# 6. PETROLOGY OF IGNEOUS ROCKS AT MIDDLE VALLEY, JUAN DE FUCA RIDGE<sup>1</sup>

Debra S. Stakes<sup>2</sup> and James M. Franklin<sup>3</sup>

## ABSTRACT

Leg 139 of the Ocean Drilling Program drilled igneous rock at four sites in Middle Valley: Site 855 from the eastern boundary fault of the valley; Site 856 from late mafic sills that crosscut a major sulfide deposit; Site 857 from a series of highly altered sills of variable chemistry; and Site 858 from a topographic high beneath an active site of hydrothermal discharge. The oldest rocks are from Site 855. These are N-MORBs containing refractory megacrysts of olivine, calcic plagioclase and Cr-rich clinopyroxene. The rocks have  $[La/Ce]_n = 0.76 - 0.82$ , and  $[Ce/Yb]_n = 0.76 - 0.89$ . Igneous rocks from Site 856 are relatively fresh (but more altered normalized structure) from Site 856 are relatively fresh (but more altered structure) from Site 856 are relatively fresh (but more altered structure) from Site 856 are relatively fresh (but more altered structure) from Site 856 are relatively fresh (but more altered structure) from Site 856 are relatively fresh (but more altered structure) from Site 856 are relatively fresh (but more altered structure) from Site 856 are relatively from Site 856 are re than those from Site 855) young sills that postdate the main phase of axial magmatism and associated hydrothermal alteration. These are some of the most primitive compositions from the northern Juan de Fuca Ridge and contain refractory megacrysts of olivine and chromian spinel, with plagioclase of intermediate compositions (slightly more sodic than those for Site 855). The rock compositions are strongly depleted in LREE, with  $[La/Sm]_n = 0.28-0.29$  and  $[Ce/Yb]_n = 0.37-0.39$ . Samples from the chilled contacts with sediments have spurious trace element chemistry due to alteration. A topographic high drilled at Site 858 is composed of N-MORB and T-MORB lavas that must have erupted above the sediments, suggesting a relatively old age, near that of the basement. They are aphyric to slightly phyric with sodic plagioclase and magnesiochromite. Pseudomorphs of small mafic phenocrysts are inferred to be replacements of olivine. These rocks are relatively homogeneous with [Ce/Yb]<sub>n</sub>>1.3, suggesting a lower percentage of partial melting compared to the other sites. They have  $[La/Ce]_n = 0.84-0.94$  and a variably developed negative Eu anomaly. The sill complex drilled at Site 857 is extensively altered. Trace elements (especially REE) suggest that they are derived from heterogeneous mantle source regions, with some mixing. One source region is similar to that of Site 855 with [La/Ce]<sub>n</sub> <0.82 and  $[La/Yb]_n <1$ . The second source is similar to that of Site 858 with  $[La/Ce]_n >0.82$  and  $[La/Yb]_n >1$ . Although the age relationships among the sills are difficult to constrain, the former compositions tend to be the most altered, and likely of greater age. Thus the tectonic scenario is that a robust magma chamber formed the Site 855 basalts and fed the older sills at Site 857. Magmas constructed the Site 858 topographic high and basalts from a similar mantle source region fed some of the sills at Site 857. Sills of intermediate composition suggest mixing between these magmas, either in the source region or in crustal magma chambers. The Site 856 sills postdate the ridge jump to West Valley after the Middle Valley rift failed.

#### INTRODUCTION

The Middle Valley segment at the northern end of the Juan de Fuca Ridge is a deep extensional rift blanketed with 200-500 meters of Pleistocene turbiditic sediment. This area was selected to be drilled during Ocean Drilling Program Leg 139 to elucidate the processes and products of hydrothermal circulation in a sedimented ridge environment (Davis, Mottl, Fisher, et al., 1992). Although Middle Valley is hydrothermally active (there are hot springs and regions of high heat flow), a relatively continuous impermeable sediment cover over zero-age crust limits the recharge and discharge of hydrothermal fluid (Davis and Villinger, 1992). This sedimentary cover also obscures the volcanic morphology and possible relationship between hydrothermal activity and specific magmatic events. More fundamental is the impact and interaction of the sediment cover on the structure and lithology of the volcanic units, transforming what would be the shallow volcanic carapace of an unsedimented ridge into a series of crystalline sills intruded into the water-rich terrigenous sediments.

During this leg, holes were successfully drilled at four sites: (1) Site 855, near the eastern boundary fault; (2) Site 856, a topographic high with massive sulfide deposits; and a central area with (3) Site 857, high heat flow, and (4) Site 858, active hot springs (Davis, Mottl, Fisher, et al., 1992) (Fig. 1). The latter two sites are reentry sites and form a suite of drilled samples from an active spreading center hydrothermal zone. This paper describes the petrology of igneous rocks from these four sites. At Site 855, only a few samples of MORB-type basalt, thought to represent the basement to Middle Valley during its early rifting stages, were obtained. Site 856 has a few thin sills of primitive picritic basalt. Site 857 intersected numerous mafic sills. At Site 858, a constructional high built of moderately evolved basalt and basaltic andesitic was discovered beneath 250 m of altered sediments at the area of high-temperature active venting. Samples from each of these four suites are thus treated separately in the present report with the mineralogical data presented first, followed by chemical data. Although a detailed description of the hydrothermal alteration is not provided here (Stakes, unpubl. data), a summary of the relative impact of alteration on whole-rock chemical variation is provide for each site. The results of this study demonstrate the nature of primary magmatic variation in a ridge setting, where mafic sill complexes make up much of the volcanic stratigraphy and younger seamounts or primitive magmas provide evidence of variable melting conditions beneath a rift with waning magmatic activity.

## ANALYTICAL METHODS

## **Mineral Chemistry and Petrography**

The results presented here are based on detailed petrographic examination of over 200 polished thin sections followed by detailed electron microprobe studies. Microprobe facilities at the University of South Carolina (silicates, spinels) and the Geological Survey of Canada (sulfides, iron oxides) were used. Instruments at both institutions are fully automated Cameca SX-50 electron microprobe systems with on-line mineral formula calculations based on stoichiometry (spinel, plagioclase, olivine). All phases were analyzed with a focused beam (2–3 microns beam size), 15 kV accelerating voltage and ZAF on line correction. A minimum of four analyses was obtained for each grain including multiple analyses of cores and rims to determine zonation. Pyroxene formulas were calculated using the algorithms of Papike et al. (1974). A combination of artificial and mineral standards are used by each facility. Results of microprobe analyses are presented in Table

 <sup>&</sup>lt;sup>1</sup> Mottl, M.J., Davis, E.E., Fisher, A.T., and Slack, J.F. (Eds.), 1994. Proc. ODP, Sci. Results, 139: College Station, TX (Ocean Drilling Program).
<sup>2</sup> Monterey Bay Aquarium Research Institute, 160 Central Avenue, Pacific Grove, CA

<sup>&</sup>lt;sup>a</sup> Monterey Bay Aquarium Research Institute, 160 Central Avenue, Pacific Grove, CA 93950, U.S.A.

<sup>&</sup>lt;sup>3</sup> Geological Survey of Canada, 601 Booth Street, Ottawa, K1AOE8, Canada.



Figure 1. Regional map showing main tectonic features, after Davis and Villinger (1992).

3 (olivine), Table 4 (plagioclase), Table 5 (pyroxene), Table 6 (spinel), Table 7 (magnetite-ilmenite) and Table 8 (sulfide).

Detailed lithostratigraphy and estimates of recovery for all igneous rocks are presented in the Leg 139 *Initial Reports* volume (Davis, Mottl, Fisher, et al., 1992) and will only be summarized here. The petrographic descriptions presented here supplement the shipboard reconnaissance examination of thin sections, which includes sizes of phenocrysts and modal proportions.

#### **Major and Trace Element Analyses**

Major oxides and some minor and trace elements were determined by fused disk X-ray fluorescence (XRF) at the Geological Survey of Canada. Trace elements including Ag, Ba, Be, Co, Cr, Cu, Ni, Pb, Sc, Sr, V, Zn, and Zr were determined using Inductively-Coupled Plasma Emission Spectrometry (ICP-ES). The rare earth elements, as well as Y, were also determined using inductively-coupled Plasma Mass Spectrometry (ICP-MS), using a total dissolution method (perchloric, nitric, hydrofluoric acids). Combustion and wet chemical methods were used to determine FeO, total  $H_2O$  (= $H_2OT$ ), total CO<sub>2</sub> (= $CO_2T$ ) and total sulfur (=ST). Where listed, FeO is the wet chemistry determinations. Total iron (Fe<sub>2</sub>O<sub>3</sub>T) was determined by XRF assuming total oxidation on combustion. FeO is determined by titration and Fe<sub>2</sub>O<sub>3</sub> is calculated by difference. Values for the Mg number (=Mg/Mg+Fe<sup>+2</sup> on a molecular basis) are calculated using Fe<sup>+2</sup> = 0.9 (Fe Total) (=Mg#) and the value for Fe<sub>2</sub>O<sub>3</sub>T (=Mg#<sup>\*</sup>). Detection limits and precision data are available on request to JMF. Data from the shipboard analyses (Davis, Mottl, Fisher, et al., 1992) are also considered where appropriAlteration of the igneous rocks within an active hydrothermal area can substantially modify whole-rock compositions and obscure primary mineralogy. For each site, we provide an overview of the alteration of the rocks and the extent to which this alteration could have biased the chemical parameters used for igneous petrochemistry. Petrographic observations and oxygen isotope analyses are used to discriminate alteration. Total hydrous alteration can be inferred from total  $H_2O$ . That much of the alteration is nonoxidative can be inferred from the measured values for FeO. The impact of sulfide mineralization can be inferred from the values of total sulfur.

## **Oxygen Isotope Analyses**

Whole-rock powders from shipboard and land-based chemical analyses were analyzed for oxygen isotopes at the University of South Carolina (Table 2). Oxygen isotopes are one of the most sensitive indicators of seawater hydrothermal alteration and are a useful index of alteration. Twelve milligrams of each powder were weighed and dried in a 100°C furnace prior to loading onto the extraction line. Samples were reacted with ClF<sub>3</sub> to liberate pure oxygen gas, which was then converted to CO<sub>2</sub> by reaction with a hot carbon rod. The CO<sub>2</sub> was analyzed for its isotopic composition on a SIRA mass spectrometer. Results are reported in the standard  $\delta$ -notation.

## **REGIONAL SETTING**

The magmatic history of the northern Juan de Fuca ridge is complicated by ridge propagation and the influence of the adjoining Heck and Heckle Seamount Chain (Fig. 1). The former of these intersects the ridge at the Endeavour Seamount, where the southern end of West Valley and the northern end of the Endeavour Ridge form an overlapping spreading center separated by the Endeavour Offset (Fig. 1). Previous studies suggest that the West Valley segment is propagating to the south while the Endeavour Segment is undergoing ridge failure (Karsten et al., 1990). Middle Valley was the axis of active spreading for the northern Juan de Fuca Ridge prior to approximately 200,000 yr ago. Sometime in the last 200,000 yr and perhaps as recently as 20,000 to 10,000 yr ago, spreading was initiated in West Valley, 20 km to the west. Active spreading slowed in Middle Valley during this period, especially during the last 10,000 yr (Mottl, Davis, Fisher, et al., 1992). Middle Valley is now bounded by West Ridge and Middle Ridge, which are presumed to have been constructed at the Middle Valley spreading center when it was active. Lavas of primitive compositions have been previously described for West Ridge, whereas West Valley has both primitive (southern end) and evolved compositions (central and northern ends), consistent with ridge propagation to the south (Van Wagoner and Leybourne, 1991). Rocks from the West Valley segment include a large range of variation, explained by (1) heterogeneous mantle, (2) mixing of mantle source domains, and (3) mixing within crustal magma chambers (Van Wagoner and Leybourne, 1991). The Endeavour Segment, which is dominated by compositions slightly more enriched compared to mid-ocean ridge basalt, has secular compositional heterogeneity. The dominance of enriched compositions for the Endeavour Segment has been attributed to reduced melting of an enriched mantle beneath this region associated with the waning stages of this failing segment (Karsten et al., 1990) or due to recent introduction of enriched mantle (Michael et al., 1989). In contrast, the Heck and Heckle Seamount chains are highly depleted, have a restricted range of incompatible elements and are distinct from the adjacent West Valley (Leybourne and Van Wagoner, 1991). Rocks recovered by drilling in Middle Valley can thus be compared to the broadly variable compositions in adjacent tectonic domains to test the model of rift failure, temporal variability, and timing of mantle enrichment for the northern portion of the Juan de Fuca Ridge.

## Site 855

# Setting

At Site 855 igneous rock was recovered from the base of each of a series of four drillholes intended to transect the hanging wall and footwall of the eastern boundary fault. Each of these drillholes penetrated less than 20 m into basement; only a few pieces of fresh porphyritic basalt flows were recovered at the bottom of each hole (Davis, Mottl, Fisher, et al., 1992). Pieces recovered include abundant fresh glass and large phenocrysts of olivine, plagioclase, and clinopyroxene. Some samples have microcrystalline groundmass minerals with variolitic or skeletal textures. The groundmass minerals, in general, have more evolved compositions than the larger phenocrystic minerals. No spinel was observed in any of the samples. Virtually no sulfide was observed in these basalt samples. Fe-oxide was present as a discrete phase only in the more crystalline specimens. Alteration is limited to low-temperature phases such as smectite, celadonite and carbonate, except for rare replacement of olivine by talc or chlorite. The bulk oxygen isotopic values (7.0 to 8.0%) are higher than fresh MORB (5.8%; Ito et al., 1987) as a result of the presence of the low temperature phases. Plagioclase phenocrysts will also increase the  $\delta^{18}$ O of the powder.

#### Petrography And Mineral Chemistry

Olivine phenocrysts tend to be large and rounded to euhedral with rare normal compositional zonation. Some crystals are intergrown with megacrysts of plagioclase or clinopyroxenes to form glomerocrysts. The average composition is  $Fo_{83}$  with a range from  $Fo_{77-86}$  (Table 3).

Plagioclase phenocrysts from Hole 855A have compositions ranging from calcic cores of  $An_{88}$  to more sodic rims of  $An_{76}$  (Table 4). Phenocrysts from Hole 855D are slightly more sodic in composition, from  $An_{74-68}$ . The phenocrysts are euhedral columnar crystals of various sizes that are rarely embayed. Many of the large crystals have abundant inclusions of fresh glass. Most of the larger crystals have oscillatory zoning. Some groundmass plagioclases are skeletal with lantern shapes, but most are lathlike and in radiating aggregates with pyroxene. These small crystals have average compositions of  $An_{70-75}$ with some rims as sodic as  $An_{58}$  (Table 4).

Clinopyroxene phenocrysts are elongate and rounded, frequently twinned, and are included in glomerocrystic aggregates with plagioclase. The large megacrysts (1-4 mm) are relatively high in Al contents  $(>3.5\% \text{ Al}_2\text{O}_3)$  and Cr contents  $(>1\% \text{ Cr}_2\text{O}_3)$  (Table 5), characteristics typically associated with high pressure crystallization (Basaltic Volcanism Study Project, 1981). Some of these large crystals poikilitically enclose plagioclase crystals. Like some olivines, the clinopyroxene megacrysts display rims with smaller groundmass phases nucleating on the rounded grain boundaries. Smaller clinopyroxene microphenocrysts and rims on zoned crystals have higher Ti and Fe, lower Cr, and lower Al (Table 5) than the large megacrysts. Some smaller clinopyroxenes form "bowtie" intergrowths with laths of plagioclase, or are small barrel-shaped crystals.

#### **Major Elements**

The samples are all very fine-grained to cryptocrystalline or glassy basalt. Alteration is not pronounced and these samples have the lowest volatile contents of any of the suites examined in this study. The three samples analyzed as part of this study are similar to those reported in the Leg 139 Shipboard Report (Davis, Mottl, Fisher, et al., 1992). The major and trace elements (Table 1) indicate that the samples are moderately fractionated abyssal tholeiite. On the Mg-number variation diagrams (Fig. 2), the data are linearly distributed, as expected for frac-

| Table 1. Composition of | igneous rocks from   | Sites 855 8   | 56. and 858 | Middle | Valley area |
|-------------------------|----------------------|---------------|-------------|--------|-------------|
| subre in Composition of | "Bucons i ocus ii ou | Dures on of O |             | MINUM  | , and a cur |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                     | A. Maj                                                                                                      | jor elem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                                                                                                                                    |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Core, section,<br>interval (cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Depth<br>(mbsf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SiO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TiO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $Al_2O_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fe <sub>2</sub> O <sub>3</sub> <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fe <sub>2</sub> O <sub>3</sub>                                                                                      | FeO                                                                                                         | MnO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MgO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CaO                                                                                                                                                                                                                                   | Na <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | к <sub>2</sub> 0                                             | $H_2O^t$                                                                                                                                                           | CO21                                                         | P <sub>2</sub> O <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TOTAL                                                                                                                                                                                                                                                                                       | Mg#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mg#*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 139-855A-<br>8R-1, 18–20<br>9R-1, 46–48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 65.0<br>74.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 49.50<br>49.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.66<br>1.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15.70<br>15.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.80<br>9.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.80<br>2.70                                                                                                        | 7.20<br>6.50                                                                                                | 0.20<br>0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.82<br>7.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12.00<br>12.10                                                                                                                                                                                                                        | 2.40<br>2.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.16<br>0.12                                                 | 0.3<br>0.8                                                                                                                                                         | 0.30<br>0.30                                                 | 0.17<br>0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100.40<br>99.80                                                                                                                                                                                                                                                                             | 0.61<br>0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.59<br>0.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 139-855D-<br>6R-1, 40-42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 114.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 49.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.60                                                                                                                | 7.80                                                                                                        | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.90                                                                                                                                                                                                                                 | 2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.12                                                         | 0.7                                                                                                                                                                | 0.40                                                         | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 99.80                                                                                                                                                                                                                                                                                       | 0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 139-856A-<br>14X-1, 90-92<br>14X-1, 7-9<br>14X-CC, 9-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 115.4<br>115.9<br>114.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 47.70<br>47.60<br>47.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.84<br>0.83<br>0.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15.90<br>15.80<br>15.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.80<br>8.90<br>8.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.60<br>2.20<br>2.20                                                                                                | 5.60<br>6.00<br>6.00                                                                                        | 0.15<br>0.15<br>0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.20<br>11.40<br>12.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.60<br>11.70<br>10.50                                                                                                                                                                                                               | 1.90<br>1.90<br>1.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.05<br>0.05<br>0.05                                         | 2.6<br>2.3<br>3.1                                                                                                                                                  | 0.20<br>0.20<br>0.10                                         | 0.05<br>0.05<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100.70<br>100.50<br>100.10                                                                                                                                                                                                                                                                  | 0.74<br>0.74<br>0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.72<br>0.72<br>0.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 139-856B-<br>10H-1, 64-67<br>10H-1, 93-95<br>10H-2, 9-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 71.4<br>71.7<br>72.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 47.10<br>45.80<br>46.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.86<br>1.13<br>0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16.30<br>20.80<br>16.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.20<br>5.30<br>8.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.20<br>0.90<br>2.60                                                                                                | 5.40<br>4.00<br>5.00                                                                                        | 0.12<br>0.04<br>0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.40<br>8.37<br>11.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.60<br>6.56<br>9.23                                                                                                                                                                                                                  | 2.00<br>2.50<br>1.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.02<br>0.02<br>0.02                                         | 3.1<br>6.9<br>3.8                                                                                                                                                  | 0.40<br>0.10<br>0.30                                         | 0.06<br>0.04<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 98.90<br>98.20<br>98.40                                                                                                                                                                                                                                                                     | 0.75<br>0.78<br>0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.73<br>0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 139-857C-<br>59R-1, 131-133<br>59R-2, 62-64<br>59R-2, 94-96<br>59R-3, 40-42<br>59R-3, 417-119<br>59R-4, 117-119<br>59R-4, 111-113<br>60R-1, 32-34<br>60R-1, 132-34<br>60R-2, 12-14<br>60R-2, 12-14<br>60R-2, 12-14<br>60R-2, 28-30<br>61R-1, 4-6<br>62R-1, 20-22<br>62R-1, 20-22<br>62R-2, 20-52<br>62R-1, 20-22<br>62R-2, 20-52<br>62R-1, 20-22<br>62R-2, 20-52<br>62R-1, 20-22<br>62R-2, 20-52<br>62R-1, 20-22<br>62R-2, 20-52<br>62R-1, 20-22<br>62R-2, 20-52<br>62R-2, 20-52<br>62R-2, 20-52<br>62R-2, 20-52<br>62R-1, 20-22<br>62R-2, 20-52<br>62R-2, 20-52<br>62R-2, 20-52<br>62R-2, 20-52<br>62R-1, 20-22<br>62R-2, 20-52<br>62R-2, 20-52<br>62R-2, 20-52<br>62R-2, 20-52<br>62R-2, 20-52<br>62R-1, 20-22<br>62R-2, 20-52<br>62R-2, 20-52<br>62R-1, 20-22<br>62R-2, 20-52<br>62R-1, 20-22<br>62R-2, 20-52<br>62R-1, 20-22<br>62R-2, 20-52<br>62R-1, 20-22<br>62R-2, 20-52<br>62R-2, 20-52                                                                                                                                                                                                                                                                                                                                                                          | 472.4<br>473.2<br>473.5<br>69.9<br>475.2<br>475.6<br>481.1<br>481.6<br>482.5<br>482.5<br>482.5<br>482.5<br>482.5<br>500.2<br>500.2<br>500.6<br>502.0<br>510.1<br>510.4<br>510.4<br>510.4<br>510.4<br>510.4<br>510.4<br>510.4<br>510.5<br>510.4<br>510.4<br>510.4<br>510.4<br>510.4<br>510.5<br>510.4<br>510.5<br>510.4<br>510.5<br>510.4<br>510.5<br>510.4<br>510.5<br>510.4<br>510.5<br>510.4<br>510.5<br>510.4<br>510.5<br>510.4<br>510.5<br>510.4<br>510.5<br>510.4<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>510.5<br>5 | $\begin{array}{c} 50.00\\ 50.30\\ 49.80\\ 50.50\\ 50.50\\ 51.50\\ 47.50\\ 47.90\\ 47.90\\ 48.20\\ 48.00\\ 47.90\\ 48.60\\ 48.20\\ 47.90\\ 48.60\\ 47.90\\ 48.60\\ 47.90\\ 48.60\\ 47.90\\ 47.50\\ 48.92\\ 47.50\\ 47.50\\ 47.50\\ 47.50\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47.60\\ 47$ | $\begin{array}{c} 1.62\\ 1.62\\ 1.63\\ 1.53\\ 1.55\\ 1.58\\ 1.61\\ 1.61\\ 1.61\\ 1.57\\ 1.85\\ 1.51\\ 1.30\\ 0.92\\ 0.53\\ 1.51\\ 1.30\\ 1.36\\ 2.08\\ 2.05\\ 1.51\\ 1.51\\ 1.51\\ 1.51\\ 1.51\\ 1.52\\ 1.51\\ 1.52\\ 1.51\\ 1.52\\ 1.51\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\$ | $\begin{array}{c} 15.00\\ 15.30\\ 14.70\\ 14.70\\ 15.20\\ 15.20\\ 15.20\\ 15.00\\ 15.10\\ 15.40\\ 15.10\\ 15.40\\ 15.10\\ 15.60\\ 15.50\\ 15.50\\ 15.50\\ 15.50\\ 15.50\\ 15.50\\ 15.20\\ 15.70\\ 16.80\\ 15.70\\ 15.70\\ 15.70\\ 15.90\\ 15.70\\ 15.90\\ 15.90\\ 15.70\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15.90\\ 15$ | $\begin{array}{c} 9.40\\ 9.20\\ 9.20\\ 9.20\\ 9.20\\ 9.20\\ 9.20\\ 9.20\\ 9.00\\ 10.20\\ 9.70\\ 9.70\\ 9.70\\ 9.70\\ 9.70\\ 9.70\\ 9.40\\ 9.50\\ 9.50\\ 9.50\\ 9.50\\ 9.50\\ 9.50\\ 9.50\\ 9.50\\ 9.50\\ 9.50\\ 11.20\\ 0.20\\ 11.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 10.20\\ 1$ | 1.50<br>1.20<br>1.20<br>1.10<br>0.80<br>1.20<br>1.60<br>1.30<br>1.30<br>1.30<br>1.30<br>1.30<br>1.30<br>1.30<br>1.3 | 7.10<br>7.20<br>7.60<br>7.10<br>6.00<br>7.30<br>7.40<br>7.40<br>7.40<br>7.40<br>7.40<br>7.40<br>7.40<br>7.4 | $\begin{array}{c} 0.19\\ 0.17\\ 0.18\\ 0.17\\ 0.22\\ 0.22\\ 0.22\\ 0.24\\ 0.31\\ 0.25\\ 0.24\\ 0.31\\ 0.25\\ 0.24\\ 0.31\\ 0.25\\ 0.24\\ 0.21\\ 0.24\\ 0.30\\ 0.25\\ 0.33\\ 0.39\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\ 0.31\\$ | $\begin{array}{c} 7.52\\ 7.61\\ 7.93\\ 8.22\\ 8.05\\ 7.60\\ 10.40\\ 10.10\\ 10.10\\ 10.50\\ 10.10\\ 10.50\\ 10.10\\ 10.9\\ 7.59\\ 11.80\\ 9.27\\ 7.56\\ 8.29\\ 10.40\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\ 10.10\\$ | 12.20<br>12.10<br>12.40<br>12.40<br>11.90<br>12.10<br>12.40<br>12.30<br>9.20<br>8.19<br>5.60<br>9.80<br>9.80<br>9.80<br>9.81<br>10.30<br>9.23<br>12.20<br>9.31<br>11.30<br>9.23<br>11.60<br>11.60<br>11.40<br>11.60<br>10.00<br>10.10 | $\begin{array}{c} 2.30\\ 2.30\\ 2.20\\ 2.30\\ 2.40\\ 2.30\\ 2.30\\ 2.40\\ 2.30\\ 2.40\\ 2.20\\ 1.60\\ 1.20\\ 2.00\\ 1.60\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\$ | 0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02 | $\begin{array}{c} 1.7\\ 1.8\\ 2.0\\ 1.8\\ 2.1\\ 1.6\\ 2.0\\ 2.1\\ 3.9\\ 6.2\\ 3.8\\ 3.4\\ 2.7\\ 2.1\\ 4.3\\ 3.1\\ 2.9\\ 3.9\\ 2.8\\ 2.5\\ 3.6\\ 3.9\\ \end{array}$ | 0.10<br>0.10<br>0.20<br>0.20<br>0.20<br>0.10<br>0.10<br>0.10 | $\begin{array}{c} 0.18\\ 0.18\\ 0.18\\ 0.18\\ 0.18\\ 0.16\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.16\\ 0.12\\ 0.13\\ 0.14\\ 0.12\\ 0.13\\ 0.14\\ 0.12\\ 0.13\\ 0.14\\ 0.16\\ 0.15\\ 0.17\\ 0.18\\ 0.14 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 100.00\\ 100.20\\ 100.50\\ 99.40\\ 99.90\\ 100.60\\ 99.70\\ 100.30\\ 99.90\\ 100.30\\ 99.90\\ 99.70\\ 96.80\\ 97.60\\ 99.70\\ 99.40\\ 99.70\\ 99.80\\ 99.70\\ 100.00\\ 100.70\\ 99.80\\ 99.50\\ 100.70\\ 99.80\\ 99.50\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ \end{array}$ | $\begin{array}{c} 0.64\\ 0.65\\ 0.64\\ 0.67\\ 0.68\\ 0.68\\ 0.62\\ 0.72\\ 0.66\\ 0.62\\ 0.72\\ 0.69\\ 0.78\\ 0.68\\ 0.59\\ 0.78\\ 0.68\\ 0.67\\ 0.62\\ 0.61\\ 0.66\\ 0.66\\ 0.66\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\$ | $\begin{array}{c} 0.61\\ 0.62\\ 0.61\\ 0.64\\ 0.65\\ 0.66\\ 0.63\\ 0.60\\ 0.63\\ 0.60\\ 0.63\\ 0.60\\ 0.62\\ 0.64\\ 0.64\\ 0.64\\ 0.64\\ 0.64\\ 0.64\\ 0.64\\ 0.64\\ 0.60\\ 0.62\\ 0.62\\ 0.62\\ 0.66\\ 0.62\\ 0.66\\ 0.62\\ 0.66\\ 0.66\\ 0.62\\ 0.66\\ 0.66\\ 0.62\\ 0.66\\ 0.66\\ 0.62\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\$ |
| 3R-1, 117-120<br>4R-1, 138-140<br>8R-1, 96-98<br>12R-1, 88-90<br>24R-1, 115-117<br>24R-2, 64-66<br>24R-2, 114-116<br>24R-3, 24-26<br>25R-1, 64-66<br>20R-1, 76-78<br>32R-1, 58-61<br>30R-1, 74-76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 600.5<br>610.3<br>648.3<br>686.8<br>802.4<br>803.3<br>804.3<br>811.4<br>821.1<br>878.7<br>917.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 38.40<br>37.40<br>50.10<br>43.70<br>49.70<br>48.10<br>48.30<br>50.40<br>49.50<br>49.50<br>49.20<br>49.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.73<br>1.11<br>2.27<br>1.44<br>1.40<br>1.41<br>1.38<br>1.37<br>1.39<br>1.38<br>1.96<br>2.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18.50<br>18.20<br>13.70<br>16.60<br>15.80<br>15.90<br>15.40<br>15.60<br>15.80<br>15.40<br>14.80<br>13.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15.30<br>18.00<br>11.70<br>11.60<br>9.70<br>8.80<br>8.50<br>8.40<br>9.40<br>9.50<br>11.20<br>12.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.40<br>1.50<br>1.90<br>1.70<br>2.70<br>1.50<br>2.50<br>1.80<br>2.90                                                | 11.60<br>9.20<br>8.70<br>7.20<br>5.50<br>6.20<br>6.20<br>8.50<br>8.50                                       | 0.35<br>0.45<br>0.24<br>0.35<br>0.21<br>0.22<br>0.20<br>0.18<br>0.17<br>0.20<br>0.23<br>0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12.30<br>12.80<br>6.74<br>14.20<br>7.83<br>8.07<br>8.15<br>7.57<br>7.77<br>7.64<br>7.38<br>6.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.08<br>4.49<br>10.90<br>3.92<br>11.60<br>14.10<br>14.30<br>12.10<br>12.10<br>12.00<br>11.90<br>11.50                                                                                                                                 | 1.30<br>0.80<br>2.20<br>2.20<br>2.30<br>2.10<br>2.50<br>2.30<br>2.40<br>2.30<br>2.40<br>2.30<br>2.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02 | 6.9<br>2.2<br>8.4<br>1.8<br>1.6<br>1.7<br>2.0<br>2.0<br>2.2                                                                                                        | 0.10<br>0.10<br>0.10<br>0.10<br>0.10                         | $\begin{array}{c} 0.15\\ 0.08\\ 0.20\\ 0.13\\ 0.15\\ 0.15\\ 0.15\\ 0.14\\ 0.14\\ 0.15\\ 0.19\\ 0.17\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100.40<br>95.60<br>100.00<br>100.40<br>100.50<br>100.30<br>99.80<br>100.40<br>100.10<br>99.40<br>100.60<br>100.20                                                                                                                                                                           | $\begin{array}{c} 0.64 \\ 0.61 \\ 0.56 \\ 0.73 \\ 0.64 \\ 0.66 \\ 0.65 \\ 0.64 \\ 0.59 \\ 0.54 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.61<br>0.58<br>0.53<br>0.71<br>0.62<br>0.64<br>0.66<br>0.64<br>0.62<br>0.61<br>0.57<br>0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 139-858F-<br>25R-1, 118-119<br>26R-1, 42-44<br>27R-1, 42-43<br>29R-1, 63-65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 250.1<br>259.0<br>268.2<br>287.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45.10<br>48.30<br>48.90<br>48.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.76<br>1.52<br>1.55<br>1.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17.30<br>15.50<br>16.30<br>15.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.30<br>9.30<br>9.70<br>8.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.90<br>2.60<br>1.50                                                                                                | 6.70<br>6.40<br>6.50                                                                                        | 0.21<br>0.14<br>0.15<br>0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.00<br>7.65<br>7.50<br>8.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.03<br>12.40<br>12.80<br>10.80                                                                                                                                                                                                       | 4.30<br>2.50<br>2.80<br>3.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.02<br>0.02<br>0.02<br>0.02                                 | 2.3<br>1.4<br>2.5                                                                                                                                                  | 0.20<br>0.20<br>0.20<br>0.10                                 | 0.18<br>0.17<br>0.17<br>0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 96.40<br>99.80<br>101.00<br>100.10                                                                                                                                                                                                                                                          | 0.70<br>0.64<br>0.63<br>0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.68<br>0.62<br>0.60<br>0.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\begin{array}{c} 139\text{-}858G\text{-}\\ 1R-1, 37\text{-}39\\ 2R-1, 53\text{-}55\\ 3R-1, 24\text{-}25\\ 4R-1, 26\text{-}28\\ 4R-1, 26\text{-}28\\ 4R-1, 71\text{-}73\\ 8R-1, 36\text{-}38\\ 7R-1, 33\text{-}35\\ 6R-1, 29\text{-}32\\ 5R-1, 16\text{-}18\\ 10R-1, 104\text{-}106\\ 11R-1, 13\text{-}15\\ 12R-1, 48\text{-}50\\ 13R-1, 9\text{-}11\\ 13R-1, 25\text{-}27\\ 13R-1, 9\text{-}11\\ 13R-1, 21\text{-}3\\ 15R-1, 31\text{-}3\\ 18R-1, 31\text{-}3\\ $ | 277.2<br>287.0<br>296.3<br>306.1<br>306.5<br>344.9<br>335.1<br>325.4<br>315.6<br>365.2<br>365.2<br>365.2<br>364.7<br>394.0<br>394.0<br>394.0<br>394.2<br>394.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 47.70\\ 48.60\\ 49.60\\ 49.60\\ 49.10\\ 48.50\\ 49.10\\ 48.90\\ 47.80\\ 47.40\\ 48.40\\ 48.40\\ 48.40\\ 48.40\\ 46.90\\ 46.90\\ 48.20\\ 47.90\\ 48.40\\ 47.90\\ 48.40\\ 47.90\\ 48.40\\ 47.90\\ 48.40\\ 49.40\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.60<br>1.51<br>1.54<br>1.54<br>1.52<br>1.59<br>1.54<br>1.50<br>1.58<br>1.53<br>1.60<br>1.57<br>1.56<br>1.57<br>1.56<br>1.57<br>1.56<br>1.57<br>1.56<br>1.57<br>1.56<br>1.57<br>1.56<br>1.57<br>1.56<br>1.57<br>1.56<br>1.57<br>1.56<br>1.57<br>1.56<br>1.57<br>1.56<br>1.57<br>1.56<br>1.57<br>1.58<br>1.57<br>1.56<br>1.57<br>1.56<br>1.57<br>1.56<br>1.57<br>1.56<br>1.57<br>1.56<br>1.57<br>1.56<br>1.57<br>1.56<br>1.57<br>1.56<br>1.57<br>1.56<br>1.57<br>1.56<br>1.57<br>1.56<br>1.57<br>1.56<br>1.57<br>1.56<br>1.57<br>1.56<br>1.57<br>1.56<br>1.57<br>1.56<br>1.57<br>1.56<br>1.57<br>1.56<br>1.57<br>1.56<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58<br>1.58                                                                                                                                                                                                                                                                                                                                                                   | 16.10<br>15.20<br>15.50<br>15.50<br>15.50<br>15.30<br>15.30<br>15.80<br>15.80<br>15.80<br>15.20<br>15.50<br>15.50<br>16.00<br>15.50<br>16.40<br>14.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.60<br>8.90<br>9.20<br>9.30<br>8.90<br>9.30<br>10.50<br>9.10<br>8.90<br>9.70<br>8.90<br>9.70<br>8.90<br>9.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.80<br>2.60<br>2.10<br>1.60<br>1.70<br>1.40<br>1.40<br>1.60<br>1.30<br>1.60<br>2.20<br>2.10                        | 7.00<br>5.70<br>6.40<br>6.80<br>6.50<br>6.80<br>6.60<br>7.50<br>7.30<br>6.00<br>6.80                        | 0.15<br>0.17<br>0.16<br>0.15<br>0.16<br>0.19<br>0.21<br>0.22<br>0.15<br>0.16<br>0.15<br>0.16<br>0.15<br>0.16<br>0.15<br>0.15<br>0.16<br>0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.50<br>7.72<br>7.94<br>7.73<br>7.90<br>8.15<br>8.70<br>7.52<br>7.90<br>7.52<br>7.90<br>7.89<br>7.31<br>7.53<br>7.58<br>7.30<br>7.01<br>8.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.10<br>12.60<br>12.10<br>12.50<br>13.00<br>12.30<br>12.40<br>12.20<br>12.40<br>12.20<br>12.60<br>12.90<br>12.70<br>12.30<br>12.80<br>13.00<br>13.20<br>13.20                                                                        | 2.90<br>2.80<br>3.10<br>3.00<br>2.60<br>3.30<br>2.70<br>2.50<br>2.80<br>3.00<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>3.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02 | 2.8<br>2.3<br>2.4<br>2.1<br>1.8<br>2.0<br>2.4<br>2.4<br>2.4<br>1.5<br>1.6<br>2.1<br>1.7<br>2.2<br>1.8                                                              | 0.10<br>0.20<br>0.20<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10 | $\begin{array}{c} 0.18\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.16\\ 0.16\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.18\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\$ | 100.80<br>99.70<br>100.80<br>101.10<br>100.10<br>100.10<br>100.10<br>99.80<br>99.00<br>100.30<br>99.70<br>99.70<br>99.70<br>99.50<br>100.30<br>99.50                                                                                                                                        | $\begin{array}{c} 0.66\\ 0.66\\ 0.65\\ 0.65\\ 0.65\\ 0.67\\ 0.68\\ 0.61\\ 0.64\\ 0.64\\ 0.59\\ 0.63\\ 0.63\\ 0.63\\ 0.64\\ 0.64\\ 0.64\\ 0.64\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.64<br>0.63<br>0.63<br>0.62<br>0.63<br>0.64<br>0.69<br>0.62<br>0.63<br>0.62<br>0.63<br>0.62<br>0.57<br>0.61<br>0.61<br>0.62<br>0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Notes:  $Fe_2O_3t = total$  Fe as  $Fe^{3+}$  assuming total oxidation on combustion.  $Mg# = Mg/Mg + Fe^{2+}$  on a molecular basis where where  $Fe^{2+} = 0.9$  (Fe total).  $Mg#^* = Mg#$  where  $Fe^{2+} = Fe$  total. All analyses by fused disk X-ray fluorescence except  $H_2O$  and  $CO_2$  by combustion.

