VOLUME 138
INITIAL REPORTS
PART 1
EASTERN EQUATORIAL PACIFIC

Covering Leg 138 of the cruises of the Drilling Vessel JOIDES Resolution,
Balboa, Panama, to San Diego, California, Sites 844–854,

Larry A. Mayer, Nicklas G. Pisias, Thomas R. Janecek, Jack G. Baldauf,
Steven F. Bloomer, Kathleen A. Dadey, Kay-Christian Emels, John Farrell,
José Abel Flores, Eric M. Galimov, Teresa King Hagelberg, Peter Holler,
Steven A. Hovan, Masao Iwai, Alan E.S. Kemp, Dae Choul Kim,
Gary Klinkhammer, Margaret Leinen, Shaul Levi, Mikhail A. Levitan,
Mitchell W. Lyle, Angus K. MacKillop, Laure M. Meynadier, Alan C. Mix,
Ted C. Moore, Jr., Isabella Raffi, Christina Ravelo, David Schneider,
Nicholas J. Shackleton, Jean-Pierre Valet, Edith Vincent
Shipboard Scientists

Thomas R. Janecek
Shipboard Staff Scientist

Prepared by the
OCEAN DRILLING PROGRAM
TEXAS A&M UNIVERSITY

Sondra K. Stewart, Diana Kennett, Norman J. Stewart, and William R. Winkler
Volume Editors

in cooperation with the
NATIONAL SCIENCE FOUNDATION
and
JOINT OCEANOGRAPHIC INSTITUTIONS, INC.
This publication was prepared by the Ocean Drilling Program, Texas A&M University, as an account of work performed under the international Ocean Drilling Program, which is managed by Joint Oceanographic Institutions, Inc., under contract with the National Science Foundation. Funding for the program was provided by the following agencies at the time of this cruise:

Academy of Sciences (U.S.S.R.)
Canada/Australia Consortium for the Ocean Drilling Program, Department of Energy, Mines and Resources (Canada) and Department of Primary Industries and Energy (Australia)
Deutsche Forschungsgemeinschaft (Federal Republic of Germany)
European Science Foundation Consortium for Ocean Drilling (Belgium, Denmark, Finland, Iceland, Italy, Greece, The Netherlands, Norway, Spain, Sweden, Switzerland, and Turkey)
Institut Français de Recherche pour l’Exploitation de la Mer (France)
National Science Foundation (United States)
Natural Environment Research Council (United Kingdom)
University of Tokyo, Ocean Research Institute (Japan)

Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation, the participating agencies, Joint Oceanographic Institutions, Inc., Texas A&M University, or Texas A&M Research Foundation.

It is recommended that reference to the whole or to part of this volume be made in one of the following forms, as appropriate:

Effective Publication Dates of ODP Proceedings

According to the International Code of Zoological Nomenclature, the date of publication of a work and of a contained name or statement affecting nomenclature is the date on which the publication was mailed to subscribers, placed on sale, or when the whole edition is distributed free of charge, mailed to institutions and individuals to whom free copies are distributed. The mailing date, not the printed date, is the correct one.

The mailing dates of recent Proceedings of the Ocean Drilling Program are as follows:
Volume 134 (Initial Reports): March 1992
Volume 135 (Initial Reports): May 1992
Volumes 136/137 (Initial Reports): January 1992
Volume 120 (Scientific Results): April 1992
Volume 121 (Scientific Results): November 1991
Volume 122 (Scientific Results): February 1992

Distribution
Copies of this publication may be obtained from Publications Distribution Center, Ocean Drilling Program, 1000 Discovery Drive, College Station, Texas 77845-9547. Orders for copies will require advance payment. See current ODP publication list for price and availability of this publication.

Printed September 1992

ISSN 0884-5883
Library of Congress 87-642-462

Printed in Canada by D.W. Friesen & Sons Ltd.

The paper used in this publication meets the minimum requirements of American National Standard for Information Sciences—Permanence of Paper for Printed Library Materials, ANSI Z39.48-1984-™
The Ocean Drilling Program (ODP) is a major component of the National Science Foundation’s continuing commitment to the study of the geologic processes that have shaped our planet and modified its environment. The scientific problems being addressed range from the geologic history and structure of continental margins to the processes responsible for the formation and alteration of the ocean’s crust. In a time of enhanced public and scientific interest in problems of global change, ODP provides critical data on changes in ocean circulation, chemistry, and biologic productivity and their relation to changes in atmospheric circulation and glacial conditions. The Ocean Drilling Program has a unique role in addressing these problems, since it is the only facility for continuously sampling the geologic record of the ocean basins, which cover 70% of our planet.

The ODP is the successor to the Deep Sea Drilling Project (DSDP), which was a global reconnaissance of the ocean basins. DSDP began operations in 1968 at Scripps Institution of Oceanography, using a 400-foot drillship, the Glomar Challenger. DSDP was supported initially by only the National Science Foundation, with extensive involvement of international scientists who were invited to participate on drilling cruises. As this international interest continued to grow in the early 1970’s, formal participation in the project was offered to the international geoscience community. In 1975, five nations (France, the Federal Republic of Germany, Japan, the United Kingdom, and the Soviet Union) accepted this commitment to joint planning and conduct of the project, as well as to financial support for operations. This International Phase of Ocean Drilling (IPOD) continued to 1983. Although the Challenger had reached the limits of her capabilities, the remarkable scientific success of the DSDP and the new questions it had generated demanded a continuing capability for drilling in the oceans.

