VOLUME 136
INITIAL REPORTS
HAWAIIAN ARCH

Covering Leg 136 of the cruises of the Drilling Vessel JOIDES Resolution,
Honolulu, Hawaii, to Honolulu, Hawaii, Sites 842-843,
3 March–20 March 1991

Adam Dziewonski, Roy H. Wilkens, John V. Firth, D. James Baker, Jr., James C. Briden,
Bobb Carson, John A. Collins, Eric H. De Carlo, Frederick K. Duennebier,
Hans-J. Dümbaum, Timothy J.G. Francis, Michael O. Garcia, David Goldberg,
Grant Gross, Wei He, Charles E. Helsley, Donna Hull, Randy Jacobson,
Thomas R. Janecek, Toshihiko Kanazawa, Ellen Kappel, Jean-François Karczewski,
Ulisses Mello, Marvin Moss, Jiro Naka, Jane S. Tribble, Guy Waggoner
Shipboard Scientists

John V. Firth
Shipboard Staff Scientist

Prepared by the
OCEAN DRILLING PROGRAM
TEXAS A&M UNIVERSITY

William Winkler
Volume Editor

in cooperation with the
NATIONAL SCIENCE FOUNDATION
and
JOINT OCEANOGRAPHIC INSTITUTIONS, INC.
This publication was prepared by the Ocean Drilling Program, Texas A&M University, as an account of work performed under the international Ocean Drilling Program, which is managed by Joint Oceanographic Institutions, Inc., under contract with the National Science Foundation. Funding for the program was provided by the following agencies at the time of this cruise:

Canada/Australia Consortium for the Ocean Drilling Program, Department of Energy, Mines and Resources (Canada) and Department of Primary Industries and Energy (Australia)
Deutsche Forschungsgemeinschaft (Federal Republic of Germany)
European Science Foundation Consortium for Ocean Drilling (Belgium, Denmark, Finland, Iceland, Italy, Greece, the Netherlands, Norway, Spain, Sweden, Switzerland, and Turkey)
Institut Français de Recherche pour l’Exploitation de la Mer (France)
National Science Foundation (United States)
Natural Environment Research Council (United Kingdom)
University of Tokyo, Ocean Research Institute (Japan)

Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation, the participating agencies, Joint Oceanographic Institutions, Inc., Texas A&M University, or Texas A&M Research Foundation.

It is recommended that reference to the whole or to part of this volume be made in one of the following forms, as appropriate:

Effective Publication Dates of ODP Proceedings

According to the International Code of Zoological Nomenclature, the date of publication of a work and of a contained name or statement affecting nomenclature is the date on which the publication was mailed to subscribers, placed on sale, or when the whole edition is distributed free of charge, mailed to institutions and individuals to whom free copies are distributed. The mailing date, not the printed date, is the correct one.

The mailing dates of recent Proceedings of the Ocean Drilling Program are as follows:

Volume 130 (Initial Reports): March 1991
Volumes 131/132 (Initial Reports): June 1991
Volume 133 (Initial Reports): September 1991
Volume 119 (Scientific Results): September 1991
Volume 121 (Scientific Results): November 1991
Volume 124 (Scientific Results): September 1991

Distribution

Copies of this publication may be obtained from Publications Distribution Center, Ocean Drilling Program, 1000 Discovery Drive, College Station, Texas 77845-9547. Orders for copies will require advance payment. See current ODP publication list for price and availability of this publication.

Printed January 1992

ISSN 0884-5883
Library of Congress 87-642-462

The paper used in this publication meets the minimum requirements of American National Standard for Information Sciences—Permanence of Paper for Printed Library Materials, ANSI Z39.48-1984™
Foreword

By the National Science Foundation

The Ocean Drilling Program (ODP) is a major component of the National Science Foundation's continuing commitment to the study of the geologic processes that have shaped our planet and modified its environment. The scientific problems being addressed range from the geologic history and structure of continental margins to the processes responsible for the formation and alteration of the ocean's crust. In a time of enhanced public and scientific interest in problems of global change, ODP provides critical data on changes in ocean circulation, chemistry, and biologic productivity and their relation to changes in atmospheric circulation and glacial conditions. The Ocean Drilling Program has a unique role in addressing these problems, since it is the only facility for continuously sampling the geologic record of the ocean basins, which cover 70% of our planet.

