SITE 834 HOLE A CORE 1H

<table>
<thead>
<tr>
<th>Meter</th>
<th>Graphic Lith.</th>
<th>Structure</th>
<th>Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10YR 7/4</td>
<td>S</td>
<td>S</td>
<td>CLAYEY NANNOFOSSIL Ooze WITH FORAMS.</td>
</tr>
<tr>
<td></td>
<td>10YR 6/3</td>
<td>S</td>
<td>S</td>
<td>Major Lithology: CLAYEY NANNOFOSSIL Ooze WITH FORAMS, dark yellowish brown to very pale brown (10YR 3/4 to 7/4), with scattered pumice fragments and intervals of graded bedding.</td>
</tr>
<tr>
<td></td>
<td>10YR 3/4</td>
<td>S</td>
<td>S</td>
<td>Minor Lithology: FORAM Ooze WITH NANNOFOSSILS, CLAY, ACCESSORY MINERALS AND INTRACLASTS, very pale brown (10YR 7/4). Minor amounts of volcanic glass and larger volcanic fragments up to 2 cm in diameter occur. A thin, light gray (2.5 Y 7/0), FINE ASH layer occurs in Section 5, 15-22 cm.</td>
</tr>
</tbody>
</table>

TEXTURE:
- Sand
- Silt
- Clay

COMPOSITION:
- Accessory minerals
- Aragonite
- Clay
- Dolomite
- Feldspar
- Foraminifera
- Glass
- Nannofossils
- Opaque

Smear slide summary (%)

Section, depth (cm)
M - minor lithology
D - dominant lithology

Information on Core Description Forms, for ALL sites, represents field notes taken aboard ship. Some of this information has been refined in accord with post-cruise findings, but production schedules prohibit definitive correlation of these forms with subsequent findings. Thus, the reader should be alerted to the occasional ambiguity or discrepancy.
TEXTURE:
- Sand: 25%
- Silt: 35%
- Clay: 40%

COMPOSITION:
- Accessory minerals: 25%
- Authigenic minerals: 35%
- Biotite: 15%
- Feldspar: 5%
- Foraminifera: 10%
- Glass: 5%
- Intraclasts: 10%
- Nannofossils: 5%
- Opal: 30%
- Siliciclastics: 65%

SMEAR SLIDE SUMMARY (%):
- SITE 834 HOE A. CORE 2H
- CORED 7.6 - 17.1 mbsf

Description:
- Major lithology: CLAYEY NAPPOFOSIL DOZE, yellowish brown to dark yellowish brown (10YR 5/6 to 3/4), with an abrupt color change in Section 1 at 115 cm. Scattered volcanic fragments and occasional mottling occur.
- Minor lithologies: INTRACLAST FORAM DOZE, light gray (10 YR 7/1) with minor amounts of volcanic glass and larger volcanic lithic fragments. Very dark grayish brown (2.5 Y 3/2) FINE ASH layers occur in Section 3, 53-60 cm, and Section 4, 32-47 cm and 106-111 cm.
SITE 834 HOLE A CORE CH

SAMPLE LOCALITY

SITE 834 **HOLE** A **CORE**

CH

Graphic Lith.

COATED 171.1 - 266.6 mbsf

<table>
<thead>
<tr>
<th>Meter</th>
<th>Lithology</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>10YR</td>
<td>Clayey Nannofossil ooze with</td>
<td>10YR 4/4,</td>
</tr>
<tr>
<td>7/3</td>
<td>forams</td>
<td>very pale brown</td>
</tr>
<tr>
<td>3/4</td>
<td></td>
<td>10YR 3/4</td>
</tr>
<tr>
<td>4/3</td>
<td></td>
<td>10YR 4/3</td>
</tr>
<tr>
<td>4/4</td>
<td></td>
<td>10YR 4/4</td>
</tr>
</tbody>
</table>

Description

Clayey nannofossil ooze with forams, dark brown to dark yellowish brown (10YR 4/4 to 10YR 4/4), with scattered pumice fragments. Minor lithology: Nannofossil foraminiferal ooze, very pale brown (10YR 7/3). These beds are graded with sharp lower contacts and gradational upper contacts. The beds occur in Section 2 at 75 and 108 cm, Section 4 at 92 and 135 cm, and in Section 5 at 38 and 94 cm.
135-834A-4H
SMEAR SLIDE SUMMARY (%):

TEXTURE:
- Sand
- Silt
- Clay

COMPOSITION:
- Accessory minerals
- Calcite
- Clay
- Dolomite
- Foraminifera
- Glass
- Nannofossils
- Quartz

SMEAR SLIDE SUMMARY (%):
- Sand
- Silt
- Clay

SITE 834 HOLE A CORE 4H
CORED 26.6 - 36.1 mbsf

CLAYEY NANNOFOSIL OOZE

Description
Major lithology: CLAYEY NANNOFOSIL OOZE, yellowish brown to dark yellowish brown (10YR 4/4 to 10YR 5/4), with mottled intervals and scattered pumice fragments.

Minor lithology: NANNOFOSIL FORAM OOZE and FORAM OOZE, very pale brown to white (10YR 7/4 to 10YR 8/2). Sharp lower contacts and gradational upper contacts with the major lithology. Graded bedding evident.
<table>
<thead>
<tr>
<th>SITE 834 HOLE A CORE 5H</th>
<th>DCORED 36.1 - 45.6 mbfs</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEXTURE:</td>
<td></td>
</tr>
<tr>
<td>Sand</td>
<td>D</td>
</tr>
<tr>
<td>Silt</td>
<td>D</td>
</tr>
<tr>
<td>Clay</td>
<td>D</td>
</tr>
</tbody>
</table>

COMPOSITION:	
Accessory minerals	-
Clay	30
Foraminifers	10
Glass	70
Nannofossils	65
Quartz	6

<table>
<thead>
<tr>
<th>SMEAR SLIDE SUMMARY (%):</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,140</td>
</tr>
<tr>
<td>1,120</td>
</tr>
<tr>
<td>4,70</td>
</tr>
<tr>
<td>5,17</td>
</tr>
<tr>
<td>5,40</td>
</tr>
<tr>
<td>5,76</td>
</tr>
<tr>
<td>5,90</td>
</tr>
</tbody>
</table>

TEXTURE:	
Sand	D
Silt	D
Clay	D

COMPOSITION:	
Accessory minerals	-
Clay	34
Foraminifers	3
Glass	-
Nannofossils	63

<table>
<thead>
<tr>
<th>SMEAR SLIDE SUMMARY (%):</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,130</td>
</tr>
<tr>
<td>6,53</td>
</tr>
</tbody>
</table>

Description:

Major lithology: CLAYEY NANNOFOSSIL Ooze with forams, very dark brown to dark yellowish brown (10YR 2/2 to 10YR 4/4). Mottling and scattered volcanic fragments occur.

Minor lithology: FINE ASH WITH FELDSPAR in Section 5 at 76 cm.
SITE 834 HOLE A CORE 6H
CORED 45.6 - 55.1 mbsf

<table>
<thead>
<tr>
<th>SITE 834 HOLE A CORE 6H</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLAYEY NANNOFOSIL Ooze</td>
<td></td>
</tr>
<tr>
<td>Major lithology: CLAYEY NANNOFOSIL Ooze, dark yellowish brown to pale brown (10YR 3/4 to 10YR 6/4). Occasional mottling of both colors.</td>
<td></td>
</tr>
<tr>
<td>Minor lithologies: VOLCANIC SILT WITH NANNOFOSILS, dark yellowish brown to pale brown (10YR 4/4 to 10YR 6/4), NANNOFOSIL Ooze WITH FORAMS, dark yellowish brown to dark reddish brown (10YR 4/4 to 10YR 3/2). NANNOFOSIL Ooze WITH FORAMS, dark yellowish brown to dark reddish brown (10YR 4/4 to 10YR 3/2), VOLCANIC SILT layers (1-2 cm thick), dark grayish brown (2.5Y 4/2), showing normal grading, sharp bases, and gradational upper contacts, occur in Section 1, 133-135 cm, Section 3, 50-52 cm, and Section 4, 57-59 cm. FINE ASH, thin pyroclastic sediment in Section 2, 35-37 cm.</td>
<td></td>
</tr>
</tbody>
</table>
CLAYEY NANNOFOSSIL OOZE. Major lithology: CLAYEY NANNOFOSSIL OOZE, mottled, brown to very dark brown (10YR 3/3 to 10YR 2/2). In Section 1, 0-19 cm, the clayey nannofossil ooze contains forams and ash. Minor lithologies: FINE ASH in Section 5, 95-105 cm, and in Section 5, 145 cm, to Section 6, 2 cm. The vitric ash layers are white to reddish brown (10YR 8/1 to 2.5Y 5/4) with sharp basal contacts and fine upwards. VOLCANIC SILT WITH CLAY AND NANNOFOSSILS, light olive brown to dark greenish gray (2.5Y 5/4 to 10Y 5/4) occur in Section 4, 45-70 cm, and VOLCANIC SILT WITH NANNOFOSSILS, yellowish brown (10YR 5/4) occurs in Section 1, 19-27 cm.
SITE 834 HOLE A CORE 8H
CORED 64.6 - 74.1 mbsf

TEXTURE:

<table>
<thead>
<tr>
<th>Sand</th>
<th>Silt</th>
<th>Clay</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>90</td>
<td>95</td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

COMPOSITION:

<table>
<thead>
<tr>
<th>Accessory minerals</th>
<th>Clay</th>
<th>Feldspar</th>
<th>Foraminifers</th>
<th>Glass</th>
<th>Nannofossils</th>
<th>Rock fragment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tr</td>
<td></td>
<td>Tr</td>
<td>Tr</td>
<td>50</td>
<td>60</td>
<td>68</td>
</tr>
<tr>
<td>Tr</td>
<td></td>
<td>Tr</td>
<td></td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Tr</td>
<td></td>
<td>Tr</td>
<td></td>
<td>90</td>
<td>85</td>
<td>90</td>
</tr>
<tr>
<td>Tr</td>
<td></td>
<td>Tr</td>
<td></td>
<td>50</td>
<td>40</td>
<td>40</td>
</tr>
</tbody>
</table>

SMEAR SLIDE SUMMARY (%):

<table>
<thead>
<tr>
<th>Graphic Lith. Structure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10YR 2/1</td>
<td>CLAYEY NANNOFOSIL MIXED SEDIMENT. Major lithology: CLAYEY NANNOFOSIL MIXED SEDIMENT, dark brown (10YR 2/1) and mottled. Minor lithologies: Alternating thin layers of black to light olive gray (5Y 2/2 to 5Y 6/2) CRYSTAL-RICH LITHIC TUFF, light olive gray (5Y 6/2) NANNOFOSIL OOZE, FORAM FINE ASH, and FORAM SAND WITH MINERAL AND ROCK FRAGMENTS in Section 3, 123 cm, to Section 4, 47 cm. Reddish gray (5YR 5/2) VITRIC ASH occurs in Section 1, 0-6 cm, and Section 3, 0-4 cm.</td>
</tr>
<tr>
<td>5Y 2.5/2</td>
<td></td>
</tr>
<tr>
<td>2.5/2</td>
<td></td>
</tr>
<tr>
<td>2Y 2/4</td>
<td></td>
</tr>
<tr>
<td>2Y 6/2</td>
<td></td>
</tr>
<tr>
<td>5Y 6/2</td>
<td></td>
</tr>
<tr>
<td>5Y 2.5/2</td>
<td></td>
</tr>
<tr>
<td>2Y 2/4</td>
<td></td>
</tr>
<tr>
<td>2Y 6/2</td>
<td></td>
</tr>
<tr>
<td>5Y 6/2</td>
<td></td>
</tr>
<tr>
<td>5Y 2.5/2</td>
<td></td>
</tr>
</tbody>
</table>
SITE 834
HOLE A
CORE 9H
CORED 74.1 - 83.6 mbsf

TEXTURE:
<table>
<thead>
<tr>
<th>Sample</th>
<th>Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
<td>D</td>
<td>NANNOFOSIL CLAYEY MIXED SEDIMENT. Major lithologies: NANNOFOSIL CLAYEY MIXED SEDIMENT, mottled, dark brown to yellowish brown (10YR 3/3 to 5/4). VITRIC CLAYEY NANNOFOSIL OOZE, olive yellow (2.5Y 6/6), and VOLCANIC SILT, gray to dark olive gray (5Y 5/1 to 3/2) occur as a series of fining-upward sequences, structureless at the base and planar-laminated near the top of each sequence. Convoluted and contorted bedding structures are common.</td>
</tr>
<tr>
<td>Silt</td>
<td>D</td>
<td>Minor lithologies: VOLCANIC SILT WITH FORAMINIFERS, brown to dark brown (10YR 4/3) and VOLCANIC SILT WITH NANNOFOSILS, olive gray (5Y 5/2). Thin layers of VOLCANIC SILT occur in Section 1, 132-135 cm, and in Section 2, 132-135 cm.</td>
</tr>
<tr>
<td>Clay</td>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>

COMPOSITION:

SMEAR SLIDE SUMMARY (%):

SITE 834
HOLE A
CORE 9H
CORED 74.1 - 83.6 mbsf

TEXTURE:
<table>
<thead>
<tr>
<th>Sample</th>
<th>Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
<td>D</td>
<td>NANNOFOSIL CLAYEY MIXED SEDIMENT. Major lithologies: NANNOFOSIL CLAYEY MIXED SEDIMENT, mottled, dark brown to yellowish brown (10YR 3/3 to 5/4). VITRIC CLAYEY NANNOFOSIL OOZE, olive yellow (2.5Y 6/6), and VOLCANIC SILT, gray to dark olive gray (5Y 5/1 to 3/2) occur as a series of fining-upward sequences, structureless at the base and planar-laminated near the top of each sequence. Convoluted and contorted bedding structures are common.</td>
</tr>
<tr>
<td>Silt</td>
<td>D</td>
<td>Minor lithologies: VOLCANIC SILT WITH FORAMINIFERS, brown to dark brown (10YR 4/3) and VOLCANIC SILT WITH NANNOFOSILS, olive gray (5Y 5/2). Thin layers of VOLCANIC SILT occur in Section 1, 132-135 cm, and in Section 2, 132-135 cm.</td>
</tr>
<tr>
<td>Clay</td>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>

COMPOSITION:

SMEAR SLIDE SUMMARY (%):

SITE 834
HOLE A
CORE 9H
CORED 74.1 - 83.6 mbsf

TEXTURE:
<table>
<thead>
<tr>
<th>Sample</th>
<th>Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
<td>D</td>
<td>NANNOFOSIL CLAYEY MIXED SEDIMENT. Major lithologies: NANNOFOSIL CLAYEY MIXED SEDIMENT, mottled, dark brown to yellowish brown (10YR 3/3 to 5/4). VITRIC CLAYEY NANNOFOSIL OOZE, olive yellow (2.5Y 6/6), and VOLCANIC SILT, gray to dark olive gray (5Y 5/1 to 3/2) occur as a series of fining-upward sequences, structureless at the base and planar-laminated near the top of each sequence. Convoluted and contorted bedding structures are common.</td>
</tr>
<tr>
<td>Silt</td>
<td>D</td>
<td>Minor lithologies: VOLCANIC SILT WITH FORAMINIFERS, brown to dark brown (10YR 4/3) and VOLCANIC SILT WITH NANNOFOSILS, olive gray (5Y 5/2). Thin layers of VOLCANIC SILT occur in Section 1, 132-135 cm, and in Section 2, 132-135 cm.</td>
</tr>
<tr>
<td>Clay</td>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>

COMPOSITION:
CLAYEY NANNOFOSIL OOZE and CLAYEY NANNOFOSIL OOZE WITH FORAMS AND VOLCANIC SILT.

Major lithologies: CLAYEY NANNOFOSIL OOZE, mottled, dark brown to dark yellowish brown (10YR 3/3 to 10YR 4/4) towards the base of Section 1, and uniformly dark yellowish brown (10YR 3/6 to 10YR 3/4) elsewhere. The sediment contains minor graded ash layers. CLAYEY NANNOFOSIL OOZE WITH FORAMS AND VOLCANIC SILT. This lithology grades between the sharp-based vitric ash layers and the clayey nannofossil ooze.

Minor lithologies: VOLCANIC SILT/SAND and VOLCANIC SILT WITH NANNOFOSILS AND CLAY. These light olive brown (2.5Y 5/4) units occur as graded units within the clayey nannofossil ooze. The lower parts of these units are parallel laminated. Units have sharp bases and contain almost 100% volcanic glass towards their bases. Units grade upwards into clayey nannofossil ooze. In the Section CC at 5 cm there is a layer of volcanic lapilli.
SMEAR SLIDE SUMMARY (%):

SITE 834 HOLE A CORE 11X
CORED 93.2 - 102.9 mbsf

TEXTURE:
- Sand
- Silt
- Clay

COMPOSITION:
- Accessory minerals
- Clay
- Feldspar
- Glass
- Nannofossils
- Oxide

VOLCANIC SAND/SILT

Major lithology: VOLCANIC SAND/SILT, olive gray to dark grayish brown (5Y 4/2 to 2.5Y 4/2). Each interval shows a scarred basal contact and a gradational upper transition into nannofossil ooze with clay. The volcanic sand is often structureless, but sometimes shows parallel cross-lamination and, more rarely, wavy laminae.

Minor lithology: NANNOFOSIL OOZE WITH CLAY. Dark brown (10YR 4/4), showing rare sedimentary structures, although mottling (3-6 mm across) sometimes occurs. Also contains rare volcanic glass fragments. Towards the base of the sequence, the sediment is a darker shade of brown.
834A 13X THROUGH 15X HARD ROCK

TEXTURE:

<table>
<thead>
<tr>
<th></th>
<th>1-3</th>
<th>2-5</th>
<th>2-7</th>
<th>2-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
<td>60</td>
<td>Tr</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Clay</td>
<td>30</td>
<td>Tr</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Clay</td>
<td>5</td>
<td>100</td>
<td>100</td>
<td>5</td>
</tr>
</tbody>
</table>

COMPOSITION:

- Accessory minerals: 5 - Tr Tt
- Clay: 30 - 30 - Tr
- Feldspar: 10 Tr Tr 5
- Glass: 10 5 70 50
- Nannofossils: 5 45 5 Tr

Description:

- **NANNOFOSSIL CLAYEY MIXED SEDIMENT**
 - Major lithology: NANNOFOSSIL CLAYEY MIXED SEDIMENT, dark yellowish brown (10YR 3/6) with no obvious sedimentary structures. Thin interbeds of dark gray (10YR 2/1) volcanic silt in Section 1 at 67 and 116 cm. In Section CC, subrounded pebbles of vesicular basalt occur within nannofossil clayey mixed sediment.
 - Minor lithology: VOLCANIC SILT. In addition to thin beds within nannofossil clayey mixed sediment, thicker, dark yellowish brown (10YR 4/4) volcanic silt grades into the major lithology. Transition zones are mottled and burrowed.
CLAYSTONE

Major lithology: CLAYSTONE containing thin volcanic silt layers. Claystone is grayish brown (2.5Y 5/2) grading into (2.5Y 5/4) downcore. The upper 4 cm of is baked by overlying basalt sill. Claystone shows black dendritic growth structures along hairline fractures, and shows an abrupt color change to gray (7.5YR 6/0) near its base which appears to represent a reduction front.

Minor lithology: VOLCANIC SILT AND SAND, light gray (7.5YR 5/2), shows normal grading and lamination. Contains small basalt pebbles at base derived from underlying basalt.
SMEAR SLIDE SUMMARY (%):

<table>
<thead>
<tr>
<th>Texture</th>
<th>3.126</th>
<th>4.32</th>
<th>4.118</th>
<th>5.19</th>
<th>6.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Clay</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Glass</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Foraminifera</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Nannofossils</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Total</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
</tbody>
</table>

Composition:
- Accessory minerals: Tr, Tr
- Bioclast: 5, 5, 5, 5
- Feldspar: 5, 5, 5, 5
- Foraminifera: 5, 5, 5, 5
- Glass: 5, 5, 5, 5
- Nannofossils: 5, 5, 5, 5
- Total: 5, 5, 5, 5

SITE 834 HOLE B CORE 1R

<table>
<thead>
<tr>
<th>Layer</th>
<th>Graphic Lith.</th>
<th>Structure</th>
<th>Sample</th>
<th>Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10YR 3/3</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>NANNOFOSIL Ooze and NANNOFOSIL Ooze WITH FORAMS AND BIOLUMES</td>
</tr>
<tr>
<td>2</td>
<td>10YR 5/4</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>Major lithology: NANNOFOSIL Ooze and NANNOFOSIL Ooze WITH FORAMS AND BIOLUMES, dark brown to very pale brown (10YR 3/3 to 10YR 5/4), with scattered pumice pebbles. Generally structureless with intermittent areas of mottling and fining-upward intervals from 20 to 80 cm thick.</td>
</tr>
<tr>
<td>3</td>
<td>10YR 6/3</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>Minor lithology: FORAM OOZE WITH BIOLUMES, pale brown (10YR 6/3). Fining-upward intervals with sharp lower contacts and gradational upper contacts. Biolumes include shell fragments and sponge spicules. Planktonic and benthic forams present in approximately equal abundance.</td>
</tr>
<tr>
<td>4</td>
<td>10YR 7/3</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>NANNOFOSIL Ooze and NANNOFOSIL Ooze WITH FORAMS AND BIOLUMES</td>
</tr>
</tbody>
</table>

WASHED 8.4–68.2 mbsf

- **Washed:** 8.4–68.2 mbsf
SITE 834 HOLE B CORE 2R
CORED 68.2 - 77.8 mbsf

<table>
<thead>
<tr>
<th>Meter</th>
<th>Graphic Lith.</th>
<th>Structure Sample</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>10YR 3/2</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>2</td>
<td>Graphic Lith.</td>
<td>Structure Sample</td>
<td>Color</td>
</tr>
<tr>
<td>10YR 3/2</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
</tbody>
</table>

COMPOSITION:
- Accessory minerals
- Dolerite
- Feldspar
- Foraminifera
- Nannofossils
- Opaques

Description:
- **Major lithology:** CLAYEY NANNOFOSIL Ooze and CLAYEY NANNOFOSIL Ooze and FORAMS, very dark grayish brown to very dark brown (10YR 3/2 to 10YR 2/2), generally structureless. Slight mottling occurs in Section 2, 0-45 cm.
- **Minor lithology:** SANDY TO CLAYEY NANNOFOSIL Ooze WITH INTRACLASTS, dark reddish brown (5YR 3/2) to light brownish gray (2.5Y 3/2). Alternating thin-bedded to very thin-bedded, partly indurated, layers of medium sand and clay. Abundant intraclasts are found isolated in a sandy to silty matrix. Intraclasts are <4cm in diameter.
CLAYEY NANNOFOSIL MIXED SEDIMENT and VOLCANIC Silt with NANNOFOSILS AND CLAY.

Major lithology: CLAYEY NANNOFOSIL MIXED SEDIMENT, very dark grayish brown (10YR 3/2), with intervals of black (10YR 2/1). VOLCANIC SILT WITH NANNOFOSILS AND CLAY, light yellowish brown (10YR 6/4). This forms the main lithology in the lower part of the core.

Minor lithology: WELL-SORTED VOLCANIC SILT in Section 2, 41-42 cm, yellowish brown (10YR 5/6).
SMEAR SLIDE SUMMARY (%)

SITE 834 HOLE B CORE 4R

<table>
<thead>
<tr>
<th>Sample</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>67, 68</td>
<td>CLAYEY NANNOFOSIL MIXED SEDIMENT and VOLCANIC SILT WITH NANNOFOSILS AND CLAY</td>
</tr>
<tr>
<td>69-71</td>
<td>VOLCANIC SAND/SILT WITH CLAY, light yellowish brown to dark brown (10YR 6/4 to 10YR 3/3), forming distinct layers (17–30 cm thick) of upward-fining sequences. A discrete layer (1 cm thick) of volcanic silt with clay and nannofossils occurs in Section 4 at 45 cm.</td>
</tr>
</tbody>
</table>

TEXTURE

<table>
<thead>
<tr>
<th>Texture</th>
<th>1, 10, 46</th>
<th>1, 20, 62</th>
<th>2, 40, 123</th>
<th>5, 140</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
<td>1, 3, 6</td>
<td>1, 10, 46</td>
<td>2, 20, 62</td>
<td>5, 140</td>
</tr>
<tr>
<td>Clay</td>
<td>80</td>
<td>57</td>
<td>29</td>
<td>96</td>
</tr>
</tbody>
</table>

COMPOSITION

<table>
<thead>
<tr>
<th>Accessory minerals</th>
<th>10YR 4/4</th>
<th>10YR 4/3</th>
<th>10YR 5/4</th>
<th>10YR 6/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay</td>
<td>60</td>
<td>40</td>
<td>90</td>
<td>60</td>
</tr>
<tr>
<td>Dolomite</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Feldspar</td>
<td>20</td>
<td>50</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Foraminifera</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Glass</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Mica</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Palagonite</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Opaque</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Nannofossils</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Opargonite</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Diagram

- Major lithology: CLAYEY NANNOFOSIL MIXED SEDIMENT, yellowish brown to dark brown (10YR 5/4 to 10YR 4/3). Much of the sediment includes minor amounts of volcanic silt. VOLCANIC SILT WITH NANNOFOSILS AND CLAY comprises a large proportion of 4 major upward-fining sequences, 45-115 cm thick, in which the volcanic silt forms the base and grades up into clayey nannofossil mixed sediment. The beds are structureless except for slight mottling. The top 1–2 cm of one sequence is composed of yellowish nannofossil clay (Section 3, 69–71 cm).
- Minor lithology: VOLCANIC SAND/SILT WITH CLAY, light yellowish brown to dark brown (10YR 6/4 to 10YR 3/3), forming distinct layers (17–30 cm thick) of upward-fining sequences. A discrete layer (1 cm thick) of volcanic silt with clay and nannofossils occurs in Section 4 at 45 cm.
SITE 834 HOLE B CORE 5R
CORED 97.1 - 101.8 mbsf

<table>
<thead>
<tr>
<th>Meter</th>
<th>Graphic Lth.</th>
<th>Structure</th>
<th>Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>101.8</td>
<td></td>
<td></td>
<td>10YR 4/3</td>
<td>NANNFOSSIL CLAY WITH VOLCANIC SILT.</td>
</tr>
</tbody>
</table>

Major lithology: NANNFOSSIL CLAY WITH VOLCANIC SILT, brown to dark brown (10YR 4/3).
Minor lithology: VOLCANIC SAND, pale brown (10YR 6/3).

WASHED 101.8–106.8 mbsf
Site 834 HOLE B CORE 6R

Cored 126.8 - 116.4 mbsf

Texture:
- Sand: 1
- Silt: 1.8
- Clay: 2.8
- M: 3
- D: 3.1
- D: 4.7

Composition:
- Accessory minerals: Tr, Tr, Tr, Tr, Tr, Tr
- Dolerite: Tr
- Porphyries: Tr
- Glass: Tr
- Nannofossils: 10

Graphic Lith.:
- 10YR 3/4
- 10YR 6/6
- 10YR 3/3
- 10YR 3/3
- 10YR 3/3
- 10YR 6/4
- 10YR 3/3

Description:
- **Clayey Nanofossil Mixed Sediment**
- **Volcanic Sand with Nanofossil and Clay**
 - Light yellowish brown (10YR 6/4). An interlayered sequence of Volcanic Sand with Nanofossil and Clay, and Clayey Nanofossil Mixed Sediment occurs in Section 2, 40-66 cm. Clay with Nanofossils occurs in Section 1, 0-5 cm, white (10YR 8/2), and in Section 2, 91-93 cm, yellowish brown (10YR 5/8).

834B 7R THROUGH 12R HARD ROCK
SITE 834 HOLE B CORE 13R
CORED 161.0 - 165.7 mbsf

<table>
<thead>
<tr>
<th>Sample</th>
<th>Graphic Lith.</th>
<th>Structure</th>
<th>Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>M D M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>135-834B-13R SMEAR SLIDE SUMMARY (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand</td>
<td>2.80</td>
<td>2.66</td>
<td>2.103</td>
<td></td>
</tr>
<tr>
<td>Silt</td>
<td>2.80</td>
<td>2.66</td>
<td>2.103</td>
<td></td>
</tr>
<tr>
<td>Clay</td>
<td>90</td>
<td>90</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

**TEXTURE: **
- Sand
- Silt
- Clay

**COMPOSITION: **
- Accessory minerals: 2
- Feldspar: 1
- Nannofossils: 40
- Opaque: 10
- Palagonite: 50

DESCRIPTION:
- Major lithology: CLAY, brown to dark brown (10YR 4/3), indurated.
- Minor lithologies: NANNOFOSSIL CLAY, very dark grayish brown (5YR 3/2), thinly laminated to thinly laminated in Section 2, 75-84 cm.
- NANNOFOSSIL CHALK, very dark, grayish brown (5YR 3/2) in Section 2, 100-105 cm. Chalk contains minor quantities of iron oxyhydroxide minerals, as well as trace magnetite, palagonite and sideromelane. Basaltic rubble occurs in Section 2, 72-75 cm, immediately beneath the basalt.

SITE 834 HOLE B CORE 37R
CORED 299.5 - 309.1 mbsf

<table>
<thead>
<tr>
<th>Sample</th>
<th>Graphic Lith.</th>
<th>Structure</th>
<th>Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>M D M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>135-834B-37R SMEAR SLIDE SUMMARY (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand</td>
<td>1.30</td>
<td>1.30</td>
<td>1.61</td>
<td></td>
</tr>
<tr>
<td>Silt</td>
<td>2.31</td>
<td>2.31</td>
<td>2.34</td>
<td></td>
</tr>
<tr>
<td>Clay</td>
<td>50</td>
<td>50</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

**TEXTURE: **
- Sand
- Silt
- Clay

**COMPOSITION: **
- Cement: 50
- Clay: 50
- Feldspar: 2
- Nannofossils: 15
- Opaque: 10
- Palagonite: 10
- Plagioclase: 10
- Pore space: 10
- Pyroxene: 10

DESCRIPTION:
- Major lithology: CLAY, brown to dark brown (10YR 4/3), indurated.
- Minor lithologies: CALCAREOUS SANDSTONE AND CALCAREOUS MUDSTONE, brown (10YR 4/3) to very dark gray (10YR 3/1) containing deformed thin lenticular sandy layers.
- Minor lithologies: SILTSTONE, brown (10YR 4/3) to very dark gray (10YR 3/1), occurs as a deformed layer within the sandstone.
UNIT 1: OLIVINE AND PLAGIOCLASE BEARING BASALT

Pieces 1–22 cm

CONTACTS: None, only loose pieces, though several have very thin glassy rims.

PHENOCRYSTS: Rare.
- Plagioclase: <1%; to 2 mm; euhedral, single grains to small glomerocrysts.
- Olivine: <1%; 0.5 mm; single grains.

GROUNDMASS: Aphanitic.

VESICLES: 10%–20%; 0.2–0.6 mm; irregular; uniform; very fine-grained and abundant; groundmass is very porous; some margin-parallel lines of vesicles.

Miaraole: None.

COLOR: 7.5YR 6/0, gray.

STRUCTURE: None.

ALTERATION: Slightly; brown to brown-gray patches and bands in groundmass.

VEINS/FRACTURES: None.

ADDITIONAL COMMENTS: All occur as clasts and pebbles in red-brown nannofossil ooze; the olivine phenocrysts distinguish them from all of the lower units.
UNIT 1: APHYRIC BASALT

Pieces 1–3

CONTACTS: None.
PHENOCRYSTS: None visible.
GROUNDMASS: Uniformly microcrystalline.
VESICLES: None. Miaroles: None.
COLOR: 10YR 4/1, dark gray.
STRUCTURE: Massive.
ALTERATION: Pervasive, slight–moderate alteration, glassy rims with palagonite on some surfaces.
VEINS/FRACTURES: None.
ADDITIONAL COMMENTS: These pieces were recovered as drilling rubble and were arbitrarily sorted into (1) angular fragments coated in sediment (2) fragments with yellow-brown coatings on exterior surfaces, and (3) fragments with glassy rinds. Glassy rinds are from 1–5 mm thick.

UNIT 2A: APHYRIC BASALT

Pieces 4–6

CONTACTS: None.
PHENOCRYSTS: None.
GROUNDMASS: Uniformly microcrystalline.
VESICLES: 10%–20%; <1 to 5 mm; round; various; more concentrated in Piece 5. Round (to 7 mm) concentrations of fine vesicles (up to 50%) are patchily distributed through samples. Miaroles: None.
COLOR: 10YR 4/1, dark gray.
STRUCTURE: None.
ALTERATION: Slightly altered; Piece 6 has a thin (about 0.1 mm) carbonate coating on one surface.
VEINS/FRACTURES: None.
UNIT 2A: APHYRIC BASALT

Pieces 1–4

CONTACTS: None.
PHENOCRYSTS: None.
GROUNDMASS: Uniformly very fine-grained.
VESICLES: 20%; 0.5 to 3.5 mm; round; patchy; two scales: (1) relatively coarse, patchy distribution (as above) (2) very fine scale vesicles through groundmass, <= 0.2 mm, rounded to subrounded, forming about 30% of groundmass. Some (10%) coarse (3–12 mm) dark gray, secondary lava infillings of preexisting vesicles.
Miaroles: Very rare calcite linings to vesicles.
COLOR: 7.5YR 4/0, dark gray.
STRUCTURE: Massive, vesicular.
ALTERATION: Restricted to fractures and fracture infillings.
ADDITIONAL COMMENTS: The material in this part of the section is essentially identical to Unit 2B, the two being separated by a baked sediment zone.

