — — — — — — — — — — — — —	90— 95— 95— 95— 100— 105— 115— 120— 125— 135—

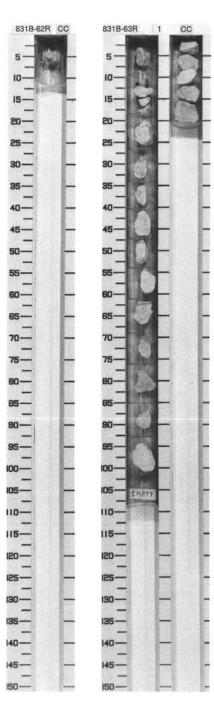



				CONE/	OB.	183					88	S		
	FORAMINIFERS	NAMNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
•	В	В	8	\top		Г		CC	_		\geq		#	WACKESTONE
														Major lithology: The core consists of 2 pieces of white (10YR 8/2), well-lithflied WACKESTONE with a few gastropod molds and fragments 0.1–1.0 cm long.
														Petrographic analysis indicates that the fine-grained dense carbonate consists of micritic grains, 40–80 microns in size, in a mosaic of microspar with a crystal size of 10–20 microns. Sparry fragments and pieces of molluscs and echinoids are also present.
														THIN SECTION SUMMARY (%):
														CC.3
														TEXTURE:
					П		Н							Sand 40 Silt 40
														Clay 20
			П											COMPOSITION:
														Bioclast 10
														Cement 20 Peloids 70
	FORAMINIFERS	-	-	DIATOMS	PALEOMAGNETICS	PHYS.	CHEMISTRY	SECTION	METERS	⊒-000- anc anc	DRILLING	SED. STRUCTURES	SAMPLES	
	B	В	В				1	CC	_1		2		-	MOLLUSC FLOATSTONE and MUDSTONE
ı	- 1		- 1.											Major lithology: The core consists of 6 pieces of white (10YR 8/2), well-lithified carbonate rock. Three pieces are MOLLUSC FLOATSTONE with abundant moldic proresity and highly dissolved and altered allochems. The other three cobbles are MUDSTONE with minor moldic porosity.
													- 1	
E	: 8		_	HOLE		3		COF	RE	52R C	RE	D	NT	ERVAL 563.6-573.3 mbsf
	BIC	STRA	т. 2	HOLE CONE/ RACTER	T			COF	RE	52R C			NT	ERVAL 563.6-573.3 mbsf
E	FO	STRA	CHA	ONE!	T			COF	RE				NT	
	FO	STRA	CHA	ONE/	T	PROPERTIES				52R CC	DISTURB.			ERVAL 563.6-573.3 mbsf
E	FO	STRA	CHA	ONE/	T	PROPERTIES				GRAPHIC	DISTURB.	STRUCTURES	SAMPLES	
E	BIC	STRA	т. 2	ONE!	T		CHEMISTRY	COP SECTION	METERS 33	GRAPHIC				

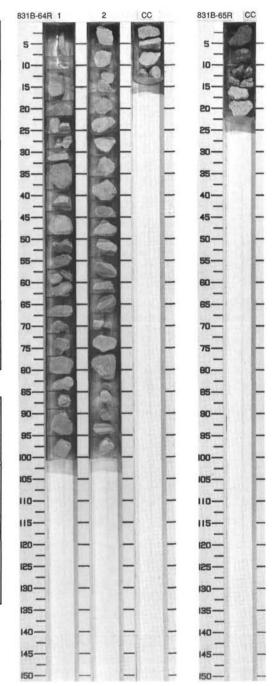


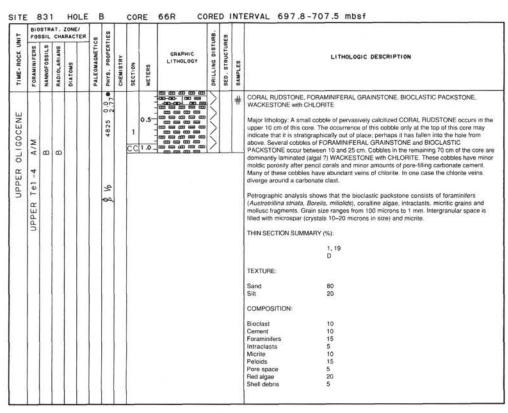

-	FOS	SIL	СНА	RACT		SO	TIES					DISTURB.	RES		
	FORAMINIFERS	NAMNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETICS	PHYS, PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DIST	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
	Te5 A/M	В	8						ccl		@ @ @ - @	>			BIOCLASTIC FLOATSTONE Major lithology: The core consists of 3 pieces of white (10YR 8/2), well-lithified BIOCLASTIC FLOATSTONE with numerous molds of thin-shelled molluscs, some of which are filled with cement. Other molds identified include corals and gastropods.
T	BIO		AT.	HO ZONE	,		8 83		COF	RE	56R C	1.	1	INT	ERVAL 602.3-612.0 mbsf
	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	WETERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
	A/M	B	В				Vp-4224 ●		cc		ののののの の			#	FORAMINIFERAL GRAINSTONE and MOLLUSC FORAMINIFERAL PACKSTONE Major lithology: The core consists of 7 pieces of white (10YR 8/2), well-lithifled carbonate rock. Five pieces are FORAMINIFERAL GRAINSTONES to packstones, with millioids especially abundant. Thin-shelled molluscs and corals have dissolved producing minor moldic porosity. Two pieces are MOLLUSC FORAMINIFERAL PACKSTONE with minor moldic porosity. Petrographic analysis indicates that the grainstone is composed mainly of foraminifers an micritic grains, 400 to 600 microns in size. Foraminifiers include Austrofrillina striata, Flosculinella sontes, milliolids, and biserial and smaller rotalids. Many of the micritic grains are recrystallized fragments of coralline algae. Intergranular spaces are filled with spanry mosaic cement, with a crystal size of 50–150 microns in size, and peloidal micritic cement THIN SECTION SUMMARY (%): CC. 14 D TEXTURE: Sand 90 Silt 10 COMPOSITION: Bioclast 10 Cement 20 Foraminifers 40 Pore space 15

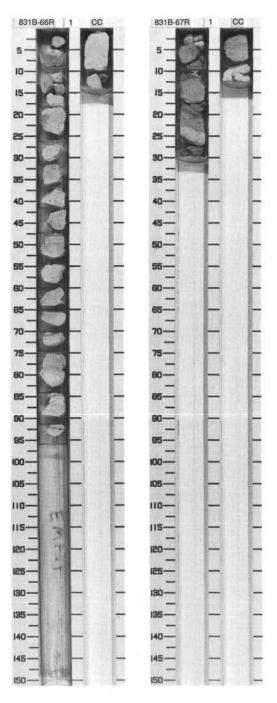



- N			CHA		83	831					JRB.	S		
IME-ROCK O	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETIC	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
UPPER OLIGOCENE	UPPER Tel -4 C/M	8	8					cc			>			BIOCLASTIC FORAMINIFERAL GRAINSTONE Major lithology: This core consists of two small pieces of white (10YR 8/1) BIOCLASTIC FORAMINIFERAL GRAINSTONE.

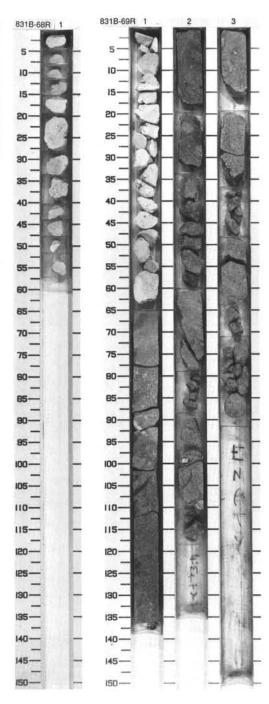
UNIT				RACT	95	831					JRB.	ES		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
	Σ	m	В					CC		00-00-00-00-00	\geq		#	BIOCLASTIC GRAINSTONE
UPPER OLIGOCENE	UPPER Tel -4 C													Major lithology: This core consists of 5 small pieces of white (10YR 8/2) BIOCLASTIC GRAINSTONE with rare molds of molluse shells. Petrographic analysis shows that the grainstone consists of abundant foraminifers and micritic grains, many of which are fragments of recrystallized coralline algae. Foraminifer include abundant milioids and less common rotatilids. Intergranular spaces are generally filled with sparry mosaic cement, with a crystal size of 20—50 microns; some open pores inde with dentate crystals, 30–50 microns long. Marry grains, including numerous mollustragments, are prevented only as micritic rims that have not been infilled with cement; this moldic prompty accounts for about 20% of the rock. THIN SECTION SUMMARY (%): CC; 8 D TEXTURE:
					1									Sand 100
														COMPOSITION:
														Bioclast 10 Foraminifers 40 Pore space 20 Red aloae 30

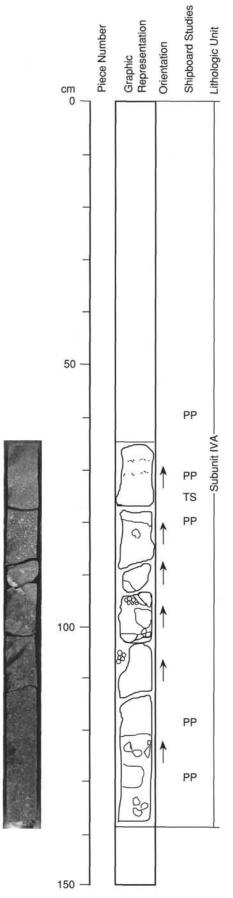



LINO				RACT	90	LES					JRB.	ES						
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION				
OLIGOCENE	e1 -4 C/M	В	В			• 5765	6.99.7	1 CC	0.5		3		#	PACKSTONE and FLOATSTONE with a packstone matrix. Some of the pieces show pale brown (10YR 7/3) mottling; distinct burrows are present in one sample. Occasional pelecypod molds occur in some pieces. Pieces in the core catcher are very dense, with only a hint of granular structure. Petrographic analysis shows a patchy distribution of foraminiferal grainstone and				
UPPER OLIC	UPPER T													packstone within the sample. Foraminiters include Austrotrilina (ancestral form), miloilide and smaller benthic rotalids (both uniserial and trochospiral forms); some of the foraminifers are completely infilled with micrite. Fecal pellets and fragments of branching coralline algae, molluscs and echlorid spines are also present. Grains range in size from about 60 to 800 microns. Intergranular space is filled with sparry mosaic cement (50–150 microns) and micrite. THIN SECTION SUMMARY (%):				
						% %	wt. %caco,							1, 40 1, 43 D D TEXTURE: Sand 70 80 Silt 10 20				
														Clay 20 COMPOSITION:				
														Bioclast 25 10 Cement 15 20 Foraminifers 40 40 Pellets 10 Pore space 2 Red algae 10 Shell debris 5 20				


LINS				RACTI	60	S III					AB.	60					
TIME-ROCK L	FORAMINIFERS	NANNOFOBSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION			
UPPER OLIGOCENE	C/M UPPER Te1 -4	8	В				<u>c</u>	1).5		~~~		#	CORAL RUDSTONE and ALGAL PACKSTONE Major lithology: Two small cobbles of well-preserved CORAL RUDSTONE occur in the upps 15 cm of this core. The occurrence of this facies only at the top of this core may indicate that these cobbles are stratigraphically out of place; perhaps they have fallen into the hot from above. The majority of the remaining 23 carbonate cobbles are dense, light gray (10Y 72) laminated ALGAL PACKSTONE with marine cerement and occasional foraminaters (Nummutities?). Most of the primary poorsity has been occluded by marine cerement. Petrographic analysis shows that at least some of the rock is algal packstone, consisting of about 40% coralline algae, including both encrusting and branching forms. Foraminiters (mainly totalists), echinoids, molluscs, and micritic grains are also present; some grains a preserved only as micritic rims infilled with microspar (10–20 microns). Intergranular space is filled with microspar (10–20 microns) and micrite. Moldic and vuggy poresity accounts to the property of the rock. THIN SECTION SUMMARY (%): 1, 90 D			
														TEXTURE Sand 80 Silt 10 Clay 10 COMPOSITION: Bioclast 10 5 Foraminilers 10 Peloids 15 Pore space 15 Red digae 40 Shell debris 5			

5				RACT	99	168					JRB.	83		
IIME-ROCK OF	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
FER OLIGOCENE	R Tel -4 A/M	8	8			4622 57.7	1.8	cc	į	20-000 m (silen-o	>			SILTY CLAY, FORAMINIFERAL GRAINSTONE, WACKESTONE, INTRACLAST FLOATSTONE Major lithology: The upper 10 cm of this core consists of a reddish brown (2.5YR 5/4) SILC CLAY, which clearly is a soil horizon (sensu stricto Terra Rosa). Beneath the SILTY CLA' layer is a cobble of light brown (7.5YR 6/4) FORAMINIFERAL GRAINSTONE. The two remaining carbonate cobbles are a dense, laminated (a)aja "y WACKESTONE and an INTRACLAST FLOATSTONE. The latter has abundant marine and secondary carbonate cement."
20	UPPE					\$ №	-							


UNIT				RACTE	 99	0					RB.	ES		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	₹ I :	PHIS. PHOPENIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
ENE	A7M	8	В		100	2.46	. 18 . 18	1	-		3			CORAL RUDSTONE, FORAMINIFERAL WACKESTONE with CLAY, and BIOCLASTIC FLOATSTONE Major lithology: The upper 5 cm consists of 3 cobbles of partially calcitized CORAL.
UPPER OLIGOC	UPPER Tel -4				•	De oraco	2							RUDSTONE. The occurrence of this facies only at the top of this core may indicate that these cobbles are stratigraphically out of place; perhaps they have fallen into the hole for above. A well-lithlifled, pinkish white (7.5YR 8/2) streaked with light red (2.5YR 6/6), COR/RUDSTONE with interstitial muddentone occurs below the first three cobbles. The largest piece of carbonate occurs from 19 to 27 cm. This piece is a very pale brown (10YR 6/4) FORAMINIFERAL WACKESTONE with CLAY. The core catcher consists of 4 carbonate cobbles. Three of the cobbles are BIOCLASTIC FLOATSTONE in a wackestone matrix. Mollusc and coral fragments have dissolved producing moldic porosity. Carbonate cemerocurs along the edge of several pores.



SITE 831

TINO				RACT	s	831					88.	83		
TIME-ROCK UN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	PALEOMAGNETIC	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
COCENE	A/M	8	В					1	0.5		>			ALGAL RUDSTONE and BIOCLASTIC FLOATSTONE Major lithology: The core consists of 12 cobbles of carbonate. Four of the cobbles are classified as ALGAL RUDSTONE, some have chlorite veins throughout them. Two of the cobbles have such well-developed algal laminations they look like stromatolites. Seven of the carbonate cobbles are classified as BIOCLASTIC FLOATSTONE. Sick corals and this
שרום	Te1 -4													shelled molluscs have dissolved producing moldic porosity. Foraminiters sporadically occur in these cobbles.
5	UPPER													

UNIT		STR	CHA			99	8311					ARB.	83		
TIME-ROCK U	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		PALEOMAGNETICS	PHYS. PROPERTIES	CHEMISTRY	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURB	SED. STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
ш	A/M	8	8				● 20.7 3062		1	0.5	00 00 00 00 00 00 00 00 00 00 00 00 00	3		#	CORAL RUDSTONE, BIOCLASTIC PACKSTONE and FORAMINIFERAL GRAINSTONE Major lithology: This core consists of 20 pieces of well-lithified carbonate rock that range in color from white (10YR 8/2) to very pale brown (10YR 7/3). Four of the pieces are, or contain, CORAL RUDSTONE, including 1) one piece of Porties with little to no cement. 2) another coral that is densely cemented, and 3) a coral that is coated with multiple layers of cement. Other pieces in the core are BIOCLASTIC PACKSTONE and FORAMINIFERAL GRAINSTONE; the packstone has borings, 0.5 to 2 mm in diameter.
UPPER OLIGOCENE	UPPER Te1 -4						47 3965 0 14.0 4408		2		IM				Petrographic analysis shows that the grainstone consists of well-sorted grains 0.5 to 1 mm in size. The grains are mainly millioids (including Austrotrillina howchini) and rotalial foraminifiers and fragments of coralline algae, with minor mollusc and echinical fragments. Many of the foraminifers are micritized and the molluscs are preserved only as micritic riminified with spar: Intergranular spaces are filled with sparry mosaic cement, with crystal size ranging from 10–50 microns. THIN SECTION SUMMARY (%): 1, 24 D
							• 21.		3	0-03/01/0 3 0/4/00 01					TEXTURE: Sand 100 COMPOSITION:
					1		8 %								Bioclast 10 Foraministers 40 Pore space 5 Red algae 30 Spar cement 15

134-831B-69R-1

UNIT IV: ANDESITIC BRECCIA

SUBUNIT IVA: Variegated andesitic breccia with some reworking

Pieces 1A-1F

CONTACTS: None visible.

PHENOCRYSTS: For clasts only.

Plagioclase - 15-20%, 1-5 mm, euhedral and subhedral. No orientation. 10-40% replacement.

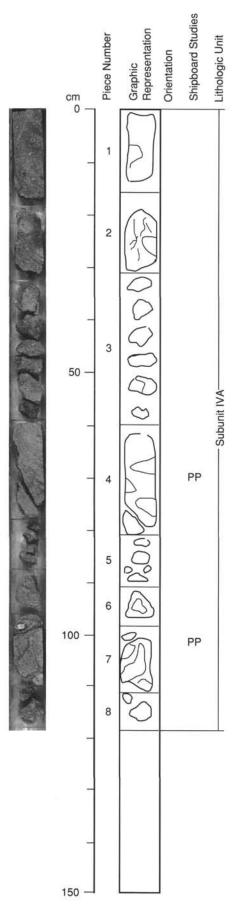
Clinopyroxene - 2-4%, 0.5-3.0 mm, subhedral, dark green, 20-50% replacement.

Orthopyroxene: - 1-2%, 0.5-3.0 mm, subhedral, yellow-brown, 20-50%.

Opaque minerals - 1-2%, <1 mm, irregular shape. No orientation. No replacement.

GROUNDMASS: In clast: Microcrystalline to glassy; only plagioclase laths (0.1 mm) are visible.

VESICLES: In clasts: 5–10%, 0.5–2 mm, subrounded, randomly distributed.


COLOR: Orange-brown (7.5YR 6/8) at top, grades into light brown (2.5YR 6/6) at 6 cm from the top, then into brownish gray (2.5YR 5/2) where it becomes more or less homogeneous.

STRUCTURE: N/A.

ALTERATION: Clasts altered and oxidized to brownish gray matrix-like product.

VEINS/FRACTURES: <1%, <1 mm, random. Inside clasts vein filling is white, non-carbonate (zeolite(?)). ADDITIONAL COMMENTS: Void filled with transparent and white, non-carbonate mineral (chalcedony

and/or zeolite(?)).

134-831B-69R-2

UNIT IV: ANDESITIC BRECCIA

SUBUNIT IVA: Variegated andesitic breccia with some reworking

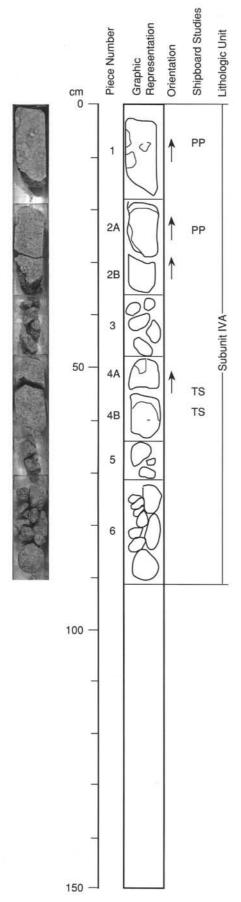
Pieces 1-8

CONTACTS: None visible.

PHENOCRYSTS: For clasts only.

Plagioclase - 15–20%, 1–5 mm, euhedral.
Clinopyroxene - 5–10%, 1–3 mm, subhedral.
Orthopyroxene - 1–5%, 1–2 mm, subhedral, altered.
Magnetite - 1%, 0.5 mm.
GROUNDMASS: Fine-grained to microcrystalline.

VESICLES: None.


COLOR:

Pieces 1, 2, 3 and 4: reddish brown (5YR 4/3). Pieces 5, 6, 7, and 8: olive gray (5Y 4/3).

STRUCTURE: N/A.

ALTERATION: Clasts altered to red and green products.

VEINS/FRACTURES: 5%, 0.5-2 mm, random.

