# 13. DIAGENETIC ALTERATIONS AND GEOCHEMICAL TRENDS IN EARLY CRETACEOUS SHALLOW-WATER LIMESTONES OF ALLISON AND RESOLUTION GUYOTS (SITES 865 TO 868)<sup>1</sup>

Ursula Röhl<sup>2</sup> and André Strasser<sup>3</sup>

#### ABSTRACT

Cretaceous shallow-water limestones were recovered from two flat-topped submarine seamounts (guyots) in the area of the Mid-Pacific Mountains during Leg 143. In the center of Allison Guyot (Site 865), a nearly 700-m-thick sequence of upper Albian lagoonal limestones overlain by a 150-m-thick pelagic sedimentary cover of Paleogene to Quaternary age was drilled before terminating in basalt. A transect from the lagoon across the perimeter mound of Resolution Guyot was established by Sites 866, 867, and 868. Hole 866A resulted in a thick (more than 1600 m of carbonates overlying basalt) sequence of Hauterivian to Albian lagoonal to reefal limestones. Resolution Guyot bears only a thin pelagic cap of Maastrichtian to Pliocene age.

The diagenesis of the shallow-water Lower Cretaceous carbonates of Allison and Resolution guyots took place in response to changes in rock pore-fluid composition over time. Analyses of diagenetic variability in combination with geochemical studies allow for the reconstruction of chemical compositions and diagenetic pathways. The disappearance of the volcanic island is evidenced by the decreasing clay contents of the limestones. Major, minor, and trace element analysis of bulk samples illustrates this process in high resolution. We identified an excellent correspondence of cyclic distributions of phosphate, manganese, copper, and zinc with sequence-stratigraphic interpretations for Site 866: primary element compositions are probably related to sea-level variations. Early diagenetic alterations are documented by different cement and porosity types. Analyses of cement chemistry and stable isotope composition permit the reconstruction of marine-phreatic, meteoric-phreatic, and meteoric-vadose diagenetic environments, prior to the development of karst at the top of Hole 866A and the strong late diagenetic dolomitization in its lower part.

#### INTRODUCTION

Ocean Drilling Program (ODP) Site 865 is located on Allison Guyot and Sites 866, 867, and 868 are on Resolution (formerly "Huevo") Guyot in the area of the Mid-Pacific Mountains (Fig. 1). Our main objectives were (1) the characterization of the chemical composition of the bulk sediment, (2) identification of diagenetic alterations, (3) lithological and chemical analyses of selected portions of the sediments (e.g., different cement types, allochems) to obtain details about the diagenetic pathways, (4) comparison of chemical data with microfacies and diagenetic features, and (5) classification of microfacies and diagenetic types according to their chemical compounds.

As the recovery of core was only about 15% on average, one must keep in mind that all resulting interpretations are limited. However, the total of 2500 m of shallow-water carbonates of Hauterivian to late Albian age, in combination with the excellent logging results, provided for reconstruction of the diagenetic history and chemical alteration.

#### METHODS

Our study began with the evaluation of macroscopic observations of the cores made during the cruise. Interpretation of the logging data played an important role in interpreting these sequences having mainly poor recovery (cf. Arnaud et al., this volume; Cooper et al., this volume).

Several hundred thin sections of samples from Leg 143 participants (Arnaud, Röhl, Strasser) were analyzed for the interpretation of microfacies and diagenetic history. The microfacies and facies zone assignments (Arnaud et al., this volume; Strasser et al., this volume)

were necessary for the shore-based diagenetic studies because primary facies variations are a major factor in determining the diagenetic pathways. For detailed studies, staining methods (Alizarin-Red-S), scanning electron microscope (SEM), and cathodoluminescence analysis (CL) were performed. X-ray-fluorescence analysis (XRF: SiO<sub>2</sub>, TiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, Fe<sub>2</sub>O<sub>3</sub>, MnO, MgO, CaO, P<sub>2</sub>O<sub>5</sub>, SO<sub>3</sub>. As, Ba, Ce, Co, Cr, Cu, La, Ni, Sr, V, Zn, Zr, loss on ignition [LOI]) gave an overview of primary chemical composition and the subsequent diagenetic alterations. The analyses were performed on powder ignited at 1000°C and fused with a sample/flux ratio of 1:5 and calibrated against international standards. Accuracy was better than 2% for major elements and better than 5% for minor and trace elements. Major, minor, and trace elements (Ca, Mg, Sr, Fe, Mn) in components and cements were quantitatively measured with an ARL-SEMQ electron-beam II microprobe. Parameter settings were as follows: beam diameter 30 µm, accelerator voltage 15 kV, sample current 20 nA (dolomite standard), counting times 20 s (peak) and 10 s (background). Dolomite (Ca, Mg), siderite (Mn, Fe), and strontianite (Sr) were used as standards. K<sub>α</sub>-lines were measured for all elements except Sr (La1). Measured values were corrected with the program MAGIC IV. Standard deviations (1 $\sigma$ ) rarely exceeded  $\pm$  1% of the measured value. Stable isotopes ( $\delta^{18}O$ ,  $\delta^{13}C$ ) were analyzed with a Finnigan Delta-S mass spectrometer. The standard deviations are  $\pm 0.3\%$  ( $\delta^{13}$ C) and  $\pm 0.15\%$  ( $\delta^{18}$ O), respectively. A new (for the samples of Leg 143) created method for analyzing small sample amounts (10 mg) was used to determine Ca, Mg, Sr, Mn, Fe, and Zn contents of carefully selected samples of cements (Elsholz, unpubl. data). A digestion by hydrochloric acid (10%) and a buffering solution of Lanthan-chloride-7-hydrate was used. The element contents were determined by atomic absorption analysis (AA) by a Philips PU 9400X and inductively coupled plasma spectrometry (ICP) by a sequential spectrometer Philips PU 7000. X-ray diffraction (XRD, Philips PW 3710) analysis verified mineralogical compositions, especially the dolomite content and the Ca/Mg ratio in both calcite and dolomite, and to confirm the occurrence of apatite and barite. The scanning electron microscope prints were taken with the CamScam microscope of the BGR.

Winterer, L.A., Sager, W.W., Firth, J.V., and Sinton, J.M. (Eds.), 1995. Proc. ODP, Sci. Results, 143: College Station, TX (Ocean Drilling Program).

<sup>&</sup>lt;sup>2</sup> Bundesanstalt für Geowissenschaften und Rohstoffe. Postfach 51 01 53, D-30631 Hannover, Federal Republic of Germany.

<sup>&</sup>lt;sup>3</sup> Institut de Géologie, Université de Fribourg, Pérolles, CH-1700 Fribourg, Switzerland.



Figure 1. Location of Leg 143 drill sites and principal seamount chains (shallower than 4000 m), in the western central Pacific Ocean. Line shows track of *JOIDES Resolution*, Sites 865 to 868 (bold) are discussed here.

#### REGIONAL AND LITHOLOGICAL SETTINGS

Northwestward motion of the Pacific Plate of about 30° latitude since the Early Cretaceous has resulted in subduction of most Cretaceous sediments deposited in the Northern Hemisphere (Winterer, 1991). The Mid-Pacific Mountains are part of the chains and clusters of the Western Pacific seamounts (Sager, Winterer, Firth, et al., 1993). The seafloor near Resolution Guyot is probably of Jurassic age and originated by mid-plate volcanism near the ridge crest (Winterer et al., this volume). Because the volcanoes become younger eastward, the thickness of the carbonate caps decreases in this direction (Winterer et al., this volume). Allison Guyot (179°W, 800-m-thick Albian limestones) and Resolution Guyot (174°E, 1600-m-thick Hauterivian to late Albian shallow-water carbonates) fit into this general picture.

The lagoonal sediments of Allison Guyot are dominated by wackestones to packstones that are characterized by varying contents of foraminifers, mollusks, calcareous algae, and some clays (volcanic island stage) in the lower part, and wackestones to packstones with high-spired gastropods, sponges, and large sponge spicules in the upper part of the section. Resolution Guyot sediments from Hole 866A comprise different shallow-water limestones, oolites, and oncolites at the base, whereas peritidal carbonates punctuated by beach sediments and small coral and rudist bioherms dominate in the upper part. The sediments at Sites 867 and 868 indicate that the Resolution platform was rimmed by barrier islands and storm beaches and that rudist or sponge reefs were of only minor importance. Lithological variability, including detailed microfacies characterization and sequence stratigraphy of the Cretaceous shallow-water limestones, is described in detail by Arnaud et al. (this volume). Strasser et al. (this volume) have studied the meter-scale sequences of Sites 866, 867, and 868.

#### DIAGENETIC SETTING

Allison Guyot has been below sea level at least since the mid-Turonian (Site 865, Bralower and Mutterlose, this volume), and Resolution Guyot, at least since the Pliocene (Sager, Winterer, Firth, et al., 1993). Because most of the sediments were deposited in very shallow water (Sager, Winterer, Firth, et al., 1993), episodic exposure in the meteoric diagenetic environment was highly probable. However, a period of subaerial exposure occurred during the end of late Albian to pre-mid-Turonian time, as evidenced by extensive subsurface karst (e.g., vugs, caves, and cavities filled by speleothems, van Waasbergen and Winterer, this volume). On the other hand, mineralization by phosphate and manganese occurs in the upper part of the shallow-water sequences, suggesting submarine hardgrounds (ODP Leg 143 Shipboard Scientific Party, 1993). Geophysical data from both guyots display karstified topography (van Waasbergen and Winterer, 1993).

None of the Cretaceous sediments has ever been buried deeper than 850 m at Allison guyot, or 1600 m at Resolution Guyot. The degree of lithification is largely a function of its original mineralogy (James and Bone, 1989): thus, most of the sediments drilled on Allison and Resolution guyots are well cemented, as they initially contained a high proportion of aragonitic components (e.g., dasy-cladacean algae, gastropods). The nonrecovered portions of the shallow-water sequences are probably less cemented. The oolitic grainstones at Hole 866A, Unit V, are poorly lithified, possibly owing to the original predominantly calcitic or Mg-calcitic composition (cf. Strasser and Jenkyns, this volume). The lower portion of Site 866, below 1050 m below sea-floor (mbsf), shows all transitions from scattered dolomite rhombs to destructive dolomitization. These dolosparstones (Wright, 1992) have been studied in detail by Flood and Chivas (this volume).

## RESULTS

# **Diagenetic Features and Interpretation**

The studied limestones were affected by generally strong diagenetic alteration. Especially in the uppermost parts of the drilled sections, late diagenetic alterations (van Waasbergen and Winterer, this volume) are responsible for substantial modification of the initial cement fabric and may have introduced unconformities in the diagenetic chronology. Independent of single facies type (Strasser et al.,

this volume; Arnaud et al., this volume) and lithification, the precipitation of cements in pores was only a minor factor during diagenetic alteration in most of the samples. Instead, different dissolution-derived porosities are of higher significance in the classification of diagenetic environments. Nevertheless, several different cement types could be identified that are discussed in relation to the marine-phreatic, meteoric-phreatic, and meteoric-vadose diagenetic realms.