Piece 5 is baked calcareous sediment (ooze).

UNIT 2B: APHYRIC BASALT

Piece 6

CONTACTS: None.
PHENOCRYSTS: None.
GROUNDMASS: Uniformly very fine-grained.
VESICLES: 30%; 1–4 mm; subrounded; patchy distribution; two size distributions: (1) large, patchy distribution, (2) very fine (<0.15 mm) vesicles in groundmass comprising 40%–50% of groundmass.
Miaroles: Rare phillipsite and Mg-oxide infillings.
COLOR: 7.5YR 3/0, very dark gray.
STRUCTURE: Massive.
ALTERATION: Fresh–slightly altered.
VEINS/FRACTURES: None.
UNIT 2B: APHYRIC BASALT

Pieces 1–13

CONTACTS: None visible.

PHENOCRYSTS: None.

GROUNDMASS: Uniformly very fine-grained to vitreous (latter especially noticeable around vesicles); plagioclase and pyroxene visible.

VESICLES: 30%; 1 to 6.5 mm; round to pipe-like; regular; two size distributions: (1) as above, (2) very fine (<0.15 mm) vesicles in groundmass comprising 40%–50% of groundmass.
Pipe-like vesicular structures (vertical) developed clearly in Pieces 6, 8, and 11.

Miaroles: Zeolites infilling some vesicles in lower portion of the section.

COLOR: 7.5YR 3/0, very dark gray.

STRUCTURE: Massive.

ALTERATION: Slight–moderate.

VEINS/FRACTURES: <1%; 0.2 mm width; random; fine-grained calcite (plus Fe-oxide staining) aggregates present along margins of some fragments - could be veins or baked calcareous ooze?

ADDITIONAL COMMENTS: Pieces numbered 13 represent drilling rubble.
UNIT 3: SPARSELY TO MODERATELY PHYRIC
PLAGIOCLASE BASALT

Pieces 1–5

CONTACTS: Loose fragments at 16 cm are adjacent to light tan baked (?) clay; these pieces are slightly more vesicular than Pieces 2–4 and are darker gray.
PHENOCRYSTS: Plagioclase: 1%–3%; 1 to 2 mm; euhedral, rarely to 3 mm, minor glomerocrysts.
GROUNDMASS: Uniformly microcrystalline; groundmass has a fine porous texture (up to 30% very fine vesicles?).
VESICLES: 5%–10%; 0.5 to 4 mm; ovoid; patchy; concentrated in Pieces 1 and 5 (up to 5% to 10%); very patchy in Pieces 2 to 4 (<1% to 20% locally); see drawing.
Miaroles: Minor elongate cavities (to 3 by 16 mm); minor yellow, yellow-orange, blue-gray vesicle and cavity linings.
COLOR: 10YR 6/1 light gray.
STRUCTURE: Massive.
ALTERATION: Slight (see miaroles entry).
VEINS/FRACTURES: None.
ADDITIONAL COMMENTS: Contact at base is to clayey tuffaceous sediment with sharp transition from brown to gray-green color lower in the core. Sediment piece at contact is lighter tan and seems more indurated than the sediment below it.
UNIT 4: APHYRIC BASALT

Pieces 20–35 cm

CONTACTS: The contact at 20 cm has basalt fragments with glassy rims (<1 mm) overlain by gray silty sediment.

PHENOCRYSTS: None.

GROUNDMASS: Aphanitic, fine porous vesicularity.

VESICLES: 10%; 2 mm; round; various; vesicles are most abundant in the large piece at 23 to 26 cm; they appear to decrease in abundance in the rubble. Rarely, cavities up to 12 mm in diameter occur.

Miaroles: None.

COLOR: 10YR 2.5/1, black.

STRUCTURE: Samples are brecciated (flow top?); pebble-sized except for one large piece at 23 to 26 cm.

ALTERATION: Fresh; minor gray-green sediment filling vesicles and surface cavities.

VEINS/FRACTURES: None.

ADDITIONAL COMMENTS: Section 16–20 is all sediment; the sediment contact on the basalt is judged to be depositional based on the abundance of volcanic fragments in the sediment. Pebbles at 0–5 cm fell on deck from core catcher, were retrieved by Hawkins and arbitrarily stored in top of CC. Rocks were not given piece numbers.
UNIT 5: Aphyric Basalt

Pieces 1-4

CONTACTS: None visible.

PHENOCRYST: None visible.

VESICLES: 1%; rarely to 6 mm; irregular; scattered; only large vesicles counted; groundmass has a pervasive porosity (up to 20%) which is in part vesicles, in part grain boundary porosity.

Miaroles: All vesicles have partial infillings of(?) zeolites.

COLOR: 5Y 6/1, gray.

STRUCTURE: Massive.

ALTERATION: High to very high.

VEINS/FRACTURES: <1%; about 1 mm; steeply dipping to vertical; prominent steep fracture cutting unit between 100 and 150 cm. Distinct alteration zone along fracture with Fe oxide staining and rare pyrite visible.

ADDITIONAL COMMENTS: Alteration decreases from high to moderate downcore. Darker vesicular zones, relatively free of infillings are conspicuous at several positions in core.

Key

--- fracture

Ⅱ attraction zone adjacent to fracture

○ darker vesicular zones, relatively free of infillings
UNIT 5: APHYRIC BASALT

Pieces 1–11

CONTACTS: None visible.

PHENOCRYSTS: None visible.

GROUNDMASS: Fine-grained, holocrystalline. Extensive secondary mineral development, comprising zeolite and green clays.

VESICLES: 0%–15%; 1–7 mm; rounded to subrounded; variable; well-developed filiform zeolitic cavity infillings. Only large vesicles counted. Groundmass has a pervasive porosity which appears partly vesicular and partly a grain boundary porosity.

Miaroles: Extensive zeolite infillings.

COLOR: 5Y 5/1, gray.

STRUCTURE: Massive.

ALTERATION: High to moderate.

VEINS/FRACTURES: Local; <2 mm width; subvertical; vein infillings variable; some calcite, some chlorite/clay, some zeolitic.

ADDITIONAL COMMENTS: Prominent infilled vesicular zones between 45–60 cm, 84–90 cm, 94–106 cm, 117–130 cm, and 135–150 cm.
UNIT 5: APHYRIC BASALT

Pieces 1–12B

CONTACTS: None visible.

PHENOCRYSTS: None visible.

VESICLES: ~20%; 1–9 mm; rounded to subrounded; variable; percentage quoted refers to the larger vesicles. Overall rock shows fine-scale porosity which may partly represent fine vesicularity.

Miaroles: Extensive zeolite infillings (dominantly white).

COLOR: 7.5YR 4/0, gray.

STRUCTURE: Massive.

ALTERATION: High to moderate.

VEINS/FRACTURES: None.

ADDITIONAL COMMENTS: Prominent vesicle infilling between 1–12 cm and 26–96 cm (gradational).
Calcite vein < 0.1 mm in width with dark halo

UNIT 5: APHYRIC BASALT

Pieces 1A–5B

CONTACTS: None visible.
PHENOCRYSTS: None visible.
GROUNDMASS: Holocrystalline, fine-grained. Extensive secondary mineral development (zeolites/chlorite/smectite?)
VESICLES: 30%; <6 mm; rounded to elongated; throughout; larger vesicles show zeolite minerals and calcite growing from the wall.
Miaroles: Most vesicles infilled with platy and/or acicular minerals (zeolites?)
COLOR: 7.5N 4/0, dark gray.
STRUCTURE: Massive.
ALTERATION: High to moderate.
VEINS/FRACTURES: <1%; <1 mm; subvertical; very thin white vein between 7–13 cm.
ADDITIONAL COMMENTS: Vesicle infilling not as extensive as in previous sections.
UNIT 5: APHYRIC BASALT

Pieces 1A–3B

CONTACTS: None.

PHENOCRYSTS: None visible

VESICLES: <1%–10%; 1–5 mm; rounded to subrounded; variable; large vesicles concentrated around Pieces 1B and 1C close to the large vug.

Miaroles: Tabular and/or acicular zeolite(?)-lined vugs and vesicles.

COLOR: 2.5Y N5/0 gray.

STRUCTURE: Massive.

ALTERATION: Highly to moderately altered. When Pieces 1A–1C are reconstructed, a semicircular alteration halo (3.5 or more cm wide) occurs around a large (1.5 cm across) vug. This vug is lined with orange-brown and green acicular zeolites(?)

VEINS/FRACTURES: <1%; 8 cm long; steeply dipping; reddish brown alteration along the fracture which now separates Pieces 1D and 1E.

Key

zone of large cavities

orange fracture or cavity coating
UNIT 5: APHYRIC BASALT

Pieces 1A–3E

CONTACTS: None.

PHENOCRYSTS: None visible.

VESICLES: 1%–10%; <1 mm–10 mm; irregular; variable; variable distribution; greatest concentration between 34 cm and 40 cm (i.e., near Piece 1D). In Piece 1D zeolites (?) include green and yellow varieties (in addition to the typical white varieties observed).

Miareoles: Tabular and/or acicular zeolite (?) lined vugs and vesicles.

COLOR: 2.5Y 6/8 gray.

STRUCTURE: Massive.

ALTERATION: Moderate–highly altered.

VEINS/FRACTURES: 1%; 12 cm long and 2 mm wide; subvertical; high carbonate content in vein fillings. On either side of the fracture there is an alteration halo 1.5 cm wide. Reddish brown alteration along the fracture, and on piece boundaries.
UNIT 5: APHYRIC BASALT

Pieces 1A–4E

CONTACTS: None visible.

PHENOCRYSTs: None visible.

GROUNDMASS: Fine- to medium-grained, holocrystalline. Widespread secondary mineralization.

VESICLES: 0%–15%; <1–5 mm; rounded to irregular; variable; vesicles appear more abundant in Pieces 1 and 2 although development is patchy and infilling is more intense towards the bottom of this section.

Miaroles: White zeolites(?) varying from thin coatings to tabular and/or globular.

COLOR: 2.5Y N5, gray.

STRUCTURE: Massive.

ALTERATION: Moderately to highly altered.

VEINS/FRACTURES: 2%; 10–46 cm long, 2 mm wide; steeply dipping to subvertical; fractures infilled with coatings and acicular crystals of zeolite(?) up to 2 mm wide. Alteration halo extends 7 mm either side of the fracture surface.

Key

/ / / / Fe-Mn and/or calcite in fractures
UNIT 5: APHYRIC BASALT

Pieces 1–5C

CONTACTS: None visible.

PHENOCRYSTS: None visible.

VESICLES: 0%–5%; <1–6 mm; rounded to elongate; variable; vesicle content is irregular and patchy but this is due largely to infilling by secondary minerals obscuring the original vesicle distribution.

Miaroles: Most vesicles filled with white tabular to globular zeolites.

COLOR: 2.5Y 5/5, gray.

STRUCTURE: Massive.

ALTERATION: Moderately to highly altered.

VEINS/FRACTURES: 1%; 20 cm long; 1 mm wide; subvertical; fracture surfaces coated with Fe-Mn oxide with high carbonate content; 1 cm alteration halo on either side.
UNIT 5: APHYRIC BASALT

Pieces 1–13

CONTACTS: None visible.
PHENOCRYSTS: None.
VESICLES: 0%–10%; <1–5 mm; rounded to subrounded; variable; vesicle abundance is somewhat obscured by degree of infilling with secondary minerals.
Miaroles: White zeolites(?) generally tabular to globular.
COLOR: 2.5Y N/5, gray.
STRUCTURE: Massive.
ALTERATION: Moderately to highly altered.
VEINS/FRACTURES: None.
UNIT 2: APHYRIC BASALT

Pieces 2, 4, and 5

CONTACTS: Glassy basalt fragments are attached to metamorphosed limestone clasts in Pieces 1 and 3.

PHENOCRYSTS: None.

GROUNDMASS: Uniformly microcrystalline (<0.4 mm). Pieces 2 and 4 are slightly finer grained; groundmass texture has plagioclase microlite with intergranular clinopyroxene.

VESICLES: 30%; <1 to 45 mm; ovoid to round; patchy to uniform; two vesicle populations: one has large, ovoid vesicles >1 mm to 4.5 mm; these are most abundant in Pieces 2 and 4 (4% to 8%) and comprise only 1% of Piece 4. The second group has round, <1 mm (typically 0.5 mm) vesicles comprising up to 30% of groundmass volume in most pieces.

Miaroles: Thin orange-red and brown-red coatings in some vesicles.

COLOR: 10YR 6/1, gray; Pieces 2 and 4 are slightly browner.

STRUCTURE: None.

ALTERATION: Slight to moderate in Piece 5; vesicle fillings as noted above; <1 mm calcite coatings on some outside surfaces; brown-orange intergranular coatings and fillings are common in Piece 5.

VEINS/FRACTURES: None.

ADDITIONAL COMMENTS: At least one pebble of Piece 2 is a 7 mm angular limestone clast; two small fragments in Piece 2 have thin glassy margins.

UNIT 2: LIMESTONE

Pieces 1 and 3

CONTACTS: Metamorphosed adjacent to basalt; all pieces have small, glassy, basaltic fragments attached.

PHENOCRYSTS: N/A.

GROUNDMASS: Fine-grained with some small dark gray patches (siliceous infillings?)

VESICLES: N/A.

Miaroles: N/A.

COLOR: 10YR 8/1, white to 10YR 5/3, brown.

STRUCTURE: None.

ALTERATION: High-probably a metamorphosed ooze; glassy fragments have yellow-orange palagonite(?)/clay(?) rims.

VEINS/FRACTURES: <1%; <0.2 mm; N/A; filled with recrystallized carbonate?

ADDITIONAL COMMENTS: Thin coatings of recrystallized calcite on some outside surfaces.

Pieces may have been mixed in core catcher and sorted on cutting table. No stratigraphic significance.
UNIT 2: APHYRIC BASALT

Pieces 1–21

CONTACTS: None seen.

PHENOCRYSTs: Plagioclase: <0.1%; 1 by 4 mm; single phenocryst in Piece 4.

GROUNDMASS: Fine-grained; holocrystalline. Plagioclase laths visible. Rare, small deep brown to reddish brown patches may represent altered olivine and/or pyroxene. More common small paler brown patches of uncertain origin.

VESICLES: 15%-20%; 0.1 to 3 mm; rounded to interlocking; even; there tends to be a bimodal distribution of vesicles. The smaller vesicles interlock extensively, giving the rock a high porosity.

Miaroles: Partial infillings of calcite, (?)zeolite, Mn-oxides variously occur.

COLOR: 10YR 5/1, grey.

STRUCTURE: Massive.

ALTERATION: Fresh to highly altered.

VEINS/FRACTURES: <1%; <=1mm width; various; small irregular veins contain calcite. Drill fragments frequently have broken along such veins yielding the patchy calcite coatings on some fragments.

ADDITIONAL COMMENTS: Pieces 3 and 13 exhibit complex reaction features between calcareous ooze and lava. The calcareous material is recrystallized. Piece 14 is recrystallized calcareous ooze.
UNIT 2: APHYRIC BASALT

Pieces 1–5C

CONTACTS: None visible.
PHENOCRYSTS: None.
GROUNDMASS: Fine-grained, holocrystalline. Plagioclase laths visible, plus fine pyroxene (interstitial).
VESICLES: 10%–20%; 0.1 to 3 mm; rounded to subangular, interconnected; large vesicles patchily distributed; interconnected producing quite high porosity. Three subhorizontal zones of largest vesicle concentrations at 29–31 cm, 54–55 cm, and 92–95 cm. Miaroles: Minor zeolite (?) infilling.
COLOR: 2.5Y 5/0, gray.
STRUCTURE: Massive.
ALTERATION: Slight.
VEINS/FRACTURES: <<1%; <= 1 mm width; subvertical; infillings and coatings of Mn oxides, zeolite (?), and calcite.

Subhorizontal coarser vesicle zones
UNIT 2: APHYRIC BASALT

Pieces 1A–10

CONTACTS: None.

PHENOCRYSTS: None.

GROUNDMASS: Fine-grained.

VESICLES: 3%–20%; 5 mm; rounded; patchy; two populations: one set occasional, subrounded to 5 mm sometimes aligned in strings, others <2 mm, irregular.

Miaroles: Smaller vesicles have coatings of light green zeolites.

COLOR: Fresher rock is gray (2.5Y 5/0); altered is light brownish gray (2.5Y 6/2).

STRUCTURE: None.

ALTERATION: Moderate; note alteration front in Piece 1C.

VEINS/FRACTURES: <1%; <1 mm; various; brown to orange-brown clay fillings. Fracture surfaces are well exposed in Piece 4, can see two generations of carbonate infilling. The outer is medium brown, the inner is white with sharp boundary between the two. Also some yellow orange ochreous material.

 Oxidized, altered portion of piece
UNIT 5: APHYRIC BASALT

Pieces 1–11

CONTACTS: None visible.

PHENOCLYSTS: None.

GROUNDMASS: Fine-grained, pervasive alteration.

VESICLES: 1%–30%; <1–6 mm; irregular-rounded; variable; largest vesicles in Pieces 2, 3, and 4; smaller in the other pieces.

Miaroles: Zeolite and carbonate infilling in Pieces 2 and 8, none in the others.

COLOR: 7.5R 3/0.

STRUCTURE: Massive.

ALTERATION: Highly altered.

VEINS/FRACTURES: None.

ADDITIONAL COMMENTS: Piece 11 is rubble from Core Catcher.
UNIT 5: APHYRIC BASALT

Pieces 1A–10

CONTACTS: None visible.

PHENOCRYSTS:
Plagioclase: Trace; <1.

GROUNDMASS: Microcrystalline to very fine-grained (to 1 mm); plagioclase laths with intergranular pyroxene.

VESICLES: 10%; 1–5 mm; subrounded; uniform; vesicle distribution even throughout the section.
Miaroles: Slight secondary mineral development on the walls.

COLOR: 2.5YR 5/0 gray.

STRUCTURE: Massive.

ALTERATION: Moderate.

VEINS/FRACTURES: None.
UNIT 5: APHYRIC BASALT

Pieces 1A–6C

CONTACTS: None visible.
PHENOCRYSTS: None.
GROUNDMASS: Fine-grained groundmass of pyroxenes and plagioclase laths.
VESICLES: 10%–20%; <1–7 mm; subrounded to irregular; relatively uniform; vesicles lined with white-green globular carbonate(?) and acicular zeolites.
Miaroles: None.
COLOR: 2.5YR 5/0, gray.
STRUCTURE: Massive.
ALTERATION: Moderately altered.
VEINS/FRACTURES: <1%; 14 cm long; 1–2 mm wide; subvertical; acicular zeolites(?) and/or carbonate. Colorless to pale yellow-brown material infilling fracture.

= fibrous or acicular zeolites
UNIT 5: APHYRIC BASALT

Pieces 1A–8

CONTACTS: None.

PHENOCRYSTS: None.

GROUNDMASS: Fine-grained; plagioclase laths with intergranular pyroxenes.

VESICLES: <1%–10%; <1–4 mm; subrounded to irregular; uniform; vesicles lined with white to pale green globular zeolites(?) and/or carbonate. Distribution appears patchy, however this results from variation in infilling, particularly in the vicinity of the vein filled fracture.

Miaroles: None.

COLOR: 2.5Y 5/0, gray.

STRUCTURE: Massive.

ALTERATION: Moderate–highly altered.

VEINS/FRACTURES: 5%; 10 to >45 cm long; subvertical; Pieces 1–3, 5, 7, and 8 all show evidence of wide (up to 2 cm) alteration halos either side of the vein filled fractures. The fractures are irregular rather than flat-planar surfaces. Immediately adjacent to the rock surface the alteration is a Fe-oxide brown. The vein-fill material itself is a white carbonate(?) and/or zeolite which varies from massive to clusters of acicular and tabular crystals.

\[\text{\textbackslash \textbackslash} = \text{veins with acicular mineral growth (zeolite?)}\]
UNIT 5: APHYRIC BASALT

Pieces 1–3F

CONTACTS: None.

PHENOCRYSTS: None.

GROUNDMASS: Fine-grained.

VESICLES: 5%–10%; <1–4 mm; subrounded; uniform; infilled with white globular to tabular zeolites (?) and/or carbonate.

Miaroles: None.

COLOR: 2.5Y 5/0, gray to 2.5Y 5/2.

STRUCTURE: Massive.

ALTERATION: Moderate to very high.

VEINS/FRACTURES: 5%; 80 cm long; 2–4 mm wide; subvertical; Pieces 3B and 3F contain an irregular vein-filled fracture which branches out in sample 3E. Alteration halos are up to 4 cm wide either side of the fracture. The vein infilling the fracture passes from Fe-oxide staining at the rock interface to whitish zeolites and/or carbonates at the interior. Greenish clays are also present.

\[\textit{f} = \text{filled veins (zeolites, carbonates, green clays, Fe-oxide and hydroxide)} \]
UNIT 5: APHYRIC BASALT

Pieces 1A–3B

CONTACTS: None.
PHENOCRYSTS: None.
GROUNDMASS: Fine-grained.
VESICLES: 5%–10%; 1–5 mm; 2 cm; subrounded; uniform; large (1–2 cm) vesicles at 30 cm, 112 cm, 120 cm. These are generally empty with minor secondary mineral development on the walls. Smaller vesicles are generally filled with white to pale green globular zeolites (?) and/or carbonates.
Phases: None.
COLOR: 2.5Y 5/0, gray.
STRUCTURE: Massive.
ALTERATION: Moderate.
VEINS/FRACTURES: 1%; 1 mm wide; subhorizontal; the vein from 1–10 cm is a continuation of the long vein in Section 1. The alteration halo extends for 1 cm on either side. The vein is filled with zeolites, carbonate and green clays. At 110 cm is a small white vein without an alteration halo.
UNIT 5: APHYRIC BASALT

Pieces 1A-3

CONTACTS: None.

PHENOCHRYS: None.

GROUNDMASS: Fine-grained.

VESICLES: 5%-10%; <1-6 mm; subrounded; uniform; globular infillings vary from colorless/whitish to greenish. Vesicle size averages approximately 1 mm.

MIAROLLS: None.

COLOR: 2.5Y 5/0; gray.

STRUCTURE: Massive.

ALTERATION: Moderate-high.

VEINS/FRACTURES: None.
UNIT 5: APHYRIC BASALT

Pieces 1–2

CONTACTS: None.

PHENOCRYSTS: None.

GROUNDMASS: Fine-grained.

VESICLES: 5%–10%; <1–6 mm; subrounded; uniform; vesicles are generally up to 1 mm diameter with rare examples up to 6 mm across. Zeolites and carbonates(?) infill vesicles.

Miaroles: None.

COLOR: 2.5Y 5/0, gray.

STRUCTURE: Massive.

ALTERATION: Moderate.

VEINS/FRACTURES: None.
UNIT 5: APHYRIC BASALT

Pieces 1A–1B

CONTACTS: None.

PHENOCRYSTS: None.

GROUNDMASS: Fine-grained.

VESICLES: 5%–10%; <1–3 mm; subrounded to irregular; uniform; vesicles infilled with tabular and globular white to greenish zeolites (?) and carbonates.

Miaroles: None.

COLOR: 2.5Y 5/0, gray.

STRUCTURE: Massive.

ALTERATION: Moderate to high.

VEINS/FRACTURES: 1%; 2 mm wide; subvertical; the vein-basalt interface is coated with Fe-oxide staining. The vein infill is composed of both massive and acicular colorless to white and yellowish material.

= infilled veins, zeolites, green clays, carbonates
UNIT 5: APHYRIC BASALT

Pieces 1–2B

CONTACTS: None.
PHENOCRYSTS: None.
GROUNDMASS: Fine-grained.
VESICLES: 5%–10%; <1–5 mm; subrounded to irregular; variable; vesicles generally 1 mm in diameter or less with rare examples up to 5 mm. Linings and infillings of white to greenish zeolites and/or carbonates are pervasive.
Miaroles: None.
COLOR: 2.5Y 5/0, gray.
STRUCTURE: Massive.
ALTERATION: Moderate-high.
VEINS/FRACTURES: <1%; >17 cm long; steeply dipping; Piece 1 contains the continuation of the fracture described for Piece 1 of Section 135-834B-12R-2. The description is identical.
ADDITIONAL COMMENTS: Piece 1 is continuous with Piece 1B in section above.

= veins filled with zeolites, green clays, or carbonates
= concentration of open vesicles
UNIT 5: APHYRIC BASALT

Pieces 1A-2

CONTACTS: None.

PHENOCRYSTS: None.

GROUNDMASS: Fine-grained.

VESICLES: 5%-15%; <1–4 mm; subrounded to irregular; variable; vesicles generally 1 mm diameter or less. In a few locations in both pieces there is an apparent concentration of vesicles. It is within these areas that the diameter increases to 5 mm. Widespread infilling of vesicles by white to greenish zeolites and/or carbonates is also reduced in these patches of vesicles.

Miaroles: None.

COLOR: 2.5Y 5/0, gray.

STRUCTURE: Massive.

ALTERATION: Moderate.

VEINS/FRACTURES: None.

\[J_o = \text{concentration of open vesicles} \]
UNIT 5: APHYRIC BASALT

Pieces 1A–1B

CONTACTS: None.

PHENOCRYSTS: None.

GROUNDMASS: Fine-grained.

VESICLES: 5%–10%; 0.1–1 mm; subrounded to irregular; uniform; vesicles typically lined or
infilled with white to greenish zeolites and/or carbonates.

Miaroles: None.

COLOR: 2.5Y 5/0, gray.

STRUCTURE: Massive.

ALTERATION: Moderate.

VEINS/FRACTURES: None.
UNIT 5: APHYRIC BASALT

Pieces 1–4

CONTACTS: None.

PHENOCRYSTS: None.

GROUNDMASS: Fine- to medium-grained.

VESICLES: 5%–10%; <1–10 mm; rounded to elongate; mostly uniform; most vesicles are filled with a white greenish mixture of zeolites and/or carbonates. One band of open vesicles at 20 cm have a brownish Fe-oxide coating.

Miaroles: None.

COLOR: 2.5Y 5/0, gray.

STRUCTURE: Massive.

ALTERATION: Moderate.

VEINS/FRACTURES: None.

ϕ = concentration of open vesicles
UNIT 5: APHYRIC BASALT

Pieces 1A-2

CONTACTS: Lower contact with sedimentary section; a few basalt pebbles with small rope-like surface just above sediment.

PHENOCRYSTS: None.

GROUNDMASS: Fine-grained.

VESICLES: 5%-10%; <0.1-2 mm; subrounded; various; in the least altered zone vesicle infills are colorless to white globular and tabular zeolites plus or minus carbonates; in the more heavily altered zone these are stained an orange brown from Fe-oxide. Pipe vesicles indicated in the sketch contain frothy, finely vesicular interiors.

Miaroles: None.

COLOR: 2.5Y 5/0, gray to 2.5Y 5/2, grayish brown.

STRUCTURE: Massive.

ALTERATION: Moderately to very highly altered.

VEINS/FRACTURES: 1%; 40 cm long; subvertical; irregular fracture lined with Fe-oxide.

ADDITIONAL COMMENTS: Approximately halfway down Piece 1 there is a color change from gray to orange-gray. This corresponds to the change from a moderate degree of alteration to a very highly altered state.

UNIT 6: APHYRIC BASALT

Piece 4

CONTACTS: Upper contact is with sedimentary section; sediment is adhering to the glass surface and there are glass grains in the sediment, contact appears depositional.

PHENOCRYSTS: None.

GROUNDMASS: Aphanitic.

VESICLES: 10%-15%; 0.8-2.5 mm; subrounded; irregular; some of vesicles have a frothy texture along their walls; others are clean and empty.

Miaroles: None.

COLOR: 2.5Y 3/0, dark gray.

STRUCTURE: Massive with quenched glassy rim.

ALTERATION: Slight.

VEINS/FRACTURES: None.

ADDITIONAL COMMENTS: Glassy rim 2-3 mm thick.
UNIT 6: APHYRIC BASALT

Pieces 1–13

CONTACTS: None.

PHENOCRYSTS: None.

GROUNDMASS: Fine-grained to glassy.

VESICLES: 5%–15%, 0.1 to 4 mm; subrounded; various; vesicles generally clear from infilling; sometimes Fe-oxide staining is observed and minor zeolites (?) are present.

Pieces 7 and 11 show transitions from glassy, more massive rims with small vesicles (<1 mm) to a more coarsely (2 mm) vesicular interior.

Miaroles: None.

COLOR: 2.5Y 4/0, dark gray.

STRUCTURE: Thin flows or pillows judging from glassy margins here and in cores above and below.

ALTERATION: Slight.

VEINS/FRACTURES: <1%; 3 mm by 5 cm long; steeply dipping to subhorizontal; infilled with amorphous pinkish brown material (carbonate?) in Piece 13.

ADDITIONAL COMMENTS: This section contains drill rubble as well as larger pieces which could be oriented. The rubble at the top of this section has been arbitrarily sorted into separate piece numbers for curatorial handling.
UNIT 6: APHYRIC BASALT

Pieces 1–16

CONTACTS: Carbonate clasts (fused?) in Pieces 1 and 14; glassy margins in Pieces 1, 3, and 6.

PHENOCRYSTS: None.

GROUNDMASS: Aphanitic to microcrystalline near glass margins (Pieces 1, 3, 6); typically rock is microcrystalline to fine-grained (<1 to 1.1 mm) plagioclase laths with interstitial clinopyroxene (minor) and mesostasis.

VESICLES: 20%; <1 to 2 mm; round to irregular; uniform; most common in interiors are fine vesicles (<1 mm population comprising 15%–20% of rock); a second population (1–2 mm) makes up 2–3 volume % and is most common in Pieces 4 and 7. Rims are generally less vesicular in both populations.

Miaroles: Most unfilled.

COLOR: 10YR 6/1, gray.

STRUCTURE: Thin flows or pillows judging from repetition of glass.

ALTERATION: Slight to moderate in Pieces 12, 14, and 9 near carbonate veins.

VEINS/FRACTURES: 2%; 1–13 mm wide; subvertical to 45°; most filled with recrystallized? carbonate; occurs as thick pods as well as veins. Pieces 9 and 14 have fracture wall linings of orange Fe-oxo-hydroxides (<0.5 mm); Piece 4 has fracture linings of < 1 mm of a later white material which runs along the carbonate vein and then cuts across it. The large carbonate vein in Piece 4 has a 10 mm spindle-shaped glass inclusion with an orangish palagonitic alteration zone around it.

Piece 9B

- calcite
- massive "clasts"
- thin oxidantive coatings on fracture walls.
UNIT 6: APHYRIC BASALT

Pieces 1–16

CONTACTS: Glassy rims on Pieces 4, 6, 8 (bottom), 9, 15, and 16.

PHENO CrySTs: None; small microphenocrysts (same size as crystalline interiors) of plagioclase and olivine in glass.

GROUNDMASS: Adjacent to glassy margins microlithic to aphanitic; interiors (1–3, 5, 7, 10–14) microcrystalline with plagioclase laths, minor olivine, minor intergranular clinopyroxene, and altered mesostasis.

VESICLES: 1%–30%; <1–1.5 mm; round; uniform to patchy; two populations: large vesicles (1–1.5 mm) only 1%–3%, common near rims and randomly in interiors; gas cavities to 9 mm occur in Piece 2. Second population is < 1 mm and comprises up to 30% of groundmass; less abundant and smaller near margins but fully developed within 20 cm of the rim.

Miaroles: No infilling.

COLOR: 7.5YR 5/10, gray near rims to 10YR 5/1, brownish gray in interiors.

STRUCTURE: Thin flows or pillows based on glass rims.

ALTERATION: Coarser interiors distinctly browner and more altered; surface coatings of orange Fe-oxy-hydroxides on Piece 1. Overall: slightly to moderately altered.