134-831B-69R-3

UNIT IV: ANDESITIC BRECCIA

SUBUNIT IVA: Variegated andesitic breccia with some reworking

Pieces 1-6

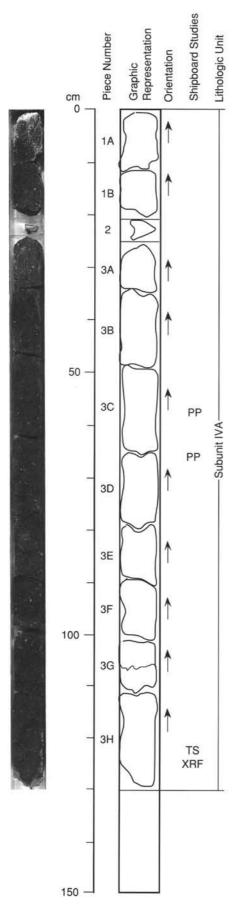
CONTACTS: None visible.

PHENOCRYSTS: For clasts only.

Plagioclase - 20%, 1-5 mm, euhedral, moderately altered.

Clinopyroxene - 8%, 1–5 mm, subhedral.
Orthopyroxene - 5%, 1–2 mm, euhedral to subhedral.
Magnetite - 1%, 0.5 mm, anhedral.

GROUNDMASS: Microcrystalline to glassy.


VESICLES: 1%, <0.5 mm, irregular, random. Filled with green minerals (zeolites).

COLOR: Matrix light olive gray (5Y6/2) to olive gray (5Y4/2), clasts light gray (10YR 7/1). STRUCTURE: N/A.

ALTERATION: Matrix is highly altered to green minerals (chlorite or epidote (?)).

VEINS/FRACTURES: <1%, <0.5 mm, random, filled with the same minerals as vesicles.

ADDITIONAL COMMENTS: Clast size ranges between 1 and 8 cm.

134-831B-70R-1

UNIT IV: ANDESITIC BRECCIA SUBUNIT IVA: Variegated andesitic breccia with some reworking

Pieces 1-3H

CONTACTS: None visible.

PHENOCRYSTS: For clasts only.

Plagioclase - 15-20%, 1-5 mm, euhedral, altered.

Clinopyroxene - 2-5%, 1-3 mm, subhedral, dark green.

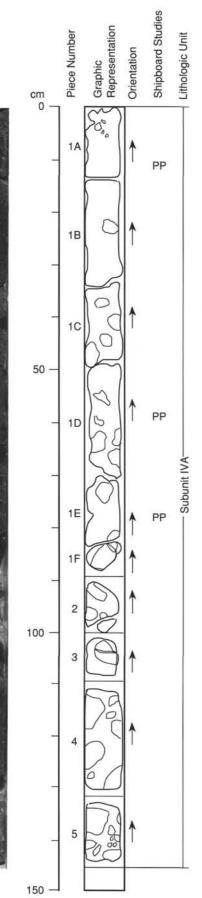
Orthopyroxene - 1-3%, 1-2 mm, subhedral, yellow brown.

Magnetite - 1%, 0.2-0.5 mm, anhedral.

GROUNDMASS: Microcrystalline to glassy. Plagioclase laths are visible. Glass (60%), fresh to moderately

altered and devitrified.

VESICLES: 1-5%, 0.5-2 mm, irregular, random. Filled with white non-carbonate minerals.


Pieces 1 to 3A: olive gray (5Y 4/2).
Pieces 3 to 3E: dark grayish brown (2.5YR 4/2).

Pieces 3F to 3H: dark gray (5Y 4/1).

STRUCTURE: N/A.

ALTERATION: Highly altered and oxidized (chlorite and hematite).

VEINS/FRACTURES: 5%, 0.1-0.3 mm, irregular. Piece 3G filled with sulfide?

UNIT IV: ANDESITIC BRECCIA

SUBUNIT IVA: Variegated andesitic breccia with some reworking

Pieces 1A-1F, 2-5

CONTACTS: None visible.

PHENOCRYSTS: For clasts only.

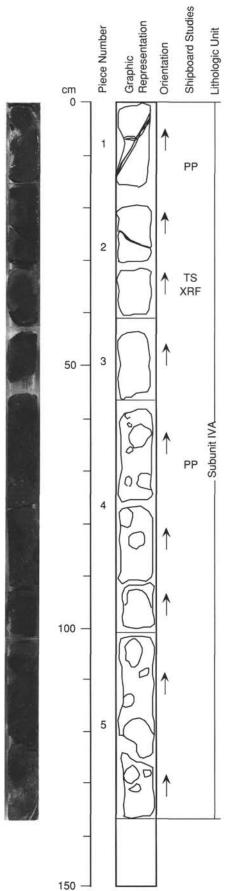
Plagioclase - 20-25%, 0.5-5 mm, euhedral.

Clinopyroxene - 1-2%, 0.5-1 mm, subhedral.

Orthopyroxene - 2-4%, 0.5-1 mm, subhedral.

GROUNDMASS: In clasts: microcrystalline to glassy, only plagioclase laths (<1 mm) are visible.

VESICLES: None.


COLOR: Matrix yellow/green/gray (10Y 7/2), clasts gray (10RY 4/1).

STRUCTURE: N/A.

ALTERATION: Clasts are relatively fresh. Matrix includes yellowish grains and reddish gray grains which may indicate the existence of chlorite, epidote, oxides and hydroxides. All the clasts have light gray glassy rims(zeolite and chlorite(?)).

VEINS/FRACTURES: 5%, 0.3-2 mm, irregular. Clasts in Pieces 1F, 2 and 3.

ADDITIONAL COMMENTS: The ratio of clast to matrix is low in this section (ca. 20%). Matrix is composed of 1–5 mm grains of minerals (plagioclase and pyroxenes), altered or oxidized lava fragments and yellowish alteration products filling the intervening spaces.

UNIT IV: ANDESITIC BRECCIA

SUBUNIT IVA: Variegated andesitic breccia with some reworking

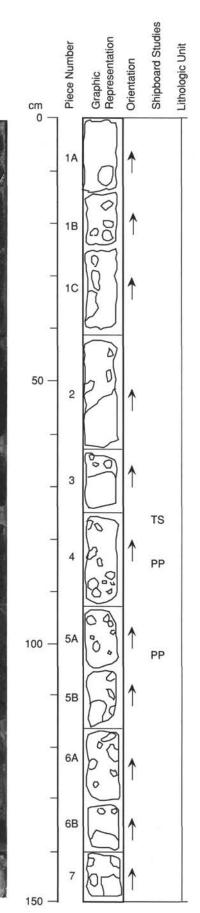
Pieces 1-5

CONTACTS: None visible.

PHENOCRYSTS: For clasts only.

Plagicolase - 15-20%, 1-5 mm, euhedral, altered. Clinopyroxene - 5-10%, 0.5-1mm, subhedral. Orthopyroxene - 2-5%, 0.5-1mm, euhedral.

Magnetite - <1%, 0.5-1 mm, anhedral.


GROUNDMASS: Microcrystalline to glassy. Glass (60%) fresh to moderately devitrified.

VESICLES: None.

COLOR: Gray (7.5YR 5/1).
STRUCTURE: N/A.
ALTERATION: Clasts appear slightly altered.

VEINS/FRACTURES: In clasts: 5%, 0.1-2 mm, random. Filled with chlorite.

ADDITIONAL COMMENTS: Pieces 1, 2 and 3 are probably the same pebble (50 cm in diameter) of porphyritic andesite.

UNIT IV: ANDESITIC BRECCIA SUBUNIT IVB: Andesitic hyalo-breccia with green matrix

Pieces 1-7

CONTACTS: None visible.

PHENOCRYSTS: For clasts only.

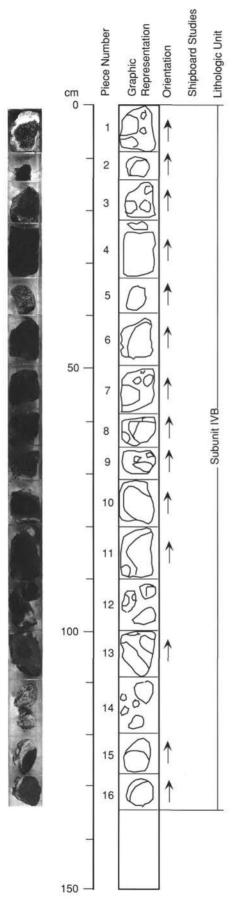
Plagioclase - 20%, 1-4 mm, euhedral to subhedral.

Clinopyroxene - 2-5%, 0.5-3 mm, subhedral.

Orthopyroxene - 2%, 0.5-3 mm, subhedral.

GROUNDMASS: Plagioclase laths in glassy groundmass

extensively altered.


VESICLES: None.

COLOR: Matrix dark greenish gray (5G 4/1), clasts very dark gray (10Y 3/1).

STRUCTURE: N/A.

ALTERATION: Matrix intensively altered to green mineral (chlorite). White glassy rim (1 mm) around the

VEINS/FRACTURES: None.
ADDITIONAL COMMENTS: Clasts subangular to angular from 2 mm to 10 cm in size.

UNIT IV: ANDESITIC BRECCIA

SUBUNIT IVB: Andesitic hyalo-breccia with green matrix

Pieces 1-16

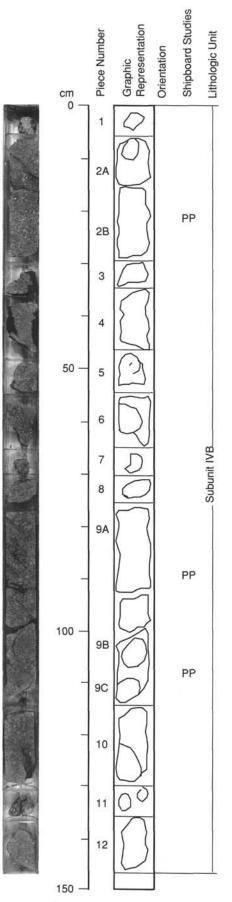
CONTACTS: None visible. PHENOCRYSTS: For clasts only.

Plagioclase - 20%, 1-4 mm, euhedral to subhedral.

Clinopyroxene - 2-5%, 0.5-3 mm, subhedral.

Orthopyroxene - 2%, 0.5–3 mm, subhedral.

GROUNDMASS: Microcrystalline to glassy, plagioclase laths are visible.


VESICLES: None.

COLOR: Matrix dark greenish gray (5G 4/1), clasts very dark gray (10Y 3/1).

STRUCTURE: N/A.

ALTERATION: Groundmass altered to chlorite. White rims around clasts.

VEINS/FRACTURES: None.

UNIT IV: ANDESITIC BRECCIA

SUBUNIT IVB: Andesitic hyalo-breccia with green matrix

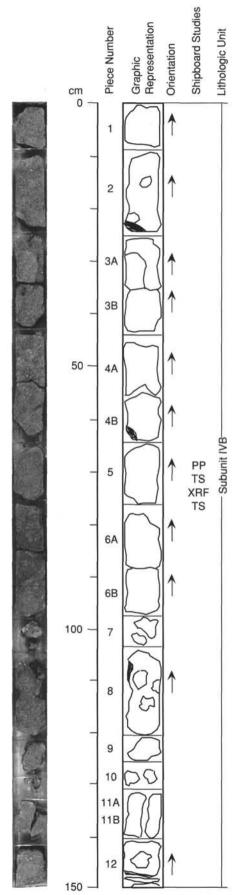
Pieces 1-12

CONTACTS: None visible.

PHENOCRYSTS: For clasts only.

Plagioclase - 15–20%, 1–3 mm, euhedral. Clinopyroxene - 5–10%, 0.5–2 mm, euhedral to subhedral.

Orthopyroxene - 1-2%, 0.5-2 mm, subhedral.


GROUNDMASS: Microcrystalline to glassy, partially altered to greenish material. VESICLES: 5–10%, 0.5–1 mm, irregular, random. COLOR: Matrix greenish gray (5BG 4/1), clasts dark gray (10Y 3/1).

STRUCTURE: N/A.

ALTERATION: Part of the glass in clasts and matrix is moderately chloritized. Cavities are coated with zeolites.

VEINS/FRACTURES: Void space around clasts in Pieces 6 and 9A.

ADDITIONAL COMMENTS: Clasts make up about 25% of the whole section. Matrix is made of 1-5 mm size grains of crystals, rock fragments and alteration products filling the space between these grains. Plagioclase makes up 20-25% of the matrix.

UNIT IV: ANDESITIC BRECCIA

SUBUNIT IVB: Andesitic hyalo-breccia with green matrix

Pieces 1-12

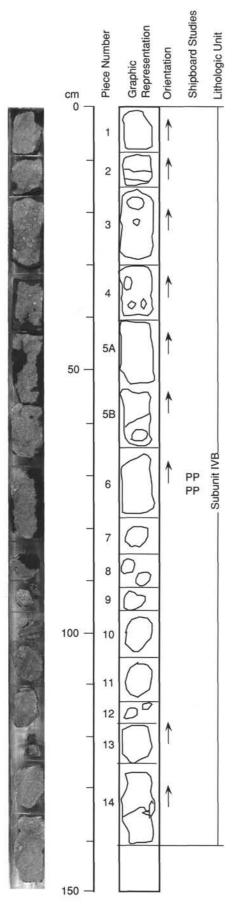
CONTACTS: None visible.

PHENOCRYSTS: For clasts only.

Plagioclase - 15–20%, 1–5 mm, euhedral, altered.
Clinopyroxene - 5–7%, 1–3 mm, euhedral to subhedral.
Orthopyroxene - 2–5%, 1 mm, euhedral to subhedral.

Magnetite - 1%, 0.5–1 mm, anhedral.

GROUNDMASS: Laths of plagioclase in a glassy, now devitrified, groundmass.


VESICLES: <1%, 1–2 mm, irregular, random. Filled with white non-calcareous minerals.

COLOR: Matrix dark greenish gray (5G 4/1), clasts black (5Y 2.5/1).

STRUCTURE: N/A.

ALTERATION: Matrix highly altered to green minerals.

VEINS/FRACTURES: 5%, 0.5–1 mm, irregular.
ADDITIONAL COMMENTS: Clast size ranges between 0.5 and 8 cm.

UNIT 1: ANDESITIC BRECCIA

SUBUNIT IVB: Andesitic hyalo-breccia with green matrix

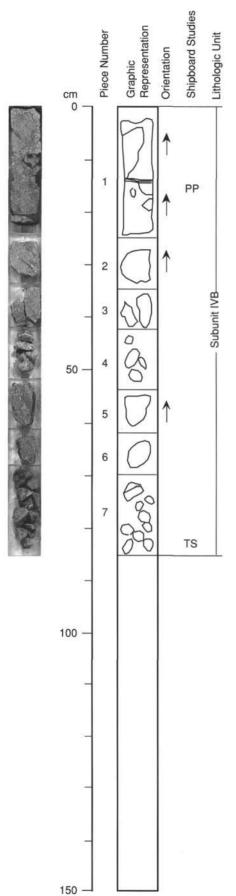
Pieces 1-14

CONTACTS: None visible.

PHENOCRYSTS: For clasts only.
Plagioclase - 15–20%, 1–5 mm, euhedral, altered.

Clinopyroxene - 5-8%, 1-2 mm, subhedral. Orthopyroxene - 3-5%, 1 mm, subhedral. Magnetite - <1%, 0.5-1 mm, anhedral.

GROUNDMASS: Microcrystalline to glassy.


VESICLES: 1%, 0.5–2 mm, irregular, random. Filled with zeolites(?).

COLOR: Matrix dark greenish gray (5G 4/1), clasts: dark gray (10Y 3/1).

STRUCTURE: N/A.

ALTERATION: Matrix altered to light green minerals.

VEINS/FRACTURES: <1%, <0.5 mm, random.

UNIT IV: ANDESITIC BRECCIA SUBUNIT IVB: Andesitic hyalo-breccia with green matrix

Pieces 1-7

CONTACTS: None visible.

PHENOCRYSTS: For clasts only.

Plagioclase - 15–20%, 1–5 mm, euhedral to subhedral. Clinopyroxene - 2–5%, 0.5–3 mm, euhedral.

Orthopyroxene - 2-5%, 0.5-3 mm, euhedral. GROUNDMASS: Laths of plagioclase in a glassy matrix.

VESICLES: None.

COLOR: Matrix dark greenish gray (5G 4/1), clasts black (5Y 2.5/1).

STRUCTURE: N/A.

ALTERATION: Some clasts show a rim of 3-5 mm. This rim is composed of two layers: the inner side 1-2

mm thick, creamy colored and the outer side black.

VEINS/FRACTURES: None.

ADDITIONAL COMMENTS: Clast size ranges from 1 mm to 8 cm.

UNIT IV: CARBONATE

Piece 1

COLOR: White (2.5Y8/2).

ADDITIONAL COMMENTS: A carbonate piece possibly fallen into the bottom of the hole during drilling.

UNIT IV: ANDESITIC BRECCIA

SUBUNIT IVB: Andesitic hyalo-breccia with green matrix

Pieces 2-18

CONTACTS: None visible.

PHENOCRYSTS: For clasts only.

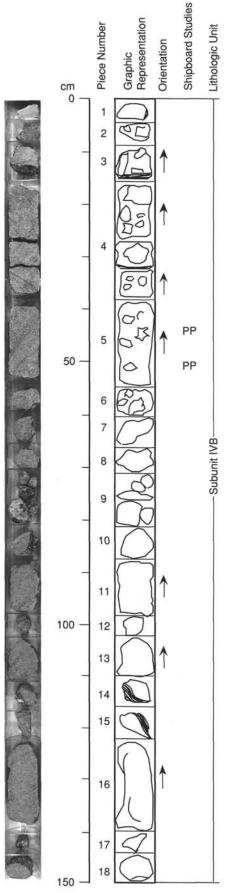
Plagioclase - 20%, 1–5 mm, euhedral, moderately altered.
Clinopyroxene - 5%, 1–3 mm, subhedral.
Orthopyroxene - 5%, 1–2 mm, subhedral, brown.

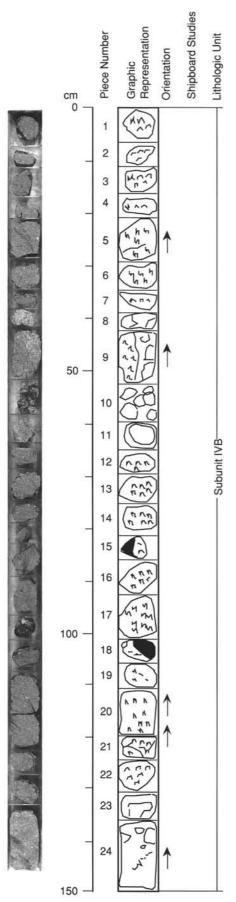
Magnetite - 1%, 0.5 mm, anhedral.

GROUNDMASS: Microcrystalline to glassy.

VESICLES: None.

COLOR: Matrix dark greenish gray (5G 4/1), clasts gray (7.5YR 5/1) to black (5Y 2.5/1).


STRUCTURE: N/A.


ALTERATION: Matrix is altered to green minerals (chlorite or epidote(?)). In clast, plagio-clases are

stabilitized.

VEINS/FRACTURES: <1%, 1 mm, random, filled with green minerals.

ADDITIONAL COMMENTS: Matrix supported breccia. Clast size ranges between 0.1 and 8 cm.

UNIT IV: ANDESITIC BRECCIA SUBUNIT IVB: Andesitic hyalo-breccia with green matrix

Pieces 1-24

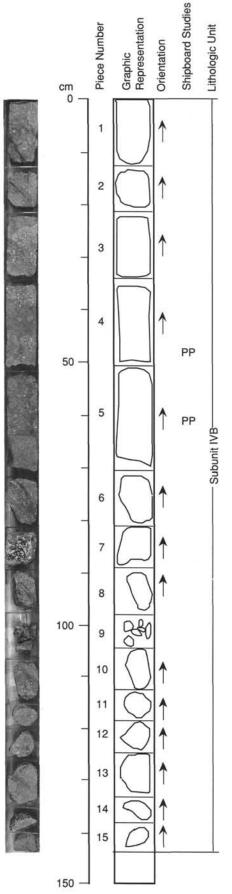
CONTACTS: None visible.

PHENOCRYSTS: For clasts only.

Plagioclase - 25%, 1-5 mm, euhedral, altered (sericite). Clinopyroxene - 5%, 1-3 mm, subhedral, dark green.

Orthopyroxene - 5%, 1–2 mm, subhedral, brown. GROUNDMASS: Microcrystalline to glassy.

VESICLES: None.


COLOR: Very dark gray (10Y 3/1).

STRUCTURE: N/A.

ALTERATION: Matrix is highly altered to chlorite and green minerals?

VEINS/FRACTURES: <1%, <1 mm, random, filled with green minerals (zeolite(?)).

ADDITIONAL COMMENTS: Pieces 1–9 are andesitic lavas. Pieces 8–11 are matrix supported breccia. Clast size ranges between 1 and 5 mm.