The ODP is the successor to the Deep Sea Drilling Project (DSDP), which was a global reconnaissance of the ocean basins. DSDP began operations in 1968 at Scripps Institution of Oceanography, using a 400-foot drillship, the Glomar Challenger. DSDP was supported initially by only the National Science Foundation, with extensive involvement of international scientists who were invited to participate on drilling cruises. As this international interest continued to grow in the early 1970's, formal participation in the project was offered to the international geoscience community. In 1975, five nations (France, the Federal Republic of Germany, Japan, the United Kingdom, and the Soviet Union) accepted this commitment to joint planning and conduct of the project, as well as to financial support for operations. This International Phase of Ocean Drilling (IPOD) continued to 1983. Although the Challenger had reached the limits of her capabilities, the remarkable scientific success of the DSDP and the new questions it had generated demanded a continuing capability for drilling in the oceans.

The Ocean Drilling Program was organized, international participation was coordinated, a new drillship (the JOIDES Resolution) was contracted and outfitted, and her first cruise sailed in early 1985, within 18 months of the retirement of the Challenger. This is a remarkable accomplishment that reflects the efforts and excellence of the Joint Oceanographic Institutions, Inc. (prime contractor for ODP), Texas A&M University (science and ship operator), Lamont-Doherty Geological Observatory (logging operator), and the international science community in organizing and planning the new program. It was argued in planning for the ODP that a larger drillship was required to provide space for the increasing U.S. and international demand for shipboard participation, improved and expanded laboratory capabilities, and improvements in coring and logging systems. A larger and better equipped vessel would also provide better stability and working conditions in high-latitude regions of the oceans. The success of the JOIDES Resolution has proven the wisdom of these early arguments.

ODP now has operated in all oceans except the ice-covered Arctic. We have drilled above the Arctic circle and within sight of the Antarctic continent. Over 1000 scientists from 25 nations have participated in the initial ODP cruises. The larger scientific parties have allowed an increased emphasis on student participation and training aboard ship. The state-of-the-art laboratories support rapid and complete initial analyses of samples that provide both scientific results and guide subsequent shore-based studies. Nearly 1000 additional scientists have used these data and requested samples from the program's core and data archives for continuing study. The geochemical and geophysical logging capability is unsurpassed in either academia or industry and has provided remarkable new data with which to study the Earth. New experiments to measure and monitor geologic processes have been deployed in ODP boreholes.

The international commitment to ocean drilling has increased in the ODP. In addition to our five partners in IPOD—France, the Federal Republic of Germany, Japan, the Soviet Union, and the United Kingdom—two consortia have joined ODP: Canada-Australia and the European Science Foundation (representing Belgium, Denmark, Finland, Greece, Iceland, Italy, The Netherlands, Norway, Spain, Sweden, Switzerland, and Turkey). The 20 countries of the ODP represent the community of nations that have a global interest in the geosciences and oceanography. This global scientific participation has assured the program's scientific excel-
lence by focusing and integrating the combined scientific knowledge and capabilities of the program’s 20 nations. It has allowed problems of a global nature to be addressed by providing databases and background studies which are openly shared for planning and interpreting drilling results. It has eased problems of access to territorial waters, allowing comparative studies to be done among oceans. Finally, the international sharing of program costs has allowed this important and large program to proceed without detrimental impact to the research budgets of any one nation.

The Ocean Drilling Program, like its predecessor, DSDP, serves as a model for planning, conducting, and financing research to address problems of global importance. The National Science Foundation is proud to have a leading role in this unique international program, and we look forward to its continuing success.