VEINS/FRACTURES: Trace; <1 to 2 mm wide; subvertical and subhorizontal; cooling fracture in Piece 4; horizontal calcite filled vein between 11 and 12, mostly on 12 with vertical fracture in 12 coming off it; a 10 mm alteration zone (brown) occurs around the fractures; calcitic fracture coating on Piece 15, below the calcite is a patch of dull green-tan fill of small barrel-shaped crystals (barite?) with rare small surface sulfide (?) grains (blue iridescence).
UNIT 6: APHYRIC BASALT

Pieces 1A–19

CONTACTS: None.
PHENOCRYSTS: None.
GROUNDMASS: Fine-grained, holocrystalline.
VESICLES: 30%; 0–1 cm; rounded, rarely elongate; various; larger vesicles in Pieces 5 to 19;
in Pieces 7A and 7B vesicles are partly rimmed by sulfides. Sulfides seem to be oxidized
leaving yellow greenish to dark green coatings.
Miaroles: Observed in Pieces 1 to 4.
COLOR: 10YR 4/1 to 3/1, dark gray to very dark gray.
STRUCTURE: Massive (glass rims may suggest small pillows or flows).
ALTERATION: Slightly to moderately altered.
VEINS/FRACTURES: <1%; <0.2 mm wide; subvertical; calcite vein in Pieces 1A and 1B
with light halo up to 1 cm on each side.
ADDITIONAL COMMENTS: Pieces 15 and 16 show patches of dark, secondary infillings
of magma in former vesicles. Glass rim on Pieces 4 and 17, each covered by barite(?). Sharp change in vesicle size (see above) between Pieces 4 and 5.
UNIT 6: APHYRIC BASALT

Pieces 1–3

CONTACTS: None seen.

PHENOCRYSTS: None.

GROUNDMASS: Fine-grained, holocrystalline; plagioclase laths visible.

VESICLES: 10%; 0.5 to 4 mm; rounded to elongate, some interconnected; larger ones in patches; two size distributions: (1) as above; (2) <0.2 mm, distributed throughout groundmass comprising an additional 10%–15% of volume of rock; these are interconnected.

Miaroles: Thin vesicle linings of rare calcite and unidentified deep red-brown to steel gray mineral; not all vesicles lined.

COLOR: 10YR 4/1, dark gray.

STRUCTURE: Massive.

ALTERATION: Slight.

VEINS/FRACTURES: 1%; 0.2–2 mm; subvertical and sub-horizontal; two vein sets in Piece 1 (to which the above numbers refer) both calcite infilled. A coarser (2 mm) pink, finely crystallized set (subvertical) cut by finer, white calcite veinlets (<0.5 mm width). Thin calcite coating on part of surface of Piece 3.

ADDITIONAL COMMENTS: Piece 2 contains a 5 mm thick glassy rind at one end of sample which appears free of crystals. This is in sharp contact with aphyric, finely vesicular holocrystalline basalt. Coarse vesicles (>1 mm) occur 2.5–3 mm inwards from glass contacts.
UNIT 6: APHYRIC BASALT

Pieces 1–6

CONTACTS: Glassy margin on Piece 1.

PHENOCRYSTS: None.

GROUNDMASS: Aphanitic (Piece 1) microcrystalline (2–6) plagioclase laths (<1 mm) with intergranular clinopyroxene and altered mesostasis.

VESICLES: 30%; <0.5 mm; irregular; uniform; a minor larger population also: <1% in Pieces 2–6, up to 2.5 mm, rounded; 2%, 3–4 mm by 1 mm cavities elongate parallel to the margins in Piece 1; small vesicle population is less common in Piece 1.

Miaroles: Minor; thin coatings on vesicle walls, orange, yellow-orange, yellow-green coatings.

COLOR: 10YR 5/1 interior to 7.5YR 5/0 margin.

STRUCTURE: Flow or pillow?, judging from cores above and below.

ALTERATION: Common yellow and orange-brown grain coatings in microcrystalline interiors; brownish alteration along veins and edges. Slight to moderate alteration overall.

VEINS/FRACTURES: Trace; <1 to 1.5 mm; various; fracture coating or fill include carbonate (Piece 4 with brownish alteration zone around vein), zeolites (botroidal, 1 mm, in Piece 2); soft orange to yellow-brown coatings on Pieces 1 and 2; dull red maroon coating on Piece 2.

ADDITIONAL COMMENTS: Gray vesicle fill in some Piece 1 vesicles probably drill mud. Smear slide is listed for Piece 5 but no notation was made of what was sampled. Probably a vein or coating.
UNIT 6: APHYRIC BASALT

Pieces 1–10

CONTACTS: Glassy margins on Pieces 1 (5 mm thick), 2 (7 mm), 3 (1 mm), 9 and 10 (1 mm).

PHENOCRYSTS: A single 2 mm plagioclase in Piece 7, one 2.5 mm glomerocryst in Piece 8 (very pale olivine or stained plagioclase).

GROUNDMASS: Glassy to microlitic at margins, interior pieces microcrystalline to aphanitic (Pieces 5 to 8), plagioclase and intergranular clinopyroxene microlites with mesostasis.

VESICLES: <1<35%; <1 mm; irregular; uniform; most common is population of small vesicles, so dense Pieces 4 to 8 are almost spongy; glassy rims are massive grading to 10%, 0.3 mm vesicles, grading to spongy texture; larger vesicle population (0.5 to 4 mm) occurs in scattered spots (1% to 4%); most common in Pieces 6 and 10.

Miaroles: Minor thin yellow-orange coatings on inside vesicle walls.

COLOR: 7.5YR 5/0, gray, margins to 10YR 6/1.

STRUCTURE: Thin flows or pillows.

ALTERATION: Brownish hue to interior pieces, slight to moderate orange and yellow-orange grain boundary coatings and vesicle fill. Overall, the rock is fresh to moderately altered.

VEINS/FRACTURES: Yellow to orange Fe-oxy-hydroxide coatings on glass surfaces (Pieces 1, 2, 3, 10); greenish brown surface coating on one side of Piece 2, 6 mm, bright yellow orange patch on Piece 6.

ADDITIONAL COMMENTS: Orientation of Pieces 9 and 10 may be suspect: glass and microlitic zones point down relative to orientation arrows.
UNIT 6: APHYRIC BASALT

Pieces 1–3

CONTACTS: None visible.

PHENOCRYSTS: Plagioclase: <=1%; 2.5 by 1 to 1x1 mm.

VESICLES: 10%-20%; 0.1 to 3.5 mm; rounded to pipe-like to irregular; irregular; larger vesicles concentrated in clusters; vesicles interconnecting sometimes pipe-like giving the holocrystalline groundmass a high porosity.

Miaroles: Local Fe-oxide coatings and local zeolites?

COLOR: 10YR 3/1, very dark gray.

STRUCTURE: Massive.

ALTERATION: Slight.

VEINS/FRACTURES: No veins visible; thin sporadic calcite coatings on Piece 3.

ADDITIONAL COMMENTS: Piece 2 contains 1.5 cm black glassy rim in which no crystals are visible. This piece has larger vesicles (>1 mm) extending across sample into glassy zone. Smaller vesicles not present in glass.
UNIT 6: APHYRIC BASALT

Pieces 1–7

CONTACTS: None.

PHENOCRYSTS: Plagioclase phenocrysts tend towards microphenocrystal size, but are persistent in each piece.

Plagioclase: ≤1%; 0.4 x 2.7 to 0.25 x 0.7 mm; laths.

GROUNDMASS: Fine-grained, holocrystalline.

VESICLES: 10%–15%; up to 5; rounded to elongated; random; size increasing from Pieces 1 to 7.

Miaroles: None.

COLOR: 10YR 3/1, very dark gray.

STRUCTURE: Massive.

ALTERATION: Slightly altered.

VEINS/FRACTURES: None.

ADDITIONAL COMMENTS: End of Unit 6.

UNIT 7: HIGHLY PHYRIC PLAGIOCLASE BASALT

Pieces 8A–18

CONTACTS: None.

PHENOCRYSTS: Uniformly distributed. Prominent plagioclase microphenocrysts up to 1.5 mm in length scattered through the groundmass.

Plagioclase: 10%–15%; 1 x 2 to 2 x 3.5 mm; single grains and glomerophyric.

GROUNDMASS: Fine-grained, holocrystalline.

VESICLES: 1%; 1 mm; rounded; variable; concentrated near to glass rims.

COLOR: 7.5YR 6/0, gray to 10YR 6/2, light brownish gray.

STRUCTURE: Massive.

ALTERATION: Brown to red-brown alteration rinds.

VEINS/FRACTURES: <1%; 0.5 mm wide; various; calcite filled veins in Pieces 15A and 15B.

ADDITIONAL COMMENTS: Light brownish gray (10YR 6/2) color appears prominently beneath glass rims and along cracks and veins.
UNIT 7: HIGHLY PHYRIC PLAGICLASE BASALT

Pieces 1–8

CONTACTS: None.

PHENOCRYSTS: Uniformly distributed.
Plagioclase: 10%–15%; 1–4 mm; small single grains and larger glomerocrysts.
GROUNDMASS: Microcrystalline plagioclase laths with intersertal mesostasis and minor intergranular clinopyroxene(?)
VESICLES: Trace; 1 mm; various; random.
Miaroles: Very rare (e.g. 1 in Piece 1) white calcite filled vesicles.
COLOR: 7.5YR 6/0, gray to 10YR 6/1, brownish gray.
STRUCTURE: Massive.
ALTERATION: Surface patches and coatings of calcite and Mn-oxide, orange oxy-hydroxide staining on grain boundaries is common. Rare fresh gray cores (Piece 8) brownish to red-brown alteration rims are common. Overall, the rock is moderately altered.
VEINS/FRACTURES: <1%; 0.1–0.5 mm wide; various; calcite, Fe-oxy-hydroxide filled, all pieces appear partially bounded by fracture surfaces.
UNIT 7: HIGHLY PHYRIC PLAGIOCLASE BASALT

Pieces 1–10

CONTACTS: None (some slightly finer grained piece, e.g. Pieces 3D, 5).

PHENOCRYSTS: In most altered pieces, the larger plagioclase and glomerocrysts have a greenish to brown tinge, and are stained and altered.

Plagioclase: 5%–10%; 1–2 mm; single grain and 2–5 mm grain glomerocrysts

GROUNDMASS: Microcrystalline to very fine-grained. Plagioclase microclites with intergranular pyroxene to interstitial mesostasis.

VESICLES: <1%; 0.8–1 mm; round; random.

Miaroles: 3–4 large gas cavities in Piece 10 (10–22 mm) lined and filled with calcite, phillipsite, and a brown bladed (short and flat rhombs) mineral.

COLOR: 2.5YR 5/0, gray in the fresh cores (e.g. Piece 9) to 2.5Y 6/2, light brownish gray where highly altered.

STRUCTURE: Massive.

ALTERATION: Moderate to very high alteration with brownish alteration rinds. Pieces 1 and 2 with particularly heavy weathering, probably clay development; some yellow brown clayey and Mn-oxide surface coatings.

VEINS/FRACTURES: <1%; <1–1 mm; various; some outside fracture surfaces coated with calcite; small fractures (e.g. Piece 2) coated with slight Fe-oxy-hydroxides. Thin veins in Pieces 6 and 8 of calcite and zeolite.
UNIT 7: HIGHLY PHYRIC PLAGIOCLASE BASALT

Pieces 1–19B

CONTACTS: None.

PHENOCRYSTS: Thin plagioclase microphenocryst laths, randomly oriented, sparsely scattered in groundmass, up to 1 mm length.

Plagioclase: 10%–15%; 0.3x0.8 to 2x6 mm; evenly distributed, many in glomeroporphyritic aggregates.

GROUNDMASS: Fine-grained, holocrystalline.

VESICLES: <1%–3%; 0.5–2 mm; rounded to strongly elongated; evenly distributed; infilling is insignificant in Pieces 1–5. Pieces 6, 9, 10, 13–15, 17, and 19 contain concentrically zoned soft clay-like infillings.

COLOR: 2.5YR 5/0, gray to 2.5Y 5/2, grayish brown.

STRUCTURE: Massive.

ALTERATION: Slightly to very highly altered.

VEINS/FRACTURES: <<1%; 0.5 mm wide; irregular, subhorizontal; veins sporadic, in part calcite filled.

ADDITIONAL COMMENTS: Piece 7 contains a 3 mm glassy salvage with variolitic texture, passing sharply inwards into a microlitic zone (0.5 mm wide). This zone passes inwards into the more typical finely crystalline groundmass texture of Pieces 2–5 and 7–19.

Piece 15 is microlytic at one end. Piece 1 appears anomalous, and may represent a fragment of Unit 3 (very sparsely phyric plagioclase basalt).
UNIT 7: HIGHLY PHYRIC PLAGIOCLASE BASALT

Pieces 1–15

CONTACTS: None.

PHENOCRYSTS: Fresh plagioclase microphenocrysts randomly oriented and evenly distributed.
Plagioclase: 10%–15%; 1–4 mm; single grains and small glomerocrysts.

GROUNDMASS: Microlitic, mostly plagioclase microlites and intergranular clinopyroxene.

VESICLES: 0%–5%; 1 mm; round; in concentric bands; vesicles concentrated in concentric bands near the margins of some samples.

COLOR: 2.5YR 4/0, gray (least altered) to 10YR 6/2, light brownish gray (in the most altered material).

STRUCTURE: Massive.

ALTERATION: Slight to moderate in the interiors of pieces, to very high at some margins.

VEINS/FRACTURES: <1%; <1 mm wide; random; very thin veins, filled with carbonate or open with Fe-staining on margins. Alteration halos 2–7 mm on either side of veins.

ADDITIONAL COMMENTS: Many pieces look like remnant, altered pillows with extensive alteration at the margins (especially Piece 1) although there is no glass present. Alteration very high in some places.
UNIT 7: HIGHLY PHYRIC PLAGIOCLASE BASALT

Pieces 1–4

CONTACTS: None.

PHENOCRYSTS: Randomly distributed.

Plagioclase: 10%–15%; up to 5 mm; single grains and small glomerocrysts

GROUNDMASS: Fine-grained, holocrystalline.

VESICLES: <1%; <1; rounded; variable; generally clear of infillings.

COLOR: 7.5YR 4/0, gray to 10YR 6/2, light brownish gray

STRUCTURE: Massive.

ALTERATION: Slightly to highly altered.

VEINS/FRACTURES: None.
UNIT 7: HIGHLY PHYRIC PLAGIOCLASE BASALT

Pieces 1–19

CONTACTS: None.

PHENOCRYSTS:
Plagioclase: 10%–15%; 2–3 mm; occurs as single crystals and as glomerocrysts.

GROUNDMASS: Aphanitic.

VESICLES: 3%–10%; 0.02–1; rounded to irregular; variable; concentrated in patches or irregular zones.

Miaroles: None.

COLOR: 2.5YR 5/0 fresh, gray to 2.5Y 6/2 altered, yellow gray.

STRUCTURE: Massive.

ALTERATION: Marginal alteration zone 0.5–1 cm is common. Moderately altered to highly altered in some areas.

VEINS/FRACTURES: None.

ADDITIONAL COMMENTS: No veins or fractures are present.

Heavy alteration

Piece 18
Showing typical outer alteration
UNIT 7: HIGHLY PHYRIC PLAGIOCLASE BASALT

Pieces 1–16

CONTACTS: None.

PHENOCRYSTS: Pieces 14 and 15 contain glomerocrysts up to 6 mm and plagioclase content approaching 10%. Most plagioclase is fresh, however some do show greenish alteration.

Plagioclase: 10%–15%; 1–4 mm; single laths and glomerophyric aggregates.

GROUNDMASS: Micritic with some plagioclase microlites visible.

VESICLES: 1%–3%; <2 mm; rounded; irregular; most vesicles are filled with white globular zeolites.

COLOR: 2.5YR 5/0 fresh, gray to 2.5Y 6/2 altered, light brownish gray.

STRUCTURE: Massive.

ALTERATION: Slight to very high.

VEINS/FRACTURES: 1%; 2 mm wide; random; Piece 9 with filled (carbonate) veins, Piece 10 with open fractures with Fe-staining on walls.

ADDITIONAL COMMENTS: Alteration halos extend to 1.5 cm in from exterior edges.

Vein filled with carbonate
Open veins
UNIT 7: HIGHLY PHYRIC PLAGIOCLASE BASALT

Pieces 1–14

CONTACTS: None.

PHENOCRYSTS: Randomly distributed and oriented plagioclases vary from laths to subhedral blocky crystals. Fe-stained orange brown in the more altered areas. Plagioclase: 10%–15%; 1.5–7 mm; single crystals and glomerocrysts.

GROUNDMASS: Microcrystalline with plagioclase microlites

VESICLES: 0%–2%; <0.1–4 mm; round to irregular; patchy; clear, unfilled vesicles are very small (typically <0.1 mm) and form in concentrated patches parallel to piece margins. Miaroles: In Piece 12B, a subhorizontal band of large vesicles occurs across the core and are lined and/or filled with white, globular zeolites(?) and/or carbonate.

COLOR: 2.5YR 5/0, gray to 2.5Y 6/2, light brownish gray.

STRUCTURE: Massive.

ALTERATION: Slightly to moderately altered.

VEINS/FRACTURES: <1%; <1 mm wide; various; very fine irregular fractures are occasionally lined with Fe-oxy-hydroxides.
UNIT 7: HIGH PHYRIC PLAGIOCLASE BASALT

Pieces 1–3

CONTACTS: None.

PHENOCRYSTS: Randomly distributed and oriented plagioclase grains and Fe-stained orange brown in the more altered areas. Plagioclase: 10%–15%; 2–4 mm; single crystals and glomerocrysts.

GROUNDMASS: Microcrystalline displaying plagioclase microlites

VESICLES: 0%–5%; <0.1–1 mm; round to irregular; patchy; generally clear from infillings and concentrated parallel to outer margins of some pieces. Miaroles: None.

COLOR: 2.5YR 5/0, gray to 2.5Y 6/2, light brownish gray.

STRUCTURE: Massive.

ALTERATION: Slight to moderate.

VEINS/FRACTURES: None.

Pieces 2A, 2B

Yellow-gray alternation halo
UNIT 7: HIGHLY PHYRIC PLAGIOCLASE BASALT

Pieces 1–17D

CONTACTS: None.

PHENOCRYSTS: Euhedral crystals up to 4.5 mm long. Fe-staining coats the crystals in the more altered areas.

Plagioclase: 10%–15%; 1–4.5 mm; single rectangular laths and glomerocrysts.

GROUNDMASS: Microcrystalline with plagioclase microlites.

VESICLES: Vesicles are rare and very widely scattered (e.g., there are 3 in Piece 14).

Miaroles: A few large cavities are lined with white and brown (Fe-stained?) tabular and globular zeolites (?) and/or carbonates.

COLOR: 2.5YR 5/0, gray to 2.5Y 6/2, light brownish gray.

STRUCTURE: Massive

ALTERATION: Slight to moderate.

VEINS/FRACTURES: 1%; <2 mm; various; very fine-scale irregular cracks are generally clear from infilling. Wider fractures are infilled with white and Fe-stained carbonate (?) as in Piece 17.

ADDITIONAL COMMENTS: Dark remnants of a glassy rim occur on Piece 5.
UNIT 7: HIGHLY PHYRIC PLAGIOCLASE BASALT

Pieces 1A–5B

CONTACTS: None.

PHENOCRYSTS: Random distribution and orientation. Fresh, colorless to white plagioclases stain yellow-brown in the more altered areas.

Plagioclase: 10%–15%; 1.5–4 mm; single crystals and glomerophyric intergrowths.

GROUNDMASS: Microcrystalline.

VESICLES: 0%–5%; <0.1–1 mm; round to irregular; patchy; small areas of finely vesicular basalt occur in the altered margins parallel to the edges in some pieces.

Miaroles: Rare cavities up to 6 mm diameter (e.g., Piece 4C) are lined with white to pale green globular zoollites(?) and/or carbonates.

COLOR: 2.5YR 5/0, gray to 2.5Y 6/2, light brownish gray.

STRUCTURE: Massive.

ALTERATION: Slight to moderate.

VEINS/FRACTURES: 2%, 1 mm wide; various; rock surfaces show Fe-oxy-hydroxide staining and coatings of greenish white carbonate(?)

= fractures generally open
UNIT 7: HIGHLY PHYRIC PLAGIOCLASE BASALT

Pieces 1–15

CONTACTS: None.

PHENOCRYSTS: Random distribution and orientation of euhedral to subhedral crystals and crystal intergrowths. Fresh white phenocrysts stain yellow brown in the more altered areas.

Plagioclase: 10%–15%; 1.5–4 mm; single crystals and glomerocrysts.

GROUNDMASS: Micritic with plagioclase microlites.

VESICLES: 0%–2%; <<0.1–1; rounded to irregular; patchy; rare and fine vesiculation confined to patches parallel to piece edges (eg. Piece 2).

Miaroles: None.

COLOR: 2.5YR 5/0, gray to 2.5Y 6/2, light brownish gray

STRUCTURE: Massive.

ALTERATION: Slight to moderate.

VEINS/FRACTURES: <1%; <1 mm wide; various; fine cracks lined with Fe-stained carbonate.

ADDITIONAL COMMENTS: Piece 2 has a plagioclase phric glass rind which grades rapidly into the more typical micritic basalt.
UNIT 7: HIGHLY PHYRIC PLAGIOCLASE BASALT

Pieces 1–10G

CONTACTS: None.

PHENOCRYSTS: Random distribution and orientation of colorless to white plagioclase phenocrysts. Fe-stained to yellow-brown in the more altered areas.

Plagioclase: 10%–15%; 1.5–5 mm; single crystals and glomerocrysts.

GROUNDMASS: Microcrystalline with plagioclase microlites.

VESICLES: None.

COLOR: 2.5YR 5/0, gray to 2.5Y 6/2, light brownish gray

STRUCTURE: Massive.

ALTERATION: Slight to high.

VEINS/FRACTURES: 2%; up to 1 mm wide; various; fractures lined with Fe-oxhydroxides and sometimes greenish carbonate(?).

ADDITIONAL COMMENTS: Piece 8 has a rim of plagioclase phryic glass up to 4 mm wide which grades rapidly into the more typical basalt of Unit 4. Vesicles are almost entirely absent in this section except for a very small patch beneath this glassy rim.
UNIT 7: HIGHLY PHYRIC PLAGIOCLASE BASALT

Pieces 1–12D

CONTACTS: None.

PHENOCRYSTS: Random distribution and orientation. Fe-stained yellow-brown in the more altered areas.
Plagioclase: 10%–15%; 1.5–5 mm; single crystals and glomerocrysts.

GROUNDMASS: Microcrystalline with plagioclase microlites.

VESICLES: None.

Miaroles: Rare cavities (e.g. Piece 5A) up to 5 mm in diameter are lined with clays and carbonates(?).

COLOR: 2.5YR 5/0, gray to 2.5Y 6/2, light brownish gray

STRUCTURE: Massive.

ALTERATION: Slight to moderate.

VEINS/FRACTURES: 1%; up to 1 mm wide; various; fractures lined with Fe-oxy-hydroxides and greenish to white clay.

ADDITIONAL COMMENTS: The rind of plagioclase phyric glass at the top of Piece 12 is underlain by a few fine vesicles.
UNIT 7: HIGHLY PHYRIC PLAGIOCLASE BASALT

Pieces 1A–3B

CONTACTS: Glassy margin (1.5 mm) in Piece 2A.

PHENOCRYSTS: Glomerocrysts to 1 cm.

GROUNDMASS: Microcrystalline with 0.5 mm plagioclase and smaller with intergranular
clinoptyroxene and interstitial mesostasis; finer grained in Piece 1H above glass margin;
glassy to microlitic in Piece 2A.

VESICLES: Tr; 1–2 mm; irregular; see comments; vesicles occur near glassy margin in
Piece 2A; a large (6 by 45 mm) gas cavity occurs in Pieces 1C and 1D; 2 similar
subvertical cavities on back of 1D.

Miaroles: Cavities in Piece 1D filled with small botryoidal and globular crystals (very like
barite in form), translucent columnar and spine-like crystals, and bipyramidal sulfides.

COLOR: 2.5YR 6/0, gray to 10YR 7/3, very pale brown where altered.

STRUCTURE: Thick flows (1–2 m) judging from glass rim here and in cores above and
below.

ALTERATION: Fresh to moderate around glassy rim; both base of top flow and rim of lower
flow near glass are slightly to moderately altered.

VEINS/FRACTURES: 1%; <0.4 mm wide; 0°, 30°, 85°; fractures separate most of the
pieces; coatings on fractures include calcite, a soft light gray-green talc-like mineral in
Piece 1E, Mn-oxides (particularly in Pieces 2 and 3) and a few grains of a brownish
translucent mineral on the back of Piece 3A.

ADDITIONAL COMMENTS: A nice example of a basalt chill zone in the finer grain sizes
above the glass margin; also a good example of preferential alteration around the
contacts between two flows.
UNIT 7: HIGHLY PHYRIC PLAGIOCLASE BASALT

Pieces 1-7B

CONTACTS: Between Pieces 6 and 7, and Pieces 3 and 4 (glass on each piece).

PHENOCRYSTS: Glomerocrysts.
 Plagioclase: 10%–15%; < 5 mm; euhedral to subhedral

GROUNDMASS: Fine-grained, holocrystalline.

VESICLES: < 1%; < 1 mm; rounded; close to glass rims; vesicles mainly occur about 1 cm below glass rims.

COLOR: 7.5YR 6/0, gray to 10YR 6/2, light brownish gray.

STRUCTURE: Massive.

ALTERATION: Brownish gray alteration rinds below glass rims and along cracks. Cracks filled by calcite (white), sometimes brown or green colored. Slight to moderately altered.

VEINS/FRACTURES: None.

ADDITIONAL COMMENTS: White to yellowish coatings on glass; probably altered.
UNIT 7: HIGHLY PHYRIC PLAGIOCLASE BASALT

Pieces 1–6F

CONTACTS: Glassy margins (0.5–1.2 mm) on the bottom of Pieces 2 and 3.

PHENOCRYSTS: Glomerocrysts to 4 mm; individual crystals rarely to 4 mm.
Plagioclase: 10%–15%, 1–2 mm; euhedral to subhedral.

GROUNDMASS: Microcrystalline, plagioclase laths with intergranular clinopyroxene and mesostasis, finer grained (microlitic) next to glassy zones.

VESICLES: Trace; <1 mm; irregular; near glass rims; occur only near glassy rims.
Miaroles: None.

COLOR: 2.5Y 7/4, pale yellow (altered); 2.5Y 7/0, light gray (fresh); 2.5Y 4/0, dark gray (near glassy rims).

STRUCTURE: Thick flows or pillows?
ALTERATION: Extensive near glassy rims, to light brown oxidized zone (brown from...
UNIT 7: HIGHLY PHYRIC PLAGIOCLASE BASALT

Pieces 1–6

CONTACTS: Altered glassy margin in lower right corner of Piece 4.

PHENOCRYSTS: Glomerocrysts to 5 mm.
Plagioclase: 10%–15%; 1–3 mm; euhedral to subhedral.

GROUNDMASS: Microcrystalline to very fine-grained; plagioclase laths with intergranular clinopyroxene and mesostasis; altered microlitic to glassy rim in Piece 3 with finer grained zones in Pieces 3 and 4.

VESICLES: None.

Miqaroles: None.

COLOR: 2.5YR 6/0 (gray, fresh) to 2.5YR 7/2 (light gray) where altered.

STRUCTURE: Thickly bedded flows or pillows judging from contact zones.

ALTERATION: Brownish, oxidized zones around fine-grained margins in Piece 3, extends into Pieces 2 to 6. The rock is slightly to moderately altered.

VEINS/FRACTURES: 1%; 0.3 mm wide; 0°, 30° left, 10° down; boundaries between pieces are usually fractures; one large fracture strikes perpendicular to the core and dips about 10° down; subhorizontal fractures are most common; fracture coatings include calcite (Piece 2), soft gray to blue-white talc-coating (Pieces 1, 2), Mn-oxide (Pieces 3, 4), palagonite alteration or remnants with Mn-oxide spots (Piece 4), Fe-oxy-hydroxides (Pieces 4, 5).

ADDITIONAL COMMENTS: Altered glassy rim in Piece 3.
UNIT 7: HIGHLY PHYRIC PLAGIOCLOASE BASALT

Pieces 1–10B

CONTACTS: Glass rim on the top of the section.

PHENOCRYSTS: Randomly distributed and oriented.
Plagioclase: 10%–15%; </=5 mm; glomerocrysts as well as single phenocrysts.

GROUNDMASS: Fine-grained, holocrystalline.

VESICLES: <1%; <1; rounded; see comments; underneath glass rim.
Miaroles: None.

COLOR: 2.5YR 5/0, gray to 2.5Y 6/2, light brownish gray.

STRUCTURE: Massive.

ALTERATION: Slightly to moderately altered. Brownish gray alteration front below glass rim.

VEINS/FRACTURES: None.
UNIT 7: HIGHLY PHYRIC PLAGIOCLASE BASALT

Pieces 1–13

CONTACTS: None.

PHENOCRYSTS: Randomly oriented and distributed. Stained yellowish in the more altered areas, but generally fresh.

Plagioclase: 10%–15%; 1.5–4 mm; single crystals and glomerocrysts.

GROUNDMASS: Fine-grained, holocrystalline.

VESICLES: None.

COLOR: 2.5YR 5/0, gray to 2.5Y 6/2, light brownish gray.

STRUCTURE: Massive.

ALTERATION: Slight to moderate alteration.

VEINS/FRACTURES: <1%; <1 mm; various; fine, irregular fractures are coated with clays and Fe-oxy-hydroxides.

ADDITIONAL COMMENTS: Plagioclase phyric glass rinds occur on both sides of Piece 1 vesicular chilled basalt (approximately 2 cm wide, see sketch).
UNIT 7: HIGHLY PHYRIC PLAGICLASE BASALT

Pieces 1–6

CONTACTS: None.

PHENOCRYSTS: Randomly oriented and distributed. Fresh, black glassy patches occur in the groundmass up to 1 mm diameter (e.g. Piece 5A). Plagioclase: 16%–20%; 1.5–5 mm; single crystals and glomerocrysts.

GROUNDMASS: Fine-grained, holocrystalline.

VESICLES: None.

COLOR: 2.5YR 5/0, gray.

STRUCTURE: Massive.

ALTERATION: Fresh to slight.

VEINS/FRACTURES: 2%; <1 mm; various; fine, irregular fractures coated thinly by greenish clays and rarely Fe-oxy-hydroxide (e.g. Piece 5).

Moderate alteration
UNIT 7: HIGHLY PHYRIC PLAGIOCLASE BASALT

Pieces 1A–3B

CONTACTS: None.

PHENOCRYSTS: Randomly distributed and oriented.
Plagioclase: 10%–20%; 2–8 mm; glomerocrysts present in addition to single euhedral and subhedral crystals (up to 8 mm long).

GROUNDMASS: Fine-grained, holocrystalline intergrowth of pyroxene and plagioclase.

VESICLES: None.
Miaroles: None.

COLOR: 2.5Y 5/0, gray.

STRUCTURE: Massive.

ALTERATION: Fresh to slightly altered.

VEINS/FRACTURES: <1%; <1 mm; various; chalky white and greenish clays thinly coat these fractures (e.g. Piece 1B)
UNIT 7: HIGHLY PHYRIC PLAGIOCLASE BASALT

Pieces 1A–2D

CONTACTS: None.

PHENOCRYSTS: Randomly distributed and oriented.
Plagioclase: 10%–20%; 2–6 mm; single euhedral to subhedral crystals as well as glomerocrysts.

GROUNDMASS: Fine-grained holocrystalline intergrowth of plagioclase and pyroxene

VESICLES: None.

Miaroles: None.

COLOR: 2.5Y 5/0, grey.

STRUCTURE: Massive.

ALTERATION: Fresh slightly altered.

VEINS/FRACTURES: 2%; < 1mm wide; subvertical to 45°; fractures lined with a mottled coating of white and greenish clays.

Alteration along fractures
UNIT 7: HIGHLY PHYRIC PLAGIOCLASE BASALT

Pieces 1–7

CONTACTS: None.

PHENOCRYSTS: Randomly distributed and oriented.
Plagioclase: 10%–15%; 2–6 mm; single euhedral to subhedral crystals as well as
glomerocrysts.

GROUNDMASS: Fine-grained, holocrystalline. Rare pale yellow green olivine crystals
observed (<1%).

VESICLES: None.

COLOR: 2.5 YR 5/0, gray.

STRUCTURE: Massive.

ALTERATION: Fresh to slightly altered.

VEINS/FRACTURES: <1%; <1 mm; various; fractured edges commonly have coatings of
white or greenish clay and/or Mn-oxide.
UNIT 7: HIGHLY PHYRIC PLAGIOCLASE BASALT

Pieces 1A-1B

CONTACTS: None.
PHENOCRYSTS: Plagioclase: 10%-15%; 3-5 mm; euhedral to subhedral, isolated crystals and glomerocrystals.
Olivine: <1%; 0.5-1 mm; very rare isolated crystals and integer own with plagioclase.
GROUNDMASS: Randomly oriented plagioclase enclosed by augite.
VESICLES: None.
Miaroles: None.
COLOR: 2.5YR 5/0, gray.
STRUCTURE: Massive.
ALTERATION: Fresh to slightly altered.
VEINS/FRACTURES: <1%; <1 mm side; 20°-80°; widely separated; may be slickensided.