#### Cements

All cements are now of low-magnesium calcite mineralogy, and are mostly iron-poor, and nonluminescent, except those of the lower third section of Allison Guyot (Site 865, see chapter on AA/ICP chemical results). Marine-phreatic cements fringing components occur in most of the investigated thin sections. Comparable observations on dredge samples in the northwestern Pacific were made by Grötsch and Flügel (1992). Especially limestones having high primary intergranular porosity (grainstones) were obviously favorable to early diagenetic cementation and show excellent examples (see Pl. 1, Figs. 1 and 3, and Pl. 3, Fig. 2). Marine cements of primary aragonitic mineralogy, such as even-rim acicular and even-rim fibrous cement, are very rare (Pl. 3, Fig. 3) or absent. Aggregates were initially bound by organic filaments (Pl. 4, Fig. 2). An early compaction stage, which in some cases preceded any cementation, resulted in the overpacking and interpenetration of grains with little cement (Pl. 4, Fig. 7) and the spalling of fringing cements (Pl. 1, Fig. 5) or shells (Pl. 5, Fig. 7). Syntaxial cementation surrounding echinoderm fragments prevented compaction in some pore spaces (Pl. 2, Figs. 1 and 2). A solution corona, a void that formed by selective micrite dissolution around an echinoderm ossicle (Walkden and Berry, 1984) and with precipitation of syntaxial cement into it, could not be identified. Partly bladed, even-rim cements are very common in all facies types (Pl. 1, Figs. 3 and 4). Scalenohedral crystal terminations of even-rim cements are typical for grainstones and rudstones having relatively high interparticle porosity (Pl. 3). The distribution of scalenohedral crystals is variable and ranges from one or two tiny crystals on grain surfaces to complete envelopes of fossil fragments. The morphology of these cements resembles that of Pleistocene high-Mg calcite cements described by Vollbrecht and Meischner (1993).

Besides the original mineralogy, petrophysical properties equally influenced the diagenetic transformations (cf. Aissaoui, 1988). The rudist facies (Strasser et al., this volume) having relatively big fossil fragments, is dominated by dissolution. Only the micritized envelopes and early fringing cements commonly have been preserved (Pl. 3). Micritic meniscus cements are rare and found in grainstones of Site 866 (Pl. 2, Fig. 7). Peloidal cements occur in the interspaces of corals (Pl. 1, Fig. 6). They probably had an original high-Mg calcite mineralogy (Chafetz, 1986). Algal mats contain spherulites, with radial growth of calcite envelopes (Pl. 1, Fig. 7). Grainstones, with several hardground pieces, exhibit the strongest cementation (Pl. 3, Fig. 3). In general, blocky, pore-filling calcite cements are of minor importance. The blocky cement (Pl. 5, Fig. 5) in the lower portion of Site 866 is mainly of dolomitic mineralogy (see chapter on microprobe analyses). At least one initial phase of dolomitization, some of which grows in cracks (Pl. 5, Fig. 4) and is related to minor scale sequences (cf. Strasser et al., this volume) and their clayey horizons (Pl. 5, Fig. 1), took place very early. The partial dolomitization may be related to algal and microbial mats resulting from Mg2+ bound on organic complexes, which was released in pore water after decay of the organisms (cf. Koch et al., 1989). Some dolomite rhombs show signs of dissolution (Pl. 5, Fig. 2 and 6).

Fringing (even-rim) cements and blocky calcite cements, partly in combination with burial overprinting (see chapter on stable isotopes), are more important in the lower portion of Site 865 (Unit IV, Fig. 2). In Hole 866A cementation (Fig. 3A), respectively, different cement types (Fig. 3B) are most prominent in the upper part of Unit VI, partly in the oolitic Unit V, and in Units VII and VIII (mainly dolomite cement, see above).

Because complete diagenetic sequences are absent and because of the strong overprinting by dissolution, our interpretation of diagenetic environments was limited. Even-rim fringing cements are most probably of *marine-phreatic* origin. Bladed, even-rim cements having scale-nohedral crystal terminations occur as primary Mg-calcite in the marine-phreatic environment (e.g., Moore, 1989; Vollbrecht and Meischner, 1993, compare with Longman, 1980; Strasser and Davaud, 1986).

McKenzie et al. (1980) studied the scalenohedral cements in Paleogene shallow-water carbonates of the Emperor Seamounts, drilled during Deep Sea Drilling Project (DSDP) Leg 55. They found a high correlation between occurrence of scalenohedral cements and decreasing distance to the underlying basalt. Such a relationship could not be identified for the Allison and Resolution guyots limestones.

Desiccation cracks, bird's-eye structures, keystone vugs, meniscus, and peloidal cements indicate *meteoric-vadose* conditions. Glaebules reflect pedogenetic overprinting. Because the micritic cement may originally have been of aragonite, either high-Mg calcite, or low-Mg calcite mineralogy; either a marine or a meteoric-phreatic origin is possible.

The blocky, pore-filling calcite cements in different facies types suggest, according to their textures, a *meteoric-phreatic* to *shallow-burial* origin (Pl. 2, Fig. 4 and Pl. 3, Fig. 9). These cements may have been overprinted by seawater (see chapter on stable isotope studies and compare with Tucker [1990], Sun et al. [1992]). The blocky dolomite cements of the lower portion of Site 866 were precipitated from cold marine waters that percolated through the drowned carbonate platform below 2000 m (Flood and Chivas, this volume). A comparable origin was also proposed for the Eocene dolomites of Enewetak Atoll (Saller, 1984).

#### Porosity

Primary porosities in the recovered material are generally low and limited to *interparticle* porosities (according to Choquette and Pray, 1970) in weakly and noncemented oolitic grainstones (Pl. 2, Fig. 3, and Jenkyns and Strasser, this volume). *Keystone vugs* and *bird's-eyes* are found in oolites and algal laminites, respectively (cf. Arnaud et al., this volume, Strasser et al., this volume). *Intraparticle* porosity typically occurs in foraminifers, coral fragments, calcareous algae (Pl. 4, Fig. 1) and echinoderm fragments. *Intercrystalline* porosity was found in coarse dolomites (Pl. 5, Fig. 3), some of which also show dissolved areas in the center of single crystals (*intracrystalline* porosity, Pl. 5, Fig. 6).

More widespread is small-scale dissolution, manifested as different types of secondary porosity types and therefore of importance for the definition of diagenetic pathways. Spatial variations are caused by the individual characteristics of allochems and cements, the fabric of the limestone, hydrology, and earlier diagenetic processes (Schroeder, 1988). All samples show some evidence of dissolution, which acted mainly fabric-selectively. Moldic porosity, which primarily originated from the selective removal of the former fossils by aragonite dissolution, is most common (Pl. 4, Figs. 4 and 5) in all facies types. This dissolution is local, and the degree of reduction of early secondary porosity by marine cementation is relatively low (Pl. 4, Fig. 9), which may be related to the mineralogy of the limestones. James and Bone (1989) discussed the presence of aragonite being the main driving force in meteoric diagenesis. Most of the aragonite in Leg 143 samples had probably already been transformed to calcite at the time of the origin of secondary porosity (cf. Budd, 1989)

According to Moore (1989), most shallow-water carbonate sequences bear the imprint of meteoric diagenesis. The guyot limestones also exhibit the influences of destructive solution by freshwater, which enlarged initial porosities (Pl. 4, Figs. 7 and 8) and resulted in the progressive destruction of fossils across all previous fabrics. Dissolution related to the lowering of pH following the decomposition of organic matter (cf. Miller, 1986) can be excluded, especially for the Site 866 samples, because the contents of organic matter in this site are, in general, relatively low (cf. Baudin et al., this volume).

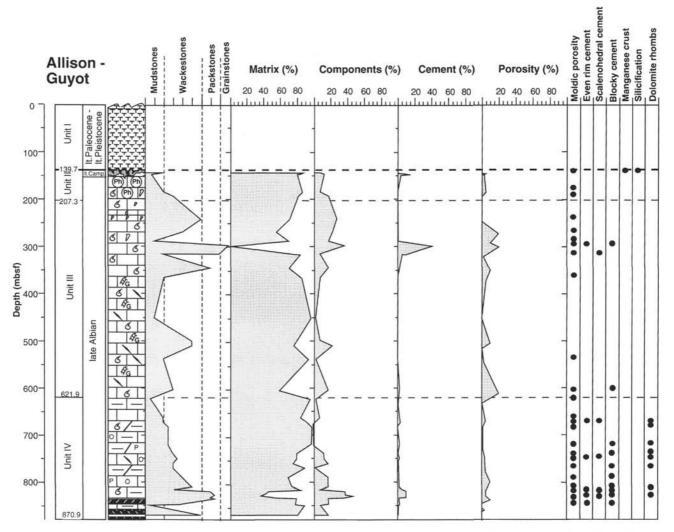



Figure 2. Stratigraphic distribution of matrix, components, cements, porosity, and diagenetic features in Hole 865A (Allison Guyot) as estimated from thin sections.

The stratigraphic distribution of porosity in Hole 865A shows generally higher porosity values in Unit III in comparison with Unit IV (Fig. 2). The highest porosity values occur in Unit II. Moldic porosity was found throughout the section of Hole 866A (Fig. 3B), but is prominent in the oolitic Unit V and the grainstones to packstones of the upper portion of Unit VI. Samples from Site 867 (stormbeach sequences of Strasser et al., this volume) exhibit interparticle porosities up to 30 vol%. The porosity is probably higher in the unrecovered part of the holes, especially in the upper karstified parts of Sites 865 to 868. The circulation system of significant seawater flushing through the section proposed by Paull et al. (this volume) may be partly responsible for the development of higher porosity, whereas diagenetic alteration is directly related to the residence times and chemical evolution of waters. Paull et al. (this volume) estimated that the Allison carbonate platform is flushed by seawater no more rapidly than once every million years, but Sr isotope values of pore waters indicate that the host carbonates have not influence the pore water composition significantly.

# Geochemical Results and Interpretation

#### **Bulk Chemistry**

Site 865 (Allison Guyot)

The abrupt change in the Sr and Ba contents between nannofossil/ foraminifer oozes of the pelagic cap (Unit I, Bralower et al., this volume) and the Cretaceous shallow-water limestones is related to differences in lithology, age, and diagenetic alteration of the carbonates.

Unit II is characterized by penetrative phosphatization (up to 20.53%  $P_2O_5!$ , Fig. 4) and a manganese crust on top (Mn and associated elements: Fe, Cu, Co, Zn, for contents see Table 1). XRD analyses showed apatite, todorokite, and traces of quartz.

Unit III exhibits a relatively homogeneous carbonate distribution, with contents of more than 92% CaCO<sub>3</sub>. The magnesium contents (mean 0.6% MgO) slightly decrease upward, which is related to the decreasing clay content that tracks the disappearance of the central volcanic island.

The element distribution in Unit IV is of wider variety as a result of the still-existing influence of the central volcanic island, resulting in more impure limestones and alternations of limestones with clays and/or marls (Figs. 4 and 5). SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, TiO<sub>2</sub>, Fe<sub>2</sub>O<sub>3</sub>, MnO, V, Zn, Cu, and Co values change cyclically with the lithologic variations in this unit. The MgO distribution reflects mainly clay. Although dolomite rhombs are very rare in thin sections, minor dolomite is also a possible source for magnesium.