The Ocean Drilling Program was organized, international participation was coordinated, a new drillship (the JOIDES Resolution) was contracted and outfitted, and her first cruise sailed in early 1985, within 18 months of the retirement of the Challenger. This is a remarkable accomplishment that reflects the efforts and excellence of the Joint Oceanographic Institutions, Inc. (prime contractor for ODP), Texas A&M University (science and ship operator), Lamont-Doherty Geological Observatory (logging operator), and the international science community in organizing and planning the new program. It was argued in planning for the ODP that a larger drillship was required to provide space for the increasing U.S. and international demand for shipboard participation, improved and expanded laboratory capabilities, and improvements in coring and logging systems. A larger and better equipped vessel would also provide better stability and working conditions in high-latitude regions of the oceans. The success of the JOIDES Resolution has proven the wisdom of these early arguments.

ODP now has operated in all oceans except the ice-covered Arctic. We have drilled above the Arctic circle and within sight of the Antarctic continent. Over 1000 scientists from 25 nations have participated in the initial ODP cruises. The larger scientific parties have allowed an increased emphasis on student participation and training aboard ship. The state-of-the-art laboratories support rapid and complete initial analyses of samples that provide both scientific results and guide subsequent shore-based studies. Nearly 1000 additional scientists have used these data and requested samples from the program’s core and data archives for continuing study. The geochemical and geophysical logging capability is unsurpassed in either academia or industry and has provided remarkable new data with which to study the Earth. New experiments to measure and monitor geologic processes have been deployed in ODP boreholes.

The international commitment to ocean drilling has increased in the ODP. In addition to our five partners in IPOD—France, the Federal Republic of Germany, Japan, the Soviet Union, and the United Kingdom—two consortia have joined ODP: Canada-Australia and the European Science Foundation (representing Belgium, Denmark, Finland, Greece, Iceland, Italy, The Netherlands, Norway, Spain, Sweden, Switzerland, and Turkey). The 20 countries of the ODP represent the community of nations that have a global interest in the geosciences and oceanography. This global scientific participation has assured the program’s scientific excel-
lence by focusing and integrating the combined scientific knowledge and capabilities of the program's 20 nations. It has allowed problems of a global nature to be addressed by providing databases and background studies which are openly shared for planning and interpreting drilling results. It has eased problems of access to territorial waters, allowing comparative studies to be done among oceans. Finally, the international sharing of program costs has allowed this important and large program to proceed without detrimental impact to the research budgets of any one nation.

The Ocean Drilling Program, like its predecessor, DSDP, serves as a model for planning, conducting, and financing research to address problems of global importance. The National Science Foundation is proud to have a leading role in this unique international program, and we look forward to its continuing success.

Walter E. Massey
Director
National Science Foundation

Washington, D.C.
This volume presents scientific and engineering results from the Ocean Drilling Program (ODP). The papers presented here address the scientific and technical goals of the program, which include providing a global description of geological and geophysical structures including passive and active margins and sediment history, and studying in detail areas of major geophysical activity such as mid-ocean ridges and the associated hydrothermal circulations.

The Ocean Drilling Program, an international activity, operates a specially equipped deep-sea drilling ship, the JOIDES Resolution (Sedco/BP 471), which contains state-of-the-art laboratories, equipment, and computers. The ship is 471 feet (144 meters) long, is 70 feet (21 meters) wide, and has a displacement of 18,600 short tons. Her derrick towers 211 feet (64 meters) above the waterline, and a computer-controlled dynamic-positioning system stabilizes the ship over a specific location while drilling in water depths up to 27,000 feet (8230 meters). The drilling system collects cores from beneath the seafloor with a derrick and drawworks that can handle 30,000 feet (9144 meters) of drill pipe. More than 12,000 square feet (1115 square meters) of space distributed throughout the ship is devoted to scientific laboratories and equipment. The ship sails with a scientific and technical crew of 51 and a ship’s crew (including the drill crew) of 62. The size and ice-strengthening of the ship allow drilling in high seas and ice-infested areas as well as permitting a large group of multidisciplinary scientists to interact as part of the scientific party.

Logging, or measurements in the drilled holes, is an important part of the program. ODP provides a full suite of geochemical and geophysical measurements for every hole deeper than 1300 feet (400 meters). For each such hole, there are lowerings of basic oil-industry tools: nuclear, sonic, and electrical. In addition, a borehole televiwer is available for imaging the wall of the hole, a 12-channel logging tool provides accurate velocity and elastic property measurements as well as sonic waveforms for spectral analysis of energy propagation near the wall of the hole, and a vertical seismic profiler can record reflectors from below the total depth of the hole.

The management of the Ocean Drilling Program involves a partnership of scientists and governments. International oversight and coordination are provided by the ODP Council, a governmental consultative body of the partner countries, which is chaired by a representative from the United States National Science Foundation. The ODP Council periodically reviews the general progress of the program and discusses financial plans and other management issues. Overall scientific and management guidance is provided to the operators of the program by representatives from the group of institutions involved in the program, called the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES).

The Executive Committee (EXCOM), made up of the administrative heads of the JOIDES institutions, provides general oversight for ODP. The Planning Committee (PCOM), with its advisory structure, is made up of working scientists and provides scientific advice and detailed planning. PCOM has a network of panels and working groups that screen drilling proposals, evaluate instrumentation and measurement techniques, and assess geophysical-survey data and other safety and siting information. PCOM uses the recommendations of the panels and committees to select drilling targets, to specify the location and major scientific objectives of each two-month drilling segment or leg, and to provide the science operator with nominations for co-chief scientists.

Joint Oceanographic Institutions, Inc. (JOI), a nonprofit consortium of U.S. oceanographic institutions, serves as the National Science Foundation’s prime contractor for ODP. JOI is responsible for seeing that the scientific objectives, plans, and recommendations of the JOIDES committees are translated into scientific operations consistent with scientific advice and budgetary constraints. JOI subcontracts the operations of the program to two universities: Texas A&M University and Lamont-Doherty Geological Observatory of Columbia University. JOI is also responsible for managing the U.S. contribution to ODP.