Pieces 2-9

CONTACTS: Indurated and/or baked sediment near top of interval and in fractures.
PHENOCRYSTS: Plagioclase: 5%-8%; 0.3-0.6 mm; platy laths.
Olivine: 1%-2%; 0.2-0.8; yellow.
GROUNDMASS: Frothy gray glass; locally pale tan patches.
VESICLES: 5%-10%; 1-2 mm; round; variable; microvesicular groundmass; 70%-80% void space.
Miaroles: Both macro- and micro-vesicles may have lining of highly refractive clear crystals.
COLOR: 5Y 4/1, gray.
STRUCTURE: Massive.
ALTERATION: Slightly altered.
VEINS/FRACTURES: 2%; 1-20 mm wide; variable; fractures may be filled by indurated sediment.
UNIT 8: APHYRIC BASALT

Pieces 1–20

CONTACTS: None.

PHENOCRYSTS: Randomly distributed.
Olivine: 1%; up to 0.5 mm; single greenish yellow glassy crystals; subhedral to euhedral.
GROUNDMASS: Very fine-grained, laths of plagioclase clearly identified.
Microlite close to glass rinds
VESICLES: 5%–15%; <1–3 mm; round to subrounded; patchy; vesicles are frequently frothy or irregular on the interior rather than smooth cavities.
Miaroles: Some vesicles lined with euhedral phillipsite crystals
COLOR: 2.5YR 4/0, dark gray.
STRUCTURE: Massive.
ALTERATION: Generally slightly altered, but moderately highly altered near fractures and veining.
VEINS/FRACTURES: 1%; 1–2.5 mm wide; various; veins of indurated/baked (?) sediment are present in Pieces 3, 4, 5, 8, 12, and 20.
ADDITIONAL COMMENTS: Lighter brownish patches of more frothy basalt occur within the more typical vesicular basalt. Glass rinds are present on Pieces 1, 3, 4, 5, 6, 7, 8, 11, 12, 19, 20.

Glassy pillow margins
Indurated sediment in veins or clasts
UNIT 8: APHYRIC BASALT

Pieces 1–22

CONTACTS: None.

PHENOCRYSTs: Randomly distributed.

Olivine: Trace; up to 3 mm; subhedral to euhedral pale greenish-yellow crystals.

GROUNDMASS: Very fine-grained, includes plagioclase laths < 1 mm long.

Microitic adjacent to glass rinds.

VESICLES: 5%-15%; <1–3 mm; round to subrounded; patchy; smaller vesicles have irregular “frothy” linings of basalt.

Miaroles: Rarely, vesicles are lined with zeolites (phillipsite).

COLOR: 2.5YR 4/0, dark gray.

STRUCTURE: Massive.

ALTERATION: Slightly altered (generally) to moderately or highly altered close to fractures or veins.

VEINS/FRACTURES: 1%, 1–5 mm wide; various; indurated/baked sediment veins in Pieces 3, 12, 13, and 18. Fe-oxy-hydroxide alteration products within 0.5 cm either side of these features.

ADDITIONAL COMMENTS: Glass rinds on Pieces 1, 2, 10, 11, 12, 13A, 13C, and 18.
UNIT 8: APHYRIC BASALT

Pieces 1–8

CONTACTS: None.

PHENOCRYSTS:
- Olivine: Trace; < 1 mm; greenish yellow glassy crystals; subhedral to euhedral.
- Clinopyroxene: Trace; 1.5 mm; euhedral, fresh green.

GROUNDMASS: Very fine-grained; plagioclase laths are easily identified; microlitic near glassy rims.

VESICLES: 5%–35%; up to 2 mm; rounded to subrounded; throughout; vesicle content varies greatly and appears to decrease downcore.

Microlites: Some vesicles lined with euhedral zeolites.

COLOR: 2.5YR 4/0, gray.

STRUCTURE: Massive.

ALTERATION: Fresh to slightly altered.

VEINS/FRACTURES: Trace; < 2 mm wide; surfaces with calcite and globular colorless zeolites. No alteration halo in host rock.

ADDITIONAL COMMENTS: Vesicle content appears to be decreasing downcore. Spongy texture is not as prominent in this section. Olivine content is somewhat higher in this section. Regions of spongy small vesicles are still common in the vesicular host and appear as dull gray patches. The pebbles at the top of core 37–1 are somewhat similar to these.
UNIT 9A: MODERATELY PHYRIC OLIVINE PLAGIOCLASE BASALT

Pieces 1–4

CONTACTS: Piece 4 is underlain by a fine sand-sized sediment.

PHENOCRYSTS: Plagioclase becomes abundant in Piece 2 to Piece 4.
- Plagioclase: Tr-2%; 1-1.5 mm; euhedral as single crystals and in glomerocrysts; most common and largest in Pieces 2 and 4.
- Olivine: 2%-4%; <0.7 mm; euhedral, single grains; rarely to 3 mm in Pieces 2 and 3.

GROUNDMASS: Microcrystalline; plagioclase laths < 0.6 mm with intergranular clinopyroxene(?) and interstitial mesostasis.

VESICLES: 5%-10%; <0.5 – 1.1 mm; round to irregular; scattered; rare cavities to 4 mm; the vesicles are bimodal: 1% are >1mm, 3% to 5% are small, < 0.5mm

Miaroles: Minor reddish and blue-gray linings.

COLOR: 7.5YR 5/0, gray.

STRUCTURE: None.

ALTERATION: Fresh to slightly altered.

VEINS/FRACTURES: Trace; piece sides are bounded in part by fractures; coatings include Mn-oxides, Fe-oxy-hydroxides

ADDITIONAL COMMENTS: Piece 1 is generally quite olivine phyric with little plagioclase and is much like a denser variety of the material in upper parts of Unit 8. Pieces 2 to 4 are much more plagioclase phyric than most of Unit 8 and are more similar to the pieces of Unit 9.

UNIT 9B: MODERATELY PHYRIC OLIVINE PLAGIOCLASE BASALT

Pieces 6–8

CONTACTS: Overlain by fine sand-sized sediment (Piece 5); underlain by coarse sandstone. Piece 7 has a thin glass margin with adhering sediment like that in Piece 5 and clearly belongs at the top of this unit.

PHENOCRYSTS: Glomerocrysts of plagioclase, olivine (2-3 grains) and plagioclase plus olivine (to 3 mm)
- Plagioclase: 2%; 1-3 mm; euhedral, single crystals.
- Olivine: 1%-2%; 0.5 – 1 mm; single, euhedral most common.

GROUNDMASS: Microlitic (Piece 8) to microcrystalline (Pieces 6, 7).

VESICLES: 5%-10%; >0.8 or <0.4 mm; round; various; Bimodal: 1%-2%, 0.9 – 1 mm, most common in Piece 8 (to 10%) which also has cavities up to 4 by 8 mm; smaller population is 5%-6% throughout groundmass.

Miaroles: Minor blue-white (zeolite?) and greenish (clay?) linings.

COLOR: 7.5YR 5/0, gray.

STRUCTURE: Thin flow?

ALTERATION: Slight to moderate; surface coatings of orange Fe-oxy-hydroxide stained clays (Piece 6); Mn-oxides (Piece 6, 7), yellow-tan clays or sediments (Pieces 7, 8).

VEINS/FRACTURES: None.

ADDITIONAL COMMENTS: Piece 6 looks like a cobble; it has a weathered, not cored, surface. This unit is very similar to Pieces 2, 3 and 4 - they may two thin flows of a similar lithology; the sediment between them is white-tan and well-lithified, partly baked(?).
UNIT 10A: APHYRIC BASALT

Pieces 2–14

CONTACTS: Overlain by sediment; a fine-grained margin in Piece 3; Piece 14 is finer grained.

PHENOCRYSTS: Very sparse. Plagioclase: Trace; 1–1.5 mm; euhedral.

GROUNDMASS: Aphanitic to intersertal with groundmass plagioclase and abundant olivine or clinopyroxene; Piece 14 is finer grained with very few crystals—very glassy.

VESICLES: 10%–30%; 1–6 mm or <0.5 mm; round to irregular; various; Bimodal; round to large cavities, sometimes elongate; smaller population composes 20%–30% giving groundmass a high porosity. Miaroles: Large cavities often filled with darker, frothy basalt; yellow-orange and yellow-green coatings in many large cavities, particularly Pieces 3 and 11.

COLOR: 7.5YR 5/0, gray.

STRUCTURE: Thick flow?

ALTERATION: Slight.

VEINS/FRACTURES: Minor, yellow-brown surface and vesicle coatings.
UNIT 10A: APHYRIC BASALT

Pieces 1–10

CONTACTS: None.

PHENOCRYSTS: Very rare plagioclase.

GROUNDMASS: Microcrystalline to intersertal; groundmass plagioclase and clinopyroxene (or olivine?) with interstitial glass.

VESICLES: 10%–30%; <0.4 to 5 mm; round to irregular; various; Bimodal; large ones (1–5 mm) variously distributed <2–4% in Pieces 1, 2, 3, 4, 5, 7, 5%–10% in Pieces 6, 8–10; small population (<0.4 mm) occurs throughout up to 2%–5% giving groundmass a high porosity.

Miaroles: Minor vesicle linings.

COLOR: 7.5YR 5/0, gray to 10YR 6/0, light gray.

STRUCTURE: None.

ALTERATION: Slight: surface and vesicle coatings including translucent, drusy coating (zeolite(?), Pieces 3, 8); yellow orange Fe-oxy-hydroxide (Pieces 6, 10); tan clay (? Piece 5).

VEINS/FRACTURES: None prominent.
UNIT 10A: APHYRIC BASALT

Pieces 1–7

CONTACTS: None.

PHENOCRYSTS: No phenocryst visible.

GROUNDMASS: Holocrystalline, very fine-grained.

VESICLES: 30%–40%; <=3 mm; rounded; throughout; very rarely vesicles contain zeolites and sulfide blobs. Latter limited to Piece 6.

Miaroles: None.

COLOR: 2.5YR 4/0, (dark gray).

STRUCTURE: Massive.

ALTERATION: Slight.

VEINS/FRACTURES: None.

ADDITIONAL COMMENTS: Glass rims show yellowish brown to dark brown coarse-grained alteration product (probably palagonite).
UNIT 10A: APHYRIC BASALT

Pieces 1-11

CONTACTS: None.

PHENOCRYSTS: Not visible.

GROUNDMASS: Very fine-grained, holocrystalline.

VESICLES: 30%; <=5 mm; rounded; throughout; magma infilling in huge vesicles suggested.

COLOR: 2.5YR 4/0 dark gray.

STRUCTURE: Massive.

ALTERATION: Fresh/light.

VEINS/FRACTURES: None.

ADDITIONAL COMMENTS: A few vesicles are lined with a light blue unidentified mineral in Piece 5. Glass rims altered on top to coarse-grained yellowish brown material (palagonite?) covered by zeolites. Piece 8 (oriented) appears to be a pillow margin.
UNIT 10A: APHYRIC BASALT

Pieces 1-18

CONTACTS: None.

PHENOCRYSTS: Not present.

GROUNDMASS: Holocrystalline, very fine-grained.

VESICLES: 20%-30%; up to 6 mm; mainly rounded; throughout; pieces with smaller and larger vesicles can be distinguished.

COLOR: 2.5YR 4/0 (dark gray).

STRUCTURE: Massive.

ALTERATION: Fresh to slight.

VEINS/FRACTURES: <0.1%; <0.1 mm; a single fracture occurs in Piece 18 (Fe-staining).

ADDITIONAL COMMENTS: Piece 18 has a lower amount of vesicles and is slightly different in color (5/2 on chart 2.5Y). Infillings of a light blue and green colored material (obviously the same mineral) in vesicles occur throughout the core.
UNIT 10A: APHYRIC BASALT

Pieces 1-18

CONTACTS: Glass on Piece 1.

PHENOCRYSTS: Rare plagioclase - 1 mm, euhedral.

GROUNDMASS: Aphanitic to microcrystalline; plagioclase and clinopyroxene (or olivine?) crystals in a glassy to aphanitic matrix.

VESICLES: 20%-30%; <0.5-7 mm; round to irregular; various; two populations: one small (10%-30% throughout) and one large (>1 to 7 mm round to ellipsoidal, 5%-10% in Pieces 1-6, 9-13, 15-18 and 1%-2% in Pieces 7, 8, 14, and 15). Miaroles: Various thin vesicle fillings including blue gray zeolites(?), Fe-oxy-hydroxides; a 1 by 6 mm cavity in Piece 18 filled with green-white, drusy deposit.

COLOR: 10YR 6/1, light gray.

STRUCTURE: None.

ALTERATION: Slight to moderate where abundant fill occurs; some pieces have a brownish green cast though the groundmass which looks clean under the binocular microscope.

VEINS/FRACTURES: Trace; 0.7 mm; subvertical; in Piece 9, filled with white calcite; surface coatings include yellowish clays(?), calcite, Fe-oxy-hydroxides or Fe-stained clays.

ADDITIONAL COMMENTS: Vesicle coatings more abundant than they were through core 40.
UNIT 10A: APHYRIC BASALT

Pieces 1–16

CONTACTS: Glass fragments in Piece 1; may be an altered margin in Piece 14.

PHENOCRYSTS: Rare plagioclase; euhedral, rarely to 5 mm, more typically about 1 mm.

GROUNDMASS: Microcrystalline random plagioclase laths (< 0.5 mm), intergranular clinopyroxene (or olivine?), mesostasis.

VESICLES: 15%–25%; <0.6 mm or > 1.5 mm; round to irregular; various; bimodal: larges (>1.5 mm) round to ellipsoidal, cavities to 10 mm made up 1%–5% (except in Piece 1 where they are 1%–5%); small, distribution overall is patchy; small vesicles (<0.7 mm, compose 15%–30% of groundmass, probably interconnected.

Micropores: Thin coatings common; greenish clay(?); blue black, light green, whitish, blue-white zeolites or clays; Fe-ox-hydroxides or Fe-stained clays; Piece 16 has a variety of these.

COLOR: 10YR 6/1 to 6/2 altered, 2.5YR 6/0 in some fresher margins and bands

STRUCTURE: None (possibly thick flows?).

ALTERATION: Moderate, based on color a light greenish brown cast in interiors with grayer margins or bands (Pieces 2, 8) suggests some groundmass alteration.

VEINS/FRACTURES: Tr; <0.4 mm; subhorizontal; some Fe-ox-hydroxides or Fe-stained clays along some fractures; also Mn-oxides, yellowish clays on some outside surfaces.

ADDITIONAL COMMENTS: Bands of fine vesicles in Piece 11 (dipping 15° right) and Piece 12 (dipping 45° right) define a flow banding; large vesicles seem less common than in previous 3 or 4 mm cores; not all vesicles are filled.
UNIT 10B: APHYRIC BASALT

Pieces 2-7

CONTACTS: Sediment Piece occurs as Piece 1.

PHENOCRYSTS: None.

GROUNDMASS: Very fine-grained, holocrystalline

VESICLES: 5%; <= 2 mm; rounded; throughout

Miaroles: Some vesicles are filled by clear, colorless zeolite (x×).

COLOR: 2.5YR 4/0.

STRUCTURE: Massive.

ALTERATION: Fresh to slight.

VEINS/FRACTURES: None.

ADDITIONAL COMMENTS: Sediment is clayey non-carbonate with glass and palagonite grains. Could be an altered basalt rim rather than a sediment; there is some glass on one of the fragments of Piece 7.

Hard sediment with glass clasts
UNIT 10B: APHYRIC BASALT

Piece 1

CONTACTS: None, but does have a nice glass rind.
PHENOCRYSTS: None.
GROUNDMASS: Holocrystalline, very fine-grained.
VESICLES: 15%; < 2 mm; rounded; various; very few vesicles rimmed by glass, then palagonite (?), then a thin layer of light blue zeolite(?)
COLOR: 2.5YR 4/0.
STRUCTURE: Massive.
ALTERATION: Fresh to slightly altered.
VEINS/FRACTURES: None.
ADDITIONAL COMMENTS: This piece is nearly totally surrounded by a thin layer of colorless, clear zeolite which is grown on palagonitized glass.
UNIT 10B: APHYRIC BASALT

Pieces 1–7

CONTACTS: Piece 7 is the bottom of Unit 7.

PHENOCRYSTS: Very rare plagioclase to 0.9 mm.

GROUNDMASS: Microcrystalline to aphanitic: small plagioclase laths (<0.3 mm) with intergranular clinopyroxene (and olivine?), interstitial glassy mesostasis.

VESICLES: 15%–30%; <0.6 mm or >1 mm; round to irregular; various; Bimodal: a large population (>1 mm), round to ovoid, 1% (Pieces 6, 7); 3%–7% (Pieces 1–9); small population (<0.6 mm), 15%–30%, irregular, occur throughout groundmass.

Miaroles: Minor, thin vesicle coatings; Fe-oxy-hydroxides, green-brown clays or zeolites.

COLOR: 10YR 6/1, gray.

STRUCTURE: None.

ALTERATION: Slight to moderate; color has a slight brownish hue; some vesicle coatings occur.

ADDITIONAL COMMENTS: Surface coatings include Fe-oxy-hydroxides, reddish clays(?), white translucent zeolite (Piece 6).

UNIT 11: SPARSELY PHYRIC OLIVINE PLAGIOCLASE BASALT

Pieces 8–9

CONTACTS: Top of Unit 8; glass on Piece 8.

PHENOCRYSTS: Most commonly as single crystals.

Plagioclase: 3%; 0.8–1.5 mm; euhedral, seriate.

Olivine: 1%; 1.4–1.6 mm; euhedral single crystals.

GROUNDMASS: Glassy to microlitic (Piece 8); aphanitic to microcrystalline (Piece 9).

VESICLES: 30%; <0.6 mm; irregular; throughout, rim is massive, but within 1 cm away from the rim, the sample has become highly porous; minor larger, irregular cavities (0.9–1.6 mm).

Miaroles: None.

COLOR: 7.5YR 5/0, gray.

STRUCTURE: None.

ALTERATION: Slight.

VEINS/FRACTURES: None.

ADDITIONAL COMMENTS: Only two pieces of Unit 11; surface coatings include palagonite and a white translucent zeolite (Piece 8).
UNIT 12: APHYRIC BASALT

 Pieces 1–15

CONTACTS: None visible.

PHENOCRYSTS:
Plagioclase: <0.1%; 0.8x5 mm to 0.5 by 0.5 mm; euhedral, very sparse.
Clinopyroxene: <0.1%; 1.5x2 to 4x7 mm; euhedral, very sparse.

GROUNDMASS: Holocrystalline, fine-grained. Prominent plagioclase microclasts and also clinopyroxene visible. Seriate texture.

VESICLES: 15%; 0.4 to 16 mm; rounded to elongated, some coalescing; variable; pale green smectite/chlorite-like linings on vesicles. Also, pale blue encrustation on vesicle walls, possibly a zeolite(?). Vesicles tend to occur bimodally: (1) >1.0 mm and (2) <0.5 mm.

The coarser vesicles are variable in abundance being more abundant in Pieces 1, 5, and 12–15. Fine vesicle trails in Pieces 5, 11, and 12 (weak).

MIAROLITES: Smectite/chlorite and zeolite(?). Linings.

COLOR: 2.5Y 4/0, dark gray.

STRUCTURE: Massive.

ALTERATION: Moderate to high.

VEINS/FRACTURES: No veins visible.

ADDITIONAL COMMENTS: Thin glassy rinds, 3 and 5 mm thick, respectively, on one side each of Pieces 1 and 14. Piece 3 (working half) contained a single large clinopyroxene phenocryst (about 3x5 mm). Pieces 1, 13, and 15 are finer grained, suggesting they are near flow contacts. Darker gray, vesicular blebs (3–6 mm) at secondary vesicle infillings are noticeable in Pieces 11 and 12.
UNIT 12: APHYRIC BASALT

Pieces 1–21

CONTACTS: None.

PHENOCRYSTS: Very rare clinopyroxene and plagioclase phenocrysts (e.g. 1 clinopyroxene 1 mm long in Piece 1).

GROUNDMASS: Fine-grained, holocrystalline, microcytic plagioclase with subhedral clinopyroxene.

VESICLES: 5%–50%; <0.5-6 mm; round to irregular; variable; relatively uniform distribution of fine vesicles, with patchy areas containing much greater-sized vesicles.

Miaroles: Coalesced vesicles sometimes lined with yellow-orange-red material.

COLOR: 10YR 5/0, gray.

STRUCTURE: Massive.

ALTERATION: Moderately altered.

VEINS/FRACTURES: <1%; 0.5 to 1 mm wide; unknown; only one fracture (Piece 8). The rock surfaces appear to be coated with Fe-oxy-hydroxides which grade into the white fracture-infill material. An alteration halo extends for 2–3 mm either side of the fracture.
UNIT 12: APHYRIC BASALT

Pieces 1–16

CONTACTS: None.

PHENOCRYSTS: Very rare phenocrysts. One clinopyroxene (Piece 14) and one each of pyroxene and plagioclase (Piece 16); all about 1 mm across.

VESICLES: 5%–40%; <0.5–10 mm; round to irregular; variable; bimodal size variation from a relatively uniform distribution of small vesicles (<0.5 mm) to patches of larger vesicles (e.g. Piece 1). Some larger vesicles are filled with frothy basaltic material (e.g. Piece 2).

Miiolites: Larger cavities sometimes lined with orange-red oxides and metallic lustre. In Piece 16 the vesicles are lined with deep blue-gray globular material, some with white prismatic crystals (zeolites?).

COLOR: 10YR 5/0, gray, to very blue-gray within Pieces 15 and 16.

STRUCTURE: Massive.

ALTERATION: Slight (e.g. Piece 16) to generally moderately altered. Multiple alteration halos overprint each other in Piece 14, not always clearly associated with the fractures observed.

VEINS/FRACTURES: 1%; up to 2 mm wide; various; irregular fractures filled with orange brown oxy-hydroxides and black Mn-oxides. Alteration halos extend up to 4 mm either side of the fractures.

ADDITIONAL COMMENTS: Below Piece 14 there is a sharp transition to a very blue-gray phase of this same basalt. Alteration products on the edge of Piece 16 are blue-green clays. This blue basalt continues into Core 135-834B-50R where it is associated with sulfides (see notes for Section 135-834B-50R-1).
UNIT 12: APHYRIC BASALT

Pieces 1–24

CONTACTS: None.

PHENOCRYSTS: Rare phenocrysts of plagioclase and clinopyroxene (e.g., Piece 16 has a 7 mm long needle of plagioclase with subhedral to subhedral clinopyroxene crystals (about 1 mm across) at either end. Smaller clinopyroxenes also occur within the plagioclase.

GROUNDMASS: Fine-grained, holocrystalline with plagioclase microlites intergrown with blocky clinopyroxenes. Seriate texture.

VESICLES: 5%–40%; <0.5–10 mm; round to irregular; variable; bimodal distribution of vesicles. Uniform distribution of fine-scale vesicles (<0.5 mm diameter) with random and patchy occurrence of larger vesicles (rarely in the form of tubes). In Pieces 1–6, the vesicles are lined with small globular blue-gray material some with acicular white crystals growing into the void space. Elsewhere, the larger vesicles also have frothy basaltic infills.

Miaroles: A cavity in the working half of the core (Piece 3) is lined with octahedral pale yellow-silver sulphides (pyrite?). Others have infills of yellow-orange oxides and blue-white globular coatings.

COLOR: 10YR 5/0, gray to very blue-gray in Pieces 1–6.

STRUCTURE: Massive.

ALTERATION: Slightly to moderately altered.

VEINS/FRACTURES: 1%; 1 mm wide; various; the planar fractured end of Piece 3 has a patchy film of yellow-silver sulfide (pyrite?). The blue coloration in this zone may be linked to the presence of these sulfides. Elsewhere (e.g., Piece 6), the alteration is oxidizing so that the fracture in Piece 6 is lined with orange-brown clays.

ADDITIONAL COMMENTS: The transition from the more typical coloration of Unit 12 into the bluish phase (i.e., Core 135-834B-49R and back again, i.e., Piece 6) is remarkably sharp. It is noted however, that in Piece 6 a few vesicles in the fractured more oxidized side share the same blue lining material that pervades the overlying basalt. Seriate texture results in hand sample descriptions being aphyric and thin section descriptions being sparsely to moderately phyric.
UNIT 12: APHYRIC BASALT

Pieces 1–21

CONTACTS: None.

PHENOCRYSTS: None.

GROUNDMASS: Very rare plagioclase and clinopyroxene phenocrysts (e.g. 1 plagioclase 1.5 mm long and 1 clinopyroxene 1 mm long occur in Piece 20B). Seriate texture.

VESICLES: 15%–50%; <0.5–11 mm; round to irregular; variable; bimodal distribution. Evenly distributed fine vesicles (<0.5 mm) with patchy areas of larger vesicles (particularly in the top half of the section).

Miaroles: Cavities lined with a range of clays and zeolites(?). Colors vary from blue-white to orange-red and green.

COLOR: 10YR 5/0, gray.

STRUCTURE: Massive.

ALTERATION: Slight alteration in the glass, to more moderately altered elsewhere.

VEINS/FRACTURES: <1%; <1 mm; unknown; fracture surface on the edge of Piece 19 is coated with orange-brown Fe-oxo-hydroxides.

ADDITIONAL COMMENTS: Glass rinds on Pieces 1 and 2.
UNIT 12: APHYRIC BASALT

Pieces 1–20

CONTACTS: None.

PHENOCRYSTS: None.

GROUNDMASS: Fine-grained, holocrystalline, plagioclase microlites most clearly visible in the fresher rocks. Seriate texture.

VESICLES: 1%–40%; <0.5–7 mm; rounded to irregular; variable; bimodal size range. Small vesicles (<0.5 mm) are relatively evenly distributed throughout, while the larger vesicles occur in patches.

Miaroles: Some cavities are lined with orange-brown crystals, others show blue-white coatings of globular material which may become pinkish in patches.

COLOR: 10YR 5/0, gray.

STRUCTURE: Massive.

ALTERATION: Slightly altered (e.g. Piece 1) to moderately altered sometimes in zones as though the rocks were part of a large alteration halo.

VEINS/FRACTURES: One small crack (Piece 10) has a film of orange brown Fe-oxy-hydroxide coating it.

ADDITIONAL COMMENTS: Glass rinds on Pieces 8 and 20 are up to 5 mm wide. The seriate texture means that hand-sample descriptions of the Unit are commonly aphyric while thin section descriptions are sparsely to moderately phyric.
UNIT 12: APHYRIC BASALT

Pieces 1–6

CONTACTS: None.

PHENOOCRYS: None.

GROUNDMASS: Fine-grained, holocrystalline with plagioclase microlites intergrown with clinopyroxene. Seriate texture.

VESICLES: 15%-40%; <0.5-7.5 mm; round-ovoid to irregular; variable; bimodal size distribution with some of the larger vesicles filled with more finely vesicular basalt (e.g. Piece 2). The larger vesicles are more concentrated in the top half of the section. Small vesicles are evenly distributed.

Miaroles: Larger vesicles are sometimes lined with yellow-orange material, while others are coated with blue-white and pink globular material.

COLOR: 10YR 5/0, gray.

STRUCTURE: Massive.

ALTERATION: Slight to moderate degree of alteration.

VEINS/FRACTURES: One crack (Piece 3) is coated with yellow-orange chalky material.
UNIT 12: APHYRIC BASALT

Pieces 1-11

CONTACTS: None.

PHENOCRYSTS: None.

GROUNDMASS: Fine-grained, holocrystalline; plagioclase microlites. Seriate texture.

VESICLES: 15%; <0.5-20 mm; rounded to ovoid to irregular; variable; Small vesicles (<0.5 mm diameter) appear to be uniformly distributed throughout the section. Larger vesicles have a more patchy distribution and occur particularly concentrated in Pieces 1-2.

Miaroles: Some vesicles lined with globular coatings of material which vary in color from white, to blue white, pink and yellow.

COLOR: 10YR 5/0, gray.

STRUCTURE: Massive.

ALTERATION: Slightly-moderately altered.

VEINS/FRACTURES: 2%; about 1 mm wide; various; fractures are coated with yellow-orange clays and patches of Mn-oxides.

ADDITIONAL COMMENTS: Glass rinds on Pieces 1 to 2.
UNIT 12: APHYRIC BASALT

Pieces 1-22

CONTACTS: None seen.

PHENOCRYSTS:
- Plagioclase: Trace; 0.25x0.5; euhedral.
- Clinopyroxene: Trace; 1.5x2.0 mm; euhedral.

VESICLES: 20%; 0.2 to 15 mm; rounded to irregular and coalescing; even, partial infilling by yellow-brown 'palagonite' (Piece 1); small reddish crystals coating vesicle in Piece 2; Fe-oxide coatings common; globular linings of unidentified mineral (yellow-brown) sporadically occur. Greenish brown chlorite/smectite(?{\textregistered}) coating; pale bluish to blue-gray zeolite(?{\textregistered}) linings. Vesicle linings are highly diverse. Vesicle size tends to be bimodal; (1) greater than about 0.8 mm, and (2) <0.5 mm. Vesicular darker gray 'secondary' vesicle infillings present, up to 11 mm wide.

COLOR: 2.5Y 4/0 dark gray.

STRUCTURE: Massive.

ALTERATION: Slight.

VEINS/FRACTURES: <=1%; <=1 mm width; subvertical and subhorizontal; veins only in Pieces 20 and 21. Infillings smectite/chlorite(?) clays.

ADDITIONAL COMMENTS: Glass rind, 5 mm thick, on one end of Piece 2. Pieces 1 to 5 finer grained than other core pieces.
UNIT 12: APHYRIC BASALT

Pieces 1–5

CONTACTS: None seen.

PHENOCRYSTS:
- Plagioclase: Trace; 1.0 x 1.3 mm; euhedral.

VESICLES: 15%; 0.2 to 13 mm; rounded to elongated and coalescing; even; only completely filled adjacent to small fractures. Vesicle sizes bimodal; (1) > 1.3 mm, and (2) < 0.6 mm, the latter distributed throughout groundmass.
- Miaroles: Linings variable - include yellow-brown 'palagonite'; bluish gray zeolites(?); unidentified minute pale yellow to brown globular crystals.

COLOR: 2.5Y 4/0 dark gray.

STRUCTURE: Massive.

ALTERATION: Slight.

VEINS/FRACTURES: < 1%; <=0.5 mm width; variable, but dominantly subvertical; infilling by smectite/chlorite clays(?).

ADDITIONAL COMMENTS: Darker gray globular and elongated patches of vesicular lava present in core, up to 5 mm diameter. The seriate texture results in hand sample descriptions of aphyric and thin section descriptions of sparsely to moderately phyric.
UNIT 12: APHYRIC BASALT

Pieces 1–21

CONTACTS: None.

PHENOCRYSTS: None.

GROUNDMASS: Fine-grained, holocrystalline with plagioclase microlites. Seriate texture.

VESICLES: 1%–30%; <=5 mm; rounded; various; the amount of vesicles changes dramatically from piece to piece.

Miaroles: Often filled with a yellow-brown acicular to elongate prismatic zeolite(?). Also occurring in vesicles.

COLOR: 10YR 5/1. Yellow greenish chlorite/smectite tite coatings in some vesicles. Yellow vesicle infilling of an unknown mineral in Pieces 1, 5, 6, and 11, also white in Piece 5.
UNIT 12: APHYRIC BASALT

Pieces 1–13

CONTACTS: None seen.

PHENOCRYSTS: None.

VESICLES: 10%; up to 7 mm; rounded to elongated and coalescing; Even (smaller, variable (larger ones); black to deep red-brown glassy linings in some vesicles in Piece 2. Marked reduction in the percentage of large vesicles (≥2 mm) from Pieces 1 and 2 through to Piece 3 (remaining pieces similar to 3). General vesicle sizes bimodal, either (i) ≥1.5 mm, and (ii) ≤1 mm. Smaller vesicle common throughout core. Larger vesicles ≤2% in Pieces 3 to 13.

Miaroles: Phillipsite aggregates lining vesicles in Piece 1 and 3; blue-gray globular zeolitic linings common; rare acicular zeolite linings.

COLOR: 10YR 5/1 gray.

STRUCTURE: Massive.

ALTERATION: Fresh to slightly altered.

VEINS/FRACTURES: <1%; <=0.5 mm width; subvertical; only vein seen in Piece 3 - localized alteration of lava associated with vein along edge of fragment. Infilling of vein by clay(?)+ zeolite (phillipsite) infilling in associated cavities.

ADDITIONAL COMMENTS: Pieces 1 and 2 slightly finer grained (and darker gray and vesicular) than other fragments in core suggesting near contact to flow. In Piece 9, a subvertical zone (about 7 mm wide) is present which shows markedly reduced vesiculation (internal flow contact?). Seriate texture results in hand sample descriptions which are aphyric and thin section descriptions which are sparsely phytic.