## Site 866 (Resolution Guyot)

The CaCO<sub>3</sub> distribution (Fig. 6A) exhibits constantly high values in Units III and IV (between 90% and 98%, Table 2), with only a slightly decreasing trend downward. The incision in the carbonate curve of Unit III results from a green clay layer (4.4% CaCO<sub>3</sub>), and

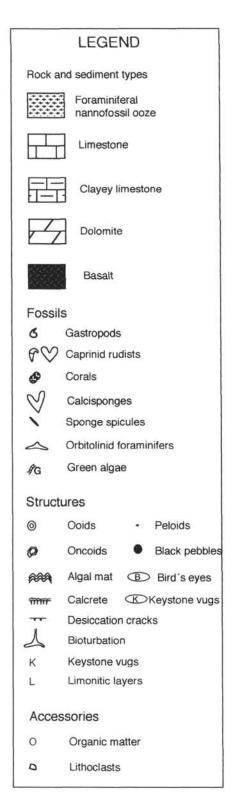



Figure 2 (continued).

the low carbonate contents in Units V and VI reflect algal laminite layers. The lower part of Unit VI and Units VII and VIII are characterized by the occurrence and increasing content of dolomite (up to 18.14% MgO, Fig. 6A, Flood and Chivas, this volume). XRD analyses of 35 dolomite-dominated bulk samples showed Ca:Mg ratios between <sup>57</sup>Ca/<sup>43</sup>Mg and <sup>54</sup>Ca/<sup>46</sup>Mg: the MgCO<sub>3</sub> content within the calcite lattice is between 3 and 5 wt%.

Sr and Ba are bound in the CaCO<sub>3</sub> lattice and show an overall trend similar to that of CaCO<sub>3</sub> (Fig. 6A), with maximum values in the algal laminite samples (up to 450 mg/kg Sr and 22 mg/kg Ba). Relatively high Sr values may reflect an original aragonite mineralogy.

Phosphate (P<sub>2</sub>O<sub>5</sub>, Fig. 6B) is mainly below the detection limit. As no samples were analyzed from the top part of the section, where we found penetrative phosphatization (Sager, Winterer, Firth, et al., 1993), only samples from four horizons (Samples 143-866A-35R-1, 33–35 cm; 143-866A-46R-2, 46–48 cm; 143-866A-71R-2, 71–72 cm; 143-866A-98R-1, 108–110 cm, Fig. 6B) show higher values, up to 0.27% P<sub>2</sub>O<sub>5</sub>. Comparison of these phosphate "peaks" with results of biostratigraphy (Arnaud and Sliter, this volume) and interpretations of sequence stratigraphy (Arnaud et al., this volume) gives a good correlation of higher phosphate contents, with maximum flooding surfaces identified by the occurrence of nannofossils and pelagic foraminifers on one side and lithological sequences on the other side. The late diagenetic phosphogenesis of equatorial Pacific seamounts was studied by Hein et al. (1993).

 $Al_2O_3$  and  $SiO_2$  (0.1% to 14.28%  $Al_2O_3$  and 0.05% to 37.59%  $SiO_2$ ) are related to detrital minerals and reflect the amount of clay in the cores. Two overall "increasing clay" cycles are visible within Units VI and III (Fig. 6B). In general, the  $Al_2O_3$  and  $SiO_2$  curves fit well. An exception is visible in Cores 143-866A-108R through -111R, where we found up to 68.95%  $SiO_2$ , but only background  $Al_2O_3$  contents. These higher  $SiO_2$  values correlate with the presence of fragments of volcanic glass observed in thin section (Arnaud et al., this volume).

The distributions of manganese oxide (Fig. 6B), and also of Cu and Zn (Fig. 6C), exhibit a cyclic behavior in Units V through VII. They could be classified as "increasing upward" cycles on a 50- to 100-m scale (see arrows in Figs. 6B and 6C). Each of the cycles is supported by four to six samples, which show the trend clearly. It seems that these elements and, respectively, compounds, show a sedimentary trend (cyclically increasing clay) in higher resolution in the facies of Units V through VIII than do Al and Si, which normally are clay markers. Cooper (this volume) and Arnaud et al. (this volume) found Milankovitch cycles on a meter scale, as well as larger cycles of up to tenths (?hundreds) of meters in thickness, which are integrated in a sequence stratigraphic framework. Comparison of chemical data (unfortunately, geochemical logging failed) with cycles identified by Arnaud et al. (this volume) shows that, in general, MnO peaks are linked to the most restricted facies (i.e., algal mat facies) and, therefore, correspond to sequence boundaries (e.g., Sb 5, 7, 10, and 15 of Arnaud et al., this volume), whereas MnO minima correlate with maximum flooding surfaces (e.g., mfs 10, 11, and 15 of Arnaud et al., this volume). Thus, the flux of manganese seems related to terrestrial runoff, which is strongest when relative sea level is low. Some cycles show a concordance with increasing resistivity and density trends in the logs (Cooper et al., this volume).

 $SO_3$  (0.02% to 2.32%) and V (1 to 162 mg/kg) obviously are related to organic matter. A comparison of our results with the data of Baudin et al. (this volume) shows that  $SO_3$  and V peaks are correlated with intervals that contain relatively high amounts of total organic carbon (TOC). Therefore, algal laminites and black packstones are the facies types having increased  $SO_3$  and V contents (Fig. 6C).

# Site 867 (Resolution Guyot)

The uppermost samples are from limestones overlain by a manganese crust (Mn, Fe, Ba, Cu; for contents see Table 3). These carbonates have been partly silicified (up to 70% SiO<sub>2</sub>, XRD studies identified well crystallized quartz) and contain some clusters of barite needles (Pl. 5, Fig. 8, see high Ba contents in Table 3). Subunit IIA is also characterized by phosphatized limestones. XRF studies obtained values up to 20% P<sub>2</sub>O<sub>5</sub>, and XRD analysis verified the occurrence of apatite (Pl. 5, Fig. 9). Limestones having high CaCO<sub>3</sub> contents of more than 95% occur throughout the section.

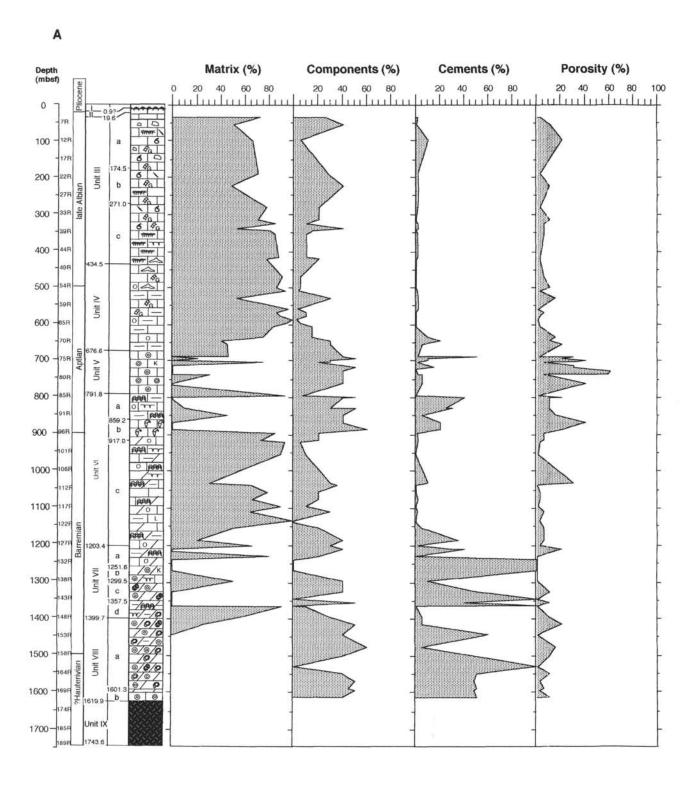



Figure 3. A. Stratigraphic distribution of matrix, components, cements, and porosity in Hole 866A (Resolution Guyot) as estimated from thin sections. **B.** Diagenetic features and limestone classification after Wright (1992).

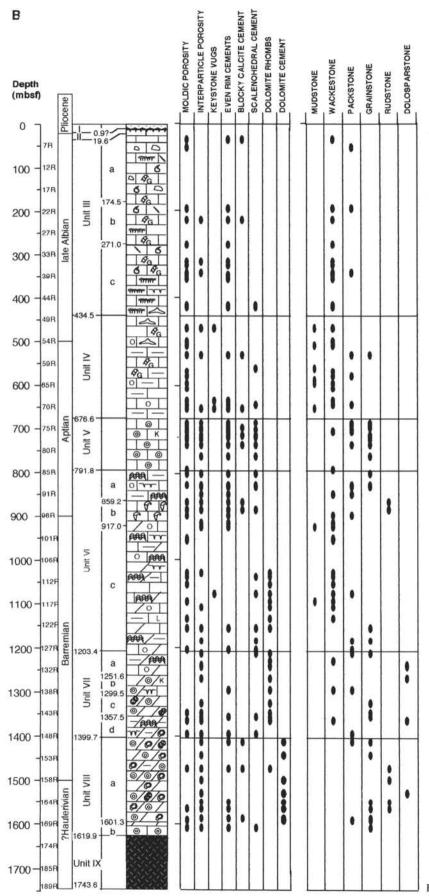



Figure 3 (continued).

Table 1. Major, minor, and trace elements (XRF) of Hole 865A.