Washington, D.C.
This volume presents results from the Ocean Drilling Program (ODP), where scientists use a specially equipped ocean drilling ship to sample and measure the properties of the submerged part of the Earth's crust. These data are then synthesized with other information to yield new insights into earth processes.

These results address the scientific goals of the program, which include providing a global description of geological and geophysical structures and materials, studying in detail areas of major geophysical activity such as mid-ocean ridges and the associated hydrothermal circulations, and studying passive and active continental margins. In addition, the ODP data support the study of sea-level and ocean-circulation changes, the effects of the Earth's orbital variations on climate, and the study of processes and mechanisms of evolution from the biological records in the cores which are recovered from drilling.

The Ocean Drilling Program is a partnership of scientists and governments. Overall scientific policy and management guidance is provided by Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES), which consists of committees and panels made up of representatives of the participating institutions and other scientific and engineering experts. The JOIDES Executive Committee (EXCOM) provides general oversight; the JOIDES Planning Committee (PCOM) is the focal point for all scientific planning for the ODP and is key to the scientific success of the program.

The PCOM has a network of panels and working groups which screen drilling proposals, evaluate instrumentation and measurement techniques, and assess geophysical survey data and other safety and siting information. PCOM uses the recommendations of these panels and committees to select drilling targets, to specify the major scientific objectives of each two-month drilling segment or leg, and to provide the science operator with nominations for co-chief scientists. The science operator, Texas A&M University, in turn is responsible for planning the detailed ship's operations, actual drilling schedules, and final scientific rosters, which are developed in close cooperation with PCOM and the cognizant panels.

Many of the scientific goals can be met only with new technology. Thus the program has identified engineering goals, which include the ability to start a hole and to core on bare rock at mid-ocean-ridge sites, to drill in high-temperature and corrosive regions typical of hydrothermal areas, and to core in high latitudes with minimum interference from high seas and sea ice. To meet these needs, the program operates a specially equipped drillship, the JOIDES Resolution, which contains laboratories and equipment that are state-of-the-art, and carries a major new logging program.

The ship, registered as SEDCO/BP 471 after her owners and her length in feet (144 meters), is 70 feet (21 meters) wide, and has a displacement of 16,595 long tons. Her derrick towers 200 feet (61 meters) above the waterline, and a computer-controlled dynamic-positioning system stabilizes the ship over a specific location while drilling in water depths up to 27,000 feet (8230 meters). The drilling system collects cores from beneath the seafloor with a derrick and drawworks that can handle 30,000 feet (9144 meters) of drill pipe. More than 12,000 square feet (1115 square meters) of space distributed throughout the ship is devoted to scientific laboratories and equipment. The ship sails with a scientific and technical crew of 50 and a ship's crew of 65.

Logging is a major part of the overall operation. The program provides a full suite of geochemical and geophysical measurements for every hole deeper than 1300 feet (400 meters). For each such hole, there are lowerings of basic oil-industry tools: nuclear, sonic, and electrical. In addition, a borehole televiewer is available for imaging the well-bore wall, a 12-channel logging tool provides accurate velocity and elastic property measurements as well as sonic waveforms for spectral analysis of energy propagation near the well bore, and a vertical seismic profiler records reflectors from below the total depth of the hole.

Texas A&M University serves as science operator for the Ocean Drilling Program. In this capacity, they operate and staff the drillship to collect cores from JOIDES-designated sites from around the world. The science operator also ensures that adequate scientific analyses are performed on the cores by maintaining the shipboard scientific laboratories and by providing
logistical and technical support for shipboard scientific teams. Onshore, Texas A&M manages scientific activities after each leg, is curator for the cores, distributes samples, and coordinates the editing and publication of the scientific results. Lamont-Doherty Geological Observatory (LDGO) of Columbia University manages the program's logging operations, which include processing the data and provision of assistance to scientists in data analysis. The ODP Data Bank, a repository for geophysical data, is also managed by LDGO. Core samples from ODP and the previous Deep Sea Drilling Project are stored for future investigation at three sites: ODP Pacific and Indian Ocean cores at Texas A&M University, ODP and DSDP Atlantic and Antarctic cores at Lamont-Doherty Geological Observatory, and DSDP Pacific and Indian Ocean cores at Scripps Institution of Oceanography.