UNIT IV: ANDESITIC BRECCIA SUBUNIT IVB: Andesitic hyalo-breccia with green matrix

Pieces 1-15

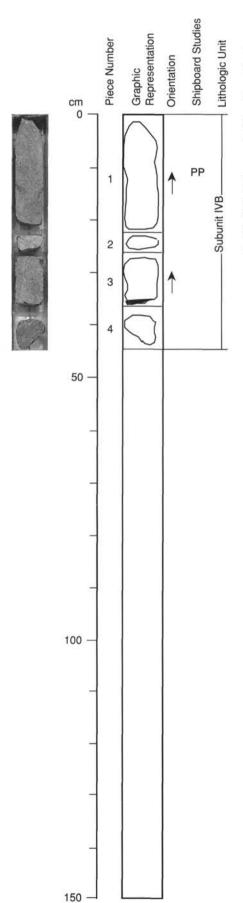
CONTACTS: None visible.

PHENOCRYSTS: For clasts only.

Plagioclase - 10-15%, 1-5 mm, euhedral. Clinopyroxene - 5-10%, 0.5-2 mm, euhedral.

Orthopyroxene - 2–3%, 0.5–2 mm, subhedral. GROUNDMASS: Microcrystalline to glassy.

VESICLES: None.


COLOR: Matrix greenish gray (10G 4/2). Clast dark gray (10G 3/1).

STRUCTURE: N/A.

ALTERATION: Matrix and glass in clasts are moderately chloritized. Cavities are coated with zeolite.

VEINS/FRACTURES: <1%, 0.5–2 mm, random.

ADDITIONAL COMMENTS: Some clasts have 1–5 mm wide light colored corona. Percentage of clasts is around 40%.

UNIT IV: ANDESITIC BRECCIA

SUBUNIT IVB: Andesitic hyalo-breccia with green matrix

Pieces 1-4

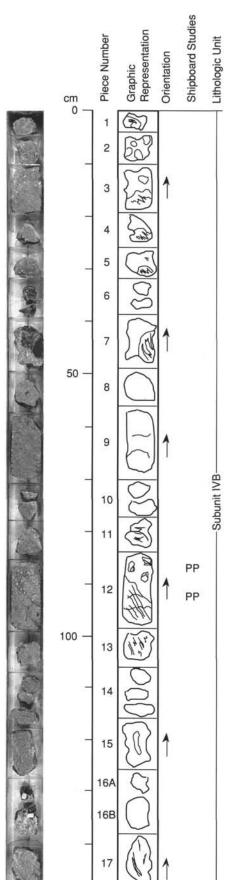
CONTACTS: None visible.

PHENOCRYSTS: For clasts only.

Plagioclase - 20%, 0.5–5 mm, euhedral to subhedral.

Orthopyroxene - 3–5%, 0.5–2 mm, euhedral to subhedral.

Clinopyroxene - 3–5%, 0.5–2 mm, euhedral to subhedral.


GROUNDMASS: Plagioclase laths in a glassy matrix.

VESICLES: <1%, 0.5-2 mm, irregular, random.

COLOR: Very dark gray (10Y 3/1). STRUCTURE: N/A. ALTERATION: None.

VEINS/FRACTURES: 1%, 0.5 mm, irregular.

ADDITIONAL COMMENTS: Only andesitic clasts occur in this section.

150

134-831B-73R-1

UNIT IV: ANDESITIC BRECCIA

SUBUNIT IVB: Andesitic hyalo-breccia with green matrix

Pieces 1-17

CONTACTS: None visible.

PHENOCRYSTS: For clasts only.

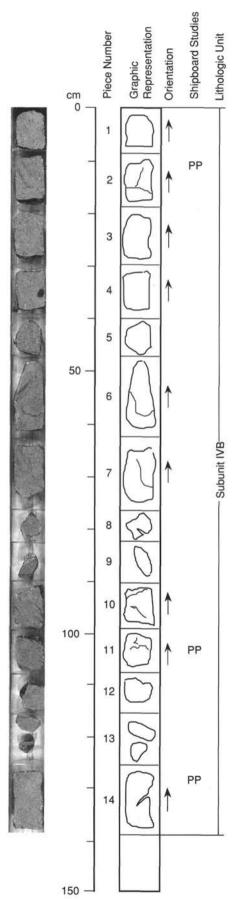
Plagioclase - 35%, <6 mm, euhedral, often glomeroporphyritic.

Clinopyroxene - 4%, 0.5-4 mm, subhedral to euhedral, dark green.

Orthopyroxene - 5%, 1-2 mm, subhedral, brown.

GROUNDMASS: Microcrystalline to glassy.

VESICLES: 1-7%, <3 mm, elongate, round or irregular. Usually lined with very pale green (10G 7/2) material.


COLOR: Matrix light gray (5YR 7/1). Clasts bluish gray (5B 5/1).

STRUCTURE: Patchy, some flow banding.

ALTERATION: Relatively fresh but may be some alteration of plagioclase to sericite.

VEINS/FRACTURES: 2%, <1 mm, irregular, filled with white material, possibly zeolites.

ADDITIONAL COMMENTS: These are andesite or basaltic andesite clasts forming part of a breccia. Extensive coating of very pale green to pale green (10G 7/2) secondary mineral, probably zeolite. The breccia matrix is composed of very fine-grained subangular to subrounded fragments. The larger pieces (2–8 mm) have slightly coarser grain sizes and are white in color. The white fragments are enclosed in a greenish matrix which is probably composed of alteration products of the glass and of the rims of the clasts.

134-831B-73R-2

UNIT IV: ANDESITIC BRECCIA

SUBUNIT IVB: Andesitic hyalo-breccia with green matrix

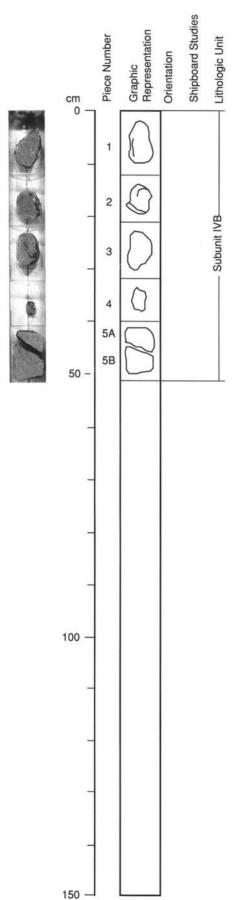
Pieces 1-14

CONTACTS: None visible.

PHENOCRYSTS: For clasts only.

Plagioclase - 30–35%, <6 mm, euhedral, often glomeroporphyritic.
Orthopyroxene - 5%, 1–2 mm, subhedral, brown.
Clinopyroxene - 4%, 0.5–4 mm, subhedral, dark green.

GROUNDMASS: Microcrystalline to glassy.


VESICLES: 1-5%, <3 mm, elongate to rounded or irregular. Usually lined with very pale green (10G 7/2)

COLOR: Matrix light gray (5YR 7/1), clasts bluish gray (5B 5/1).

STRUCTURE: Patchy, some flow banding.

ALTERATION: Relatively fresh but there may be some alteration of plagioclase to sericite and pyroxenes to

VEINS/FRACTURES: 2-3%, <1 mm, irregular, filled with white material, possibly zeolite. Some fracturing. ADDITIONAL COMMENTS: The above refers to the more homogeneous andesite clasts forming part of a breccia. The clasts are commonly coated by a very pale green to pale green (10G 7/2) secondary mineral, which is probably a zeolite. The breccia matrix is composed of very fine-grained subangular to subrounded fragments. The white fragments are enclosed in a greenish matrix which is probably composed of alteration products of the glass and of the rims of the clasts.

134-831B-73R-3

UNIT IV: ANDESITIC BRECCIA SUBUNIT IVB: Andesitic hyalo-breccia with green matrix

Pieces 1-5

CONTACTS: None visible.

PHENOCRYSTS: For clasts only.

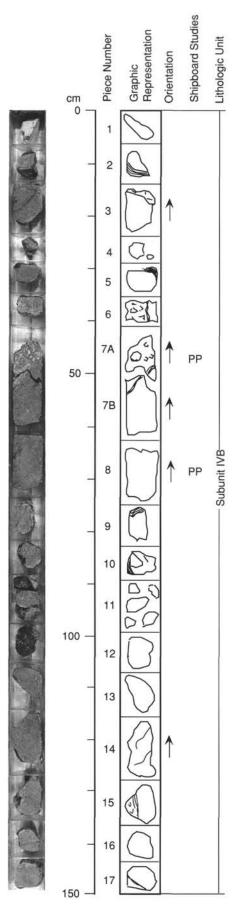
Plagioclase - 35%, <6 mm, euhedral, often glomeroporphyritic.

Orthopyroxene - 5%, 1-2 mm, subhedral, brown.

Clinopyroxene - 4%, 0.5-4 mm, subhedral, dark gray.

GROUNDMASS: Microcrystalline to glassy.

VESICLES: 1-5%, <3 mm, elongate to rounded or irregular. Usually lined with pale green (10G 7/2) material


COLOR: Matrix light gray (YR 7/1), clasts bluish gray (5B 5/1).

STRUCTURE: Patchy; some flow banding.

ALTERATION: Relatively fresh but there may be some alteration of plagioclase to sericite and pyroxene to chlorite.

VEINS/FRACTURES: 2–3%, <1 mm, irregular, filled with white material, possibly zeolite. Some fracturing.

ADDITIONAL COMMENTS: The above refers to the more homogeneous andesite clasts forming part of a breccia. The clasts are commonly coated with a very pale green to pale green (10G 7/2) secondary mineral which is probably a zeolite. The breccia matrix is composed of very fine-grained subangular to subrounded fragments. The larger pieces (2–8 mm), which are white in color, have slightly coarser grain sizes. The white fragments are enclosed in a greenish matrix which is probably composed of alteration products of the glass and of the rim of the clasts.

134-831B-74R-1

UNIT IV: ANDESITIC BRECCIA

SUBUNIT IVB: Andesitic hyalo-breccia with green matrix

Pieces 2-17

CONTACTS: None visible.

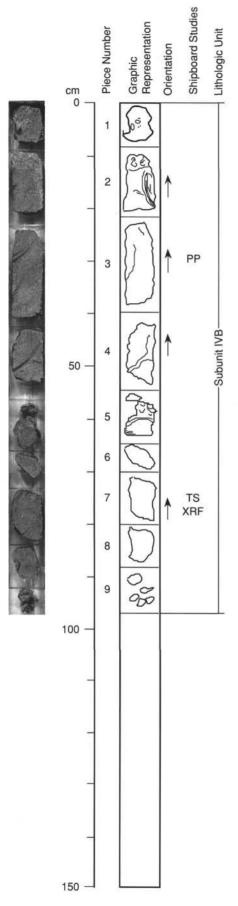
PHENOCRYSTS: For clasts only.

Plagioclase - 35%, <6 mm, euhedral, often glomeroporphyritic.

Orthopyroxene - 5%, 1-2 mm, subhedral, brown.

Clinopyroxene - 4%, 0.5-4 mm, subhedral, dark green.

GROUNDMASS: Microcrystalline to glassy.


VESICLES: 1-5%, <3 mm, elongate to rounded or irregular. Usually lined with very pale green (10G 7/2) material.

COLOR: Matrix light gray (5YR 7/1), clasts bluish gray (5B 5/1).

STRUCTURE: Patchy; some flow banding.

ALTERATION: Relatively fresh but there may be some alteration of plagioclase to sericite and pyroxenes to chlorite.

VEINS/FRACTURES: 2–3%, <1 mm, irregular, filled with white material, possibly zeolite. Some fracturing. ADDITIONAL COMMENTS: The above refers to the more homogeneous andesite clasts, forming part of a breccia. The clasts are commonly coated with a very pale to pale green (10G 7/2) secondary mineral, which is probably a zeolite. The breccia matrix is composed of very fine-grained subangular to subrounded fragments. The larger pieces (2–8 mm), which are white in color, have slightly coarser grain sizes. The white fragments are enclosed in a greenish matrix which is probably composed of alteration products of the glass and of the rims of the clasts.

134-831B-74R-2

UNIT IV: ANDESITIC BRECCIA

SUBUNIT IVB: Andesitic hyalo-breccia with green matrix

Pieces 1-9

CONTACTS: None visible.

PHENOCRYSTS: For clasts only.

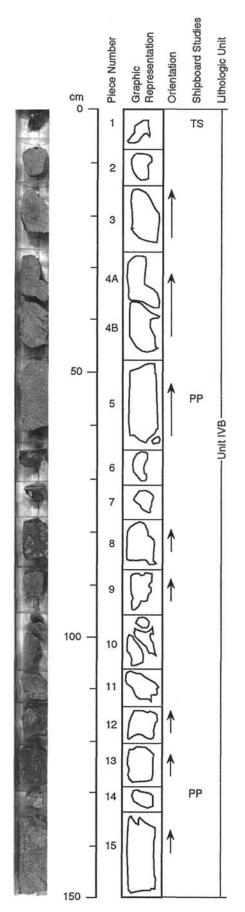
Plagioclase - 35%, <6 mm, euhedral, often glomeroporphyritic.

Orthopyroxene - 5%, 1-2 mm, subhedral, brown.

Clinopyroxene - 4%, 0.5-4 mm, subhedral, dark green.

GROUNDMASS: Microcrystalline to glassy.

VESICLES: 1–5%, 3 mm, elongate to rounded or irregular. Usually lined with very pale green material (10G 7/2)


COLOR: Matrix light gray (5YR 7/1), clasts bluish gray (5B 5/1).

STRUCTURE: Patchy, some flow banding.

ALTERATION: Relatively fresh but there may be some alteration of plagioclase to sericite and pyroxenes to chlorite.

VEINS/FRACTURES: 2–3%, <1 mm, irregular, filled with white material, possibly zeolite. Some fracturing.

ADDITIONAL COMMENTS: The above refers to the more homogeneous andesite clasts, forming part of a breccia. The clasts are commonly coated with a very pale to pale green (10G 7/2) secondary mineral, which is probably zeolite. The breccia matrix is composed of very fine-grained subangular to subrounded fragments. The larger pieces (2–8 mm), which are white in color, have slightly coarser grain size. The white fragments are enclosed in a greenish matrix which is probably composed of alteration products of the glass and of the rims of the clasts.

134-831B-75R-1

UNIT IV: ANDESITIC BRECCIA

SUBUNIT IVB: Andesitic hyalo-breccia with green matrix

Pieces 1-15

CONTACTS: None visible.

PHENOCRYSTS: For clasts only.

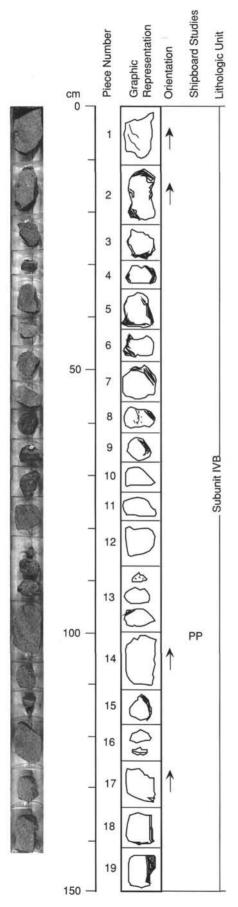
Plagioclase - 30%, <5 mm, euhedral, sometimes glomeroporphyritic.

Orthopyroxene - 5%, 1-2 mm, subhedral, brown.

Clinopyroxene - <3%, 0.5-3 mm, subhedral, dark green.

GROUNDMASS: Microcrystalline to glassy.

VESICLES: 1-7%, <3 mm, elongate to irregular, random. Lined with a pale green (10G 7/2) secondary


COLOR: Matrix light gray (5YR 7/1), clasts bluish gray (5B 5/1).

STRUCTURE: Some pieces (e.g., 8, 9, and 12) are rather patchy or mottled.

ALTERATION: Probably some alteration of plagioclase to sericite and of pyroxenes to chlorite. Hematite patches in Piece 8.

VEINS/FRACTURES: 2-4%, <1 mm, irregular, filled with white minerals, probably zeolite.

ADDITIONAL COMMENTS: Although there are no obvious signs of matrix in this section the pieces have a close resemblance to those in Cores 134-831B-73R and -74R. They may still be clasts or possibly represent a thin flow within the brecciated sequence.

134-831B-75R-2

UNIT IV: ANDESITIC BRECCIA

SUBUNIT IVB: Andesitic hyalo-breccia with green matrix

Pieces 1-19

CONTACTS: None visible.

PHENOCRYSTS: For clasts only.

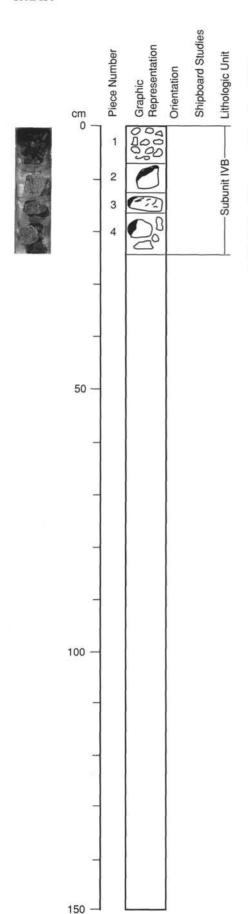
Plagioclase - 30%, <5 mm, euhedral, sometimes glomeroporphyritic.

Orthopyroxene - 5%, 1-2 mm, subhedral, brown.

Clinopyroxene - 3%, 0.5-3 mm, subhedral, dark green.

GROUNDMASS: Microcrystalline to glassy.

VESICLES: 1–7%, <3 mm, elongate to irregular, random. Lined with a pale green (10G 7/2) secondary


COLOR: Matrix light gray (5YR 7/1), clasts bluish gray (5B 5/1).

STRUCTURE: Patchy or mottled.

ALTERATION: Probably some alteration of plagioclase to sericite and of pyroxenes to chlorite.

VEINS/FRACTURES: 3-5%, <1 mm, irregular, filled with white mineral, probably zeolite.

ADDITIONAL COMMENTS: Although there are no obvious signs of matrix in this section the pieces have a close resemblance to those in Cores 134-831B-73R and -74R. They may still be clasts or possibly represent a thin flow within the brecciated sequence.

134-831B-75R-3

UNIT IV: ANDESITIC BRECCIA SUBUNIT IVB: Andesitic hyalo-breccia with green matrix

Pieces 1-4

CONTACTS: None visible.

PHENOCRYSTS: For clasts only.

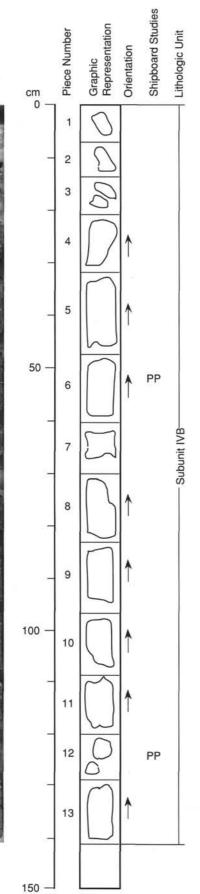
Plagioclase - 30%, <5 mm, euhedral, sometimes glomeroporphyritic.

Orthopyroxene - 5%, 1-2 mm, subhedral, brown.

Clinopyroxene - 3%, 0.5-3 mm, subhedral, dark green.

GROUNDMASS: Microcrystalline to glassy.

VESICLES: 1-5%, <3 mm, elongate to irregular, random. Lined with a pale green (10G 7/2) secondary mineral.


COLOR: Matrix light gray (5YR 7/1), clasts bluish gray (5B 5/1).

STRUCTURE: Patchy or mottled.

ALTERATION: Probably some alteration of plagioclase to sericite and of pyroxenes to chlorite.

VEINS/FRACTURES: 3-4%, <1 mm, irregular, filled with white mineral, probably zeolite.

ADDITIONAL COMMENTS: Although there are no obvious signs of matrix in this section the pieces have a close resemblance to those in Core 134-831B-73R and -74R. They may still be clasts or possibly represent a thin flow within the brecciated sequence.

UNIT IV: ANDESITIC BRECCIA SUBUNIT IVB: Andesitic hyalo-breccia with green matrix

Pieces 1-13

CONTACTS: None visible.

PHENOCRYSTS: For clasts only.

Plagioclase - 30%, <7 mm, euhedral, sometimes glomeroporphyritic.

Orthopyroxene - 3%, 1–2 mm, subhedral, brown.
Clinopyroxene - 2%, 0.5–3 mm, subhedral, dark gray.
GROUNDMASS: Microcrystalline to glassy.

VESICLES: 1-5%, <3 mm, elongate to irregular, random. Lined with a pale green (10G 7/2) secondary

COLOR: Matrix light gray (5YR 7/1), clasts bluish gray (5B 5/1). STRUCTURE: Patchy and mottled, sometimes streaked.