Texas A&M University (TAMU) serves as science operator for ODP. In this capacity, TAMU is responsible for planning the specific ship operations, actual drilling schedules, and final scientific rosters, which are developed in close cooperation with PCOM and the relevant
panels. The science operator also ensures that adequate scientific analyses are performed on the cores by maintaining the shipboard scientific laboratories and computers and by providing logistical and technical support for shipboard scientific teams. Onshore, TAMU manages scientific activities after each leg, is curator for the cores, distributes samples, and coordinates the editing and publication of scientific results.

Lamont-Doherty Geological Observatory (LDGO) of Columbia University is responsible for the program’s logging operation, including processing the data and providing assistance to scientists for data analysis. The ODP Data Bank, a repository for geophysical data, is also managed by LDGO.

Core samples from ODP and the previous Deep Sea Drilling Project are stored for future investigation at three sites: ODP Pacific and Indian Ocean cores at TAMU, ODP and DSDP Atlantic and Antarctic cores at LDGO, and DSDP Pacific and Indian Ocean cores at the Scripps Institution of Oceanography.

Scientific achievements of ODP include new information on early seafloor spreading and how continents separate and the margins evolve. The oldest Pacific crust has been drilled and sampled. We have new insights into glacial cycles and the fluctuations of ocean currents throughout geological time. Many of the scientific goals can be met only with new technology; thus the program has focused on engineering as well as science. To date, ODP engineers have demonstrated the capability to drill on bare rock at mid-ocean-ridge sites and have developed techniques for drilling in high-temperature and corrosive regions typical of hydrothermal vent areas. A new diamond coring system promises better core recovery in difficult areas.

In addition, ODP is cooperating closely with other geological and geophysical programs; for example, in 1991 the first hole was drilled by ODP for emplacement of a seismometer near Hawaii for the Ocean Seismic Network. JOI is pleased to have been able to play a facilitating role in the Ocean Drilling Program and its cooperative activities, and we are looking forward to many new results to come.

D. James Baker
President
Joint Oceanographic Institutions, Inc.
Washington, D.C.
MEMBER ORGANIZATIONS OF THE JOINT OCEANOGRAPHIC INSTITUTIONS FOR DEEP EARTH SAMPLING (JOIDES):
University of California at San Diego, Scripps Institution of Oceanography
Columbia University, Lamont-Doherty Geological Observatory
University of Hawaii, School of Ocean and Earth Science and Technology
University of Miami, Rosenstiel School of Marine and Atmospheric Science
Oregon State University, College of Oceanography
University of Rhode Island, Graduate School of Oceanography
Texas A&M University, College of Geosciences and Maritime Studies
University of Texas at Austin, Institute for Geophysics
University of Washington, College of Ocean and Fishery Sciences
Woods Hole Oceanographic Institution
Canada/Australia Consortium for the Ocean Drilling Program, Department of Energy, Mines and Resources (Canada) and Department of Primary Industries and Energy (Australia)
European Science Foundation Consortium for Ocean Drilling, Belgium, Denmark, Finland, Iceland, Italy, Greece, The Netherlands, Norway, Spain, Sweden, Switzerland, and Turkey
Federal Republic of Germany, Bundesanstalt für Geowissenschaften und Rohstoffe
France, Institut Français de Recherche pour l'Exploitation de la Mer
Japan, University of Tokyo, Ocean Research Institute
United Kingdom, Natural Environment Research Council
Russia, Academy of Sciences

PRIME CONTRACTOR
Joint Oceanographic Institutions, Inc.
Washington, D.C.
Thomas E. Pyle
Director, Ocean Drilling Programs

OPERATING INSTITUTION
College of Geosciences and Maritime Studies
Texas A&M University
College Station, Texas
Robert A. Duce
Dean

OCEAN DRILLING PROGRAM
Philip D. Rabinowitz
Director
Timothy J.G. Francis
Deputy Director
Richard G. McPherson
Administrator
Jack G. Baldauf, Manager
Science Operations
Barry W. Harding, Manager
Engineering and Drilling Operations
Russell B. Merrill, Curator and Manager
Science Services
Robert E. Olivas, Manager
Technical and Logistics Support

LOGGING OPERATOR
Borehole Research Group
Lamont-Doherty Geological Observatory
Columbia University
Palisades, New York
Roger N. Anderson, Head
PARTICIPANTS ABOARD THE JOIDES RESOLUTION FOR LEG 138*

Larry A. Mayer
Co-Chief Scientist
Department of Oceanography
Dalhousie University
Halifax, Nova Scotia B3H 4J1
Canada

Nicklas G. Pisias
Co-Chief Scientist
Oceanography Administration Bldg. 104
College of Oceanography
Oregon State University
Corvallis, Oregon 97331-5503

Thomas R. Janecek
ODP Staff Scientist/Sedimentologist
Ocean Drilling Program
Texas A&M University
1000 Discovery Drive
College Station,
Texas 77845-9547

Jack G. Baldauf
Paleontologist (diatoms)
Ocean Drilling Program
Texas A&M University
1000 Discovery Drive
College Station,
Texas 77845-9547

Steven F. Bloomer
Physical Properties Specialist
Department of Oceanography
Dalhousie University
Halifax, Nova Scotia B3H 4J1
Canada

Kathleen A. Dadey
Logging Scientist
Hawaii Institute of Geophysics
School of Ocean and Earth Science and Technology
University of Hawaii
2525 Correa Road
Honolulu, Hawaii 96822

Kay-Christian Emeis
Organic Geochemist
Geologisch-Paläontologisches Institut
Universität Kiel
Olshausenstrasse 40-60
D-2300 Kiel
Federal Republic of Germany

John Farrell
Carbonate Geochemist
Department of Geological Sciences
Brown University
Providence, Rhode Island 02912-1846

José Abel Flores
Paleontologist (nannofossils)
Departamento de Geología
Universidad de Salamanca
S-37008 Salamanca
Spain

Eric M. Galimov
Organic Geochemist
Institute of Geochemistry and Analytical Chemistry
U.S.S.R. Academy of Sciences
Ul. Kosygina 19
B-331, Moscow
U.S.S.R.