International oversight and coordination are provided by the ODP Council, a governmental consultative body of partner country representatives, chaired by the United States, which periodically reviews the general progress of the program and discusses financial plans and other management issues. Joint Oceanographic Institutions, Inc., a nonprofit consortium of U.S. oceanographic institutions, serves as the National Science Foundation's prime contractor and manages the ODP. JOI is responsible for seeing that the scientific objectives and plans are translated into scientific operations consistent with JOIDES recommendations and budgetary constraints.

Scientific achievements of the ODP already include new data on early seafloor spreading and how continents separate and their margins evolve. We have new insight into glacial cycles and the fluctuations of currents throughout geological time. Technical achievements include the first bare-rock coring, and logging data more accurate and complete than ever before. JOI is pleased to have played a facilitating role in the Ocean Drilling Program.

D. James Baker
President
Joint Oceanographic Institutions, Inc.

Washington, D.C.
MEMBER ORGANIZATIONS OF THE JOINT OCEANOGRAPHIC INSTITUTIONS FOR DEEP EARTH SAMPLING (JOIDES):
University of California at San Diego, Scripps Institution of Oceanography
Columbia University, Lamont-Doherty Geological Observatory
University of Hawaii, Hawaii Institute of Geophysics
University of Miami, Rosenstiel School of Marine and Atmospheric Science
Oregon State University, College of Oceanography
University of Rhode Island, Graduate School of Oceanography
Texas A&M University, College of Geosciences
University of Texas at Austin, Institute for Geophysics
University of Washington, College of Ocean and Fishery Sciences
Woods Hole Oceanographic Institution
Canada/Australia Consortium for the Ocean Drilling Program, Department of Energy, Mines and Resources (Canada) and Department of Primary Industries and Energy (Australia)
European Science Foundation Consortium for Ocean Drilling, Belgium, Denmark, Finland, Iceland, Italy, Greece, the Netherlands, Norway, Spain, Sweden, Switzerland, and Turkey
Federal Republic of Germany, Bundesanstalt für Geowissenschaften und Rohstoffe
France, Institut Français de Recherche pour l’Exploitation de la Mer
Japan, University of Tokyo, Ocean Research Institute
United Kingdom, Natural Environment Research Council
U.S.S.R., Academy of Sciences

PRIME CONTRACTOR
Joint Oceanographic Institutions, Inc.
Washington, D.C.
Thomas E. Pyle
Director, Ocean Drilling Programs

OPERATING INSTITUTION
College of Geosciences
Texas A&M University
College Station, Texas
Melvin Friedman
Principal Investigator

OCEAN DRILLING PROGRAM
Philip D. Rabinowitz
Director
Timothy J.G. Francis
Deputy Director
Richard G. McPherson
Administrator
Audrey W. Meyer, Manager
Science Operations
Barry W. Harding, Manager
Engineering and Drilling Operations
Russell B. Merrill, Curator and Manager
Science Services
Robert E. Olivas, Manager
Technical and Logistics Support

LOGGING OPERATOR
Borehole Research Group
Lamont-Doherty Geological Observatory
Columbia University
Palisades, New York
Roger N. Anderson, Head
PARTICIPANTS ABOARD THE JOIDES RESOLUTION FOR LEG 136*

SCIENCE PARTICIPANTS

Adam Dziewonski
Co-Chief Scientist
Department of Earth and Planetary Sciences
Harvard University
20 Oxford Street
Cambridge, Massachusetts 02138

Roy H. Wilkens
Co-Chief Scientist
Hawaii Institute of Geophysics
School of Ocean and Earth Science and Technology
University of Hawaii
2525 Correia Road
Honolulu, Hawaii 96822