ALTERATION: Plagioclase altered to sericite and pyroxenes to chlorite.

VEINS/FRACTURES: 3-4%, <1 mm, irregular, filled with white mineral, probably zeolite.

ADDITIONAL COMMENTS: The above description applies to the rounded and wispy andesitic clasts which make up about 40% of this section. The breccia matrix is highly altered and consists of crystal fragments from the clasts together with devitrified glass, chlorite, clay minerals and hematite, and is intensely zeolitized. Note that the matrix is more patchy and altered than in Cores 134-831B-73R and -

UNIT IV: ANDESITIC BRECCIA

SUBUNIT IVB: Andesitic hyalo-breccia with green matrix

Pieces 1-12

CONTACTS: None visible.

PHENOCRYSTS: For clasts only.

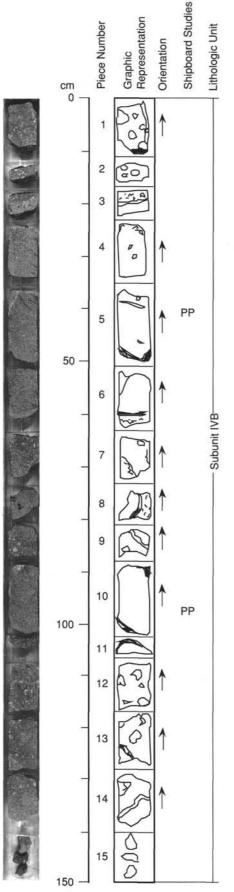
Plagioclase - 30%, <7 mm, euhedral, sometimes glomeroporphyritic.

Orthopyroxene - 3%, 1-2 mm, subhedral, brown.

Clinopyroxene - 2%, 0.5-3 mm, subhedral, dark green.

GROUNDMASS: Microcrystalline to glassy.

VESICLES: 1–5%, <3 mm, elongate to irregular, random. Lined with a pale green (10G 7/2) secondary mineral


COLOR: Matrix light gray (5YR 7/1), clasts bluish gray (5B 5/1).

STRUCTURE: Patchy and mottled, sometime streaked.

ALTERATION: Plagioclase altered to sericite and pyroxenes to chlorite.

VEINS/FRACTURES: 1-2%, <1 mm, irregular, filled with white mineral, probably zeolite.

ADDITIONAL COMMENTS: The above description applies to andesitic clasts, some of which are rounded and wispy. They make up about 70% of the material in this section. The breccia matrix is highly altered and consists of crystal fragments from the clasts together with the devitrified glass, chlorite, clay minerals and hematite, and is intensely zeolitized. Note that the matrix is more patchy and altered than in Cores 134-831B-73R and -74R.

UNIT IV: ANDESITIC BRECCIA SUBUNIT IVB: Andesitic hyalo-breccia with green matrix

Pieces 1-15

CONTACTS: None visible.

PHENOCRYSTS: For clasts only.

Plagioclase - 30%, <7 mm, euhedral, sometimes glomeroporphyritic.

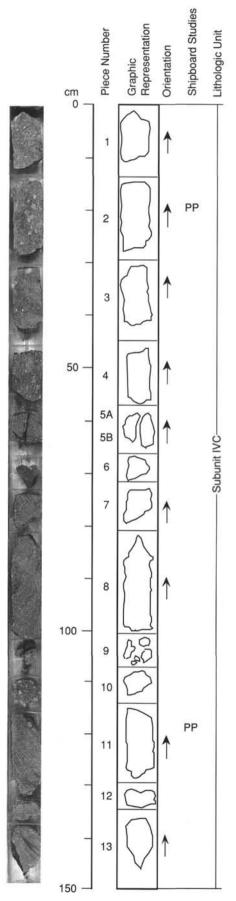
Orthopyroxene - 3%, 1-2 mm, subhedral, brown.

Clinopyroxene - 2%, 0.5-3 mm, subhedral, dark green.

GROUNDMASS: Microcrystalline to glassy.

VESICLES: 1-5%, <3 mm, elongate to irregular, random. Lined with pale green (10G 7/2) secondary

mineral.


COLOR: Matrix light gray (5YR 7/1), clasts bluish gray (5B 5/1).

STRUCTURE: Patchy to mottled, sometimes streaked.

ALTERATION: Plagioclase altered to sericite and pyroxenes altered to chlorite.

VEINS/FRACTURES: 2-3%, <1 mm, irregular, filled with white material, probably zeolite.

ADDITIONAL COMMENTS: The above description applies to the andesitic clasts, some of which are rounded and wispy. They make up about 50% of this section. The breccia matrix is highly altered and consists of crystal fragments from the clasts together with devitrified glass, chlorite, clay minerals and hematite, and is intensely zeolitized.

UNIT IV: ANDESITIC BRECCIA

SUBUNIT IVC: Variegated andesitic breccia with some reworking

Pieces 1-13

CONTACTS: None visible.

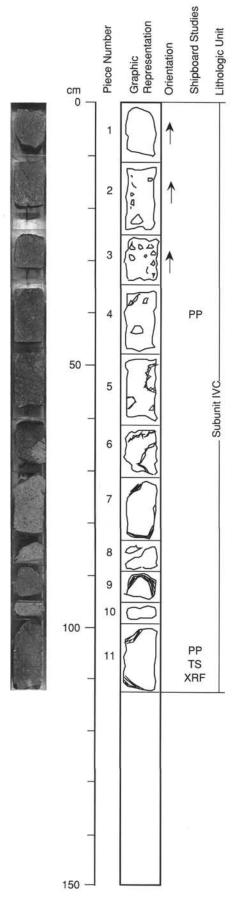
PHENOCRYSTS: For clasts only.

Plagioclase - 30%, <7 mm, euhedral, sometimes glomeroporphyritic.

Orthopyroxene - 3%, 1–2 mm, subhedral, brown.
Clinopyroxene - 2%, 0.5–3 mm, subhedral, dark green.

GROUNDMASS: Microcrystalline to glassy.

VESICLES: 1-5%, <3 mm, elongate to irregular, random. Lined with a pale green (10G 7/2) secondary


COLOR: Matrix light gray (5YR 7/1), clasts bluish gray (5B 5/1).

STRUCTURE: Patchy and mottled, sometimes streaked.

ALTERATION: Plagioclase altered to sericite and pyroxenes to chlorite.

VEINS/FRACTURES: 2-3%, <1 mm, irregular, filled with white mineral, probably zeolite.

ADDITIONAL COMMENTS: The above description applies to the rounded and wispy andesitic clasts which make up about 60% of this section. The breccia matrix is highly altered and consists of crystal fragments from the clasts together with devitrified glass, chlorite, clay minerals and hematite, and is intensely zeolitized.

UNIT IV: ANDESITIC BRECCIA

SUBUNIT IVC: Variegated andesitic breccia with some reworking

Pieces 1-11

CONTACTS: None visible.

PHENOCRYSTS: For clasts only.

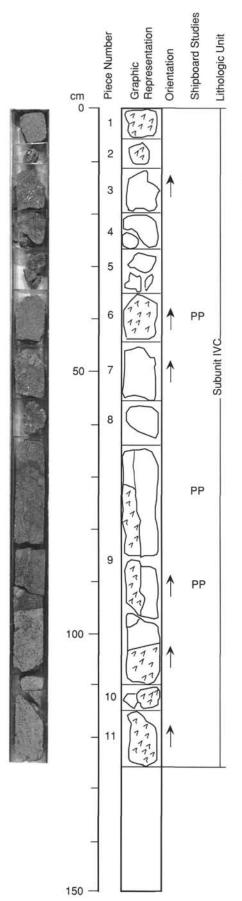
Plagioclase - 30%, <7 mm, euhedral, sometimes glomeroporphyritic.

Orthopyroxene - 3%, 1-2 mm, subhedral, brown.

Clinopyroxene - 2%, 0.5-3 mm, subhedral, dark green.

GROUNDMASS: Microcrystalline to glassy.

VESICLES: 1–5%, <3 mm, elongate to irregular, random. Lined with pale green (10G 7/2) secondary mineral.


COLOR: Matrix light gray (5YR 7/1), clasts bluish gray (5B 5/1).

STRUCTURE: Patchy and mottled, sometimes streaked.

ALTERATION: Plagioclase altered to sericite and pyroxenes to chlorite.

VEINS/FRACTURES: 1-2%, <1 mm, irregular, filled with white mineral, probably zeolite.

ADDITIONAL COMMENTS: The above description applies to the rounded and wispy andesitic clasts, which make up about 65% of the total in this section. Pieces 1–5 are almost exclusively matrix material. The matrix is coarse-sand to silt-sized. It is composed of crystal fragments from the clasts, pieces of clast groundmass, fragments of glass, hematite, zeolites and alteration products such as chlorite and clay minerals.

UNIT IV: ANDESITIC BRECCIA

SUBUNIT IVC: Variegated andesitic breccia with some reworking

Pieces 1-11

CONTACTS: None visible.

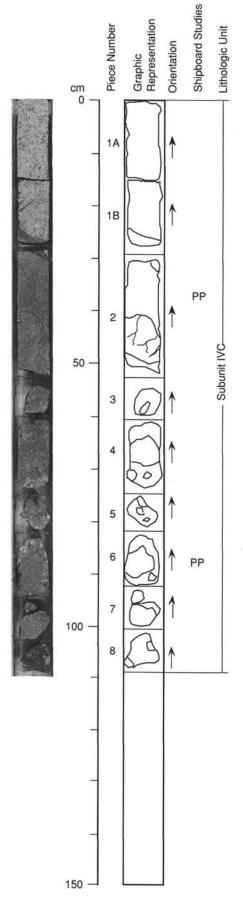
PHENOCRYSTS: For clasts only.

Plagioclase - 25%, 1-5 mm, euhedral, slightly altered.

Clinopyroxene - 5%, 1-3 mm, subhedral, dark greenish.

Orthopyroxene - 5%, 1-2 mm, euhedral to subhedral, brown.

GROUNDMASS: Microcrystalline to glassy.
VESICLES: 1%, 1–3 mm, irregular, abundant in clasts in Pieces 10 and 11.


COLOR: Matrix dark greenish gray (5G 4/1), clasts dark gray (10Y 3/1).

STRUCTURE: N/A.

ALTERATION: Matrix is highly altered to chlorite, greenish clay minerals and hematite.

VEINS/FRACTURES: <1%, <1 mm, random, filled with white mineral (zeolite(?)).
ADDITIONAL COMMENTS: Breccia composed of very fine-grained, subrounded fragments and sand.

Some grains are oxidized (hematite(?)).

UNIT IV: ANDESITIC BRECCIA.

SUBUNIT IVC: Variegated andesitic breccia with some reworking

Pieces 1-8

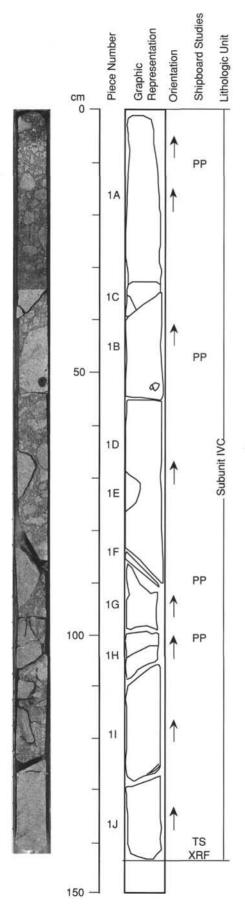
CONTACTS: None visible.

PHENOCRYSTS: For clasts only.

Plagioclase - 10–15%, 1–5 mm, euhedral. Clinopyroxene - 7–10%, 0.5–4 mm, subhedral. Orthopyroxene - 2–5%, 0.5–2 mm, subhedral.

GROUNDMASS: Microcrystalline to glassy.

VESICLES: Rare, irregular, 10% vesicles, partly filled with chlorite-like greenish material.


COLOR: Matrix light gray (10G6/1), greenish gray (5GY 4/1) for clasts in Pieces 1A and 1B, dark greenish gray (5G 4/1) in Pieces 2, 4, 6 and 7.

STRUCTURE: N/A.

ALTERATION: Moderate for clasts in Pieces 1A and 1B, slight in other clasts. Pyroxenes are partly altered to chlorite and plagioclase to sericite. Groundmass consists of light greenish gray alteration products. Hematite and zeolite are found in matrix.

VEINS/FRACTURES: <1%, veins in Piece 2, <1mm, irregular, filled with white material (inner part-zeolites?) and greenish material (outer part-chlorite?).</p>

ADDITIONAL COMMENTS: Clasts make up 60% of this section. Matrix is made up of 1–4 mm subangular fragments of crystals and lithics. Spaces are filled with light gray and greenish alteration products, possibly zeolite and chlorite. Fragments include plagioclase, clinopyroxene, orthopyroxene, greenish gray glass, oxidized reddish rock fragments and hematite. Some crystals are altered, others are completely fresh.

UNIT IV: ANDESITIC BRECCIA.

SUBUNIT IVC: Variegated andesitic breccia with some reworking

Pieces 1A-1J

CONTACTS: None visible.

PHENOCRYSTS: For clasts only.

Plagioclase - 20-25%, 0.3-3 mm, euhedral, altered to sericite.

Clinopyroxene - 5%, 0.3 -3 mm, subhedral.

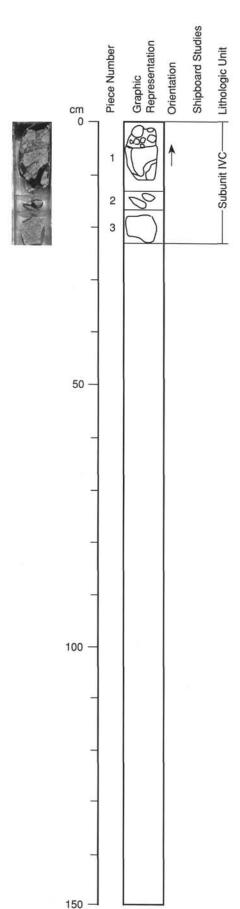
Magnetite - 1%, ≤0.3 mm, anhedral.

GROUNDMASS: Microcrystalline with plagioclase laths and altered minerals.

VESICLES: 1%, <2 mm, irregular, abundant in the large clasts in Piece 1B (10%). They are filled with white and green minerals.

COLOR:

Piece 1A, 1D to 1J dark greenish gray (5G4/1).


Piece 1B, greenish gray (5BG 4/1). STRUCTURE: N/A.

ALTERATION: Clasts and matrix are highly altered.
VEINS/FRACTURES: <1%, <1 mm, random, filled with green alteration minerals.

ADDITIONAL COMMENTS:

Piece 1A: clasts from 0.5 to 3 cm in size.

Pieces 1B to 1J: clasts from 1 cm to 10 cm in size.

UNIT IV: ANDESITIC BRECCIA

SUBUNIT IVC: Variegated andesitic breccia with some reworking

Pieces 1-3

CONTACTS: None visible.
PHENOCRYSTS: For clasts only.

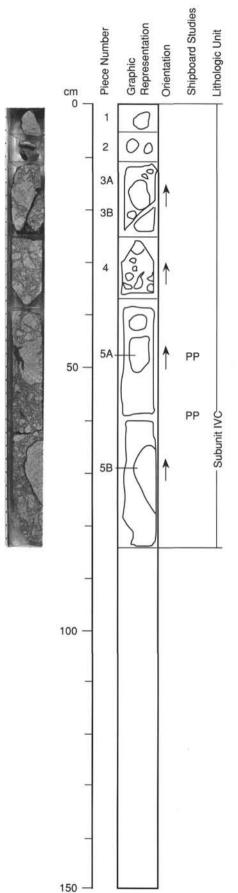
Plagioclase - 20-25%, 0.3-3 mm, euhedral, altered to sericite.

Clinopyroxene - 5%, 0.3-3 mm, subhedral.

Magnetite - 1%, ≤0.3 mm, anhedral.

GROUNDMASS: Mostly microcrystalline with plagioclase laths and altered minerals.

COLOR: Greenish gray (5BG 4/1) to dark greenish gray (5G4/1).


STRUCTURE: N/A.

ALTERATION: None.

VEINS/FRACTURES: <1%, 1 mm, random. Veins in the clasts of Piece 3, 1 mm width, transparent,

possibly either zeolite or silica mineral. Fractures in Piece 1.

ADDITIONAL COMMENTS: Matrix supported breccia.

134-831B-78R-1

UNIT IV: ANDESITIC BRECCIA

SUBUNIT IVC: Variegated andesitic breccia with some reworking

Pieces 1-5

CONTACTS: None visible.

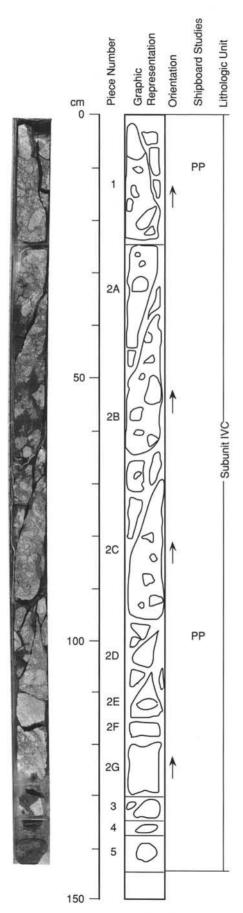
PHENOCRYSTS: For clasts only.

Plagioclase - 25%, 1–5 mm, euhedral, altered to sericite.
Clinopyroxene - 5%, 1–3 mm, subhedral, partly altered to chlorite.

Magnetite - 1%, 0.1-0.3 mm, anhedral.

GROUNDMASS: Mostly microcrystalline. Plagioclase laths altered to sericite.

VESICLES: None.


COLOR: Greenish gray (5G5/1). STRUCTURE: N/A.

ALTERATION: Clasts and matrix are highly altered.

VEINS/FRACTURES: <1%, <1 mm, irregular.

ADDITIONAL COMMENTS: In the clasts orthopyroxene is absent and magnetite is more abundant. Clasts

size range between 0.1 and 10 cm.

134-831B-79R-1

UNIT IV: ANDESITIC BRECCIA

SUBUNIT IVC: Variegated andesitic breccia with some reworking

Pieces 1-5

CONTACTS: None visible.

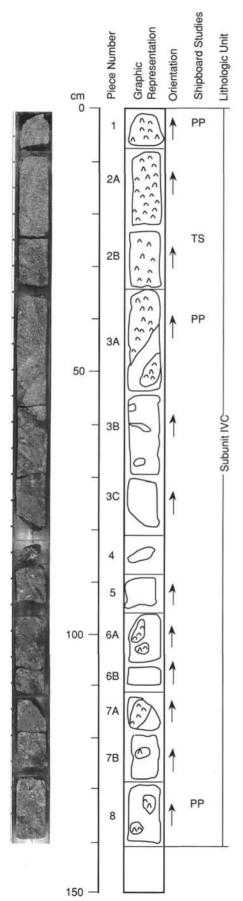
PHENOCRYSTS: For clasts only.

Plagioclase - 15–20%, 0.5–4 mm, euhedral to subhedral, altered to sericite. Clinopyroxene - 3%, 0.5–2 mm, subhedral.

Magnetite - 1%, 0.3 mm, anhedral.

GROUNDMASS: Microcrystalline with plagioclase, clinopyroxene and magnetite.

VESICLES: 1%, 0.3 mm, irregular. Piece 3 shows 3% of vesicles filled by calcite. In other pieces, calcite is


COLOR: Matrix dark greenish gray (5G 4/1), clasts greenish gray (5BG 4/1) to bluish gray (5B 5/1).

STRUCTURE: N/A.

ALTERATION: Groundmass and phenocrysts in clasts as well as matrix are highly altered to chlorite,

sericite and calcite.

VEINS/FRACTURES: None.

134-831B-79R-2

UNIT IV: ANDESITIC BRECCIA

SUBUNIT IVC: Variegated andesitic breccia with some reworking

Pieces 1-8

CONTACTS: None visible.

PHENOCRYSTS: For clasts only.

Plagioclase - 30%, 0.5-5 mm, euhedral to subhedral, highly altered.

Clinopyroxene - 5%, 0.5-3 mm, subhedral.

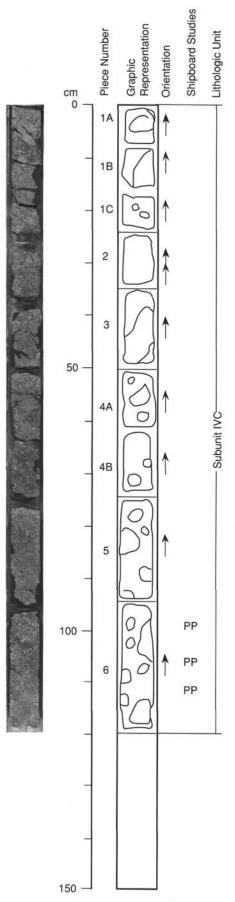
Magnetite - <1%, maximum 0.3 mm, anhedral, partly oxidized.