| Comp. sections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |          |       |       | 23    |        |       |      |       |      |      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------|-------|-------|-------|--------|-------|------|-------|------|------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |          |       |       |       |        |       |      |       |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 142 005 1                   | <u> </u> | 30 K  | 2007. | R N   | 20, 20 | 11.50 |      |       |      |      |
| 28-1, 18-8-44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             | 2.1      | 1.25  | 0.026 | 0.43  | 0.20   | 0.030 | 0.36 | 51.64 | 0.03 | 0.23 |
| 28-2, 78-80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |          |       |       |       | 0.25   |       |      |       |      |      |
| 28-3, 31-35 9,01 0,17 0,008 0,08 0,49 0,032 0,35 5,264 0,01 0,024 0,034 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035                                                                                                                                                                                                                                                                                              |                             |          |       |       |       |        |       |      |       |      | 0.32 |
| 48-1, 58-60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |          |       |       |       |        |       | 0.35 | 52.64 | 0.01 | 0.24 |
| 4R-2, 48-8-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |          |       |       |       |        |       |      | 54.73 |      |      |
| 4R-3, 40-44  4R-3, 40-44  4R-3, 40-44  4R-3, 40-44  4R-3, 40-44  4R-3, 40-45  4R-3, 40-45  4R-3, 40-45  4R-3, 40-45  4R-3, 40-47  33, 41 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |          |       |       |       |        |       |      | 52.77 |      | 2.54 |
| 58-1, 44-46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |          |       |       |       |        |       |      |       |      | 0.34 |
| 58-2, 44-47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |          | 0.27  |       |       |        |       |      | 50.78 |      |      |
| 58-3, 43-47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |          |       |       |       |        |       |      | 51.25 |      | 0.35 |
| \$8.5.4.4—5\$ \$8.2.8\$ \$0.32\$ \$0.008\$ \$0.13\$ \$0.07\$ \$0.077\$ \$0.33\$ \$53.16\$ \$0.02\$ \$0.008\$ \$0.13\$ \$0.07\$ \$0.077\$ \$0.077\$ \$0.33\$ \$53.36\$ \$0.002\$ \$0.008\$ \$0.13\$ \$0.07\$ \$0.077\$ \$0.077\$ \$0.0077\$ \$0.0077\$ \$0.0077\$ \$0.0077\$ \$0.0077\$ \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 \$0.0075 |                             |          | 0.23  |       |       |        |       |      | 50.09 | 0.02 | 1.39 |
| 58.6-6, 42-45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |          |       |       |       |        |       | 0.36 |       |      |      |
| 68-1, 56-60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |          | 0.3   |       |       |        |       |      |       |      | 0.36 |
| 68-2-39-43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |          | 0.32  |       |       |        |       |      |       |      |      |
| 7R-2, 40-42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |          | 0.27  |       |       |        |       |      |       |      |      |
| 78.3, 36-38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |          |       |       |       |        |       | 0.45 | 52.44 |      | 1.09 |
| 78-4,40-42 56,19 0.16 0.005 0.08 0.05 0.02 0.54 50.24 0.02 0.58   78-4,14-3 57,3 0.28 0.007 0.12 0.06 0.02 0.37 53.32 0.03 0.32   88-1,94-99 63.24 0.2 0.28 0.006 0.1 0.05 0.02 0.37 53.32 0.03 0.32   88-1,94-99 63.24 0.2 0.38 0.006 0.1 0.05 0.025 0.31 53.279 0.03 0.34   88-2,22-2-2 640.02 0.38 0.007 0.12 0.06 0.02 0.37 53.32 0.03 0.34   88-2,32-2-2 640.02 0.38 0.006 0.1 0.06 0.02 0.37 53.32 0.03 0.34   88-2,32-2-2 75 0.14 0.02 0.005 0.07 0.06 0.01 0.05 0.05 0.05   88-2,48-2 74 0.1 0.005 0.06 0.06 0.07 0.05 0.01 0.05 0.06 0.07   88-3,32-2 75 0.14 0.005 0.06 0.06 0.07 0.05 0.01 0.09 0.38 51.49 0.06 0.05   13R-1,47-51 111.3 0.1 0.005 0.06 0.06 0.04 0.01 0.46 51.87 0.06 0.05   13R-1,48-2 114.3 0.14 0.005 0.06 0.07 0.05 0.009 0.31 54.25 0.06 0.23   13R-2,48-52 111.8 0.14 0.005 0.07 0.05 0.009 0.31 54.25 0.06 0.23   13R-3,48-3 111.8 0.11 0.005 0.06 0.07 0.05 0.01 0.38 54.03 0.07 0.26   13R-4,48-3 111.8 0.11 0.005 0.005 0.07 0.05 0.01 0.38 54.03 0.07 0.26   13R-4,48-3 111.8 0.14 0.006 0.07 0.05 0.01 0.38 54.03 0.07 0.26   13R-4,48-5 111.8 0.14 0.006 0.07 0.05 0.00 0.04 0.01 0.38 54.03 0.07 0.26   13R-4,48-5 111.8 0.14 0.006 0.07 0.05 0.00 0.04 0.01 0.38 54.03 0.07 0.05   13R-4,48-5 111.8 0.14 0.006 0.07 0.05 0.00 0.04 0.01 0.38 54.03 0.07 0.05   13R-4,48-5 111.8 0.14 0.006 0.07 0.05 0.00 0.04 0.04 0.05 0.04 0.05 0.04 0.05 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |          |       | 0.006 | 0.09  |        |       |      |       |      | 1.4  |
| 8R-1, 94-99 63.24 0.2 0.066 0.1 0.05 0.025 0.31 53.79 0.03 0.24   9R-1, 60-62 72.4 0.12 0.05 0.07 0.12 0.06 0.02 0.46 52.29 0.03 0.34   9R-1, 60-62 72.4 0.12 0.05 0.07 0.04 0.015 0.8 47.8 0.05 1.16   9R-2, 80-82 74.1 0.1 0.005 0.06 0.05 0.07 0.04 0.015 0.8 47.8 0.05 1.16   9R-3, 20-7-51 75 0.14 0.05 0.07 0.05 0.07 0.05 0.017 0.6 5 0.8 51.39 0.06 0.05 1.16   9R-3, 20-7-51 1.3 0.11 0.005 0.07 0.05 0.017 0.05 0.017 0.05 0.018   9R-3, 20-7-51 1.3 0.11 0.005 0.07 0.05 0.019 0.58 51.39 0.06 0.05 0.019   9R-3, 20-7-51 1.3 0.11 0.005 0.07 0.05 0.019 0.58 51.39 0.06 0.05 0.05 0.019 0.05   9R-3, 20-7-51 1.3 0.11 0.005 0.07 0.05 0.019 0.58 51.39 0.06 0.02   9R-3, 20-7-51 1.3 0.11 0.005 0.07 0.05 0.019 0.58 51.39 0.06 0.02   9R-3, 20-7-51 1.3 0.11 0.005 0.07 0.05 0.011 0.38 53.40 0.07 0.05   9R-3, 20-7-51 1.3 0.11 0.005 0.07 0.05 0.011 0.38 53.40 0.06 0.02   9R-3, 20-7-51 1.3 0.11 0.005 0.07 0.05 0.011 0.38 53.40 0.07 0.26   9R-4, 48-52 115.8 0.1 0.005 0.07 0.05 0.011 0.38 53.40 0.06 0.02   9R-4, 48-52 117.3 0.11 0.005 0.06 0.04 0.012 0.53 51.03 0.06 0.05   9R-4, 48-1, 49-52 120.3 0.14 0.005 0.08 0.07 0.05 0.013 0.36 53.27 0.06 0.33   9R-4, 48-1, 49-52 120.3 0.14 0.005 0.08 0.07 0.05 0.013 0.36 53.27 0.06 0.34   9R-4, 48-1, 49-52 120.3 0.14 0.005 0.08 0.07 0.05 0.013 0.36 53.27 0.06 0.34   9R-4, 48-1, 49-52 120.3 0.14 0.005 0.08 0.02 0.019 0.05 0.013 0.36 53.27 0.06 0.37   9R-4, 48-1, 49-52 120.3 0.14 0.005 0.08 0.07 0.05 0.013 0.06 0.05 0.08 0.05 0.013 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |          | 0.16  | 0.005 | 0.08  |        | 0.02  | 0.54 |       |      |      |
| 8R-2; 22-27 64.02 0.28 0.007 0.12 0.06 0.02 0.46 52.29 0.03 0.34 1.89 1.46 1.60 0.70 0.05 0.07 0.05 0.07 0.05 0.017 0.6 50.38 0.06 1.04 1.98 1.38 1.47 1.51 11.3 0.1 0.005 0.06 0.05 0.017 0.6 50.38 0.06 1.04 1.98 1.38 1.47 1.51 11.3 0.1 0.005 0.07 0.05 0.019 0.46 51.87 0.05 0.05 0.01 1.38 1.47 1.51 11.3 0.1 0.005 0.07 0.05 0.019 0.46 51.87 0.05 0.05 0.01 1.38 1.47 1.51 11.3 0.1 0.005 0.06 0.04 0.01 0.46 51.87 0.05 0.05 0.01 1.38 1.47 1.51 11.3 0.1 0.005 0.06 0.04 0.01 0.46 51.87 0.05 0.05 0.01 1.38 1.48 1.48 1.52 11.73 0.01 0.005 0.06 0.04 0.01 0.05 0.06 0.05 0.05 0.01 1.38 1.38 1.34 0.06 0.05 0.07 0.05 0.06 0.04 0.01 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |          | 0.28  |       |       |        |       |      |       |      |      |
| 9R-1, 60-02 72.4 0.12 0.005 0.07 0.04 0.015 0.8 47.8 0.05 1.164 9R-2, 80-82 74.1 0.1 0.005 0.06 0.05 0.017 0.6 50.38 0.06 1.049 9R-3, 20-22 75 0.14 0.005 0.07 0.05 0.019 0.58 51.49 0.06 0.55 1.38 1.38 1.47 51 111.3 0.1 0.005 0.06 0.06 0.04 0.01 0.046 51.37 0.05 0.05 0.51 13R-2, 48-52 111.28 0.12 0.007 0.07 0.07 0.05 0.009 0.31 54.25 0.006 0.23 13R-2, 48-52 111.3 0.14 0.005 0.07 0.05 0.009 0.31 54.25 0.006 0.23 13R-3, 48-52 111.3 0.14 0.005 0.07 0.05 0.009 0.31 53.00 0.07 0.23 0.38 54.35 0.06 1.00 0.33 13R-3, 48-52 111.3 0.11 0.005 0.07 0.05 0.009 0.31 53.00 0.07 0.23 0.38 54.35 0.07 0.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |          | 0.2   |       |       |        |       |      | 53.79 |      |      |
| 9R-2, 80-92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |          |       |       |       |        |       |      |       |      |      |
| 9R-3; 20-22 75 0,14 0,005 0,07 0,05 0,019 0,58 51,49 0,06 0,55 1,187 0,05 0,41 13R-1,47-51 111,3 0,1 0,005 0,06 0,04 0,01 0,46 51,87 0,05 0,41 13R-2,48-52 112,8 0,12 0,007 0,07 0,05 0,009 0,31 54,25 0,06 0,23 13R-4,48-52 115,8 0,11 0,005 0,07 0,05 0,01 0,38 54,03 0,07 0,26 13R-4,48-52 117,3 0,11 0,005 0,06 0,04 0,012 0,53 51,03 0,06 0,03 13R-4,48-52 117,3 0,11 0,005 0,06 0,04 0,012 0,53 51,03 0,06 0,03 13R-4,48-52 117,3 0,11 0,005 0,06 0,04 0,012 0,53 51,03 0,06 0,03 13R-4,8-52 118,8 0,14 0,006 0,07 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,01 0,05 0,00 0,05 0,01 0,05 0,00 0,05 0,01 0,05 0,00 0,05 0,01 0,05 0,00 0,05 0,00 0                                                                                                                                                                                                                                                                                             |                             |          |       | 0.005 |       | 0.04   |       |      |       |      |      |
| 13R-1, 47-51   111.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |          |       |       |       |        |       |      |       |      | 0.55 |
| 13R-2,48-52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |          |       |       |       |        |       |      |       |      |      |
| 13R-3, 47-52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |          |       | 0.007 |       |        | 0.009 |      |       |      | 0.23 |
| 13R-5, 48-52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |          |       |       |       |        |       |      | 54.03 |      |      |
| 13R-6, 49-53   118.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13R-4, 48-52                | 115.8    |       | 0.005 |       |        | 0.011 | 0.38 | 53.34 |      | 0.62 |
| 13R-7, 49-52   120.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |          |       |       |       |        |       |      |       |      | 0.73 |
| 14R-1, 4-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |          |       |       |       |        |       |      |       |      | 0.43 |
| 14R-2, 85-62   122.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |          |       |       |       |        |       |      |       |      | 0.32 |
| 14R-3, 67-70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |          |       |       |       |        |       |      |       |      |      |