Teresa King Hagelberg
Sedimentologist
College of Oceanography
Oregon State University
Corvallis, Oregon 97331-5503

Peter Holler
Physical Properties Specialist
Geologisch-Paläontologisches Institut
Universität Kiel
Olshausenstrasse 40-60
D-2300 Kiel
Federal Republic of Germany

Steven A. Hovan
Sedimentologist
Department of Geological Sciences
University of Michigan
1006 C.C. Little Building
Ann Arbor, Michigan 48109-1063

Masao Iwai
Paleontologist (diatoms)
Institute of Geology and Paleontology
Faculty of Science
Tohoku University
Aoba-yama, Aoba-ku
Sendai 980
Japan

Alan E.S. Kemp
Sedimentologist
Department of Oceanography
The University
Southampton SO9 5NH
United Kingdom

Dae Choul Kim
Physical Properties Specialist
Department of Applied Geology
National Fisheries University of Pusan
599-1 Dongyun-Dong, NamGum
Pusan 608-737
Korea

*Addresses at time of cruise.
ODP ENGINEERING AND OPERATIONS PERSONNEL
Ron Grout Operations Superintendent

ODP TECHNICAL AND LOGISTICS PERSONNEL
Wendy J. Autio X-ray Technician
John W. Beck Photographer
Daniel Bonfempo Marine Scientist
Jim Briggs Electronics Technician
Timothy Bronk Marine Scientist
Jo Claesgens Yeoperson
Valerie Clark Chemistry Technician
Bradley Cook Marine Scientist
John R. Eastlund Computer System Manager
Mark Gilmore Photographer
Burney Hamlin Laboratory Officer
Gretchen Hampton Chemistry Technician
Sung-Ho Kang Marine Scientist
Jon S. Lloyd Marine Scientist
Cynthia M. Lyle Marine Scientist
Eric Meissner Electronics Technician
William M. Meyer Assistant Laboratory Officer
John H. Miller Curatorial Representative

Ocean Drilling Program Publications Staff

Publications Supervisor
William D. Rose

Chief Editor
Norman J. Stewart

Editors
Lona Haskins Dearmont
Eva M. Maddox
Sondra K. Stewart
William R. Winkler

Bibliographer
Nancy K. McQuistion (part-time)

Chief Production Editor
Jennifer Pattison Hall

Production Editors
Janna C. Abel (this volume)
Jill K. Butler
Jaime A. Gracia

Senior Publications Coordinator
Janalisa Braziel Soltis

Publications Coordinator
Gudelia (“Gigi”) Delgado

Publications Distribution Specialist
Fabiola Muñoz Byrne

Hole Summary Coordinator
Laura Hammond Young

Data Entry/Copier Operator
Carrie Jo Parris

Senior Photographer
John W. Beck

Photographer
Barry C. Cochran

Chief Illustrator
Deborah L. Partain

Illustrators
Melany R. Borsack
Michelle Curtis
Linda C. De Leon
Garnet D. Gaither
Lisa L. Tirey

Production Assistants
Mary Elizabeth Betz
Carrie R. Castillón
Table of Contents

Volume 138—Initial Reports (Part 1)

Acknowledgments

1

Section 1: Introduction

1. Introduction 5
 Shipboard Scientific Party

2. Explanatory Notes 13
 Shipboard Scientific Party

3. Underway Geophysics 43
 S. F. Bloomer and Shipboard Scientific Party

Section 2: Special Chapters

5. Development of Composite Depth Sections for Sites 844 through 854 79
 T. Hagelberg, N. Shackleton, N. Pisias, and Shipboard Scientific Party

6. Sedimentation Rates: Toward a GRAPE Density Stratigraphy for Leg 138 Carbonate Sections 87
 N. J. Shackleton and Shipboard Scientific Party

7. Site Surveys 93

8. Composition Maps of Surface Sediments of the Eastern Tropical Pacific Ocean 101
 M. Lyle

Section 3: Site Chapters

9. Site 844 119
 Shipboard Scientific Party
 - Site Summary 119
 - Principal Results 119
 - Background and Scientific Objectives 120
 - Operations 120
 - Lithostratigraphy 122
 - Biostratigraphy 131
 - Paleomagnetism 142
 - Sedimentation Rates 145
 - Inorganic Geochemistry 147
 - Organic Geochemistry 148
 - Physical Properties 153
 - Downhole Measurements 159
Site summary ... 335
Principal results .. 335
Background and scientific objectives 336
Operations ... 336
Lithostratigraphy .. 338
Biostratigraphy ... 346
Paleomagnetism ... 352
Sedimentation rates ... 353
Inorganic geochemistry 353
Organic geochemistry .. 357
Physical properties .. 359
Downhole measurements 362
Seismic stratigraphy .. 370
Summary and conclusions 372
References ... 374

SECTION 4: CORES
Core description forms and core photographs for:
Site 844 ... 397
Site 845 ... 449
Site 846 ... 505
Site 847 ... 595

SECTION 5: SMEAR SLIDES
Smear slide descriptions for:
Site 844 ... 663
Site 845 ... 665
Site 846 ... 669
Site 847 ... 673

Back-Pocket Foldout*
Chapter 5, Figure 6. Comparison of GRAPE density records with downhole density logs.
Chapter 6, Figure 1. GRAPE density records for Sites 844 through 854 vs. depth.
Chapter 9, Figure 26. Percentage of reflectance, GRAPE density, and magnetic susceptibility for Site 844.
Chapter 10, Figure 34. Percentage of reflectance, GRAPE density, and magnetic susceptibility for Site 845.
Chapter 11, Figure 21. Percentage of reflectance, GRAPE density, and magnetic susceptibility for Site 846.
Chapter 12, Figure 19. Percentage of reflectance, GRAPE density, and magnetic susceptibility for Site 847.