GROUNDMASS: Microcrystalline to glassy. Plagioclase laths and strongly oxidized dusky red (10R 3/3)

hematite are visible.

VESICLES: 1%, 0.2-0.5 mm, irregular, filled by silica minerals and calcite.

COLOR: Grayish red (10R 4/2).


STRUCTURE: N/A.

ALTERATION: Groundmass strongly oxidized and plagioclase altered to sericite.

VEINS/FRACTURES: <1%, <0.5 mm, filled by green minerals.

ADDITIONAL COMMENTS: Pieces 1, 2A and 2B and part of 3A are different fragments of the same

decimeter size clast of porphyritic andesite.

134-831B-79R-3

UNIT IV: ANDESITIC BRECCIA

SUBUNIT IVC: Variegated andesitic breccia with some reworking

Pieces 1-6

CONTACTS: None visible.

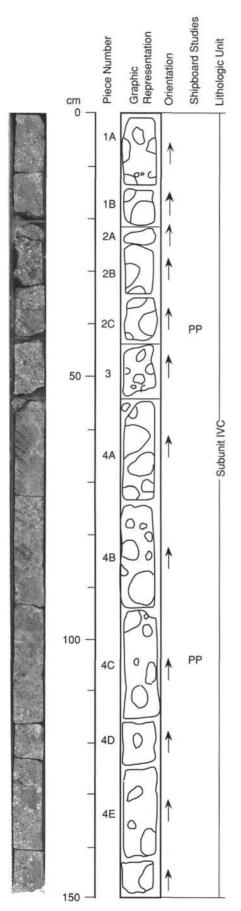
PHENOCRYSTS: For clasts only.

Plagioclase - 15-20%, 0.5-3 mm, euhedral and subhedral, altered to sericite and clay minerals.

Clinopyroxene - 5%, 0.5–2 mm, subhedral, greenish. Orthopyroxene - 5%, 0.5–2 mm, euhedral, brownish.

GROUNDMASS: Microcrystalline to glassy.

VESICLES: Rare, <1%, irregular, random. Cavities 1% in clasts, 5–10% in matrix partly filled wwith white non-carbonate material, possibly zeolite.


COLOR: Matrix greenish gray (10G 4/2), clasts dark gray (10Y 3/1).

STRUCTURE: N/A.

ALTERATION: Some plagioclase altered to sericite and clay minerals. Homogeneous microcrystalline to glassy grains in matrix (probably representing groundmass of rock fragments) shows various stages of alteration from gray fresh rock to reddish (hematite rich(?)), reddish gray, greenish white, white. These colors possibly indicate the existence of hematite, chlorite and zeolite.

VEINS/FRACTURES: None.

ADDITIONAL COMMENTS: Clasts make up 40% of this section. Most clasts have light gray corona (0.5 mm). Matrix is made of 1-15 mm, subrounded to subangular rock fragments, minerals contained in clasts and greenish to light gray alteration products filling the space between them.

134-831B-80R-1

UNIT IV: ANDESITIC BRECCIA

SUBUNIT IVC: Variegated andesitic breccia with some reworking

Pieces 1-4

CONTACTS: None visible.

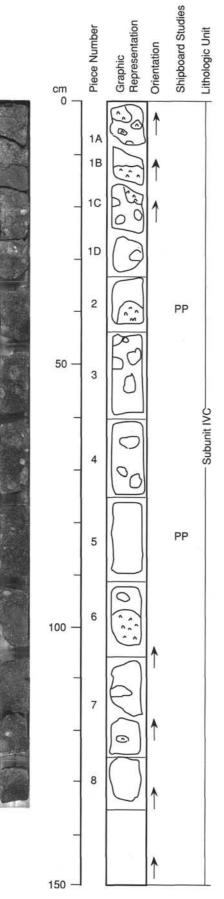
PHENOCRYSTS: For clasts only.

Plagioclase - 15-20%, 1-5 mm, subhedral, altered to sericite and clay minerals.

Clinopyroxene - 3–5%, 0.5–1.5 mm, subhedral, greenish.
Orthopyroxene - 3–5%, 0.5–1.5 mm, euhedral to subhedral, brownish .

GROUNDMASS: Microcrystalline to glassy.

VESICLES: 2-10%, 1-3 mm, irregular. Inside, the vesicles are coated by or filled with greenish white, noncarbonate, materials.


COLOR: Matrix dark greenish gray (5GY 4/1), clasts dark gray (10Y 3/1).

STRUCTURE: N/A.

ALTERATION: Matrix and clasts are highly altered.

VEINS/FRACTURES: None.

ADDITIONAL COMMENTS: Clast proportion is 40% of the total in this section. Clast size varies from 0.5-10 cm. Most clasts have light gray corona (<0.5 mm). Matrix is made of 1–5 mm, subrounded tosubangular rock fragments with varying degrees of alteration. Greenish light gray alteration products fill the intervening spaces. Oxidized fragments are less abundant than in the previous core (134-831B-79R-3).

134-831B-80R-2

UNIT IV: ANDESITIC BRECCIA

SUBUNIT IVC: Variegated andesitic breccia with some reworking

Pieces 1-8

CONTACTS: None visible.

PHENOCRYSTS: For clasts only.

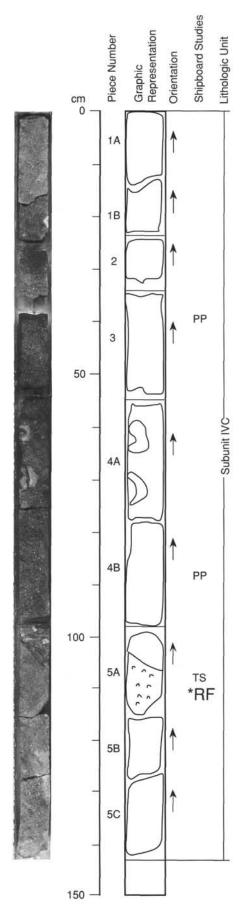
Plagioclase - 20%, 1-3 mm, euhedral to subhedral, altered to sericite and clay minerals..

Clinopyroxene - 5%, 1-2 mm, subhedral.

Orthopyroxene - 2%, 1-2 mm, euhedral to subhedral.

GROUNDMASS: Microphyric.

VESICLES: 1%, <1 mm, irregular, random, partly filled with greenish minerals (chlorite or zeolite).


COLOR: Dark greenish gray (5G 4/1).

STRUCTURE: N/A.

ALTERATION: Matrix and clasts are highly altered to white green and red secondary minerals.

VEINS/FRACTURES: <1%, <0.5 mm, irregular.

ADDITIONAL COMMENTS: Matrix supported breccia. Clast size ranges between 0.1 and 8 cm. The matrix consist of sandy material and rock fragments. Several clasts are strongly oxidized, with hematite showing a dusky red color (10R 3/3).

134-831B-80R-3

UNIT IV: ANDESITIC BRECCIA

SUBUNIT IVC: Variegated andesitic breccia with some reworking

Pieces 1-5

CONTACTS: None visible.

PHENOCRYSTS: For clasts only.

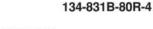
Plagioclase - 25%, 1-3 mm, euhedral, altered.

Clinopyroxene - 5%, 2 mm, subhedral.

Orthopyroxene - 2%, 1 mm, euhedral to subhedral.

Magnetite - 1%, 0.3 mm., anhedral, partly oxidized. GROUNDMASS: Microphyric with devitrified glass.

VESICLES: 1%, <1 mm, irregular, cavities partly filled with greenish, semi-translucent minerals (zeolite or


COLOR: Dark greenish gray (5G 4/1) to black (5Y 2.5/1).

STRUCTURE: N/A.

ALTERATION: All phenocrysts are highly altered.

VEINS/FRACTURES: None.

ADDITIONAL COMMENTS: Matrix supported breccia. In this section, a part of Piece 5 is a fragment of the black glassy porphyritic andesite. In Piece 4A, the rim around the clast is about 1 cm in radius and has several concentric rings. The color of the rings changes progressively from light greenish to white.

UNIT IV: ANDESITIC BRECCIA
SUBUNIT IVC: Variegated andesitic breccia with some reworking

Pieces 1-6

CONTACTS: None visible.

PHENOCRYSTS: For clasts only.

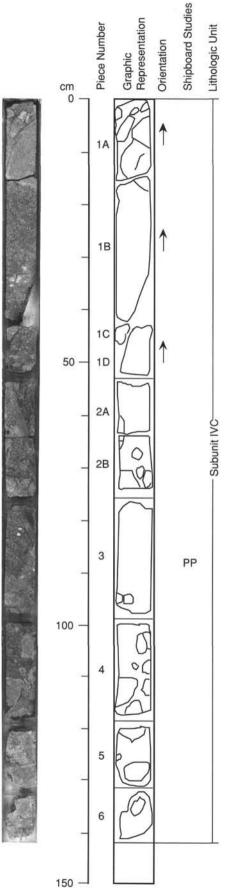
Plagioclase - 15–20%, 1–3 mm, subhedral, moderate to highly altered to greenish white minerals (sericite and clay minerals).

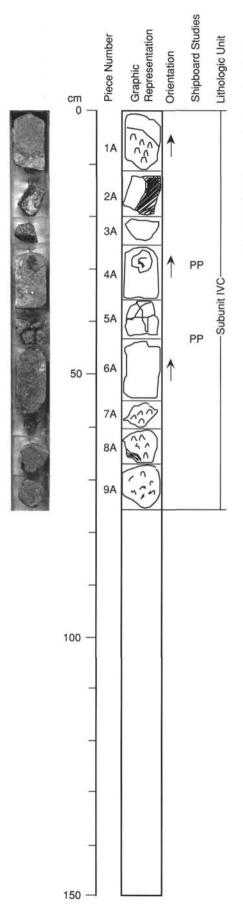
Clinopyroxene - 3-5%, 0.5-1.5 mm, subhedral, greenish.

Orthopyroxene - 3-5%, 0.5-1.5 mm, euhedral to subhedral, brownish.

GROUNDMASS: Microcrystalline to glassy.

VESICLES: 5–10%, 1–3 mm, rounded and irregular. Coated by or filled with white to greenish noncarbonate minerals.


COLOR: Matrix dark greenish gray (5GY 4/1), clasts dark gray (10Y 3/1).


STRUCTURE: N/A.

ALTERATION: Some plagioclase altered to sericite and clay minerals. Homogeneous microcrystalline to glassy grains in matrix (probably representing groundmass of rock fragments) shows various stages of alteration, related to changes in color between reddish gray and greenish white. These colors possibly indicate the presence of hematite, chlorite and zeolite minerals.

VEINS/FRACTURES: <1%, <1 mm, oblique, clast in Piece 1A.

ADDITIONAL COMMENTS: Clast proportion is 20% of the total in this section. Most clasts range from 3 to 13 cm in size. They have 1 mm brownish gray inner corona and 2–3 mm light gray outer corona. The fractures in Piece 1A also have these inner and outer rims. Matrix is made of 1–10 mm, subangular to subrounded rock fragments, most of them being oxidized. Greenish gray alteration products fill the spaces between them.

134-831B-80R-5

UNIT IV: ANDESITIC BRECCIA

SUBUNIT IVC: Variegated andesitic breccia with some reworking

Pieces 1-9

CONTACTS: None visible.

PHENOCRYSTS: For clasts only.

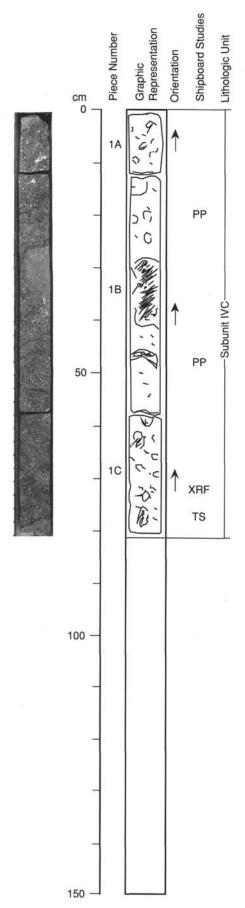
Plagioclase - 30%, 0.5–3 mm, euhedral to subhedral.

Clinopyroxene - 5%, 0.5-2 mm, subhedral.

Orthopyroxene - 3%, 0.5-2 mm, subhedral.

GROUNDMASS: Microcrystalline to glassy.

VESICLES: 1–2%, about 1 mm, irregular, filled with light bluish gray (5B 7/1) minerals.


COLOR: Matrix dark greenish gray (5G 4/1), clasts dark gray (5Y 3/1).

STRUCTURE: N/A.

ALTERATION: Some clasts are coated by light bluish gray minerals. Matrix is highly altered.

VEINS/FRACTURES: None.

ADDITIONAL COMMENTS: Clasts are subrounded to subangular with a size range between granule and pebble.

UNIT IV: ANDESITIC BRECCIA

SUBUNIT IVC: Variegated andesitic breccia with some reworking

Pieces 1A-1C

CONTACTS: None visible.

PHENOCRYSTS: For clasts only.

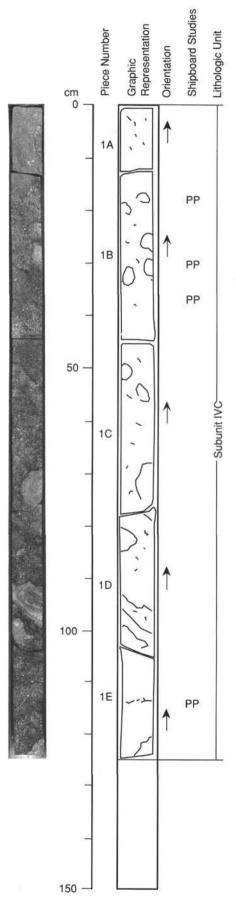
Plagioclase - 25%, 1–3 mm, euhedral and sometimes glomeroporphyritic in association with orthopyroxene.

Clinopyroxene - 8%, 0.5-1 mm, euhedral to subhedral.

Orthopyroxene - 5%, 0.2-0.6 mm, subhedral.

GROUNDMASS: Microcrystalline to glassy.

VESICLES: 5-10%, 1-2 mm, subrounded to irregular, random, filled with bluish material, probably zeolite.


COLOR: Variable from light gray (5Y 7/1) to pale reddish brown (10R 5/4).

STRUCTURE: N/A.

ALTERATION: Clasts mainly unaltered, but some smaller ones are oxidized.

VEINS/FRACTURES: 1-2%, <1 mm, irregular.

ADDITIONAL COMMENTS: Much of the breccia matrix is red (oxidized). There are more crystals and fewer lithic fragments than higher in the sequence (e.g., Core 134-831B-73R): the main crystal components are plagioclase and clinopyroxene. The color of the breccia matrix is variegated, ranging between weak red (2.5YR 5/2) and gray (2.5Y 5/0). There are abundant vesicles (25–30%, 3–4 mm) filled with yellowish material. The proportion of andesitic clasts is about 25%.

UNIT IV: ANDESITIC BRECCIA

SUBUNIT IVC: Variegated andesitic breccia with some reworking

Pieces 1A-1E

CONTACTS: None visible.

PHENOCRYSTS: For clasts only.

Plagioclase - 25%, 1–3 mm, euhedral and sometimes glomeroporphyritic in association with

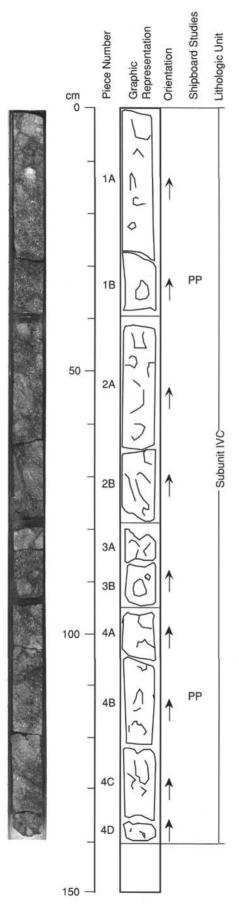
orthopyroxene

Clinopyroxene - 8%, 0.5-1 mm, euhedral to subhedral.

Orthopyroxene - 5%, 0.2-0.6 mm, subhedral.

GROUNDMASS: Microcrystalline to glassy.

VESICLES: 5-10%, 1-2 mm, subrounded to irregular, filled with bluish material, probably zeolite.


COLOR: Variable from light gray (5Y 7/1) to pale reddish brown (10R 5/4).

STRUCTURE: N/A

ALTERATION: Clasts mainly unaltered, but some smaller ones are oxidized.

VEINS/FRACTURES: 2-3%, <1 mm, irregular.

ADDITIONAL COMMENTS: Much of the breccia matrix is red (oxidized). There are more crystals and fewer lithic fragments than higher in the sequence (e.g., Core 134-831B-73R): the main crystal components are plagioclase and clinopyroxene. The color of the breccia matrix is variegated, ranging between weak red (2.5YR 5/2) and gray (2.5Y 5/0). There are abundant vesicles (25–30%, 3–4 mm) filled with yellowish material. The proportion of large andesitic clasts is 25–30%.

UNIT IV: ANDESITIC BRECCIA

SUBUNIT IVC: Variegated andesitic breccia with some reworking

Pieces 1A-4D

CONTACTS: None visible.

PHENOCRYSTS: For clasts only.

Plagioclase - 25%, 1-3 mm, euhedral and sometimes glomeroporphyritic in association with

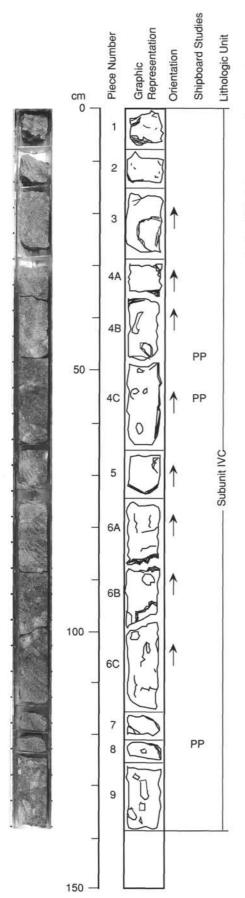
orthopyroxene.

Clinopyroxene - 8%, 0.5-1 mm, euhedral to subhedral.

Orthopyroxene - 5%, 0.2-0.6 mm, subhedral.

GROUNDMASS: Microcrystalline to glassy.

VESICLES: 5-10%, 1-2 mm, subrounded to irregular, random, filled with bluish material, probably zeolite.


COLOR: Variable from light gray (5Y 7/1) to pale reddish brown (10R 5/4).

STRUCTURE: N/A.

ALTERATION: Clasts mainly unaltered, but some smaller ones are oxidized.

VEINS/FRACTURES: 3-4%, <1 mm, irregular.

ADDITIONAL COMMENTS: Much of the breccia matrix is red (oxidized). There are more crystals and fewer lithic fragments than higher in the sequence (e.g., Core 134-831B-73R): the main crystal components are plagioclase and clinopyroxene. The color of the breccia matrix is variegated, ranging between weak red (2.5YR 5/2) and gray (2.5Y 5/0). There are abundant vesicles (25–30%, 3–4 mm) filled with yellowish material. The proportion of larger andesitic clasts is 30-35%.

UNIT IV: ANDESITIC BRECCIA

SUBUNIT IVC: Variegated andesitic breccia with some reworking

Pieces 1-9

CONTACTS: None visible.
PHENOCRYSTS: For clasts only.

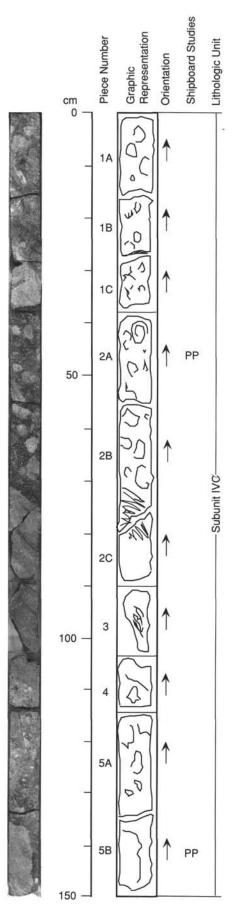
Plagioclase - 25%, 1-3 mm, euhedral and sometimes glomeroporphyritic in association with

orthopyroxene.

Clinopyroxene - 8%, 0.5-1 mm, euhedral to subhedral.

Orthopyroxene - 5%, 0.2-0.6 mm, subhedral.

GROUNDMASS: Microcrystalline to glassy. VESICLES: 5–10%, 1–2 mm, subrounded to irregular, random, filled with bluish material, probably zeolite.


COLOR: Variable from light gray (5Y 7/1) to pale reddish brown (10R 5/4).