Vein and associated alteration
UNIT 12: APHYRIC BASALT

Pieces 1–12

CONTACTS: None seen.

PHENOCRYSTS: None.

GROUNDMASS: Fine-grained, holocrystalline. Conspicuous plagioclase microlites, and clinopyroxene visible.

VESICLES: 10%; 0.2 to 7 mm; rounded to coalescing; variable; vesicle sizes bimodal: (i) >=1.5 mm; (ii) <=1 mm. Larger vesicles vary in abundance-low abundance (<3%) in Pieces 1 to 8, increasing to >=10% in fragments 10 to 12. Miaroles: Linings of blue-gray globular zeolites(?); acicular crystals (sporadic); pale green to brownish globular microcrystalline growths.

COLOR: 10YR 4/2 dark grayish brown (10YR 3/1, very dark gray for fragment 12).

STRUCTURE: Massive.

ALTERATION: Slight.

VEINS/FRACTURES: No veins visible.

UNIT 13: MODERATELY PHYRIC PLAGIOCLASE OLIVINE BASALT

Pieces 13–17

CONTACTS: None seen.

PHENOCRYSTS:
- Plagioclase: 2%; 0.7x1 to 1x1.7 mm; euhedral.
- Olivine: 3%; 0.5x0.7 to 1.9x2.1 mm; euhedral.

VESICLES: 30%; 0.1 to 2.0 mm; round to elongated and coalescing; even. Miaroles: Phillipsite linings to vesicle and vesicle trains—locally only. Most vesicles appear to have no infillings.

COLOR: 10YR 3/1, very dark gray).

STRUCTURE: Massive, vesicular.

ALTERATION: Slight.

VEINS/FRACTURES: <1%; 1 mm (width); variable; only visible in Piece 17 - zeolite filled. Latter also visible on one margin of Piece 14.

ADDITIONAL COMMENTS: Glassy rind, 7 mm thick, on one edge of Piece 13 - this piece shows gradation through variolitic and microcrystalline zones to coarser zones. Small clayey-silty sediment clast (or alteration rind fragment?) in Piece 15.
UNIT 13: MODERATELY PHYRIC CLINOPYROXENE OLIVINE PLAGICLASE BASALT

Pieces 1–22

CONTACTS: None visible.

PHENOCRYSTS:

Plagioclase: 3%–5%; to 1 mm.
Olivine: 2%–3%; to 0.6 mm.
Clinopyroxene: 1%–2% to 0.6 mm.

GROUNDMASS: Fine-grained, holocrystalline. Plagioclase microlites below glass rim of Pieces 8 and 22.

VESICLES: 1%–5%; up to 3 mm; rounded; variable; Pieces 4, 10, 13, and 14 have distinct higher amounts of vesicles.

COLOR: 2.5YR 4/0, dark gray.

UNIT 13: MODERATELY PHYRIC OLIVINE PLAGIOCLASE BASALT

Pieces 1–15

CONTACTS: None.

PHENO CRYS T S: Seriate, particularly plagioclase, grading into groundmass; phenocrysts are not so distinct in more crystalline interiors, but are clear in finer grained outer margins.

Plagioclase: 1%–2%; 0.7–1.2 mm; euhedral, sometimes in glomerocrysts.

Olivine: 1%; <0.7 mm; euhedral.

GROUNDMASS: Aphanitic to microcrystalline; plagioclase and olivine grains with interstitial, relatively fresh mesostasis.

VESICLES: 20%–40%; <0.5 or >1; round to irregular; throughout; bimodal: large >1 mm, 1%–3%, common in Pieces 5, 7–10; small < 0.5 mm throughout, irregular, interconnected.

Miaroles: Very minor yellow-clays(?), blue-gray botryoidal zeolite, and red brown zeolite(?). linings.

COLOR: 2.5YR 3/0, very dark gray to 10 YR 6/1, gray.

STRUCTURE: None.

ALTERATION: Slightly altered; olivine partially replaced by reddish aggregates in Pieces 1 and 15.

VEINS/FRACTURES: Tr; <0.5 mm wide; subvertical; surface and fracture coatings covered with yellow to orange-brown Fe-stained clays and/or Fe-oxy-hydroxides (Pieces 2, 3, 5, 7, 8, 9, and 11); whitish translucent globular zeolite (Pieces 6, 9, and 11); Mn-oxides (Pieces 12, 14, and 15).

ADDITIONAL COMMENTS: Core fell out onto the catwalk. No order or orientation despite arrows and labels.
UNIT 13: MODERATELY PHYRIC OLIVINE CLINOPYROXENE PLAGIOCLASE BASALT

Pieces 1–22

CONTACTS: None visible.

PHENOCRYSTS:
- Plagioclase: 2%; 0.5x0.8 mm; euhedral-size grades to groundmass grains.
- Olivine: 1.5%; 0.3x0.5 mm to 1.5x1.5 mm; euhedral size grades into groundmass grains.
- Clinopyroxene: 1.5%; <1 mm; subhedral.

VESICLES: 30%; 0.2 to 4 mm; rounded to elongated and coalescing; larger vesicles show variable distributing; vesicle sizes seem to show continuous size range from smaller to larger sizes. Smaller vesicle evenly distributed throughout.

Miaroles: Colorless phillipsite plus yellow brown to white finely globular zeolite; small black Mn-oxide(?) aggregates; linings in some vesicles of yellow to reddish brown clay(?) material.

COLOR: 10YR 3/1, very dark gray.

STRUCTURE: Massive, vesicular.

ALTERATION: Slight.

VEINS/FRACTURES: No veins clearly visible in pieces. However, zeolite linings on margin of some pieces (eq. 8) suggests these have broken along small veins.

ADDITIONAL COMMENTS: Plagioclase phenocrysts appear to decrease slightly in abundance towards lower part of core. Continued from Vesicle Comments: very minor acicular zeolite in a small number of vesicles; Fe oxide coatings locally present.
UNIT 13: MODERATELY PHYRIC OLIVINE CLINOPYROXENE PLAGIOCLASE BASALT

Pieces 1–14

CONTACTS: Glassy fragments in Pieces 3–5 and possibly on Piece 9.

PHENOCRYSTS: Plagioclase most obvious in rims, gradational into groundmass in interiors.
- Plagioclase: 1%–3%; 1–1.5 mm; euhedral.
- Olivine: 1%; 0.5–1; euhedral.
- Clinopyroxene: 1%; <1 mm; subhedral.

GROUNDMASS: Aphanitic at margins to intersertal. Plagioclase and olivine microlites (and clinopyroxene?) with interstitial relatively fresh mesostasis.

VESICLES: 20%–30%; <0.5 or >0.8 mm; round to irregular; throughout; rare cavities to 10 mm; bimodal large >1 mm 1%–2% only in Pieces 3–5 (near margins), 10–15; small <0.5 mm 20%–30% except near glassy rims.

Miaroles: Orange and yellow-brown linings in some (e.g. Piece 9, 11–14).

COLOR: 2.5YR 3/0, dark gray to 10YR 6/1, gray.

STRUCTURE: Thin flows or pillows?

ALTERATION: Slight alteration; olivine to reddish brown pseudomorphs in Piece 15.

VEINS/FRACTURES: None.

ADDITIONAL COMMENTS: Surfaces coated variously with yellowish to orange clays (Pieces 1, 8, 9, 11, 13, 14). Mn-oxide (Pieces 1, 11) orange-yellow palagonitic alteration (Pieces 3–5).
ROCK NAME: Sparsely phyric olivine-plagioclase basalt

GRAIN SIZE: Fine grained

TEXTURE: Sparsely seriate porphyritic, microlitic, sparsely vesicular

<table>
<thead>
<tr>
<th>MINERALOGY</th>
<th>PRIMARY PERCENT</th>
<th>PERCENT SIZE</th>
<th>COMPOSITION</th>
<th>MORPHOLOGY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHENOCRYSTS</td>
<td>Plagioclase</td>
<td>1</td>
<td>1</td>
<td>0.3-0.7</td>
<td>An70</td>
</tr>
<tr>
<td>Olivine</td>
<td>0.1</td>
<td>0.07-0.7</td>
<td>euhedral</td>
<td>fresh-no alteration</td>
<td></td>
</tr>
<tr>
<td>GROUNDMASS</td>
<td>Plagioclase</td>
<td>20</td>
<td>20</td>
<td>0.06-0.3</td>
<td>An55</td>
</tr>
<tr>
<td>Olivine</td>
<td>3</td>
<td>0.02-0.1</td>
<td>aggregates</td>
<td>fresh; mostly equant and rarely subhedral</td>
<td></td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>39</td>
<td>40</td>
<td>0.05-0.15</td>
<td>euhedral to skeletal</td>
<td></td>
</tr>
<tr>
<td>Magnetite</td>
<td>2</td>
<td>0.002-0.004</td>
<td>brown-green interstitial material</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesostasis</td>
<td>30</td>
<td>n/a</td>
<td>cryptocrystalline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SECONDARY MINERALOGY</td>
<td>Chlorite/smectite</td>
<td>1.5</td>
<td>partial infilling</td>
<td>COMMENTS</td>
<td></td>
</tr>
<tr>
<td>VESICLES/CAVITIES</td>
<td>Vesicles</td>
<td>5-10</td>
<td>0.04-4</td>
<td>partial</td>
<td>round to tend to be localized in elongated zones and patches and coalescence</td>
</tr>
</tbody>
</table>

COMMENTS: Vesicle infilling occurs in distinct zones which may be fracture controlled; appear to be trace equant spinels (<0.05 mm) and sulfide globules (<0.004 mm) in the groundmass; rock is fresh; 1181 point count: plagioclase phenocrysts 0.8%; olivine phenocrysts 0.2%; olivine in groundmass 3.6%; plagioclase laths in groundmass 16.9%; clinopyroxene in groundmass 40.5%; opaque 2.3%; interstitial groundmass 23.8%; open vesicles 10.9%; filled vesicles 1.1
PRIMARY MINERALOGY

<table>
<thead>
<tr>
<th>MINERAL</th>
<th>PERCENT PRESENT</th>
<th>PERCENT ORIGINAL</th>
<th>SIZE (mm)</th>
<th>COMPOSITION</th>
<th>MORPHOLOGY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenocrysts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagioclase</td>
<td>2</td>
<td>2</td>
<td>0.3-0.7</td>
<td>euhedral</td>
<td>blocky, rectangular crystals; fresh, commonly zoned, tend to glomerocrysts</td>
<td></td>
</tr>
<tr>
<td>Groundmass</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagioclase</td>
<td>40</td>
<td>40</td>
<td><0.6</td>
<td>microlites</td>
<td>long, thin laths; randomly oriented laths, often intergrown</td>
<td></td>
</tr>
<tr>
<td>Olivine</td>
<td>4</td>
<td>4</td>
<td>0.05-0.1</td>
<td>euhedral</td>
<td>fine-grained feathery aggregates</td>
<td></td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>30</td>
<td>30</td>
<td><0.05</td>
<td>anhedral</td>
<td>adjacent to plagioclase phenocrysts</td>
<td></td>
</tr>
<tr>
<td>Spinel</td>
<td>tr</td>
<td>tr</td>
<td>0.04</td>
<td>equant</td>
<td>in fealty groundmass</td>
<td></td>
</tr>
<tr>
<td>Magnetite</td>
<td>tr</td>
<td>tr</td>
<td><0.01</td>
<td>subhedral to anhedral</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesostasis</td>
<td>0</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SECONDARY MINERALOGY

<table>
<thead>
<tr>
<th>MINERAL</th>
<th>PERCENT REPLACING/FILLING</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown clays</td>
<td>15</td>
<td>replacing cryptocrystalline groundmass</td>
</tr>
</tbody>
</table>

VESICLES/CAVITIES

<table>
<thead>
<tr>
<th>MINERAL</th>
<th>PERCENT LOCATION</th>
<th>SIZE</th>
<th>FILLING</th>
<th>SHAPE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vesicles</td>
<td>10-15 throughout</td>
<td><0.6</td>
<td>most empty</td>
<td>irregular</td>
<td>mostly empty, some with rims of brown-green clays</td>
</tr>
</tbody>
</table>

COMMENTS:

Moderately altered, with most of the fealty cryptocrystalline groundmass (15%) altered to brown clays.

PRIMARY MINERALOGY

<table>
<thead>
<tr>
<th>MINERAL</th>
<th>PERCENT PRESENT</th>
<th>PERCENT ORIGINAL</th>
<th>SIZE (mm)</th>
<th>COMPOSITION</th>
<th>MORPHOLOGY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenocrysts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagioclase</td>
<td><1</td>
<td><1</td>
<td><.3</td>
<td>euhedral</td>
<td>glomeroporphyritic clusters; commonly zoned</td>
<td></td>
</tr>
<tr>
<td>Groundmass</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagioclase</td>
<td>20</td>
<td>20</td>
<td><.2</td>
<td>An 50</td>
<td>elongate</td>
<td>microlitic laths</td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>15</td>
<td>15</td>
<td>< 0.05</td>
<td>quench</td>
<td>in fine-grained feathery aggregates</td>
<td></td>
</tr>
<tr>
<td>Olivine</td>
<td>5</td>
<td>5</td>
<td>< 0.1</td>
<td>equant</td>
<td>euhedral; some quench textures</td>
<td></td>
</tr>
<tr>
<td>Opaques</td>
<td>tr</td>
<td>tr</td>
<td><0.06</td>
<td></td>
<td>magnetite present as a dusting in the groundmass; spinels enclosed in plagioclase phenocrysts.</td>
<td></td>
</tr>
<tr>
<td>Mesostasis</td>
<td>40</td>
<td>45</td>
<td>n/a</td>
<td>interstitial</td>
<td>some is altered to fine-grained clays</td>
<td></td>
</tr>
</tbody>
</table>

SECONDARY MINERALOGY

<table>
<thead>
<tr>
<th>MINERAL</th>
<th>PERCENT REPLACING/FILLING</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clays</td>
<td>5</td>
<td>Mesostasis</td>
</tr>
</tbody>
</table>

VESICLES/CAVITIES

<table>
<thead>
<tr>
<th>MINERAL</th>
<th>PERCENT LOCATION</th>
<th>SIZE</th>
<th>FILLING</th>
<th>SHAPE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vesicles</td>
<td>10-15 throughout</td>
<td><0.6</td>
<td>most empty</td>
<td>rounded to most are empty, some irregular</td>
<td>have fine grained clays lining their rims</td>
</tr>
</tbody>
</table>

COMMENTS:

A vein with Fe-oxide staining cuts the sample and produces a yellow-brown filling of the vesicles. One edge of the section shows a variolitic texture. 2 point counts were done on this sample yielding: plagioclase phenocrysts 0.2-9.6%; groundmass (includes some microcrystalline mineral phases) 80.9-82.7%; opaques 1-1.2%; vesicles 12-16.2%; other (clays) 3.6%. Rock is slightly altered.
SITE 834

135-834A-13X-01 (Piece 1.5-7 cm) OBSERVER: JAN WHERE SAMPLED: Unit 1

ROCK NAME: Aphyric basalt
GRAN SIZE: Glassy to microcrystalline

TEXTURE: Spherulitic, microlitic

PRIMARY MINERALOGY

<table>
<thead>
<tr>
<th>PHENOCRYSTS</th>
<th>PERCENT</th>
<th>PRESENT</th>
<th>ORIGINAL (mm)</th>
<th>COMPOSITION</th>
<th>MORPHOLOGY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plagioclase</td>
<td>tr</td>
<td>tr</td>
<td>0.5-2.5</td>
<td></td>
<td>euhedral</td>
<td>generally as glomerocrysts, rarely zoned</td>
</tr>
</tbody>
</table>

GROUNDMASS

Clinopyroxene	10-30	10-15	<0.1	euhedral to anhedral	skeletal quenched laths, zone with forked terminations and included in spherulites
Olivine	tr	tr	<0.1	anhedral	small granular crystals, to delicate feathery fans
Opaques	1-5	1-5	0.002-1.5	subhedral to anhedral	blocky to needle-like
Mesostasis	0-6	10-46	n/a	fibrous to cryptocrystalline	mostly replaced by secondary clays

SECONDARY MINERALOGY

<table>
<thead>
<tr>
<th>Clays</th>
<th>PERCENT</th>
<th>REPLACING/</th>
<th>FILLING</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clays</td>
<td>2-30</td>
<td>replacement of mesostasis</td>
<td></td>
<td>yellow, orange and brown clays are particularly common throughout one half of this section.</td>
</tr>
</tbody>
</table>

VESICLES/CAVITIES

<table>
<thead>
<tr>
<th>Vesicles</th>
<th>PERCENT</th>
<th>LOCATION (mm)</th>
<th>FILLING</th>
<th>SHAPE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10-15</td>
<td>throughout 0.06-0.3</td>
<td>clear</td>
<td>rounded to irregular</td>
</tr>
</tbody>
</table>

COMMENTS: There are two distinct zones in this section which relate to two different features. The first is the alteration front which is clearly visible in plane polarized light (40% unaltered mesostasis). The more altered area however is also more notable in its quench textures. This more spherulitic and altered zone grades rapidly into a more grainy microlitic and fresher basalt (10% mesostasis, nearly completely altered). The interface between the two zones is highlighted by the concentration of yellow, orange and brown clays. The rock is slightly to moderately altered.
SITE 834

135-834A-13X-01 (Piece 4.24-29 cm)
OBSERVER: EWE
WHERE SAMPLED: Unit 2A

ROCK NAME: Aphyric basalt
GRAIN SIZE: Fine-grained
TEXTURE: Rarely porphyritic; microcrystalline; vesicular

PRIMARY MINERALOGY

<table>
<thead>
<tr>
<th>MINERALOGY</th>
<th>PERCENT</th>
<th>PERCENT SIZE</th>
<th>COMPOSITION</th>
<th>MORPHOLOGY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenocrysts (Plagioclase)</td>
<td><=0.1</td>
<td><=0.1</td>
<td>0.2-0.8</td>
<td>An75</td>
<td>euhedral</td>
</tr>
<tr>
<td>Phenocrysts (Clinopyroxene)</td>
<td><=0.1</td>
<td><=0.1</td>
<td>0.2-1.4</td>
<td>subhedral</td>
<td>single glomeroporphyritic aggregates, pale colored</td>
</tr>
</tbody>
</table>

GROUNDMASS

<table>
<thead>
<tr>
<th>MINERALOGY</th>
<th>PERCENT</th>
<th>PERCENT SIZE</th>
<th>COMPOSITION</th>
<th>MORPHOLOGY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plagioclase</td>
<td>20-25</td>
<td>20-25</td>
<td>0.1-0.25</td>
<td>An70</td>
<td>tabular to microlitic</td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>30</td>
<td>30</td>
<td>0.02-0.1</td>
<td>subhedral</td>
<td>subhedral</td>
</tr>
<tr>
<td>Magnetite</td>
<td>3</td>
<td>3</td>
<td><=0.01</td>
<td>subhedral</td>
<td>skeletal</td>
</tr>
<tr>
<td>Mesostasis</td>
<td>10-15</td>
<td>10-15</td>
<td>up to .005</td>
<td>interstitial</td>
<td>interstitial</td>
</tr>
</tbody>
</table>

SECONDARY REPLACING/MINERALOGY

<table>
<thead>
<tr>
<th>MINERALOGY</th>
<th>PERCENT</th>
<th>FILLING</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorite/smectite</td>
<td>4</td>
<td>partial to complete filling</td>
<td>yellow-green, radiating massive to cryptocrystalline aggregates in centers of filled vesicles; variously developed along cracks</td>
</tr>
<tr>
<td>Calcite</td>
<td><0.1</td>
<td>rare infilling</td>
<td>(or small inclusions/xenoliths?)</td>
</tr>
</tbody>
</table>

VESICLES/CAVITIES

<table>
<thead>
<tr>
<th>VESICLES/CAVITIES</th>
<th>PERCENT</th>
<th>LOCATION (mm)</th>
<th>FILLING</th>
<th>SHAPE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vesicles</td>
<td>20-30</td>
<td>throughout 0.1-2.5</td>
<td>partial to complete locally</td>
<td>rounded to irregular</td>
<td>certain clusters of vesicles show quenching of enclosing groundmass (e.g., quench pyroxene); vesicles are commonly coalescing; most vesicle are unfilled</td>
</tr>
</tbody>
</table>

COMMENTS: The areas of quenching around vesicles may be due to re-intrusion of small lava pockets into previously developed vesicles. Contacts with enclosing rocks are gradational. 1026 point count yields: plagioclase phenocrysts 0.3%; clinopyroxene phenocrysts <0.1%; plagioclase groundmass microlites 20.7%; clinopyroxene groundmass 29.9%; opaques 4.9%; interstitial groundmass 15.5%; olivine groundmass 0.3%; open vesicles 25.8%; vesicle infill material 2.6%; total vesicles 28.4%. Rock is slightly altered.
SITE 834

135-834A-14X-01 (Piece 1, 6-7 cm)

OBSERVER: EWE

WHERE SAMPLED: Unit 2A

ROCK NAME: Aphyric basalt

GRAIN SIZE: Fine grained

TEXTURE: Rarely porphyritic; microlitic; vesicular

<table>
<thead>
<tr>
<th>PRIMARY MINERALOGY</th>
<th>PHENOCRYST</th>
<th>PERCENT</th>
<th>PERCENT SIZE</th>
<th>COMPOSITION</th>
<th>MORPHOLOGY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plagioclase</td>
<td>0.1</td>
<td>0.2-0.5</td>
<td>An70-75</td>
<td>Rhedral</td>
<td></td>
<td>tend to glomerocrysts; show narrow more sodic rims (An50)</td>
</tr>
</tbody>
</table>

GROUNDMASS	Plagioclase	20-25	0.05-0.25 An70	Microlitic		tabular to equant
	Clinopyroxene	30	0.02-0.2	Subhedral to anhedral		
	Magnetite	3	<=0.01	Anhedral to skeletal		
	Mesostasis	13-18	10-20	N/a		

<table>
<thead>
<tr>
<th>SECONDARY MINERALOGY</th>
<th>PERCENT</th>
<th>REPLACING/ FILLING</th>
<th>COMMENTS</th>
</tr>
</thead>
</table>

| Chlorite/smectite | 2 | Lining to completely infilling vesicles | Very localized |
| Amorphous | <=1% | Localized and rare | Partial to complete infilling |

REPLACING/FILLING

<table>
<thead>
<tr>
<th>VESICLES/CAVITIES</th>
<th>PERCENT</th>
<th>LOCATION</th>
<th>(mm)</th>
<th>FILLING</th>
<th>SHAPE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vesicles</td>
<td>25-30</td>
<td>0.05-2.0</td>
<td>Locally filled along cracks only</td>
<td>Round to binodal size</td>
<td>Irregular, distribution often coalescive</td>
<td></td>
</tr>
</tbody>
</table>

COMMENTS: 5 cm coarsely vesicular patches in slide are associated with zones of abundant quench pyroxenes; these quench areas grade into more crystalline groundmass. These patches may represent lava "oozing" into larger, earlier formed vesicles. Point count result for 891 points: plagioclase phenocrysts: 0.2%; plagioclase in groundmass 23.6%; clinopyroxene in groundmass 29%; oxides in groundmass 2.4%; interstitial groundmass 16.4%; open vesicles 29.3%; vesicle filling material 0.4. Rock is fresh to slightly altered.
SITE 834

135-834A-12X-01 (Piece 6,26-40 cm) OBSERVER: KRI WHERE SAMPLED: Unit 2B

ROCK NAME: Aphyric basalt
GRAIN SIZE: Fine grained
TEXTURE: Microcrystalline, rarely porphyritic, vesicular

<table>
<thead>
<tr>
<th>PRIMARY MINERALOGY</th>
<th>PHENOCRYSTS</th>
<th>GROUNDMASS</th>
<th>SECONDARY MINERALOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PERCENT</td>
<td>PERCENT</td>
<td>SIZE</td>
</tr>
<tr>
<td>Plagioclase</td>
<td><1</td>
<td><1</td>
<td>0.2-0.5</td>
</tr>
<tr>
<td>Plagioclase</td>
<td>35</td>
<td>37</td>
<td>0.02-0.4</td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>20</td>
<td>20</td>
<td>0.02-0.2</td>
</tr>
<tr>
<td>Magnetite</td>
<td>5</td>
<td>5</td>
<td>0.02</td>
</tr>
<tr>
<td>Mesostasis</td>
<td>0</td>
<td>15</td>
<td>n/a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRIMARY MINERALOGY</th>
<th>MORPHOLOGY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenocrysts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagioclase</td>
<td>subhedral</td>
<td>zoned, some edges ragged and resorbed</td>
</tr>
<tr>
<td>GROUNDMASS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagioclase</td>
<td>microlitic</td>
<td></td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>subhedral-anhedral</td>
<td></td>
</tr>
<tr>
<td>Magnetite</td>
<td>skeletal</td>
<td></td>
</tr>
<tr>
<td>Mesostasis</td>
<td>n/a</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECONDARY MINERALOGY</th>
<th>PERCENT</th>
<th>REPLACING/ FILLING</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clays</td>
<td>2</td>
<td>lining cavities</td>
<td></td>
</tr>
<tr>
<td>Amorphous</td>
<td>2</td>
<td>localized, near cracks</td>
<td></td>
</tr>
<tr>
<td>Fe-oxide</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clays</td>
<td>15</td>
<td>mesostasis</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VESICLES/ SIZE CAVITIES</th>
<th>PERCENT</th>
<th>LOCATION (mm)</th>
<th>FILLING</th>
<th>SHAPE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vesicles</td>
<td>25</td>
<td>throughout to 2 mm</td>
<td>rims filled with clays</td>
<td>irregular</td>
<td>often coalescing; bimodal size distribution; smaller ones are completely filled</td>
</tr>
</tbody>
</table>

COMMENTS: It is difficult to tell filled, small vesicles from altered groundmass patches. I think most of the clay areas are filled vesicles. Clinopyroxenes are very fresh, some plagioclase show minor alteration (< 2%). 1115 point count yields: plagioclase phenocrysts <0.1%; plagioclase groundmass 34.8%; clinopyroxene groundmass 22.1%; opaques 3.1%; interstitial groundmass 17.3%; open vesicles 14.9%; filled vesicles 7.8%; vesicles total 22.7%. Rock is slightly to moderately altered.
SITE 834

135-834A-16X-01 (Piece 4.11-13 cm) OBSERVER: EWE WHERE SAMPLED: Unit 3

ROCK NAME: Moderately phyric plagioclase basalt

GRAIN SIZE: Fine grained

TEXTURE: Porphyritic, microcrystalline to ophitic

<table>
<thead>
<tr>
<th>PRIMARY MINERALOGY</th>
<th>PERCENT PRESENT</th>
<th>PERCENT ORIGINAL (mm)</th>
<th>COMPOSITION</th>
<th>MORPHOLOGY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHENOCRYST</td>
<td>3-5</td>
<td>0.4-0.28</td>
<td>80-90</td>
<td>euhedral</td>
<td>occurs as isolated crystals and glomeroporphyritic clusters. Narrow sodic rims. Larger crystals have prominent cryptocrystalline dark inclusions aligned along c axis.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GROUNDMASS</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Plagioclase</td>
<td>20-25</td>
<td><0.7</td>
<td>An60</td>
<td>euhedral to subhedral</td>
<td>elongated lath-shaped, grading to microlites</td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>20-25</td>
<td><0.5</td>
<td></td>
<td>subhedral to anhedral</td>
<td>varies from granular and interstitial to ophitic. Some coarser crystals tending to be acicular.</td>
</tr>
<tr>
<td>Cr-spinel</td>
<td>tr</td>
<td>tr</td>
<td><0.05</td>
<td>euhedral</td>
<td>occur in plagioclase phenocrysts and possibly in mesostasis</td>
</tr>
<tr>
<td>Magnetite</td>
<td>1</td>
<td>1</td>
<td><0.001</td>
<td>euhedral to anhedral</td>
<td>isolated euhedral grains to granular skeleton 1, acicular, and cruciform aggregates, mainly in mesostasis.</td>
</tr>
<tr>
<td>Mesostasis</td>
<td>5-10</td>
<td>15-20</td>
<td>n/a</td>
<td>interstitial</td>
<td>cryptocrystalline brown material when unaltered</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECONDARY MINERALOGY</th>
<th>PERCENT FILLING</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clays/silica</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VESICLES/CAVITIES</th>
<th>PERCENT LOCATION (mm)</th>
<th>FILLING</th>
<th>SHAPE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>VESICLES</td>
<td>30-35</td>
<td>disseminated <3.0</td>
<td>linings only</td>
<td>subrounded most vesicles between 0.1-0.5 mm size</td>
</tr>
</tbody>
</table>

COMMENTS: 1117 point count by EWE: plagioclase phenocrysts 2.7%; plagioclase groundmass 20.2%; clinopyroxene groundmass 27.9%; opaques 1.1%; mesostasis 17.9%; open vesicles 23.0%; infilled vesicles 7.2%; vesicles total 30.2% Rock is moderately altered.
135-834A-10X-CC (Piece 1, 28-30 cm)

Observer: KRI
Where Sampled: Unit 4

Rock Name: Aphyric basalt
Grain Size: Fine grained
Texture: Microlitic

<table>
<thead>
<tr>
<th>Primary Mineralogy</th>
<th>Percent Present</th>
<th>Percent Original (mm)</th>
<th>Composition</th>
<th>Morphology</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenocrysts</td>
<td>Plagioclase</td>
<td><1</td>
<td>0.4-1.3</td>
<td>Euhedral</td>
<td>Two isolated grains with scalloped edges and resorbing interiors</td>
</tr>
<tr>
<td></td>
<td>Groundmass</td>
<td>Plagioclase 20-25</td>
<td><0.3</td>
<td>Microlitic</td>
<td>Elongate microlites, randomly oriented</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clinopyroxene 20-25</td>
<td><0.4</td>
<td>Euhedral</td>
<td>Elongate often fan-like aggregates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Magnetite 1-2</td>
<td><0.5</td>
<td>Euhedral</td>
<td>Elongate crystals in microlitic groundmass</td>
</tr>
<tr>
<td></td>
<td>Mesostasis</td>
<td>5-10</td>
<td>20-25</td>
<td>Interstitial</td>
<td>Cryptocrystalline material, much of it is altered to very fine grained green-brown clays</td>
</tr>
</tbody>
</table>

Vesicles/Cavities
- **Vesicles:** 25-30 throughout, 0.1-3.5 mm
- **Filling:** Most are clean and empty
- **Shape:** Irregular, often coalesced to large irregular shapes; bimodal size distribution

Comments: Rock is very fresh except for clay development in mesostasis. There is a bimodal size distribution of the vesicles. The very large ones are well formed and tend to be aggregates of more moderately sized voids. There is also a very fine scale porosity to the rock with abundant vesicles of <1 mm. 1048 point count by KNE: plagioclase phenocrysts 0.1%; plagioclase groundmass 20.7%; clinopyroxene groundmass 26.1%; magnetite 1.2%; mesostasis (includes altered mesostasis) 23.4%; vesicles 28.6%

135-834A-17X-01 (Piece 3, 28-32 cm)

Observer: KRI
Where Sampled: Unit 5

Rock Name: Sparsely phyric plagioclase basalt
Grain Size: Fine grained
Texture: Seriate, poikilitic, microcrystalline, vesicular

<table>
<thead>
<tr>
<th>Primary Mineralogy</th>
<th>Percent Present</th>
<th>Percent Original (mm)</th>
<th>Composition</th>
<th>Morphology</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenocrysts</td>
<td>Plagioclase</td>
<td>1-2</td>
<td><1.5</td>
<td>Euhedral</td>
<td>Very raggedy-scalloped edges; resorbed regions; strongly zoned</td>
</tr>
<tr>
<td>Groundmass</td>
<td>Plagioclase</td>
<td>33</td>
<td><0.5</td>
<td>Euhedral</td>
<td>Microlites</td>
</tr>
<tr>
<td></td>
<td>Clinopyroxene</td>
<td>20</td>
<td><1</td>
<td>Poikilitic</td>
<td>Fresh</td>
</tr>
<tr>
<td></td>
<td>Sulfides</td>
<td>2-3</td>
<td><0.1</td>
<td>Globules</td>
<td>Ilemite lamelles</td>
</tr>
<tr>
<td></td>
<td>Ilmenite</td>
<td>tr-1</td>
<td>tr-1</td>
<td>Blades</td>
<td></td>
</tr>
</tbody>
</table>

Vesicles/Cavities
- **Vesicles:** 20 patchy to 5
- **Filling:** Calcite/clays
- **Shape:** Irregular, connected almost into veins oriented across and through the section

Comments: Cryptocrystalline groundmass (20%) is highly altered to clays. Trace spinel occurs as small, raggedy crystals next to plagioclase. Calcite occurs filling some vesicles and in other patches throughout the section. Clays occur rimming some vesicles. Plagioclases enclosed in clinopyroxene tend to be fresher than those that are not enclosed. Not only does this sample show groundmass alteration, but there are several regions of more pervasive alteration, with extensive calcite infilling of vesicles and breakdown of groundmass minerals. Rock is moderately altered. JA adds: Ragged brown stilpnomelane? to 0.2 mm in groundmass irregularly intergrown/laminated with chrome green chlorite (total <1% of rock).