tionation. On a CaO/Al<sub>2</sub>O<sub>3</sub> vs. Mg# diagram, they fall within the range of the Endeavour Segment samples (Davis, Mottl, Fisher, et al., 1992).

## **Trace Elements**

Basalts can be classified as enriched mid-ocean ridge basalt (E-MORB), transitional mid-ocean ridge basalt (T-MORB) or normal

| Table 1 (co | ntinued). |
|-------------|-----------|
|-------------|-----------|

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                  |                                                                                                                                                                                    |                                                                                                                                                                                   |                                                                                                                                                                                                               |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                              | _                                                                                                                                                                                     |                |                                                                                                                            | B.N                                                                             | linor ar                                                                                                                                                                          | nd trace                                                                                                                                                                                                                                                                                                                                                  | elen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nents                                                                                                                                                                               | 6                                                                  |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                     |                                                                                                                                |                                                                                                                                                                                |                                                                                                                                                                     |                                                                                                                                                                                         |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Core, section,<br>interval (cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ba                                                                                                                                                               | Be                                                                                                                                                                                 | Co                                                                                                                                                                                | Cr                                                                                                                                                                                                            | Cu                                                                                                                                                                                                                                         | La                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nb                                                                                                                           | Ni                                                                                                                                                                                    | Pb             | Sc                                                                                                                         | Sr                                                                              | v                                                                                                                                                                                 | Y                                                                                                                                                                                                                                                                                                                                                         | Yb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Zn                                                                                                                                                                                  | Zr                                                                 | Ce                                                                                                                                                                     | Dy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Eu                                                                                                                                                                                                                                  | Gd                                                                                                                             | Но                                                                                                                                                                             | Nd                                                                                                                                                                  | Sm                                                                                                                                                                                      | Tm                                                                                                                                | Zr/Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [La/Ce] <sub>n</sub>                                                                                                                                                                                                                                                                                                   | [La/Sm] <sub>a</sub>                                                                                                                                                                                                                                                                                  |
| 139-855A-<br>8R-1, 18-20<br>9R-1, 46-48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.08<br>0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40<br>80                                                                                                                                                         | 0.6<br>0.6                                                                                                                                                                         | 44<br>43                                                                                                                                                                          | 240<br>230                                                                                                                                                                                                    | 68<br>68                                                                                                                                                                                                                                   | 3.8<br>3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13<br>13                                                                                                                     | 140<br>100                                                                                                                                                                            |                | 34<br>37                                                                                                                   | 110<br>140                                                                      | 280<br>260                                                                                                                                                                        | 40<br>32                                                                                                                                                                                                                                                                                                                                                  | 4.4<br>3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 98<br>81                                                                                                                                                                            | 110<br>87                                                          | 13<br>12                                                                                                                                                               | 6.7<br>5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.1<br>3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.4<br>1.3                                                                                                                                                                                                                          | 6.0<br>5.0                                                                                                                     | 1.5<br>1.3                                                                                                                                                                     | 12<br>10                                                                                                                                                            | 4.4<br>3.6                                                                                                                                                                              | 0.6<br>0.5                                                                                                                        | 0.39<br>0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.76<br>0.83                                                                                                                                                                                                                                                                                                           | 0.54<br>0.66                                                                                                                                                                                                                                                                                          |
| 139-855D-<br>6R-1, 40-42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40                                                                                                                                                               | 0.6                                                                                                                                                                                | 43                                                                                                                                                                                | 200                                                                                                                                                                                                           | 64                                                                                                                                                                                                                                         | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12                                                                                                                           | 77                                                                                                                                                                                    |                | 40                                                                                                                         | 130                                                                             | 290                                                                                                                                                                               | 36                                                                                                                                                                                                                                                                                                                                                        | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 87                                                                                                                                                                                  | 96                                                                 | 12                                                                                                                                                                     | 6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.4                                                                                                                                                                                                                                 | 5.6                                                                                                                            | 1.4                                                                                                                                                                            | 11                                                                                                                                                                  | 3.8                                                                                                                                                                                     | 0.6                                                                                                                               | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.76                                                                                                                                                                                                                                                                                                                   | 0.58                                                                                                                                                                                                                                                                                                  |
| 139-856A-<br>14X-1, 90-92<br>14X-1, 7-9<br>14X-CC, 9-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.09<br>0.14<br>0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60<br>50<br>30                                                                                                                                                   |                                                                                                                                                                                    | 42<br>42<br>49                                                                                                                                                                    | 560<br>550<br>610                                                                                                                                                                                             | 69<br>66<br>74                                                                                                                                                                                                                             | 0.9<br>0.9<br>0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15<br>13<br>11                                                                                                               | 250<br>240<br>300                                                                                                                                                                     |                | 28<br>28<br>28                                                                                                             | 63<br>64<br>60                                                                  | 170<br>170<br>170                                                                                                                                                                 | 21<br>22<br>21                                                                                                                                                                                                                                                                                                                                            | 2.4<br>2.3<br>2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 80<br>69<br>62                                                                                                                                                                      | 33<br>34<br>31                                                     | 3.4<br>3.5<br>3.4                                                                                                                                                      | 3.7<br>3.6<br>3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.2<br>2.3<br>2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.8<br>0.8<br>0.8                                                                                                                                                                                                                   | 3.2<br>3.1<br>3.0                                                                                                              | 0.8<br>0.8<br>0.8                                                                                                                                                              | 4.5<br>4.6<br>4.5                                                                                                                                                   | 1.9<br>2.0<br>1.9                                                                                                                                                                       | 0.4<br>0.3<br>0.3                                                                                                                 | 0.19<br>0.20<br>0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.65<br>0.70<br>0.67                                                                                                                                                                                                                                                                                                   | 0.28<br>0.30<br>0.29                                                                                                                                                                                                                                                                                  |
| 139-856B-<br>10H-1, 64-67<br>10H-1, 93-95<br>10H-2, 9-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.12<br>0.75<br>0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60<br>80<br>60                                                                                                                                                   | 0.5                                                                                                                                                                                | 43<br>62<br>42                                                                                                                                                                    | 540<br>810<br>580                                                                                                                                                                                             | 73<br>180<br>66                                                                                                                                                                                                                            | 1.2<br>1.6<br>0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11<br>5<br>5                                                                                                                 | 260<br>380<br>260                                                                                                                                                                     | 22<br>22       | 28<br>37<br>27                                                                                                             | 77<br>88<br>69                                                                  | 170<br>220<br>160                                                                                                                                                                 | 21<br>8.6<br>21                                                                                                                                                                                                                                                                                                                                           | 2.4<br>1.7<br>2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 87<br>62<br>75                                                                                                                                                                      | 35<br>46<br>32                                                     | 3.9<br>3.2<br>3.4                                                                                                                                                      | 3.6<br>2.0<br>3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.3<br>1.4<br>2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9<br>0.6<br>0.8                                                                                                                                                                                                                   | 3.3<br>1.6<br>3.0                                                                                                              | 0.9<br>0.5<br>0.8                                                                                                                                                              | 4.7<br>2.6<br>4.6                                                                                                                                                   | 2.0<br>1.1<br>1.9                                                                                                                                                                       | 0.4<br>0.2<br>0.3                                                                                                                 | 0.21<br>0.21<br>0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.80<br>1.30<br>0.69                                                                                                                                                                                                                                                                                                   | 0.38<br>0.92<br>0.30                                                                                                                                                                                                                                                                                  |
| $\begin{array}{l} 139-857C-\\ 59R-1, 131-133\\ 59R-2, 62-64\\ 59R-2, 94-96\\ 59R-3, 40-42\\ 69R-3, 172-17\\ 60R-1, 173-175\\ 60R-2, 12-14\\ 60R-1, 73-77\\ 60R-2, 12-14\\ 60R-2, 28-30\\ 61R-1, 32-34\\ 61R-2, 28-30\\ 61R-1, 32-34\\ 61R-2, 28-30\\ 61R-1, 20-22\\ 62R-2, 7-9\\ 62R-2, 7-9\\ 62R-2, 7-9\\ 62R-2, 7-9\\ 62R-2, 7-9\\ 62R-2, 7-9\\ 62R-1, 67-69\\ 62R-2, 7-9\\ 62R-2, 7-9\\ 62R-2, 7-9\\ 62R-1, 13-15\\ 64R-1, 112-114\\ 64R-2, 74-76\\ 66R-1, 94-96\\ 66R-1, 94-96\\ 66R-1, 122-124\\ 67R-1, 73-75\\ 68R-1, 12-14\\ 68R-1, 90-92\\ 68R-2, 28-30\\ 68R-2, 72-74\\ 68R-3, 11-13\\ \end{array}$ | $\begin{array}{c} 0.07\\ 0.039\\ 0.10\\ 0.18\\ 0.03\\ 0.02\\ 0.44\\ 2.65\\ 1.59\\ 0.63\\ 2.28\\ 0.12\\ 1.79\\ 0.90\\ 0.13\\ 1.33\\ 0.31\\ 0.90\\ 0.07\\ 0.25\\ 1.58\\ 0.31\\ 0.01\\ 0.02\\ 0.01\\ 0.08\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.22\\ 0.01\\ 0.01\\ 0.02\\ 0.01\\ 0.02\\ 0.01\\ 0.02\\ 0.01\\ 0.02\\ 0.01\\ 0.02\\ 0.01\\ 0.02\\ 0.01\\ 0.02\\ 0.01\\ 0.02\\ 0.01\\ 0.02\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01$ | $\begin{array}{c} 30\\ 60\\ 80\\ 60\\ 30\\ 70\\ 60\\ 50\\ 70\\ 60\\ 50\\ 70\\ 80\\ 70\\ 70\\ 80\\ 50\\ 50\\ 50\\ 60\\ 80\\ 80\\ 50\\ 60\\ 80\\ 15\\ \end{array}$ | $\begin{array}{c} 0.7\\ 0.8\\ 0.8\\ 0.8\\ 0.7\\ 0.7\\ 0.8\\ 0.7\\ 0.8\\ 0.7\\ 0.8\\ 0.7\\ 1.2\\ 0.8\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.7\\ 0.7\\ 0.7\\ 0.7\\ 0.7\\ 0.7\\ 0.7\\ 0.7$ | $\begin{array}{c} 377\\ 322\\ 333\\ 322\\ 266\\ 312\\ 377\\ 366\\ 318\\ 322\\ 466\\ 322\\ 377\\ 356\\ 300\\ 399\\ 336\\ 300\\ 399\\ 336\\ 355\\ 333\\ 366\\ 366\\ 366\end{array}$ | 280<br>270<br>260<br>280<br>270<br>260<br>270<br>250<br>230<br>310<br>230<br>310<br>300<br>340<br>300<br>340<br>280<br>280<br>280<br>280<br>280<br>280<br>250<br>250<br>250<br>250<br>250<br>250<br>250<br>25 | 81<br>58<br>54<br>67<br>53<br>80<br>120<br>41<br>84<br>91<br>50<br>14<br>37<br>5<br>5<br>7<br>9<br>7<br>8<br>3<br>130<br>120<br>83<br>130<br>120<br>130<br>120<br>130<br>120<br>120<br>120<br>120<br>120<br>120<br>120<br>120<br>120<br>12 | $\begin{array}{c} 6.1\\ 6.4\\ 6\\ 5.7\\ 5.7\\ 5.8\\ 6\\ 6.2\\ 3.8\\ 5.8\\ 6.4\\ 1.7\\ 3.7\\ 4.1\\ 4.5\\ 4.1\\ 4.3\\ 9.1\\ 8.9\\ 5.5\\ 6.6\\ 5.7\\ 6.3\\ 5.4\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c}13\\14\\13\\5\\12\\14\\11\\12\\5\\14\\5\\11\\5\\5\\5\\14\\13\\11\\15\\20\\16\\12\\14\\5\\19\\10\end{array}$ | 766<br>755<br>699<br>844<br>811<br>799<br>73<br>72<br>755<br>851<br>7990<br>844<br>744<br>83<br>91<br>933<br>844<br>120<br>93<br>845<br>866<br>120<br>98<br>1000<br>100<br>96<br>1100 | 70<br>33<br>23 | $\begin{array}{c} 37\\ 37\\ 37\\ 340\\ 34\\ 36\\ 37\\ 37\\ 37\\ 37\\ 37\\ 37\\ 37\\ 37\\ 37\\ 37$                          | 2100<br>2200<br>2000<br>2100<br>2100<br>2100<br>2100<br>2100                    | 260<br>250<br>250<br>220<br>230<br>240<br>240<br>240<br>240<br>240<br>240<br>220<br>180<br>220<br>210<br>240<br>220<br>220<br>250<br>250<br>250<br>250<br>250<br>250<br>250<br>25 | 32<br>31<br>32<br>29<br>30<br>30<br>31<br>31<br>30<br>26<br>23<br>18<br>29<br>27<br>30<br>26<br>28<br>30<br>9<br>27<br>30<br>26<br>28<br>30<br>37<br>132<br>23<br>134<br>32<br>31<br>34<br>35<br>31<br>32<br>35<br>37<br>30<br>30<br>30<br>30<br>31<br>30<br>30<br>30<br>31<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30 | $\begin{array}{c} 3.2\\ 3.3\\ 3.4\\ 2.9\\ 3.1\\ 3.4\\ 3.2\\ 2.9\\ 3.4\\ 3.2\\ 2.9\\ 3.4\\ 3.2\\ 2.9\\ 3.1\\ 2.4\\ 2.0\\ 3.3\\ 3.4\\ 4.3\\ 3.6\\ 3.4\\ 3.8\\ 3.4\\ 3.8\\ 3.4\\ 3.8\\ 3.4\\ 3.8\\ 3.4\\ 3.8\\ 3.4\\ 3.8\\ 3.4\\ 3.8\\ 3.4\\ 3.8\\ 3.4\\ 3.8\\ 3.8\\ 3.4\\ 3.8\\ 3.8\\ 3.8\\ 3.4\\ 3.8\\ 3.8\\ 3.8\\ 3.8\\ 3.8\\ 3.8\\ 3.8\\ 3.8$                                                                                                                                                                                                                                                                                                                                                                                                       | 69<br>74<br>79<br>78<br>64<br>59<br>71<br>48<br>350<br>52<br>77<br>86<br>180<br>89<br>9140<br>87<br>84<br>110<br>74<br>110<br>100<br>99<br>80<br>78<br>100<br>80<br>89<br>71<br>140 | 130<br>130<br>130<br>130<br>130<br>130<br>130<br>130<br>130<br>130 | $\begin{array}{c} 18\\ 18\\ 19\\ 19\\ 17\\ 17\\ 18\\ 18\\ 18\\ 18\\ 18\\ 13\\ 11\\ 10\\ 6.1\\ 12\\ 14\\ 12\\ 13\\ 13\\ 24\\ 15\\ 17\\ 16\\ 17\\ 18\\ 15\\ \end{array}$ | 5.5<br>5.66<br>5.9<br>5.1<br>5.3<br>5.7<br>5.5<br>5.7<br>5.66<br>5.55<br>4.7<br>5.56<br>5.55<br>4.7<br>5.66<br>5.55<br>4.7<br>5.66<br>4.7<br>5.66<br>5.55<br>5.75<br>5.75<br>5.75<br>5.66<br>5.55<br>5.75<br>5.75<br>5.66<br>5.55<br>5.75<br>5.75<br>5.66<br>5.55<br>5.75<br>5.66<br>5.55<br>5.75<br>5.66<br>5.55<br>5.75<br>5.66<br>5.55<br>5.75<br>5.66<br>5.55<br>5.75<br>5.66<br>5.55<br>5.75<br>5.66<br>5.55<br>5.75<br>5.66<br>6.23<br>5.75<br>5.66<br>6.23<br>5.75<br>5.66<br>6.23<br>5.75<br>5.66<br>6.23<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.66<br>6.23<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75 | $\begin{array}{c} 3.3\\ 3.2\\ 3.3\\ 3.4\\ 3.1\\ 3.3\\ 2.3\\ 3.3\\ 2.8\\ 3.3\\ 2.7\\ 2.3\\ 3.2\\ 3.3\\ 2.8\\ 3.3\\ 2.8\\ 3.3\\ 2.8\\ 3.3\\ 2.8\\ 3.3\\ 2.8\\ 3.3\\ 2.8\\ 3.3\\ 2.8\\ 3.3\\ 2.8\\ 3.3\\ 2.8\\ 3.3\\ 2.8\\ 3.4\\ 3.5\\ 3.4\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.2\\ 3.8\\ 3.8\\ 3.8\\ 3.8\\ 3.8\\ 3.8\\ 3.8\\ 3.8$ | $\begin{array}{c} 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\$                                                                                                                                                                  | 5.55<br>5.58<br>5.12555<br>5.5555665554.755565554.7555665554.75554465.1165765.14553.90555465554.755545555455554555555555555555 | $\begin{array}{c} 1.2\\ 1.2\\ 1.3\\ 1.3\\ 1.1\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2$                                                                                       | $\begin{matrix} 14\\14\\15\\14\\13\\13\\14\\14\\14\\14\\14\\14\\14\\14\\12\\11\\10\\8.4\\6\\11\\10\\12\\10\\11\\11\\17\\17\\12\\12\\12\\12\\13\\14\\11\end{matrix}$ | $\begin{array}{r} 4.2\\ 4.2\\ 4.2\\ 4.1\\ 3.8\\ 4.0\\ 4.1\\ 4.1\\ 4.2\\ 4.1\\ 3.6\\ 3.7\\ 3.3\\ 2.7\\ 3.6\\ 3.4\\ 3.9\\ 3.2\\ 3.6\\ 3.7\\ 5.1\\ 3.6\\ 3.8\\ 3.7\\ 4.4\\ 3.7\end{array}$ | $\begin{array}{c} 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\$                                                                | $\begin{array}{c} 0.50\\ 0.52\\ 0.52\\ 0.55\\ 0.57\\ 0.54\\ 0.54\\ 0.54\\ 0.54\\ 0.54\\ 0.54\\ 0.54\\ 0.54\\ 0.54\\ 0.54\\ 0.41\\ 0.42\\ 0.40\\ 0.50\\ 0.41\\ 0.42\\ 0.40\\ 0.50\\ 0.41\\ 0.42\\ 0.40\\ 0.37\\ 0.39\\ 0.41\\ 0.46\\ 0.37\\ 0.37\\ 0.46\\ 0.37\\ 0.46\\ 0.37\\ 0.46\\ 0.37\\ 0.46\\ 0.58\\ 0.46\\ 0.37\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\ 0.58\\$ | $\begin{array}{c} 0.88\\ 0.93\\ 0.87\\ 0.87\\ 0.87\\ 0.87\\ 0.93\\ 0.89\\ 0.84\\ 0.87\\ 0.95\\ 0.76\\ 0.82\\ 0.89\\ 0.73\\ 0.89\\ 0.89\\ 0.89\\ 0.89\\ 0.89\\ 0.89\\ 0.89\\ 0.89\\ 0.89\\ 0.89\\ 0.89\\ 0.89\\ 0.89\\ 0.89\\ 0.89\\ 0.99\\ 0.91\\ 0.93\\ 0.97\\ 0.96\\ 1.01\\ 0.93\\ 0.97\\ 0.99\\ 0.94\\ \end{array}$ | $\begin{array}{c} 0.91\\ 0.96\\ 0.96\\ 0.92\\ 0.94\\ 0.90\\ 1.01\\ 0.89\\ 0.90\\ 0.90\\ 1.01\\ 0.89\\ 0.90\\ 0.92\\ 1.08\\ 0.65\\ 0.67\\ 0.51\\ 0.55\\ 0.67\\ 0.51\\ 0.55\\ 0.76\\ 0.73\\ 0.81\\ 0.73\\ 0.81\\ 0.73\\ 0.81\\ 1.10\\ 0.96\\ 1.09\\ 0.97\\ 0.99\\ 0.97\\ 0.99\\ 0.97\\ 0.09\end{array}$ |
| 139-857D-<br>3R-1, 117-120<br>4R-1, 138-140<br>8R-1, 96-98<br>12R-1, 88-90<br>24R-1, 115-117<br>24R-2, 64-66<br>24R-2, 114-116<br>24R-2, 24-26<br>25R-1, 64-66<br>26R-1, 76-78<br>32R-1, 58-61<br>36R-1, 74-76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.34<br>1.91<br>0.51<br>0.57<br>0.71<br>0.02<br>1.14<br>0.98<br>0.01<br>1.00<br>0.12<br>0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 70<br>30<br>60<br>30<br>60<br>80<br>60<br>50<br>50<br>40<br>70                                                                                                   | 0.5<br>1<br>0.6<br>0.5<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6                                                                                                                   | 45<br>47<br>35<br>33<br>36<br>32<br>30<br>35<br>31<br>38<br>36<br>40                                                                                                              | 290<br>160<br>56<br>320<br>260<br>250<br>250<br>250<br>250<br>150<br>170                                                                                                                                      | 680<br>1700<br>120<br>5<br>76<br>220<br>29<br>11<br>99<br>56<br>5<br>56                                                                                                                                                                    | 3.6<br>2<br>6.2<br>2.8<br>5.7<br>5.6<br>5.8<br>5.7<br>5.6<br>5.9<br>6.1<br>5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15<br>5<br>16<br>13<br>10<br>12<br>12<br>5<br>16<br>13<br>5                                                                  | 86<br>74<br>41<br>140<br>68<br>66<br>67<br>63<br>68<br>67<br>69<br>64                                                                                                                 |                | 38<br>26<br>39<br>35<br>35<br>35<br>35<br>35<br>36<br>35<br>38<br>38                                                       | 110<br>68<br>120<br>26<br>160<br>300<br>240<br>220<br>190<br>170<br>140<br>110  | 230<br>210<br>340<br>240<br>240<br>240<br>230<br>230<br>230<br>300<br>330                                                                                                         | 36<br>24<br>47<br>27<br>29<br>27<br>28<br>28<br>39<br>44                                                                                                                                                                                                                                                                                                  | 3.9<br>2.5<br>5.5<br>3.9<br>2.9<br>3.0<br>2.6<br>2.7<br>2.9<br>4.1<br>4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 230<br>210<br>92<br>210<br>71<br>72<br>63<br>64<br>70<br>63<br>91<br>110                                                                                                            | 110<br>65<br>150<br>90<br>94<br>94<br>88<br>90<br>93<br>130<br>130 | 12<br>6.9<br>19<br>10<br>15<br>15<br>16<br>15<br>16<br>15<br>16<br>18<br>17                                                                                            | 6.4<br>4.1<br>8.2<br>5.5<br>4.8<br>4.7<br>4.9<br>4.8<br>5.0<br>5.1<br>7.2<br>8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.8<br>2.4<br>5.2<br>3.5<br>2.9<br>2.8<br>2.9<br>2.8<br>2.9<br>3.0<br>4.2<br>4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 1.1 \\ 0.7 \\ 1.8 \\ 0.6 \\ 1.2 \\ 1.2 \\ 1.4 \\ 1.3 \\ 1.1 \\ 1.2 \\ 1.6 \\ 1.7 \end{array}$                                                                                                                     | 6.0<br>3.6<br>8.0<br>5.0<br>4.6<br>4.7<br>4.7<br>4.7<br>4.4<br>4.5<br>4.7<br>6.6<br>7.1                                        | $\begin{array}{c} 1.4\\ 0.9\\ 1.9\\ 1.3\\ 1.1\\ 1.1\\ 1.1\\ 1.0\\ 1.0\\ 1.0\\ 1.5\\ 1.7\end{array}$                                                                            | 12<br>6.9<br>17<br>8.7<br>11<br>11<br>11<br>11<br>11<br>10<br>11<br>14<br>14                                                                                        | 4.1<br>2.4<br>5.4<br>3.2<br>3.4<br>3.5<br>3.6<br>3.3<br>3.2<br>3.5<br>4.6<br>5.0                                                                                                        | 0.6<br>0.4<br>0.8<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.8<br>0.8                                                         | 0.48<br>0.31<br>0.44<br>0.36<br>0.39<br>0.39<br>0.39<br>0.38<br>0.39<br>0.40<br>0.43<br>0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.78<br>0.76<br>0.85<br>0.74<br>0.99<br>0.97<br>0.95<br>0.00<br>0.97<br>0.96<br>0.88<br>0.83                                                                                                                                                                                                                           | 0.55<br>0.52<br>0.72<br>0.55<br>1.06<br>1.01<br>1.01<br>1.09<br>1.10<br>1.06<br>0.83<br>0.88                                                                                                                                                                                                          |
| 139-858F-<br>25R-1, 118-119<br>26R-1, 42-44<br>27R-1, 42-43<br>29R-1, 63-65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.73<br>0.33<br>0.01<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 130<br>90<br>50<br>80                                                                                                                                            | 1.5<br>0.9<br>0.8<br>0.8                                                                                                                                                           | 45<br>42<br>41<br>45                                                                                                                                                              | 340<br>320<br>330<br>360                                                                                                                                                                                      | 110<br>85<br>85<br>87                                                                                                                                                                                                                      | 5.8<br>6.7<br>6.8<br>6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13<br>13<br>14<br>5                                                                                                          | 110<br>99<br>100<br>110                                                                                                                                                               | 30             | 38<br>38<br>39<br>39                                                                                                       | 230<br>210<br>220<br>200                                                        | 250<br>250<br>250<br>240                                                                                                                                                          | 33<br>30<br>30<br>31                                                                                                                                                                                                                                                                                                                                      | 3.2<br>3.0<br>2.9<br>3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 540<br>68<br>79<br>77                                                                                                                                                               | 140<br>120<br>120<br>120                                           | 18<br>19<br>19<br>19                                                                                                                                                   | 6.4<br>5.5<br>5.6<br>5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.5<br>3.1<br>3.1<br>3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.8<br>1.4<br>1.6<br>1.3                                                                                                                                                                                                            | 5.9<br>5.1<br>5.2<br>5.2                                                                                                       | 1.3<br>1.1<br>1.1<br>1.2                                                                                                                                                       | 14<br>13<br>13<br>14                                                                                                                                                | 4.4<br>3.9<br>4.2<br>4.2                                                                                                                                                                | 0.6<br>0.6<br>0.6<br>0.6                                                                                                          | 0.56<br>0.48<br>0.50<br>0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.84<br>0.92<br>0.94<br>0.86                                                                                                                                                                                                                                                                                           | 0.83<br>1.08<br>1.02<br>0.94                                                                                                                                                                                                                                                                          |
| $\begin{array}{c} 139.858G-\\ 1R-1, 37-39\\ 2R-1, 53-55\\ 3R-1, 24-25\\ 4R-1, 1-26-28\\ 4R-1, 1-73\\ 8R-1, 36-38\\ 7R-1, 33-35\\ 6R-1, 29-32\\ 5R-1, 16-18\\ 10R-1, 31-33\\ 10R-1, 104-106\\ 11R-1, 13-15\\ 10R-1, 104-106\\ 11R-1, 41-43\\ 13R-1, 9-11\\ 13R-1, 25-27\\ 14R-1, 41-43\\ 15R-1, 31-33\\ 16R-1, 77-79\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                   | 0.62<br>0.09<br>0.05<br>0.28<br>0.09<br>0.02<br>0.33<br>1.28<br>1.13<br>0.70<br>0.02<br>2.02<br>0.16<br>0.76<br>0.76<br>0.74<br>0.78<br>1.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 70<br>40<br>90<br>60<br>90<br>15<br>60<br>70<br>80<br>70<br>60<br>80<br>40<br>60<br>80<br>60<br>80                                                               | 0.7<br>0.8<br>0.8<br>0.8<br>0.7<br>0.8<br>0.7<br>0.8<br>0.7<br>0.8<br>0.7<br>0.8<br>0.7<br>0.8<br>0.7<br>0.8<br>0.7<br>0.8<br>0.7<br>0.8<br>0.7<br>0.8                             | 42<br>33<br>32<br>36<br>35<br>33<br>33<br>40<br>39<br>43<br>36<br>44<br>41<br>46<br>35<br>52<br>43                                                                                | 290<br>290<br>300<br>310<br>300<br>290<br>330<br>300<br>300<br>300<br>300<br>300<br>300<br>300<br>310<br>31                                                                                                   | 83<br>71<br>73<br>69<br>130<br>84<br>85<br>56<br>60<br>190<br>76<br>49<br>260<br>95<br>100<br>170<br>55                                                                                                                                    | 6.9<br>6.7<br>6.4<br>7.2<br>6.9<br>6.3<br>5.8<br>6.5<br>6.8<br>6.5<br>6.8<br>6.3<br>7<br>6.2<br>6.4<br>6.5<br>6.4<br>6.5<br>6.5<br>6.6<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5 | 5<br>5<br>12<br>13<br>5<br>11<br>13<br>11<br>15<br>15<br>10<br>11<br>12<br>5<br>5<br>5<br>14<br>10                           | 93<br>92<br>87<br>85<br>89<br>90<br>85<br>89<br>93<br>85<br>90<br>85<br>94<br>98<br>94<br>98<br>94<br>98<br>94<br>98<br>94<br>99<br>98                                                | 23<br>28<br>43 | 38<br>37<br>38<br>39<br>38<br>39<br>38<br>39<br>38<br>40<br>37<br>39<br>39<br>39<br>39<br>39<br>39<br>39<br>40<br>41<br>40 | 220<br>230<br>200<br>210<br>220<br>220<br>220<br>210<br>220<br>210<br>220<br>22 | 240<br>230<br>240<br>250<br>240<br>240<br>240<br>250<br>230<br>250<br>250<br>240<br>250<br>250<br>260<br>250                                                                      | 31<br>31<br>30<br>30<br>31<br>30<br>29<br>30<br>31<br>31<br>30<br>31<br>31<br>30<br>31<br>31<br>29                                                                                                                                                                                                                                                        | 3.1<br>3.1<br>3.2<br>3.0<br>3.1<br>3.2<br>2.9<br>3.0<br>3.0<br>3.0<br>3.0<br>3.0<br>3.1<br>3.0<br>3.1<br>3.0<br>3.1<br>3.0<br>3.1<br>2.9<br>3.0<br>3.1<br>3.0<br>3.1<br>3.0<br>3.1<br>3.0<br>3.1<br>3.2<br>2.9<br>3.0<br>3.1<br>3.2<br>2.9<br>3.0<br>3.1<br>3.2<br>2.9<br>3.0<br>3.1<br>3.2<br>2.9<br>3.0<br>3.1<br>3.2<br>2.9<br>3.0<br>3.1<br>3.2<br>2.9<br>3.0<br>3.1<br>3.2<br>2.9<br>3.0<br>3.1<br>3.2<br>2.9<br>3.0<br>3.1<br>3.2<br>2.9<br>3.0<br>3.1<br>3.2<br>2.9<br>3.0<br>3.1<br>3.2<br>2.9<br>3.0<br>3.1<br>3.2<br>2.9<br>3.0<br>3.1<br>3.2<br>3.2<br>3.0<br>3.1<br>3.2<br>3.2<br>3.0<br>3.1<br>3.2<br>3.2<br>3.0<br>3.1<br>3.2<br>3.2<br>3.2<br>3.2<br>3.0<br>3.1<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2 | 63<br>67<br>92<br>84<br>67<br>81<br>1200<br>1500<br>83<br>67<br>69<br>63<br>84<br>71<br>71<br>74<br>95                                                                              | 120<br>120<br>120<br>120<br>120<br>120<br>120<br>120<br>120<br>120 | 20<br>19<br>20<br>20<br>19<br>18<br>19<br>20<br>19<br>20<br>19<br>20<br>18<br>18<br>19<br>19<br>19<br>18<br>20<br>19                                                   | 5.8<br>5.4<br>5.5<br>5.5<br>5.5<br>5.5<br>5.7<br>5.6<br>5.6<br>5.4<br>5.9<br>5.7<br>5.4<br>5.5<br>5.3<br>5.6<br>5.4<br>5.5<br>5.3<br>5.6<br>5.4<br>5.5<br>5.7<br>5.4<br>5.5<br>5.5<br>5.7<br>5.4<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.2<br>3.1<br>3.2<br>3.3<br>3.1<br>3.2<br>3.3<br>3.1<br>3.2<br>3.3<br>3.1<br>3.1<br>3.3<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.5<br>1.5<br>1.3<br>1.5<br>1.3<br>1.3<br>1.3<br>1.3<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.5<br>1.4<br>1.5<br>1.4<br>1.5<br>1.4<br>1.5<br>1.4<br>1.5<br>1.4<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5 | 5.4<br>5.2<br>5.1<br>5.6<br>5.4<br>5.2<br>5.2<br>5.2<br>5.2<br>5.2<br>5.2<br>5.2<br>5.2<br>5.2<br>5.2                          | $\begin{array}{c} 1.2 \\ 1.1 \\ 1.2 \\ 1.1 \\ 1.2 \\ 1.1 \\ 1.2 \\ 1.1 \\ 1.1 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.2 \\ 1.1 \end{array}$ | 14<br>13<br>14<br>15<br>14<br>14<br>14<br>14<br>14<br>15<br>14<br>13<br>13<br>13<br>13<br>13<br>13                                                                  | 4.4<br>4.2<br>4.1<br>4.2<br>4.2<br>4.2<br>4.2<br>4.2<br>4.2<br>4.3<br>4.1<br>4.4<br>4.2<br>3.8<br>4.0<br>3.8<br>3.9<br>4.2<br>4.1                                                       | 0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.5<br>0.6<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5 | 0.52<br>0.50<br>0.48<br>0.50<br>0.50<br>0.50<br>0.48<br>0.52<br>0.48<br>0.50<br>0.50<br>0.48<br>0.48<br>0.48<br>0.48<br>0.48<br>0.48<br>0.48<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.90<br>0.92<br>0.88<br>0.94<br>0.90<br>0.86<br>0.94<br>0.89<br>0.89<br>0.89<br>0.89<br>0.90<br>0.93<br>0.90<br>0.93<br>0.89<br>0.90<br>0.93<br>0.89<br>0.90                                                                                                                                                           | $\begin{array}{c} 0.99\\ 1.00\\ 0.98\\ 1.03\\ 1.03\\ 0.94\\ 0.87\\ 0.95\\ 1.04\\ 0.97\\ 1.00\\ 0.93\\ 1.06\\ 1.02\\ 1.08\\ 1.00\\ 0.99\\ 0.97\\ \end{array}$                                                                                                                                          |