STRUCTURE: N/A.

ALTERATION: Clasts mainly unaltered, but some smaller ones are oxidized.

VEINS/FRACTURES: 3-4%, <1 mm, irregular.

ADDITIONAL COMMENTS: Much of the breccia matrix is red (oxidized). There are more crystals and fewer lithic fragments than higher in the sequence (e.g., Core 134-831B-73R): the main crystal components are plagioclase and clinopyroxene. The color of the breccia matrix is variegated, ranging between weak red (2.5YR 5/2) and gray (2.5Y 5/0). There are abundant vesicles (25–30%, 3–4 mm) filled with yellowish material. The proportion of larger andesitic clasts is 30–35%.

UNIT IV: ANDESITIC BRECCIA

SUBUNIT IVC: Variegated andesitic breccia with some reworking

Pieces 1-5B

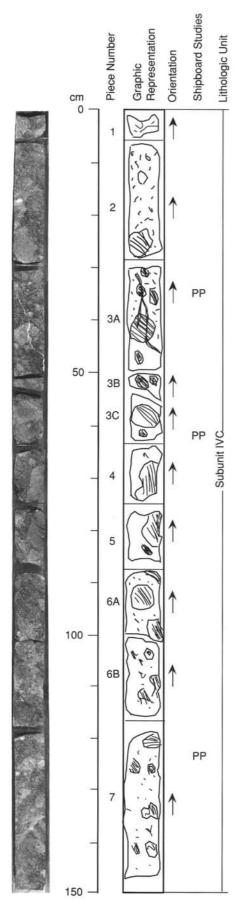
CONTACTS: None visible.

PHENOCRYSTS: For clasts only.

Plagioclase - 25%, 1-3 mm, euhedral and sometimes glomeroporphyritic

in association with orthopyroxene.

Clinopyroxene - 8%, 0.5–1 mm, euhedral to subhedral.
Orthopyroxene - 5%, 0.2–0.6 mm, subhedral.
GROUNDMASS: Microcrystalline to glassy.


VESICLES: 5-10%, 1-2 mm, subrounded to irregular, random, filled with bluish material, probably zeolite.

COLOR: Variable from light gray (5Y 7/1) to pale reddish brown (10R 5/4).

ALTERATION: Clasts mainly unaltered, but some smaller ones are oxidized.

VEINS/FRACTURES: 3-4%, <1 mm, irregular.

ADDITIONAL COMMENTS: Much of the breccia matrix is red (oxidized). The main crystal components are plagioclase and clinopyroxene. The color of the breccia matrix is variegated, ranging between weak red (2.5YR 5/2) and gray (2.5Y 5/0). There are abundant vesicles (25-30%, 3-4 mm) filled with yellowish material. The proportion of large andesitic clasts is about 45%. Some of the smaller clasts have very

UNIT IV: ANDESITIC BRECCIA

SUBUNIT IVC: Variegated andesitic breccia with some reworking

Pieces 1-7

CONTACTS: None visible.

PHENOCRYSTS: For clasts only.

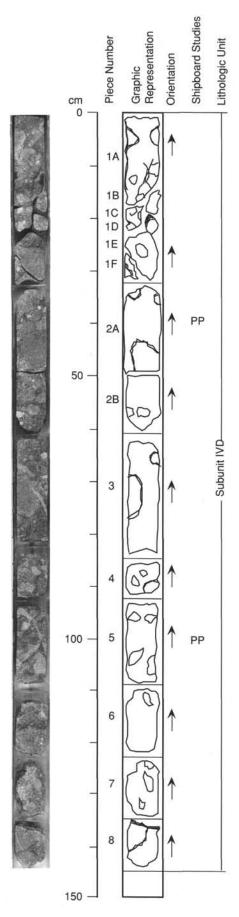
Plagioclase - 25%, 1-3 mm, euhedral and sometimes glomeroporphyritic

in association with orthopyroxene.

Clinopyroxene - 8%, 0.5-1 mm, euhedral to subhedral.

Orthopyroxene - 5%, 0.2–0.6 mm, subhedral. GROUNDMASS: Microcrystalline to glassy.

VESICLES: 5-10%, 1-2 mm, subrounded to irregular, random, filled with bluish material, probably zeolite.


COLOR: Variable from light gray (5Y 7/1) to pale reddish brown (10R 5/4).

STRUCTURE: N/A.

ALTERATION: Clasts mainly unaltered, but some smaller ones are oxidized.

VEINS/FRACTURES: 3-4%, <1 mm, irregular.

ADDITIONAL COMMENTS: Much of the breccia matrix is red (oxidized). The main crystal components are plagioclase and clinopyroxene. The color of the breccia matrix is variegated, ranging between weak red (2.5YR 5/2) and gray (2.5Y 5/0). There are abundant vesicles (25-30%, 3-4 mm) filled with yellowish material. Piece 3A contains a conspicuous calcite/zeolite vein (<2 mm). The proportion of larger andesitic clasts is 20-25%.

UNIT IV: ANDESITIC BRECCIA

SUBUNIT IVD: Andesitic hyalo-breccia with green matrix

Pieces 1-8

CONTACTS: None visible.

PHENOCRYSTS: For clasts only.

Plagioclase - 25%, 1-3 mm, euhedral and sometimes glomeroporphyritic

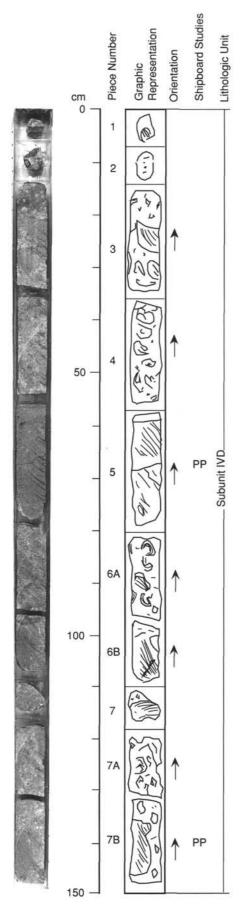
in association with orthopyroxene.

Clinopyroxene - 8%, 0.5-1 mm, euhedral to subhedral.

Orthopyroxene - 5%, 0.2-0.6 mm, subhedral.

GROUNDMASS: Microcrystalline to glassy.

VESICLES: 5-10%, 1-2 mm, subrounded to irregular, random, filled with bluish material, probably zeolite.


COLOR: Variable from light gray (5Y 7/1) to pale reddish brown (10R 5/4).

STRUCTURE: N/A.

ALTERATION: Clasts mainly unaltered, but some smaller ones are oxidized.

VEINS/FRACTURES: 2-3%, <1 mm, irregular.

ADDITIONAL COMMENTS: Much of the breccia matrix is red (oxidized). The main crystal components are plagioclase and clinopyroxene. The color of the breccia matrix is variegated, ranging between weak red (2.5YR 5/2) and gray (2.5Y 5/0). There are abundant vesicles (25–30%, 3–4 mm) filled with yellowish material. The proportion of large andesitic clasts is about 25%.

UNIT IV: ANDESITIC BRECCIA

SUBUNIT IVD: Andesitic hyalo-breccia with green matrix

Pieces 1-7B

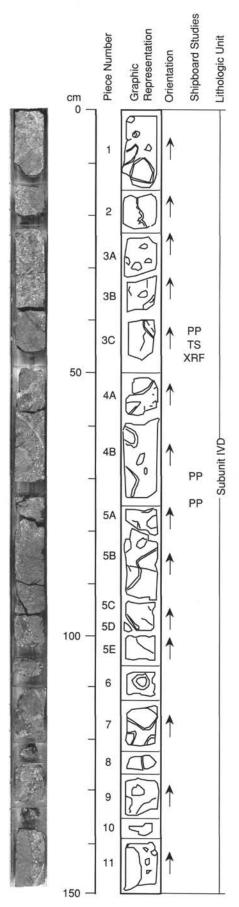
CONTACTS: None visible.

PHENOCRYSTS: For clasts only.

Plagioclase - 20%, 1–4 mm, euhedral to subhedral. Clinopyroxene - 5%, 0.5–3 mm, euhedral to subhedral.

Orthopyroxene - 3%, 0.2-0.6 mm, subhedral.

GROUNDMASS: Microcrystalline to glassy.


VESICLES: 1-5%, 1 mm, rounded to subrounded, random, filled with white mineral, probably zeolite.

COLOR: Gray (2.5Y 5/0). STRUCTURE: N/A.

ALTERATION: None evident.

VEINS/FRACTURES: Occasional small fractures (<1 mm).

ADDITIONAL COMMENTS: The shape of the clasts varies from flattened and elongate to subrounded to subangular; their edges are all smoothed rather than sharp. Almost invariably the clasts have a series of coronas or reaction rims which from the interior outward are brown (0.3 mm), white (0.6–0.8 mm) and pale gray (<2 mm). The matrix consists of small lithic fragments like the large clasts, white fragments from the border of the andesitic clasts and crystals of plagioclase and clinopyroxene. These components are set in a bluish gray (5B 6/1) to pale green (10G 6/2) glassy matrix. The greenish color may be due to dispersed celadonite. The clasts comprise about 50% of the whole rock.

UNIT IV: ANDESITIC BRECCIA

SUBUNIT IVD: Andesitic hyalo-breccia with green matrix

Pieces 1-11

CONTACTS: None visible.

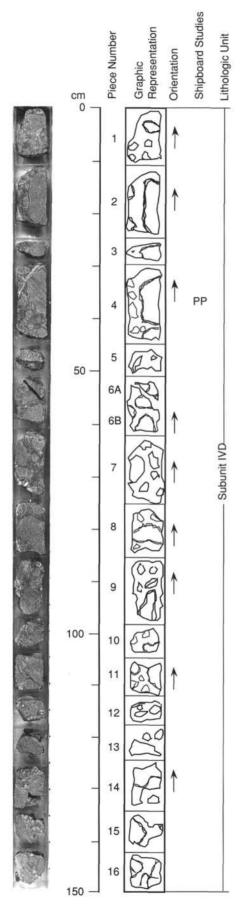
PHENOCRYSTS: For clasts only.

Plagioclase - 20%, 1–4 mm, euhedral to subhedral. Clinopyroxene - 5%, 0.5–3 mm, euhedral to subhedral.

Orthopyroxene - 3%, 0.2-0.6 mm, subhedral.

GROUNDMASS: Microcrystalline to glassy.

VESICLES: 1-5%, 1 mm, rounded to subrounded, random, filled with white mineral, probably zeolite.


COLOR: Gray (2.5Y 5/0). STRUCTURE: N/A.

ALTERATION: None evident.

VEINS/FRACTURES: Occasional small fractures (<1 mm).

ADDITIONAL COMMENTS: The shape of the clasts varies from flattened and elongate to subrounded to subangular; their edges are all smoothed rather than sharp. Almost invariably the clasts have a series of coronas or reaction rims which from the interior outward are brown (0.3 mm), white (0.6–0.8 mm) and pale gray (<2 mm). The matrix consists of small lithic fragments like the large clasts, white

fragments from the border of the andesitic clasts and crystals of plagioclase and clinopyroxene. These components are set in a bluish gray (5B 6/1) to pale green (10G 6/2) glassy matrix. The greenish color may be due to dispersed celadonite. The clasts comprise about 50% of the whole rock.

UNIT IV: ANDESITIC BRECCIA

SUBUNIT IVD: Andesitic hyalo-breccia with green matrix

Pieces 1-16

CONTACTS: None visible.

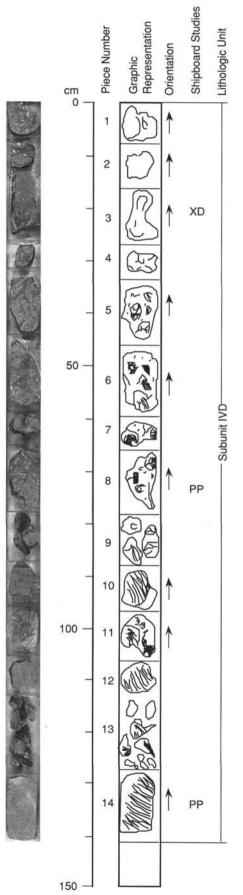
PHENOCRYSTS: For clasts only.

Plagioclase - 20%, 1–4 mm, euhedral to subhedral. Clinopyroxene - 5%, 0.5–3 mm, euhedral to subhedral.

Orthopyroxene - 3%, 0.2–0.6 mm, subhedral.

GROUNDMASS: Microcrystalline to glassy.

VESICLES: 1-5%, 1 mm, rounded to subrounded, random, filled with white mineral, probably zeolite.


COLOR: Gray (2.5Y 5/0).

STRUCTURE: N/A.

ALTERATION: None evident.

VEINS/FRACTURES: Occasional small fractures (<1 mm).

ADDITIONAL COMMENTS: The shape of the clasts varies from flattened and elongate to subrounded to subangular; their edges are all smoothed rather than sharp. Almost invariably the clasts have a series of coronas or reaction rims which from the interior outward are brown (0.3 mm), white (0.6–0.8 mm) and pale gray (<2 mm). The matrix consists of small lithic fragments like the large clasts, white fragments from the border of the andesitic clasts and crystals of plagioclase and clinopyroxene. These components are set in a bluish gray (5B 6/1) to pale green (10G 6/2) glassy matrix. The greenish color may be due to dispersed celadonite. The clasts comprise about 50% of the whole rock.

UNIT IV: ANDESITIC BRECCIA

SUBUNIT IVD: Andesitic hyalo-breccia with green matrix

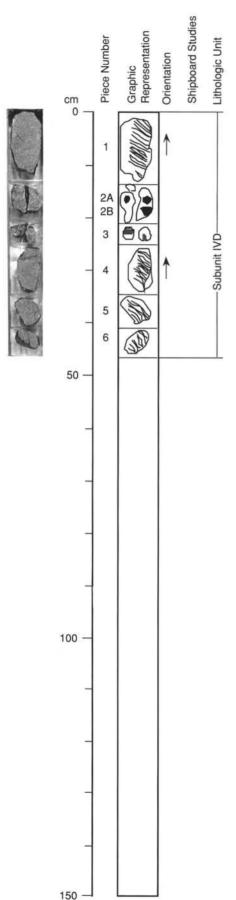
Pieces 1-14

CONTACTS: None visible.

PHENOCRYSTS: For clasts only.

Plagioclare - 20%, 1–4 mm, euhedral to subhedral.
Clinopyroxene - 5%, 0.5–3 mm, euhedral to subhedral.
Orthopyroxene - 3%, 0.2–0.6 mm, subhedral.

GROUNDMASS: Microcrystalline to glassy.


VESICLES: 1-5%, 1 mm, rounded to subrounded, random, filled with white mineral, probably zeolite.

COLOR: Gray (2.5Y 5/0).

STRUCTURE: N/A.
ALTERATION: None evident.

VEINS/FRACTURES: Occasional small fractures (<1 mm).

ADDITIONAL COMMENTS: The shape of the clasts varies from flattened and elongate to subrounded to subangular; their edges are all smoothed rather than sharp. Almost invariably the clasts have a series of coronas or reaction rims which from the interior outward are brown (0.3 mm), white (0.6–0.8 mm) and pale gray (<2 mm). The matrix consists of small lithic fragments like the large clasts, white fragments from the border of the andesitic clasts and crystals of plagioclase and clinopyroxene. These components are set in a bluish gray (5B 6/1) to pale green (10G 6/2) glassy matrix. The greenish color may be due to dispersed celadonite. The clasts comprise about 50% of the whole rock.

UNIT IV: ANDESITIC BRECCIA

SUBUNIT IVD: Andesitic hyalo-breccia with green matrix

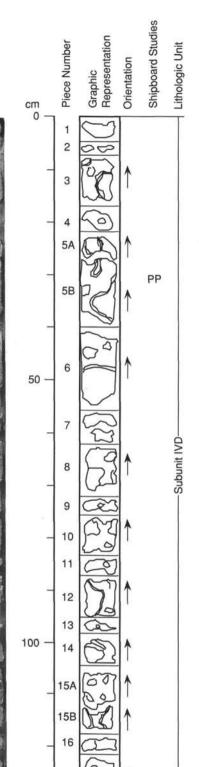
Pieces 1-6

CONTACTS: None visible.

PHENOCRYSTS: For clasts only.

Plagioclase - 20%, 1–4 mm, euhedral to subhedral. Clinopyroxene - 5%, 0.5–3 mm, euhedral to subhedral.

Orthopyroxene - 3%, 0.2-0.6 mm, subhedral. GROUNDMASS: Microcrystalline to glassy.


VESICLES: 1-5%, 1 mm, rounded to subrounded, random, filled with white mineral, probably zeolite.

COLOR: Gray (2.5Y 5/0). STRUCTURE: N/A.

ALTERATION: None evident.

VEINS/FRACTURES: Occasional small fractures (<1 mm).

ADDITIONAL COMMENTS: The shape of the clasts varies from flattened and elongate to subrounded to subangular; their edges are all smoothed rather than sharp. Almost invariably the clasts have a series of coronas or reaction rims which from the interior outward are brown (0.3 mm), white (0.6–0.8 mm) and pale gray (<2 mm). The matrix consists of small lithic fragments like the large clasts, white fragments from the border of the andesitic clasts and crystals of plagioclase and clinopyroxene. These components are set in a bluish gray (58 6/1) to pale green (10G 6/2) glassy matrix. The greenish color may be due to dispersed celadonite. The clasts comprise about 50% of the whole rock.

17

18

19

150

134-831B-83R-1

UNIT IV: ANDESITIC BRECCIA

SUBUNIT IVD: Andesitic hyalo-breccia with green matrix

Pieces 1-19

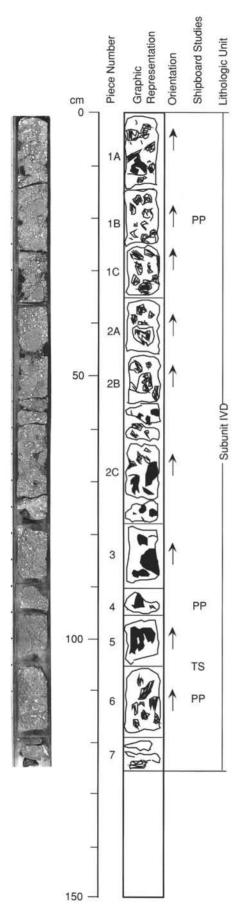
CONTACTS: None visible.

PHENOCRYSTS: For clasts only.

Plagioclase - 25%, 1-2 mm, euhedral, slightly oriented.

Clinopyroxene - 5%, 1 mm, subhedral.

Orthopyroxene - 5%, 0.2–0.7 mm, subhedral. GROUNDMASS: Microcrystalline to glassy.


VESICLES: 1-5%, 1 mm, rounded, random, filled with bluish white mineral, probably zeolite.

COLOR: Gray (2.5Y 5/0) STRUCTURE: N/A.

ALTERATION: None evident.

VEINS/FRACTURES: Occasional small fractures (0.5 mm).

ADDITIONAL COMMENTS: The shape of the clasts varies from flattened and elongate to subrounded to subangular. Edges are smooth rather than sharp. All of the clasts have coronas or reaction rims, the most conspicuous being a thin white rim (1-1.5 mm). Outside the distinct white rim is a greenish gray zone (1.5 mm). The matrix contains white fragments similar to the border of the andesitic clasts. Crystal of plagioclase and clinopyroxene are very sparse. These components are set in a grayish green (5G 5/2) glassy matrix. The greenish color, possibly due to celadonite, is more uniform and more intense than in the previous cores. The clasts comprise about 45% of the whole rock volume.

UNIT IV: ANDESITIC BRECCIA

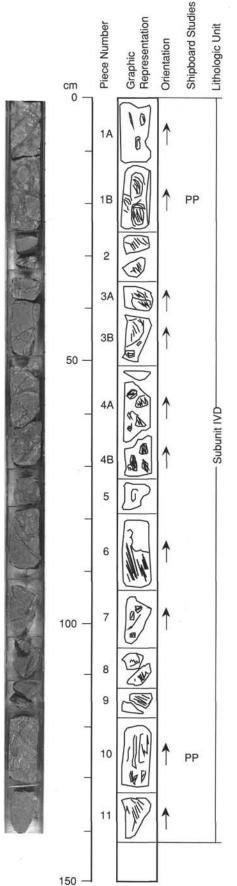
SUBUNIT IVD: Andesitic hyalo-breccia with green matrix

Pieces 1-7

CONTACTS: None visible.

PHENOCRYSTS: For clasts only.

Plagioclase - 25%, 1–2 mm, euhedral, slightly oriented. Clinopyroxene - 5%, 1 mm, subhedral. Orthopyroxene - 5%, 0.2–0.7 mm, subhedral.


GROUNDMASS: Microcrystalline to glassy. VESICLES: 1-5%, 1 mm, rounded, random, filled with bluish-white mineral, probably zeolite.