| 14R-4, \$8-61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |          |       |       |       |        |       |      |       |      |      |
| 15R-1, 78-82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14R-4, 58-61                |          |       | 0.005 |       | 0.04   |       |      |       |      | 0.47 |
| 15R-3, 29-32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             | 130.9    | 0.15  |       |       |        |       |      | 53.74 |      | 0.31 |
| 15R-4, 79-82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15R-2, 43-46                | 132      |       |       |       |        |       |      | 51.5  |      | 0.36 |
| 15R-5, 42-45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15R-3, 29-32                |          |       |       |       |        |       |      |       |      |      |
| 15R-6, 58-61 138.2 0.16 0.006 0.07 0.06 0.013 0.45 52.52 0.1 0.32 15R-7, 16-20 139.3 0.28 0.009 0.11 0.09 0.013 0.39 52.72 0.24 0.27 16R-1, 114-118 136.2 0.16 0.008 0.08 0.28 0.015 0.38 53.59 0.14 0.2 16R-2, 79-83 137.4 0.16 0.006 0.07 0.11 0.015 0.45 52.57 0.18 0.27 16R-1, 114-118 136.2 0.16 0.007 0.08 0.07 0.014 0.23 54.67 0.2 0.09 16R-3, 64-68 138.7 0.16 0.006 0.07 0.11 0.015 0.45 52.57 0.18 0.27 16R-4, 40-44 140 0.16 0.007 0.08 0.12 0.013 0.33 54.15 0.19 0.15 16R-5, 40-43 141.5 0.16 0.009 0.07 0.09 0.02 0.013 0.33 54.15 0.19 0.15 16R-5, 40-43 141.5 0.16 0.009 0.07 0.09 0.02 0.02 0.52 51.98 0.36 0.33 17R-CC, 5-8 139.75 4.03 0.441 1.06 6.65 11.6 1.25 33.55 20.53 1.33 17R-CC, 5-8 139.75 4.03 0.441 1.06 6.65 11.6 1.25 33.55 20.53 1.33 17R-CC, 5-8 139.75 4.03 0.441 1.06 0.02 0.02 0.05 53 53.85 0.18 0.02 23R-CC, 6-7 188.06 0.69 0.013 0.25 0.2 0.02 0.59 54.06 0.01 0.02 23R-CC, 6-2 236.56 0.26 0.007 0.09 0.07 0.09 0.07 0.09 0.05 53.85 0.18 0.02 23R-CC, 2-3 274.9 0.48 0.013 0.2 0.1 0.009 0.65 54.54 0.00 0.02 23R-CC, 2-4 26 318.8 0.19 0.005 0.07 0.05 0.009 0.66 54.74 0 0.02 23R-CC, 24-26 351.8 0.14 0.006 0.07 0.05 0.009 0.66 54.74 0 0.02 23R-CC, 24-26 351.8 0.14 0.006 0.07 0.05 0.009 0.66 54.55 0 0.02 44R-CC, 9-11 390.2 0.3 0.013 0.13 0.08 0.005 0.66 54.51 0 0.02 23R-CC, 6-8 467.4 0.22 0.007 0.1 0.009 0.05 0.05 54.51 0 0.02 23R-CC, 6-8 467.4 0.22 0.007 0.1 0.006 0.005 0.67 54.3 0 0.02 23R-CC, 1-14 525.3 0.13 0.013 0.13 0.09 0.006 0.62 54.13 0 0.02 23R-CC, 1-14 525.3 0.13 0.007 0.08 0.05 0.006 0.66 54.12 0 0.02 23R-CC, 1-14 525.3 0.13 0.007 0.08 0.05 0.006 0.66 54.12 0 0.02 23R-CC, 1-14 525.3 0.13 0.007 0.08 0.05 0.006 0.66 54.12 0 0.02 23R-CC, 1-14 525.3 0.13 0.007 0.08 0.05 0.006 0.66 54.12 0 0.02 23R-CC, 1-14 525.3 0.13 0.007 0.08 0.05 0.006 0.66 54.13 0 0.002 0.006 0.005 0.006 0.005 0.007 0.006 0.006 0.005 0.007 0.006 0.006 0.007 0.006 0.006 0.007 0.008 0.006 0.007 0.008 0.007 0.008 0.008 0.007 0.008 0.008 0.007 0.008 0.008 0.007 0.009 0.008 0.008 0.007 0.009 0.008 0.008 0.009 0.008 0.008 0.009 0.008 0.008 0.009 0                                                                                                                                                                                                                                                                                             |                             |          |       |       |       |        |       |      |       |      |      |
| 158.7, 16-20 168.1, 114-118 168.2, 116.6 168.1, 114-118 168.2, 116.6 168.1, 114-118 168.2, 116.6 168.1, 114-118 168.2, 116.6 168.1, 114-118 168.2, 116.6 168.1, 114-118 168.2, 116.6 168.1, 114-118 168.2, 116.6 168.2, 79-83 137.4 168.1, 0.16 168.006 168.3, 64-68 138.7 168.4 168.4 140 168.4 169.4 141.5 168.4 141.5 168.6 168.4 141.5 168.6 168.6 168.4 141.5 168.6 168.6 168.6 168.6 168.6 168.6 116.6 116.6 1.25 133.55 1.88 1.35 1.89.75 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |          |       |       |       |        | 0.01  | 0.55 |       |      | 0.21 |
| 16R-1, 114-118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |          |       |       |       |        |       |      |       |      | 0.32 |
| 16R-2, 79-83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |          |       |       |       |        |       |      |       |      | 0.2  |
| 16R-5, 40-44 140 0.16 0.007 0.08 0.12 0.013 0.33 54.15 0.19 0.15 16R-5, 40-43 141.5 0.16 0.009 0.07 0.09 0.024 0.52 51.98 0.36 0.33 17R-CC, 5-8 139.75 4.03 0.441 1.06 6.65 11.6 1.25 33.55 20.53 1.33 19R-CC, 8-9 149.48 1.19 0.016 0.21 0.37 0.096 0.55 53.85 0.18 0.02 23R-CC, 6-7 188.06 0.69 0.013 0.25 0.2 0.02 0.59 54.06 0.01 0.02 23R-L, 26-28 236.56 0.26 0.007 0.09 0.07 0.007 0.007 0.51 54.83 0 0.02 23R-CC, 2-3 274.9 0.48 0.013 0.2 0.1 0.009 0.62 53.8 0 0.002 34R-1, 8-9 294.3 0.19 0.005 0.07 0.05 0.009 0.66 54.74 0 0.02 39R-CC, 28-29 342.2 0.29 0.009 0.13 0.08 0.005 0.66 54.74 0 0.02 39R-CC, 24-26 351.8 0.14 0.006 0.07 0.06 0.005 0.59 54.51 0 0.02 42R-CC, 7-9 370.9 0.16 0.009 0.09 0.05 0.006 0.61 54.3 0 0.02 24R-CC, 9-11 390.2 0.3 0.013 0.13 0.09 0.06 0.62 54.13 0 0.02 25R-CC, 6-8 467.4 0.22 0.007 0.1 0.06 0.06 0.66 54.12 0 0.02 25R-CC, 6-8 467.4 0.22 0.007 0.1 0.06 0.06 0.66 54.12 0 0.02 25R-CC, 12-14 525.3 0.13 0.007 0.08 0.05 0.05 0.05 0.07 54.3 0 0.05 25R-CC, 12-14 525.3 0.13 0.007 0.08 0.05 0.05 0.05 0.67 54.3 0 0.05 25R-CC, 12-14 525.3 0.13 0.007 0.08 0.05 0.05 0.05 0.67 54.3 0.03 0.02 60R-CC, 11-13 544.6 0.23 0.011 0.11 0.06 0.005 0.07 54.3 0.03 0.02 60R-CC, 11-13 544.6 0.23 0.011 0.11 0.06 0.005 0.05 54.3 0.03 0.02 60R-CC, 11-13 544.6 0.23 0.011 0.11 0.06 0.05 0.05 54.3 0.03 0.02 60R-CC, 11-13 544.6 0.23 0.011 0.11 0.06 0.05 0.05 54.3 0.03 0.02 60R-CC, 13-24-26 699.3 0.58 0.018 0.25 0.13 0.005 0.67 54.3 0.03 0.02 60R-CC, 13-24-26 699.3 0.58 0.018 0.25 0.13 0.005 0.67 54.3 0.03 0.02 60R-CC, 13-24-26 699.3 0.58 0.018 0.25 0.13 0.005 0.05 54.5 0.00 0.05 0.05 54.00 0.00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             | 137.4    |       |       |       |        |       | 0.23 | 54.67 |      | 0.09 |
| 16R.5.40-43         141.5         0.16         0.009         0.07         0.09         0.024         0.52         51.98         0.36         0.33           17R-CC, S-8         139.75         4.03         0.441         1.06         6.65         11.6         1.25         33.35         20.53         1.33           17R-CC, S-8         139.75         4.03         0.044         1.06         6.65         11.6         1.25         33.35         20.53         1.33           17R-CC, S-8         139.75         4.03         0.016         0.21         0.37         0.096         0.55         53.85         0.18         0.02           23R-CC, 2-3         234.9         0.48         0.013         0.25         0.2         0.02         0.59         54.06         0.01         0.02           23R-C, 2-3         274.9         0.48         0.013         0.2         0.1         0.009         0.62         53.8         0         0.02           23R-C, 2-3         342.2         0.29         0.009         0.05         0.009         0.62         53.8         0         0.02           24R-C, 7-9         370.9         0.16         0.009         0.05         0.05         54.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |          |       | 0.006 | 0.07  | 0.11   |       | 0.45 |       |      | 0.27 |
| 17R-CC, S-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |          |       | 0.007 |       |        | 0.013 | 0.33 |       |      |      |
| 19R-CC, 8-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |          |       |       |       |        |       | 0.52 |       |      | 0.33 |
| 23R-CC, 6-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |          |       |       |       | 0.05   | 0.006 |      |       |      |      |
| 28R-I, 26-28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |          |       |       |       |        |       |      |       |      |      |
| 32R-CC, 2-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |          |       |       |       | 0.07   |       |      |       |      |      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 32R-CC, 2-3                 | 274.9    |       |       |       |        |       | 0.62 | 53.8  | 0    | 0.02 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |          |       |       | 0.07  |        |       |      |       |      | 0.02 |
| 42R-CC, 7-9 370.9 0.16 0.009 0.09 0.05 0.006 0.61 54.3 0 0.02 44R-CC, 9-11 390.2 0.3 0.013 0.13 0.09 0.006 0.60 54.13 0 0.02 52R-CC, 6-8 467.4 0.22 0.007 0.1 0.06 0.006 0.66 54.12 0 0.02 56R-CC, 7-10 506 0.39 0.014 0.17 0.1 0.005 0.71 53.93 0 0.05 58R-CC, 12-14 525.3 0.13 0.007 0.08 0.05 0.005 0.66 54.44 0 0.02 66R-CC, 11-13 544.6 0.23 0.011 0.11 0.06 0.005 0.67 54.3 0.03 0.02 66R-CC, 35-37 602.9 0.18 0.01 0.06 0.06 0.06 0.005 0.67 54.3 0.03 0.02 66R-CC, 35-37 602.9 0.18 0.01 0.06 0.06 0.06 0.005 0.67 54.3 0.03 0.02 66R-CC, 35-37 602.9 0.18 0.01 0.06 0.06 0.005 0.67 54.3 0.03 0.02 66R-CC, 35-37 602.9 0.18 0.01 0.06 0.06 0.005 0.67 54.3 0.03 0.02 66R-CC, 35-37 602.9 0.18 0.01 0.06 0.06 0.005 0.67 54.3 0.03 0.02 66R-CC, 35-37 602.9 0.18 0.01 0.06 0.06 0.005 0.67 54.3 0.03 0.02 66R-CC, 35-37 602.9 0.18 0.01 0.06 0.06 0.005 0.67 54.3 0.03 0.02 66R-CC, 35-37 602.9 0.18 0.01 0.06 0.06 0.005 0.67 54.3 0.03 0.02 66R-CC, 35-37 602.9 0.18 0.01 0.06 0.06 0.06 0.005 0.73 53.97 0 0.07 73R-1, 26-28 670.4 27.71 1.666 10.23 4.63 0.022 2.82 20.36 0.1 4.79 68R-1, 24-26 699.3 0.58 0.018 0.25 0.13 0.005 0.91 53.27 0 0.34 78R-1, 59-60 718.9 4.82 0.221 1.75 1.06 0.018 3.85 45.34 0 1.63 79R-1, 48-49 728.6 0.76 0.032 0.32 0.17 0.008 0.86 53.13 0 0.27 78R-1, 48-49 728.6 0.76 0.032 0.32 0.17 0.008 0.86 53.13 0 0.27 78R-1, 48-49 757.6 1.84 0.098 0.81 0.04 0.099 0.53 0.015 0.93 51.89 0 0.68 81R-1, 22-24 747.6 0.28 0.011 0.14 0.08 0.007 0.9 53.85 0 0.17 82R-1, 48-49 757.6 1.84 0.098 0.81 0.46 0.031 5.97 46.23 0.02 0.72 83R-CC, 17-20 767 1.29 0.112 0.68 0.3 0.01 0.74 52.7 0 0.45 85R-2, 65-68 788.1 3.75 0.332 1.3 1.12 0.017 0.75 49.87 0 1.94 86R-3, 68-69 799.4 2.18 0.43 1.4 0.87 0.02 0.8 50.52 0 1.19 86R-3, 68-69 799.4 2.18 0.43 1.4 0.87 0.02 0.8 50.52 0 1.19 86R-3, 68-69 799.4 2.18 0.43 1.4 0.87 0.02 0.8 50.52 0 1.19 86R-3, 68-69 799.4 2.18 0.43 1.4 0.87 0.02 0.8 50.52 0 1.19 90R-3, 42-44 834.7 1.95 0.044 1.03 2.78 0.087 0.99 49.54 0.05 5.02 91R-3, 130-132 845.2 6.86 0.999 2.94 2.3 0.098 1.9 44.66 0.06 0.06 0.94 91R-4, 67-70 846 2.96 0.279                                                                                                                                                                                                                                                                                              |                             |          |       |       |       |        |       |      |       |      |      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40K-CC, 24–26               | 351.8    |       |       |       |        |       |      |       |      |      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 44R-CC 9-11                 |          |       |       |       |        |       |      |       |      |      |