Notes: For [La/Ce]n and [La/Sm]n, n signifies that values are normalized to chondritic values. Analyses of trace elements by ICP-ES. Analyses of Y and REE by ICP-MS.

mid-ocean ridge basalt (N-MORB) based on Zr/Nb,  $[La/Sm]_n$  (Le Roex et al., 1983; Karsten et al., 1990; Michael et al., 1989) or  $[La/Ce]_n$  (Langmuir et al., 1977; Basaltic Volcanism Study Group, 1981; Van Wagoner and Leybourne, 1991). We are using the classifications

adopted by Karsten et al. (1990) for Zr/Nb and Van Wagoner and Leybourne (1991) for [La/Ce]n. The low Nb content in these samples renders the Zr/Nb values of questionable value. These will be referred to based on shipboard Nb values, but basalt classification

Table 2. Oxygen isotopic compositions of whole rock powders.

| Core, section, | Depth  |                 | Core, section, | Depth   |                 |
|----------------|--------|-----------------|----------------|---------|-----------------|
| interval (cm)  | (mbsf) | O <sup>18</sup> | interval (cm)  | (mbsf)  | O <sup>18</sup> |
| 130-8554       |        |                 | 200 1 64 67    | 762.1   | 4.2             |
| 9P 1 26 29     | 65.1   | 7.2             | 20R-1, 04-07   | 703.1   | 4.5             |
| OP 1 37 20     | 74.7   | 7.6             | 21R-1, 02-03   | 7/2.8   | 4.5             |
| OP 1 26 29     | 74.7   | 1.0             | 22R-1, 52-55   | 782.3   | 4.1             |
| 9K-1, 20-28    | /4.6   | 8.0             | 23R-1, 80-84   | 792.3   | 4.3             |
| 130-8550-      |        |                 | 24R-1, 112–115 | 802.3   | 4.9             |
| 5R-1 20-31     | 108.8  | 70              | 24R-2, 100-103 | 803.7   | 4.5             |
| JR-1, 29-51    | 100.0  | 7.0             | 26R-1, 16–19   | 820.5   | 4.7             |
| 139-856A-      |        |                 | 27R-1, 96–98   | 830.6   | 4.7             |
| 13X-CC, 11-16  | 113.3  | 65              | 29R-1, 145–148 | 849.9   | 4.6             |
| 14X-CC 3-7     | 115.8  | 7.1             | 31R-1, 68-70   | 869.2   | 4.8             |
| 14X-1 56-61    | 115.1  | 6.5             | 32R-1, 60-65   | 878.7   | 5.1             |
| 1478-1, 50-01  | 11.5.1 | 0.5             | 33R-1, 75-79   | 888.6   | 4.3             |
| 139-856B-      |        |                 | 35R-1, 27-29   | 907.5   | 4.2             |
| 9X-1.4-8       | 62.3   | 92              | 36R-1, 13-15   | 917.0   | 4.3             |
|                | 02.0   | 1.4             | 36R-1, 67-69   | 917.6   | 4.6             |
| 139-857C-      |        |                 | 100.0505       | 222.02  |                 |
| 59R-1, 106-108 | 472.2  | 5.5             | 139-858F-      |         |                 |
| 59R-2, 138-139 | 474.0  | 5.3             | 25R-1, 111–113 | 250.0   | 4.5             |
| 59R-3, 101-103 | 475.0  | 5.2             | 26R-1, 63-65   | 259.2   | 5.2             |
| 60R-1, 13-15   | 480.9  | 4.9             | 26R-1, 98-100  | 259.6   | 5.1             |
| 62R-1, 46-48   | 500.5  | 4.6             | 27R-1, 39-41   | 268.2   | 5.4             |
| 62R-2, 60-62   | 502.1  | 4.5             | 28R-1, 30-32   | 277.8   | 5.0             |
| 64R-1, 63-66   | 520.0  | 4.8             | 29R-1, 9-11    | 287.3   | 5.4             |
| 64R-2, 33-35   | 521.2  | 4.6             | 29R-1, 81-83   | 288.0   | 4.9             |
| 65R-1, 15-17   | 529 3  | 7.5             | 9R-CC, 18-20   | 94.4    | 7.1             |
| 66R-1 15-17    | 539.0  | 6.8             | 25R-1, 40-42   | 249.3   | 6.2             |
| 66R-1 25-27    | 530.1  | 2.0             | 25R-1, 118-119 | 258.1   | 4.2             |
| 66R-1 114-116  | 530.0  | 4.5             | 26R-1, 42-44   | 259.0   | 5.4             |
| 67R-1 55-57    | 540.0  | 6.6             | 27R-1. 42-43   | 268.2   | 54              |
| 69P 1 26 20    | 550 3  | 2.2             | 29R-1 65-67    | 287.9   | 49              |
| 69D 1 109 111  | 550.1  | 17              |                | A-071,2 | 1.2             |
| 69D 2 11 12    | 550.6  | 4.7             | 139-858G-      |         |                 |
| 68D 2 144 146  | 559.0  | 4.2             | 1R-1, 37-39    | 277.2   | 4.9             |
| 08K-2, 144-140 | 200.9  | 4.0             | 2R-1, 53-55    | 287.0   | 5.3             |
| 130-857D-      |        |                 | 3R-1, 24-25    | 296.3   | 4.8             |
| 1R-1 2-4       | 591 5  | 12              | 4R-1, 26-28    | 306.1   | 5.1             |
| 1R-2 82_84     | 593.9  | 4.2             | 4R-1, 71-73    | 306.5   | 5.5             |
| 2D 1 72 75     | 500.3  | 4.0             | 5R-1 16-18     | 315.6   | 58              |
| 2R-1, 75-75    | 590.5  | 4.1             | 6R-1 29_32     | 325.4   | 5 1             |
| 2R-1, //-/9    | 590.4  | 4.4             | 7P 1 33 35     | 325.1   | 1.9             |
| 3R-2, 07-09    | 601.4  | 4.5             | 8P.1 36 39     | 344.0   | 4.0             |
| SR-2, 94-96    | 601./  | 4.2             | 10P 31 22      | 265.2   | 4.5             |
| 4K-1, 9-11     | 609.0  | 4.3             | 10R-, 51-55    | 305.2   | 4.9             |
| /R-1, 16-18    | 637.8  | 4.5             | 10K-1, 104-106 | 300.0   | 4.0             |
| 4R-1, 88-90    | 609.8  | 4.3             | 11K-1, 10-18   | 5/4.5   | 5.0             |
| 8R-1, 73-75    | 648.0  | 2.4             | 12R-1, 48-50   | 384.7   | 5.0             |
| 15R-1, 58-60   | 715.4  | 3.3             | 13R-1, 9-11    | 394.0   | 5.0             |
| 18R-1, 55-58   | 744.2  | 4.5             | 13R-1, 25-27   | 394.2   | 4.7             |
| 18R-1, 98-101  | 744.6  | 4.3             | 14R-1, 41-43   | 404.0   | 5.2             |
| 18R-2, 84-87   | 745.9  | 4.6             | 15R-1, 31–33   | 413.6   | 4.9             |
|                |        |                 | 16R-1, 77–79   | 423.7   | 5.1             |

is determined by the more reliable  $[La/Ce]_n$ . The values for Zr/Nb (22–40; Davis, Mottl, Fisher, et al., 1992) categorizes these as T-MORBs (= 16 < Zr/Nb < 25) and N-MORBS (Zr/Nb > 25). The more reliable REE (below) categorize these as all N-MORBs. The data form a linear array in a plot of Zr vs. Ti (Fig. 3A).

The REE patterns (Fig. 4B) are typical of N-type MORB derived from depleted mantle in that they are light REE depleted and otherwise flat to slightly HREE-depleted (Fig. 4). Values for chondrite-normalized La/Sm ([La/Sm]<sub>n</sub> = 0.54–0.66); La/Ce ([La/Ce]<sub>n</sub> = 0.76–0.82) and Ce/Yb ([Ce/Yb]<sub>n</sub> = 0.76–0.89) confirm the depleted nature of their mantle source region (Fig. 3, Table 1, section B). A pronounced negative europium anomaly is evident in the most fractionated (highest REEs) sample, probably resulting from fractionation of plagioclase.

#### Site 856, Holes A and B

## Setting

At Site 856, a series of drillholes was located across a topographic high referred to as "Bent Hill," which is about 60 m high and about 500 m in diameter. In Holes 856G and 856H, 65 m and 95 m of massive sulfide, respectively, were cored. Small quantities of mafic igneous rock were drilled at the bottom of Holes 856A and 856B and from a 5–8-m-thick sill that was drilled through completely in Hole

Table 3. Microprobe analyses of olivine phenocryst compositions, Leg 139, Sites 855 and 856.

|                                | $1^{a}$ | 2b    | 3°     | 4 <sup>d</sup> | 5 <sup>e</sup> | 6 <sup>f</sup> | 78    |
|--------------------------------|---------|-------|--------|----------------|----------------|----------------|-------|
| SiO <sub>2</sub>               | 38.88   | 38.26 | 39.76  | 40.31          | 39.81          | 40.83          | 40.73 |
| Al <sub>2</sub> Ô <sub>2</sub> | 0.08    | 0.01  | 0.03   | 0.04           | 0.08           | 0.06           | 0.07  |
| Cr <sub>2</sub> O <sub>2</sub> | 0.00    | 0.01  | 0.01   | 0.03           | 0.06           | 0.04           | 0.06  |
| MgO                            | 43.72   | 39.26 | 44.57  | 48.23          | 46.61          | 48.89          | 48.56 |
| CaO                            | 0.33    | 0.29  | 0.33   | 0.29           | 0.36           | 0.28           | 0.33  |
| MnO                            | 0.22    | 0.36  | 0.25   | 0.19           | 0.15           | 0.13           | 0.19  |
| FeO                            | 16.26   | 21.13 | 15.37  | 10.90          | 12.46          | 10.43          | 10.03 |
| Total                          | 99.50   | 99.33 | 100.32 | 99.99          | 99.53          | 100.65         | 99.95 |
| Si                             | 0.992   | 0.998 | 0.998  | 0.994          | 0.994          | 0.997          | 1.000 |
| Al                             | 0.002   | 0.000 | 0.001  | 0.001          | 0.002          | 0.002          | 0.002 |
| Cr                             | 0.000   | 0.000 | 0.000  | 0.001          | 0.001          | 0.001          | 0.001 |
| Mg                             | 1.674   | 1.526 | 1.667  | 1.773          | 1.734          | 1.780          | 1.777 |
| Ca                             | 0.009   | 0.008 | 0.009  | 0.008          | 0.010          | 0.007          | 0.009 |
| Mn                             | 0.005   | 0.008 | 0.005  | 0.004          | 0.003          | 0.003          | 0.004 |
| Fe                             | 0.349   | 0.461 | 0.323  | 0.225          | 0.260          | 0.213          | 0.206 |
| Catsum                         | 3.032   | 3.002 | 3.002  | 3.005          | 3.005          | 3.002          | 2.998 |
| Fo                             | 82.74   | 76.81 | 83.93  | 88.91          | 87.25          | 89.53          | 89.83 |
| Fa                             | 17.26   | 23.19 | 16.24  | 11.27          | 13.09          | 10.71          | 10.41 |

<sup>a</sup> 139-855A-8R-1, 21-23 cm, large euhedral grain.

<sup>b</sup> 139-855A-8R-1, 35-37 cm, rim of zoned olivine.

<sup>c</sup> 139-855D-5R-1, 15-17 cm, core of large grain.

d 139-856A-14X-1, 23-26 cm, core of large grain.

e 139-856A-14X-1, 23-26 cm, rim of same large grain as previous.

f 139-856A-14X-1, 85-87 cm, core of large grain.

g 139-856B-8H-CC, 1-3 cm, core of large grain.

856B (Davis, Mottl, Fisher, et al., 1992). All the samples are inferred to be from sills based on the nature of the chilled contacts and rapid increase in grain size from the margins (Davis, Mottl, Fisher, et al., 1992). The margins of the sills have thin glassy rims which are typically replaced by chlorite and quartz. Some of the contacts are evidenced only by small fragments of bleached basalt with coatings of baked sediment. Most of the igneous rocks recovered, however, are holocrystalline with a microcrystalline to fine-grained groundmass of variolitic plagioclase and clinopyroxene. The mesostasis in a few samples is replaced by small quantities of greenschist-grade minerals including chlorite, epidote, and actinolite.

#### Petrography and Mineral Chemistry

Olivine is present as phenocrysts in all samples, both as large subhedral crystals and small rounded crystals. The large crystals tend to be broken and replaced along fractures, or to contain groundmass minerals along fractures. The olivine crystals are highly magnesian (Fo<sub>88-90</sub>; Table 3) and are typically unzoned. They frequently occur in megacrystic aggregates with euhedral spinel, an association characteristic of crystal accumulates. The olivine phenocrysts comprise 2%-8% of the rock.

Spinel is present as brownish-red to deep red euhedral crystals that are associated with the large olivines and commonly occur as inclusions within the olivines. The spinels rarely contain inclusions of smectite or chlorite, presumably as replacements of glass. The spinels are highly magnesian (Table 6) and are typically unzoned. A few crystals do have a Cr-rich rim, however, which is also conspicuous by having a deeper color. The Mg numbers of the spinels vary from 0.5 to 0.9 and the Cr numbers vary from 0.3 to 0.5 (Figs. 5A, 5B).

In addition to the Cr-Mg-Al spinels, the principal oxide phase is titanomagnetite (Table 7, section A). These grains are generally intersertal to plagioclase and ferromagnesian grains and are typically about 0.5 mm in width. In some areas titanomagnetite forms distinct rims on the Cr-rich spinels, indicating that it formed slightly later than spinel. Isolated grains of titanomagnetite have an average composition of  $(Fe^{3+}0.78 Fe^{2+}1.51 Ti_{0.56} V_{0.03} Mn_{0.05}) O_4$ . They are not altered, and appear to be unzoned. Where titanomagnetite either rims or is intergrown with spinel it has a higher Cr content than those grains that formed independently of spinel. In Sample 139-856A-14X, 90–92 cm, for example, titanomagnetite surrounding spinel contains 9.5 weight percent (wt%) Cr<sub>2</sub>O<sub>3</sub> and 2.98 (wt%) V<sub>2</sub>O<sub>5</sub>.