COLOR: Gray (2.5Y 5/0) STRUCTURE: N/A.

ALTERATION: None evident.

VEINS/FRACTURES: Occasional small fractures (0.5 mm).

ADDITIONAL COMMENTS: The shape of the clasts varies from flattened and elongate to subrounded to subangular. Edges are smooth rather than sharp. All of the clasts have coronas or reaction rims, the most conspicuous being a thin white rim (1-1.5 mm). Outside the distinct white rim is a greenish gray zone (1.5 mm). The matrix contains white fragments similar to the border of the andesitic clasts. Crystal of plagioclase and clinopyroxene are very sparse. These components are set in a grayish green (5G 5/2) glassy matrix. The greenish color, possibly due to celadonite, is more uniform and more intense than in the previous cores. The clasts comprise about 45% of the whole rock volume.

UNIT IV: ANDESITIC BRECCIA

SUBUNIT IVD: Andesitic hyalo-breccia with green matrix

Pieces 1-11

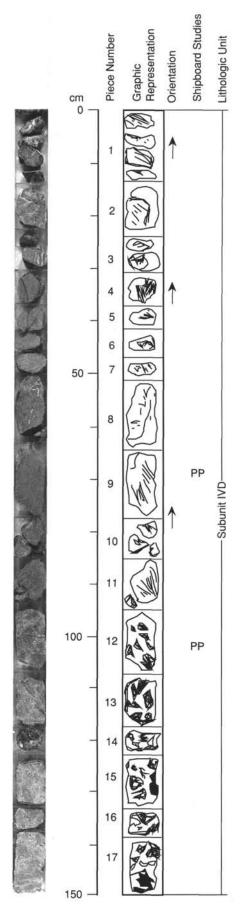
CONTACTS: None visible.

PHENOCRYSTS: For clasts only.

Plagioclase - 25%, 1–2 mm, euhedral, slightly oriented. Clinopyroxene - 5%, 1 mm, subhedral.

Orthopyroxene - 5%, 0.2-0.7 mm, subhedral.

GROUNDMASS: Microcrystalline to glassy.


VESICLES: 1-5%, 1-2 mm, rounded, random, filled with bluish-white mineral, probably zeolite.

COLOR: Gray (2.5Y 5/0). STRUCTURE: N/A.

ALTERATION: None evident.

VEINS/FRACTURES: Occasional small fractures (0.5 mm).

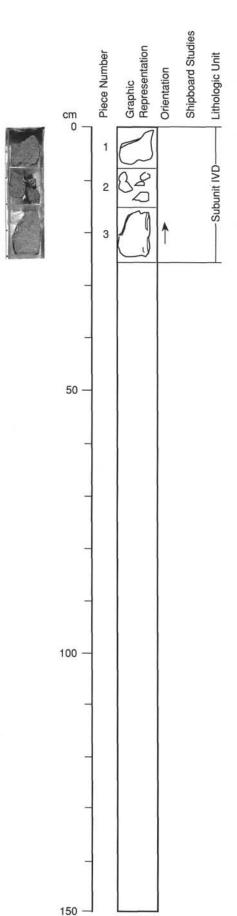
ADDITIONAL COMMENTS: The shape of the clasts varies from flattened and elongate to subrounded, subangular and wispy. All of the clasts have conspicuous coronas or reaction rims which are whitish and <3 mm wide. The matrix is gray (5Y 5/1) with flecks of grayish-green (5G 5/2). It is composed of small lithic fragments similar to the andesitic clasts, glass, plagioclase and clinopyroxene, with alteration products that include clay minerals and zeolites. The clasts comprise about 50% of the whole rock

UNIT IV: ANDESITIC BRECCIA SUBUNIT IVD: Andesitic hyalo-breccia with green matrix

Pieces 1-17

CONTACTS: None visible. PHENOCRYSTS: For clasts only.

Plagioclase - 25%, 1-2 mm, euhedral, slightly oriented.


Clinopyroxene - 5%, 1 mm, subhedral.
Orthopyroxene - 5%, 0.2–0.7 mm, subhedral.
GROUNDMASS: Microcrystalline to glassy.

VESICLES: 1-5%, 1-2 mm, rounded, random, filled with bluish white mineral, probably zeolite.

COLOR: Gray (2.5Y 5/0). STRUCTURE: N/A.

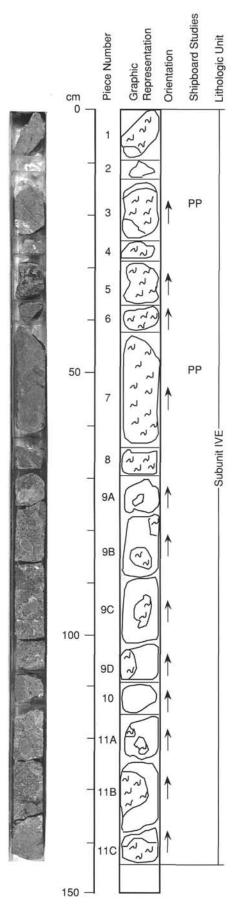
ALTERATION: None evident.

VEINS/FRACTURES: Occasional small fractures (0.5 mm), filled with bluish white mineral, probably zeolite. ADDITIONAL COMMENTS: The shape of the clasts varies from flattened and elongate to subrounded and subangular. Pieces 4-11 are almost exclusively clast material. The clasts embedded in the matrix show coronas or reaction rims: this takes the form of a thin (1 mm) white line enclosed by an outer greenish gray zone (1.5 mm). The matrix contains white fragments similar to the border of the andesitic clasts. Crystals of plagioclase and clinopyroxene are sparse. The color of the matrix varies from grayish green (5G 5/2) to gray (5Y 5/1). The greenish color is more intense at the bottom of the section (Pieces 12– 17). The clasts comprise about 50% of the whole rock volume.

UNIT IV: ANDESITIC BRECCIA SUBUNIT IVD: Andesitic hyalo-breccia with green matrix

Pieces 1-3

CONTACTS: None visible. PHENOCRYSTS: For clasts only.


Plagioclase - 25%, 1–2 mm, euhedral, slightly oriented.
Clinopyroxene - 5%, 0.2–0.7 mm, subhedral.
Orthopyroxene - 5%, 0.2–0.7 mm, subhedral.

GROUNDMASS: Microcrystalline to glassy.
VESICLES: 1–5%, 1–2 mm, rounded, random, filled with bluish white mineral, probably zeolite.

COLOR: Gray (2.5Y 5/0). STRUCTURE: N/A.

ALTERATION: None evident.

VEINS/FRACTURES: Occasional small fractures (0.5 mm).
ADDITIONAL COMMENTS: Only clasts occur in this section.

UNIT IV: ANDESITIC BRECCIA

SUBUNIT IVE: Variegated andesitic breccia with some reworking

Pieces 1-11

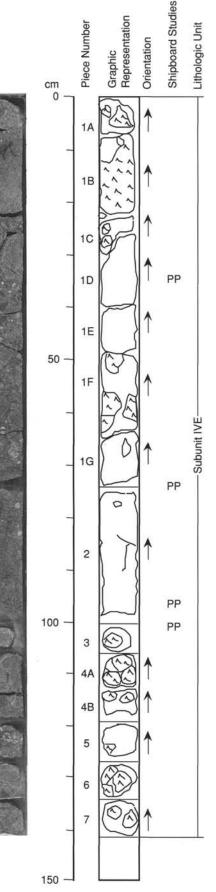
CONTACTS: None visible.

PHENOCRYSTS: For clasts only.

Plagioclase - 20–25%, 1–4 mm, euhedral to subhedral. Clinopyroxene - 5–8%, 0.5–3 mm., subhedral.

Orthopyroxene - 3-5%, 0.5-2 mm, euhedral to subhedral.

GROUNDMASS: Microcrystalline to glassy.


VESICLES: None.

COLOR: Matrix greenish gray (5G 6/1), clasts dark gray (2.5YR 4/0). STRUCTURE: N/A..

ALTERATION: Some plagioclases are altered to white or light greenish gray minerals.

VEINS/FRACTURES: <1%, 0.1-0.5 mm, irregular. In Piece 1, filled by white non-carbonate minerals.

ADDITIONAL COMMENTS: Clast size ranges between 1 and 20 cm, rounded to sub-rounded. Most clasts have reaction rims; the inner rim being a thin (0.5–2 mm) white line, and the outer a gray one, 2–4 mm wide. Some lack inner rims or both inner and outer rims. The clasts comprise 60% of the whole rock volume. Matrix is made of fragments of andesite (1-10 mm), with varying degrees of oxidation, crystals (<2 mm), and light greenish gray altered glass.

UNIT IV: ANDESITIC BRECCIA

SUBUNIT IVE: Variegated andesitic breccia with some reworking

Pieces 1-7

CONTACTS: None visible.

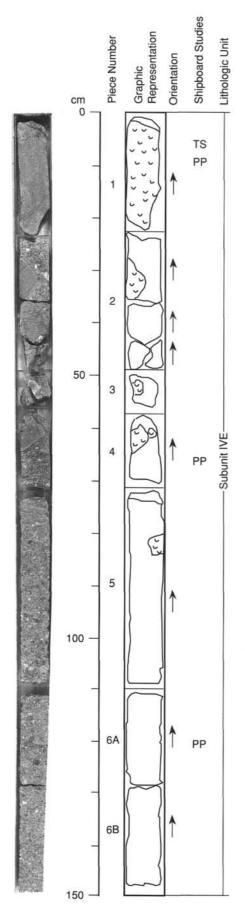
PHENOCRYSTS: For clasts only.

Plagioclase - 20–25%, 1–4 mm, euhedral. Clinopyroxene - 5–8%, 1–3 mm, subhedral.

Orthopyroxene - 3-5%, 1-2 mm, euhedral to subhedral.

GROUNDMASS: Microcrystalline to glassy.

VESICLES: None.


COLOR: Matrix greenish gray (5G 6/1), clasts dark gray (2.5YR 4/0).

STRUCTURE: N/A.

ALTERATION: Plagioclase shows white or light greenish gray alteration rim.

VEINS/FRACTURES: <1%, 1 mm wide, fracture within clast in Piece 1B, and Piece 4 (top).

ADDITIONAL COMMENTS: The clasts are subrounded to subangular in shape, 1-15 cm in size. Most clasts have reaction rims; inner rim being thin white line, 0.5-2 mm wide and outer gray rim, 2-4 mm wide. This reaction zone extends into the interior of the clasts, probably along microfractures, in Pieces 1A, 1D, 1G, 3, 5 and 7, and occupies more than half the clast. The clasts comprise about 50% of the whole rock volume. Carbonates (5-10 mm) also occur.

UNIT IV: ANDESITIC BRECCIA

SUBUNIT IVE: Variegated andesitic breccia with some reworking

Pieces 1-6

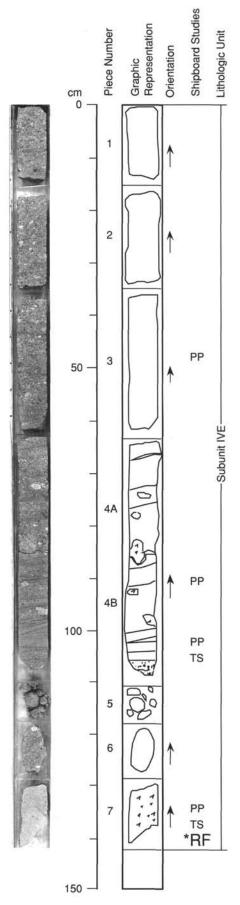
CONTACTS: None visible.

PHENOCRYSTS: For clasts only.

Plagioclase - 20–25%, 1–4 mm, euhedral to subhedral. Clinopyroxene - 5–8%, 0.5–3 mm, subhedral. Orthopyroxene - 3–5%, 0.5–2 mm, euhedral to subhedral.

GROUNDMASS: Microcrystalline to glassy.

VESICLES: N/A.


COLOR: Matrix greenish gray (5G 6/1), and weak red (10R 4/3 to 10R 4/2). Clasts dark gray (2.5YR 4/0).

STRUCTURE: N/A.

ALTERATION: Plagioclase shows white or light greenish gray alteration rim.

VEINS/FRACTURES: At the top of Piece 1, filled by green secondary mineral and calcite

ADDITIONAL COMMENTS: Clasts are subrounded to subangular in shape, 1-20 cm in size. Most clasts have reaction rims; the inner rim being light gray, 0.5-2 cm wide and the outer a gray rim 3-15 mm wide. Several subparallel layers of this reaction rim extend into the interior of clast in Piece 1. The proportion of clasts in this section is 60%. Matrix is made of fragments of lava, 1-10 mm in size, with varying degrees of oxidation, and light greenish gray altered glass. Also included are 5-10 mm calcite at 26-30 cm.

UNIT IV: ANDESITIC BRECCIA

SUBUNIT IVE: Variegated andesitic breccia with some reworking

Pieces 1-7

CONTACTS: None visible.

PHENOCRYSTS: For clasts only.

Plagioclase - 20–25%, 1–4 mm, euhedral to subhedral. Clinopyroxene - 5–8%, 0.5–3 mm, subhedral.

Orthopyroxene - 3-5%, 0.5-2 mm, euhedral to subhedral.

GROUNDMASS: Microcrystalline to glassy.

VESICLES: N/A.

COLOR: Matrix dark greenish gray (5G 4/1) to dusky red (10R 3/3), clasts greenish gray (5G 5/1) or greenish black (5GY 2/1).

STRUCTURE: N/A.

ALTERATION: Plagioclase shows white or light greenish gray alteration rim.

VEINS/FRACTURES: Occasional small fractures (<1 mm).

ADDITIONAL COMMENTS: Pieces 1, 2, 3, 4A and 6 are relatively fine-grained volcanic conglomerate. Clasts are pebble size, mostly 0.5-1 cm in diameter and are made of altered andesitic rocks with different colors. Matrix is composed of rock fragments and of several minerals (plagioclase, clinopyroxene, orthopyroxene, magnetite, chlorite, etc.). Pieces 4A and 4B are medium to coarse-grained volcanic sandstone with few pebbles of volcanic rocks. Bedding is visible. Color of sandstone is dark gray (N4). One graded bed and cross bedding at 105-110 cm. This sandstone passes upward into conglomerate and contains isolated clasts of light greenish gray (5G 7/1) volcanics (probably andesite).

134-831B-69R-01 (Piece 1, 75-78 cm)

OBSERVER: BAK

WHERE SAMPLED:

ROCK NAME: Andesite.

GRAIN SIZE: Fine-grained.

TEXTURE: Porphyritic.

PRIMARY MINERALOGY	PERCENT PRESENT	PERCENT ORIGINAL	SIZE (mm)	COMPO- SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Plagioclase	20	44	0.5-5		Euhedral to subhedral.	Severely altered.
Opaque minerals	1	1	0.1-0.2		Subhedral.	
GROUNDMASS						
Plagioclase	15	15	0.05-0.1		Laths.	
Opaque minerals	15	15	0.05-0.1		Grains.	
Pyroxene	30	15	0.05-0.1		Subhedral.	
Glass	-	10	N/A.		N/A.	
SECONDARY		REPLACING/	/			
MINERALOGY	PERCENT	FILLING				COMMENTS
Clay minerals	30	Plagioclase/gla	ass.			
Hematite	19	Pyroxenes.				
VESICLES/			SIZE			***************************************
CAVITIES	PERCENT	LOCATION	(mm)		FILLING	SHAPE
Vesicles	2	Dispersed.	1-2		Clay minerals.	Irregular.

COMMENTS: A highly oxidized lava from near the top of the volcanic sequence.

134-831B-69R-03 (Piece 4, 54-58 cm)

OBSERVER: BAK

WHERE SAMPLED:

ROCK NAME: Andesite.

GRAIN SIZE: Fine-grained.

PRIMARY	PERCENT	PERCENT	SIZE	COMPO-			
MINERALOGY	PRESENT	ORIGINAL	(mm)	SITION	MORPHOLOGY	COMMENTS	
PHENOCRYSTS							
Plagioclase	12	15	0.2-0.5		Subhedral.	Some alteration, fractured.	
Clinopyroxene	1	1	0.3-1.5		Subhedral.		
Opaque minerals	1	1	0.05-0.4		Subhedral.		
GROUNDMASS							
Plagioclase	20	30	0.05-0.1		Laths.		
Opaque minerals	10	10	0.01-0.05		Grains.		
Clinopyroxene	5	5	0.05-0.1		Grains.		
Glass	-	36	N/A.		N/A.		
SECONDARY		REPLACING	/				
MINERALOGY	PERCENT	FILLING				COMMENTS	
Clay minerals	36	Feldspar and g	lass.				
Palagonite	15	Glass.				Concentrated in patches and veins.	
VESICLES/	***************************************	*******************************	SIZE				
CAVITIES	PERCENT	LOCATION	(mm)		FILLING	SHAPE	
Vesicles	5	Dispersed.	0.1-0.5		Clay minerals.	Irregular.	

134-831B-69R-03 (Piece 4B, 58-61 cm)

OBSERVER: BAK

WHERE SAMPLED:

ROCK NAME: Andesite.

GRAIN SIZE: Fine-grained

TEXTURE: Porphyritic.

PRIMARY MINERALOGY	PERCENT PRESENT	PERCENT ORIGINAL	SIZE (mm)	COMPO- SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Plagioclase	22	22	0.3-4.0		Euhedral to subhedral.	Severely altered.
Clinopyroxene	5	5	0.2-2.0		Subhedral.	
Orthopyroxene	2	2	0.2-1.0		Subhedral.	
Opaque minerals	1	1	0.1-0.2		Subhedral.	
GROUNDMASS						
Plagioclase	30	30	0.03-0.1		Laths.	
Clinopyroxene	3	3	0.01-0.05		Laths and granular.	
Orthopyroxene	4	4	0.01-0.05		Laths.	
Opaque minerals	3	3	0.002-0.04		Rounded.	Minute grains show reddish color.
Glass	30	30	N/A.		N/A.	Light brown color.
SECONDARY		REPLACING/				
MINERALOGY	PERCENT	FILLING				COMMENTS
Chlorite	tr.	Orthopyroxene.				
VESICLES/			SIZE			
CAVITIES	PERCENT	LOCATION	(mm)		FILLING	SHAPE
Vesicles	None.		warm man.			

134-831B-70R-01 (Piece 3, 123-125 cm)

OBSERVER: BAK

WHERE SAMPLED:

ROCK NAME: Andesite.

GRAIN SIZE: Fine-grained.

PRIMARY MINERALOGY	PERCENT PRESENT	PERCENT ORIGINAL	SIZE (mm)	COMPO- SITION	MORPHOLOGY	COMMENTS	
DUENOCDVete							
PHENOCRYSTS	122	12.27	02020-0020		Page 200 and Company		
Plagioclase	22	22	0.3-4.0		Euhedral.	Fractured but very fresh, oscillatory zoning, small crystalline inclusions.	
Clinopyroxene	3	3	0.1-2.0		Subhedral.		
GROUNDMASS							
Plagioclase	10	10	0.05-0.1		Laths.		
Opaque minerals	7	7	0.05-0.1		Grains.		
Glass	8	33	N/A.		N/A.		
SECONDARY		REPLACING/					
MINERALOGY	PERCENT	FILLING				COMMENTS	
Clay minerals	50	Vesicles/glass.					
VESICLES/		******	SIZE	*****************	***************************************		
CAVITIES	PERCENT	LOCATION	(mm)	FILLING	SHAPE	COMMENTS	
Vesicles	25		0.05-0.06	Clay minerals	.Irregular.	Lined or filled by yellow to brown clay or oxide.	

134-831B-70R-03 (Piece 2, 34-36 cm)

OBSERVER: BAK

WHERE SAMPLED:

ROCK NAME: Andesite.

GRAIN SIZE: Fine-grained

TEXTURE: Porphyritic.

PRIMARY	PERCENT	PERCENT	SIZE	COMPO-		
MINERALOGY	PRESENT	ORIGINAL	(mm)	SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Plagioclase	30	30	0.3-6.0		Euhedral.	Oscillatory zoning, inclusions.
Clinopyroxene	4	4	0.1-2.0	Augite.	Subhedral.	
Orthopyroxene	2	2	0.2-2.0	Hypersthene.	Subhedral,	Pleochroic pale pink to green, glomeroporphyritic with clinopyroxene
Opaque minerals	4	4	0.05-0.3			Subhedral.
GROUNDMASS						
Plagioclase	35	35	0.05-0.1		Laths.	
Pyroxene	5	5	0.05-0.1		Grains.	
Glass	20	20	0.05-0.1		N/A.	Patches of sideromelane associated with glomeroporphyritic clusters.
VESICLES/			SIZE			
CAVITIES	PERCENT	LOCATION	(mm)		FILLING	SHAPE
Vesicles	1	Dispersed.	0.05-4.0		Clay minerals.	Subrounded.