*Back-pocket foldout, microfiche, and CD-ROM data are found in the back of Part 2.
Formation Microscanner images:

- Hole 844B: Pass 1, scale 1:40, depth range 67–291 mbsf
- Hole 844B: Pass 1, scale 1:6, depth range 67–291 mbsf
- Hole 845B: Pass 2, scale 1:40, depth range 68–291 mbsf
- Hole 845B: Pass 2, scale 1:6, depth range 68–290 mbsf
- Hole 846B: Pass 2, scale 1:40, depth range 64–416 mbsf
- Hole 846B: Pass 2, scale 1:6, depth range 64–416 mbsf
- Hole 847B: Pass 1, scale 1:40, depth range 69–247 mbsf
- Hole 847B: Pass 1, scale 1:6, depth range 69–247 mbsf

CD-ROM Data*

The CD-ROM in the back of Part 2 of this volume contains more than 500 MB of data collected during Leg 138. The data are subdivided into four main directories: TABLES, CORE DATA, SITE DATA, and PROGRAMS. A README file on the CD-ROM contains detailed information about each of these directories.

The TABLES directory contains many of the tables listed in the text (e.g., tables containing site sedimentation-rate data), as well as many tables only referenced in the text (e.g., tables containing site index-property data). A listing of the tables in this directory is found below and in the Table of Contents for Part 2.

The CORE DATA directory contains the basic ODP information associated with each recovered core (e.g., Site, Hole, Core, Core type, etc.), as well as the nominal ODP depth (in mbsf) and the composite depth (in mcd).

The SITE DATA directory contains data specific to a site. Each site directory contains at least five subdirectories: GRAPE density data, magnetic susceptibility data, color reflectance data, physical properties data, and geochemistry data. If downhole measurements were performed at the site, these data are stored in a sixth directory. In addition, the SITE DATA directory contains age-depth data and other data files that contain the information needed to construct composite sections for each site.

The PROGRAMS directory contains four computer programs (in FORTRAN-77) that were developed by Leg 138 scientists and were used extensively on UNIX-based workstations during Leg 138. While these programs are not intended to be used directly from the CD-ROM, they do provide the numerical procedures used to process data during the leg and the numerical strategy used to generate the composite depth section at each site. For help with using these programs, please approach their authors.

CD-ROM Tables*

Chapter 6:

- Table 1. GRAPE density events for Sites 846 through 853.
- Table 2. Sedimentation rates based on data in Table 1.
- Table 3. GRAPE density events from Table 1 and depths estimated for the equivalent events.
- Table 4. Sedimentation rates based on data in Table 3.

Chapter 9:

- Table 1. Summary of coring operations at Site 844.
- Table 3. Interval and depth constraints of nannofossil events.
- Table 4. Interval and depth constraints of foraminifer events.
- Table 5. Interval and depth constraints of radiolarian events.
- Table 6. Interval and depth constraints of diatom events.
- Table 10. Reversal boundary depths from Site 844.

*Back-pocket foldout, microfiche, and CD-ROM data are found in the back of Part 2.
Table 11. Depths of top and bottom of each core in composite depth section.
Table 12. Control points for accumulation rates.
Table 13. Interstitial-water geochemical data for Holes 844A and 844B.
Table 14. Percentages of total carbon, inorganic carbon, calcium carbonate, organic carbon, and nitrogen.
Table 16. Average values of sedimentary parameters.
Table 17. Index properties data from Site 844.
Table 18. Compressional-wave velocity data.
Table 19. Vane shear strength data.
Table 20. Thermal conductivity data.
Table 22. Summary of traveltimes, depths, and ages for reflectors.

Chapter 10:
Table 1. Summary of coring operations at Site 845.
Table 3. Sample and depth constraints of nannofossil events.
Table 4. Sample and depth constraints of radiolarian events.
Table 5. Sample and depth constraints of diatom events.
Table 8. Reversal boundary depths from Site 845.
Table 9. Depths of top and bottom of each core in composite depth section.
Table 10. Control points for accumulation rates.
Table 11. Interstitial water geochemical data for Holes 845A and 845C.
Table 12. Percentages of total carbon, inorganic carbon, carbonate, organic carbon, and nitrogen.
Table 14. Average values of sedimentary parameters.
Table 16. Index properties data from Site 845.
Table 17. Compressional-wave velocity data.
Table 18. Vane shear strength data.
Table 19. Thermal conductivity data.
Table 24. Summary of traveltimes, depths, and ages for reflectors.

Chapter 11:
Table 1. Coring summary for Site 846.
Table 3. Sample and depth constraints of nannofossil events.
Table 4. Sample and depth constraints of foraminifer events.
Table 5. Sample and depth constraints of radiolarian events.
Table 6. Sample and depth constraints of diatom events.
Table 7. Depths of top and bottom of each core in composite depth section.
Table 8. Control points for accumulation rates.
Table 11. Interstitial water geochemical data for Holes 846A and 846C.
Table 12. Percentages of total carbon, inorganic carbon, carbonate, organic carbon, and nitrogen.
Table 14. Average values of sedimentary parameters.
Table 15. Concentrations of hydrocarbons in headspace volumes.
Table 14. Results of ketone analyses, percentages of organic carbon and carbonate, and age estimates of samples.
Table 15. Wet- and dry-bulk density, grain density, porosity, wet and dry water content, and void ratio data.
Table 16. Compressional-wave velocity data.
Table 17. Undrained shear strength data.
Table 18. Thermal conductivity data.
Table 20. Summary of traveltimes, depths, and ages for reflectors.