Table 4. Plagioclase compositions, Leg 139, Sites 855-858, representative analyses of fresh and unaltered phases.

|                                | 1 <sup>a</sup> | 2 <sup>b</sup> | 3°     | 4 <sup>d</sup> | 5 <sup>e</sup> | 6 <sup>f</sup> | 7 <sup>g</sup> | 8 <sup>h</sup> | 9 <sup>i</sup> | 10 <sup>j</sup> | 11 <sup>k</sup> | 12 <sup>1</sup> | 13 <sup>m</sup> | 14 <sup>n</sup> | 15°   | 16 <sup>p</sup> | 17 <sup>q</sup> | 18 <sup>r</sup> |
|--------------------------------|----------------|----------------|--------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-------|-----------------|-----------------|-----------------|
| SiO <sub>2</sub>               | 46.25          | 47.63          | 50.31  | 49.70          | 51.65          | 50.26          | 51.42          | 51.23          | 52.34          | 54.57           | 55.97           | 46.00           | 49.14           | 51.41           | 56.68 | 51.99           | 55.49           | 67.81           |
| Al <sub>2</sub> Õ <sub>3</sub> | 34.31          | 32.99          | 32.60  | 32.06          | 29.81          | 32.10          | 30.85          | 31.24          | 29.36          | 29.16           | 28.07           | 34.85           | 32.64           | 30.64           | 26.18 | 30.20           | 27.86           | 21.05           |
| Fe_0.*                         | 0.53           | 0.41           | 0.58   | 0.65           | 1.01           | 0.46           | 0.67           | 0.48           | 0.97           | 0.87            | 1.15            | 0.41            | 0.69            | 0.75            | 0.98  | 0.73            | 1.19            | 0.03            |
| CaO                            | 17.57          | 16.07          | 15.79  | 15.59          | 13.27          | 15.09          | 14.02          | 14.92          | 14.00          | 11.96           | 10.64           | 18.62           | 15.92           | 13.23           | 9.07  | 13.16           | 10.47           | 1.41            |
| Na <sub>2</sub> O              | 1.61           | 2.17           | 2.50   | 2.58           | 3.50           | 2.69           | 3.27           | 2.98           | 3.48           | 4.36            | 5.12            | 1.04            | 2.36            | 3.63            | 6.08  | 3.58            | 5.07            | 9.63            |
| K <sub>2</sub> Ô               | 0.00           | 0.02           | 0.03   | 0.00           | 0.01           | 0.00           | 0.01           | 0.02           | 0.03           | 0.06            | 0.06            | 0.00            | 0.01            | 0.04            | 0.12  | 0.03            | 0.08            | 0.09            |
| Total                          | 100.27         | 99.29          | 101.80 | 100.59         | 99.25          | 100.61         | 100.23         | 100.86         | 100.18         | 100.98          | 101.01          | 100.92          | 100.76          | 99.70           | 99.10 | 99.67           | 100.14          | 100.01          |
| Si                             | 2.125          | 2.194          | 2.258  | 2.259          | 2.348          | 2.277          | 2.333          | 2.314          | 2.378          | 2,442           | 2,498           | 2.105           | 2.232           | 2.338           | 2.570 | 2.366           | 2.498           | 2.952           |
| Al                             | 1.858          | 1.791          | 1.724  | 1.717          | 1.597          | 1.714          | 1.650          | 1.663          | 1.572          | 1.538           | 1.477           | 1.877           | 1.748           | 1.643           | 1.399 | 1.620           | 1.478           | 1.080           |
| Fe                             | 0.018          | 0.016          | 0.019  | 0.022          | 0.038          | 0.016          | 0.023          | 0.016          | 0.033          | 0.029           | 0.039           | 0.014           | 0.024           | 0.029           | 0.033 | 0.025           | 0.040           | 0.001           |
| Ca                             | 0.865          | 0.793          | 0.759  | 0.759          | 0.646          | 0.733          | 0.681          | 0.722          | 0.682          | 0.574           | 0.509           | 0.912           | 0.775           | 0.645           | 0.441 | 0.642           | 0.505           | 0.066           |
| Na                             | 0.144          | 0.194          | 0.218  | 0.227          | 0.309          | 0.236          | 0.288          | 0.261          | 0.307          | 0.378           | 0.443           | 0.092           | 0.208           | 0.320           | 0.534 | 0.316           | 0.442           | 0.813           |
| K                              | 0.000          | 0.001          | 0.002  | 0.000          | 0.001          | 0.000          | 0.000          | 0.001          | 0.002          | 0.004           | 0.004           | 0.000           | 0.001           | 0.003           | 0.007 | 0.002           | 0.004           | 0.005           |
| Catsum                         | 5.009          | 4.989          | 4.980  | 4.985          | 4.938          | 4.976          | 4.975          | 4.977          | 4.974          | 4.965           | 4.968           | 5.000           | 4.987           | 4.976           | 4.984 | 4.970           | 4.967           | 4.916           |
| Ab                             | 14.3           | 19.63          | 22.26  | 23.02          | 32.30          | 24.38          | 29.68          | 73.40          | 68.84          | 39.57           | 46.36           | 9.15            | 21.13           | 33.08           | 54.42 | 32.91           | 46.48           | 92.03           |
| An                             | 85.7           | 80.35          | 77.56  | 76.95          | 67.64          | 75.61          | 70.28          | 26.50          | 30.98          | 60.05           | 53.27           | 90.84           | 78.79           | 66.66           | 44.90 | 66.92           | 53.06           | 7.42            |
| Or                             | 0.00           | 0.12           | 0.18   | 0.02           | 0.06           | 0.01           | 0.04           | 0.10           | 0.18           | 0.38            | 0.36            | 0.01            | 0.08            | 0.26            | 0.69  | 0.17            | 0.46            | 0.55            |

Note:  $Fe_2O_3^*$  = total Fe expressed as  $Fe_2O_3$ .

139-855A-8R-1, 21-23, 2 cm, core of zoned plagioclase.

b 139-855A-8R-1, 18-19, 2 cm, small phenocryst intergrown with pryroxene.

<sup>c</sup> 139-855A-8R-1, 18-19, 2 cm, small phenocrysts intergrown with Cr-rich pyroxene.

139-855-5R1, 15-17 cm, core, large phenocryst.

139-855-5R-1, 15-17 cm, rim, large phenocryst.

139-856B-10H, 74-77 cm, rim of thin microphenocryst.

g 139-856B-10H, 74-77 cm, skeletal plagioclase.

139-856A-14X-CC, 20-22 cm, core of euphedral lath.

139-856A-14X-CC, 20-22 cm, rim of euhedral lath.

139-857D-17R-3, 89-91 cm, rim of altered grain.

<sup>6</sup> 139-857D-17R-3, 89-91 cm, rim of altered grain.

<sup>1</sup>139-857D-12R-1, 51-53 cm, core of xenocryst.

m 139-857D-12R-1, 51-53 cm, small euhedral phenocryst.

<sup>n</sup> 139-857C-59R-1, 145-147 cm, grain poikilitically intergrown with pyroxene.

<sup>o</sup> 139-857C-59R-1, 145-147 cm, rim of altered grain.

<sup>p</sup> 139-858-G-1R-1, 27–29 cm, core of thin lath. <sup>q</sup> 139-858G-1R-1, 27–29 cm, rim of thin lath.

r 139-858G-16R-1, 47-49 cm, altered patch in phenocryst.

All of the rocks contain plagioclase both as a groundmass phase and as phenocrysts. There is a continuous gradient in the size of the plagioclase crystals from large subhedral or embayed crystals to small lathlike crystals intergrown with clinopyroxene. The plagioclase is rarely replaced by pale aluminous epidote, but is more typically fresh. Most plagioclase is moderately calcic ( $An_{74-79}$ ) but more sodic compositions are found as groundmass phases or rims on larger crystals ( $An_{64-70}$ ).

Clinopyroxene is never observed as a phenocryst phase in these samples as was observed at Site 855. It is present only in the groundmass in variolitic bundles or small needle-like aggregates.

Sulfides in the least-altered samples examined (139-856A-14X-1, 7-9 cm, 86-88 cm, 90-92 cm) occur as polysulfide aggregates. These aggregates occur primarily as inclusions in plagioclase phenocrysts, but also occur as irregular to spherical blebs in the mesostasis. The latter resemble classic "immiscible sulfide" droplets common to all magmatic sulfide bodies. The inclusions and bleb aggregates are usually about 50 microns in diameter. The sulfide aggregates are composed primarily of pyrrhotite, with exsolved lamellae and blebs of pentlandite and minor chalcopyrite. Microprobe analyses of these sulfides (Table 8) indicate that the pyrrhotite is nickel-rich. Analyses of one such bleb in Sample 139-856A-14x-1, 90-92 cm illustrates that the exsolution of pentlandite is not complete, as the adjacent pyrrhotite has nickel contents varying from 1.08% to 4.84%. The most Ni-rich pyrrhotite contains 3.64% copper, indicating incomplete subsolidus exsolution of copper as well as nickel from this portion of the sulfide bleb. The most Fe-rich pentlandite corresponds to the most Ni-rich pyrrhotite, indicating that the system has remained closed with respect to sulfur. This suggests that seawater did not penetrate into the center of these thin intrusions as would be anticipated with hydrothermal cooling of the sills. Equilibrium exsolution was not reached, as is indicated by the highly variable amount of Ni and Cu in the probe data. As these intrusions were emplaced close to the seafloor (ca. 115 mbsf), heat loss

from them was rapid and complete exsolution of pentlandite and copper minerals was prevented. The most-altered samples from this site (Samples 139-856B-10H-1, 93–95 cm and 10H-2, 2–9 cm; see discussion of petrochemical data, below) come from the shallowest of these intrusions. Here, only pyrite is present, as subhedral to euhedral grains. Its nickel contents are comparable with those of the primary pyrrhotite and much higher than the nickel contents of hydrothermal pyrite (Franklin et al., unpubl. data).

#### Major Element Composition

The new data provided as part of this study confirm the shipboard observations (Davis, Mottl, Fisher, et al., 1992) that these rocks are similar to the most primitive rocks of the northern Juan de Fuca, the olivine-phyric flows of West Ridge (Van Wagoner and Leybourne, 1991). All of these intrusions have been hydrated, and all may have been somewhat altered. However, the silicate phenocrysts are predominantly fresh and oxide and sulfide phases appear very fresh. An exception is Sample 139-856B-10H-1, 93-95 cm, from the margin of the sill drilled through in Hole 856A, which is highly altered. It contains an unusually high potash content, high titania and alumina, all characteristics of the extremely leached basalt-sediment chilled contacts observed in Site 856 and Site 857. This sample has been eliminated from the subsequent plots. In the fresh samples, the SiO<sub>2</sub>, TiO<sub>2</sub>, FeOT and P<sub>2</sub>O<sub>5</sub> contents are all lower than in the samples from the other sites (Table 1; Fig. 2), due in part to dilution by olivine megacrysts. However, samples from Site 856 are slightly more aluminous and have much higher Mg numbers than samples from the other sites. Their Mg# is 73, distinctly higher than that for samples from the Southern Juan de Fuca, Endeavour (Karsten et al., 1990), Heck and Heckle seamounts (Leybourne and Van Wagoner, 1991), West Valley (Van Wagoner and Leybourne, 1991), or Explorer Ridge

| Table 5. | Microprobe anal | vses of clinopyroxen | e compositions, Le | g 139. | Sites 855 | , 857 | , and 858 |
|----------|-----------------|----------------------|--------------------|--------|-----------|-------|-----------|
|          |                 |                      |                    |        |           |       |           |

|                                | 1ª     | 2 <sup>b</sup> | 3°     | 4 <sup>d</sup> | 5°     | 6 <sup>f</sup> | 7 <sup>g</sup> | 8 <sup>h</sup> | 9 <sup>i</sup> | 10 <sup>j</sup> | 11 <sup>k</sup> | 12 <sup>1</sup> | 13 <sup>m</sup> | 14 <sup>n</sup> |
|--------------------------------|--------|----------------|--------|----------------|--------|----------------|----------------|----------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| SiO <sub>2</sub>               | 50.480 | 49.830         | 50.020 | 51.530         | 52.180 | 50.080         | 51.800         | 45.730         | 50.940         | 51.100          | 50.530          | 50.420          | 52.700          | 50.37           |
| TiO <sub>2</sub>               | 0.500  | 1.230          | 1.100  | 0.990          | 0.660  | 1.150          | 0.680          | 3.540          | 0.850          | 1.100           | 1.200           | 1.280           | 0.580           | 1.21            |
| Al <sub>2</sub> Õ <sub>3</sub> | 3.960  | 4.150          | 4.190  | 3.900          | 2.650  | 4.600          | 3.950          | 6.090          | 1.860          | 3.280           | 2.780           | 3.900           | 1.810           | 1.83            |
| Fe <sub>2</sub> O <sub>3</sub> | 2.216  | 1.869          | 1.939  | 0.627          | 1.115  | 1.397          | 0.451          | 2.274          | 0.625          | 1.000           | 1.817           | 1.443           | 0.000           | 1.19            |
| FeO                            | 2.886  | 5.918          | 5.826  | 5.426          | 4.927  | 4.593          | 4.704          | 9.904          | 13.268         | 8.190           | 9.205           | 6.752           | 7.620           | 14.13           |
| MnO                            | 0.240  | 0.190          | 0.170  | 0.150          | 0.230  | 0.130          | 0.180          | 0.220          | 0.440          | 0.250           | 0.290           | 0.200           | 0.280           | 0.41            |
| MgO                            | 17.020 | 16.070         | 16.500 | 17.310         | 17.640 | 16.710         | 16.830         | 10.880         | 13.100         | 15.910          | 15.260          | 15.520          | 16.770          | 12.55           |
| CaO                            | 20.370 | 19.270         | 18.810 | 19.090         | 19.730 | 19.530         | 20.440         | 20.570         | 18.200         | 18.240          | 18.240          | 19.890          | 18.970          | 18.00           |
| Na <sub>2</sub> O              | 0.270  | 0.270          | 0.280  | 0.350          | 0.240  | 0.300          | 0.320          | 0.430          | 0.280          | 0.280           | 0.310           | 0.290           | 0.210           | 0.29            |
| Cr2O3                          | 1.430  | 0.590          | 0.740  | 0.240          | 0.220  | 0.920          | 1.520          | 0.100          | 0.000          | 0.160           | 0.070           | 0.360           | 0.410           | 0.00            |
| Sum                            | 99.372 | 99.387         | 99.575 | 99.613         | 99.592 | 99.410         | 100.875        | 99.738         | 99.563         | 99.510          | 99.702          | 100.055         | 99.350          | 99.98           |
| Si                             | 1.858  | 1.850          | 1.850  | 1.889          | 1.914  | 1.846          | 1.880          | 1.743          | 1.935          | 1.892           | 1.890           | 1.864           | 1.951           | 1.918           |
| Ti                             | 0.014  | 0.034          | 0.031  | 0.027          | 0.018  | 0.032          | 0.019          | 0.101          | 0.014          | 0.031           | 0.034           | 0.036           | 0.016           | 0.035           |
| Al                             | 0.172  | 0.182          | 0.183  | 0.169          | 0.115  | 0.200          | 0.169          | 0.274          | 0.083          | 0.143           | 0.123           | 0.170           | 0.079           | 0.082           |
| Fe <sub>3</sub>                | 0.061  | 0.052          | 0.054  | 0.017          | 0.031  | 0.039          | 0.012          | 0.065          | 0.018          | 0.028           | 0.051           | 0.040           | 0.000           | 0.034           |
| Fe <sub>2</sub>                | 0.089  | 0.184          | 0.180  | 0.166          | 0.151  | 0.142          | 0.143          | 0.316          | 0.422          | 0.254           | 0.288           | 0.209           | 0.236           | 0.450           |
| Mn                             | 0.007  | 0.006          | 0.005  | 0.005          | 0.007  | 0.004          | 0.006          | 0.007          | 0.104          | 0.008           | 0.009           | 0.006           | 0.009           | 0.013           |
| Mg                             | 0.934  | 0.889          | 0.910  | 0.946          | 0.965  | 0.918          | 0.910          | 0.618          | 0.742          | 0.878           | 0.850           | 0.855           | 0.925           | 0.712           |
| Ca                             | 0.804  | 0.766          | 0.746  | 0.750          | 0.776  | 0.771          | 0.795          | 0.840          | 0.741          | 0.743           | 0.731           | 0.788           | 0.752           | 0.734           |
| Na                             | 0.019  | 0.019          | 0.020  | 0.025          | 0.017  | 0.021          | 0.023          | 0.032          | 0.021          | 0.020           | 0.022           | 0.021           | 0.015           | 0.021           |
| Cr                             | 0.042  | 0.017          | 0.022  | 0.007          | 0.006  | 0.027          | 0.044          | 0.003          | 0.000          | 0.005           | 0.002           | 0.011           | 0.012           | 0.000           |
| Catsum                         | 4.000  | 3.999          | 4.001  | 4.001          | 4.000  | 4.000          | 4.001          | 3.999          | 4.080          | 4.002           | 4.000           | 4.000           | 3.995           | 3.999           |
| Wo                             | 44.00  | 41.67          | 40.62  | 40.27          | 41.01  | 42.13          | 43.10          | 47.36          | 38.91          | 89.64           | 39.10           | 42.55           | 39.32           | 38.72           |
| En                             | 51.53  | 48.34          | 49.56  | 50.79          | 51.00  | 50.14          | 49.26          | 34.84          | 38.95          | 46.83           | 45.50           | 46.18           | 48.35           | 37.55           |
| Fs                             | 4.87   | 9.99           | 9.82   | 8.93           | 7.99   | 7.73           | 7.73           | 17.80          | 22.14          | 13.53           | 15.40           | 11.27           | 12.33           | 23.73           |

<sup>a</sup> 139-855A-8R-1, 21-23 cm, megacryst in glass host.

b 139-855A-8R-1, 18-19 cm, core of pyroxene phenocryst.

c 139-855A-8R-1, 18-19 cm, rim of zoned phenocrysts.

d 139-857C-59R-1, 16-18 cm, phenocryst.

e 139-857C-60R-2, 17-19 cm, core of reversely zoned pyroxene.

f 139-857C-60R-2, 17-19 cm, rim of reversely zoned pyroxene.

g 139-857C-59R-3, 140-142 cm, cr-rich core of pyroxene.

h 139-857C-66R-1, 108-110 cm, rim of brownish pyroxene.

139-857D-17R-3, 89-91 cm, core of anhedral pyroxene.

j 139-857D-17R-3, 89-91 cm, rimof anhedral pyroxene. k 139-857D-35R-1, 87-90 cm, small barrel-shaped crystal.

139-857D-35R-1, 87-90 cm, rim of zoned pyroxene.

m 139-857D-35R-1, 87-90 cm, poikilitic intergrowth.

n 139-857D-35R-1, 87-90 cm, poikilitic intergrowth.

(Cousens et al., 1984) areas. The Mg# calculated on the basis on the whole-rock chemistry is biased by the accumulation of phenocrysts compared to the chemistry of the original fresh glass. The Mg# based on the chromian spinel compositions (see Discussion), however, is not biased in this way and still distinguishes these magmas as extreme compositions, although similar to the most primitive compositions from West Ridge, West Valley South or the Heck Seamounts.

## Minor and Trace Element Composition

These samples are more chromian and nickel rich than other mafic rocks in the Middle Valley area, reflecting the abundant spinel and primary sulfide accumulations noted above. The sulfur content of the samples from Site 856 are reasonably uniform (330 to 1400 ppm). Nickel, copper, and zinc are within the range of normal basaltic melts with averages of 220, 77, and 68 ppm, respectively. The sulfur content of the samples (1400 ppm maximum) is only slightly higher than that predicted for sulfur-saturated melts of composition similar to Site 856 samples (Mathez, 1980), indicating that sulfur has not been added during alteration. Furthermore, the MgO contents of the unaltered samples correlate well with their Ni contents, i.e., with modal olivine. Had Mg been added from seawater through alteration, this correlation would be nonexistent. The replacement of olivine by talc and magnetite appears to be a static hydration not associated with substantial change in chemistry. The replacement of oxides (e.g., spinel) by sulfide was only observed in the narrow, highly-altered contact zone with sediments.

The Site 856 samples contain lower contents of most of the incompatible elements than the other sites, partially due to dilution by crystal accumulation (Figs. 3 and 4). All of the samples are homogeneous, forming tight clusters on most of the plots. On the Zr vs.  $TiO_2$  plot, they

fall at the low Zr and low TiO<sub>2</sub> end of the plot, similar to primitive basalts, and form a linear array distinct from the other sites. Their Zr/Nb values (22-50) (Davis, Mottl, Fisher, et al., 1992) classify them as T-MORB to N-MORB but the low values of Nb make this classification unreliable. Values for [La/Sm]<sub>n</sub> (0.28-0.29), [La/Ce]<sub>n</sub> (0.65-0.70) and [Ce/Yb]n (0.37-0.39) are significantly lower than those for Site 855 (Fig. 3) and classify them more reliably as N-MORB. The only exception is the slightly altered Sample 139-856B-10H-1R, 64-67 cm, which has values falling between those of the adjacent, highly altered sample and the remaining analyses. Thus, the contact alteration may have produced a spuriously high [La/Ce]<sub>n</sub> value (or may have mixed in some sediment, M. Leybourne, pers. comm., 1993). Their chondrite-normalized REE patterns indicate that they are quite homogeneous and typified by LREE depletion and flat HREE (Fig. 4). The REE patterns are similar to those for the Heck and Heckle seamounts to the west of Middle Valley and Endeavour Ridge (Leybourne and Van Wagoner, 1991) and the depleted magmas of West Ridge (Van Wagoner and Leybourne, 1991), but are quite distinct from LREEenriched patterns for samples from Endeavour Ridge (Karsten et al., 1990) or West Valley (Van Wagoner and Leybourne, 1991).

## Site 857, Holes C and D

## Setting

Sites 857 and 858 are located 6 km west of the eastern boundary fault and 6 km west of the Middle Valley spreading axis (Fig. 1). The sites are 1.6 km apart along a north-south line and lie within a 15-km-long thermal anomaly that parallels the rift within which heat flow exceeds 0.8  $Wm^{-2}$  (Davis, Mottl, Fisher, et al., 1992). Igneous rock recovered at Site 857 is from a series of variably metamorphosed 1- to



Figure 2. Major element chemistry for all sites, Leg 139.

25-m-thick mafic sills interlayered with altered and indurated sediment. For many of the intrusive units, a fine-grained chilled margin and coarse-grained interior could be readily identified in the drillcore. This, combined with the resistivity data collected by shipboard logging, indicates relatively complete sampling across individual sills. The interiors of the larger sills are extremely coarse grained and composed of poikilitically intergrown plagioclase and clinopyroxene with ilmenite or magnetite and fine-grained mesostasis. Extreme variability of texture and crystal size is a conspicuous characteristic of the sills and results from variations in cooling rate from the sill margins to the interiors. This variability is mirrored in clinopyroxene compositions described below. Comparison between the intervals of recovered igneous rock and levels of high resistivity logged in Hole 857C suggest recovery modestly estimated at over 50%. Similar compari-



Figure 3. Trace element chemistry for all sites, Leg 139.

sons for Hole 857D suggests a slightly lower, but still high recovery of the igneous units (Davis, Mottl, Fisher, et al., 1992).

## Site 857 Lithostratigraphy

Both Holes 857C and 857D were logged, and the resistivity log proved useful in discriminating sills vs. sediments (Davis, Mottl, Fisher, et al., 1992, pp. 364-365). The log from Hole 857D (which includes most of the sill horizon from Hole 857C) suggested that there were 32 distinct sills between 465 and 934 mbsf for a combined thickness of 165 m of igneous rock. Detailed lithostratigraphy from Davis, Mottl, Fisher, et al. (1992) is expanded here with new mineral data and is summarized in Table 9. Igneous rock was first encountered in Core 857C-59R (Unit 1), the top of which is fine-grained diabase with plagioclase and pyroxene phenocrysts and megacrysts that increase in size and compositional zoning (plagioclase = An<sub>56-73</sub>) with depth. In Sections 139-857C-59R-2 and 857C-59R-3 the ophitic texture is extremely coarse-grained (plagioclase =  $An_{52-67}$ ). The texture systematically decreases in grain size and changes in Section 857C-59R-4 to sub-ophitic or diabase, although no chill or sediments were observed in this core. The top of Core 139-857C-60R (Unit 2) contains a chilled margin of fine-grained basalt with plagioclase phenocrysts whose texture coarsens conspicuously in the lower half of Section 857C-60R-1 to a medium-grained diabase with strongly zoned plagioclase. The upper 20 cm of Section 857C-60R-2 is a diabase with zoned plagioclase phenocrysts (An53-66) that systematically decreases in grain

present at 857C-60R-2, 49-142 cm (Unit 3), mostly as small unoriented pieces, including some coarse-grained samples. Phyric diabase with zoned plagioclase and pyroxene continues to Section 857C-61R-1, 100 cm (Unit 4), where there is a sharp contact with sediment. The rock at the contact is fine-grained with plagioclase microlites and phenocrysts. The top of Section 857C-61R-2 is a fine-grained contact to a phyric diabase which makes up the remainder of Core 857C-61R (Unit 5). Core 857C-62R is composed of medium to coarse-grained diabase or ophite with pyroxene enclosing plagioclase (An<sub>51</sub>) in a poikilitic texture and macroscopically conspicuous laths of ilmenite and granular magnetite. The coarsest grain size (e.g., 139-857C-62R-2, 12-14 cm) has large euhedral ilmenites extensively altered to leucoxene and strongly zoned plagioclase (An50-70) and clinopyroxene (brown titaniferous rims). There is increased alteration at this horizon with clinopyroxene partially replaced by actinolite and islands of sodic plagioclase in large patches of chlorite. There are no contacts with sediment and no apparent reduction in grain size (Unit 6). The top of Core 857C-63R, however, is metamorphosed sediment with a diabase contact within a gravel horizon composed of mixed sediment and vesicular igneous fragments. The remainder of Core 857C-63R is a coarse-grained diabase with strongly zoned plagioclase (An32-70) and zoned poikilitic pyroxene with ilmenite laths (Unit 7). Core 857C-64R is similarly coarse-grained diabase with subophitic texture and poikilitic clinopyroxene and skeletal ilmenite (Unit 8). A slight decrease in grain size occurs at the bottom of Section 857C-64R-2, where fine-

size to a well-preserved basal contact with sediment. Diabase is again



Figure 4. REE compositions for all sites, normalized to chondritic values.

grained diabase is cut by a wairakite-quartz-sphalerite vein that is 1-2 cm thick. Fine-grained basalt is found as a few centimeter-sized fragments in gravel in the upper 5 cm of Section 857C-65R-1 (Unit 9), in contact with a sedimentary horizon. A baked sediment contact above a highly altered basaltic horizon was found at 24 cm depth in Section 857C-66R-1. This basaltic horizon (Unit 10) is unique in that it is a vertical contact between a basaltic intrusion and sediment, either a late crosscutting dike or the toe of a sill. This pale green altered basalt contains chlorite pseudomorphs after olivine or clinopyroxene (probably the latter, given the moderate plagioclase composition) and plagioclase phenocrysts (An60-69). A similar altered basalt fragment is present at the top of Core 857C-67R above a sedimentary horizon. Eighteen centimeters of fine- to medium-grained plagioclase-phyric diabase forms the bottom of Core 857C-67R below the sedimentary horizon (Unit 11). Core 857C-68R (Unit 12) is composed of coarsegrained poikilitic diabase unbroken by any chilled contacts.

#### Hole 857D

In Hole 857D, mafic sills and interlayered sediment were cored between 581.1 and 936.2 mbsf. Very coarse-grained horizons are fewer in number than recovered in Hole 857C, and several units are composed of only a few pieces of rubble within a mostly sedimentary interval.

The top 110 cm of Core 139-857D-1R-1 (Unit 13) is a finegrained diabase that terminates with a chilled contact against sediment. Unit 14 is a fine-grained, plagioclase-phyric ( $An_{69-76}$ ) diabase with a distinct upper contact with sediment at Section 139-857D-1R-2, 65 cm. This unit coarsens slightly in grain-size within Section 857D-2R-1. A few pieces of sedimentary rubble and a chilled contact at Core 857D-2R-1, 47 cm, separate subunits 14A and 14B, which are lithologically identical. This fine- to medium-grained plagioclasephyric diabase extends to the bottom of Core 857D-3R. Unit 15, in Core 857D-4R, is a heavily veined, coarse-grained diabase that is bounded by sedimentary horizons, although no chilled contacts were recovered. The large grain size suggests that this interval is from the center of a large sill.

The lithology of the igneous intervals in Cores 857D-7R to 857D-9R is a fine- to medium-grain sparsely phyric diabase. This interval comprises subunits 16A–C, which are separated by a chilled margin (Core 857D-8R-1, 0 cm) and a small piece of sediment rubble (Core 857D-8R-1, 66–71 cm), respectively. A partially lithified sedimentary clast is included in the diabase at 857D-8R-1, 34 cm. Subunit 17A has a distinctive chilled and massively altered margin at Section 857D-12R-1, 21 cm, which continuously grades into plagioclase-phyric fine-to medium-grain diabase. In this rock, plagioclase megacrysts (An<sub>83-94</sub>) are associated with magnesiochromite. This same rock type is found in Subunit 17B, which is composed of a single piece of rubble within sedimentary horizons. Short intervals of fine-grained metadiabase and metabasalt within Sections 857D-15R-1 and 857D-16R-2 constitute subunits 18A and 18B, respectively.

The top of Unit 19 (Section 857D-17R-3) is distinctive in the abundance of large sulfide-filled vesicles or vugs within a leucocratic, fine-grained diabase. Plagioclase displays oscillatory zonation ( $An_{55-63}$ ) with similar zoning in Mg, Fe, and Ti in the clinopyroxene. This is the thickest unit in this hole, extending through Core 857D-20R, which contains melanocratic ophite with clinopyroxene poikilitically enclosing plagioclase ( $An_{45-70}$ ) and equant grains of ilmenite. Igneous rock recovered from Sections 857D-21R-1 to 857D-24R-1 (Subunits 20A–D) is leucocratic fine- to medium-grained diabase with local concentrations of plagioclase phenocrysts or embayed megacrysts ( $An_{77-82}$ ). Short sedimentary intervals separate the subunits; otherwise, they appear to be lithologically identical.

Unit 21 extends from the bottom of Core 857D-24R to the bottom of Core 857D-26R. Except for a fine-grained contact, this unit is a medium-grained diabase with plagioclase glomerocrysts with thin sodic rims. An extensively metamorphosed fine-grained contact zone for Unit 22 is contained within Section 857D-27R-1. This unit is composed of veined and mineralized basaltic rubble and exhibits extensive



Figure 5. Spinel compositions for Leg 139 basalts. A. Cr# vs. Mg# for Site 856. Filled circles are core compositions. B. Fe# vs. Mg# for Site 856. Filled circles are core compositions. C. Cr# vs. Mg# for Site 858. D. Fe# vs. Mg# for Site 858. E. Comparison of different sites with Lamont Seamounts. Filled circles are Site 857.