134-831B-70R-04 (Piece 4, 77-80 cm)

OBSERVER: BAK

WHERE SAMPLED:

ROCK NAME: Andesite.

GRAIN SIZE: Fine-grained.

TEXTURE: Porphyritic.

VESICLES/	***************************************		SIZE				
SECONDARY MINERALOGY	PERCENT	REPLACING/ FILLING				COMMENTS	
Glass	22	22	0.1-0.2		N/A.		
Opaque minerals	3	3	0.05-0.1		Grains.		
Pyroxenes	15	15	0.05-0.1		Grains.		
Plagioclase	23	23	0.05-0.1		Laths.		
GROUNDMASS							
Opaque minerals	1	1	0.1-0.4		Subhedral.		
Orthopyroxene	2	2	0.2-1.5		Subhedral.		
Clinopyroxene	3	28 3	0.15-2.0	Augite.	Subhedral.		
PHENOCRYSTS Plagioclase	28	28	0.2-4.0		Subhedral.		
VIINEKALOG I	PRESENT	ORIGINAL	(mm)	SITION	MORPHOLOGI	COMMENTS	
PRIMARY MINERALOGY	PERCENT PRESENT	PERCENT ORIGINAL	SIZE	COMPO- SITION	MORPHOLOGY	COMMENTS	

COMMENTS: Clast enclosed in matrix of yellow/brown glass altering to palagonite. Enclosed in this glass are lithic and crystal fragments of same type as in andesite clasts. The most conspicuous crystal components are the fractured and slivered pieces of plagioclase.

134-831B-71R-02 (Piece 5, 69-70 cm)

OBSERVER: HAS

WHERE SAMPLED:

ROCK NAME: Andesite.

GRAIN SIZE: Fine-grained.

TEXTURE: Porphyritic.

PRIMARY MINERALOGY	PERCENT PRESENT	PERCENT ORIGINAL	SIZE (mm)	COMPO- SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Plagioclase	24	24	0.3-3.5		Euhedral to subhedral.	Sometimes glomeroporphyritic.
Clinopyroxene	5	5	0.2-2.5		Subhedral.	
Orthopyroxene	2	2	0.25-1.7		Euhedral to subhedral.	
Opaque minerals	1	1	0.1-0.8		Rounded.	
GROUNDMASS						
Plagioclase	20	20	0.02-0.2		Laths.	
Clinopyroxene	5	5	0.04-0.1		Tabular or grains.	
Orthopyroxene	5	5	0.02-0.01		Laths.	
Opaque minerals	3	3	0.007-0.01		Granular.	
Glass	20	34	N/A.		N/A.	Brown color.
SECONDARY		REPLACING/				
MINERALOGY	PERCENT	FILLING				COMMENTS
Silica minerals	7	Glass.				
Alkali feldspar	7	Glass.				
VESICLES/		***************************************	SIZE			
CAVITIES	PERCENT	LOCATION	(mm)		FILLING	SHAPE
Vesicles	<1		0.5-1.0		Palagonite.	Irregular.

COMMENTS: Matrix of yellow/brown palagonite groundmass with fractured and slivered pieces of plagioclase and serpentine altered from pyroxenes is attached on the edge of the clast described above.

134-831B-71R-02 (Piece 6A, 76-78 cm)

OBSERVER: HAS

WHERE SAMPLED:

ROCK NAME: Palagonite matrix.

GRAIN SIZE:

TEXTURE:

PRIMARY	PERCENT	PERCENT	SIZE	COMPO-	HH 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
MINERALOGY	PRESENT	ORIGINAL	(mm)	SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Plagioclase	24	24	0.1-2.5		Subhedral.	Some are fractured and slivered.
Clinopyroxene	2	7	0.15-1.0		Subhedral.	
Orthopyroxene	tr.	3	0.15-1.0		Subhedral.	
Opaque minerals	1	1	0.1-0.3		Rounded.	
GROUNDMASS						
Plagioclase	25	25	0.02-0.1		Euhedral.	
Opaque minerals	2	2	0.004-0.02		Granular.	
Clinopyroxene	5	5	0.02		Granular.	
Orthopyroxene	5	5	0.02		Laths.	
Glass	3	27	N/A.		N/A.	Altered to palagonite.
SECONDARY		REPLACING/				
MINERALOGY	PERCENT	FILLING				COMMENTS
Palagonite	27	Glass.				
Chlorite	6	Pyroxenes.				
Serpentine	2	Pyroxene.				
Clay minerals	1	Vesicles.				
VESICLES/			SIZE			
CAVITIES	PERCENT	LOCATION	(mm)		FILLING	SHAPE
Vesicles	1		0.1-0.5		Clay minerals.	Irregular.

COMMENTS: An andesite clast is included at the edge of thin section. Clast enclosed in matrix of yellow/brown glass altering to palagonite. Subrounded clasts of andesite, 0.5-3.0 mm in size are found (5% of total). They are rich in acicular oxides.

134-831B-71R-04 (Piece 7, 145-150 cm)

OBSERVER: HAS

WHERE SAMPLED:

ROCK NAME: Andesite.

GRAIN SIZE: Fine-grained.

PRIMARY	PERCENT	PERCENT	SIZE	COMPO-			
MINERALOGY	PRESENT	ORIGINAL	(mm)	SITION	MORPHOLOGY	COMMEN	NTS
PHENOCRYSTS							
Plagioclase	25	25	0.3-5.0		Euhedral to subhedral.		
Clinopyroxene	5	5	0.2-3.0		Subhedral.	Some crys	tals grow after plagioclase.
Orthopyroxene	3	5	0.2-2.5		Euhedral to subhedral.	Clinopyro along c-ax	xene parallel growth on the rimits.
Opaque minerals	1	1	0.1-0.3		Rounded.	Microphen	ocryst size.
GROUNDMASS							
Plagioclase	30	30	0.01-0.1		Laths.		
Clinopyroxene	2	2	0.03-0.1		Rounded.		
Orthopyroxene	4	4	0.03-0.1		Elongate laths.	Clinopyro	xene parallel growth.
Opaque minerals	3	3	0.002-0.5		Cubic or rounded.		
Glass	25	25	N/A.		N/A.	Brownish	color.
VESICLES/	***************************************	***************************************	SIZE			***************************************	
CAVITIES	PERCENT	LOCATION	(mm)		FILLING	SHAPE	COMMENTS
Vesicles	2	Groundmass.	0.05-0.2		Brownish crypto- crystalline material.	Irregular.	Nearly isotropic.

134-831B-75R-01 (Piece 1, 1-3 cm)

OBSERVER: HAS

WHERE SAMPLED:

ROCK NAME: Andesite.

GRAIN SIZE: Fine-grained.

TEXTURE: Porphyritic.

PRIMARY MINERALOGY	PERCENT PRESENT	PERCENT ORIGINAL	SIZE (mm)	COMPO- SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Plagioclase	25	25	0.2-4.5		Euhedral to subhedral.	Glomeroporphyritic with the rest of phenocryst phases. Inclusions of glass and/or clinopyroxen
Clinopyroxene	8	8	0.15-2.0		Subhedral.	
Orthopyroxene	3	3	0.15-1.2		Euhedral to subhedral.	
Opaque minerals	1	1	0.1-1.2		Rounded.	
GROUNDMASS						
Plagioclase	30	30	0.02-0.1		Laths.	Moderate orientation of groundmass and microphenocryst plagioclase.
Clinopyroxene	4	4	0.01-0.1		Granular.	The first transfer of the second of the seco
Orthopyroxene	4	4	0.02-0.1		Laths.	
Opaque minerals	5	5	0.002-0.05		Granular.	
Glass	18	20	N/A.		N/A.	
SECONDARY		REPLACING/				
MINERALOGY	PERCENT	FILLING				COMMENTS
Plagioclase	2	Glass.				
VESICLES/	***************************************		SIZE	***************************************		
CAVITIES	PERCENT	LOCATION	(mm)		FILLING	SHAPE
Vesicles	None.		1200000000			

134-831B-76R-05 (Piece 11, 109-110 cm)

OBSERVER: BAK

WHERE SAMPLED:

ROCK NAME: Andesite.

GRAIN SIZE: Fine-grained.

PRIMARY	PERCENT	PERCENT	SIZE	COMPO-		
MINERALOGY	PRESENT	ORIGINAL	(mm)	SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Plagioclase	30	30	0.2-6.0		Euhedral.	Strong oscillatory zoning.
Clinopyroxene	6	6	0.05-0.2		Subhedral.	976 G
Orthopyroxene	1	1	0.1-1.0		Subhedral.	
Opaque minerals	1	1	0.1-1.0		Subhedral.	
GROUNDMASS						
Plagioclase	26	26	0.05-0.1		Laths.	Subparallel orientation.
Pyroxenes	21	21	0.05-0.1		Grains.	
Opaque minerals	15	15	0.05-0.1		Grains.	
VESICLES/			SIZE	***************************************		
CAVITIES	PERCENT	LOCATION	(mm)		FILLING	SHAPE
Vesicles	None.					

134-831B-77R-03 (Piece 12, 139-141 cm)

OBSERVER: BAK

WHERE SAMPLED:

ROCK NAME: Andesite.

GRAIN SIZE: Fine-grained.

TEXTURE: Porphyritic, intergranular.

PRIMARY MINERALOGY	PERCENT PRESENT	PERCENT ORIGINAL	SIZE (mm)	COMPO- SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Plagioclase	27	27	0.3-3.5		Euhedral to	
Clinopyroxene	1.	6	0.4-2.0		subhedral. Subhedral.	Altered to chlorite and calcite.
Orthopyroxene	tr	4	0.4-2.0		Subhedral.	Altered to chlorite and calcite.
GROUNDMASS						
Plagioclase	40	40	0.05-0.3		Tabular.	
Clinopyroxene	5	8	0.03-0.2		Granular.	
Orthopyroxene	tr	5	0.03-0.2		Granular.	Altered to chlorite and actinolite.
Opaque minerals	-	2	0.04-0.15		Cubic, subrounded.	
Glass	0	8	N/A.		N/A.	Altered to chlorite and clay minerals.
SECONDARY		REPLACING				
MINERALOGY	PERCENT	FILLING				COMMENTS
Chlorite	15	Glass and pyro	xenes.			
Celadonite	8	Glass, pyroxer	ies.			
Calcite	2	Pyroxenes.				
Actinolite	tr	Pyroxenes.				
VESICLES/			SIZE	***************************************		
CAVITIES	PERCENT	LOCATION	(mm)		FILLING	SHAPE
Vesicles	None.					

COMMENTS: Groundmass minerals are more coarse-grained and hyghly crystalline than other andesites recovered from the same hole. Attached at the bottom is a more altered, finer-grained andesite. No reactions rim nor chilled margin at the contact.

134-831B-79R-02 (Piece 3, 31-33 cm)

OBSERVER: HAS

WHERE SAMPLED:

ROCK NAME: Andesite.

GRAIN SIZE: Fine-grained.

PRIMARY MINERALOGY	PERCENT PRESENT	PERCENT ORIGINAL	SIZE (mm)	COMPO- SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Plagioclase	18	18	0.4-3.0		Subhedral.	Some show melting texture and glass inclusions.
Clinopyroxene	2	2	0.2-1.2		Subhedral.	
Orthopyroxene	3	5	1.2		Subhedral.	Altered to chlorite, oxidized rim.
Opaque minerals	1	1	0.1-0.4		Rounded.	
GROUNDMASS						
Plagioclase	20	20	0.02-0.15		Laths.	
Clinopyroxene	2	4	0.01-0.1		Granular.	Partly oxidized.
Orthopyroxene	1	4	0.01-0.1		Laths.	Partly oxidized.
Opaque minerals	1	6	0.005-0.05		Small granular and acicular.	172
Glass	15	26	N/A.		N/A.	Partly altered to chlorite and celadonite.
SECONDARY		REPLACING/				
MINERALOGY	PERCENT	FILLING				COMMENTS
Chlorite	7	Glass.				
Hematite	7	Pyroxene.				
Celadonite	5	Glass.				
VESICLES/	*****************		SIZE			***************************************
CAVITIES	PERCENT	LOCATION	(mm)		FILLING	SHAPE
Vesicles	20		0.5-1.5		None.	Irregular, A few are filled by stretched calcite. and connected.

134-831B-80R-03 (Piece 5A, 108-109 cm)

OBSERVER: HAS

WHERE SAMPLED: Clast in andesite breccia.

ROCK NAME: Andesite.

GRAIN SIZE: Fine-grained.

TEXTURE: Porphyritic.

PRIMARY MINERALOGY	PERCENT PRESENT	PERCENT ORIGINAL	SIZE (mm)	COMPO- SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Plagioclase	20	20	0.2-4.3		Euhedral to subhedral.	Including a few dusty plagioclase.
Clinopyroxene	5	5	0.15-1.8		Subhedral.	
Orthopyroxene	3	5	0.15-1.0		Subhedral.	
Opaque minerals	1	1	0.1-0.4		Rounded.	
GROUNDMASS						
Plagioclase	25	25	0.02-0.5		Laths.	Showing moderate flow structure.
Clinopyroxene	3	3	0.002-0.05		Laths and grains.	Microcrystalline.
Orthopyroxene	3	3	0.02-0.05		Laths and grains.	Microcrystalline.
Glass	0	30	N/A.		N/A.	Palagonitized, mostly reddish brown; partly light brown.
SECONDARY		REPLACING/				
MINERALOGY	PERCENT	FILLING				COMMENTS
Palagonite	28	Glass.				
Chlorite	2	Glass.				
VESICLES/	***************************************		SIZE			
CAVITIES	PERCENT	LOCATION	(mm)		FILLING	SHAPE
Vesicles	10		0.3-2.0		Palagonite 0.05 mm thick from the wall.	Irregular and connected.

COMMENTS: Including a xenolth, 3 mm in size, consisting of plagioclase, clinopyroxene, orthopyroxene, and interstitial palagonitized glass. Size of crystals are 0.3-1.0 mm, all are subhedral. This is probably a cumulate.

134-831B-81R-01 (Piece 1, 76-79 cm)

OBSERVER: BAK

WHERE SAMPLED:

ROCK NAME: Andesite.

GRAIN SIZE: Fine-grained.

TEXTURE: Porphyritic.

CAVITIES Vesicles	PERCENT 15	LOCATION General.	(mm) 0.1-0.5		FILLING Zeolites.	SHAPE Irregular.
VESICLES/			SIZE		Value Charles	
Chlorite	1	Orthopyroxene.				
Celadonite	1	Orthopyroxene.				
Palagonite	10	Glass.				
Clay minerals	10	Glass.				
Zeolites	20	Glass.				Also filling vesicles and fractures.
MINERALOGY	PERCENT	FILLING				COMMENTS
SECONDARY		REPLACING/				
Glass	15	35	N/A.		N/A.	
Opaque minerals	15	15	0.01-0.05		Grains.	
Plagioclase	5	5	0.01-0.03		Laths.	
GROUNDMASS						
Opaque minerals	1	1	0.1-0.2		Anhedral.	
Orthopyroxene	e	2	0.1-1.0		Subhedral.	Intensively altered to chlorite and celadonite
Clinopyroxene	2	4	0.1-0.2		Subhedral.	
PHENOCRYSTS Plagioclase	20	23	0.3-2.0		Subhedral.	Oscillatory zoning and zones of inclusions.
MINERALOGY	PRESENT	ORIGINAL	(mm)	SITION	MORPHOLOGY	COMMENTS
PRIMARY	PERCENT	PERCENT	SIZE	COMPO-		

COMMENTS: A dark, scorioceous and heavily oxidized rock which probably originated as an andesitic palagonite breccia.

134-831B-82R-02 (Piece 3, 41-43 cm)

OBSERVER: COL

WHERE SAMPLED:

ROCK NAME: Andesite.

GRAIN SIZE: Fine-grained to microcrystalline.

PRIMARY MINERALOGY	PERCENT PRESENT	PERCENT ORIGINAL	SIZE (mm)	COMPO- SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS				(4)		
Plagioclase	25	25	0.5-2.5	An ₄₅	Euhedral.	Some crystals are very rich in crystal and glass inclusions. Sometimes glomeroporphyritic in association with orthopyroxene.
Orthopyroxene	6	6	0.5-1.5		Euhedral to subhedral.	
Clinopyroxene	5	5	0.5-1.5		Euhedral to subhedral.	
Opaque minerals	1	1	0.4-0.8		Anhedral.	
GROUNDMASS						
Plagioclase	20	20	0.01-0.02		Laths.	Very small crystallites.
Glass	43	43	N/A.		N/A.	Slightly oxidized.
VESICLES/			SIZE		***************************************	
CAVITIES	PERCENT	LOCATION	(mm)	FILLING	SHAPE	
Vesicles	None.					

COMMENTS: Some fractures at the edge of the larger clasts are filled with chlorite (0.1-0.3 mm in size). The description refers to the larger clasts (1-2 cm). The matrix is composed of smaller andesitic fragments (1-2 mm), plagioclase and pyroxenes crystals.

134-831B-83R-02 (Piece 6, 106-109 cm)

OBSERVER: BAK

WHERE SAMPLED:

ROCK NAME: Andesite.

GRAIN SIZE: Fine-grained.

TEXTURE: Porphyritic.

PRIMARY	PERCENT	PERCENT	SIZE	COMPO-		
MINERALOGY	PRESENT	ORIGINAL	(mm)	SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Plagioclase	25	25	0.4-2.0		Euhedral.	Oscillatory zoning, crystal and glass inclusion
Clinopyroxene	4	4	0.2-1.0		Subhedral.	
Orthopyroxene	1	1	0.2-0.5		Subhedral.	
Opaque minerals	1	1	0.05-0.1		Subhedral.	
GROUNDMASS						
Plagioclase	12	12	0.05-0.1		Laths.	
Pyroxene	12	12	0.05-0.1		Grains.	
Glass	45	45	N/A.		N/A.	Clear, very pale brown with crystallites.
VESICLES/			SIZE			
CAVITIES	PERCENT	LOCATION	(mm)		FILLING	SHAPE
Vesicles	None.					

134-831B-84R-03 (Piece 1, 8-9 cm) OBSERVER: COL

WHERE SAMPLED:

ROCK NAME: Andesite.

GRAIN SIZE: Glassy.

TEXTURE: Porphyritic.

PRIMARY MINERALOGY	PERCENT PRESEN	PERCENT ORIGINAL	SIZE (mm)	COMPO- SITION	MORPHOLOGY	COMMENTS
PHENOCRYSTS						
Plagioclase	15	15	0.4-1.5	An ₅₄	Euhedral.	
Clinopyroxene	7	7	0.5-1.0		Euhedral to subhedral.	
Orthopyroxene	5	5	0.2-1.0		Euhedral to subhedral.	
Opaque minerals	1	1	0.1-0.2		Subhedral to anhedral.	
GROUNDMASS						
Plagioclase	6	6	0.02- 0.1		Laths.	
Pyroxenes	1	1	0.02-0.2		Grains.	
Glass	55	55	N/A.		N/A.	
VESICLES/ SIZE						
CAVITIES	PERCENT	LOCATION	(mm)	FILLING	SHAPE	COMMENTS
Vesicles	10		<1	Palagonite.	Irregular.	

COMMENTS: Groundmass slightly oxidized.

134-831B-84R-04 (Piece 7, 137-141 cm)

OBSERVER: COL

WHERE SAMPLED:

ROCK NAME: Andesite.

GRAIN SIZE: Fine-grained.

VESICLES/ CAVITIES Vesicles	PERCENT None.	LOCATION	SIZE (mm)	FILLING	SHAPE	
VEGICI EGI						
Hydroxides	4	Clinopyroxene	opaque mine	erals.		
Chlorite	6	Clinopyroxene	1			
Clay minerals	7	Plagioclase.			5	
SECONDARY MINERALOGY	PERCENT	REPLACING/ FILLING		COMMENTS	S	
Glass	9	9	N/A.		N/A.	
Opaque minerals	8	10	0.02-0.05		Grains.	Altered to hydroxides.
Pyroxenes	15	15	0.5-0.8		Grains.	AND AND THE REAL PROPERTY AND
Plagioclase	20	20	0.05 - 0.1		Laths	
GROUNDMASS						
Opaque minerals	1	1	0.5-0.7		Subhedral.	
Clinopyroxene	10	18	0.5-1.0		Subhedral.	. 1900 to 2000 to 1900 to 190
PHENOCRYSTS Plagioclase	20	27	1-5		Euhedral.	Some crystals are highly altered to clay miner
MINERALOGY	PRESENT	ORIGINAL	(mm)	SITION	MORPHOLOGY	COMMENTS
PRIMARY	PERCENT	PERCENT	SIZE	COMPO-		