806
SITE 834

135-834A-17X-04 (Piece 5A, 92-93 cm)
OBSERVER: KRI
WHERE SAMPLED: Unit 5

ROCK NAME: Sparsely phyric plagioclase basalt
GRAIN SIZE: Fine to medium grained
TEXTURE: Seriate poikilitic, microcrystalline, vesicular

<table>
<thead>
<tr>
<th>PRIMARY MINERALOGY</th>
<th>PERCENT</th>
<th>PERCENT SIZE</th>
<th>COMPOSITION</th>
<th>MORPHOLOGY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHENOCRYST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagioclase</td>
<td>2</td>
<td>2</td>
<td>0.5-1.5 An75</td>
<td>euhedral</td>
<td>some strongly zoned (especially at rims)</td>
</tr>
<tr>
<td>GROUNDMASS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagioclase</td>
<td>30</td>
<td>35</td>
<td><0.5</td>
<td>euhedral</td>
<td>zoned and twinned with plagioclase</td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>20</td>
<td>20</td>
<td>0.5-3</td>
<td>poikilitic</td>
<td>chadacrysts</td>
</tr>
<tr>
<td>Magnetite</td>
<td>5</td>
<td>5</td>
<td>0.05-0.3</td>
<td>equant, cruciform</td>
<td>commonly with fine il enite lamellae</td>
</tr>
<tr>
<td>Ilmenite</td>
<td>1</td>
<td>1</td>
<td><0.2</td>
<td>skeletal</td>
<td>isolated in groundmass</td>
</tr>
<tr>
<td>Mesostasis</td>
<td>0</td>
<td>20</td>
<td>n/a</td>
<td>n/a</td>
<td>cryptocrystalline; completely altered to clays</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECONDARY MINERALOGY</th>
<th>PERCENT</th>
<th>REPLACING/FILLING</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbonate and clays</td>
<td>8</td>
<td>infilling</td>
<td>very fine grained</td>
</tr>
<tr>
<td>Clays</td>
<td>20</td>
<td>mesostasis</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VESICLES/CAVITIES</th>
<th>PERCENT</th>
<th>LOCATION</th>
<th>SIZE</th>
<th>FILLING</th>
<th>SHAPE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vesicles</td>
<td>20</td>
<td>throughout</td>
<td>0.23</td>
<td>all partially to completely filled</td>
<td>irregular</td>
<td>often coalescing</td>
</tr>
</tbody>
</table>

COMMENTS: Mesostasis is completely altered to clays. Clay minerals also fill or partially fill the vesicles so alteration is difficult to quantify, as is original vesicle content. Plagioclase enclosed in clinopyroxene are extremely fresh, others show just a few % clays. Rock is moderately altered.

135-834A-18X-02 (Piece 3C, 113-114 cm)
OBSERVER: EWE
WHERE SAMPLED: Unit 5

ROCK NAME: Aphyric to sparsely phyric plagioclase basalt
GRAIN SIZE: Fine to medium grained
TEXTURE: Seriate poikilitic, microcrystalline

<table>
<thead>
<tr>
<th>PRIMARY MINERALOGY</th>
<th>PERCENT</th>
<th>PERCENT SIZE</th>
<th>COMPOSITION</th>
<th>MORPHOLOGY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHENOCRYST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagioclase</td>
<td><1-2</td>
<td><1-2</td>
<td>0.6-2.0 An75-80</td>
<td>euhedral</td>
<td>Narrow sodic rims (to An60); tend to glomerophyritic</td>
</tr>
<tr>
<td>GROUNDMASS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagioclase</td>
<td>39</td>
<td>40</td>
<td>0.08-0.6 An70</td>
<td>euhedral</td>
<td>zoned to sodic rims (An53); tabular to microcrystalline</td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>20</td>
<td>20</td>
<td>0.07-4.0</td>
<td>ophtitic-poikilitic</td>
<td>oxidized and unmix</td>
</tr>
<tr>
<td>Magnetite</td>
<td>2.0</td>
<td>2.0</td>
<td>0.03-0.1</td>
<td>equant to euhedral</td>
<td>tabular sub</td>
</tr>
<tr>
<td>Ilmenite</td>
<td><1.0</td>
<td><1.0</td>
<td>0.1</td>
<td>equant to skeletal</td>
<td>n/a</td>
</tr>
<tr>
<td>Mesostasis</td>
<td>0</td>
<td>15-20</td>
<td>n/a</td>
<td>n/a</td>
<td>microcrystalline, interstitial</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECONDARY MINERALOGY</th>
<th>PERCENT</th>
<th>REPLACING/FILLING</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcite</td>
<td>7.5</td>
<td>infilling</td>
<td>microcrystalline to radiating; calcite, zeolites, chlorite</td>
</tr>
<tr>
<td>Clay</td>
<td>15-20</td>
<td>mesostasis, vesicles</td>
<td>and clays fill 50% of vesicles</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VESICLES/CAVITIES</th>
<th>PERCENT</th>
<th>LOCATION</th>
<th>SIZE</th>
<th>FILLING</th>
<th>SHAPE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vesicles</td>
<td>15</td>
<td>even</td>
<td>0.2-1.5</td>
<td>all partially to completely filled</td>
<td>rounded to and coalescing</td>
<td></td>
</tr>
</tbody>
</table>

COMMENTS: 1605 point count yields: plagioclase phenocrysts 0.7%; plagioclase groundmass 41%; clinopyroxene groundmass 21.5%; opaques groundmass 3.4%; interstitial groundmass 18.3%; filled vesicle material 9.7%; open vesicle space 4.4. Rock is moderately altered.
SITE 834

135-834A-20X-02 (Piece 4A, 81-82 cm) OBSERVER: KRI WHERE SAMPLED: Unit 5

ROCK NAME: Aphyric to sparsely phyric plagioclase basalt
GRAIN SIZE: Fine to medium grained
TEXTURE: Seriate poikilitic, microcrystalline, vesicular

<table>
<thead>
<tr>
<th>PRIMARY MINERALOGY</th>
<th>PERCENT</th>
<th>PERCENT ORIGINAL</th>
<th>COMPOSITION</th>
<th>MORPHOLOGY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHENOCRYSTES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagioclase</td>
<td><1-2</td>
<td><1-2</td>
<td>An70-75</td>
<td>euhedral</td>
<td>some strongly zoned</td>
</tr>
<tr>
<td>GROUNDMASS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagioclase</td>
<td>38</td>
<td>40</td>
<td>An70</td>
<td>euhedral</td>
<td>zoned with sodic rims</td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>20</td>
<td>20</td>
<td>0.5-3</td>
<td>poikilitic</td>
<td>with plagioclase chadacrysts; zoned and twinned</td>
</tr>
<tr>
<td>Magnetite</td>
<td>3</td>
<td>3</td>
<td>0.05-0.4</td>
<td>skeletal, cruciform</td>
<td></td>
</tr>
<tr>
<td>Ilmenite</td>
<td>tr</td>
<td>tr</td>
<td>0.1</td>
<td>skeletal</td>
<td>microcrystalline; completely altered to clays</td>
</tr>
<tr>
<td>Mesostasis</td>
<td>0</td>
<td>15</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECONDARY MINERALOGY</th>
<th>PERCENT</th>
<th>FILLING</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcite</td>
<td>3-4</td>
<td>infilling</td>
<td>microcrystalline at vesicle edges to radiating calcite in center of completely filled vesicles; secondary mineral assemblage (calcite + zeolites + clay) makes up 60% of vesicle volume</td>
</tr>
<tr>
<td>Clays</td>
<td>15</td>
<td>Mesostasis</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VESICLES/CAVITIES</th>
<th>PERCENT</th>
<th>LOCATION</th>
<th>FILLING</th>
<th>SHAPE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vesicles</td>
<td>20</td>
<td>throughout 0.4-3</td>
<td>all partially to completely filled</td>
<td>rounded to oval to subrounded</td>
<td>estimate vesicle content of rock due to subsequent infilling</td>
</tr>
</tbody>
</table>

COMMENTS: Mesostasis is completely altered. Altered groundmass material is difficult to distinguish from filled vesicles. Plagioclases enclosed in clinopyroxene oikocrysts are generally fresher than other groundmass plagioclases which can show a few percent secondary minerals. Rock is moderately altered.
ROCK NAME: Aphyric basalt
GRAIN SIZE: Fine grained
TEXTURE: Microlitic, vesicular

SITE 834
135-834B-6R-CC (Piece 2, 8-11 cm)
WHERE SAMPLED: Unit 2

OBSERVER: KRI

PRIMARY MINERALOGY

<table>
<thead>
<tr>
<th>PHENOCRYSTS</th>
<th>PERCENT</th>
<th>PERCENT SIZE</th>
<th>COMPOSITION</th>
<th>MORPHOLOGY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plagioclase</td>
<td>tr</td>
<td>tr</td>
<td>to 0.4</td>
<td>euhedral</td>
<td>no true phenocrysts are present, but there are a few "slightly larger" plagioclases up to 0.4 mm.</td>
</tr>
</tbody>
</table>

GROUNDMASS

Plagioclase	30	30	< 0.4	microlites	some strongly zoned with narrow sodic rims
Clinopyroxene	15	15	0.04-0.1	euhedral	acicular quench crystals
Olivine	tr-1	tr-1	< 0.05	euhedral	somewhat altered to extremely fine grained clays
Mesostasis	5	25	n/a	interstitial	there is a very fine grained dusting of magnetite in the groundmass.
Opaques	tr	tr	0.01-0.03	equant	

VESICLES/CAVITIES

<table>
<thead>
<tr>
<th>VESICLES</th>
<th>PERCENT LOCATION SIZE</th>
<th>FILLING</th>
<th>SHAPE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vesicles</td>
<td>35 random 0.1-1</td>
<td>partially filled with brown-green clays</td>
<td>round</td>
<td>vesicles are bimodally distributed; aside from the relatively large ones there is a fine scale porosity due to the abundance of extremely small vesicles (<0.1 mm).</td>
</tr>
</tbody>
</table>

COMMENTS: Cryptocrystalline groundmass is now composed largely of fine-grained clays. Patchy distributions of Fe-oxyhydroxides have stained some portions and given some vesicles a yellow-brown coloration. The largest vesicles are rimmed or partially filled with brownish clays. Rock is moderately altered.

135-834B-7R-01 (Piece 13, 80-81 cm)
WHERE SAMPLED: Unit 2

OBSERVER: KRI

PRIMARY MINERALOGY

<table>
<thead>
<tr>
<th>PHENOCRYSTS</th>
<th>PERCENT</th>
<th>PERCENT SIZE</th>
<th>COMPOSITION</th>
<th>MORPHOLOGY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plagioclase</td>
<td><1</td>
<td><1</td>
<td>0.5</td>
<td>euhedral laths</td>
<td>some show resorption along the edges</td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td><1</td>
<td><1</td>
<td>0.4</td>
<td>subhedral</td>
<td></td>
</tr>
</tbody>
</table>

GROUNDMASS

Plagioclase	30	30	0.05-0.5	microlites	some have a resorbed/spongy appearance
Clinopyroxene	15	15	0.02-0.1	subhedral	
Olivine	tr-1	tr-1	0.05-0.1mm	equant	most are magnetite; many cruciform
Opaques	3-4	3-4	0.05	fine grained	
Mesostasis	5-10	5-10	n/a		

VESICLES/CAVITIES

<table>
<thead>
<tr>
<th>VESICLES</th>
<th>PERCENT LOCATION SIZE</th>
<th>FILLING</th>
<th>SHAPE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vesicles</td>
<td>35 random 0.05-1</td>
<td>most are partially filled</td>
<td>rounded to wide size variation with all intermediate sizes represented</td>
<td></td>
</tr>
</tbody>
</table>

COMMENTS: A fine grained calcite vein runs through one side of this section. This represents a vein of indurated sediment. The calcite crystals are larger (up to 0.05 mm) at the margins of the vein. There are also a few calcite "clasts" occurring about 2 mm into the interior of the rock. The rock and vesicles show Fe-oxyhydroxide staining at the edges of the calcite vein. Rock is fresh.

809
135-834B-8R-01 (Piece 5B, 110-113 cm)

OBSERVER: KRI
WHERE SAMPLED: Unit 2

ROCK NAME: Aphyric basalt
GRAIN SIZE: Fine grained
TEXTURE: Vesicular, microlitic

PRIMARY MINERALOGY

<table>
<thead>
<tr>
<th>PHENOCRYSTS</th>
<th>PERCENT PRESENT</th>
<th>SIZE (mm)</th>
<th>COMPOSITION</th>
<th>MORPHOLOGY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plagioclase</td>
<td>tr</td>
<td><1.0</td>
<td></td>
<td>euhedral</td>
<td>corroded interiors</td>
</tr>
<tr>
<td>GROUNDMASS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagioclase</td>
<td>35-40</td>
<td><0.5</td>
<td></td>
<td>euhedral</td>
<td>randomly oriented microlites</td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>10-15</td>
<td><0.2</td>
<td></td>
<td>euhedral-spheneal</td>
<td>acicular quench crystals</td>
</tr>
<tr>
<td>Magnetite</td>
<td>2-3</td>
<td><0.6</td>
<td></td>
<td>euhedral</td>
<td>equant, interstitial grains</td>
</tr>
<tr>
<td>Mesostasis</td>
<td>5</td>
<td>25</td>
<td></td>
<td>interstitial</td>
<td>largely replaced by fine grained green-brown clays</td>
</tr>
</tbody>
</table>

SECONDARY MINERALOGY

<table>
<thead>
<tr>
<th>VESICLES/CAVITIES</th>
<th>PERCENT LOCATION</th>
<th>SIZE (mm)</th>
<th>FILLING</th>
<th>SHAPE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vesicles</td>
<td>20-25</td>
<td>throughout</td>
<td><2.5</td>
<td>minor</td>
<td>irregular bimodal size distribution; aside from large ones there is a fine scale porosity due to the abundance of extremely small vesicles (<0.1 mm)</td>
</tr>
</tbody>
</table>

COMMENTS: Cryptocrystalline groundmass is now composed largely of fine grained clays. Mineral phases are extremely fresh. Rock is slightly-moderately altered.

135-834B-10R-01 (Piece 1, 36-37 cm)

OBSERVER: KRI
WHERE SAMPLED: Unit 5

ROCK NAME: Sparsely phyric plagioclase basalt
GRAIN SIZE: Fine to medium grained
TEXTURE: Seriate poikilitic, microcrystalline, vesicular

PRIMARY MINERALOGY

<table>
<thead>
<tr>
<th>PHENOCRYSTS</th>
<th>PERCENT PRESENT</th>
<th>SIZE (mm)</th>
<th>COMPOSITION</th>
<th>MORPHOLOGY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plagioclase</td>
<td>38</td>
<td>0.5-1</td>
<td>An70</td>
<td>euhedral</td>
<td>zoned</td>
</tr>
<tr>
<td>GROUNDMASS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagioclase</td>
<td>40</td>
<td><0.3</td>
<td>An70</td>
<td>euhedral</td>
<td>strongly zoned to sodic rims</td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>20</td>
<td>0.6-3</td>
<td></td>
<td>poikilitic</td>
<td>sector zoned and twinned, ilmenite lamellae common</td>
</tr>
<tr>
<td>Magnetite</td>
<td>3</td>
<td>0.3</td>
<td></td>
<td>skeletal</td>
<td></td>
</tr>
<tr>
<td>Mesostasis</td>
<td>5</td>
<td>15</td>
<td></td>
<td>n/a</td>
<td>groundmass is completely altered to fine grained clays</td>
</tr>
</tbody>
</table>

SECONDARY MINERALOGY

<table>
<thead>
<tr>
<th>VESICLES/CAVITIES</th>
<th>PERCENT LOCATION</th>
<th>SIZE (mm)</th>
<th>FILLING</th>
<th>SHAPE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vesicles</td>
<td>20</td>
<td>throughout</td>
<td>0.1-3</td>
<td>most partially filled</td>
<td>irregular bimodal size distribution; small ones are round</td>
</tr>
</tbody>
</table>

COMMENTS: One patch appears to have altered plagioclase clusters, but they look very similar to some of the filled vesicles, except for their relict shape. Plagioclases enclosed in clinopyroxene are extremely fresh in contrast to those in the groundmass which show a few percent alteration. Rock is moderately altered.

COMMENTS: The cryptocrystalline nature of the groundmass is consistent with the presence of fine-grained clays. The mineral phases appear to be relatively fresh, indicating minimal alteration. The presence of vesicles and cavities suggests porosity, which is typical of basaltic rocks. The specific mineralogy, with plagioclase and clinopyroxene being the primary constituents, is indicative of a basaltic composition. The rock is characterized by a vesicular texture, which is common in basaltic rocks due to the presence of gas during their eruption and solidification.

COMMENTS: The presence of cryptocrystalline groundmass suggests that the rock has undergone some degree of alteration. The mineral phases are fresh, which is consistent with the rock being slightly-moderately altered. The vesicles and cavities provide insight into the textural characteristics, indicating porosity and gas presence during eruption.

COMMENTS: The rock sample contains a poikilitic texture, with plagioclase phenocrysts enclosed in a groundmass of clinopyroxene and olivine. The groundmass is largely altered to fine-grained clays, suggestive of moderate alteration. The presence of vesicles and cavities indicates porosity, which is typical of basaltic rocks. The mineralogy, with plagioclase and clinopyroxene being the primary constituents, is indicative of a basaltic composition. The rock is characterized by a vesicular texture, which is common in basaltic rocks due to the presence of gas during their eruption and solidification.
135-834B-10R-02 (Piece 5, 76-80 cm)

OBSERVER: KRI
WHERE SAMPLED: Unit 5

ROCK NAME: Aphyric basalt
GRAIN SIZE: Fine to medium grained
TEXTURE: Seriate poikilitic, microcrystalline, vesicular

PRIMARY MINERALOGY

<table>
<thead>
<tr>
<th>MINERAL</th>
<th>PERCENT PRESENT</th>
<th>PERCENT ORIGINAL (mm)</th>
<th>SIZE</th>
<th>COMPOSITION</th>
<th>MORPHOLOGY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plagioclase</td>
<td>40</td>
<td>40</td>
<td>0.1-2</td>
<td>An70-80</td>
<td>euhedral</td>
<td>strongly zoned</td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>30-35</td>
<td>30-35</td>
<td>0.4-3</td>
<td></td>
<td>euhedral-poikilitic</td>
<td>zoned and twinned</td>
</tr>
<tr>
<td>Magnetite</td>
<td>1-2</td>
<td>1-2</td>
<td>0.1-0.8</td>
<td></td>
<td>skeletal to cruciform</td>
<td>no ilmenite lamellae, unlike magnetite</td>
</tr>
<tr>
<td>Mesostasis</td>
<td>7-10</td>
<td>7-10</td>
<td>n/a</td>
<td></td>
<td></td>
<td>in other sections of unit</td>
</tr>
</tbody>
</table>

SECONDARY MINERALOGY REPLACING/FILLING

<table>
<thead>
<tr>
<th>MINERAL</th>
<th>PERCENT</th>
<th>LOCATION</th>
<th>SIZE</th>
<th>FILLING</th>
<th>SHAPE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcite</td>
<td>n/a</td>
<td>fillings and veins</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clays/calcite</td>
<td>n/a</td>
<td>vesicle borders</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe-oxyhydroxide tr</td>
<td>n/a</td>
<td>staining in some vesicles or cracks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VESICLES/CAVITIES

<table>
<thead>
<tr>
<th>PERCENT</th>
<th>LOCATION</th>
<th>SIZE</th>
<th>FILLING</th>
<th>SHAPE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vesicles</td>
<td>15</td>
<td>throughout</td>
<td>0.2-4</td>
<td>most partially filled with clays</td>
<td>irregular</td>
</tr>
</tbody>
</table>

COMMENTS: A region of this sample grades into a much coarser grained equivalent. In the coarser portion of the slide there is a higher percentage of clinopyroxene and clinopyroxene and plagioclase are nearly the same size. The coarse grained region is about 5 mm in diameter. Rock is slightly altered.

135-834B-10R-03 (Piece 3A, 68-69 cm)

OBSERVER: KRI
WHERE SAMPLED: Unit 5

ROCK NAME: Aphyric basalt
GRAIN SIZE: Fine to medium grained, vesicular
TEXTURE: Seriate poikilitic, microcrystalline, vesicular

PRIMARY MINERALOGY

<table>
<thead>
<tr>
<th>MINERAL</th>
<th>PERCENT PRESENT</th>
<th>PERCENT ORIGINAL (mm)</th>
<th>SIZE</th>
<th>COMPOSITION</th>
<th>MORPHOLOGY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plagioclase</td>
<td>33-34</td>
<td>35</td>
<td>0.1-0.5</td>
<td></td>
<td>euhedral microlites</td>
<td>strongly zoned to sodic rims, slightly altered to fine grained clays</td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>25</td>
<td>25</td>
<td><0.1</td>
<td></td>
<td>poikilitic</td>
<td></td>
</tr>
<tr>
<td>Magnetite</td>
<td>2-3</td>
<td>2-3</td>
<td><0.2</td>
<td></td>
<td>skeletal to</td>
<td>ilmenite lamellae common</td>
</tr>
<tr>
<td>Ilmenite</td>
<td><1</td>
<td><1</td>
<td>n/a</td>
<td></td>
<td>elongate</td>
<td></td>
</tr>
<tr>
<td>Mesostasis</td>
<td>0</td>
<td>25</td>
<td>n/a</td>
<td></td>
<td></td>
<td>completely altered to clays</td>
</tr>
</tbody>
</table>

VESICLES/CAVITIES

<table>
<thead>
<tr>
<th>PERCENT</th>
<th>LOCATION</th>
<th>SIZE</th>
<th>FILLING</th>
<th>SHAPE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vesicles</td>
<td>7-10</td>
<td>throughout</td>
<td>1-6</td>
<td>calcite</td>
<td>irregular</td>
</tr>
</tbody>
</table>

COMMENTS: Calcite fills veins and vesicles. Green clays fill vesicles, mostly rimming edges; fine grained clays partially replace the groundmass. Plagioclases enclosed in clinopyroxenes are somewhat fresher than those surrounded by cryptocrystalline groundmass. The rock is moderately to highly altered.
SITE 834

135-834B-12R-03 (Piece 5, 65-66 cm) OBSERVER: SHE WHERE SAMPLED: Unit 5

ROCK NAME: Aphyric basalt
GRAIN SIZE: Fine to medium grained
TEXTURE: Seriate poikilitic, microcrystalline, vesicular

PRIMARY MINERALOGY

<table>
<thead>
<tr>
<th>PHENOCRYST</th>
<th>PERCENT</th>
<th>SIZE</th>
<th>COMPOSITION</th>
<th>MORPHOLOGY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plagioclase</td>
<td><1</td>
<td>2</td>
<td></td>
<td>subhedral</td>
<td>zoned, usually more sodic rims</td>
</tr>
</tbody>
</table>

GROUNDMASS

<table>
<thead>
<tr>
<th>PHENOCRYST</th>
<th>PERCENT</th>
<th>SIZE</th>
<th>COMPOSITION</th>
<th>MORPHOLOGY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plagioclase</td>
<td>38</td>
<td>40</td>
<td>0.1-0.8 An65</td>
<td>equant to lathlike</td>
<td>oikocrysts</td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>20</td>
<td>20</td>
<td>1-3</td>
<td>sieve-like</td>
<td>oikocrysts</td>
</tr>
<tr>
<td>Magnetite</td>
<td>1</td>
<td>1</td>
<td>0.01-0.15</td>
<td>equant, skeletal</td>
<td>replaced by clays</td>
</tr>
<tr>
<td>Mesostasis</td>
<td>0</td>
<td>24</td>
<td>n/a</td>
<td>interstitial</td>
<td></td>
</tr>
</tbody>
</table>

SECONDARY MINERALOGY

<table>
<thead>
<tr>
<th>MINERAL</th>
<th>PERCENT</th>
<th>FILLING</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clays</td>
<td>2</td>
<td>plagioclase</td>
<td>fine spots throughout plagioclase</td>
</tr>
<tr>
<td>Clays</td>
<td>24</td>
<td>groundmass</td>
<td>green brown in color</td>
</tr>
</tbody>
</table>

VESICLES/CAVITIES

<table>
<thead>
<tr>
<th>VESICLES/CAVITIES</th>
<th>PERCENT</th>
<th>LOCATION</th>
<th>SIZE</th>
<th>FILLING</th>
<th>SHAPE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vesicles</td>
<td>15</td>
<td>throughout</td>
<td>0.2-2</td>
<td>clays on edges</td>
<td>irregular</td>
<td>bimodal size distribution (<0.4 mm, >1 mm), smaller population is most abundant</td>
</tr>
</tbody>
</table>

COMMENTS: The rock is moderately altered.

135-834B-13R-01 (Piece 4, 138-140 cm) OBSERVER: KRI WHERE SAMPLED: Unit 5

ROCK NAME: Aphyric basalt
GRAIN SIZE: fine to medium grained
TEXTURE: Seriate, poikilitic, microcrystalline, vesicular

PRIMARY MINERALOGY

<table>
<thead>
<tr>
<th>PHENOCRYST</th>
<th>PERCENT</th>
<th>SIZE</th>
<th>COMPOSITION</th>
<th>MORPHOLOGY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plagioclase</td>
<td>1-2</td>
<td>2-3</td>
<td><2.0 mm</td>
<td>euhedral</td>
<td>zoned crystals with corroded interiors</td>
</tr>
</tbody>
</table>

GROUNDMASS

<table>
<thead>
<tr>
<th>PHENOCRYST</th>
<th>PERCENT</th>
<th>SIZE</th>
<th>COMPOSITION</th>
<th>MORPHOLOGY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plagioclase</td>
<td>38</td>
<td>40</td>
<td><0.5</td>
<td>euhedral</td>
<td>elongate laths with fine spots throughout interiors</td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>15-20</td>
<td>15-20</td>
<td><2.0</td>
<td>sieve-like</td>
<td>oikocrysts with enclosed plagioclase</td>
</tr>
<tr>
<td>Mesostasis</td>
<td>0</td>
<td>25</td>
<td>n/a</td>
<td>interstitial</td>
<td>replaced by fine grained clays</td>
</tr>
<tr>
<td>Magnetite</td>
<td>1</td>
<td>1</td>
<td><0.5</td>
<td>euhedral</td>
<td>equant, skeletal</td>
</tr>
</tbody>
</table>

SECONDARY MINERALOGY

<table>
<thead>
<tr>
<th>MINERAL</th>
<th>PERCENT</th>
<th>FILLING</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcite</td>
<td><1</td>
<td></td>
<td>large calcite grains (about 1 mm across) fill region about 4 mm across. This is not an obvious vesicle nor a vein. It is the only calcite in the slide</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MINERAL</th>
<th>PERCENT</th>
<th>LOCATION</th>
<th>SIZE</th>
<th>FILLING</th>
<th>SHAPE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clays</td>
<td>25</td>
<td>meostasis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VESICLES/CAVITIES

<table>
<thead>
<tr>
<th>VESICLES/CAVITIES</th>
<th>PERCENT</th>
<th>LOCATION</th>
<th>SIZE</th>
<th>FILLING</th>
<th>SHAPE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vesicles</td>
<td>15-20</td>
<td>throughout</td>
<td>0.2-2</td>
<td>minor</td>
<td>irregular</td>
<td>bimodal size distribution; edges lined with fine grained clays</td>
</tr>
</tbody>
</table>

COMMENTS: The rock is moderately altered. The plagioclase grains enclosed in the clinopyroxene oikocrysts are significantly less altered than those outside.
SITE 834

135-834B-14R-01 (Piece 7B, 32-33 cm)

OBSERVER: KRI
WHERE SAMPLED: Unit 6

ROCK NAME: Aphyric basalt
GRAIN SIZE: Fine grained
TEXTURE: Microcrystalline to microlitic, vesicular

PRIMARY MINERALOGY

<table>
<thead>
<tr>
<th>PHENOCRYST</th>
<th>PERCENT</th>
<th>PERCENT SIZE</th>
<th>COMPOSITION</th>
<th>MORPHOLOGY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plagioclase</td>
<td><1-1</td>
<td><1-1</td>
<td>An80</td>
<td>euhedral</td>
<td>tend to glomerocrysts</td>
</tr>
<tr>
<td>Groundmass</td>
<td>5</td>
<td><1-1</td>
<td>An60-80</td>
<td>microcrysts</td>
<td>quench textures</td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>3-4</td>
<td>3-4</td>
<td><0.5</td>
<td>euhedral</td>
<td>quench textures</td>
</tr>
<tr>
<td>Olivine</td>
<td>1-2</td>
<td>1-2</td>
<td><0.3</td>
<td>euhedral</td>
<td></td>
</tr>
<tr>
<td>Magnetite</td>
<td>1</td>
<td><0.02</td>
<td>anhedral</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spinel</td>
<td>tr</td>
<td>tr to 0.04</td>
<td>euhedral</td>
<td>in plagioclase and groundmass</td>
<td></td>
</tr>
</tbody>
</table>

VESICLES/CAVITIES

<table>
<thead>
<tr>
<th>VESICLES</th>
<th>PERCENT</th>
<th>LOCATION</th>
<th>SIZE</th>
<th>FILLING</th>
<th>SHAPE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vesicles</td>
<td>20-30</td>
<td>random</td>
<td><1.2</td>
<td>most empty</td>
<td>subrounded</td>
<td>most are clean and empty; clay lining on irregular some; some are coated with Fe-oxyhydroxides near a vein filled with same</td>
</tr>
</tbody>
</table>

COMMENTS:

Cryptocrystalline mesostasis (50-60%) is variolitic to microcrystalline with feathery textured crystallites. Sample is generally fresh, with some alteration in variolitic zone to fine grained clays. Some vesicles have clay lining the edges; one has a calcite filling. There is a dusting of magnetite in the groundmass. Vesicle size distribution is bimodal. The rock has about 5-10% large (>1 mm) vesicles yet also has a very fine scale porosity (to 60% locally) with very small (<0.1 mm) vesicles. 1181 point count yields: olivine phenocrysts (0.2%), clinopyroxene phenocrysts (0.3%), plagioclase phenocrysts (1.0), plagioclase in groundmass (5.3), olivine in groundmass (0.8), clinopyroxene in groundmass (1.5), opaque (0.8), groundmass (53.8), dark groundmass spots (9.1), vesicles (25.8), filled vesicles (0.7), clays in groundmass (0.7). The rock is fresh. This count used a size discrimant for phenocrysts; another count just going by shape gave 4.5% FLAG, 2.6% CPX, 0.5% OL phenocrysts.
SITE 834

135-834B-15R-01 (Piece 98.78-81 cm) OBSERVER: SHE WHERE SAMPLED: Unit 6

ROCK NAME: Aphyric basalt
GRAIN SIZE: Fine grained
TEXTURE: Vesicular, microlitic

<table>
<thead>
<tr>
<th>PRIMARY MINERALOGY</th>
<th>PERCENT PRESENT</th>
<th>PERCENT ORIGINAL (mm)</th>
<th>SIZE</th>
<th>COMPOSITION</th>
<th>MORPHOLOGY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenocrysts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagioclase</td>
<td>tr</td>
<td>tr</td>
<td>1.2</td>
<td></td>
<td>euhedral</td>
<td>grade into groundmass crystals</td>
</tr>
<tr>
<td>Groundmass</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagioclase</td>
<td>15</td>
<td>15</td>
<td>0.2-1</td>
<td>An65</td>
<td>euhedral; boxcar and hopper shapes</td>
<td></td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>7</td>
<td>7</td>
<td>0.1-0.6</td>
<td></td>
<td>euhedral, subhedral</td>
<td></td>
</tr>
<tr>
<td>Olivine</td>
<td>3</td>
<td>3</td>
<td>0.2-0.4</td>
<td></td>
<td>euhedral</td>
<td></td>
</tr>
<tr>
<td>Magnetite</td>
<td>0.5</td>
<td>0.5</td>
<td>0.01-0.02</td>
<td></td>
<td>anhedral</td>
<td>scattered in groundmass</td>
</tr>
<tr>
<td>Mesostasis</td>
<td>40</td>
<td>45</td>
<td>n/a</td>
<td></td>
<td>n/a</td>
<td>quench pyroxene crystallites; generally very dark brown to black</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECONDARY MINERALOGY</th>
<th>PERCENT</th>
<th>REPLACING/ FILLING</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clays</td>
<td>2</td>
<td>filling vesicles near a vein</td>
<td>probably a mix of clays and Fe-oxyhydroxides</td>
</tr>
<tr>
<td>Iddingsite</td>
<td>3</td>
<td>olivines, near vein</td>
<td>fills the 6 mm vein</td>
</tr>
<tr>
<td>Calcite</td>
<td>2</td>
<td>vein fill</td>
<td>brown colored; most common in mesostasis near vein and some vesicles</td>
</tr>
<tr>
<td>Clays</td>
<td>5</td>
<td>groundmass</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VESICLES/ CAVITIES</th>
<th>PERCENT</th>
<th>LOCATION</th>
<th>SIZE</th>
<th>FILLING</th>
<th>SHAPE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vesicles</td>
<td>30</td>
<td>throughout</td>
<td>0.1-1</td>
<td>clays near vein</td>
<td>irregular</td>
<td>there are areas 1-4 mm long of darker, more vesicular groundmass; these may be fillings of earlier cavities by later magma; they are black because of increased amounts of fine magnetite, completely filled with fine-grained calcite</td>
</tr>
<tr>
<td>Vein</td>
<td>10</td>
<td>one end of slide</td>
<td>6mm</td>
<td>calcite</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMMENTS: The rock is moderately altered.
Site 834

135-834B-15R-02 (Piece 6, 37-38 cm)

Rock Name: Aphyric Basalt
Grain Size: Fine grained
Texture: Variolitic, microlitic, vesicular

Primary Mineralogy

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Percent Present</th>
<th>Percent Original (mm)</th>
<th>Composition</th>
<th>Morphology</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plagioclase</td>
<td>12</td>
<td>0.1-0.6</td>
<td>An68</td>
<td>Subhedral - subhedral</td>
<td>Commonly in glomerocrysts, some swallowtail morphologies</td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>3</td>
<td>0.1-0.2</td>
<td></td>
<td>Subhedral - subhedral</td>
<td>Undulose extinction and bent lamellae in some; rarely to 0.8 mm twinning and sector zoning common</td>
</tr>
<tr>
<td>Olivine</td>
<td>1</td>
<td>0.002</td>
<td></td>
<td>Anhedral</td>
<td>Scattered in groundmass</td>
</tr>
<tr>
<td>Magnetite</td>
<td>60</td>
<td>n/a</td>
<td></td>
<td>Subhedral</td>
<td>Single grains</td>
</tr>
</tbody>
</table>

Secondary Mineralogy

- **Clays-green:** Filling vesicles
- **Clays-reddish:** Replacing olivine
- **Clays-brown:** Groundmass replacement

Vesicles/ Cavities

<table>
<thead>
<tr>
<th>Vesicles</th>
<th>Percent</th>
<th>Location (mm)</th>
<th>Filling</th>
<th>Shape</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20</td>
<td>Throughout</td>
<td>Minor greenish and reddish clays</td>
<td>Irregular</td>
<td>Rarely to 0.6 mm</td>
</tr>
</tbody>
</table>

Comments: Variolitic, less crystalline zones occur rimming vesicles and in a 5 mm wide dark band cutting across the sample; no mineralogic change across the band, just a textural change. The rock is slightly altered.
SITE 834

135-334-18R-01 (Piece 10.33-39 cm) OBSERVER: EWE WHERE SAMPLED: Unit 6

ROCK NAME: Aphyric basalt
GRAIN SIZE: Fine grained

TEXTURE: Variolitic to microcrystalline, microporphyritic, vesicular.

