47. DATA REPORT: PRELIMINARY GAMMA-RAY ANALYSES OF SAMPLES FROM LEG 1391

Willard S. Moore² and Debra Stakes³

Samples from Ocean Drilling Program Leg 139 were selected for an investigation of radium isotopes by nondestructive gamma-ray analysis to determine if they contained high activities of ²²⁶Ra or ²²⁸Ra that could date the formation of the samples.

Preliminary shipboard inspection revealed that some of the samples contained abundant concentrations of barite, a mineral known to concentrate radium. The ratios of ²²⁶Ra/Ba in recently precipitated hydrothermal barites are on the order of 2000 dpm/gm (Moore and Stakes, 1990). Due to the 1600-year half life of ²²⁶Ra, this ratio will decrease with time. Therefore, ²²⁶Ra/Ba ratios in barites could provide an index of their ages in the range 1–5 thousand years.

If we discovered samples with high ²²⁶Ra/Ba ratios, indicating young ages, determining the ²²⁸Ra/²²⁶Ra activity ratio would establish whether the sample was in the age range 5–30 years because ²²⁸Ra has a half life of 5.7 years. Samples with high ²²⁶Ra/Ba ratios and high ²²⁸Ra/²²⁶Ra activity ratios could be dated using ²²⁸Th/²²⁸Ra activity ratios because the barite should form with little ²²⁸Th compared to ²²⁸Ra; but ²²⁸Th would be produced by ²²⁸Ra decay until the sample reached transient equilibrium with a ²²⁸Th/²²⁸Ra activity ratio of 1.5 (Stakes and Moore, 1991). This dating technique would be useful in the range 1–15 years.

Each of these techniques is predicated on the enrichment of Ra isotopes relative to Th parents in barite. If the samples were more than 5 thousand years old, most of the ²²⁶Ra would be due to its production by ²³⁰Th in the sample, and the sample could not be dated by the excess ²²⁶Ra technique. Similarly, if the expected enrichment of ²²⁶Ra in barite did not occur, or if the sample did not contain significant barite, most of the ²²⁶Ra in the sample could have been produced from ²³⁰Th in the barite or in other phases and the sample could not be dated using these techniques.

We selected samples from the cores based on a preliminary evaluation of their barite contents. The samples were packed in counting vials and the gamma-ray activity was measured on a Ge(Li) detector. The detector was calibrated by measuring standards in approximately the same geometry; but, because the core cuttings were not crushed (nor were they dried), it was impossible to reproduce the exact geometry. Therefore, the absolute activities may be in error by as much as $\pm 25\%$. Because most of the samples had similar geometry, relative sample-to-sample errors are probably within $\pm 15\%$. The gamma-ray spectra were analyzed using the program HYPERMET (Phillips and Marlow, 1976). Two sigma counting errors on most samples are less than $\pm 5\%$. The results of the samples measured are given in Table 1. None of these samples had particularly high activities of ²²⁶Ra. Some of them, such as 139-856D-1H-7, 73 cm, 856H-17R-1, 34 cm, and 858B-5H-2, 13 cm had higher activities than the others, but none approached the 2000 dpm/gm reported for pure, recent barites.

We conclude from this brief, preliminary examination of these samples that Ra dating of bulk samples is not possible. Either the samples are >5000 years old and most of the initial excess ²²⁶Ra has decayed, or the abundance of barite in the samples measured was small, representing only a small fraction of the total sample. Because the activities of the parent isotopes (²³⁰Th in the case of ²²⁶Ra and ²³²Th in the case of ²²⁸Ra) are not known in these samples, activity ratios of ²²⁸Ra/²²⁶Ra or ²²⁸Th/²²⁸Ra cannot be used to calculate their ages.

The following steps would be required to obtain additional data that might enable ages to be assigned to these samples:

1. Enough barite must be separated physically or chemically so that it can be measured as a pure phase.

2. In addition to 226 Ra activities, 230 Th must be measured in the same barite to determine how much of the 226 Ra is supported.

3. If the excess 226 Ra/Ba ratios indicate young ages (<1000 years), the 232 Th activity of the sample should be determined to correct 228 Ra activities so that excess (228 Ra/ 226 Ra) activity ratios can be determined. If the 232 Th activity is small, an approximate age could be determined from the 228 Ra/ 226 Ra activity ratio.

 Unless the ²³²Th activities of these barites are extremely low, the ²²⁸Th/²²⁸Ra activity ratio will probably not be a reliable dating tool.

Because this was a preliminary investigation without any funding, we were unable to proceed with these labor-intensive analyses.

REFERENCES*

- Moore, W.S., and Stakes, D., 1990. Ages of barite-sulfide chimneys from the Mariana Trough. Earth Planet. Sci. Lett., 100:265–274.
- Phillips, G.W., and Marlow, K.W., 1976. Automatic analysis of gamma-ray spectra from germanium detectors. *Nucl. Instrum. Methods. Phys. Res.*, 137:525–536.
- Stakes, D., and Moore, W.S., 1991. Evolution of hydrothermal activity on the Juan de Fuca Ridge: observations, mineral ages, and Ra isotope ratios. J. Geophys. Res., 96:21739–21752.