Table 6. Microprobe analyses of chromian spinel compositions, Leg 139, Sites 856-858.

|                                | 1 <sup>a</sup> | 2 <sup>b</sup> | 3 <sup>c</sup> | 4 <sup>d</sup> | 5 <sup>e</sup> | 6 <sup>r</sup> | 7 <sup>g</sup> | 8 <sup>h</sup> | 9 <sup>i</sup> | 10 <sup>i</sup> | 11 <sup>k</sup> | 12     | 13 <sup>m</sup> | 14 <sup>n</sup> | 15°    | 16 <sup>p</sup> | 17 <sup>q</sup> | 18 <sup>r</sup> | 19 <sup>s</sup> | 20 <sup>t</sup> | 21 <sup>u</sup> | 22 <sup>v</sup> | 23 <sup>w</sup> | 24 <sup>x</sup> |
|--------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|-----------------|--------|-----------------|-----------------|--------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| SiO <sub>2</sub>               | 0.03           | 0.06           | 0.05           | 0.03           | 0.20           | 0.73           | 0.09           | 0.04           | 0.22           | 0.07            | 0.08            | 0.14   | 0.04            | 0.03            | 0.03   | 0.03            | 0.11            | 0.14            | 0.22            | 0.02            | 0.03            | 0.05            | 0.06            | 0.15            |
| TiO <sub>2</sub>               | 0.25           | 0.28           | 0.27           | 0.31           | 0.36           | 0.89           | 0.34           | 0.28           | 0.26           | 0.29            | 0.28            | 0.32   | 0.17            | 0.16            | 0.15   | 0.58            | 1.22            | 1.25            | 1.02            | 0.70            | 0.74            | 0.66            | 0.54            | 3.33            |
| Al <sub>2</sub> O <sub>3</sub> | 38.01          | 37.96          | 37.16          | 33.55          | 35.42          | 22.22          | 36.47          | 39.19          | 37.49          | 39.16           | 38.04           | 37.92  | 26.30           | 29.66           | 31.21  | 23.20           | 21.17           | 20.22           | 26.15           | 30.70           | 29.56           | 27.97           | 29.06           | 13.39           |
| Cr2O3                          | 28.80          | 29.02          | 29.87          | 33.26          | 27.96          | 38.05          | 29.86          | 27.64          | 29.88          | 27.97           | 28.90           | 29.86  | 42.13           | 38.00           | 35.43  | 37.75           | 38.93           | 38.26           | 30.63           | 34.38           | 34.63           | 35.13           | 34.19           | 34.35           |
| Fe <sub>2</sub> O <sub>3</sub> | 3.98           | 3.57           | 3.55           | 3.51           | 4.92           | 7.79           | 3.77           | 3.53           | 3.62           | 3.52            | 3.13            | 4.03   | 3.12            | 3.20            | 3.94   | 7.30            | 8.55            | 8.71            | 8.56            | 4.90            | 4.76            | 5.97            | 5.61            | 16.47           |
| MgO                            | 18.13          | 18.00          | 17.68          | 16.98          | 13.62          | 12.17          | 16.55          | 17.89          | 18.34          | 18.53           | 17.56           | 19.03  | 15.61           | 15.93           | 15.83  | 13.13           | 13.37           | 13.13           | 11.52           | 15.32           | 12.91           | 12.05           | 12.61           | 6.49            |
| MnO                            | 0.19           | 0.22           | 0.11           | 0.17           | 0.24           | 0.31           | 0.24           | 0.14           | 0.15           | 0.10            | 0.10            | 0.11   | 0.14            | 0.18            | 0.19   | 0.19            | 0.25            | 0.28            | 0.27            | 0.16            | 0.21            | 0.22            | 0.21            | 0.56            |
| FeO                            | 9.81           | 9.94           | 10.43          | 10.68          | 16.17          | 15.99          | 11.98          | 10.39          | 9.59           | 9.45            | 10.65           | 9.23   | 12.00           | 11.81           | 12.18  | 14.16           | 14.54           | 15.01           | 15.89           | 12.94           | 16.48           | 17.62           | 16.81           | 22,53           |
| Total                          | 99.20          | 99.05          | 99.12          | 98.49          | 98.89          | 98.16          | 99.30          | 99.12          | 99.55          | 99.09           | 98.74           | 100.64 | 99.51           | 98.96           | 98.96  | 96.31           | 98.14           | 97.00           | 94.26           | 99.12           | 99.32           | 99.66           | 99.10           | 97.26           |
| Si                             | 0.007          | 0.013          | 0.011          | 0.008          | 0.047          | 0.183          | 0.022          | 0.009          | 0.049          | 0.017           | 0.018           | 0.032  | 0.01            | 0.006           | 0.006  | 0.007           | 0.024           | 0.032           | 0.056           | 0.004           | 0.007           | 0.012           | 0.013           | 0.040           |
| Ti                             | 0.043          | 0.048          | 0.046          | 0.055          | 0.064          | 0.168          | 0.058          | 0.048          | 0.044          | 0.048           | 0.048           | 0.056  | 0.03            | 0.028           | 0.027  | 0.110           | 0.224           | 0.240           | 0.192           | 0.125           | 0.134           | 0.121           | 0.099           | 0.683           |
| Al                             | 10.118         | 10.123         | 9.954          | 9.194          | 9.801          | 6.558          | 9.843          | 10.406         | 9.950          | 10:361          | 10.189          | 9.904  | 7.42            | 8.275           | 8.663  | 6.916           | 6.192           | 6.056           | 7.752           | 8.547           | 8.378           | 8.002           | 8.293           | 4.305           |
| Cr                             | 5.143          | 5.193          | 5.368          | 6.115          | 5.190          | 7.534          | 5.407          | 4.924          | 5.320          | 4.964           | 5.193           | 5.232  | 7.97            | 7.112           | 6.598  | 7.549           | 7.960           | 7.680           | 6.088           | 6.421           | 6.584           | 6.742           | 6.544           | 7.410           |
| Fe                             | 0.677          | 0.608          | 0.607          | 0.613          | 0.869          | 1.469          | 0.650          | 0.598          | 0.614          | 0.594           | 0.536           | 0.672  | 0.56            | 0.570           | 0.698  | 1.389           | 1.600           | 1.664           | 1.616           | 0.871           | 0.862           | 1.090           | 1.023           | 3.381           |
| Mg                             | 6.109          | 6.070          | 5.990          | 5.883          | 4.765          | 4.543          | 5.650          | 6.009          | 6.154          | 6.199           | 5.948           | 6.288  | 5.57            | 5.621           | 5.559  | 4.951           | 4.944           | 4.968           | 4.320           | 5.396           | 4.626           | 4.361           | 4.540           | 2.641           |
| Mn                             | 0.037          | 0.042          | 0.021          | 0.034          | 0.047          | 0.065          | 0.046          | 0.026          | 0.029          | 0.019           | 0.019           | 0.024  | 0.03            | 0.036           | 0.038  | 0.040           | 0.056           | 0.064           | 0.056           | 0.031           | 0.042           | 0.044           | 0.043           | 0.129           |
| Fe                             | 1.854          | 1.881          | 1.982          | 2.076          | 3.174          | 3.348          | 2.294          | 1.958          | 1.806          | 1.773           | 2.024           | 1.712  | 2.40            | 2.338           | 2.400  | 2.995           | 3.016           | 3.184           | 3.824           | 2.557           | 3.314           | 3.578           | 3.403           | 5.140           |
| Catsum                         | 23.987         | 23.977         | 23.979         | 23.977         | 23.958         | 23.868         | 23.970         | 23.978         | 23.965         | 23.976          | 23.975          | 23.920 | 23.985          | 23.987          | 23.988 | 23.956          | 24.016          | 23.888          | 23.904          | 23.952          | 23.947          | 23,950          | 23.958          | 23.729          |
| Cr/(Cr + Al)                   | 0.337          | 0.339          | 0.350          | 0.399          | 0.346          | 0.535          | 0.355          | 0.321          | 0.348          | 0.324           | 0.338           | 0.346  | 0.518           | 0.462           | 0.432  | 0.522           | 0.562           | 0.559           | 0.440           | 0.429           | 0.440           | 0.457           | 0.441           | 0.633           |
| Mg/(Mg + Fe)                   | 0.767          | 0.763          | 0.751          | 0.739          | 0.600          | 0.576          | 0.711          | 0.754          | 0.773          | 0.778           | 0.746           | 0.786  | 0.699           | 0.706           | 0.698  | 0.623           | 0.621           | 0.609           | 0.530           | 0.678           | 0.583           | 0.549           | 0.572           | 0.339           |
| $Fe_3/(Cr + Al + Fe_3)$        | 0.042          | 0.038          | 0.038          | 0.039          | 0.055          | 0.094          | 0.041          | 0.038          | 0.039          | 0.037           | 0.034           | 0.043  | 0.035           | 0.036           | 0.044  | 0.088           | 0.102           | 0.108           | 0.105           | 0.055           | 0.054           | 0.069           | 0.064           | 0.224           |
| LIQ Mg/Fe                      | 2.11           | 2.06           | 1.97           | 2.00           | 1.00           | 1.28           | 1.62           | 1.91           | 2.21           | 2.18            | 1.86            | 2.38   | 1.95            | 1.85            | 1.72   | 1.52            | 1.67            | 1.56            | 0.94            | 1.62            | 1.09            | 0.99            | 1.05            | 0.71            |
| Liquid Mg#                     | 0.68           | 0.67           | 0.66           | 0.67           | 0.50           | 0.56           | 0.62           | 0.66           | 0.69           | 0.69            | 0.65            | 0.70   | 0.66            | 0.65            | 0.63   | 0.60            | 0.63            | 0.61            | 0.49            | 0.62            | 0.52            | 0.50            | 0.51            | 0.41            |

<sup>a</sup> 139-856A-14X-1, 68-70 cm, core, large euhedral grain.

b 139-856A-14X-1, 68-70 cm, rim, large euhedral grain.

c 139-856A-14X-1, 68-70 cm, large euhedral megacryst.

d 139-856A-14X-1, 68-70 cm, small groundmass grain.

e 139-856A-14X-1, 68-70 cm, rim, large grain.

f 139-856A-14X-1, 68-70 cm, rim, small groundmass grain.

g 139-856A-14X-1, 116-118, rim.

h 139-856A-14X-1, 116-118, core, previous grain.

i 139-856B-8H-CC, 1-3 cm, core, large grain.

j 139-856B-8H-CC, 1-3 cm, rim, large grain.

k 139-856B-9H-1, 4-8 cm, rim, medium grain.

1 139-856B-10H-1, 64-67 cm, outer zone.

<sup>m</sup> 139-857D-12R-1, 51-53 cm, core, euhedral grain.

n 139-857D-12R-1, 51-53 cm, rim, euhedral grain.

º 139-857D-12R-1, 51-53 cm, small euhedral grain.

P 139-858F-29R-1, 27-39 cm, small grain in chlorite pseudomorph.

9 139-858G-3R-1, 24-25 cm.

r 139-858G-3R-1, 24-25 cm, may be altered.

<sup>s</sup> 139-858G-3R-1, 24-25 cm, may be altered.

t 139-858G-16R-1, 81-83 cm, core, large euhedral grain.

<sup>u</sup> 139-858G-16R-1, 81-83 cm, middle, large euhedral grain.

v 139-858G-16R-1, 81-83 cm, rim, large euhedral grain.

w 139-858G-16R-1, 81-83 cm, core, large grain.

x 139-858G-16R-1, 81-83 cm, rim, strongly zoned grain.

Table 7. Microprobe analyses of oxide minerals, Leg 139.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |                  |                                |                                | _                              |                                |                                |       |       | A. Com | positio | n of titan | omagneti       | ite Site 8       | 56.              |        |         |                  |                  |                  |       |       |       |       |       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|-------|-------|--------|---------|------------|----------------|------------------|------------------|--------|---------|------------------|------------------|------------------|-------|-------|-------|-------|-------|
| $ \begin{array}{c} 139.858-1 \\ 145, 90-2 \\ 158, 50-2 \\ 145, 90-2 \\ 185, 50-2 \\ 145, 90-2 \\ 185, 51-5 \\ 145, 90-2 \\ 185, 51-5 \\ 145, 90-2 \\ 185, 51-5 \\ 145, 90-2 \\ 185, 90-2 \\ 145, 7-9 \\ 19.15 \\ 185 \\ 185 \\ 0.25 \\ 0.49 \\ 2.75 \\ 185 \\ 0.25 \\ 0.49 \\ 2.75 \\ 145, 7-9 \\ 19.15 \\ 185 \\ 0.25 \\ 0.49 \\ 2.75 \\ 185 \\ 0.25 \\ 0.49 \\ 2.75 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 145 \\ 14$                                                                                                                                                 | Core section<br>interval (cm) | TiO <sub>2</sub> | Al <sub>2</sub> O <sub>3</sub> | Cr <sub>2</sub> O <sub>3</sub> | V <sub>2</sub> O <sub>3</sub>  | Fe <sub>2</sub> O <sub>3</sub> | FeO                            | FeOt  | MnO   | NiO    | ZnO     | Total      | Si             | Ti               | AI               | Cr     | v       | Fe <sup>3+</sup> | Fe <sup>2+</sup> | Mn               | Mg    | Ca    | Ni    | Zn    | Total |
| $ \begin{array}{c}   4X, 90-92 \\   4X, 90-92 \\   1805 \\   14X, 9-92 \\   1805 \\   14X, 9-9 \\   2185 \\   14X, 9-9 \\   1805 \\   14X, 9-9 \\   $                                                                                                                                                                                                                                                                                                          | 139-856A-                     |                  |                                |                                |                                |                                |                                |       |       |        |         |            |                |                  |                  |        |         |                  |                  |                  |       |       |       |       |       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14X, 90-92                    | 20.22            | 1.41                           | 0.04                           | 0.46                           | 25.69                          | 47.53                          | 70.65 | 1.41  | 0.05   | 0.17    | 96.63      | 0.000          | 0.587            | 0.064            | 0.001  | 0.021   | 0.746            | 1.535            | 0.046            | 0.000 | 0.000 | 0.002 | 0.005 | 3.007 |
| $ \begin{array}{c} 14\chi, 7-9 \\ 14\chi, 7-9 \\ 19.15 \\ 14\chi, 7-9 \\ 19.15 \\ 18.5 \\ 0.00 \\ 0.49 \\ 27.3 \\ 1.5 \\ 0.00 \\ 0.49 \\ 27.3 \\ 1.5 \\ 1.43 \\ 0.00 \\ 0.46 \\ 27.3 \\ 1.43 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.0$                                                                                                                                                                         | 14X, 90-92                    | 18.05            | 1.65                           | 0.01                           | 0.93                           | 30.41                          | 46.92                          | 74.28 | 0.58  | 0.23   | 0.05    | 98.90      | 0.000          | 0.515            | 0.074            | 0.000  | 0.042   | 0.868            | 1.488            | 0.019            | 0.000 | 0.000 | 0.007 | 0.001 | 3.014 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14X, 7–9                      | 20.65            | 1.82                           | 0.54                           | 0.57                           | 24.57                          | 48.36                          | 70.47 | 1.44  | 0.02   | 0.19    | 98.00      | 0.000          | 0.591            | 0.082            | 0.016  | 0.026   | 0.703            | 1.538            | 0.046            | 0.000 | 0.000 | 0.001 | 0.005 | 3.009 |
| 14X, 7-9   19.15   1.85   0.00   0.49   27.30   46.76   71.23   1.43   0.03   0.15   96.55   0.000   0.023   0.791   1.503   0.047   0.000   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0.001   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14X, 7–9                      | 20.08            | 1.85                           | 0.28                           | 0.43                           | 25.82                          | 47.85                          | 71.08 | 1.33  | 0.02   | 0.18    | 97.69      | 0.000          | 0.577            | 0.083            | 0.008  | 0.020   | 0.742            | 1.528            | 0.043            | 0.000 | 0.000 | 0.001 | 0.005 | 3.007 |
| B. Composition of ilmenite Site 857.       Core section<br>interval (cm)     SiO2     TiO2     AlgO3     Cressection       SiNC     SiNC       SiNC     SiNC     SiNC     SiNC       SiNC     SiNC     SiNC     SiNC     SiNC     SiNC     SiNC     SiNC     SiNC     SiNC     SiNC     SiNC     SiNC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14X, 7–9                      | 19.15            | 1.85                           | 0.00                           | 0.49                           | 27.30                          | 46.76                          | 71.23 | 1.43  | 0.03   | 0.15    | 96.55      | 0.000          | 0.555            | 0.084            | 0.000  | 0.023   | 0.791            | 1.503            | 0.047            | 0.000 | 0.000 | 0.001 | 0.004 | 3.008 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |                  |                                |                                |                                |                                |                                |       |       | B. 0   | Compos  | ition of i | Imenite S      | ite 857.         |                  |        |         |                  |                  |                  |       |       |       |       |       |
| $ \begin{array}{                                    $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Core section                  |                  |                                |                                |                                |                                |                                |       | m ol  |        | 22.2    |            |                |                  | 1000             | 22     |         |                  | - 1+             | ra 24            |       | 592   | 122   |       |       |
| $ \begin{array}{c} 139.857C. \\ 598.2, 62-64 \\ 0.04 \\ 47.36 \\ 0.06 \\ 0.06 \\ 47.48 \\ 0.09 \\ 0.00 \\ 0.01 \\ 0.06 \\ 0.01 \\ 0.08 \\ 48.08 \\ 0.09 \\ 0.00 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.011 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 $                                                                                                                                                                                   | interval (cm)                 | SiO <sub>2</sub> | TiO <sub>2</sub>               | Al <sub>2</sub> O <sub>3</sub> | Cr <sub>2</sub> O <sub>3</sub> | V <sub>2</sub> O <sub>3</sub>  | Fe <sub>2</sub> O <sub>3</sub> | FeO   | FeO'  | MnO    | MgO     | CaO        | Total          | Si               | Ti               | AI     | Cr      | V                | Fe               | Fe <sup>2+</sup> | Mn    | Mg    | Ca    | Total | X'ilm |
| $ \begin{array}{c} 598.2, 62-64 & 0.04 & 47.36 & 0.16 & 0.01 & 0.68 & 8.51 & 38.90 & 46.56 & 3.32 & 0.29 & 99.32 & 0.001 & 0.098 & 0.005 & 0.000 & 0.014 & 0.163 & 0.829 & 0.072 & 0.000 & 0.008 & 2.000 & 598.2, 94-96 & 0.06 & 47.68 & 0.19 & 0.06 & 0.49 & 7.64 & 39.41 & 46.28 & 3.11 & 0.30 & 98.97 & 0.002 & 0.912 & 0.000 & 0.008 & 0.135 & 0.844 & 0.075 & 0.000 & 0.008 & 2.000 & 598.4 & 3.075 & 0.000 & 0.008 & 1.35 & 0.844 & 0.075 & 0.000 & 0.008 & 2.000 & 598.4 & 0.075 & 0.000 & 0.008 & 2.000 & 598.4 & 0.075 & 0.000 & 0.008 & 0.150 & 0.010 & 0.147 & 0.842 & 0.067 & 0.000 & 0.008 & 2.000 & 598.4 & 3.57 & 5.77 & 4.42 & 0.24 & 99.49 & 0.001 & 0.070 & 0.004 & 0.000 & 0.012 & 0.167 & 0.806 & 0.095 & 0.000 & 0.007 & 2.000 & 608.1 & 173-175 & 0.13 & 46.87 & 0.11 & 0.01 & 0.51 & 9.85 & 35.48 & 44.35 & 5.89 & 0.67 & 99.54 & 0.03 & 0.896 & 0.000 & 0.001 & 0.188 & 0.876 & 0.127 & 0.000 & 0.012 & 2.000 & 668.1 & 173-175 & 0.13 & 46.87 & 0.11 & 0.01 & 0.51 & 7.62 & 34.57 & 1.27 & 0.17 & 0.13 & 10.59 & 0.000 & 0.005 & 0.000 & 0.000 & 0.007 & 2.000 & 668.1 & 173-175 & 0.13 & 46.87 & 0.11 & 0.01 & 0.51 & 5.39 & 1.49 & 7.25 & 0.17 & 0.13 & 0.059 & 0.000 & 0.001 & 0.010 & 0.18 & 0.744 & 0.26 & 0.003 & 2.000 & 0.744 & 0.26 & 0.003 & 2.000 & 0.744 & 0.26 & 0.003 & 2.000 & 0.744 & 0.26 & 0.003 & 0.001 & 0.003 & 0.001 & 0.000 & 0.074 & 0.260 & 0.000 & 0.075 & 0.012 & 0.000 & 0.075 & 0.012 & 0.000 & 0.021 & 2.000 & 0.028 & 0.000 & 0.000 & 0.010 & 0.146 & 0.739 & 0.178 & 0.000 & 0.002 & 2.000 & 0.688 & 0.000 & 0.011 & 0.146 & 0.739 & 0.178 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 139-857C-                     |                  |                                |                                |                                |                                |                                |       |       |        |         |            |                |                  |                  |        |         |                  |                  |                  |       |       |       |       |       |
| $ \begin{array}{c} 598.2, 62-64 & 0.08 & 48.08 & 0.09 & 0.00 & 0.41 & 7.03 & 39.46 & 45.78 & 3.46 & 0.29 & 98.96 & 0.002 & 0.925 & 0.003 & 0.000 & 0.008 & 0.135 & 0.844 & 0.075 & 0.000 & 0.008 & 2.000 & 598.4 & 35.37 & 0.08 & 47.21 & 0.10 & 0.02 & 0.49 & 8.16 & 37.96 & 45.31 & 4.20 & 0.26 & 98.60 & 0.002 & 0.912 & 0.003 & 0.000 & 0.010 & 0.171 & 0.842 & 0.067 & 0.000 & 0.000 & 2.000 & 608.2 & 0.001 & 0.011 & 0.147 & 0.842 & 0.069 & 0.000 & 0.011 & 0.151 & 9.85 & 75.87 & 45.70 & 4.42 & 0.24 & 99.49 & 0.001 & 9.071 & 0.004 & 0.000 & 0.012 & 0.167 & 0.080 & 0.009 & 0.000 & 0.012 & 0.167 & 0.080 & 0.009 & 0.000 & 0.012 & 0.167 & 0.080 & 0.009 & 0.000 & 0.018 & 2.000 & 608.1 & 71.37 & 15.70 & 0.14 & 4.84 & 0.22 & 12.89 & 33.87 & 45.47 & 5.53 & 0.76 & 98.97 & 0.003 & 0.064 & 0.000 & 0.013 & 0.248 & 0.725 & 0.120 & 0.000 & 0.018 & 2.000 & 628.2 & 7.9 & 0.02 & 4.73 & 0.18 & 0.000 & 1.97 & 75.53 & 0.76 & 98.97 & 0.000 & 0.960 & 0.003 & 0.001 & 0.000 & 0.013 & 0.248 & 0.725 & 0.120 & 0.000 & 0.021 & 2.000 & 628.2 & 7.9 & 0.02 & 47.63 & 0.08 & 0.00 & 1.97 & 7.55 & 0.17 & 0.13 & 100.59 & 0.000 & 0.002 & 0.000 & 0.000 & 0.004 & 0.154 & 0.744 & 0.260 & 0.000 & 0.002 & 0.000 & 0.001 & 0.014 & 0.149 & 0.000 & 0.008 & 2.000 & 628.2 & 7.9 & 0.01 & 47.04 & 7.64 & 0.39 & 9.13 & 9.14 & 9.12 & 0.75 & 0.23 & 98.71 & 0.001 & 0.002 & 0.000 & 0.001 & 0.146 & 0.739 & 0.187 & 0.000 & 0.008 & 2.000 & 628.2 & 7.9 & 0.00 & 47.65 & 0.09 & 0.03 & 0.017 & 7.03 & 9.187 & 0.000 & 0.008 & 2.000 & 638.1 & 69.7 & 7.73 & 3.43 & 41.20 & 5.8 & 8.44 & 0.02 & 9.22 & 0.003 & 0.001 & 0.003 & 0.147 & 0.743 & 1.72 & 0.000 & 0.008 & 2.000 & 638.1 & 65.8 & 3.73 & 3.971 & 9.48 & 0.17 & 9.070 & 0.000 & 0.003 & 0.001 & 0.000 & 0.011 & 1.468 & 0.659 & 3.26 & 0.071 & 0.075 & 0.000 & 0.002 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 59R-2, 62-64                  | 0.04             | 47.36                          | 0.16                           | 0.01                           | 0.68                           | 8.51                           | 38.90 | 46.56 | 3.32   |         | 0.29       | 99.32          | 0.001            | 0.908            | 0.005  | 0.000   | 0.014            | 0.163            | 0.829            | 0.072 | 0.000 | 0.008 | 2.000 | 0.828 |
| $ \begin{array}{c} 598.2, 94-96 \\ 598.4, 35-37 \\ column (1,2,3,3,7) \\ column (1,3,3,7) \\ column (1,3$                                                                                                                                                                                                                                                                                                                                                                        | 59R-2, 62-64                  | 0.08             | 48.08                          | 0.09                           | 0.00                           | 0.41                           | 7.03                           | 39.46 | 45.78 | 3.46   |         | 0.29       | 98.96          | 0.002            | 0.925            | 0.003  | 0.000   | 0.008            | 0.135            | 0.844            | 0.075 | 0.000 | 0.008 | 2.000 | 0.842 |
| $ \begin{array}{c} 5984, 35-37 \\ 5984, 35-37 \\ column (1) \\ column ($                                                                                                                                                                                                                                                                                                                       | 59R-2, 94-96                  | 0.06             | 47.68                          | 0.19                           | 0.06                           | 0.49                           | 7.64                           | 39.41 | 46.28 | 3.11   |         | 0.30       | 98.97          | 0.002            | 0.916            | 0.006  | 0.001   | 0.010            | 0.147            | 0.842            | 0.067 | 0.000 | 0.008 | 2.000 | 0.841 |
| $ \begin{array}{c} 598.4, 35-37 \\ 608.1, 173-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1, 12-175 \\ 612.1,$                                                                                                                                                                                                                                                                                                                                                    | 59R-4, 35-37                  | 0.08             | 47.21                          | 0.10                           | 0.02                           | 0.49                           | 8.16                           | 37.96 | 45.31 | 4.20   |         | 0.26       | 98.60          | 0.002            | 0.912            | 0.003  | 0.000   | 0.010            | 0.158            | 0.816            | 0.091 | 0.000 | 0.007 | 2.000 | 0.814 |
| $ \begin{array}{c} 608-1, 173-175 & 0.13 & 46.87 & 0.11 & 0.01 & 0.51 & 9.85 & 35.48 & 44.35 & 5.89 & 0.67 & 99.54 & 0.03 & 0.896 & 0.003 & 0.000 & 0.10 & 0.188 & 0.754 & 0.127 & 0.000 & 0.018 & 2.000 & 628-1, 20-22 & 0.01 & 50.97 & 0.10 & 0.03 & 4.00 & 35.53 & 39.14 & 9.72 & 0.17 & 0.13 & 100.59 & 0.000 & 0.966 & 0.003 & 0.000 & 0.075 & 0.744 & 0.206 & 0.003 & 2.000 & 0.746 & 0.272 & 0.12 & 0.000 & 0.021 & 2.000 & 628-2, 7-9 & 0.06 & 47.65 & 0.09 & 0.03 & 0.15 & 7.62 & 34.55 & 1.14 & 7.90 & 0.29 & 98.41 & 0.002 & 0.022 & 0.003 & 0.000 & 0.040 & 0.154 & 0.749 & 0.164 & 0.000 & 0.008 & 2.000 & 628-2, 7-9 & 0.06 & 47.65 & 0.09 & 0.02 & 0.06 & 7.57 & 34.39 & 41.20 & 8.19 & 0.28 & 98.59 & 0.000 & 0.925 & 0.003 & 0.000 & 0.001 & 0.146 & 0.739 & 0.178 & 0.000 & 0.008 & 2.000 & 638-1, 169-71 & 0.10 & 47.87 & 0.08 & 0.00 & 0.11 & 7.05 & 33.59 & 40.25 & 8.58 & 0.45 & 98.23 & 0.003 & 0.927 & 0.002 & 0.000 & 0.002 & 0.137 & 0.188 & 0.000 & 0.012 & 2.000 & 688-1, 12-14 & 0.04 & 48.38 & 0.11 & 0.03 & 0.40 & 5.99 & 34.15 & 39.34 & 9.17 & 0.37 & 9.07 & 0.000 & 0.926 & 0.003 & 0.010 & 0.008 & 0.000 & 0.002 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 59R-4, 35-37                  | 0.05             | 47.37                          | 0.14                           | 0.00                           | 0.61                           | 8.71                           | 37.87 | 45.70 | 4.42   |         | 0.24       | 99.49          | 0.001            | 0.907            | 0.004  | 0.000   | 0.012            | 0.167            | 0.806            | 0.095 | 0.000 | 0.007 | 2.000 | 0.805 |
| $ \begin{array}{c} 608-1, 173-175 & 0.10 & 44.84 & 0.20 & 0.02 & 0.62 & 12.89 & 33.87 & 45.47 & 5.53 & 0.76 & 98.97 & 0.003 & 0.006 & 0.000 & 0.013 & 0.248 & 0.725 & 0.120 & 0.000 & 0.021 & 2.000 & 628.2 & 79 & 0.02 & 47.63 & 0.08 & 0.00 & 0.19 & 7.95 & 34.91 & 42.06 & 7.55 & 0.23 & 98.71 & 0.001 & 0.920 & 0.002 & 0.000 & 0.004 & 0.154 & 0.749 & 0.164 & 0.000 & 0.006 & 2.000 & 628.2 & 79 & 0.00 & 47.65 & 0.09 & 0.03 & 0.15 & 7.62 & 34.55 & 41.41 & 7.90 & 0.29 & 98.44 & 0.002 & 0.922 & 0.003 & 0.001 & 0.013 & 0.146 & 0.739 & 0.168 & 2.000 & 638.7 & 45.7 & 34.39 & 41.20 & 8.19 & 0.28 & 98.59 & 0.000 & 0.925 & 0.003 & 0.001 & 0.014 & 0.739 & 0.178 & 0.000 & 0.008 & 2.000 & 638.7 & 638.7 & 638.7 & 63.97 & 0.013 & 47.80 & 0.00 & 0.011 & 7.05 & 33.90 & 40.25 & 8.58 & 0.45 & 98.23 & 0.003 & 0.927 & 0.002 & 0.000 & 0.002 & 0.137 & 0.730 & 0.187 & 0.000 & 0.012 & 2.000 & 688.1 & 12-14 & 0.01 & 48.81 & 0.11 & 0.03 & 0.40 & 5.99 & 34.15 & 39.54 & 9.17 & 0.37 & 99.07 & 0.000 & 0.936 & 0.000 & 0.008 & 0.015 & 0.728 & 0.000 & 0.012 & 2.000 & 688.1 & 1048.81 & 0.14 & 43.84 & 0.23 & 0.00 & 3.46 & 65 & 33.73 & 39.71 & 9.48 & 0.17 & 99.06 & 0.001 & 0.928 & 0.007 & 0.000 & 0.028 & 0.000 & 0.005 & 2.000 & 0.719 & 688.1 & 90-92 & 0.08 & 47.39 & 0.26 & 0.03 & 0.56 & 8.82 & 32.75 & 40.69 & 9.57 & 0.21 & 9.77 & 0.002 & 0.94 & 0.008 & 0.011 & 0.168 & 0.695 & 0.206 & 0.000 & 0.006 & 2.000 & 0.006 & 0.006 & 2.000 & 0.000 & 0.002 & 2.000 & 0.000 & 0.002 & 2.000 & 0.000 & 0.003 & 0.000 & 0.005 & 2.000 & 0.000 & 0.000 & 0.005 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60R-1, 173-175                | 0.13             | 46.87                          | 0.11                           | 0.01                           | 0.51                           | 9.85                           | 35.48 | 44.35 | 5.89   |         | 0.67       | 99.54          | 0.03             | 0.896            | 0.003  | 0.000   | 0.010            | 0.188            | 0.754            | 0.127 | 0.000 | 0.018 | 2.000 | 0.751 |
| $ \begin{array}{c} 62R-1, 20-22 \\ 62R-2, 7-9 \\ 62R-2, 7-9 \\ 0.06 \\ 47.65 \\ 0.09 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0$                                                                                                                                                                                   | 60R-1, 173-175                | 0.10             | 44.84                          | 0.20                           | 0.02                           | 0.62                           | 12.89                          | 33.87 | 45.47 | 5.53   |         | 0.76       | 98.97          | 0.003            | 0.864            | 0.006  | 0.000   | 0.013            | 0.248            | 0.725            | 0.120 | 0.000 | 0.021 | 2.000 | 0.723 |
| $ \begin{array}{c} 62R-2, 7-9 \\ 0.00 \\ 647.65 \\ 0.00 \\ 647.65 \\ 0.00 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.00$                                                                                                                                                                                                                         | 62R-1, 20-22                  | 0.01             | 50.97                          | 0.10                           | 0.03                           |                                | 4.00                           | 35.53 | 39.14 | 9.72   | 0.17    | 0.13       | 100.59         | 0.000            | 0.960            | 0.003  | 0.001   | 0.000            | 0.075            | 0.744            | 0.206 | 0.003 | 2.000 | 0.744 |       |
| $\begin{array}{c} 62R-2, 7-9 \\ 62R-2, 7-9 \\ 62R-2, 7-9 \\ 63R-1, 69-71 \\ 0.10 \\ 63R-1, 69-71 \\ 0.10 \\ 64R-1, 71-76 \\ 0.03 \\ 0.00 \\ 64R-1, 71-76 \\ 0.03 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0$                                                                                                                                                                                       | 62R-2, 7–9                    | 0.02             | 47.63                          | 0.08                           | 0.00                           | 0.19                           | 7.95                           | 34.91 | 42.06 | 7.55   |         | 0.23       | 98.71          | 0.001            | 0.920            | 0.002  | 0.000   | 0.004            | 0.154            | 0.749            | 0.164 | 0.000 | 0.006 | 2.000 | 0,749 |
| $\begin{array}{c} \begin{array}{c} 02k-2, \ 7-9 \\ (3R-1, \ 7b-3 \ 7b-3 \\ (3R-1, \ 7b-3 $                                                                                                                                                                                                                                                                                                                                                        | 62R-2, 7–9                    | 0.06             | 47.65                          | 0.09                           | 0.03                           | 0.15                           | 7.62                           | 34.55 | 41.41 | 7.90   |         | 0.29       | 98.44          | 0.002            | 0.922            | 0.003  | 0.001   | 0.003            | 0.147            | 0.743            | 0.172 | 0.000 | 0.008 | 2.000 | 0.741 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 62R-2, 7-9                    | 0.00             | 47.86                          | 0.09                           | 0.02                           | 0.06                           | 7.57                           | 34.39 | 41.20 | 8.19   |         | 0.28       | 98.59          | 0.000            | 0.925            | 0.003  | 0.000   | 0.001            | 0.146            | 0.739            | 0.178 | 0.000 | 0.008 | 2.000 | 0.739 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 63R-1, 69-71                  | 0.10             | 47.87                          | 0.08                           | 0.00                           | 0.11                           | 7.05                           | 33.90 | 40.25 | 8.58   |         | 0.45       | 98.23          | 0.003            | 0.927            | 0.002  | 0.000   | 0.002            | 0.137            | 0.730            | 0.187 | 0.000 | 0.012 | 2.000 | 0.727 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 68R-1, 12-14                  | 0.01             | 48.81                          | 0.11                           | 0.03                           | 0.40                           | 5.99                           | 34.15 | 39.54 | 9.17   |         | 0.37       | 99.07          | 0.000            | 0.936            | 0.003  | 0.001   | 0.008            | 0.115            | 0.728            | 0.198 | 0.000 | 0.010 | 2.000 | 0.728 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 68R-1, 12-14<br>68R-1, 90-92  | 0.04             | 48.38                          | 0.23                           | 0.00                           | 0.34                           | 6.65                           | 33.75 | 39.71 | 9.48   |         | 0.17       | 99.06<br>99.77 | 0.001            | 0.928            | 0.007  | 0.000   | 0.128            | 0.720            | 0.205            | 0.000 | 0.005 | 2.000 | 2.000 | 0.693 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120                           | 2010200          | 01997                          |                                | 0.00                           |                                |                                |       |       | 0.00   |         | 10000      | (******)       |                  |                  |        | 0000000 | 0.2040400        |                  |                  | 0.000 |       | 0.000 |       |       |
| $\frac{139-857F-}{27R+1} \frac{1}{42-43} = 0.320 - 0.250 - 0.026 - 0.026 - 0.020 - 0.000 - 0.027 - 0.020 - 0.000 - 0.027 - 0.000 - 0.027 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 139-<br>6P 1 71 76            | 0.02             | 50.50                          | 0.09                           | 0.01                           |                                | 4.02                           | 42 42 | 16.94 | 2 79   | 0.07    | 0.07       | 100.76         | 0.001            | 0.052            | 0.002  | 0.000   | 0.000            | 0.002            | 0 000            | 0.050 | 0.002 | 0.002 | 2 000 | 0 000 |
| $\frac{139-857F_{-27R-1}}{27R-1} \frac{1}{42-43} = 0.320 - 0.250 - 0.000 - 65.427 - 30.016 - 88.890 - 0.030 - 0.080 - 95.520 - 0.010 - 0.012 - 0.000 - 1.969 - 1.004 - 0.001 - 0.005 - 0.037 - 0.000 - 0.015 - 0.037 - 0.039 - 0.039 - 0.039 - 0.039 - 0.039 - 0.039 - 0.039 - 0.039 - 0.039 - 0.039 - 0.039 - 0.039 - 0.039 - 0.039 - 0.039 - 0.039 - 0.039 - 0.039 - 0.039 - 0.030 - 0.037 - 0.039 - 0.039 - 0.039 - 0.030 - 0.030 - 0.031 - 0.031 - 0.031 - 0.031 - 0.031 - 0.030 - 0.030 - 0.030 - 0.030 - 0.030 - 0.031 - 0.031 - 0.031 - 0.031 - 0.031 - 0.030 - 0.030 - 0.030 - 0.031 - 0.001 - 0.001 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6P 1 71 76                    | 0.05             | 50.50                          | 0.08                           | 0.01                           |                                | 4.92                           | 42.42 | 40.04 | 2.70   | 0.07    | 0.07       | 101.04         | 0.001            | 0.952            | 0.002  | 0.000   | 0.000            | 0.095            | 0.009            | 0.059 | 0.005 | 0.002 | 2.000 | 0.000 |
| $\frac{51}{24R+1,115-117} = 0.015 + 0.015 + 0.005 + 0.005 + 0.005 + 0.005 + 0.005 + 0.005 + 0.005 + 0.005 + 0.005 + 0.005 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8P-1 06-08                    | 0.00             | 40 70                          | 0.07                           | 0.05                           |                                | 6.00                           | 38 55 | 40.79 | 5.62   | 0.10    | 0.09       | 100.61         | 0.001            | 0.934            | 0.002  | 0.001   | 0.115            | 0.007            | 0.110            | 0.009 | 0.004 | 0.002 | 2.000 | 0.009 |
| $\frac{139-857F-}{27R-1} \frac{1}{42-43} = 0.320 - 0.250 - 0.025 - 0.250 - 0.000 - 65.427 - 30.016 - 88.890 - 0.030 - 0.080 - 95.520 - 0.010 - 0.012 - 0.000 - 0.012 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 24P-1 115-117                 | 0.10             | 40.10                          | 0.04                           | 0.00                           |                                | 5.10                           | 38 70 | 43 38 | 5 22   | 0.17    | 0.13       | 08.60          | 0.005            | 0.939            | 0.003  | 0.000   | 0.000            | 0.100            | 0.827            | 0.113 | 0.004 | 0.004 | 2.000 | 0.800 |
| $\frac{139-857F_{-2}}{27R-1} \frac{42-43}{2} 0.320 0.250 0.020 65.427 30.016 88.890 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 24R-1, 115-117                | 0.08             | 50.41                          | 0.04                           | 0.01                           |                                | 4.62                           | 38.42 | 42.58 | 5.97   | 0.16    | 0.13       | 100.13         | 0.00             | 0.954            | 0.001  | 0.000   | 0.000            | 0.088            | 0.808            | 0.127 | 0.006 | 0.004 | 2.000 | 0.822 |
| $\frac{139-857F_{-27R-1}}{27R-1}42-43 = 0.320 - 0.250 - 0.020 - 65.427 - 30.016 - 88.890 - 0.030 - 0.080 - 95.520 - 0.010 - 0.012 - 0.000 - 1.969 - 1.004 - 0.001 - 0.005 - 3.000 - 0.005 - 0.005 - 0.004 - 0.005 - 0.004 - 0.005 - 0.004 - 0.005 - 0.004 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25R-1 64-66                   | 0.06             | 50.70                          | 0.03                           | 0.01                           |                                | 4.65                           | 41.86 | 46.05 | 3 38   | 0.12    | 0.13       | 100.15         | 0.002            | 0.954            | 0.001  | 0.000   | 0.000            | 0.088            | 0.876            | 0.072 | 0.000 | 0.003 | 2.000 | 0.875 |
| $\frac{26R - 1}{26R - 1}, \frac{76 - 78}{16 - 1}, \frac{30.07}{50.89}, \frac{50.07}{50.9}, \frac{50.07}{50.9}, \frac{50.07}{50.9}, \frac{50.07}{50.9}, \frac{50.07}{50.9}, \frac{50.07}{50.89}, \frac{50.07}{50.9}, \frac{50.07}{50.89}, 5$ | 25R-1, 64-66                  | 0.05             | 50.76                          | 0.07                           | 0.02                           |                                | 4 25                           | 41 73 | 3.49  | 0.13   | 0.16    | 100 56     | 0.001          | 0.957            | 0.002            | 0.002  | 0.000   | 0.000            | 0.080            | 0.875            | 0.074 | 0.004 | 0.003 | 2.000 | 0.874 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 26R-1, 76-78                  | 0.07             | 50.89                          | 0.07                           | 0.00                           |                                | 4.18                           | 38.21 | 41.97 | 6.82   | 0.13    | 0.39       | 100.62         | 0.002            | 0.958            | 0.002  | 0.000   | 0.000            | 0.079            | 0.800            | 0.145 | 0.005 | 0.010 | 2.000 | 0.798 |
| $ \begin{array}{c} Core \ section \\ interval (cm) \end{array} \begin{array}{c} TiO_2 \ Al_2O_3 \ Cr_2O_3 \ Fe_2O_3 \ Fe_2O_3 \end{array} FeO \ FeO^1 \ MnO \ MgO \ Total \ Ti \ Al \ Cr \ Fe^{3+} \ Fe^{2+} \ Mn \ Mg \ Total \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |                  |                                |                                |                                |                                |                                |       |       | C. C   | omposi  | tion of m  | agnetite       | Site 858.        |                  |        |         |                  |                  |                  |       |       |       |       |       |
| interval (cm) $\text{TiO}_2$ $\text{Al}_2\text{O}_3$ $\text{Cr}_2\text{O}_3$ $\text{Fe}_2\text{O}_3$ $\text{Fe}_2\text{O}_4$ $\text{MnO}$ $\text{MgO}$ $\text{Total}$ $\text{Ti}$ $\text{Al}$ $\text{Cr}$ $\text{Fe}^{3+}$ $\text{Fe}^{2+}$ $\text{Mn}$ $\text{Mg}$ $\text{Total}$<br>139-857F-<br>27R-1 42-43 0.320 0.250 0.000 65.427 30.016 88.890 0.030 0.080 95.520 0.010 0.012 0.000 1.969 1.004 0.001 0.005 3.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Core section                  | CRATE S          | 9.5.16                         |                                |                                |                                |                                |       |       |        |         |            |                |                  |                  | 121.53 | -       | 1.00             |                  | -                |       | _     |       |       |       |
| 139-857F-<br>27R-1 42-43 0.320 0.250 0.000 65.427 30.016 88.890 0.030 0.080 95.520 0.010 0.012 0.000 1.969 1.004 0.001 0.005 3.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | interval (cm)                 | TiO <sub>2</sub> | Al <sub>2</sub> O <sub>3</sub> | Cr <sub>2</sub> O <sub>3</sub> | Fe <sub>2</sub> O <sub>3</sub> | FeO                            | FeOt                           | MnO   | MgO   | Total  | Ti      | Al         | Cr             | Fe <sup>3+</sup> | Fe <sup>2+</sup> | Mn     | Mg      | Total            |                  |                  |       |       |       |       |       |
| 27R-1 42-43 0.320 0.250 0.000 65.427 30.016 88.890 0.030 0.080 95.520 0.010 0.012 0.000 1.969 1.004 0.001 0.005 3.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 139-857F-                     |                  |                                |                                |                                |                                |                                |       |       |        |         |            |                |                  |                  |        |         |                  |                  |                  |       |       |       |       |       |
| THE TARK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27R-1 42-43                   | 0.320            | 0.250                          | 0.000                          | 65 427                         | 30.016                         | 88 890                         | 0.030 | 0.080 | 95 520 | 0.010   | 0.012      | 0.000          | 1.969            | 1.004            | 0.001  | 0.005   | 3.000            |                  |                  |       |       |       |       |       |
| 27R-1 42-43 0.780 0.190 0.060 64.839 30.562 88.907 0.050 0.070 95.990 0.023 0.009 0.002 1.9423 1.018 0.002 0.004 3.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27R-1, 42-43                  | 0.780            | 0.190                          | 0.060                          | 64.839                         | 30.562                         | 88.907                         | 0.050 | 0.070 | 95,990 | 0.023   | 0.009      | 0.002          | 1.9423           | 1.018            | 0.002  | 0.004   | 3.000            |                  |                  |       |       |       |       |       |
| 27R-1, 42-43 0.990 0.330 0.060 63.166 29.937 86.777 0.060 0.260 94.040 0.030 0.016 0.002 1.922 1.012 0.002 0.016 3.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27R-1, 42-43                  | 0.990            | 0.330                          | 0.060                          | 63,166                         | 29,937                         | 86.777                         | 0.060 | 0.260 | 94.040 | 0.030   | 0.016      | 0.002          | 1.922            | 1.012            | 0.002  | 0.016   | 3,000            |                  |                  |       |       |       |       |       |