<table>
<thead>
<tr>
<th>PRIMARY MINERALOGY</th>
<th>PERCENT PRESENT</th>
<th>PERCENT ORIGINAL (mm)</th>
<th>COMPOSITION</th>
<th>MORPHOLOGY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenocrysts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagioclase</td>
<td>0.3</td>
<td>0.3</td>
<td>0.1-0.7</td>
<td>An78</td>
<td>euhedral</td>
</tr>
<tr>
<td>Olivine</td>
<td>0.3</td>
<td>0.3</td>
<td>0.07-0.6</td>
<td>euhedral</td>
<td></td>
</tr>
<tr>
<td>Groundmass</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagioclase</td>
<td>6.5</td>
<td>6.5</td>
<td>0.05-0.6</td>
<td>An40-45</td>
<td>euhedral</td>
</tr>
<tr>
<td>Olivine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetite</td>
<td>tr</td>
<td>tr</td>
<td><0.005</td>
<td>anhedral to skeletal</td>
<td></td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>0.4</td>
<td>0.4</td>
<td><0.003</td>
<td>skeletal</td>
<td>some intergrown skeletal aggregates variolitic, vesicular to microcrystalline; variolitic areas are distinctly feathery and spherulitic with complex quench intergrowths of clinopyroxene and plagioclase</td>
</tr>
<tr>
<td>Mesostasis</td>
<td>67.7</td>
<td>67.7</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
</tbody>
</table>

SECONDARY MINERALOGY

<table>
<thead>
<tr>
<th>Amorphous silica?</th>
<th>Percent representing</th>
<th>Replacing/</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minor linings to vesicles</td>
<td></td>
<td></td>
<td>isotropic, low index of refraction coating to all vesicles</td>
</tr>
</tbody>
</table>

VESICLES/CAVITIES

<table>
<thead>
<tr>
<th>Vesicles</th>
<th>Percent Location (mm)</th>
<th>Filling</th>
<th>Shape</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.4</td>
<td>throughout 0.04-1.5</td>
<td>amorphous silica? as coatings</td>
<td>rounded and elongated and branching</td>
<td></td>
</tr>
</tbody>
</table>

COMMENTS: Percentages based on counting 1001 points. Some of the variolitic areas are rounded and appear to represent "refilling" of earlier large vesicles with later lava, followed by quenching. The rock is fresh.
SITE 834

135-834B-20R-01 (Piece 15C, 104-108 cm) OBSERVER: KRI WHERE SAMPLED: Unit 7

ROCK NAME: Highly phryic plagioclase basalt

GRAIN SIZE: Fine grained

TEXTURE: Seriate porphyritic, microlitic

<table>
<thead>
<tr>
<th>PRIMARY MINERALOGY</th>
<th>PERCENT</th>
<th>PERCENT SIZE</th>
<th>COMPOSITION</th>
<th>MORPHOLOGY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenocrysts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagioclase</td>
<td>9-15</td>
<td>10-16</td>
<td>An70</td>
<td>euhedral</td>
<td>large compositional range; strongly zoned with sodic rims; some very spongy with altered interiors glomerocrystic clusters</td>
</tr>
<tr>
<td>Olivine</td>
<td><1</td>
<td><1</td>
<td>Fo88</td>
<td>euhedral</td>
<td></td>
</tr>
<tr>
<td>Groundmass</td>
<td>25-30</td>
<td>25-30</td>
<td>An65-70</td>
<td>microlitic</td>
<td>laths with random orientation</td>
</tr>
<tr>
<td>Olivine</td>
<td>1-2</td>
<td>1-2</td>
<td>0.1</td>
<td>euhedral</td>
<td></td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>25-30</td>
<td>25-30</td>
<td>0.05-0.4</td>
<td>acicular</td>
<td></td>
</tr>
<tr>
<td>Magnetite</td>
<td>1-2</td>
<td>1-2</td>
<td><0.01</td>
<td>anhedral to equant</td>
<td></td>
</tr>
<tr>
<td>Spinel</td>
<td>tr</td>
<td>tr</td>
<td>0.1 to 0.3</td>
<td>euhedral to equant</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECONDARY MINERALOGY</th>
<th>PERCENT</th>
<th>REPLACING/FILLING</th>
<th>SHAPE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clays</td>
<td>7-10</td>
<td>Mesostasis</td>
<td>rounded to rimmed with irregular greenish-brown clays; one filled with radiating calcite</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VESICLES/CAVITIES</th>
<th>PERCENT</th>
<th>LOCATION</th>
<th>SIZE</th>
<th>FILLING</th>
<th>SHAPE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vesicles</td>
<td>1</td>
<td>random</td>
<td>1</td>
<td>minor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clusters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMMENTS: Microcrystalline groundmass makes up 7-10%. The groundmass is now largely altered to orangish clays. One edge has an Fe-oxyhydroxide coating and alteration; alteration halo near rim gives yellow orange brown hue to everything. A 572 point count gives: plagioclase phenocrysts 11.1%, olivine phenocrysts 0.3%, plagioclase in groundmass 27.0%, clinopyroxene in groundmass 38.6%, olivine in groundmass 0.2%, opaques in groundmass 0.2%, other (clays, interstitial mesostasis) 17.7%, vesicles 0.5%, filled vesicles 0.6%. The rock is moderately altered.
135-834B-22R-02 (Piece 2C, 28-29 cm) OBSERVER: JAN WHERE SAMPLED: Unit 7

ROCK NAME: Highly phyric plagioclase basalt
GRAIN SIZE: Fine grained
TEXTURE: Seriate porphyritic, microlitic to microcrystalline

<table>
<thead>
<tr>
<th>PRIMARY MINERALOGY</th>
<th>PERCENT PRESENT</th>
<th>PERCENT ORIGINAL</th>
<th>SIZE (mm)</th>
<th>COMPOSITION</th>
<th>MORPHOLOGY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHENOCRYSTS</td>
<td>Plagioclase</td>
<td>11</td>
<td>11</td>
<td>0.4-5.0</td>
<td>euhedral</td>
<td>generally glomeroporphyritic; distinctly more sodic rims (An55)</td>
</tr>
<tr>
<td></td>
<td>Cr-spinel</td>
<td>tr</td>
<td>tr</td>
<td>0.07-0.22</td>
<td>euhedral</td>
<td>microphenocrystal</td>
</tr>
<tr>
<td>GROUNDMASS</td>
<td>Plagioclase</td>
<td>35</td>
<td>35</td>
<td>0.1-0.9</td>
<td>euhedral</td>
<td>laths in random orientation</td>
</tr>
<tr>
<td></td>
<td>Clinopyroxene</td>
<td>30</td>
<td>30</td>
<td>0.05-11.0</td>
<td>granular-subhedral</td>
<td>sometimes in radiating acicular aggregates</td>
</tr>
<tr>
<td></td>
<td>Opaques</td>
<td>2</td>
<td>2</td>
<td>0.02-0.05</td>
<td>euhedral-subhedral</td>
<td>dominantly magnetite in granular aggregates or skeletal grains. Trace amounts of Cr-spinel were observed</td>
</tr>
<tr>
<td></td>
<td>Olivine</td>
<td>2</td>
<td>2</td>
<td>0.05-0.1</td>
<td>euhedral-subhedral</td>
<td>fresh, equant crystals</td>
</tr>
<tr>
<td></td>
<td>Mesostasis</td>
<td>0</td>
<td>20</td>
<td>n/a</td>
<td>interstitial</td>
<td>radiating microphenocryst aggregates; alteration to pale greenish-brown clays.</td>
</tr>
<tr>
<td>SECONDARY MINERALOGY</td>
<td>Percent Replacing/Refilling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mesostasis</td>
<td>30</td>
<td>0</td>
<td>interstitial mesostasis replacement</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VESICLES/CAVITIES
None

COMMENTS: The rock is moderately altered.

135-834B-22R-01 (Piece 7, 42-43 cm) OBSERVER: JA WHERE SAMPLED: Unit 7

ROCK NAME: Highly phyric plagioclase basalt
GRAIN SIZE: Fine grained
TEXTURE: Glomeroporphyritic, seriate porphyritic, microcrystalline

<table>
<thead>
<tr>
<th>PRIMARY MINERALOGY</th>
<th>PERCENT PRESENT</th>
<th>PERCENT ORIGINAL</th>
<th>SIZE (mm)</th>
<th>COMPOSITION</th>
<th>MORPHOLOGY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHENOCRYSTS</td>
<td>Plagioclase</td>
<td>10-15</td>
<td>10-15</td>
<td>range to 3</td>
<td>euhedral-subhedral, blocky</td>
<td>as glomerophenocrysts, some with numerous large melt inclusions (to 0.25 mm), not aligned with crystallographic axes; edges look scalloped on some- being dissolved? Lots in groundmass or attached to plagioclase phenocrysts.</td>
</tr>
<tr>
<td></td>
<td>Olivine</td>
<td>tr</td>
<td>tr</td>
<td>0.3-0.5</td>
<td>euhedral-subhedral</td>
<td></td>
</tr>
<tr>
<td>GROUNDMASS</td>
<td>Plagioclase</td>
<td>40-45</td>
<td>40-45</td>
<td>to 1</td>
<td>lathlike</td>
<td>often intergrown with one another or phenocryst cores</td>
</tr>
<tr>
<td></td>
<td>Olivine</td>
<td><1</td>
<td><1</td>
<td><0.3</td>
<td>euhedral-subhedral</td>
<td>see phenocryst comments</td>
</tr>
<tr>
<td></td>
<td>Clinopyroxene</td>
<td><1</td>
<td><1</td>
<td><0.2</td>
<td>euhedral-subhedral</td>
<td>thin, elongate grains between plagioclase to feathery, plumose equant crystals as inclusions or adjacent to plagioclase phenocrysts- not loose in groundmass</td>
</tr>
<tr>
<td></td>
<td>Spinel</td>
<td>tr</td>
<td>tr</td>
<td>0.08-0.16</td>
<td>euhedral blocky</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Magnetite</td>
<td>3</td>
<td>3</td>
<td><0.05</td>
<td>euhedral-skeletal</td>
<td>disseminated in groundmass</td>
</tr>
</tbody>
</table>

VESELES/CAVITIES
Vesicles

COMMENTS: Also a few % fine-grained mesostasis. Trace of irregular sulfide globules (to 0.02 mm) in groundmass. Rock is slightly altered, as about 5% of the mesostasis is altered to fine-grained brownish clays.
SITE 834

135-834B-30R-03 (Piece 1G, 105-107 cm) OBSERVER: JA

WHERE SAMPLED: Unit 7

ROCK NAME: Highly phric plagioclase basalt

GRAIN SIZE: Fine grained

TEXTURE: Glomeroporphyrithic, microlitic

PRIMARY MINERALOGY

<table>
<thead>
<tr>
<th>PRIMARY MINERAL</th>
<th>PERCENT PRESENT</th>
<th>PERCENT ORIGINAL</th>
<th>SIZE (mm)</th>
<th>COMPOSITION</th>
<th>MORPHOLOGY</th>
<th>MORPHOLOGY COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenocrysts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagioclase</td>
<td>15.7</td>
<td>13.7</td>
<td>3</td>
<td>euhedral</td>
<td>euhedral to subhedral</td>
<td>commonly in glomeroporphyritic clusters; some have melt inclusions elongated and aligned parallel to the 010 axis</td>
</tr>
<tr>
<td>Olivine</td>
<td>0.9</td>
<td>0.9</td>
<td>1.8</td>
<td>euhedral</td>
<td>euhedral to skeletal</td>
<td></td>
</tr>
<tr>
<td>Groundmass</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagioclase</td>
<td>45.0</td>
<td>45.0</td>
<td>1</td>
<td>euhedral</td>
<td>euhedral to skeletal</td>
<td>sometimes shear-like laths</td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>30.0</td>
<td>30.0</td>
<td><0.03</td>
<td>euhedral</td>
<td>euhedral to skeletal</td>
<td>grains, sheafs</td>
</tr>
<tr>
<td>Magnetite</td>
<td>3.2</td>
<td>3.2</td>
<td><0.01</td>
<td>euhedral</td>
<td>euhedral to skeletal</td>
<td>euhedral to skeletal</td>
</tr>
<tr>
<td>Olivine</td>
<td>2.3</td>
<td>2.3</td>
<td>0.25</td>
<td>euhedral</td>
<td>euhedral to blocky</td>
<td>inclusions in plagioclase and olivine, and as loose grains in groundmass; relatively abundant</td>
</tr>
<tr>
<td>Cr-spinel</td>
<td>tr</td>
<td>tr</td>
<td>0.05-0.2</td>
<td>euhedral</td>
<td>euhedral to skeletal</td>
<td></td>
</tr>
</tbody>
</table>

VESICLES/CAVITIES

<table>
<thead>
<tr>
<th>VESICLES/CAVITIES</th>
<th>PERCENT</th>
<th>LOCATION</th>
<th>SIZE (mm)</th>
<th>FILLING</th>
<th>SHAPE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vesicles</td>
<td>0.2</td>
<td>disseminated</td>
<td><0.2</td>
<td>greenish-brown clays</td>
<td>round</td>
<td>filled with greenish-brown granular clays</td>
</tr>
</tbody>
</table>

COMMENTS: Groundmass also includes 2% fine-grained mesostasis. Traces of round, irregular sulfide globules (1 to 40 microns in size) are also found as inclusions in plagioclase phenocrysts or as groundmass grains. Rock is very fresh. Percentages based on point count by KRI (1019 counts).

135-834B-31R-03 (Piece 2A, 16-19 cm) OBSERVER: KRI

WHERE SAMPLED: Unit 7

ROCK NAME: Highly phric plagioclase basalt

GRAIN SIZE: Fine to medium grained

TEXTURE: Porphyritic, microcrystalline

PRIMARY MINERALOGY

<table>
<thead>
<tr>
<th>PRIMARY MINERAL</th>
<th>PERCENT PRESENT</th>
<th>PERCENT ORIGINAL</th>
<th>SIZE (mm)</th>
<th>COMPOSITION</th>
<th>MORPHOLOGY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenocrysts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagioclase</td>
<td>10-20</td>
<td>10-20</td>
<td><2.5</td>
<td>euhedral</td>
<td>euhedral</td>
<td>sodic rims often in clusters</td>
</tr>
<tr>
<td>Olivine</td>
<td>1</td>
<td>1</td>
<td>0.5</td>
<td>euhedral</td>
<td>euhedral</td>
<td></td>
</tr>
<tr>
<td>Groundmass</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagioclase</td>
<td>40</td>
<td>40</td>
<td>0.201.0</td>
<td>euhedral</td>
<td>euhedral</td>
<td>microlites form network with interstitial clinopyroxene</td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>25</td>
<td>25</td>
<td>4</td>
<td>anhedral - subhedral</td>
<td>radiating acicular crystals</td>
<td></td>
</tr>
<tr>
<td>Olivine</td>
<td>3</td>
<td>6</td>
<td>0.1-0.2</td>
<td>euhedral</td>
<td>euhedral</td>
<td>scattered also skeletal adjacent to plagioclase, hollow centers</td>
</tr>
<tr>
<td>Magnetite</td>
<td>5</td>
<td>5</td>
<td>up to 2</td>
<td>equant, cruciform</td>
<td>equant</td>
<td></td>
</tr>
<tr>
<td>Spinel</td>
<td>tr</td>
<td>tr</td>
<td><0.05</td>
<td>tr</td>
<td>tr</td>
<td></td>
</tr>
</tbody>
</table>

SECONDARY MINERALOGY

SECONDARY MINERAL	PERCENT	REPLACING/FILLING	
-------------------	---------	-------------------	
Clays	10	Mesostasis	

VESICLES/CAVITIES

<table>
<thead>
<tr>
<th>VESICLES/CAVITIES</th>
<th>PERCENT</th>
<th>LOCATION (mm)</th>
<th>SIZE</th>
<th>FILLING</th>
<th>SHAPE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vesicles</td>
<td><1</td>
<td>disseminated</td>
<td><0.2</td>
<td>filled with fine-grained clays</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMMENTS: Interstitial mesostasis (10%) is altered to clays (smectites?) but the rest of the rock is generally fresh. Plagioclase crystals show some resorbed regions (often cores) and some are quite "fuzzy". A few olivines show significant breakdown. Clinopyroxene in groundmass forms beautiful fans of acicular grains with some blades several mm in length. A 1062 point count yields: plagioclase phenocrysts 10.4%, olivine phenocrysts 0.3%, plagioclase in groundmass 39.8%, clinopyroxene in groundmass 29.1%, olivine in groundmass 2.2%, opaques 4.9%, mesostasis 13.3%, veins-vesicles 9%. Rock is slightly to moderately altered.
SITE 834

135-834B-33R-02 (Piece 51,119-116 cm)
OBSERVER: KRI
WHERE SAMPLED: Unit 7

ROCK NAME: Highly phyric plagioclase basalt
GRAIN SIZE: Fine to medium grained
TEXTURE: Seriate porphyritic, microcrystalline to microlitic

<table>
<thead>
<tr>
<th>PRIMARY MINERALOGY</th>
<th>PERCENT</th>
<th>PERCENT SIZE</th>
<th>COMPOSITION</th>
<th>MORPHOLOGY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenocrysts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagioclase</td>
<td>25</td>
<td>< 2</td>
<td>An75</td>
<td>euhedral</td>
<td>zoned, beginning to show some alteration</td>
</tr>
<tr>
<td>Olivine</td>
<td>1</td>
<td>1</td>
<td></td>
<td>irregular</td>
<td>some alteration, scalloped edges</td>
</tr>
<tr>
<td>Groundmass</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagioclase</td>
<td>30</td>
<td>1.5</td>
<td>An40-70</td>
<td>elongate, euhedral</td>
<td>strongly zoned to more sodic cores</td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>15</td>
<td>0.8</td>
<td></td>
<td>interstitial subhedral</td>
<td>some acicular crystals</td>
</tr>
<tr>
<td>Olivine</td>
<td>1-2</td>
<td>0.1</td>
<td></td>
<td>subhedral</td>
<td>partially altered</td>
</tr>
<tr>
<td>Magnetite</td>
<td>1-2</td>
<td>0.1</td>
<td></td>
<td>equant to skeletal</td>
<td>blades</td>
</tr>
<tr>
<td>Ilmenite</td>
<td>tr</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECONDARY MINERALOGY</th>
<th>PERCENT</th>
<th>FILLING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clays</td>
<td>20</td>
<td>Mesostasis</td>
</tr>
</tbody>
</table>

VESICLES/CAVITIES
SIZE
FILLING
SHAPE

COMMENTS: 0.08 mm sulfide globules occur in plagioclases. Alteration of cryptocrystalline groundmass (25% of rock) to fine grained clays gives the rock an overall degree of alteration of about 20%. Olivines are breaking down and are rimmed by iddingsite; however there is very little in the way of identifiable alteration or secondary minerals. The rock is fresh.

135-834B-34R-01 (Piece 6,127-136 cm)
OBSERVER: JAN
WHERE SAMPLED: Unit 7

ROCK NAME: Highly phyric plagioclase basalt
GRAIN SIZE: Fine to medium grained
TEXTURE: Seriate porphyritic

<table>
<thead>
<tr>
<th>PRIMARY MINERALOGY</th>
<th>PERCENT</th>
<th>PERCENT SIZE</th>
<th>COMPOSITION</th>
<th>MORPHOLOGY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenocrysts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagioclase</td>
<td>10</td>
<td>1.5-4</td>
<td></td>
<td>euhedral</td>
<td>fresh, often zoned, tend to gomerocrystic</td>
</tr>
<tr>
<td>Olivine</td>
<td>tr</td>
<td>tr <1.0</td>
<td></td>
<td>euhedral</td>
<td>broken crystals, invaded by plagioclase and clays</td>
</tr>
<tr>
<td>Groundmass</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagioclase</td>
<td>55-60</td>
<td>0.2-3</td>
<td></td>
<td>euhedral,ragged</td>
<td>may form long laths</td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>25-30</td>
<td>0.66-2.0</td>
<td></td>
<td>anhedral</td>
<td>ophitic-oikocrystic</td>
</tr>
<tr>
<td>Olivine</td>
<td>1</td>
<td>0.00-0.2</td>
<td></td>
<td>subhedral</td>
<td>most are probably magnetite, but a few are quite brown in plane light</td>
</tr>
<tr>
<td>Opaques</td>
<td>1</td>
<td>0.01-0.2</td>
<td></td>
<td>irregular</td>
<td>brownish alteration</td>
</tr>
<tr>
<td>Mesostasis</td>
<td>1</td>
<td>3-5</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECONDARY MINERALOGY</th>
<th>PERCENT</th>
<th>REPLACING/FILLING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay</td>
<td>2-4</td>
<td>mesostasis</td>
</tr>
</tbody>
</table>

VESICLES/CAVITIES
SIZE
FILLING
SHAPE

COMMENTS: Slightly altered (the interstitial mesostasis is up to 80% altered to clays). Small veinlet (0.1 mm across) is filled with clay fanlets.
ROCK NAME: Highly phyric plagioclase basalt
GRAIN SIZE: Fine to medium grained
TEXTURE: Seriate porphyritic

<table>
<thead>
<tr>
<th>PRIMARY MINERALOGY</th>
<th>PERCENT PRESENT</th>
<th>SIZE</th>
<th>COMPO-SITION</th>
<th>MORPHOLOGY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHENOCRYSTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagioclase</td>
<td>10</td>
<td>10</td>
<td>1.5-4</td>
<td>euhedral</td>
<td>fresh, often zoned, tend to glomerocrystic broken crystals, invaded by plagioclase and clays.</td>
</tr>
<tr>
<td>Olivine</td>
<td>tr</td>
<td>tr</td>
<td><1</td>
<td>euhedral</td>
<td></td>
</tr>
<tr>
<td>GROUNDMASS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagioclase</td>
<td>60-65</td>
<td>60-65</td>
<td>0.2-3</td>
<td>euhedral-ragged</td>
<td>many form long laths</td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>25-30</td>
<td>25-30</td>
<td>0.06-2</td>
<td>anhedral</td>
<td>ophitic-oikocrystic</td>
</tr>
<tr>
<td>Olivine</td>
<td>1</td>
<td>1</td>
<td>0.05-0.2</td>
<td>subbedral</td>
<td></td>
</tr>
<tr>
<td>Opaques</td>
<td>1</td>
<td>1</td>
<td>0.01-0.2</td>
<td>blocky to irregular</td>
<td>a few very brown in plane polarised light</td>
</tr>
<tr>
<td>Mesostasis</td>
<td>1</td>
<td>3-5</td>
<td>n/a</td>
<td>blocky to irregular</td>
<td>brownish alteration</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VESICLES/CAVITIES</th>
<th>SIZE</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vesicles</td>
<td>tr randomly</td>
<td>0.5-2</td>
<td>clear</td>
<td></td>
<td>subrounded</td>
</tr>
</tbody>
</table>

COMMENTS: Slightly altered, (ie. the interstitial mesostasis is up to 80% clays). Small veinlet (0.1 mm wide) is filled with clay fanlets.
Primary Mineralogy

<table>
<thead>
<tr>
<th>Phenocrysts</th>
<th>Percent Present</th>
<th>Percent Original</th>
<th>Size (mm)</th>
<th>Composition</th>
<th>Morphology</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plagioclase</td>
<td>tr</td>
<td>tr</td>
<td>0.3-0.6</td>
<td></td>
<td>euhedral</td>
<td>tend to glomeroporphyritic clusters, many with well defined sodic rims</td>
</tr>
<tr>
<td>Olivine</td>
<td>tr</td>
<td>tr</td>
<td>0.2-0.8</td>
<td></td>
<td>anhedral-subhedral</td>
<td></td>
</tr>
</tbody>
</table>

Groundmass

<table>
<thead>
<tr>
<th>Phenocrysts</th>
<th>Percent Present</th>
<th>Percent Original</th>
<th>Size (mm)</th>
<th>Composition</th>
<th>Morphology</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plagioclase</td>
<td>20-25</td>
<td>20-25</td>
<td><0.5</td>
<td></td>
<td>euhedral</td>
<td>skeletal microlites, randomly oriented</td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>15-20</td>
<td>15-20</td>
<td><0.5</td>
<td></td>
<td>anhedral-euhedral</td>
<td>intergrown with plagioclase microlites; elongate laths often form fanlike aggregates</td>
</tr>
<tr>
<td>Olivine</td>
<td>1-3</td>
<td>1-3</td>
<td><0.3</td>
<td></td>
<td>euhedral</td>
<td>equant, quench textures common</td>
</tr>
<tr>
<td>Mesostasis</td>
<td>5</td>
<td>40</td>
<td>n/a</td>
<td></td>
<td>interstitial</td>
<td>nearly completely broken down into finegrained brown clays</td>
</tr>
<tr>
<td>Magnetite</td>
<td>tr</td>
<td>tr</td>
<td>0.002-0.01</td>
<td></td>
<td>euhedral</td>
<td>skeletal grains form a fine dusting in the cryptocrystalline groundmass</td>
</tr>
</tbody>
</table>

Secondary Mineralogy

<table>
<thead>
<tr>
<th>Phenocrysts</th>
<th>Percent</th>
<th>Replacing/Filling</th>
<th>Size (mm)</th>
<th>Composition</th>
<th>Morphology</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe-oxhydroxides</td>
<td><1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>one 0.2 mm vein with strong Fe staining and filling of vesicles with brownish-yellow material</td>
</tr>
<tr>
<td>Clays</td>
<td>35</td>
<td></td>
<td></td>
<td>Mesostasis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VESICLES and CAVITIES

<table>
<thead>
<tr>
<th>Phenocrysts</th>
<th>Percent Location (mm)</th>
<th>Filling</th>
<th>Shape</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vesicles</td>
<td>20 throughout 0.05-1.5</td>
<td>minor</td>
<td>subrounded</td>
<td>some of the larger irregular vesicles or accumulations of several smaller vesicles</td>
</tr>
</tbody>
</table>

Comments: All phenocrysts are found in one glomeroporphyritic cluster composed of well developed microphenocrysts and a very few euhedral minerals. Many of the original vesicles appear to have been infilled with very highly vesicular quench material with quench plagioclase, clinopyroxene and 60-80% void. The boundary with the host is gradational within a very narrow zone. A 1000 point count gives 0.5% plagioclase phenocrysts; 0.3% clinopyroxene phenocrysts; 0.1% olivine phenocrysts (all > 200 microns); 20.2% groundmass plagioclase; 18.3% groundmass clinopyroxene; 0.1% olivine; 0.8% opaques; 38% mesostasis; 20.8% open vesicles; 0.9% filled vesicles. Rock is moderately altered.
Site 834

135-834B-36R-01 (Piece 2C, 20-21 cm)

Observer: JAN
Where Sampled: Unit 8

Rock Name: Aphyric basalt
Grain Size: Fine grained
Texture: Microlitic, sparsely spherulitic

<table>
<thead>
<tr>
<th>Primary Mineralogy</th>
<th>Percent Present</th>
<th>Percent Original</th>
<th>Size (mm)</th>
<th>Composition</th>
<th>Morphology</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenocrysts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagioclase</td>
<td>tr</td>
<td>tr</td>
<td>up to 1</td>
<td>euhedral</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>tr</td>
<td>tr</td>
<td>1</td>
<td>euhedral</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Groundmass</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagioclase</td>
<td>10-15</td>
<td>10-15</td>
<td>0.1-0.5</td>
<td>euhedral</td>
<td>occasionally rectangular, typically laths.</td>
<td></td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>10-20</td>
<td>10-20</td>
<td>0.05-0.25</td>
<td>anhedral</td>
<td>the larger crystals are needle-like.</td>
<td></td>
</tr>
<tr>
<td>Opaques</td>
<td>1-5</td>
<td>1-5</td>
<td>0.02-0.08</td>
<td>euhedral to irregular</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesostasis</td>
<td>20-30</td>
<td>20-30</td>
<td>n/a</td>
<td>glassy to cryptocrystalline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olivine</td>
<td>tr</td>
<td>tr</td>
<td>0.01</td>
<td>anhedral</td>
<td>equant, textures common</td>
<td></td>
</tr>
</tbody>
</table>

Secondary Mineralogy

<table>
<thead>
<tr>
<th>Percent Present</th>
<th>Percent Original</th>
<th>Size (mm)</th>
<th>Composition</th>
<th>Morphology</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clays</td>
<td>tr replacement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Groundmass

<table>
<thead>
<tr>
<th>Size (mm)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td></td>
</tr>
</tbody>
</table>

Veins/Cavities

<table>
<thead>
<tr>
<th>Size (mm)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-20</td>
<td></td>
</tr>
</tbody>
</table>

Comments: Fresh brown glass occurs as a lining to some vesicles. Within the glass are blocky and needle-like opaques. Sometimes these needle are oriented perpendicularly to the edge of the vesicle. A 1026 point count yields: 0.1% plagioclase phenocrysts; 0.3% clinopyroxene phenocrysts; 12.7% clinopyroxene in groundmass; 11.3% plagioclase in groundmass; 27.3% mesostasis; 32.8% open vesicles; 13.4% vesicle fill. Rock is fresh.