Date of initial receipt: 15 April 1993 Date of acceptance: 1 September 1993 Ms 139SR-223

Mottl, M.J., Davis, E.E., Fisher, A.T., and Slack, J.F. (Eds.), 1994. Proc. ODP, Sci. Results, 139: College Station, TX (Ocean Drilling Program).
² Department of Geological Sciences, University of South Carolina, Columbia, SC

² Department of Geological Sciences, University of South Carolina, Columbia, SC 29208, U.S.A.

³ Department of Geological Sciences, University of South Carolina, Columbia, SC 29208, U.S.A. (Present address: MBARI, 160 Central Avenue, Pacific Grove, CA 93950, U.S.A.)

Abbreviations for names of organizations and publications in ODP reference lists follow the style given in *Chemical Abstracts Service Source Index* (published by American Chemical Society).

Table 1. Preliminary	gamma-ray	analyses of	of samples	from Leg 139.

Sample	Depth	Weight	Ra-226	Ra-228	Th-228	²²⁸ Ra/ ²²⁶ Ra	228 Th/228 Ra	²²⁶ Ra
Leg 139	(cm)	(gm)	(dpm)	(dpm)	(dpm)	(A. R.)	(A. R.)	(dpm/gm
855C-010X-CC	13	30.8	22.9	20.7	23.5	0.90	1.14	0.74
856A-014X-CC	35	20.4	2.0	<det< td=""><td>1.1</td><td></td><td></td><td>0.10</td></det<>	1.1			0.10
856B-4H-3	34	6.8	<det< td=""><td><det< td=""><td>2.0</td><td></td><td></td><td></td></det<></td></det<>	<det< td=""><td>2.0</td><td></td><td></td><td></td></det<>	2.0			
356B-15X-CC	4	17.1	9.0	8.2	9.0	0.91	1.11	0.53
856D-1H-1	129	21.8	24.8	3.7	0.8	0.15	0.22	1.14
856D-1H-3	115	23.1	10.3	0.0	0.2	0.00		0.45
856D-1H-4	33	21.8	5.2	0.0	0.0	0.00		0.24
856D-1H-5	8	9.7	<det< td=""><td>1.9</td><td>0.3</td><td></td><td></td><td></td></det<>	1.9	0.3			
856D-1H-5	117	17.1	5.6	4.7	0.1	0.84	0.03	0.33
856D-1H-7	73	24.1	114.0	<det< td=""><td>0.2</td><td></td><td></td><td>4.73</td></det<>	0.2			4.73
856G-3R-1	6	24.9	4.3	5.5	0.4	1.28	0.07	0.17
856G-6R-1	46	23.9	28.4	1.3	0.6	0.05	0.43	1.19
356G-7R-2	145	46.6	20.4	<det< td=""><td>0.8</td><td></td><td></td><td>0.44</td></det<>	0.8			0.44
356G-7R-3	10	47.1	14.8	<det< td=""><td><det< td=""><td></td><td></td><td>0.31</td></det<></td></det<>	<det< td=""><td></td><td></td><td>0.31</td></det<>			0.31
856H-1R-1	34	25.0	79.6	0.9	2.2	0.01		3.18
857C-68R-1	139	34.5	3.7	2.1	2.6	0.57	1.24	0.11
858A-00X-5	56	16.6	13.2	16.8	15.0	1.27	0.89	0.80
858A-00X-3	41	8.8	6.0	14.8	7.5	2.45	0.51	0.69
358A-014X-1	28	14.4	5.9	8.9	8.7	1.50	0.98	0.41
858B-5H-2	13	42.8	91.7	11.5	11.1	0.13	0.97	2.14
858B-2H-3	133	14.0	12.4	9.0	1.7	0.73	0.19	0.89
858B-2H-4	21	21.0	11.5	<det< td=""><td>0.9</td><td></td><td></td><td>0.55</td></det<>	0.9			0.55
858C-5H-1	141	42.2	34.4	44.6	42.3	1.30	0.95	0.82
858C-5H-2	28	38.0	27.3	36.8	32.4	1.35	0.88	0.72
358C-6H-3	84	20.8	9.4	10.0	8.8	1.06	0.88	0.45
358C-6H-5	83	11.1	5.8	4.0	5.1	0.70	1.28	0.52
358C-6H-1	129	12.3	8.7	19.0	12.4	2.19	0.65	0.71
358C-11X-CC	32	27.4	15.2	19.9	21.4	1.31	1.08	0.55
358C-12X-2	36	23.2	9.1	19.0	12.6	2.09	0.66	0.39
858C-12X-CC	23	34.6	15.5	27.0	20.6	1.74	0.76	0.45
858F-025R-1	101	25.0	6.1	<det< td=""><td>1.9</td><td></td><td></td><td>0.24</td></det<>	1.9			0.24

Notes: <det = below detection.