Chapter 12:
Table 1. Summary of coring operations at Site 847.
Table 3. Sample and depth constraints of nannofossil events.
Table 4. Sample and depth constraints of foraminifer events.
Table 5. Sample and depth constraints of radiolarian events.
Table 6. Sample and depth constraints of diatom events.
Table 7. Depths of top and bottom of each core in composite depth section.
Table 8. Control points for accumulation rates.
Table 9. Interstitial-water geochemical data for Holes 847A and 847B.
Table 10. Percentages of total carbon, inorganic carbon, carbonate, and organic carbon.
Table 12. Average values of sedimentary parameters.
Table 13. Concentrations of total carbon, inorganic carbon, organic carbon, total nitrogen, and total methane.
Table 14. Wet- and dry-bulk density, grain density, porosity, wet and dry water content, and void ratio data.
Table 15. Compressional-wave velocity data.
Table 16. Vane shear strength velocity data.
Table 17. Thermal conductivity data.
Table 21. Summary of traveltimes, depths, and ages for reflectors.
TABLE OF CONTENTS

VOLUME 138—INITIAL REPORTS (PART 2)

SECTION 6: SITE CHAPTERS

<table>
<thead>
<tr>
<th>Site</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13. Site 848</td>
<td>677</td>
</tr>
<tr>
<td>Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>Site summary</td>
<td>677</td>
</tr>
<tr>
<td>Principal results</td>
<td>677</td>
</tr>
<tr>
<td>Background and scientific objectives</td>
<td>678</td>
</tr>
<tr>
<td>Operations</td>
<td>678</td>
</tr>
<tr>
<td>Lithostratigraphy</td>
<td>680</td>
</tr>
<tr>
<td>Biostratigraphy</td>
<td>685</td>
</tr>
<tr>
<td>Paleomagnetism</td>
<td>692</td>
</tr>
<tr>
<td>Sedimentation rates</td>
<td>695</td>
</tr>
<tr>
<td>Inorganic geochemistry</td>
<td>698</td>
</tr>
<tr>
<td>Organic geochemistry</td>
<td>703</td>
</tr>
<tr>
<td>Physical properties</td>
<td>704</td>
</tr>
<tr>
<td>Downhole measurements</td>
<td>705</td>
</tr>
<tr>
<td>Seismic stratigraphy</td>
<td>711</td>
</tr>
<tr>
<td>Summary and conclusions</td>
<td>712</td>
</tr>
<tr>
<td>References</td>
<td>714</td>
</tr>
</tbody>
</table>

Site 849	735
Shipboard Scientific Party	
Site summary	735
Principal results	735
Background and scientific objectives	736
Operations	736
Lithostratigraphy	740
Biostratigraphy	744
Paleomagnetism	748
Sedimentation rates	748
Inorganic geochemistry	749
Organic geochemistry	752
Physical properties	754
Downhole measurements	756
Seismic stratigraphy	762
Summary and conclusions	763
References	766
18. Site 853 1023
Shipboard Scientific Party
 Site summary .. 1023
 Principal results 1024
 Background and scientific objectives 1024
 Operations ... 1024
 Lithostratigraphy 1026
 Biostratigraphy 1029
 Paleomagnetism 1032
 Sedimentation rates 1035
 Inorganic geochemistry 1036
 Organic geochemistry 1042
 Physical properties 1042
 Seismic stratigraphy 1045
 Summary and conclusions 1046
 References ... 1048

19. Site 854 .. 1063
Shipboard Scientific Party
 Site summary .. 1063
 Principal results 1063
 Background and scientific objectives 1064
 Operations ... 1064
 Lithostratigraphy 1064
 Biostratigraphy 1068
 Paleomagnetism 1073
 Sedimentation rates 1079
 Inorganic geochemistry 1081
 Organic geochemistry 1083
SECTION 7: SUMMARY AND CONCLUSIONS

20. The planning and execution of a high-resolution paleoceanographic drilling leg: a summary .
 Shipboard Scientific Party
 Goals
 Objectives
 Preliminary results

SECTION 8: CORES

Core description forms and core photographs for:
 Site 848
 Site 849
 Site 850
 Site 851
 Site 852
 Site 853
 Site 854

SECTION 9: SMEAR SLIDES

Smear slide descriptions for:
 Site 848
 Site 849
 Site 850
 Site 851
 Site 852
 Site 853
 Site 854

SECTION 10: POLICY

JOIDES Advisory Groups
Sample-Distribution Policy
Back-Pocket Foldout*

Chapter 13, Figure 24. Magnetic susceptibility, GRAPE density, and percentage of reflectance for Site 848.
Chapter 14, Figure 20. GRAPE density and percentage of reflectance for Site 849.
Chapter 15, Figure 25. Magnetic susceptibility, GRAPE density, and percentage of reflectance for Site 850.
Chapter 16, Figure 25. Magnetic susceptibility, GRAPE density, and percentage of reflectance for Site 851.
Chapter 17, Figure 21. Magnetic susceptibility, GRAPE density, and percentage of reflectance for Site 852.
Chapter 18, Figure 18. Magnetic susceptibility, GRAPE density, and percentage of reflectance for Site 853.
Chapter 19, Figure 18. Magnetic susceptibility, GRAPE density, and percentage of reflectance for Site 854.

Back-Pocket Microfiche*

Formation Microscanner images:
- Hole 849B: Pass 2, scale 1:40, depth range 107–344 mbsf
- Hole 849B: Pass 2, scale 1:6, depth range 107–344 mbsf
- Hole 850B: Pass 2, scale 1:40, depth range 88–398 mbsf
- Hole 850B: Pass 2, scale 1:6, depth range 88–398 mbsf
- Hole 851B: Pass 2, scale 1:40, depth range 69–323 mbsf
- Hole 851B: Pass 2, scale 1:6, depth range 69–323 mbsf

CD-ROM Data*

The CD-ROM in the back of Part 2 of this volume contains more than 500 MB of data collected during Leg 138. The data are subdivided into four main directories: TABLES, CORE DATA, SITE DATA, and PROGRAMS. A README file on the CD-ROM contains detailed information about each of these directories.