135-834B-36R-01 (Piece 7, 64-65 cm)

Observer: KRI
Where Sampled: Unit 8

Rock Name: Aphyric basalt
Grain Size: Fine grained
Texture: Microlitic

<table>
<thead>
<tr>
<th>Primary Mineralogy</th>
<th>Percent Present</th>
<th>Percent Original</th>
<th>Size (mm)</th>
<th>Composition</th>
<th>Morphology</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plagioclase</td>
<td>35-40</td>
<td>35-46</td>
<td><0.6</td>
<td>euhedral</td>
<td>elongate microlites, randomly oriented</td>
<td></td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>25-30</td>
<td>25-36</td>
<td><0.3</td>
<td>subhedral - euhedral</td>
<td>often intergrown with plagioclase, fanlike cluster common</td>
<td></td>
</tr>
<tr>
<td>Magnetite</td>
<td>1-2</td>
<td>1-2</td>
<td><0.02</td>
<td>skeletal</td>
<td>in interstitial material</td>
<td></td>
</tr>
<tr>
<td>Mesostasis</td>
<td>5</td>
<td>15</td>
<td>n/a</td>
<td>interstitial</td>
<td>cryptocrystalline interstitial material</td>
<td></td>
</tr>
<tr>
<td>Fe-oxide hydroxide</td>
<td><3</td>
<td>filling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Secondary Mineralogy

<table>
<thead>
<tr>
<th>Percent Present</th>
<th>Percent Original</th>
<th>Size (mm)</th>
<th>Composition</th>
<th>Morphology</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe-oxide hydroxide</td>
<td><3</td>
<td>filling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green clays</td>
<td><1</td>
<td>rimming vesicles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcite</td>
<td><1</td>
<td>filling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clays</td>
<td>0.1</td>
<td>mesostasis</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Veins/Cavities

<table>
<thead>
<tr>
<th>Size (mm)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-20</td>
<td></td>
</tr>
</tbody>
</table>

Comments: One side of the section (about 2 mm) is Fe stained and the vesicles are filled with brownish-orange, associated with Fe-oxide staining. Minor infilling of one portion of one vesicle.

August 23

Comments: Many of the vesicles are filled with what appears to be highly vesicular quench material. Quench plagioclase and clinopyroxene are evident in a 60-80% vesicular groundmass. The rock is reasonably fresh except for breakdown of mesostasis to fine grained clays and the alteration along one side.
ROCK NAME: Moderately phyric olivine plagioclase basalt

GRAIN SIZE: Fine grained

TEXTURE: Porphyritic, microcrystalline

<table>
<thead>
<tr>
<th>PRIMARY MINERALS</th>
<th>PERCENT PRESENT</th>
<th>SIZE (mm)</th>
<th>COMPOSITION</th>
<th>MORPHOLOGY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenocrysts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagioclase</td>
<td>3-5</td>
<td>3-5</td>
<td>0.4-4.0</td>
<td>An75</td>
<td>euhedral</td>
</tr>
<tr>
<td>Olivine</td>
<td><1</td>
<td><1</td>
<td><0.25</td>
<td></td>
<td>euhedral subhedral</td>
</tr>
<tr>
<td>Groundmass</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagioclase</td>
<td>15-20</td>
<td>15-20</td>
<td><0.6</td>
<td></td>
<td>euhedral</td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>25-35</td>
<td>25-35</td>
<td><0.25</td>
<td></td>
<td>euhedral</td>
</tr>
<tr>
<td>Olivine</td>
<td>2-3</td>
<td>2-3</td>
<td><0.15</td>
<td></td>
<td>euhedral-subhedral</td>
</tr>
<tr>
<td>Magnetite</td>
<td>2-3</td>
<td>2-3</td>
<td><0.05</td>
<td></td>
<td>skeletal</td>
</tr>
<tr>
<td>Mesostasis</td>
<td>15-20</td>
<td>15-20</td>
<td>n/a</td>
<td></td>
<td>cryptocrystalline</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECONDARY MINERALS</th>
<th>PERCENT REPLACING/FILLING</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown-green clays</td>
<td><2 partial infilling, lines vesicles</td>
<td>comprises about 10% of vesicles, extremely fine grained</td>
</tr>
<tr>
<td>Fe-oxyhydroxide</td>
<td>2 replacement and infills vesicles near vein at edge of section has strong yellow-brown staining and filled vesicles</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VESICLES/CAVITIES</th>
<th>PERCENT LOCATION (mm)</th>
<th>FILLING</th>
<th>SHAPE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vesicles</td>
<td>10-15 throughout 0.02-0.8</td>
<td>partial-complete</td>
<td>rounded</td>
<td>smaller vesicles are irregular, more well rounded, often coalescing</td>
</tr>
</tbody>
</table>

COMMENTS: Possibly some extremely resorbed spinels in the groundmass. Very common round-irregular dark patches which grade into the groundmass. These patches (up to 1 cm across) are very highly vesicular (up to 75%) with subrounded vesicles. The infilling is quenched basalt with quench plagioclase and clinopyroxene in a quenched groundmass. 1169 point count by EWE: plagioclase phenocrysts 7.0%; olivine phenocrysts 0.6%; plagioclase groundmass 19.4%; olivine groundmass 2.1%; clinopyroxene groundmass 35.2%; opaques 2.5%; mesostasis 19.3%; open vesicles 10.9%; infilled vesicles 3.1%; total vesicles 14.0%. Rock is fresh.
135-834B-37R-01 (Piece 7.46-47 cm) OBSERVER: KRI
WHERE SAMPLED: Unit 9B

ROCK NAME: Moderately phyric olivine plagioclase basalt

GRAIN SIZE: Fine grained

TEXTURE: Seriate porphyritic

<table>
<thead>
<tr>
<th>PRIMARY MINERALS</th>
<th>PERCENT</th>
<th>PERCENT ORIGINAL (mm)</th>
<th>COMPOSITION</th>
<th>MORPHOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenocrysts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagioclase</td>
<td>7-10</td>
<td>7-10</td>
<td>0.5-1.3</td>
<td>euhedral</td>
</tr>
<tr>
<td>Olivine</td>
<td>1-3</td>
<td>1-3</td>
<td><1.0</td>
<td>euhedral-subhedral</td>
</tr>
</tbody>
</table>

GROUNDMASS

<table>
<thead>
<tr>
<th></th>
<th>PRESENT ORIGINAL (mm)</th>
<th>COMPOSITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plagioclase</td>
<td>20-25</td>
<td>20-25</td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>20-25</td>
<td>20-25</td>
</tr>
<tr>
<td>Olivine</td>
<td>1-2</td>
<td>1-2</td>
</tr>
<tr>
<td>Magnetite</td>
<td>1-2</td>
<td>1-2</td>
</tr>
<tr>
<td>Mesostasis</td>
<td>0-5</td>
<td>25-30</td>
</tr>
</tbody>
</table>

Mesostasis

SECONDARY MINERALS

<table>
<thead>
<tr>
<th></th>
<th>PRESENT ORIGINAL (mm)</th>
<th>COMPOSITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenocrysts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagioclase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olivine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesostasis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VELOCIES/CAVITIES

<table>
<thead>
<tr>
<th></th>
<th>PERCENT</th>
<th>LOCATION (mm)</th>
<th>FILLING</th>
<th>SHAPE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vesicles</td>
<td>7-10</td>
<td>throughout 0.02-1.0</td>
<td>partially filled</td>
<td>rounded</td>
<td>very irregular shapes</td>
</tr>
</tbody>
</table>

COMMENTS: One glomerocrystic cluster (plagioclase + minor olivine) is 4 mm across. Vesicles filled with highly vesicular plus quench material are common, up to 2 mm across. A 1000 point count yields: 8% plagioclase phenocrysts (defined as > 200 microns); 1.8% olivine phenocrysts; 21% groundmass plagioclase; 24.1% groundmass clinopyroxene; 1.3% groundmass olivine; 2.9% groundmass opaques; 29.5% mesostasis; 9.7% open vesicles; 1.7% filled vesicles. Rock is moderately altered.
SITE 834

135-834B-37R-02 (Piece 5,61-62 cm) OBSERVER: SME WHERE SAMPLED: Unit 10A

ROCK NAME: Aphyric basalt
GRAIN SIZE: Fine grained
TEXTURE: Microcrystalline, tending to microlitic

<table>
<thead>
<tr>
<th>PRIMARY MINERALOGY</th>
<th>PERCENT PRESENT</th>
<th>SIZE (mm)</th>
<th>COMPOSITION</th>
<th>MORPHOLOGY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plagioclase</td>
<td>15-15</td>
<td>10-15</td>
<td><0.5</td>
<td>An70</td>
<td>...</td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>5-7</td>
<td>5-7</td>
<td><0.3</td>
<td>subhedral</td>
<td>...</td>
</tr>
<tr>
<td>Olivine</td>
<td>1-3</td>
<td>1-3</td>
<td><0.3</td>
<td>euhedral</td>
<td>...</td>
</tr>
<tr>
<td>Magnetite</td>
<td>2</td>
<td>2</td>
<td><0.01</td>
<td>subhedral</td>
<td>...</td>
</tr>
<tr>
<td>Mesostasis</td>
<td>38-42</td>
<td>40-45</td>
<td>n/a</td>
<td>interstitial</td>
<td>brown cryptocrystalline, almost verging on glassy locally. Patch alteration.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECONDARY MINERALOGY</th>
<th>PERCENT REPLACING/</th>
<th>FILLING</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed clay</td>
<td>2-3%</td>
<td>lines vesicle walls, both</td>
<td>local lining to vesicles, and local replacement of mesostasis. Yellow to yellow-brown fibrous to microspherulitic. These sporadically oxidise to reddish brown. Fe oxyhydroxide, becoming near isotropic.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VESICLES/CAVITIES</th>
<th>PERCENT LOCATION</th>
<th>SIZE (mm)</th>
<th>FILLING</th>
<th>SHAPE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vesicles</td>
<td>30</td>
<td>disseminated</td>
<td><0.3</td>
<td>localized</td>
<td>subrounded description excludes the irregular in lava, see comments below.</td>
</tr>
</tbody>
</table>

COMMENTS: Rounded basaltic quenched "blebs", up to 4 mm diameter, occur throughout slide. These blebs are almost free of clearly defined groundmass crystals, consisting of cryptocrystalline to microcrystalline quenched aggregates. These blebs grade very rapidly into the groundmass of the host lava, and can contain large vesicles (up to 3 mm), taking up most of the volume of the blebs. A 957 point count yields: 13.3% groundmass plagioclase; 3.6% groundmass clinopyroxene; 0.9% groundmass olivine; 0.8% groundmass opaques; 42.5% mesostasis; 26% open vesicles; 4.8% filled vesicles; 8.1% dark patches. Rock is slightly altered.
SITE 834

135-834B-42R-01 (Piece 4, 14-17 cm)

ROCK NAME: Aphyric basalt

GRAIN SIZE: Fine grained

TEXTURE: Microcrystalline to microlytic

PRIMARY MINERALOGY

<table>
<thead>
<tr>
<th>MINERAL</th>
<th>PERCENT</th>
<th>PRESENT</th>
<th>PERCENT</th>
<th>SIZE</th>
<th>ORIGINAL (mm)</th>
<th>MORPHOLOGY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plagioclase</td>
<td>30-35</td>
<td>30-35 up to 0.6</td>
<td>An60-70</td>
<td></td>
<td></td>
<td>elongated tabular</td>
<td></td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>10</td>
<td>5-10 up to 0.3</td>
<td></td>
<td></td>
<td></td>
<td>subhedral to anhedral</td>
<td></td>
</tr>
<tr>
<td>Olivine</td>
<td>3-5</td>
<td>3-5 up to 0.5</td>
<td></td>
<td></td>
<td></td>
<td>subhedral</td>
<td></td>
</tr>
<tr>
<td>Magnetite</td>
<td>1</td>
<td>1 up to 0.01</td>
<td></td>
<td></td>
<td></td>
<td>variable</td>
<td></td>
</tr>
</tbody>
</table>

SECONDARY MINERALOGY

<table>
<thead>
<tr>
<th>MINERAL</th>
<th>PERCENT</th>
<th>REPLACING/PERCENT</th>
<th>LOCATION</th>
<th>SIZE</th>
<th>REPLACING/FILLING</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesostasis</td>
<td>30-35</td>
<td>30-35 up to 0.2</td>
<td></td>
<td></td>
<td></td>
<td>brown cryptocrystalline to microcrystalline when unaltered</td>
</tr>
</tbody>
</table>

VESICLES/CAVITIES

<table>
<thead>
<tr>
<th>VESICLES</th>
<th>PERCENT</th>
<th>LOCATION</th>
<th>SIZE</th>
<th>FILLING</th>
<th>SHAPE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vesicles</td>
<td>20</td>
<td>disseminated</td>
<td>up to 0.4</td>
<td>localised</td>
<td>subrounded</td>
<td>description excludes</td>
</tr>
</tbody>
</table>

COMMENTS: Contains common rounded to amoeboid dark-colored, well-defined areas, which grade very rapidly at their margins into the rock groundmass. These are strongly vesicular (>50%), with rounded to irregular vesicles up to 6 mm diameter. These areas consist of quenched basalt (quenched groundmass and plagioclase microlite textures). In size, they range from 1 mm to >1 cm. Rock is slightly altered.

OBSERVER: JAN

WHERE SAMPLED: Unit 10A

SITE 827
SITE 834

135-834B-43R-01 (Piece 12,107-110 cm) OBSERVER: EWE WHERE SAMPLED: Unit 10A

ROCK NAME: Aphyric basalt
GRAIN SIZE: Fine grained
TEXTURE: Microcrystalline tending to microlitic

<table>
<thead>
<tr>
<th>PRIMARY MINERALOGY</th>
<th>PERCENT</th>
<th>PERCENT SIZE</th>
<th>COMPOSITION</th>
<th>MORPHOLOGY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plagioclase</td>
<td>10-20</td>
<td>10-20 up to 0.6</td>
<td>An 50</td>
<td>euhedral</td>
<td>elongated, tabular, grading to microlites and mesh < 0.2 mm randomly oriented; larger crystals show normal zoning</td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>7-10</td>
<td>7-10 up to 0.15</td>
<td></td>
<td>subhedral</td>
<td>partially intergrown with plagioclase, the smaller grains tending to be interstitial to plagioclase</td>
</tr>
<tr>
<td>Magnetite</td>
<td>3-7</td>
<td>3-7 up to 0.08</td>
<td></td>
<td>anhedral</td>
<td>larger grains are subhedral, equant; smaller grains anhedral and lath-like</td>
</tr>
<tr>
<td>Mesostasis</td>
<td>10</td>
<td>45-50 up to 0.1</td>
<td></td>
<td>interstitial</td>
<td>yellowish to yellowish-brown</td>
</tr>
<tr>
<td>Olivine</td>
<td>tr</td>
<td>tr 0.1</td>
<td></td>
<td>subhedral</td>
<td>microcrystalline to cryptocrystalline</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECONDARY MINERALOGY</th>
<th>PERCENT</th>
<th>REPLACING/ FILLING</th>
<th>MORPHOLOGY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clays</td>
<td>35-40</td>
<td>mesostasis</td>
<td>euhedral - anhedral</td>
<td>yellow to brown</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VESICLES/ CAVITIES</th>
<th>PERCENT</th>
<th>LOCATION</th>
<th>SIZE</th>
<th>FILLING</th>
<th>SHAPE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vesicles</td>
<td>20-25</td>
<td>disseminated up to 2.5</td>
<td>rare partial infilling</td>
<td>round to irregular</td>
<td>tend to be bimodal in size; smaller ones in range 0.05-0.3 mm and are subrounded to irregular; larger vesicles are rounded</td>
<td></td>
</tr>
</tbody>
</table>

COMMENTS: Yellow to brown clay occurs locally replacing mesostasis and as rare partial vesicle fill. Where replacement is high, the sample develops an intense yellow-brown coloration with poorly developed fibrous structure. Possibly very rare clay replacement of plagioclase. A 1108 point count yields 51.4% mesostasis; 14.1% groundmass plagioclase; 4.6% groundmass clinopyroxene; 2.4% opaques; 21.8% open vesicles; 5.5% filled vesicles. Rock is moderately altered.
SITE 834

135-834B-47R-01 (Piece 47, 27-30 cm) OBSERVER: EWE WHERE SAMPLED: Unit 12

ROCK NAME: Aphyric basalt

GRAIN SIZE: Fine grained

TEXTURE: Coarsely microlitic, seriate, vesicular.

PRIMARY MINERALOGY

<table>
<thead>
<tr>
<th>PHENOCRYSTS</th>
<th>PERCENT</th>
<th>PERCENT SIZE</th>
<th>COMPOSITION</th>
<th>MORPHOLOGY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetite</td>
<td>tr</td>
<td>tr</td>
<td>0.05-0.15</td>
<td>see comments</td>
<td>microphenocrysts of subhedral to subhedral (a few skeletal) magnetite occur throughout the rock, ranging from 0.05-0.15 mm; they, occur in groups or clusters of microphenocrysts (not glomerocrystic), within mesostasis, plagioclase, and clinopyroxene.</td>
</tr>
</tbody>
</table>

GROUNDMASS

Plagioclase	20-30	20-36	up to 1.1	An 45-70	euahedral - subhedral	elongated tabular habit; normal zoning in larger crystals
Augite	10-15	10-15	up to 0.6		subhedral	equant, smaller grains tending to granular and interstitial, occurring in mesostasis.
Magnetite	1-2	1-2	up to 0.02		see comments	larger grains equant forms a variety of grain shapes from granular to rod-like. cryptocrystalline, brown with minute magnetite granules when fresh
Mesostasis	10	40-45	n/a		interstitial	

SECONDARY MINERALOGY

<table>
<thead>
<tr>
<th>Mixed clays</th>
<th>PERCENT</th>
<th>REPLACING/</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vesicles, mesostasis</td>
<td>35</td>
<td>Partial infilling of vesicles; yellow to reddish brown with variable Fe-oxide staining; fibrous to globular vesicle linings; yellow-brown cryptocrystalline in partial replacement of matrix</td>
<td></td>
</tr>
</tbody>
</table>

VESICLES/CAVITIES

<table>
<thead>
<tr>
<th>Vesicles</th>
<th>PERCENT</th>
<th>LOCATION (mm)</th>
<th>FILLING</th>
<th>SHAPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>disseminated up to 1</td>
<td>fibrous to globular linings</td>
<td>rounded to irregular and elongated</td>
<td></td>
</tr>
</tbody>
</table>

COMMENTS: Globular areas, up to 3.5 mm diameter, occur. These show quenching textures (e.g. skeletal plagioclase microclites, microcrystalline feathery and skeletal groundmass, and skeletal and feathery Fe-oxide growths) and vesicles up to 2 mm diameter (i.e. bigger than in main part of rock). Their contacts grade rapidly into enclosing rock matrix. It is not clear whether these represent early vesicle infillings or some form of inclusion. These correspond to the darker gray globular patches seen in hand specimen. A 1054 point count yields: 5.3% plagioclase phenocrysts (defined as > 200 microns), 6.7% clinopyroxene phenocrysts; 2.9% magnetite microphenocrysts; 22.4% groundmass plagioclase; 12.7% groundmass clinopyroxene; 6.1% groundmass olivine; 0.6% groundmass opaques; 43.6% mesostasis; 5.9% filled vesicles; 6.3% open vesicles. There is a complete gradation from the larger (typically up to 1 mm) plagioclase down to the smallest. The rock is moderately to highly altered.
SITE 834

135-834B-49R-01 (Piece 16, 135-136 cm)
OBSERVER: EWE
WHERE SAMPLED: Unit 12

ROCK NAME: Moderately to highly phyric clinopyroxene plagioclase basalt
GRAIN SIZE: Fine grained
TEXTURE: Seriate to weakly porphyritic

<table>
<thead>
<tr>
<th>PHENOCRYSTS</th>
<th>PERCENT</th>
<th>PERCENT</th>
<th>SIZE</th>
<th>COMPOSITION</th>
<th>MORPHOLOGY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plagioclase</td>
<td>5-10</td>
<td>5-10</td>
<td>0.7-2.2</td>
<td>An 70</td>
<td>euhedral, elongated, subhedral, equant</td>
<td>show normal zoning (about 10 An) across crystals many crystals show shadowy extinction and bent cleavage</td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>3-5</td>
<td>3-5</td>
<td>0.2-0.35</td>
<td></td>
<td>euhedral, subhedral</td>
<td>some magnetite is skeletal. Growth is generally in clusters (not glomerocrysts) and are included in the mesostasis, plagioclase and clinopyroxene.</td>
</tr>
<tr>
<td>Magnetite</td>
<td>tr</td>
<td>tr</td>
<td>0.05-0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GROUNDMASS</th>
<th>PERCENT</th>
<th>COMPOSITION</th>
<th>MORPHOLOGY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plagioclase</td>
<td>35</td>
<td></td>
<td>euhedral - subhedral</td>
<td>elongated laths, normally zoned</td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>10</td>
<td></td>
<td>subhedral to anhedral</td>
<td>interstitial to plagioclase; rarely to partially opitic</td>
</tr>
<tr>
<td>Magnetite</td>
<td>3</td>
<td></td>
<td>anhedral - granular</td>
<td>often strongly elongated to rod-like aggregates; some grains show trellis structure</td>
</tr>
<tr>
<td>Mesostasis</td>
<td>0</td>
<td></td>
<td>interstitial</td>
<td>green-brown mixed clays; fibrous and radiative; may represent alteration of original volcanic glass</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECONDARY REPLACING/MINERALOGY</th>
<th>PERCENT</th>
<th>FILLING</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed clays</td>
<td>30</td>
<td>mesostasis/vesicles</td>
<td>vesicles have linings of clays rather than complete fillings; same material composing altered groundmass</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VESICLES/CAVITIES</th>
<th>PERCENT</th>
<th>LOCATION</th>
<th>FILLING</th>
<th>SHAPE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vesicles</td>
<td>10</td>
<td>disseminated to 0.5</td>
<td>radiating fibrous to spherulitic</td>
<td>rounded to elongated</td>
<td></td>
</tr>
</tbody>
</table>

COMMENTS: Gradation between phenocrystal and groundmass sized crystals, making distinction somewhat arbitrary. Similarly, the distinction between partially filled vesicles and mesostasis is blurred. The rock is moderately altered.
135-834B-56R-01 (Piece 2.7-9 cm) OBSERVER: EWE WHERE SAMPLED: Unit 12

ROCK NAME: Sparsely phryric olivine clinopyroxene plagioclase basalt

GRAIN SIZE: Fine grained

TEXTURE: Porphyritic, seriate

<table>
<thead>
<tr>
<th>PRIMARY MINERALOGY</th>
<th>PERCENT PRESENT</th>
<th>PERCENT ORIGINAL (mm)</th>
<th>COMPOSITION</th>
<th>MORPHOLOGY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHENOCRYSTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagioclase</td>
<td>0.7</td>
<td>0.7</td>
<td>0.5-1.0 An70</td>
<td>euhedral-subhedral</td>
<td>randomly oriented, mostly discrete elongated, tabular crystals; zoning is not strongly defined optically except on rims (more sodic) isolated crystals and also some with partly included plagioclase laths some crystals skeletal; altered partially to iddingsite; partially included plagioclase laths. localized concentrations of microphenocrysts, enclosed by mesostasis, plagioclase, and clinopyroxene crystals</td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>0.7</td>
<td>0.7</td>
<td>0.2-0.4</td>
<td>subhedral</td>
<td></td>
</tr>
<tr>
<td>Olivine</td>
<td>0.6</td>
<td>0.6</td>
<td>0.2-0.9</td>
<td>subhedral to subhedral</td>
<td></td>
</tr>
<tr>
<td>Magnetite</td>
<td>0.7</td>
<td>0.7</td>
<td>0.05-0.2</td>
<td>euhedral</td>
<td></td>
</tr>
<tr>
<td>GROUNDMASS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagioclase</td>
<td>19.9</td>
<td>19.9</td>
<td><0.5 An70</td>
<td>euhedral-subhedral</td>
<td>elongated laths to small microlites; some of latter show swallowtail form mostly intergrown with plagioclase; smaller grains interstitial. interstitial granular to rod-like and trellis aggregates in mesostasis dark brown cryptocrystalline to microcrystalline. Some very fine poxyroxene-plagioclase acicular intergrowths</td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>3.0</td>
<td>3.9</td>
<td><0.2</td>
<td>subhedral-anhedral</td>
<td>mostly intergrown with plagioclase; smaller grains interstitial.</td>
</tr>
<tr>
<td>Olivine</td>
<td>1.8</td>
<td>1.8</td>
<td><0.2</td>
<td>subhedral-anhedral</td>
<td></td>
</tr>
<tr>
<td>Magnetite</td>
<td>2.0</td>
<td>2.0</td>
<td><0.02</td>
<td>subhedral-anhedral</td>
<td></td>
</tr>
<tr>
<td>Mesostasis</td>
<td>52.1</td>
<td>52.1</td>
<td>n/a</td>
<td>interstitial</td>
<td></td>
</tr>
</tbody>
</table>

SECONDARY MINERALOGY

<table>
<thead>
<tr>
<th>REPLACING/ FILLING</th>
<th>PERCENT</th>
<th>LOCATION (mm)</th>
<th>SHAPE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed clays</td>
<td>0.8</td>
<td>disseminated 0.05-0.3</td>
<td>subrounded</td>
<td>excluding vesicles in to globular blebs</td>
</tr>
<tr>
<td>Iddingsite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VESICLES/ CAVITIES

<table>
<thead>
<tr>
<th>SIZE</th>
<th>PERCENT</th>
<th>LOCATION (mm)</th>
<th>FILLING</th>
<th>SHAPE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vesicles</td>
<td>17.8</td>
<td>disseminated 0.05-0.3</td>
<td>rare lining</td>
<td>subrounded excluding vesicles in to globular blebs</td>
<td></td>
</tr>
</tbody>
</table>

COMMENTS: Presence of globular vesicular patches in up to 3 mm vesicles. These are almost devoid of well-defined groundmass crystal phases; just finely quenched matrix. Diameter of 'globules' up to 4 mm. Phanocryst sized crystals grade down into microphenocryst and groundmass sized crystals. The distinction between phenocrysts and groundmass is thus in part arbitrary. 1051 point count by EWE: plagioclase phenocrysts 0.7%; clinopyroxene phenocrysts 0.7%; olivine phenocrysts 0.6%; Cr-spinel 0.7%; plagioclase groundmass 19.9%; clinopyroxene groundmass 3.0%; olivine groundmass 1.8%; magnetite 2.0%; mesostasis 52.1%; vesicles -open 17.9%; vesicles -filled 0.8%; vesicles total 18.6%; Rock is fresh.
ROCK NAME: Moderately phyric olivine clinopyroxene plagioclase basalt

GRAIN SIZE: Fine grained

TEXTURE: Seriate, porphyritic

<table>
<thead>
<tr>
<th>PRIMARY MINERALS</th>
<th>PERCENT PRESENT</th>
<th>ORIGINAL SIZE (mm)</th>
<th>COMPOSITION</th>
<th>MORPHOLOGY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plagioclase</td>
<td>3-5</td>
<td>0.5-1.0 An75</td>
<td>euhedral-subhedral</td>
<td>tend to occur as glomerocrysts with clinopyroxene and olivine, but also isolated crystals; zoning appears slight.</td>
<td></td>
</tr>
<tr>
<td>Olivine</td>
<td>2-3</td>
<td>0.2-0.6</td>
<td>euhedral-subhedral</td>
<td>isolated crystals and in glomeroporphyritic aggregates; rare incipient iddingsitation</td>
<td></td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>1-2</td>
<td>0.2-0.6</td>
<td>euhedral-anhedral</td>
<td>rare skeletal crystals; most occur in glomeroporphyritic aggregates with plagioclase in euhedral form</td>
<td></td>
</tr>
<tr>
<td>Magnetite</td>
<td>tr</td>
<td>0.15</td>
<td>euhedral</td>
<td>rare, isolated grains</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GROUNDMASS</th>
<th>MINERALS</th>
<th>PERCENT PRESENT</th>
<th>ORIGINAL SIZE (mm)</th>
<th>COMPOSITION</th>
<th>MORPHOLOGY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plagioclase</td>
<td>15</td>
<td><0.5</td>
<td>An75</td>
<td>euhedral-subhedral</td>
<td>elongated laths grading to fine grained microclasts</td>
<td></td>
</tr>
<tr>
<td>Olivine</td>
<td>1-2</td>
<td><0.2</td>
<td>anhedral-subhedral</td>
<td>euhedral, fresh; commonly as isolated grains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>5</td>
<td><0.2</td>
<td>subhedral-anhedral</td>
<td>euhedral, commonly associated with plagioclase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetite</td>
<td>1</td>
<td><0.01-0.05</td>
<td>subhedral-anhedral</td>
<td>restricted to mesostasis; none or less euhedral granules; most are <0.01 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesostasis</td>
<td>40</td>
<td>n/a</td>
<td>interstitial</td>
<td>dark brown, cryptocrystalline to microcrystalline; complex plagioclase-clinopyroxene intergrowths, typically anastomosed and feathery aggregates; unaltered</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECONDARY MINERALS</th>
<th>PERCENT FILLING</th>
<th>REPLACING/ MINERALOGY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed clays</td>
<td><1</td>
<td>rare fill</td>
<td>rare partial linings; localized along small fractures; radiating and microspherulitic; become deep reddish-brown and near isotropic Fe-oxyhydroxides when oxidized</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VESICLES/ CAVITIES</th>
<th>PERCENT LOCATION</th>
<th>SIZE</th>
<th>FILLING</th>
<th>SHAPE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vesicles</td>
<td>30</td>
<td>disseminated <1.4 mm</td>
<td>race</td>
<td>irregular</td>
<td>rare partial to infillings coalescing</td>
</tr>
</tbody>
</table>

COMMENTS: Gradation in crystal sizes from phenocrystal through microphenocrystal to coarse groundmass phases. The distinction between phenocrysts and groundmass phases is thus somewhat arbitrary. 1076 point count by EWE: plagioclase phenocrysts 2.3%; clinopyroxene phenocrysts 1.3%; olivine phenocrysts 0.9%; plagioclase groundmass 19.4%; clinopyroxene groundmass 9.2%; olivine groundmass 1.4%; magnetite 1.7%; mesostasis 6.4%; vesicles-open 24.2%; vesicles-filled 1.2%; vesicles-total 25.4%. Rock is fresh.
SITE 834

135-834B-59R-02 (Piece 2,22-24 cm) OBSERVER: EWE WHERE SAMPLED: Unit 13

ROCK NAME: Moderately phyric olivine clinopyroxene plagioclase basalt

GRAIN SIZE: Fine grained

TEXTURE: Porphyritic, seriate

<table>
<thead>
<tr>
<th>PRIMARY MINEROGY</th>
<th>PERCENT PERCENT SIZE</th>
<th>COMPO-SITION</th>
<th>MORPHOLOGY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHENOCRYSTES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagioclase</td>
<td>2-3</td>
<td>0.5-1.2</td>
<td>An65-70</td>
<td>subhedral-subhedral elongated tabular, common in glomeroporphyritic intergrowths with clinopyroxene</td>
</tr>
<tr>
<td>Olivine</td>
<td>0.2</td>
<td>0.2-0.3</td>
<td></td>
<td>subhedral-subhedral equant, isolated and also intergrown with clinopyroxene and plagioclase in glomeroporphyritic aggregates</td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>1-2</td>
<td>0.2-0.5</td>
<td></td>
<td>subhedral-anhedral intergrown with plagioclase in glomeroporphyritic aggregates; optically zoned</td>
</tr>
</tbody>
</table>

GROUNDMASS				
Plagioclase	20-25	<0.5	An60	subhedral-subhedral elongate laths grading to fine microlites
Clinopyroxene	10-15	<0.2		subhedral-anhedral varies from equant to anhedral and interstitial, sometimes in subophitic intergrowths with plagioclase; rare fine grained acicular aggregates.
Olivine	1	<0.2		subhedral-anhedral fine grained, often interstitial grains; trace Cr-spinel to 0.02 mm included in some grains
Magnetite	1-2	<0.02		anhedral to subhedral vary from equant to acicular and rod-like aggregates, confined to mesostasis
Mesostasis	20-25	n/a	interstitial cryptocrystalline to microcrystalline, brown to yellow brown	

<table>
<thead>
<tr>
<th>SECONDARY MINEROGY</th>
<th>PERCENT REPLACING/ FILLING</th>
<th>COMMENTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcite</td>
<td><1</td>
<td>fill</td>
<td>localized vesicle infilling, very sporadic occurrence</td>
</tr>
<tr>
<td>Mixed clays</td>
<td><1</td>
<td>fill</td>
<td>very localized vesicle lining; yellow brown, microcrystalline, fibrous to microspherulitic</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VESICLES/</th>
<th>PERCENT</th>
<th>LOCATION</th>
<th>SIZE</th>
<th>FILLING</th>
<th>SHAPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cavities</td>
<td>30-35</td>
<td>disseminated</td>
<td><2mm</td>
<td>rare</td>
<td>subrounded</td>
</tr>
</tbody>
</table>

COMMENTS: Gradation of crystal sizes from phenocrystal through to microphenocrystal to coarse groundmass phases. The distinction between phenocrysts and groundmass phases is thus arbitrary. 1124 point count by EWE: plagioclase phenocrysts 2.3%; clinopyroxene phenocrysts 2.1%; olivine phenocrysts 0.2%; plagioclase groundmass 23.6%; clinopyroxene groundmass 11.7%; olivine groundmass 1.5%; magnetite 2.7%; mesostasis 24.1%; vesicles-open 31.4%; vesicles-filled 6.4%; vesicles-total 31.9%. Rock is fresh.