| 56R-CC, 7-10 506 0.39 0.014 0.17 0.1 0.005 0.71 53.93 0 0.05 SR-CC, 12-14 525.3 0.13 0.007 0.08 0.05 0.005 0.66 54.44 0 0.02 60R-CC, 11-13 544.6 0.23 0.011 0.11 0.06 0.005 0.66 54.44 0 0.02 66R-CC, 35-37 602.9 0.18 0.01 0.06 0.06 0.005 0.67 54.3 0.03 0.02 66R-CC, 35-37 602.9 0.18 0.01 0.06 0.06 0.005 0.73 53.97 0 0.07 76R-1, 26-28 670.4 27.71 1.666 10.23 4.63 0.022 2.82 20.36 0.1 4.79 76R-1, 24-26 699.3 0.58 0.018 0.25 0.13 0.005 0.91 53.27 0 0.34 78R-1, 59-60 718.9 4.82 0.221 1.75 1.06 0.018 3.85 45.34 0 1.63 79R-1, 48-49 728.6 0.76 0.032 0.32 0.17 0.008 0.86 53.13 0 0.27 80R-1, 23-25 738 2.22 0.144 0.99 0.53 0.015 0.93 51.89 0 0.68 81R-1, 22-24 747.6 0.28 0.011 0.14 0.08 0.007 0.9 53.85 0 0.68 81R-1, 22-24 747.6 1.84 0.098 0.81 0.46 0.031 5.97 46.23 0.02 0.72 82R-1, 48-49 757.6 1.84 0.098 0.81 0.46 0.031 5.97 46.23 0.02 0.72 83R-CC, 7-10 767 1.29 0.112 0.68 0.3 0.01 0.74 52.7 0 0.45 85R-2, 65-68 788.1 3.75 0.332 1.3 1.12 0.017 0.75 49.87 0 1.94 86R-3, 68-69 799.4 2.18 0.433 1.4 0.87 0.02 0.8 50.52 0 1.19 86R-2, 58-60 826.8 6.26 1.664 4.65 7.42 0.064 1.8 39.45 0.04 0.71 90R-2, 47-49 833.4 4.85 0.638 2.63 2.7 0.05 0.97 46.22 0.03 3.99 91R-3, 130-132 845.2 6.86 0.999 2.94 2.3 0.098 1.9 44.66 0.06 0.094 91R-4, 67-70 846 2.96 0.279 1.32 0.36 0.05 0.077 51.45 0 0.02 92R-2, 26-28 848.9 6.28 1.399 4.11 3.55 0.09 1.01 41.52 0.02 4.8 92R-3, 37-40 849.9 9.57 1.485 4.38 2.06 0.054 1.34 42.43 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |          |       |       |       |        |       |      |       |      |      |
| 58R-CC, 12-14 525.3 0.13 0.007 0.08 0.05 0.005 0.66 54.44 0 0.00<br>60R-CC, 11-13 544.6 0.23 0.011 0.11 0.06 0.005 0.67 54.3 0.03 0.02<br>66R-CC, 35-37 602.9 0.18 0.01 0.06 0.06 0.005 0.73 53.97 0 0.07<br>73R-1, 26-28 670.4 27.71 1.666 10.23 4.63 0.022 2.82 20.36 0.1 4.79<br>76R-1, 24-26 699.3 0.58 0.018 0.25 0.13 0.005 0.91 53.27 0 0.34<br>78R-1, 59-60 718.9 4.82 0.221 1.75 1.06 0.018 3.85 45.34 0 1.63<br>79R-1, 48-49 728.6 0.76 0.032 0.32 0.17 0.008 0.86 53.13 0 0.27<br>80R-1, 32-35 738 2.22 0.144 0.99 0.53 0.015 0.93 51.89 0 0.68<br>81R-1, 22-24 747.6 0.28 0.011 0.14 0.08 0.007 0.9 53.85 0 0.17<br>82R-1, 48-49 757.6 1.84 0.098 0.81 0.46 0.031 5.97 46.23 0.02 0.72<br>83R-CC, 17-20 767 1.29 0.112 0.68 0.3 0.01 0.74 52.7 0 0.45<br>85R-2, 65-68 788.1 3.75 0.332 1.3 1.12 0.017 0.75 49.87 0 1.94<br>86R-3, 68-69 799.4 2.18 0.433 1.4 0.87 0.02 0.8 50.52 0 1.19<br>86R-2, 58-60 826.8 6.26 1.664 4.65 7.42 0.064 1.8 39.45 0.04 0.71<br>90R-3, 42-44 834.7 1.95 0.204 1.03 2.78 0.087 0.99 49.54 0.05 5.02<br>91R-3, 130-132 845.2 6.86 0.999 2.94 2.3 0.098 1.9 44.66 0.06 0.09<br>91R-3, 130-132 845.2 6.86 0.999 2.94 2.3 0.098 1.9 44.66 0.06 0.09<br>92R-2, 26-28 848.9 6.28 1.399 4.11 3.55 0.00 1.01 41.34 42.43 0.07 1.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |          |       |       |       |        |       |      |       |      |      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 58R-CC, 12-14               |          |       |       |       | 0.05   |       |      |       | 0    | 0.02 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 60R-CC, 11-13               |          |       | 0.011 | 0.11  |        |       |      |       |      |      |
| 76R-1, 24-26 699.3 0.58 0.018 0.25 0.13 0.005 0.91 53.27 0 0.34 78R-1, 59-60 718.9 4.82 0.221 1.75 1.06 0.018 3.85 45.34 0 1.63 79R-1, 48-49 728.6 0.76 0.032 0.32 0.17 0.008 0.86 53.13 0 0.27 80R-1, 32-35 738 2.22 0.144 0.99 0.53 0.015 0.93 51.89 0 0.68 81R-1, 22-24 747.6 0.28 0.011 0.14 0.08 0.007 0.9 53.85 0 0.17 82R-1, 48-49 757.6 1.84 0.098 0.81 0.46 0.031 5.97 46.23 0.02 0.72 83R-CC, 17-20 767 1.29 0.112 0.68 0.3 0.01 0.74 52.7 0 0.45 85R-2, 65-68 788.1 3.75 0.332 1.3 1.12 0.017 0.75 49.87 0 1.94 86R-3, 68-69 799.4 2.18 0.433 1.4 0.87 0.02 0.8 50.52 0 1.19 88R-1, 50-52 815.6 1.86 0.223 1.32 1 0.016 0.78 51.58 0 1.66 89R-2, 58-60 826.8 6.26 1.664 4.65 7.42 0.064 1.8 39.45 0.04 0.71 90R-3, 42-44 834.7 1.95 0.204 1.03 2.78 0.087 0.99 49.54 0.05 5.02 91R-3, 130-132 845.2 6.86 0.999 2.94 2.3 0.098 1.9 44.66 0.06 0.94 91R-4, 67-70 846 2.96 0.279 1.32 0.36 0.05 0.77 51.45 0 0.02 4.8 92R-3, 37-40 849.9 9.57 1.485 4.38 2.06 0.054 1.34 42.43 0.07 1.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 66R-CC, 35-37               |          |       |       |       |        |       |      |       |      | 0.07 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |          |       | 1.666 | 10.23 |        |       |      |       |      |      |
| 79R-1, 48-49 728.6 0.76 0.032 0.32 0.17 0.008 0.86 53.13 0 0.27 80R-1, 32-35 738 2.22 0.144 0.99 0.53 0.015 0.93 51.89 0 0.68 81R-1, 22-24 747.6 0.28 0.011 0.14 0.08 0.007 0.9 53.85 0 0.17 82R-1, 48-49 757.6 1.84 0.098 0.81 0.46 0.031 5.97 46.23 0.02 0.72 83R-CC, 17-20 767 1.29 0.112 0.68 0.3 0.01 0.74 52.7 0 0.45 85R-2, 65-68 788.1 3.75 0.332 1.3 1.12 0.017 0.75 49.87 0 1.94 86R-3, 68-69 799.4 2.18 0.433 1.4 0.87 0.02 0.8 50.52 0 1.19 88R-1, 50-52 815.6 1.86 0.223 1.32 1 0.016 0.78 51.58 0 1.66 89R-2, 58-60 826.8 6.26 1.664 4.65 7.42 0.064 1.8 39.45 0.04 0.71 89R-2, 47-49 833.4 4.85 0.638 2.63 2.7 0.05 0.97 46.22 0.03 3.99 90R-3, 42-44 834.7 1.95 0.204 1.03 2.78 0.087 0.99 49.54 0.05 5.02 91R-3, 130-132 845.2 6.86 0.999 2.94 2.3 0.098 1.9 44.66 0.06 0.94 91R-4, 67-70 846 2.96 0.279 1.32 0.36 0.05 0.07 51.45 0 0.02 4.8 92R-3, 37-40 849.9 9.57 1.485 4.38 2.06 0.054 1.34 42.43 0.07 1.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70K-1, 24-20<br>70D 1 50 60 |          | 0.58  |       |       |        |       |      |       |      |      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |          |       | 0.221 |       |        |       |      |       |      |      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |          | 2.22  |       | 0.99  | 0.53   | 0.015 |      |       |      |      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 81R-1, 22-24                |          |       |       |       |        |       |      |       |      |      |
| 83R-CC, 17-20 767 1.29 0.112 0.68 0.3 0.01 0.74 52.7 0 0.45   58R-2, 65-68 788.1 3.75 0.332 1.3 1.12 0.017 0.75 49.87 0 1.94   86R-3, 68-69 799.4 2.18 0.433 1.4 0.87 0.02 0.8 50.52 0 1.19   88R-1, 50-52 815.6 1.86 0.223 1.32 1 0.016 0.78 51.58 0 1.66   89R-2, 58-60 826.8 6.26 1.664 4.65 7.42 0.064 1.8 39.45 0.04 0.71   90R-2, 47-49 833.4 4.85 0.638 2.63 2.7 0.05 0.97 46.22 0.03 3.99   90R-3, 42-44 834.7 1.95 0.204 1.03 2.78 0.087 0.99 49.54 0.05 5.02   91R-3, 130-132 845.2 6.86 0.999 2.94 2.3 0.098 1.9 44.66 0.06 0.94   91R-4, 67-70 846 2.96 0.279 1.32 0.36 0.05 0.77 51.45 0 0.02   92R-2, 26-28 848.9 6.28 1.399 4.11 3.55 0.09 1.01 41.52 0.02 4.8   92R-3, 37-40 849.9 9.57 1.485 4.38 2.06 0.054 1.34 42.43 0.07 1.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 82R-1, 48-49                | 757.6    | 1.84  | 0.098 | 0.81  | 0.46   | 0.031 | 5.97 | 46.23 | 0.02 | 0.72 |
| 86R-3, 68-69 799.4 2.18 0.433 1.4 0.87 0.02 0.8 50.52 0 1.19 88R-1, 50-52 815.6 1.86 0.223 1.32 1 0.016 0.78 51.58 0 1.66 98R-2, 58-60 826.8 6.26 1.664 4.65 7.42 0.064 1.8 39.45 0.04 0.71 90R-2, 47-49 833.4 4.85 0.638 2.63 2.7 0.05 0.97 46.22 0.03 3.99 90R-3, 42-44 834.7 1.95 0.204 1.03 2.78 0.087 0.99 49.54 0.05 5.02 91R-3, 130-132 845.2 6.86 0.999 2.94 2.3 0.098 1.9 44.66 0.06 0.94 91R-3, 130-132 845.2 6.86 0.999 1.32 0.36 0.05 0.77 51.45 0 0.02 92R-2, 26-28 848.9 6.28 1.399 4.11 3.55 0.09 1.01 41.52 0.02 4.8 92R-3, 37-40 849.9 9.57 1.485 4.38 2.06 0.054 1.34 42.43 0.07 1.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |          |       | 0.112 | 0.68  |        |       |      |       |      |      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |          |       |       |       |        |       |      |       |      |      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |          |       | 0.433 |       |        |       |      |       |      |      |
| 90R-2, 47-49 833.4 4.85 0.638 2.63 2.7 0.05 0.97 46.22 0.03 3.99 90R-3, 42-44 834.7 1.95 0.204 1.03 2.78 0.087 0.99 49.54 0.05 5.02 91R-3, 130-132 845.2 6.86 0.999 2.94 2.3 0.098 1.9 44.66 0.06 0.94 91R-4, 67-70 846 2.96 0.279 1.32 0.36 0.05 0.77 51.45 0 0.02 92R-2, 26-28 848.9 6.28 1.399 4.11 3.55 0.09 1.01 41.52 0.02 4.8 92R-3, 37-40 849.9 9.57 1.485 4.38 2.06 0.054 1.34 42.43 0.07 1.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |          |       |       |       |        |       |      |       |      |      |
| 90R-3, 42-44 834.7 1.95 0.204 1.03 2.78 0.087 0.99 49.54 0.05 5.02 91R-3, 130-132 845.2 6.86 0.999 2.94 2.3 0.098 1.9 44.66 0.06 0.94 91R-4, 67-70 846 2.96 0.279 1.32 0.36 0.05 0.77 51.45 0 0.02 92R-2, 26-28 848.9 6.28 1.399 4.11 3.55 0.09 1.01 41.52 0.02 4.8 92R-3, 37-40 849.9 9.57 1.485 4.38 2.06 0.054 1.34 42.43 0.07 1.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |          |       |       |       |        |       |      |       |      | 3 90 |
| 91R-3, 130–132 845.2 6.86 0.999 2.94 2.3 0.098 1.9 44.66 0.06 0.94<br>91R-4, 67–70 846 2.96 0.279 1.32 0.36 0.05 0.77 51.45 0 0.02<br>92R-2, 26–28 848.9 6.28 1.399 4.11 3.55 0.09 1.01 41.52 0.02 4.8<br>92R-3, 37–40 849.9 9.57 1.485 4.38 2.06 0.054 1.34 42.43 0.07 1.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |          |       |       |       | 2.78   |       |      |       |      |      |
| 91R-4, 67–70 846 2.96 0.279 1.32 0.36 0.05 0.77 51.45 0 0.02 92R-2, 26–28 848.9 6.28 1.399 4.11 3.55 0.09 1.01 41.52 0.02 4.8 92R-3, 37–40 849.9 9.57 1.485 4.38 2.06 0.054 1.34 42.43 0.07 1.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |          |       | 0.999 |       |        |       |      |       |      |      |
| 92R-2, 26-28 848.9 6.28 1.399 4.11 3.55 0.09 1.01 41.52 0.02 4.8 92R-3, 37-40 849.9 9.57 1.485 4.38 2.06 0.054 1.34 42.43 0.07 1.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 91R-4, 67-70                |          | 2.96  | 0.279 |       |        | 0.05  |      | 51.45 | 0    | 0.02 |
| 92R-3, 37-40 849.9 9.57 1.485 4.38 2.06 0.054 1.34 42.43 0.07 1.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 92R-2, 26-28                | 848.9    | 6.28  | 1.399 | 4.11  | 3.55   | 0.09  | 1.01 | 41.52 |      | 4.8  |
| 94R-3, 129-131 867.2 11.52 0.668 3.83 3.98 0.112 1.57 39.47 0.04 3.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |          |       | 1.485 |       | 2.06   |       |      |       |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 94R-3, 129-131              | 867.2    | 11.52 | 0.668 | 3.83  | 3.98   | 0.112 | 1.57 | 39.47 | 0.04 | 3.79 |