Notes: Structural formula calculated on the basis of four oxygens with calculated values of Fe<sup>3+</sup> and Fe<sup>2+</sup>. FeO is total iron calculated as FeO. Fe<sub>2</sub>O<sub>3</sub>, FeO, Fe<sup>3+</sup>, and Fe<sup>2+</sup> are calculated by stoichiometry. X'ilm is mole fraction ilmenite in mineral.

Table 8. Microprobe analyses of sulfide minerals, Leg 139, Site 856.

|       |                                                                                                                     |                                                                                                                                                                                                                                                                                           | A. P                                                                                                                                                                                                                                                                                                                                                                                                                  | yrrhotite ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nd pentland                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ite compos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | itions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cu    | Fe                                                                                                                  | Ni                                                                                                                                                                                                                                                                                        | s                                                                                                                                                                                                                                                                                                                                                                                                                     | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Fe mole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ni mole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S mole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cu mole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Fe mole<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ni mole<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S mole<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                                                                                                     |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.01  | 31.31                                                                                                               | 36.17                                                                                                                                                                                                                                                                                     | 32.75                                                                                                                                                                                                                                                                                                                                                                                                                 | 100.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.561                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.00  | 60.16                                                                                                               | 0.83                                                                                                                                                                                                                                                                                      | 39.75                                                                                                                                                                                                                                                                                                                                                                                                                 | 100.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.531                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.06  | 33.44                                                                                                               | 33.11                                                                                                                                                                                                                                                                                     | 33.16                                                                                                                                                                                                                                                                                                                                                                                                                 | 99.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.599                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.564                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3.64  | 54.10                                                                                                               | 4.84                                                                                                                                                                                                                                                                                      | 36.86                                                                                                                                                                                                                                                                                                                                                                                                                 | 99.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.970                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.082                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.509                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.00  | 57.49                                                                                                               | 3.07                                                                                                                                                                                                                                                                                      | 38.53                                                                                                                                                                                                                                                                                                                                                                                                                 | 99.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.451                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.526                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.10  | 60.15                                                                                                               | 1.12                                                                                                                                                                                                                                                                                      | 39.05                                                                                                                                                                                                                                                                                                                                                                                                                 | 100.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.466                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.08  | 59.99                                                                                                               | 1.08                                                                                                                                                                                                                                                                                      | 38.65                                                                                                                                                                                                                                                                                                                                                                                                                 | 99.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.468                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.00  | 60.85                                                                                                               | 0.51                                                                                                                                                                                                                                                                                      | 37.64                                                                                                                                                                                                                                                                                                                                                                                                                 | 99.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                                                                                                     |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.97  | 60.13                                                                                                               | 0.00                                                                                                                                                                                                                                                                                      | 38.75                                                                                                                                                                                                                                                                                                                                                                                                                 | 100.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.467                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.37  | 60.48                                                                                                               | 0.02                                                                                                                                                                                                                                                                                      | 38.77                                                                                                                                                                                                                                                                                                                                                                                                                 | 100.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                                                                                                     |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                       | В.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Copper min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | erals.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       |                                                                                                                     |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fe mole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S mole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Cu    | Fe                                                                                                                  | Mn                                                                                                                                                                                                                                                                                        | Zn                                                                                                                                                                                                                                                                                                                                                                                                                    | Cd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cu mole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fe mole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S mole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       |                                                                                                                     |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 33.79 | 31.00                                                                                                               | 0.00                                                                                                                                                                                                                                                                                      | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 34.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 99.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.532                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.497                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 33.96 | 31.00                                                                                                               | 0.03                                                                                                                                                                                                                                                                                      | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 34.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 99.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.073                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.496                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 33.76 | 30.46                                                                                                               | 0.02                                                                                                                                                                                                                                                                                      | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 34.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 98.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.532                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.546                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.498                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | Cu<br>0.01<br>0.00<br>0.06<br>3.64<br>0.00<br>0.10<br>0.08<br>0.00<br>0.97<br>0.37<br>Cu<br>33.79<br>33.96<br>33.76 | Cu     Fe       0.01     31.31       0.00     60.16       0.06     33.44       3.64     54.10       0.00     57.49       0.10     60.15       0.08     59.99       0.00     60.85       0.97     60.13       0.37     60.48       Cu       Fe       33.79     31.00       33.76     30.46 | Cu     Fe     Ni       0.01     31.31     36.17       0.00     60.16     0.83       0.06     33.44     33.11       3.64     54.10     4.84       0.00     57.49     3.07       0.10     60.15     1.12       0.08     59.99     1.08       0.00     60.85     0.51       0.97     60.13     0.00       0.37     60.48     0.02       Cu       Fe     Mn       33.79     31.00     0.03       33.76     30.46     0.02 | A. P       Cu     Fe     Ni     S       0.01     31.31     36.17     32.75       0.06     33.44     33.11     33.16       3.64     54.10     4.84     36.86       0.00     60.15     1.12     39.05       0.08     59.99     1.08     38.65       0.00     60.85     0.51     37.64       0.97     60.13     0.00     38.75       0.37     60.48     0.02     38.77       Cu     Fe     Mn     Zn       33.79     31.00     0.00     0.17       33.96     31.00     0.02     0.20 | A. Pyrrhotite ar       Cu     Fe     Ni     S     Total       0.01     31.31     36.17     32.75     100.26       0.00     60.16     0.83     39.75     100.76       0.06     33.44     33.11     33.16     99.77       3.64     54.10     4.84     36.86     99.46       0.00     67.49     3.07     38.53     99.10       0.10     60.15     1.12     39.05     100.44       0.08     59.99     1.08     38.65     99.83       0.00     60.85     0.51     37.64     99.01       0.97     60.13     0.00     38.75     100.55       0.37     60.48     0.02     38.77     100.58       B.4       Cu       Fe       Mn     Zn     Cd       Sd     30.46       0.02     0.20     0.00 | A. Pyrrhotite and pentlandi       Cu     Fe     Ni     S     Total     Fe mole       0.01     31.31     36.17     32.75     100.26     0.561       0.00     60.16     0.83     39.75     100.76     1.078       0.06     33.44     33.11     33.16     99.77     0.599       3.64     54.10     4.84     36.86     99.46     0.970       0.00     57.49     3.07     38.53     99.10     1.030       0.10     60.15     1.12     39.05     100.44     1.078       0.08     59.99     1.08     38.65     99.83     1.075       0.00     60.85     0.51     37.64     9.01     1.091       0.97     60.13     0.00     38.75     100.55     1.078       0.37     60.48     0.02     38.77     100.58     1.084       B. Copper min       Cu     Fe     Mn     Zn     Cd     S       33.79     31.00 <td< td=""><td>A. Pyrrhotite and pentlandite composition       Cu     Fe     Ni     S     Total     Fe mole     Ni mole       0.01     31.31     36.17     32.75     100.26     0.561     0.616       0.00     60.16     0.83     39.75     100.76     1.078     0.014       0.06     33.44     33.11     33.16     99.77     0.599     0.564       3.64     54.10     4.84     36.86     99.46     0.970     0.082       0.00     57.49     3.07     38.53     99.10     1.030     0.052       0.10     60.15     1.12     39.05     100.44     1.078     0.019       0.08     59.99     1.08     38.65     99.83     1.075     0.018       0.00     60.85     0.51     37.64     99.01     1.091     0.009       0.37     60.48     0.02     38.77     100.58     1.084     0.000       0.37     60.48     0.02     38.77     100.58     1.084     0.000</td><td>A. Pyrrhotite and pentlandite compositions.       Cu     Fe     Ni     S     Total     Fe mole     Ni mole     S mole       0.01     31.31     36.17     32.75     100.26     0.561     0.616     1.020       0.00     60.16     0.83     39.75     100.76     1.078     0.014     1.238       0.06     33.44     33.11     33.16     99.77     0.599     0.564     1.033       3.64     54.10     4.84     36.86     99.46     0.970     0.082     1.148       0.00     57.49     3.07     38.53     99.10     1.030     0.052     1.204       0.00     60.15     1.12     39.05     100.44     1.078     0.019     1.217       0.08     59.99     1.08     38.65     99.83     1.075     0.018     1.204       0.00     60.85     0.51     37.64     99.01     1.091     0.000     1.207       0.37     60.48     0.02     38.75     100.55     1.078</td></td<> <td>A. Pyrrhotite and pentlandite compositions.       Cu     Fe     Ni     S     Total     Fe mole     Ni mole     S mole     Cu mole       0.01     31.31     36.17     32.75     100.26     0.561     0.616     1.020     0.000       0.06     63.44     33.11     33.16     99.77     0.599     0.564     1.033     0.001       3.64     54.10     4.84     36.86     99.46     0.970     0.082     1.148     0.057       0.00     60.15     1.12     39.05     100.44     1.078     0.019     1.217     0.002       0.08     59.99     1.08     38.65     99.83     1.075     0.018     1.204     0.001       0.00     60.85     0.51     37.64     99.01     1.091     0.009     1.173     0.000       0.00     60.48     0.02     38.75     100.55     1.078     0.000     1.207     0.015       0.37     60.48     0.02     38.75     100.55     1.078     0.000</td> <td>A. Pyrrhotite and pentlandite compositions.       Cu     Fe     Ni     S     Total     Fe mole     Ni mole     S mole     Cu mole     %       0.01     31.31     36.17     32.75     100.26     0.561     0.616     1.020     0.000     0.255       0.00     60.16     0.83     39.75     100.76     1.078     0.014     1.238     0.000     0.463       0.06     33.44     33.11     33.16     99.77     0.599     0.564     1.033     0.001     0.273       3.64     54.10     4.84     36.86     99.46     0.970     0.082     1.148     0.057     0.429       0.00     57.49     3.07     38.53     99.10     1.030     0.052     1.200     0.000     0.451       0.10     60.15     1.12     39.05     100.44     1.078     0.019     1.217     0.002     0.466       0.08     59.99     1.08     38.65     99.83     1.075     0.018     1.204     0.001</td> <td>A. Pyrrhotite and pentlandite compositions.       Cu     Fe     Ni     S     Total     Fe mole     Ni mole     S mole     Cu mole     <math>\frac{6}{\%}</math>     Ni mole       0.01     31.31     36.17     32.75     100.26     0.561     0.616     1.020     0.000     0.255     0.280       0.00     60.16     0.83     39.75     100.76     1.078     0.014     1.238     0.000     0.463     0.006       0.06     33.44     33.11     33.16     99.77     0.599     0.564     1.033     0.001     0.273     0.257       3.64     54.10     4.84     36.86     99.46     0.970     0.082     1.148     0.057     0.429     0.037       0.00     57.49     3.07     38.53     99.10     1.030     0.052     1.200     0.000     0.4651     0.0237       0.10     60.15     1.12     39.05     100.44     1.078     0.019     1.217     0.002     0.466     0.008       0.00     60.85<td>A. Pyrrhotite and pentlandite compositions.       Cu     Fe     Ni     S     Total     Fe mole     Ni mole     S mole     Cu mole     Fe mole     Ni mole     S mole     Cu mole     Fe mole     Ni mole     S mole       0.01     31.31     36.17     32.75     100.26     0.561     0.616     1.020     0.000     0.255     0.280     0.464       0.06     33.44     33.11     33.16     99.77     0.599     0.564     1.033     0.001     0.273     0.257     0.470       3.64     54.10     4.84     36.86     99.46     0.970     0.082     1.148     0.057     0.429     0.037     0.509       0.00     57.49     3.07     38.53     99.10     1.030     0.052     1.204     0.001     0.466     0.008     0.525       0.08     59.99     1.08     38.65     99.83     1.075     0.018     1.204     0.001     0.468     0.004     0.516       0.07     60.13     0.002     3</td></td> | A. Pyrrhotite and pentlandite composition       Cu     Fe     Ni     S     Total     Fe mole     Ni mole       0.01     31.31     36.17     32.75     100.26     0.561     0.616       0.00     60.16     0.83     39.75     100.76     1.078     0.014       0.06     33.44     33.11     33.16     99.77     0.599     0.564       3.64     54.10     4.84     36.86     99.46     0.970     0.082       0.00     57.49     3.07     38.53     99.10     1.030     0.052       0.10     60.15     1.12     39.05     100.44     1.078     0.019       0.08     59.99     1.08     38.65     99.83     1.075     0.018       0.00     60.85     0.51     37.64     99.01     1.091     0.009       0.37     60.48     0.02     38.77     100.58     1.084     0.000       0.37     60.48     0.02     38.77     100.58     1.084     0.000 | A. Pyrrhotite and pentlandite compositions.       Cu     Fe     Ni     S     Total     Fe mole     Ni mole     S mole       0.01     31.31     36.17     32.75     100.26     0.561     0.616     1.020       0.00     60.16     0.83     39.75     100.76     1.078     0.014     1.238       0.06     33.44     33.11     33.16     99.77     0.599     0.564     1.033       3.64     54.10     4.84     36.86     99.46     0.970     0.082     1.148       0.00     57.49     3.07     38.53     99.10     1.030     0.052     1.204       0.00     60.15     1.12     39.05     100.44     1.078     0.019     1.217       0.08     59.99     1.08     38.65     99.83     1.075     0.018     1.204       0.00     60.85     0.51     37.64     99.01     1.091     0.000     1.207       0.37     60.48     0.02     38.75     100.55     1.078 | A. Pyrrhotite and pentlandite compositions.       Cu     Fe     Ni     S     Total     Fe mole     Ni mole     S mole     Cu mole       0.01     31.31     36.17     32.75     100.26     0.561     0.616     1.020     0.000       0.06     63.44     33.11     33.16     99.77     0.599     0.564     1.033     0.001       3.64     54.10     4.84     36.86     99.46     0.970     0.082     1.148     0.057       0.00     60.15     1.12     39.05     100.44     1.078     0.019     1.217     0.002       0.08     59.99     1.08     38.65     99.83     1.075     0.018     1.204     0.001       0.00     60.85     0.51     37.64     99.01     1.091     0.009     1.173     0.000       0.00     60.48     0.02     38.75     100.55     1.078     0.000     1.207     0.015       0.37     60.48     0.02     38.75     100.55     1.078     0.000 | A. Pyrrhotite and pentlandite compositions.       Cu     Fe     Ni     S     Total     Fe mole     Ni mole     S mole     Cu mole     %       0.01     31.31     36.17     32.75     100.26     0.561     0.616     1.020     0.000     0.255       0.00     60.16     0.83     39.75     100.76     1.078     0.014     1.238     0.000     0.463       0.06     33.44     33.11     33.16     99.77     0.599     0.564     1.033     0.001     0.273       3.64     54.10     4.84     36.86     99.46     0.970     0.082     1.148     0.057     0.429       0.00     57.49     3.07     38.53     99.10     1.030     0.052     1.200     0.000     0.451       0.10     60.15     1.12     39.05     100.44     1.078     0.019     1.217     0.002     0.466       0.08     59.99     1.08     38.65     99.83     1.075     0.018     1.204     0.001 | A. Pyrrhotite and pentlandite compositions.       Cu     Fe     Ni     S     Total     Fe mole     Ni mole     S mole     Cu mole $\frac{6}{\%}$ Ni mole       0.01     31.31     36.17     32.75     100.26     0.561     0.616     1.020     0.000     0.255     0.280       0.00     60.16     0.83     39.75     100.76     1.078     0.014     1.238     0.000     0.463     0.006       0.06     33.44     33.11     33.16     99.77     0.599     0.564     1.033     0.001     0.273     0.257       3.64     54.10     4.84     36.86     99.46     0.970     0.082     1.148     0.057     0.429     0.037       0.00     57.49     3.07     38.53     99.10     1.030     0.052     1.200     0.000     0.4651     0.0237       0.10     60.15     1.12     39.05     100.44     1.078     0.019     1.217     0.002     0.466     0.008       0.00     60.85 <td>A. Pyrrhotite and pentlandite compositions.       Cu     Fe     Ni     S     Total     Fe mole     Ni mole     S mole     Cu mole     Fe mole     Ni mole     S mole     Cu mole     Fe mole     Ni mole     S mole       0.01     31.31     36.17     32.75     100.26     0.561     0.616     1.020     0.000     0.255     0.280     0.464       0.06     33.44     33.11     33.16     99.77     0.599     0.564     1.033     0.001     0.273     0.257     0.470       3.64     54.10     4.84     36.86     99.46     0.970     0.082     1.148     0.057     0.429     0.037     0.509       0.00     57.49     3.07     38.53     99.10     1.030     0.052     1.204     0.001     0.466     0.008     0.525       0.08     59.99     1.08     38.65     99.83     1.075     0.018     1.204     0.001     0.468     0.004     0.516       0.07     60.13     0.002     3</td> | A. Pyrrhotite and pentlandite compositions.       Cu     Fe     Ni     S     Total     Fe mole     Ni mole     S mole     Cu mole     Fe mole     Ni mole     S mole     Cu mole     Fe mole     Ni mole     S mole       0.01     31.31     36.17     32.75     100.26     0.561     0.616     1.020     0.000     0.255     0.280     0.464       0.06     33.44     33.11     33.16     99.77     0.599     0.564     1.033     0.001     0.273     0.257     0.470       3.64     54.10     4.84     36.86     99.46     0.970     0.082     1.148     0.057     0.429     0.037     0.509       0.00     57.49     3.07     38.53     99.10     1.030     0.052     1.204     0.001     0.466     0.008     0.525       0.08     59.99     1.08     38.65     99.83     1.075     0.018     1.204     0.001     0.468     0.004     0.516       0.07     60.13     0.002     3 |

replacement of plagioclase (An<sub>53-69</sub>) by chlorite. Some pieces are very coarse-grained and presumably come from highly altered centers of large (fractured?) sills. Section 857D-29R-1 (Subunit 23A) is a highly epidotized diabase that systematically increases in grain size from top to bottom. Strongly zoned plagioclase (An<sub>66-49</sub>) is partially replaced by quartz and epidote. This unit is adjacent to intervals of epidote-rich sandstone. Cores 857D-30R to 857R-32R (Subunits 23B–G) are similar epidotized and chloritized fine-grained diabase, with intervening sediment and bleached metabasalt contact zones separating subunits. The pieces are small and discontinuous and may be a series of thin, highly fractured sills.