The TABLES directory contains many of the tables listed in the text (e.g., tables containing site sedimentation-rate data), as well as many tables only referenced in the text (e.g., tables containing site index-property data). A listing of the tables in this directory is found below and in the Table of Contents for Part 1.

The CORE DATA directory contains the basic ODP information associated with each recovered core (e.g., Site, Hole, Core, Core type, etc.), as well as the nominal ODP depth (in mbsf) and the composite depth (in mcd).

The SITE DATA directory contains data specific to a site. Each site directory contains at least five subdirectories: GRAPE density data, magnetic susceptibility data, color reflectance data, physical properties data, and geochemistry data. If downhole measurements were performed at the site, these data are stored in a sixth directory. In addition, the SITE DATA directory contains age-depth data and other data files that contain the information needed to construct composite sections for each site.

The PROGRAMS directory contains four non-ODP computer programs (in FORTRAN-77) that were used extensively at UNIX-based workstations during Leg 138. While these programs are not intended to be used directly from the CD-ROM, they do provide the numerical procedures used to process data during the leg and the numerical strategy used to generate the composite depth section at each site.

CD-ROM Tables*

Chapter 13:
- Table 1. Summary of coring operations at Site 848.
- Table 3. Sample and depth constraints of nannofossil events for Site 848.
- Table 4. Sample and depth constraints of radiolarian events for Site 848.
- Table 5. Sample and depth constraints of diatom events for Site 848.
- Table 7. Reversal boundary depths from Site 848.

*Back-pocket foldout, microfiche, and CD-ROM data are found in the back of Part 2.
Table 8. Top and bottom depths of each core in Site 848 composite depth section.
Table 9. Control points for accumulation rates.
Table 10. Interstitial-water geochemical data for Holes 848A and 848B.
Table 12. Bulk-sediment major oxide composition from X-ray fluorescence spectroscopy and loss on ignition in sediments from Hole 848C.
Table 13. Comparison of X-ray fluorescence normative CaCO$_3$ with coulometric CaCO$_3$ measurements.
Table 14. Elemental composition in bulk sediments and on a carbonate-free basis.
Table 15. Mass accumulation rates for selected elements and for opal.
Table 16. Average values of sedimentary parameters calculated over time intervals defined by chronostratigraphic levels.
Table 17. Mean values of percentages of total carbon, inorganic carbon, calcium carbonate, and organic carbon for each sample analyzed at Site 848.
Table 20. Index properties data from Site 848.
Table 21. Compressional-wave velocity data from Site 848.
Table 22. Vane shear strength data from Site 848.
Table 23. Thermal conductivity data from Site 848.

Chapter 14:
Table 1. Summary of coring operations.
Table 3. Sample and depth constraints of nannofossil events for Site 849.
Table 4. Sample and depth constraints of foraminifer events for Site 849.
Table 5. Sample and depth constraints of radiolarian events for Site 849.
Table 6. Sample and depth constraints of diatom events for Site 849.
Table 7. Depths of top and bottom of each core in Site 849 composite depth section.
Table 8. Control points for sedimentation rates.
Table 9. Interstitial-water geochemical data for Holes 849A and 849B.
Table 10. Mean values of percentages of total carbon, inorganic carbon, calcium carbonate, and organic carbon for each sample analyzed at Site 849.
Table 12. Average values of sedimentary parameters calculated over time intervals defined by chronostratigraphic levels.
Table 13. Concentrations of methane in samples from Hole 849A.
Table 14. Index properties data for Site 849.
Table 15. Compressional-wave velocity data for Site 849.
Table 16. Thermal conductivity data for Site 849.
Table 17. Vane shear strength data for Site 849.
Table 21. Summary of traveltimes, depths, and ages for Site 849 reflectors.

Chapter 15:
Table 1. Summary of coring operations at Site 850.
Table 3. Sample and depth constraints of nannofossil events for Site 850.
Table 4. Sample and depth constraints of foraminifer events for Site 850.
Table 5. Sample and depth constraints of radiolarian events for Site 850.
Table 6. Sample and depth constraints of diatom events for Site 850.
Table 8. Reversal boundary determinations.
Table 9. Depths of top and bottom of each core in Site 850 composite depth section.
Table 10. Control points for sedimentation rates.
Table 11. Interstitial-water geochemical data for Holes 850A and 850B.
Table 12. Concentrations of SiO$_2$, Al$_2$O$_3$, Fe$_2$O$_3$, MnO, CaO, Na$_2$O, K$_2$O, and P$_2$O$_5$ in ignited sediments from Site 850.
Table 13. Concentrations of SiO$_2$, Al$_2$O$_3$, Fe$_2$O$_3$, MnO, CaO, Na$_2$O, K$_2$O, and P$_2$O$_5$ in ignited sediments from Site 850 recalculated assuming all loss on ignition is CO$_2$ driven off CaCO$_3$.
Table 14. Accumulation rates of SiO$_2$, Al$_2$O$_3$, Fe$_2$O$_3$, MnO, P$_2$O$_5$, and biogenic silica (opal).
Table 15. Average values of sedimentary parameters calculated over time intervals defined by chronostratigraphic levels.
Table 16. Mean values of percentages of inorganic carbon, calcium carbonate, and organic carbon for each sample analyzed at Site 850.
Table 17. Duplicate analyses of percentages of calcium carbonate in samples from Site 850.
Table 18. Concentrations of methane in samples from Hole 850B.
Table 19. Index properties data for Site 850.
Table 20. Compressional-wave velocity data for Site 850.
Table 21. Vane shear strength data for Site 850.
Table 22. Thermal conductivity data for Site 850.
Table 24. Summary of traveltimes, depths, and ages for Site 850 reflectors.