John V. Firth
ODP Staff Scientist/Paleontologist
Ocean Drilling Program
Texas A&M University
1000 Discovery Drive
College Station, Texas 77845-9547

D. James Baker, Jr.
JOI Observer

Frederick K. Duennheier
Seismologist Observer
Hawaii Institute of Geophysics
School of Ocean and Earth Science and Technology
University of Hawaii
2525 Correia Road
Honolulu, Hawaii 96822

Hans-J. Dürbaum
JOIDES Executive Committee Observer
Bundesanstalt für Geowissenschaften und Rohstoffe
Postfach 510153
D-3000 Hannover 51
Federal Republic of Germany

Timothy J.G. Francis
Geophysicist
Ocean Drilling Program
Texas A&M University
1000 Discovery Drive
College Station, Texas 77845-9547

Michael O. García
Igneous Petrologist
Department of Geology and Geophysics
School of Ocean and Earth Science and Technology
University of Hawaii
2525 Correia Road
Honolulu, Hawaii 96822

John A. Collins
Geophysicist/Physical Properties Specialist
Department of Geology and Geophysics
School of Ocean and Earth Science and Technology
University of Hawaii
1000 Pope Road
Honolulu, Hawaii 96822

Eric H. De Carlo
Sedimentologist/Inorganic Geochemist
Department of Oceanography
School of Ocean and Earth Science and Technology
University of Hawaii
1000 Pope Road
Honolulu, Hawaii 96822

* Addresses at time of cruise.
Donna Hull
Paleontologist
Department of Geosciences
University of Texas at Dallas
P.O. Box 830688
Richardson, Texas 75083-0688

Randy Jacobson
Seismologist Observer
Marine Geology and Geophysics
Office of Naval Research (U.S.)
800 North Quincy Street
Arlington, Virginia 22217

Thomas R. Janecek
Sedimentologist
Ocean Drilling Program
Texas A&M University
1000 Discovery Drive
College Station, Texas 77845-9547

Toshihiko Kanazawa
Seismologist Observer
Laboratory for Earthquake Chemistry
Faculty of Science
University of Tokyo
2-11-16 Yayoi, Bunkyo-ku
Tokyo 113
Japan

Ellen Kappel
JOI Observer
Joint Oceanographic Institutions, Inc.
1755 Massachusetts Ave., NW
Suite 800
Washington, DC 20036-2102

Jean-François Karczewski
Seismologist Observer
INSU
DT-CNRS
4 Avenue de Neptune
94107 St. Maur des Fossés Cedex
France

Ulisses Mello
LDGO Logging Trainee
Borehole Research Group
Lamont-Doherty Geological Observatory
Columbia University
Palisades, New York 10964

Marvin Moss
SIO Observer
Scripps Institution of Oceanography
University of California, San Diego
9500 Gilman Drive
La Jolla, California 92037-0210

Jiro Naka
Sedimentologist
Department of Deep Sea Research
Japan Marine Science and Technology Center
2-15, Natsushima-cho
Yokosuka 237
Japan

Jane S. Tribble
Sedimentologist
Department of Oceanography
School of Ocean and Earth Science and Technology
University of Hawaii
1000 Pope Road
Honolulu, Hawaii 96822

Guy Waggoner
Igneous Petrologist
Hawaii Institute of Geophysics
School of Ocean and Earth Science and Technology
University of Hawaii
2525 Correa Road
Honolulu, Hawaii 96822

ENGINEERING PARTICIPANTS

Luc Floury
IFREMER Observer
IFREMER
BP 70
29280 Plouzane
France

Merrilee C. Gordon
Amoco Observer
Amoco Production Company
P.O. Box 3092
Houston, Texas 77253

Barry W. Harding
Operations Superintendent
Ocean Drilling Program
Texas A&M University
1000 Discovery Drive
College Station, Texas 77845-9547

Roland Lawrence
DOSECC Observer
Ocean Drilling Program
Texas A&M University
1000 Discovery Drive
College Station, Texas 77845-9547