A conspicuous quenched margin for Unit 24 was observed in Core 857D-33R-1, with a bleached contact zone and inner vesicle-rich zone that grades rapidly into a medium-grained diabase. Subunit 25A is a single piece of variolitic basalt in Core 139-34R-1. Subunits 25B (Core 139-35-1, 0 cm to 139-36-1, 22 cm) and 25C (Core 139-36R-1, 32 cm to 139-36-1, 143 cm) are similarly fine-grained diabase; they increase in grain size and become more mafic toward their bases to ophitic textures with some poikilitic clinopyroxenes. In subunit 25B, plagioclase (An<sub>34-72</sub>) is altered to quartz and albite. In subunit 25C, plagioclase (An<sub>45-68</sub>) shows normal, reversed and oscillatory zonation and replacement by epidote. Unit 26 (139-37R-1, 17–20 cm) is a small single piece of epidotized diabase within a sedimentary interval.

## Petrography and Mineral Chemistry

No fresh olivine was observed in any of the sills, although small euhedral pseudomorphs are interpreted to be replacements of either olivine or clinopyroxene. The mafic pseudomorphs are composed of smectite/chlorite or chlorite. In one unit they are associated with spinel, in which they likely are replacements of olivine.

Spinel was observed in only one thin section from Unit 17A. It has a Cr# (=Cr/Cr+AI) = 0.52-0.43 and a Mg# (=Mg/Mg+Fe) = 0.70-0.71 (Table 6). This spinel occurs as strongly zoned euhedral crystals in a sill containing unusually calcic plagioclase. The sill occurs at the stratigraphic horizon of the most intense alteration that may be associated with a fault.

The Fe-oxide phase in the Site 857 sills is dominated by ilmenite (Table 7) with sparse magnetite and no titanomagnetite, in contrast to the samples from Site 856. The ilmenite is observed as interstitial anhedral grains in the finer-grained portions of the sills and as spectacular euhedral or skeletal tabular plates in the coarser-grained portions of the sills. Ilmenite together with its alteration products, makes up

# Table 9. Unit designations for igneous rocks from Site 857.

| Unit       | Тор           | Bottom         |
|------------|---------------|----------------|
| 139-857C-  |               |                |
| 1          | 59R-1, 0 cm   | 59R-4, 139 cm  |
| 2          | 60R-1, 0 cm   | 60R-2, 31cm    |
| 3          | 60R-2, 49 cm  | 60R-2, 142 cm  |
| 4          | 61R-1, 0 cm   | 61R-1, 100 cm  |
| 5          | 61R-2, 0 cm   | 61-2, 82 cm    |
| 6          | 62R-1.0 cm    | 62R-2, 79 cm   |
| 7          | 63R-1, 34 cm  | 63R-1, 73 cm   |
| 8          | 64R-1.0 cm    | 64R-2, 133 cm  |
| 9          | 65R-1.0 cm    | 65-1, 5 cm     |
| 10         | 66R-1, 24 cm  | 67-1, 5 cm     |
| 11         | 67R-1, 58 cm  | 67R-1, 76 cm   |
| 12         | 68R-1, 0 cm   | 68R-3, 36 cm   |
| 130.857D   |               |                |
| 139-0570-  | 1P.1.0 cm     | 1P.1 110 cm    |
| 144        | 1R-1, 0 cm    | 2P.1 38 cm     |
| 142        | 2P 1 47 cm    | 3P 2 123 cm    |
| 14D        | 4P 1 7 cm     | 4P 2 90 cm     |
| 15         | 4R-1, / cm    | 7D 1 52 cm     |
| 10A        | 7R-1,0 cm     | 9D 1 66 cm     |
| 100        | 8R-1, 0 cm    | OP 1 122 cm    |
| 100        | 8K-1, /1 cm   | 9R-1, 122 Cm   |
| 17A<br>17B | 12R-1, 21 cm  | 12R-2, 155 cm  |
| 120 0520   | 1010 1, 7 611 | 1010 1, 12 011 |
| 139-85/D-  | 160 1 26      | 160 1 62       |
| 18A        | 15K-1, 55 cm  | 15K-1, 05 cm   |
| 188        | 16R-2, 55 cm  | 16K-2, 65 cm   |
| 19         | 1/R-3, 48 cm  | 20R-1, 119 cm  |
| 20A        | 21R-1, 18 cm  | 21R-1, 115 cm  |
| 208        | 21R-1, 135 cm | 21R-1, 140 cm  |
| 200        | 22R-1, 0 cm   | 22R-1, 14 cm   |
| 20D        | 22R-1, 31 cm  | 24R-1, 12 cm   |
| 21         | 24R-1, 104 cm | 26R-1, 96 cm   |
| 22         | 27R-1, 17 cm  | 28R-1, 7 cm    |
| 23A        | 29R-1, 32 cm  | 29R-2, 44 cm   |
| 23B        | 30R-1, 16 cm  | 30R-1, 19 cm   |
| 23C        | 30R-1, 25 cm  | 30R-1, 36 cm   |
| 23D        | 30R-1, 39cm   | 31R-1, 4 cm    |
| 23E        | 31R-1, 53 cm  | 31R-1, 91 cm   |
| 23F        | 31R-1, 91 cm  | 31R-1, 108 cm  |
| 23G        | 32R-1, 0 cm   | 32R-1, 65 cm   |
| 24         | 33R-1, 18 cm  | 33R-1, 98 cm   |
| 25A        | 34R-1, 88 cm  | 34R-1, 95 cm   |
| 25B        | 35R-1, 0 cm   | 36R-1, 22 cm   |
| 25C        | 36R-1, 32 cm  | 36R-1, 143 cm  |
| 26         | 37R-1, 17 cm  | 37R-1, 20 cm   |

about 3% of the rock. The average ilmenite composition is  $Fe_{0.90} Ti_{0.93}$ Mn<sub>0.12</sub> O<sub>3</sub>. The manganese contents of these ilmenite grains is unusually high (average 6.1 wt%) if compared with typical ilmenite compositions (Haggerty, 1976). The ilmenite in sills from 470 to 510 mbsf have progressively increasing Mn contents. Magnetite was observed as anhedral grains that were frequently altered or completely replaced, presumably by sulfide. No microprobe analyses were obtained.

Plagioclase is present as zoned phenocrysts or microphenocrysts intergrown with clinopyroxene (Table 4). In Hole 857D, large plagioclase megacrysts are also present with compositions varying from An<sub>80-89</sub> (Table 4). Zoned phenocrysts have core compositions varying from An<sub>60-73</sub>. Plagioclase contained in poikilitic intergrowths with pyroxene tend to show less chemical zonation and presumably preserve primary compositions. The rims of the phenocrysts and the compositions of the microphenocrysts are more sodic, averaging An<sub>50-60</sub>. Sodic compositions observed as rims on phenocrysts or patches in altered microphenocrysts may not be primary, but are typically An40-50. Although many of the plagioclase crystals show conspicuous optical zonation and replacement by secondary minerals, including chlorite and epidote, albitic rims on plagioclase (An <20) are relatively rare. Albitic compositions were only analyzed in two samples from the bottom of Hole 857D from Units 25B and 25C. Small patches of albitic plagioclase were rarely observed as anhedral relicts within masses of chloritic replacements (?) 140-142 cm, (pc. 6) with An<sub>12-15</sub>). Extreme plagioclase values (An95-83) have also been observed for megacrysts in Unit 17A. It is notable that these are associated with magnesiochromite, suggesting an unusually primitive magmatic composition for this unit or that the megacrysts are not related to the host magma.

Clinopyroxene is present as large phenocrysts intergrown with included plagioclase in an ophitic texture, as small barrel-shaped microphenocrysts, and as granular to spherulitic groundmass phases (Table 5). The clinopyroxene is highly variable in composition with both normal and reversed zonation in Al, Cr, and Ti contents common (Table 5). Cores of poikilitic clinopyroxenes are typically aluminous with Al<sub>2</sub>O<sub>3</sub>>4%. Many of these also have high Cr contents with Cr<sub>2</sub>O<sub>3</sub> >1%. Rims of zoned pyroxene crystals are normal augite with Al<sub>2</sub>O<sub>3</sub> of 2%-3% and Cr <0.8%. Brownish rims of pyroxene also contain high Ti (>1%). These rims are frequently observed on pyroxenes intergrown with plagioclase either poikilitically enclosing plagioclase or as symplectites. Less commonly, rims on pyroxenes are subcalcic augites with Al2O3 <2% and CaO <19% (e.g., Sample 139-857C-60R-2, 17-19 cm, [piece 1]). These subcalcic augites are high in FeO and low in Cr<sub>2</sub>O<sub>3</sub> and TiO<sub>2</sub>, suggesting a highly evolved magmatic composition with ilmenite on the liquidus. In contrast, groundmass clinopyroxene commonly contains high Al<sub>2</sub>O<sub>3</sub> (up to 6%) and TiO<sub>2</sub> (over 3%) (e.g., Sample 139-857C-66R-1, 108-110 cm [piece 16]). This latter sample is from a highly altered crosscutting dike that forms Unit 10. These variations in clinopyroxene chemistry are interpreted to represent both variable primary magma composition and the effect of extremely variable cooling rates for the magmas once intruded into the sediment.

The principal sulfide minerals are pyrite, pyrrhotite, chalcopyrite, isocubanite, and sphalerite, all of which are interpreted to be secondary in origin. These occur as aggregates disseminated throughout the bulk of the rock and as vein fillings that precipitated from hydrothermal fluids. Pyrrhotite occurs more predominantly in the lower sills in Site 857. The nickel content of pyrrhotite, although variable, is high, typically ranging from 0.18% to 2.01%. Two analyses from Sample 139-857D-26R-1, 76-78 cm, contain 10.2% and 12.4% Ni, representing exceptional amounts of nickel for pyrrhotite. Nickel is bimodally distributed in pyrrhotite; low molar percent (mol%) Fe pyrrhotite (less than 46 mol% Fe) contains a uniform amount of nickel (1.4 mol%), whereas high Fe-pyrrhotite (>46 mol% Fe) contains only about 0.5 mol% Ni. Although the distribution and textures of the pyrrhotite grains in Site 857 sills generally indicate that they have been deposited after the rock was completely crystallized, their high nickel content may indicate that they have a magmatic parent.

## Alteration of the Site 857 Sill Complex

The sills recovered from Site 857 are variably metamorphosed and interlayered with altered or indurated sediment. Fine-grained quenched sill margins exhibit intense hydrothermal recrystallization and are extensively metasomatised. Such margins are bleached to a pale gray and are completely replaced by pale magnesian chlorite (Mg/Fe >2) with quartz and titanite. These are anomalously high in Mg, Al, and Ti compared to less-altered samples. Included microlites and phenocrysts are replaced, predominantly by green chlorite and epidote joined by actinolite in the lower half of Hole 857D. The most abundant and largest vein networks crosscut these highly altered margins and extend into the fresher rock slightly beyond the extent of the chill. Typical vein fillings include green ferroan chlorite/smectite, sulfide minerals, quartz, zeolites (most notably wairakite with Ca/Ca+Na = 95) and epidote ( $P_{s_{8,30}}$ , including thulite with Mn > 1%). The chilled margins of the sills and the immediately adjacent interval typically are vesicle-rich. The vesicles are almost all filled, most frequently with green ferroan chlorite, but also with quartz, epidote, prehnite, smectite, or sulfide minerals.

The second most intensely metamorphosed intervals are the coarsegrained sill interiors. The quantity of chloritic replacement of mesostasis and crystals is variable, with some intervals exhibiting over 50% replacement. The igneous plagioclase is strongly zoned and includes replacement by a variety of minerals including sodic plagioclase, epidote, chlorite, and prehnite. White sodic rims and mottled extinction in the plagioclase phenocrysts suggest that these are partially replaced by sodic plagioclase, yet abundant albite was not detected by microprobe. Much of the strong zonation in the plagioclase could in fact be primary. Pervasive alteration is best developed in Hole 857D where chlorite, epidote, and titanite are consistently present in greater abundances than observed in Hole 857C, and are the dominant vein minerals. The least-altered rocks are fine-to-medium grained diabase not associated with chilled margins. The alteration in the freshest intervals is limited to replacement of the sparse amounts of mesostasis.

Prehnite occurs in Unit 14B, both filling veins and replacing plagioclase. A substantial mass flux of Ca is suggested by the abundance of calcic vein minerals. Similarly the mass flux of magnesium is evidenced by the abundance of chlorite and the spuriously high Mg numbers (Table 1; Fig. 2) based on the whole-rock chemistry.

The whole-rock chemistry for all of the sills reflects the impact of this pervasive alteration, with total volatile content (H<sub>2</sub>O + S, or LOI) ranging from 1.3 to 8.4 wt%. Oxygen isotopic analyses of whole-rock powders vary from  $\delta^{18}$ O = 2.5–4.5‰, suggesting alteration at temperatures above 250°C (Table 2). These extremely depleted values for  $\delta^{18}$ O probably reflect the abundance of chlorite and formation of secondary sodic plagioclase (Stakes, unpubl. data). The most highly altered samples are in the uppermost section of sill, between 450 and 650 mbsf. This area is coincident with a high deformation zone (fractures and faulted rocks), and is also distinguished by a much higher content of veins.

#### Geochemistry

Alteration has undoubtedly modified the MgO and CaO contents and possibly other constituents in many if not all of these samples. MgO content does correlate with H<sub>2</sub>O in the overall data set, and correlates poorly with Ni (r = 0.5). These are the expected relationships if Mg was added from seawater during alteration, as no corresponding nickel would be added. In addition, the calculated Mg numbers are extremely high and are inconsistent with the mineralogy as well as the calculated magma Mg# from the spinel in Unit 17. This suggests the addition of seawater MgO. In an attempt to determine some aspects of the primary igneous nature of these rocks, a subset of "least altered samples" was established. These 21 samples have less than 3.0% total volatile content; included in these are samples with



Figure 6. Box plots comparing selected major and trace elements compositions of "unaltered" (Group 1) and "altered" (Group 2) samples, chosen as described in text.

less than 0.9% total sulfur. A comparison of "unaltered" (Group 1) and "altered" (Group 2) data sets is provided in Figure 6. The unaltered subset is significantly lower in MgO and significantly higher in CaO than the altered samples. In eliminating samples with volatile contents higher than 3%, it is possible that a few samples with higher primary ferromagnesian contents may have been excluded. For example, the spinel-bearing sill was not included in the unaltered subset although it is likely one of the most primitive units sampled at this site. In the filtered data set, Ni correlates moderately well with MgO (r = 0.8), an expected primary igneous relationship. Thus the filtered data set is a fair representation of primary igneous compositions, diluted by addition of H<sub>2</sub>O, but likely not affected in a major way by Mg addition. This filtering puts an upper limit on total MgO content of about 9.5 wt%. Thus it is likely that any samples containing more than this content of MgO are highly altered and of little use in determining primary igneous petrochemical trends.

Examination of the sulfur distribution in the "unaltered" suite of samples indicates a bimodal sulfur distribution. One population con-

tains samples with a maximum of 1800 ppm sulfur, the other from 1800-9000 ppm. The latter group of samples have had much sulfur added and thus have been somewhat altered. In considering whether to eliminate these high sulfur samples from the "unaltered" population, we examined the compositional changes between a sample suite (nine samples) containing low (<0.13%) S, a larger suite (the "unaltered" suite determined above) containing <3.0% total volatile content (21 samples), and the total suite of samples. The average copper content of the overall sample population is about 45% higher (125 ppm) than the "unaltered" and low-S suite (90 and 85 ppm, respectively), but virtually identical in the latter two suites. Zinc shows a gradual increase, from 74 ppm for the low-S suite, to 91 for the "unaltered" suite, to 102 ppm for the total suite. The "immobile" elements (TiO2, Cr, Ni, Y, Yb, Zr, and the REEs) do not differ significantly between the total suite of samples and the "unaltered" suite of 21 samples. Thus for petrochemical considerations using these elements, we use the full suite of analyses; when using the major elements, the "unaltered" suite is used.



Figure 7. TiO<sub>2</sub> Mg number for samples from Site 857 with total volatiles <3% ("unaltered suite"), including shipboard data. Note variation in TiO<sub>2</sub> at single value of Mg number.

## Major Element Data

For the complete set of data (Fig. 2), the range of  $Na_2O$  values is less than that of Site 858 and Site 855, suggesting little uptake of  $Na_2O$ due to alteration. Relative to average MORB, the rocks are substantially depleted in K due to alteration. In the sediments, K, Rb, and Ba are completely removed by hydrothermal alteration (see Goodfellow and Peter, this volume).

The plot of TiO2 vs. Mg number, using both shipboard and new data filtered to remove the most-altered samples (Fig. 7) illustrates that these samples form a grossly linear trend due to crystal fractionation. However, samples show considerable variation in TiO2 at the same Mg#, suggesting separate magma fractionation series from different parental magmas. This suggests that the sill complex may be composed of magmas resulting from variable degrees of partial melting and may not be contemporaneous. Similarly, on a plot of Na2O vs. MgO (Fig. 8), the filtered data form two subparallel trends similar to the liquid lines of descent calculated by Klein and Langmuir (1987). Both lines indicate low-pressure fractionation, possibly from two parent magmas. A high-and-low Fe trend is similarly seen in Fe<sub>2</sub>O<sub>3</sub> vs. Mg# plot (Fig. 2). Many of the sills are high in both Fe and Ti, similar to samples from propagating rifts (Christie and Sinton, 1986). However, considerable variations exist in Fe and Ti at the same Mg#. These variations must represent separate fractionation paths.

## Trace Element Data

A plot of TiO<sub>2</sub> vs. Zr (Fig. 3) shows a roughly linear trend similar to the TiO<sub>2</sub> vs Mg# plot due to the strong control by fractionational crystallization. For any value of TiO<sub>2</sub>, however, there is a range of values of Zr that cannot be related to differentiation. These variations must reflect multiple parental magmas resulting from a heterogeneous mantle source or, more likely, variable extent of partial melting of a single source region. The high Zr trend coincides with that of Site 858 and the low Zr trend coincides with that of Site 855. The values for Zr/Nb (15–57; Davis, Mottl, Fisher, et al., 1992) and Zr/Y (2.53–4.67) suggest that the sills include mostly normal (N-MORB) units with transitional compositions (T-MORB) in Units 10–12. Sills in Unit 8 (Zr/Nb = 29–30) and Unit 13 (Zr/Nb = 27) are also more enriched than the basalts from Sites 855 and 856.



Figure 8. MgO vs. Na<sub>2</sub>O for "unaltered" suite of samples from Site 857 sills. Two fractionation trends are defined, suggesting two parent magmas for these sills.

The REE contents range from 10 to about 25 times chondrite, and form two groups (Fig. 4). Both are depleted in La relative to Ce with [La/Ce]<sub>n</sub> ratios of 0.73 to 0.99. One group has a flat middle and heavy REE pattern ([Ce/Yb]<sub>n</sub> <1; Fig. 3), but the other has a slight depletion in the heavy REEs ([Ce/Yb]<sub>n</sub> >1; Fig. 3). The only exception is found in the highly altered crosscutting dike in which Unit 10 shows a slight enrichment in La compared to Ce ([La/Ce]<sub>n</sub> = 1.01), possibly resulting from the extensive alteration or a different magma type. Eu depletion is notable in some samples, absent in others, and enriched slightly in a few plagioclase-rich samples, suggesting variable fractionation and accumulation of plagioclase within the sills. Samples with a negative Eu anomaly tend to show a more pronounced depletion in the LREE.

The data were examined stratigraphically in order to see if the sills form coherent groups or display any systematic variations with depth. On a plot of chondrite-normalized [La/Yb]<sub>n</sub> vs. depth (Fig. 9), several variations are evident. The data generally cluster into two groups, Group I, with [La/Yb], greater than 1, and Group II, with [La/Yb], less than 1. On the plot of this ratio vs. depth below seafloor, the two groups apparently alternate with depth. Within the lower Group II clusters, the data for closely spaced sills trend to lower [La/Yb], with depth. No relationship between total REE content and depth is obvious at the scale of individual sills or clusters of sills, although the total REE contents appear to increase with depth below 600 mbsf. The position of each sill in Holes 857C and 857D was calculated using the logs for total gamma-ray counts and resistivity (Davis, Mottl, Fisher, et al., 1992). The sill contacts are identifiable within a few tens of centimeters, as the mafic rock is significantly less radioactive and more resistive than the adjacent sediment. These sills are plotted on a section showing the REE profiles (Fig. 10); the latter are positioned to reflect their approximate stratigraphic position. On this plot, several aspects are evident. Sills from the upper 50 m of Hole 857C (Core 139-857C-59R-1 to Core 139-857C-62R-2, Unit 1 to Unit 6; 450-500 mbsf) have generally flat patterns with LREE depletion in the lower members. Slight positive and negative europium anomalies occur within this horizon. Sills from the lower portion of Hole 857C (Core 139-857C-68R-1 to Core 857C-68R-3; Unit 7 to Unit 12; 500 to 570 mbsf) have flat REE patterns, with downward progressively larger negative europium anomalies with increasing depth. The only exception is the crosscutting dike (Unit 10), which is slightly enriched in LREE. Four sills from the top of Hole 857D (Core 857D-3R-1 to Core 857D-12R-1; Unit 14 to Unit 17, 570 to 700 mbsf) are LREE depleted, and have pronounced negative Eu anomalies. They are similar



Figure 9.  $[La/Yb]_n$  ratio vs. depth of samples from sills at Site 857 (chondrite normalized).

in total REE concentrations and REE patterns to the samples from Site 855. Sills below 700 mbsf (Core 857D-24R-1 to Core 857D-36R-1, Unit 21 to Unit 26) have flat patterns, with the sills below 850 mbsf (Cores 857D-32R-1 and 857D-36R-1, Unit 23 to Unit 26) displaying slight LREE depletion. The development of the negative Eu anomaly in the sills from 500 to 750 mbsf is indicative of removal of plagioclase from the melt. As the sills are quite thin (typically 10 m) and seemingly homogeneous (determined by petrographic examination, plus multiple samples from several of the sills, such as Unit 12, and others as shown in Fig. 10), this separation probably occurred in a shallow crustal magma chamber. The sill containing unusually calcic plagioclase and magnesiochromite (Unit 17) shows the largest negative Eu anomaly and the strongest depletion in the LREE. It is also one of the most altered, suggesting that the large Eu depletion may be due in part to plagioclase alteration. The values for  $\delta^{18}O$  for this horizon (2.4-4.5%) reflect the intense alteration of plagioclase and replacement by chlorite. The variable sample compositions suggest that the sills originated from at least two separate magmatic episodes or two small disconnected magma chambers.

#### Site 858, Holes F and G

## Setting

The igneous units intersected at the bottom of Hole 858F were at a horizon considered too shallow for basement. However, the finegrained nature of the rocks, the well-developed and ubiquitous variolitic textures, numerous chilled contacts, and the chemical uniformity of the basalt flows suggested to shipboard petrologists that this might be anomalously shallow basement — either a constructional high or an uplifted block adjacent to a buried basement fault. Drilling at Hole 858G was undertaken to determine the nature of the igneous unit and to penetrate as deeply as possible into igneous basement at an active hydrothermal area. Rare cherty pebbles were the only "sedimentary" material recovered within these holes below the basalt-sediment interface, supporting the interpretation that the drilling was into a topographic high comprised of extrusives.

All the igneous rocks recovered from Site 858 are basalt flows with variable quantities of tabular to columnar plagioclase, euhedral chro-



Figure 10. REE patterns plotted with depth in Holes 857C and 857D. Exact thickness of sill was determined from radiometric and resistivity logs, and is accurate to about 50 cm. Unit numbers are described in text.

mian spinel, and mafic silicates pseudomorphed by chlorite-smectite. Plagioclase is also present as a quenched phase with skeletal (lantern shapes and swallowtails on larger crystals) morphology. Much of the plagioclase is replaced by epidote and albitic plagioclase throughout both holes. The groundmass for most of the samples varies from cryptocrystalline or variolitic to microcrystalline, although no fresh glass is preserved. The only coarse-grained horizon is the basal unit for Hole 858G, which is a diabase (Sample 139-858G-16-1, 38–90 cm).

#### Petrography and Mineral Chemistry

The mafic phenocrysts are usually ovoid and replaced by a mixture of green to yellow pleochroic chlorite and smectite. The shapes of the pseudomorphs most clearly suggest olivine rather than pyroxene.

Spinel phenocrysts are dark red and commonly zoned with rims higher in Cr than the cores (Table 6; Fig. 5). The outer Cr-rich rim is conspicuous and frequently has inclusions of ilmenite and glass. The spinel phenocrysts are not uniformly present in the two Site 858 holes. They are common phenocrysts in the upper 40 m of basalt (from 249.9 to 288 mbsf) and in the lowermost basalt recovered from Hole 858G (413 to 423.7 mbsf). Small, sparse spinel crystals are also rarely noted at 296 mbsf and between 345 mbsf and 413 mbsf. Mg numbers vary from 0.35 to 0.75 and Cr numbers vary from 0.40 to 0.54 with one sample as high as 0.62 (Figs. 5C and 5D).

A few grains of ilmenite and magnetite were identified (Table 7, section B). These are small, anhedral, isolated blebs within the mesostasis. Magnetite is uniform in composition, with  $TiO_2$  and  $Al_2O_3$  contents typical of igneous rocks. Using the QUILF program (Anderson et al., 1993), an equilibrium temperature of about 800°C is indicated for the coexisting magnetite-ilmenite pair. This indicates that subsolidus equilibration of the oxide minerals was terminated at a fairly high temperature, although below expected eruption temperatures likely due to variable cooling of the basalt.

Plagioclase phenocrysts and microphenocrysts show strong optical and chemical zonation (Table 4). The most calcic phenocryst core compositions are  $An_{70-75}$ , except for Sample 139-858G-16R-1, 47–49 cm, which contains slightly more calcic plagioclase phenocrysts with core compositions of  $An_{76-80}$ . Microphenocrysts and groundmass plagioclase have more sodic compositions, similar in composition to sodic rims on the phenocrysts,  $An_{58-69}$ . Rarely, groundmass plagioclase is as sodic as  $An_{45}$ . Plagioclase commonly contains patchy replacement by albitic plagioclase, which is easily distinguished by the anomalous extinction and break in chemistry to  $An_{3-20}$ . Less commonly, plagioclase is partially replaced by epidote ( $Ps_{13-18}$ ) analcime or prehnite, or even more rarely, by quartz and chlorite. The plagioclase compositions more calcic than about  $An_{45}$  are assumed to be primary.

Clinopyroxene is most commonly a granular to spherulitic groundmass mineral in the more crystalline samples in which  $Al_2O_3$  contents vary from >4% to <2% (e.g., Sample 139-858-16R-1, 81–83 cm [piece 10]; Table 5). Where pyroxene is present as a phenocryst or microphenocryst phase it is typically higher in Ti than the associated groundmass phase.

Primary magmatic sulfides, such as those observed in samples from Site 856, are not present. Hydrothermal sulfides occur throughout most of the basalt samples from Holes 858F and 858G as small (0.1 mm), evenly dispersed grains of pyrite, pyrrhotite, chalcopyrite, and sphalerite, or as vein fillings.