Chapter 16:
Table 1. Summary of coring operations at Site 851.
Table 3. Sample and depth constraints of nannofossil events for Hole 851B.
Table 4. Sample and depth constraints of foraminifer events for Hole 851B.
Table 5. Sample and depth constraints of radiolarian events for Site 851.
Table 6. Sample and depth constraints of diatom events for Site 851.
Table 8. Reversal boundary depths from Site 851.
Table 9. Depths of top and bottom of each core in Site 851 composite depth section.
Table 10. Control points for sedimentation rates.
Table 11. Interstitial-water geochemical data for Holes 851A and 851B.
Table 12. Mean values of percentages of inorganic carbon, calcium carbonate, and organic carbon for each sample analyzed at Site 851.
Table 14. Average values of sedimentary parameters calculated over time intervals defined by chronostratigraphic levels.
Table 15. Concentrations of methane in samples from Hole 851B.
Table 16. Index properties data for Site 851.
Table 17. Compressional-wave velocity data for Site 851.
Table 18. Vane shear strength data for Site 851.
Table 19. Thermal conductivity data for Site 851.
Table 22. Summary of traveltimes, depths, and ages for Site 851 reflectors.

Chapter 17:
Table 1. Summary of coring operations at Site 852.
Table 4. Sample interval, ODP depth, and composite depth constraints of nannofossil events for Holes 852B, 852C, and 852D.
Table 5. Sample interval, ODP depth, and composite depth constraints of foraminifer events for Hole 852B.
Table 6. Sample interval, ODP depth, and composite depth constraints of radiolarian events for Holes 852B, 852C, and 852D.
Table 7. Sample interval, ODP depth, and composite depth constraints of diatom events for Holes 852B, 852C, and 852D.
Table 9. Reversal boundary depths from Site 852.
Table 10. Depths of top and bottom of each core in Site 852 composite depth section.
Table 11. Control points for sedimentation rates at Site 852.
Table 12. Interstitial-water geochemical data for Holes 852A, 852B, and 852C.
Table 13. Mean values of percentages of total carbon, inorganic carbon, calcium carbonate, and organic carbon for each sample analyzed at Site 852.
Table 15. Average values of sedimentary parameters calculated over time intervals defined by chronostratigraphic levels in Table 11.
Table 16. Index properties data for Site 852.
Table 17. Compressional-wave velocity data for Site 852.
Table 18. Vane shear strength data for Site 852.
Table 19. Thermal conductivity data for Site 852.
Table 21. Summary of traveltimes, depths, and ages for Site 852 reflectors.
Chapter 18.

Table 1. Summary of coring operations at Site 853.
Table 2. Sample and depth constraints of nannofossil events for Site 853.
Table 3. Sample and depth constraints of foraminifer events for Site 853.
Table 4. Sample and depth constraints of radiolarian events for Site 853.
Table 6. Reversal boundary depths from Site 853.
Table 7. Depths of top and bottom of each core in Site 853 in the composite depth section.
Table 8. Control points for sedimentation rates.
Table 9. Interstitial-water geochemical data for Holes 853A and 853B.
Table 10. Mean values of percentages of inorganic carbon, carbonate carbon, and organic carbon for each sample analyzed at Site 853.
Table 12. Average values of sedimentary parameters calculated over time intervals defined by chronostratigraphic levels.
Table 13. Index properties data from Site 853.
Table 14. Compressional-wave velocity data for Site 853.
Table 15. Thermal conductivity data for Site 853.
Table 16. Vane shear strength data for Site 853.
Table 17. Summary of traveltimes, depths, and ages for Site 853 reflectors.

Chapter 19:

Table 1. Summary of coring operations at Site 854.
Table 2. Sample and depth constraints of nannofossil events for Site 854.
Table 3. Sample and depth constraints of radiolarian events for Site 854.
Table 5. Reversal boundary depths.
Table 6. Depths of top and bottom of each core in Site 854 composite depth section.
Table 7. Control points for sedimentation rates.
Table 8. Interstitial-water geochemical data for Hole 854B.
Table 9. Mean values of percentages of inorganic carbon and carbonate carbon for each sample analyzed at Site 854.
Table 11. Average values of sedimentary parameters calculated over time intervals defined by chronostratigraphic levels.
Table 12. Index properties data for Site 854.
Table 13. Vane shear strength data for Site 854.
Table 14. Thermal conductivity data for Site 854.
ACKNOWLEDGMENTS

Like all ODP legs, Leg 138 was the culmination of years of hard work and planning on the part of many people and committees. While we could never list all those involved in this process, our appreciation must be expressed to the volunteers who serve in the ODP planning structure, particularly the members of the Ocean History Panel, the Planning Committee, and the Central Equatorial Pacific Panel, whose support and input helped make the scientific dream a reality. The success of any scientific expedition, however, depends ultimately on the people who execute the scientific plan. The efficiency and professionalism displayed by the technicians and crew of the JOIDES Resolution far exceeded the expectations of those of us who conceived and planned Leg 138. The hard work of the drilling crew provided an opportunity to drill an extra site along the western transect of the leg, as well as the extra time needed to assure complete recovery of the sediment section at all sites drilled. The material recovered in excess of the original drilling plan will provide an important legacy for future paleoceanographic studies. It is difficult to fully express the appreciation felt by the Scientific Party for the efforts of the Resolution's crew.

During Leg 138, a number of ODP traditions were broken, changing many pre-cruise, shipboard, and post-cruise procedures. The willingness of all those involved to accommodate these changes was most appreciated and, in large part, was responsible for the success of the leg. Finally, the success of the leg reflects, in part, incredible luck. We recovered a record 5538 m of core and logged nine holes without an unplanned pipe trip and without the loss of a single core barrel, logging tool, or positioning beacon. Clearly, the gods of paleoceanography were on our side.