Thomas L. Pettigrew
Development Engineer
Ocean Drilling Program
Texas A&M University
1000 Discovery Drive
College Station, Texas 77845-9547
SEDCO OFFICIALS

Edwin G. Oonk
Master of the Drilling Vessel
Underseas Drilling, Inc.
707 Texas Avenue South
Suite 103D
College Station, Texas 77840-1917

Kenneth D. Horne
Drilling Superintendent
Underseas Drilling, Inc.
707 Texas Avenue South
Suite 103D
College Station, Texas 77840-1917

ODP TECHNICAL AND LOGISTICS PERSONNEL

Wendy J. Autio
John W. Beck
Mimi S. Bowman
Valerie Clark
MaryAnn Cusimano
Edwin Garrett
Jenny Granger
Ted ("Gus") Gustafson
Burney Hamlin
Michiko Hitchcox
Robert Kemp
Alan King
Matt Mefferd
Shan Pehlman
Chieh Peng
Joan Perry
William Stevens
Mark Watson
Barry Weber

Marine Scientist
Marine Scientist
Marine Scientist
Chemistry Technician
Chemistry Technician
Computer Systems Manager
Marine Scientist
Marine Scientist
Laboratory Officer
Yoperson
Curatorial Representative
Marine Scientist
Assistant Laboratory Officer
Photographer
Chemistry Technician
Marine Scientist
Marine Engineer
Marine Engineer
Marine Engineer
Ocean Drilling Program Publications Staff

Publications Supervisor
William D. Rose

Chief Editor
Norman J. Stewart

Editors
Eva M. Barbu
Lona Haskins Dearmont
Sondra K. Stewart
William R. Winkler

Bibliographer
Nancy K. McQuistion (part-time)

Chief Production Editor
Jennifer Pattison Hall

Production Editors
Janna C. Abel (this volume)
Jaime A. Gracia

Publications Coordinator
Janalisa Braziel Soltis

Assistant Publications Coordinator
Gudelia ("Gigi") Delgado

Publications Distribution Specialist
Fabiola Muñoz Byrne

Data Entry/Copier Operator
Carrie Jo Parris

Senior Photographer
John W. Beck

Photographer
Stacey Cervantes DuVall

Chief Illustrator
Deborah L. Partain

Illustrators
Michelle Curtis
Linda C. De Leon
Garret D. Gaither
Cynthia M. Mullican
Lisa L. Tirey

Production Assistants
Mary Elizabeth Betz
Carrie R. Casillón
Laura Hammond Young
TABLE OF CONTENTS

VOLUME 136—INITIAL REPORTS

SECTION 1: INTRODUCTION

1. Introduction ... 3
 A. Dziewonski, R. H. Wilkens, J. V. Firth, and Shipboard Scientific Party

2. Explanatory Notes 9
 Shipboard Scientific Party

3. Site Survey and Underway Geophysics 27
 Shipboard Scientific Party

SECTION 2: SITE CHAPTERS

4. Site 842 .. 37
 Shipboard Scientific Party
 Site summary .. 37
 Principal results 37
 Operations ... 38
 Lithostratigraphy 39
 Biostratigraphy 41
 Paleomagnetism 42
 Inorganic Geochemistry 46
 Physical Properties 56

5. Site 843 .. 65
 Shipboard Scientific Party
 Site summary .. 65
 Principal results 65
 Operations ... 66
 Lithostratigraphy 67
 Biostratigraphy 68
 Paleomagnetism 68
 Inorganic Geochemistry 69
 Physical Properties 71
 Igneous Petrology 76
 Logging ... 82

SECTION 3: CORES

Core description forms and core photographs for:

Site 842 .. 103
Site 843 .. 113
SECTION 4: POLICY

JOIDES Advisory Groups ... 151
Sample-Distribution Policy ... 155

Back-pocket Microfiche

Formation microscanner images for Leg 136:

Hole 843B: Main log, 238–315 mbsf