#### Alteration

The basalts from this hole have been variably altered with a high preservation of the original texture. Alteration minerals were principally identified in pseudomorphs, veins, and vesicle fillings. The initial descriptions suggest that the rocks are less pervasively altered than those at Site 857, and that much of the secondary mineralization is related to vein and vesicle fillings rather than bulk replacement. The uppermost units contain low-temperature phases (e.g., calcite, smectite, and celadonite) that are overprinted by higher temperature phases (e.g., epidote, chlorite/smectite, and talc) in the deeper portions of the hole. The whole-rock values for  $\delta^{18}$ O vary from 4.5‰ at the contact with the sediment to intervals only slightly depleted compared to fresh basalt (5.5‰) (Table 2). The sediment adjacent to the contact is similarly depleted in  $\delta^{18}$ O ( $\delta^{18}$ O = 6.1‰) compared to the shallower sediment ( $\delta^{18}$ O = 7.1‰). The fine-grained basalt at the contact with sediment (Sample 139-858F-25R-1, 107–108 cm) is pervasively replaced by pale magnesian chlorite mixed with quartz. Plagioclase phenocrysts in this rock are replaced by epidote and albite, phases which also fill veins and vesicles. Prehnite also locally fills veins.

Sulfides are ubiquitous in the igneous rocks from Site 858 in quantities of 1%-5% (much less than at Site 857). They are present in veins with epidote, quartz, chlorite, prehnite, and wairakite. They also form ovoid porphyroblasts within the body of the rock by indiscriminately replacing igneous phases. Most sulfides observed are pyrite, with lesser quantities of chalcopyrite found with ferroan chlorite on fracture surfaces.

# Geochemistry

The samples from Site 858 are remarkably uniform in composition (Table 1) and likely represent a single geochemical unit, although there are multiple cooling units. At least one chilled margin was recovered in each core (Davis, Mottl, Fisher, et al., 1992). Thus the whole-rock compositions are unlikely to be strongly modified by crystal accumulation. These are all altered somewhat, with H<sub>2</sub>O contents of from 1.4 to 2.8 wt%, and total sulfur contents from 0.01 to 2.7 wt%. The H<sub>2</sub>O content is not well correlated with any other element. Only the samples with the highest water content have elevated MgO contents. Ten samples form a "background" population with a median S content of about 0.1%, while the remainder form an "anomalous" population with a median content of about 0.9%.

## Major Element Data

In selecting a suite of unaltered samples, we excluded all samples with total  $H_2O$  contents of more than 2.5 wt%, and total sulfur contents more than 0.7 wt%. This selection process eliminates samples that may have had significant additions or losses from or to either hydrothermal fluid or seawater. Eleven samples remain in this unaltered group.

The composition of the "unaltered" samples from this site are quite homogeneous. Their silica contents (46.90%-49.90%) are slightly less than those for samples from the other sites (855 and 857). TiO<sub>2</sub> (1.50%-1.61%) and Al<sub>2</sub>O<sub>3</sub> (15.10%-16.40%) contents are similar to those for samples from Site 857. They are higher in Na<sub>2</sub>O than the other sites, but have the same range of K<sub>2</sub>O. The Site 858 basalts lie at lower values of Fe<sub>2</sub>O<sub>3</sub>T at the same Mg# compared to the other sites (Fig. 2).

The magnesium numbers of samples from Site 858 vary between 62 and 64, similar to samples from Site 857, but higher than at Site 855 and lower than at Site 856. Mg number based on spinel core composition (see Discussion) vary from 60–63, consistent with the whole-rock values.

## Trace Element Data

The Ti vs. Zr trend parallels that of Site 857, but lies at higher values of Zr at the same Ti. The Zr/Nb values for basalts from Hole 858F are consistent (30–32) and classify these as N-MORBs similar to some of the sills with transitional character from Site 857.

The REE data illustrate the homogeneity of these rocks. The patterns are all similar, showing a slight depletion in La ([La/Ce]<sub>n</sub> = 0.84–0.94) and consistent depletion in the heavy REEs ([Ce/Yb]<sub>n</sub> >1.3) and a variably developed negative europium anomaly. In contrast, the [La/Sm]<sub>n</sub> is  $\geq$  1, suggesting transitional or enriched affinities. The high values for [Ce/Yb]<sub>n</sub> and [La/Sm]<sub>n</sub> compared to the other sites could result from a lower percentage of partial melting of the source. The negative Eu anomaly suggests that only about half of the

sampled flows show significant modification by fractionation of plagioclase. The single flow with a positive Eu anomaly suggests the accumulation of plagioclase phenocrysts, which is supported by petrography. The REE data are plotted in stratigraphic position in Fig. 11. The negative europium anomaly is not well developed in the uppermost and lowermost samples. The patterns are similar to those for basalts from the upper portion of Hole 857C (Cores 139-857C-59R-1 to -60R-1; Units 1 and 2).

## DISCUSSION

# **Comparison of Phenocryst Data from the Four Sites**

Although there is no fresh glass preserved in most of these samples, many of the mineral phases preserve their primary composition and can be used to infer magmatic history. The compositions of olivine and spinel in particular provide information regarding the composition of the primary magma at each drill site in spite of extensive hydrothermal alteration. During alteration, olivine is completely replaced and spinel alters to optically conspicuous ferritchromite, leaving no ambiguity regarding the primary character of the optically fresh phases. Pyroxene similarly preserves its primary composition unless conspicuously replaced by hydrous phases such as smectite or chlorite. Pyroxene compositions, however, are complicated by the presence of multiple generations, including megacrysts, phenocrysts, microphenocrysts, and quenched groundmass phases. In addition, the extended crystallization history of the sills at Site 857 has resulted in strongly zoned pyroxenes. Plagioclase similarly includes multiple populations. Primary variation in plagioclase composition is further complicated by alteration, which typically produces an increase in the sodium content of the primary mineral rather than a discrete, optically conspicuous replacement phase.

## **Spinel Compositions**

Variations in chromian spinel compositions are extremely valuable in deducing the composition of primary magmas. The composition of the spinel can be directly related to the Mg# of the magma with which it equilibrated (Allan, in press). Spinel composition can be changed, however, under intense metamorphic conditions in which Mg may be preferentially removed to be incorporated into adjacent mixed layer clays (Allan, 1992). This would result in a large variation in Mg# with no covariation in Cr# (=Cr/(Cr + Al). The most Mg-rich specimens, spinels found as inclusions in fresh olivine or plagioclase and the core compositions of the spinels, can be credibly related to primary magma compositions. In general, spinel is more resistant to hydrous alteration than olivine, however, and provides the best estimate of the magmatic Mg# for sample suites in which no fresh glass is preserved.

Table 6 provides the calculated Mg# of the original magma host for each of the spinel compositions based on the algorithms of Allan (in press). The magma Mg numbers for the Site 856 spinel core compositions are extremely primitive, from 0.65-0.70. Groundmass spinel and rims on the larger grains are lower, varying from 0.50 to 0.62. The core Mg numbers are equivalent to or slightly higher than those of glass composition reported by Karsten et al. (1990) for magmas off the axis of the Endeavour Segment. The Mg numbers are similar to slightly higher than the primitive compositions reported by Levbourne and Van Wagoner (1991) for East Peak of the Heck Seamount Chain, although these latter magmas contain only sparse spinel. The spinel compositions are most similar to spinels compositions in samples from West Ridge as described by Van Wagoner and Leybourne (1991). The West Ridge magmas have been interpreted to have formed within Middle Valley when it was still the locus of spreading for this area but fresh primitive magmas from here have been interpreted as products of a more recent off-axis melting event (Van Wagoner and Leybourne, 1991).

The core composition for the single sample with spinel from Hole 857D overlaps the Site 856 composition (Mg# = 0.66) with lower values for the rim and groundmass spinel (Mg# = 0.65 and 0.63,



Figure 11. Chondrite-normalized REE patterns vs. depth below seafloor for basalts from Site 858.

respectively), suggesting a similarly primitive composition. Unlike Site 856, however, the sample from Site 857D contains calcic plagioclase megacrysts ( $An_{95-83}$ ) and less aluminous spinel, indicating contemporaneous plagioclase and spinel formation, as also occurred at Site 858. Magmatic Mg numbers calculated from the Site 858 spinel core compositions range from 0.63 to 0.51, lower than those based on the spinel cores from Sites 856 and 857. Spinel rims suggest evolved magma compositions (0.49–0.52) with one Fe-rich spinel that indicates a magma Mg# of 0.41. Some of the spinels with calculated low Mg numbers from Site 858 also have low totals, which may suggest some effect of alteration.

Variations in the Cr# of the spinels are correlated both with primary magma composition and low pressure crystal fractionation. Primitive magmas with high Cr contents will contain spinels with both high Mg# and high Cr# inherited from the mantle source region. Spinels that crystallize from more evolved magmas would contain lower Cr contents and lower Cr# with lower Mg#. When plagioclase is present as a liquidus phase, however, the Al is preferentially included in this phase rather than the spinel. The result is a Cr-enriched rim with a low Mg# produced by plagioclase fractionation at low pressures (Allan et al., 1988). Figure 5E is a plot of Cr# vs. Mg# for spinels from Sites 856, 857, and 858. For a given lava suite derived from similar parental magmas, spinel Cr# increases and Mg# decreases with the amount of Fe-enrichment, Al depletion, and extent of fractionation (Allan et al., 1988). The core compositions for Site 856 are offset to a slightly higher Mg# than the spinels from Site 858, suggesting a more primitive magma. However, for spinel core compositions with the same Mg#, the Site 858 magmas are consistently higher in Cr. This suggests that these two magmas cannot be related by crystal fractionation. The single spinel found in one of the Site 857 sills plots in the center of the 858 population, though on the fringes of the 856 population, suggesting some affinity with the Site 858 magmas.

Zoning and complex skeletal rims are not found in either population of spinels, suggesting a simple magmatic history for both Site 856 and Site 858, without substantial magma mixing. The presence of the sharply defined Cr-rich (Al-poor) rim on a few crystals from Site 856 suggests some crustal fractionation of plagioclase. More extensive plagioclase fractionation for Site 857 and Site 858 is indicated by the lower aluminum content of the spinels compared to Site 856. Extensive fractionation is also indicated for the Fe-rich spinel in Site 858.

#### Oxides

The Fe-oxide compositions vary significantly between three areas (samples from Site 855 are too sparse to include). Site 856 contains groundmass titanomagnetite in addition to the rims on phenocrystic spinel. In contrast, Site 857 contains abundant ilmenite, indicative of the extensive crystal fractionation observed for some of the sills, but little modal magnetite or titanomagnetite. These latter phases may have been altered by the hydrothermal solutions, replaced by hydrous phases or by sulfide. The substantial addition of sulfur to the bulk rock compositions suggests that this latter process may be important. Variable Mn contents of the ilmenite may indicate differing extent of magma fractionation. Site 858 samples contain both ilmenite and magnetite, although neither is abundant. The moderate TiO<sub>2</sub> and Al2O3 contents of the magnetite distinguishes it from the hydrothermal magnetite in the sulfide deposit at Site 856, which is barren of these constituents. Ilmenite-magnetite pairs indicate relatively high (800°C) temperatures for the subsolidus equilibrium of these phases.

## **Olivine Compositions**

Olivine is preserved in Site 855 and Site 856 samples. It is completely replaced in Site 858 samples and was likely present only in a few Site 857 samples. Olivine compositions for Site 856 ( $Fo_{88-90}$ ) are considerably more magnesian than those at Site 855 ( $Fo_{83}$ ). This is consistent with the primitive nature of the spinels present in the Site 856 basalts. Spinel is absent in the Site 855 basalts, perhaps as a result of a more extensive re-equilibration under crustal conditions. Neither group of olivine crystal contains significant zonation.

## **Plagioclase Compositions**

The plagioclase in the Site 856 sills is more sodic than the plagioclase in the pristine Site 855 glassy basalts although the Site 856 olivines are more magnesian than those at Site 855. For Site 855, plagioclase phenocrysts are zoned from An90-85, whereas groundmass or microphenocrystic plagioclase is An78-70. At Site 856, in contrast, the plagioclase compositions vary from An78-64, including the large phenocrysts or megacrysts with conspicuous oscillatory zoning. This could be due to magma mixing or the inclusion of crystals in a mush into a younger primitive magma, since more calcic compositions would be consistent with the appearance of spinel and olivine. Plagioclase phenocrysts in basalts from Site 858 are similarly sodic in composition, with the largest phenocrysts having core compositions of An<sub>70-75</sub>, with only one sample as calcic as An<sub>80</sub>. As the alteration of plagioclase in the Site 858 samples is dominated by replacement by albite or epidote, these sodic compositions are considered primary. The more sodic plagioclase in basalts at Site 856 and 858 compared to Site 855 could point to a later appearance of plagioclase in these magmas, more extensive fractionation, or to a deeper source region that produces more sodic magmas that those at Site 855. The lack of a significant Eu anomaly for either the Site 856 or Site 858 magmas argues against extensive low-pressure crystal fractionation. The plagioclase in the sills from Site 857 shows extreme variation from An73-43 in a single sample. Another single sample contains highly calcic plagioclase phenocrysts (An<sub>95</sub>) zoned to a more moderate composition (An<sub>83</sub>). Because of the strong within-sample zonation, it is not possible to correlate average plagioclase composition with other geochemical parameters except in the sample with extremely calcic compositions.

The sodic plagioclase compositions in these sills could be a result of extensive fractional crystallization within the coarser portions of the sills or the result of hydrothermal alteration. The abundance of chlorite suggests that some of the sodic plagioclase could be secondary, at least the conspicuous white sodic rims on the larger crystals. This is supported by depleted oxygen isotope analyses. It is likely that in-situ differentiation and alteration both play a role in determining the plagioclase composition.

#### Clinopyroxene

Clinopyroxene compositions show a broad range among the four suites of rocks. Megacrystic clinopyroxene is characterized by higher Al and Cr contents and lower Ti and Fe contents. The large rounded megacrysts at Site 855 are good examples of this (Table 5). Pyroxenes of such compositions are also found within the Site 857 sills as cores for the large crystals that enclose plagioclase. Rim compositions of these poikilitic crystals are normal augite to subcalcic augite, once again reflecting the extreme crystal fractionation of the coarse sill interiors. High Ti pyroxene is also found as brownish rims on pyroxene phenocrysts. All compositions of pyroxenes were found in some sections, suggesting mixing of magmas from different sources. Anhedral groundmass clinopyroxene also tends to have high Al contents, but low Cr and variable Ti. The aluminous groundmass pyroxene composition is assumed to reflect a quench effect. Site 856 only contains pyroxene as a groundmass phase. Most of the pyroxene at Site 858 is a groundmass phase, although some phenocrystic clinopyroxene was observed. The holocrystalline units at the base of Hole 858G contained pyroxene with both high and low Al. The paucity of pyroxene in the basalts from Site 856 and 858 point to the relative unfractionated nature of these magmas when they were intruded or extruded, although they represent different initial magma compositions.

## Sulfide

Only the sills recovered from Site 856 contain sulfides that appear to be magmatic in origin. These are polysulfide aggregates of Ni-rich pyrrhotite with inclusions of pentlandite and chalcopyrite associated with plagioclase phenocrysts. The preservation of these delicate magmatic sulfide inclusions suggests that the Site 856 sills were little affected by hydrothermal circulation and must, as a result, postdate the event that produced the massive sulfide deposit at this site. The extraordinarily abundant sulfides in Site 857 are all hydrothermal in origin and represent a significant enrichment of S in the crust.

## Relationship of Different Magma Types from Different Sites

Site 855 is composed of olivine-bearing, slightly altered tholeiite, typical of basalt elsewhere on the northern Juan de Fuca ridge and most similar to basalts described for south of the Cobb offset (Karsten et al., 1990). The refractory phenocrysts appear to be megacrysts not in equilibrium with the fresh glass host. These include forsteritic olivine, aluminous Cr-rich clinopyroxene and calcic plagioclase. The refractory phenocrysts are similar in composition to megacrysts in basalts from slow and intermediate spreading ridges such as the Mid-Atlantic Ridge (Stakes et al., 1984), and Costa Rica Rift (Natland, 1980; Natland et al., 1983) and reflect compositional variations associated with a fractional crystallization of plagioclase, 3-6 km depth (e.g., negative europium anomaly in most fractionated samples). The refractory compositions of the megacrysts and their corroded or rounded morphology suggests resorption of these phases during ascent or possibly mixing of relatively primitive and evolved magmas. Site 855 basalts form a linear trend on a Zr vs. TiO<sub>2</sub> plot and are LREE-depleted [La/Sm]<sub>n</sub> <0.7; [Ce/Yb]<sub>n</sub> <1.0). The major element contents, phenocryst compositions, and REE patterns are typical of normal MORB, suggesting that these samples are comagmatic and

correlated to three-phase crystal fractionation in a robust magma chamber. These compositions are likely the oldest for the Leg 139 suite as they represent basement further from the spreading axis.

Site 856 has primitive picritic basaltic sills, with abundant Cr-rich spinel and forsteritic olivine. The Mg# of the original magma can be deduced from the fresh spinel, which suggests magnesian compositions (Mg# 65-70). The spinel compositions are most similar to those found in the primitive magmas on West Ridge (Van Wagoner and Leybourne, 1991). These are among the most primitive compositions reported for the Juan de Fuca Ridge. The sills crosscut the sulfide deposits at Site 856 and therefore must postdate the main phase of hydrothermal deposition. Thus, they are the youngest samples collected. The REE patterns are depleted compared to the other sites and do not have Eu anomalies, once again pointing to magmas relatively unmodified by crustal processes. The compositions are strongly LREE-depleted ([La/Sm]<sub>n</sub> <0.4; [Ce/Yb]<sub>n</sub> <0.5). The patterns are similar to those for the Heck and Heckle Seamounts (Leybourne and Van Wagoner, 1991) and for anomalous late magmas on West Ridge (Van Wagoner and Leybourne, 1991). The aluminous compositions of the spinels suggest fairly deep origin for the spinels, although this is not diagnostic. Thus these sills represent an episode of magmatism with little modification at crustal depths, postdating the existence of a robust Middle Valley magma chambers.

The sills at Site 857 are extensively modified by hydrothermal alteration, which has substantially increased the volatile, sulfur, and magnesium contents of the whole-rock compositions. Strongly zoned plagioclase could have originated through extensive in-situ differentiation or hydrothermal alteration, although the paucity of albite suggests that the former process is most important. Variable clinopy-roxene compositions and the appearance of ilmenite as the dominant Fe-oxide similarly point to extensive differentiation. Some of the sills, however, also contain accumulated refractory clinopyroxene megacrysts identifiable only by the core compositions of poikilitic crystals. These are similar in composition to the megacrysts in the Site 855 basalts.

Trace elements suggest that the sills were fed by multiple magma sources with both N-MORBS and T-MORBS found within the two deep drill sites. LREE-enriched and LREE-depleted compositions alternate stratigraphically. Both positive and negative Eu anomalies are noted, with the former associated with abundant plagioclase phenocrysts and megacrysts in the lower portion of the hole. Most of the sills, however, have negative Eu anomalies pointing to extensive crystal fractionation of plagioclase at crustal depths. The extensive crystal fractionation, large Eu anomalies and variable compositions suggests that these sills were fed by multiple small crustal magma chambers with separate fractionation pathways.

Three sills from the top of Hole 857D and one from Hole 857C have REE patterns and phenocryst compositions almost identical to the basalts from Site 855. These N-MORBs have the greatest depletions in LREE ([La/Sm = 0.51-0.55]<sub>n</sub>), flat middle to heavy REE pattern and the largest Eu anomalies pointing to crystal fractionation of plagioclase. Calcic feldspars are found with Cr-rich spinel in one of these, suggesting the input of at least one new parental magma. These sills at Site 857 appear to have been derived from a mantle source region similar to that of Site 855. The other sills at Site 857 show either a smaller LREE depletion, a flat REE pattern, or even a slight enrichment in LREE. The sills from Hole 857D are dominated by this second magma type with  $[La/Sm > 1]_n$  and  $[La/Ce]_n \approx 1$ . The other sills are intermediate in composition between these two types. This suggests that the sill complex must have been fed from at least one other mantle source besides the depleted mantle that fed the Site 855-type magmas. Site 858 basalts are extrusives that form a constructional basement high. They are compositionally homogeneous and contain small amounts of quench plagioclase and Cr-rich spinel with compositions suggesting Mg numbers for the magma ranging from 60-63. The Site 858 basalts are characterized by [La/Ce], values <1, [La/Sm], values >1, and HREE depletions. The spinel compositions are similar to spinel in basalts from West Valley, the axial segment formed by rift propagation to west of Middle Valley, and overlap the composition found in the spinel-bearing Site 857 sill. This suggests that the Site 858 rocks are slightly enriched magmas from an axial seamount that formed during the final stages of magmatic activity in Middle Valley, feeding the sills at the adjacent Site 857. This second magma type may have mixed with the Site 855 N-MORB magma type to produce the intermediate compositions that dominate the sills in Hole 857D. The crosscutting dike found in Core 139-857C-66 was apparently of this composition.

## CONCLUSIONS

Igneous rocks drilled during Leg 139 span the waning stages of the Middle Valley axial magmatic activity. The diversity of magmatic types represent (1) cogenetic magmas that have undergone different degrees of differentiation; (2) magmas derived from different source regions or variable partial melting; (3) mixtures of contemporaneous magmas; and (4) magmas that were not contemporaneous. The oldest magmas are the N-MORBS from Site 855, with chemistry and petrology typical of slow to medium spread ridges. Magmas from a similar mantle source region fed many of the sills found at Site 857, including the most altered (and presumably the oldest). These are characterized by [La/Ce]<sub>n</sub> <0.9, [Ce/Yb]<sub>n</sub> <0.9, and large negative Eu anomalies. A different mantle source region was tapped to produce the T-MORBs that constructed the topographic high at Site 858. These have [La/Ce]<sub>n</sub> ≈0.9 and [Ce/Yb]<sub>n</sub> >1.3. Magmas derived from this source also fed the sills at Site 857, with evidence of mixing between this magma and an N-MORB magma like that at Site 855. Postdating the main phase of axial magmatism, sills of primitive composition were intruded at Site 856. We conclude that the Site 856 sills represent primitive, off-axis magmas, the intrusion of which postdated the existence of a crustal magma chamber and its associated hydrothermal system. Their similarity to the seamounts and the off-axis magmas on West Ridge suggests that these rocks are the youngest in Middle Valley and may be associated with the failure of the Middle Valley spreading axis, contemporaneous with or postdating the jump of ridge axis activity to the adjacent West Valley. The differing compositions of Site 855 and Site 858 reflects either differing mantle source regions or a lower degree of melting for the latter, producing the higher values of [Ce/Yb]<sub>n</sub>. For the Site 857 sills the [La/Ce]<sub>n</sub> is <1 regardless of the [Ce/Yb]<sub>n</sub>, suggesting control by variable melting of a single source. Radiogenic isotopes are needed to assess this latter model (e.g., Frey et al., 1993). When the spreading jumped to West Valley, extensive crystal fractionation in small magma chambers with these mixed magmas created the highly evolved compositions in the other sills found at Site 857. The last phase of rift failure was marked by the eruption of the highly primitive lavas at Site 856.

#### ACKNOWLEDGMENTS

The authors would like to thank James Natland, Bryan Cousens, Matt Leybourne, and an anonymous reviewer for extensive reviews of an earlier version of this manuscript. This work was supported by a grant from JOI-USSAC to DSS and by the Geological Survey of Canada.

#### **REFERENCES**\*

Allan, J.F., 1992. Cr-spinel as a petrogenetic indicator: deducing magma composition from spinels in highly altered basalts from the Japan Sea, Sites 794 and 797. *In* Tamaki, K., Suyehiro, K., Allan, J., McWilliams, M., et al., *Proc. ODP, Sci. Results*, 127/128 (Pt. 2): College Station, TX (Ocean Drilling Program), 837–847.

<sup>\*</sup>Abbreviations for names of organizations and publications in ODP reference lists follow the style given in *Chemical Abstracts Service Source Index* (published by American Chemical Society).

- Allan, J.F., in press. Cr-spinel in depleted basalts from the Lau Basin backarc, ODP Leg 135: petrogenetic history from Mg-Fe crystal-liquid exchange. In Hawkins, J., Parson, L., Allan, J., et al., Proc. ODP, Sci. Results, 135: College Station, TX (Ocean Drilling Program).
- Allan, J.F., Sack, R.O., and Batiza, R., 1988. Cr-rich spinels as petrogenetic indicators: MORB-type lavas from the Lamont seamount chain, eastern Pacific. Am. Mineral., 73:741-753.
- Anderson, D.J., Lindsley, D.H., and Davidson, P.M., 1993. QUILF: a PASCAL program to assess equilibria among Fe-Mg-Ti Oxides, pyroxenes, olivine and quartz. *Comput. Geosci.*, 19:1333–1350.
- Basaltic Volcanism Study Project, 1981. Basaltic Volcanism on the Terrestrial Planets: New York (Pergamon Press).
- Christie, D.M., and Sinton, J.M., 1986. Evolution of abyssal lavas along propagating segments of the Galapagos spreading center. *Earth. Planet. Sci. Lett.*, 56:321–335.
- Cousens, B.L., Chase, R.L., and Shilling, J.G., 1984. Basalt geochemistry of the Explorer Ridge, northeast Pacific Ocean. Can. J. Earth Sci., 21:157– 170.
- Davis, E.E., and Lister, C.R.B., 1977. Tectonic structures on the Juan de Fuca Ridge. Geol. Soc. Am. Bull., 88:346–363.
- Davis, E.E., Mottl, M.J., Fisher, A.T., et al., 1992. Proc. ODP, Init. Repts., 139: College Station, TX (Ocean Drilling Program).
- Davis, E.E., and Villinger, H., 1992. Tectonic and thermal structure of the Middle Valley sedimented rift, northern Juan de Fuca Ridge. *In Davis*, E.E., Mottl, M.J., Fisher, A.T., et al., *Proc. ODP, Init. Repts.*, 139: College Station, TX (Ocean Drilling Program), 9–41.
- Frey, F.A., Walker, N., Stakes, D., Hart, S.R., and Nielsen, R., 1993. Geochemical characteristics of basaltic glasses from the AMAR and FAMOUS axial valleys, Mid-Atlantic Ridge (36°–37°N): petrogenetic implications. *Earth Planet. Sci. Lett.*, 115:117–136.
- Haggerty, S.E., 1976. Opaque oxide minerals in terrestrial igneous rocks. In Rumble, D., III (Ed.), Oxide Minerals. Mineral. Soc. Am., Short Course Notes, Hg101–Hg170.
- Ito, E., White, W.M., and Göpel, C., 1987. The O, Sr, Nd and Pb isotope geochemistry of MORB. *Chem. Geol.*, 62:157–176.
- Karsten, J.L., Delaney, J.R., Rhodes, J.M., and Liias, A., 1990. Spatial and temporal evolution of magmatic systems beneath the Endeavour Segment, Juan de Fuca Ridge: tectonic and petrologic constraints. J. Geophys. Res., 95:19235–19256.
- Klein, E.M., and Langmuir, C.H., 1987. Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. J. Geophys. Res., 92:8089–8115.
- Langmuir, C.H., Bender, J.F., Bence, A.E., and Hanson, G.N., 1977. Petrogenesis of basalts from the FAMOUS area: Mid-Atlantic Ridge. *Earth Planet. Sci. Lett.*, 36:133–156.

- Le Roex, A.P., Dick, H.J.B., Erlank, A.J., Reid, A.M., Frey, F.A., and Hart, S.R., 1983. Geochemistry, mineralogy and petrogenesis of lavas erupted along the Southwest Indian Ridge between the Bouvet Triple Junction and 11°E. J. Petrol., 24:267–318.
- Leybourne, M.I., and Van Wagoner, N.A., 1991. Heck and Heckle seamounts, northeast Pacific Ocean: high extrusion rates of primitive and highly depleted mid-ocean ridge basalts on off-ridge seamounts. J. Geophys. Res., 96:16275–16294.
- Mathez, E.A., 1980. Sulfide relations in Hole 418A flows and sulfur contents of glasses. *In* Donnelly, T., Francheteau, J., Bryan, W., Robinson, P., Flower, M., Salisbury, M., et al., *Init. Repts. DSDP*, 51, 52, 53 (Pt. 2): Washington (U.S. Govt. Printing Office), 1069–1085.
- Michael, P.J., Chase, R.L., and Allan, J.F., 1989. Petrologic and geologic variations along the Southern Explorer Ridge, northeast Pacific Ocean. J. Geophys. Res., 94:13895–13918.
- Natland, J.H., 1980. Effect of axial magma chambers beneath spreading centers on the compositions of basaltic rocks. *In* Rosendahl, B.R., Hekinian, R., et al., *Init. Repts. DSDP*, 54: Washington (U.S. Govt. Printing Office), 833–850.
- Natland, J.H., Adamson, A.C., Laverne, C., Melson, W.G., and O'Hearn, T., 1983. A compositionally nearly steady-state magma chamber at the Costa Rica Rift: evidence from basalt glass and mineral data, Deep Sea Drilling Project Sites 501, 504, and 505. *In* Cann, J.R., Langseth, M.G., Honnorez, J., Von Herzen, R.P., White, S.M., et al., *Init. Repts. DSDP*, 69: Washington (U.S. Govt. Printing Office), 811–858.
- Papike, J.J., Cameron, K.L., and Baldwin, K., 1974. Amphiboles and pyroxenes: characterization of other than quadrilateral components and estimates of ferric iron from microprobe data. *Geol. Soc. Am. Abstr. Progr.*, 6:1053–1054. (Abstract)
- Stakes, D.S., Shervais, J.W., and Hopson, C.A., 1984. The volcanic-tectonic cycle of the FAMOUS and AMAR valleys, Mid-Atlantic Ridge (36°47'N): evidence from basalt glass and phenocryst compositional variations for a steady state magma chamber beneath the valley mid-sections, AMAR 3. J. Geophys. Res., 89:6995–7028.
- Van Wagoner, N.A., and Leybourne, M.I., 1991. Evidence for magma mixing and a heterogeneous mantle on the West Valley segment of the Juan de Fuca ridge. J. Geophys. Res., 96:16295–16318.

Date of initial receipt: 15 June 1993 Date of acceptance: 29 September 1993 Ms 139SR-212