Table 1 (continued).

| As<br>mg/kg)                    | Ba<br>(mg/kg)                          | Ce<br>(mg/kg)                   | Co<br>(mg/kg)             | Cr<br>(mg/kg)                  | Cu<br>(mg/kg)                    | La<br>(mg/kg)                    | Ni<br>(mg/kg)          | Sr<br>(mg/kg)                          | V<br>(mg/kg)                                  | Zn<br>(mg/kg)              | Zr<br>(mg/kg)                          |
|---------------------------------|----------------------------------------|---------------------------------|---------------------------|--------------------------------|----------------------------------|----------------------------------|------------------------|----------------------------------------|-----------------------------------------------|----------------------------|----------------------------------------|
| 1<br>1<br>1<br>1<br>5           | 295<br>94<br>78<br>242<br>350          | 20<br>21<br>34<br>19            | 8<br>9<br>1<br>1<br>1     | 1<br>1<br>1<br>36<br>1         | 16<br>15<br>18<br>21<br>16       | 16<br>24<br>18<br>14<br>35       | 9<br>1<br>1<br>1<br>1  | 1077<br>850<br>860<br>833<br>811       | 14<br>1<br>1<br>1<br>1                        | 31<br>198<br>144<br>1263   | 8<br>1<br>1<br>1                       |
| 1<br>1<br>1<br>1<br>1           | 653<br>654<br>903<br>891<br>954<br>782 | 1<br>31<br>16<br>24<br>18<br>22 | 1<br>1<br>1<br>1          | 1<br>1<br>1<br>1<br>1          | 11<br>10<br>17<br>13<br>19<br>20 | 26<br>1<br>12<br>18<br>11<br>10  | 1<br>1<br>1<br>1<br>1  | 821<br>853<br>796<br>829<br>827<br>780 | 1<br>1<br>1<br>1                              | 12<br>9<br>11<br>12<br>9   | 1<br>1<br>1<br>1                       |
| 1 1 1 1 1                       | 1061<br>1241<br>1193<br>1020<br>1323   | 1<br>1<br>21<br>1<br>20         | 1<br>1<br>1<br>8<br>1     | 1<br>1<br>1<br>1<br>1          | 10<br>13<br>10<br>10<br>29       | 27<br>5<br>9<br>15               | 1<br>1<br>8<br>1       | 797<br>862<br>830<br>776<br>734        | 1<br>1<br>1<br>1<br>10                        | 48<br>32<br>23<br>19<br>16 | 1<br>1<br>1<br>1                       |
| 1<br>8<br>1                     | 954<br>999<br>992<br>1092<br>1270      | 1<br>1<br>1<br>25<br>1          | 1<br>1<br>1<br>1<br>10    | 1<br>1<br>1<br>1               | 18<br>29<br>21<br>30<br>15       | 28<br>1<br>1<br>7<br>5           | 1<br>1<br>1<br>1       | 696<br>753<br>690<br>777<br>777        | 1<br>1<br>1<br>1                              | 15<br>12<br>22<br>31<br>12 | 1<br>1<br>1<br>1                       |
| 1<br>1<br>1<br>1                | 1073<br>972<br>717<br>878<br>795       | 26<br>26<br>21<br>20<br>1       | 9<br>1<br>1<br>1          | 1<br>1<br>1<br>1               | 11<br>53<br>45<br>31<br>44       | 32<br>1<br>20<br>20<br>20        | 1<br>1<br>40<br>1<br>1 | 730<br>597<br>522<br>469<br>797        | 1<br>1<br>1<br>1                              | 13<br>11<br>10<br>9        | 1<br>1<br>1<br>1                       |
| 1<br>1<br>1<br>1                | 943<br>974<br>841<br>895               | 1<br>1<br>18<br>23              | 1<br>1<br>1               | 1<br>1<br>1<br>1               | 29<br>39<br>23<br>32             | 5<br>7<br>27<br>1                | 1<br>1<br>1            | 863<br>877<br>817<br>803               | 1<br>1<br>1<br>1                              | 13<br>15<br>10<br>28<br>30 | 1<br>1<br>1                            |
| 1 1 1 1 1                       | 1063<br>1009<br>599<br>477<br>753      | 31<br>17<br>1<br>29<br>24       | 1<br>1<br>1<br>1          | 1<br>1<br>38<br>12<br>1        | 29<br>11<br>38<br>25<br>17       | 14<br>22<br>22<br>11<br>17       | 1<br>1<br>10<br>1      | 812<br>830<br>789<br>659<br>776        | 1<br>13<br>1<br>1                             | 11<br>230<br>29<br>12      | 1<br>1<br>1<br>1                       |
| 1<br>5<br>1<br>1                | 568<br>699<br>834<br>606<br>827        | 1<br>1<br>21<br>25              | 1<br>7<br>1<br>1          | 1<br>1<br>1<br>1               | 16<br>20<br>18<br>12<br>18       | 28<br>1<br>12<br>24<br>19        | 1<br>1<br>1<br>1       | 715<br>682<br>653<br>645<br>624        | 1<br>1<br>12<br>1                             | 33<br>11<br>8<br>11<br>40  | 1<br>1<br>1<br>1                       |
| 1<br>1<br>1<br>5                | 1185<br>982<br>1274<br>920<br>899      | 1<br>28<br>31<br>20<br>41       | 1<br>1<br>1<br>1          | 1<br>1<br>23<br>1              | 18<br>17<br>10<br>15<br>40       | 17<br>17<br>35<br>33<br>32       | 1<br>1<br>1<br>1       | 647<br>609<br>664<br>652<br>681        | 1<br>1<br>1<br>1                              | 11<br>8<br>9<br>30<br>20   | 1<br>1<br>1<br>1<br>1                  |
| 1<br>6<br>1<br>129<br>8         | 878<br>844<br>532<br>5698<br>91        | 1<br>16<br>15<br>544<br>1       | 1<br>7<br>1<br>1896<br>22 | 1<br>1<br>1<br>90<br>37        | 24<br>25<br>15<br>972<br>37      | 24<br>1<br>21<br>529<br>17       | 1<br>10<br>3645<br>33  | 638<br>632<br>687<br>172<br>172        | 1<br>1<br>11<br>5400<br>29                    | 20<br>17<br>9<br>565<br>18 | 1<br>9<br>377                          |
| 1<br>1<br>1                     | 19<br>16<br>16<br>14                   | 1<br>1<br>1<br>1                | 9 1 1 1 1                 | 1<br>1<br>1                    | 18<br>12<br>1<br>1               | 23<br>23<br>18<br>12             | 7<br>1<br>1<br>1       | 166<br>307<br>170<br>171               | 11<br>1<br>18<br>1                            | 8<br>1<br>9<br>11          | 1<br>1<br>1<br>1                       |
| 1<br>1<br>1<br>1                | 23<br>14<br>12<br>16<br>13             | 30<br>1<br>1<br>16<br>1         | 1<br>1<br>1<br>1          | 1<br>1<br>8<br>7<br>1          | 16<br>1<br>10<br>16              | 1<br>26<br>30<br>18<br>12        | 1<br>1<br>1<br>1       | 176<br>165<br>179<br>171<br>162        | 12<br>1<br>1<br>1<br>14                       | 8<br>1<br>1<br>1<br>7      | 1<br>1<br>1<br>1                       |
| 1<br>1<br>5<br>1<br>49          | 13<br>13<br>13<br>13<br>16<br>117      | 24<br>29<br>1<br>1<br>29        | 1<br>1<br>1<br>1<br>12    | 1<br>12<br>1<br>1<br>88        | 1<br>12<br>13<br>1<br>45         | 14<br>1<br>15                    | 1<br>1<br>1<br>1<br>50 | 214<br>195<br>175<br>171<br>182        | 16<br>1<br>29<br>1<br>115                     | 1<br>7<br>12<br>14<br>51   | 1<br>1<br>1<br>190                     |
| 6<br>11<br>1<br>1               | 13<br>38<br>17<br>26<br>16             | 1<br>1<br>1<br>1                | 1 1 1 1 1 1 1 1 1         | 1<br>14<br>1<br>12             | 1<br>31<br>27<br>17<br>16        | 54<br>12<br>23<br>11<br>13<br>29 | 26<br>11<br>8<br>1     | 256<br>198<br>212<br>204<br>243        | 32<br>40<br>12<br>20                          | 8<br>18<br>13<br>10<br>10  | 190<br>1<br>48<br>13<br>25<br>1        |
| 1                               | 38<br>26<br>42<br>37<br>31             | 1<br>23<br>28<br>28<br>18       | 1<br>1<br>1<br>7          | 15<br>7<br>1<br>25<br>35<br>22 | 37<br>20<br>33<br>37<br>32       | 20<br>17<br>15<br>17             | 13<br>1<br>1<br>1<br>7 | 201<br>199<br>245<br>225<br>295        | 14<br>1                                       | 23<br>18<br>18<br>26       | 18<br>15<br>31<br>34<br>30<br>94<br>51 |
| 1<br>8<br>1<br>7<br>8<br>6<br>1 | 52<br>36<br>31<br>40                   | 46<br>1<br>17<br>1              | 19<br>8<br>1<br>1         | 131<br>47<br>14<br>75          | 38<br>1<br>30<br>27              | 40<br>33<br>28<br>8<br>23        | 27<br>16<br>1<br>23    | 247<br>345<br>412<br>361               | 25<br>23<br>25<br>127<br>29<br>19<br>62<br>48 | 8<br>41<br>12<br>16<br>25  | 16<br>66                               |
| 1<br>20<br>10<br>8              | 23<br>47<br>30<br>56                   | 1<br>29<br>1<br>1               | 1<br>1<br>27<br>1         | 25<br>95<br>100<br>47          | 17<br>16<br>22<br>15             | 28<br>21<br>31<br>25             | 1<br>29<br>60<br>10    | 232<br>371<br>184<br>430               | 48<br>81<br>134<br>41                         | 1<br>20<br>12<br>24        | 26<br>80<br>80<br>53                   |

Table 2. Major, minor, and trace elements (XRF) in Hole 866A.

| Core, section,                 | Depth              | SiO <sub>2</sub> | TiO <sub>2</sub> | Al <sub>2</sub> O <sub>3</sub> | Fe <sub>2</sub> O <sub>3</sub> | MnO            | MgO           | CaO            | P <sub>2</sub> O <sub>5</sub> | SO <sub>3</sub> |
|--------------------------------|--------------------|------------------|------------------|--------------------------------|--------------------------------|----------------|---------------|----------------|-------------------------------|-----------------|
| interval (cm)                  | (mbsf)             | (%)              | (%)              | (%)                            | (%)                            | (%)            | (%)           | (%)            | (%)                           | (%)             |
| 143-866A-                      | 20.42              | 0.70             | 0.012            | 0.00                           | 0.17                           | 0.007          | 0.64          | 54.00          | 0                             | 0.00            |
| 6R-CC, 2-3                     | 38.42              | 0.78             | 0.013            | 0.27                           | 0.17                           | 0.007          | 0.64          | 54.08          | 0                             | 0.02            |
| 8R-CC, 3-5                     | 57.33<br>76.94     | 0.46             | 0.006            | 0.15                           | 0.06                           | 0.004          | 0.54          | 54.28<br>54.16 | 0                             | 0.02            |
| 10R-CC, 4-5<br>19R-CC, 3-4     | 164.83             | 0.68             | 0.007            | 0.17                           | 0.06                           | 0.005          | 0.51          | 54.10          | 0                             | 0.02            |
| 25R-1, 53-55                   | 223.23             | 0.22             | 0.005            | 0.08                           | 0.04                           | 0.004          | 0.58          | 54.32          | ő                             | 0.02            |
| 31R-1, 56-58                   | 281.16             | 0.18             | 0.008            | 0.11                           | 0.06                           | 0.005          | 0.54          | 54.67          | ő                             | 0.02            |
| 35R-1, 33-35                   | 319.23             | 0.11             | 0.005            | 0.08                           | 0.04                           | 0.004          | 0.50          | 54.55          | 0.02                          | 0.02            |
| 35R-1, 33-35                   | 319.23             | 0.39             | 0.012            | 0.20                           | 0.06                           | 0.004          | 0.44          | 54.53          | 0.27                          | 0.02            |
| 36R-1, 21-23                   | 328.71             | 0.21             | 0.007            | 0.12                           | 0.05                           | 0.004          | 0.57          | 54.43          | 0.01                          | 0.02            |
| 40R-CC, 36-38                  | 357.66             | 0.26             | 0.010            | 0.16                           | 0.05                           | 0.005          | 0.52          | 54.43          | 0                             | 0.02            |
| 39R-1, 35-36                   | 348.05             | 0.15             | 0.007            | 0.10                           | 0.05                           | 0.005          | 0.49          | 54.93          | 0                             | 0.02            |
| 46R-2, 46-48                   | 417.26             | 0.42             | 0.027            | 0.34                           | 0.07                           | 0.007          | 0.45          | 54.69          | 0.07                          | 0.02            |
| 48R-1, 30–32                   | 434.70             | 0.19             | 0.009            | 0.13                           | 0.20                           | 0.004          | 0.54          | 54.29          | 0                             | 0.07            |
| 52R-CC, 18-19                  | 473.18             | 0.38             | 0.014            | 0.20                           | 0.10                           | 0.005          | 0.71          | 54.03          | 0                             | 0.15            |
| 55R-CC, 30–31                  | 502.20             | 0.18             | 0.008            | 0.12                           | 0.09                           | 0.008          | 0.52          | 54.48          | 0                             | 0.08            |
| 58R-1, 72-75<br>61R-1, 103-10  | 531.72<br>560.93   | 0.12<br>0.24     | 0.006            | 0.08                           | 0.05                           | 0.005          | 0.56          | 54.15<br>53.73 | 0                             | 0.14            |
| 62R-2, 21–23                   | 571.31             | 0.41             | 0.009<br>0.018   | 0.13                           | 0.07<br>0.12                   | 0.005          | 0.66<br>0.73  | 53.73          | 0                             | 0.40            |
| 64R-1, 69-71                   | 589.69             | 0.41             | 0.018            | 0.19                           | 0.12                           | 0.004          | 0.73          | 53.46          | ő                             | 0.36            |
| 65R-1, 57-60                   | 599.17             | 0.16             | 0.008            | 0.10                           | 0.06                           | 0.004          | 0.69          | 53.79          | 0                             | 0.26            |
| 70R-1, 1–3                     | 646.91             | 2.84             | 0.149            | 0.97                           | 0.79                           | 0.006          | 0.80          | 50.59          | Ö                             | 0.74            |
| 71R-1, 64-67                   | 657.14             | 0.38             | 0.012            | 0.16                           | 0.13                           | 0.005          | 0.67          | 52.47          | Ö                             | 0.87            |
| 71R-2, 71–72                   | 658.49             | 37.59            | 0.971            | 14.28                          | 8.12                           | 0.028          | 3.45          | 2.49           | 0.02                          | 2.32            |
| 74R-2, 94-97                   | 687.72             | 0.05             | 0.005            | 0.06                           | 0.04                           | 0.005          | 0.64          | 54.63          | 0                             | 0.15            |
| 75R-3, 67-69                   | 698.21             | 0.05             | 0.006            | 0.06                           | 0.05                           | 0.004          | 0.72          | 54.69          | 0                             | 0.15            |
| 76R-2, 26-29                   | 706.46             | 2.10             | 0.069            | 1.06                           | 0.29                           | 0.006          | 0.95          | 51.79          | 0                             | 0.43            |
| 77R-1, 59-60                   | 715.09             | 0.05             | 0.005            | 0.02                           | 0.05                           | 0.005          | 0.59          | 54.66          | 0                             | 0.11            |
| 78R-2, 85–87                   | 726.34             | 0.05             | 0.005            | 0.06                           | 0.04                           | 0.004          | 0.69          | 54.78          | 0                             | 0.11            |
| 79R-2, 104–10                  | 736.34             | 0.05             | 0.004            | 0.06                           | 0.04                           | 0.004          | 0.63          | 54.75          | 0                             | 0.09            |
| 80R-1, 32–34                   | 743.82             | 0.05             | 0.005            | 0.05                           | 0.04                           | 0.005          | 0.64          | 54.56          | 0                             | 0.06            |
| 82R-2, 45–48                   | 764.63             | 0.05             | 0.005            | 0.06                           | 0.04                           | 0.004          | 0.60          | 54.71          | 0                             | 0.02            |
| 85R-2, 140–14                  | 794.65<br>803.72   | 0.05<br>0.22     | 0.005            | 0.06                           | 0.04                           | 0.005          | 0.74          | 55.15          | 0                             | 0.10            |
| 86R-2, 72–74<br>89R-1, 39–40   | 830.99             | 0.22             | 0.008            | 0.12                           | 0.07                           | 0.005          | 0.72<br>0.84  | 54.01<br>53.40 | 0                             | 0.22            |
| 91R-1, 50-51                   | 850.00             | 0.80             | 0.013            | 0.25                           | 0.13                           | 0.005          | 0.95          | 51.67          | 0                             | 0.13            |
| 95R-1, 21–24                   | 888.21             | 0.05             | 0.023            | 0.05                           | 0.13                           | 0.003          | 0.71          | 54.93          | 0                             | 0.02            |
| 97R-1, 16-18                   | 907.56             | 0.21             | 0.009            | 0.11                           | 0.09                           | 0.005          | 0.99          | 53.90          | Ö                             | 0.18            |
| 98R-1, 108-110                 | 918.08             | 5.70             | 0.226            | 2.08                           | 1.18                           | 0.008          | 1.17          | 46.98          | 0.08                          | 1.71            |
| 100R-1, 31-33                  | 933.71             | 1.89             | 0.045            | 0.71                           | 0.31                           | 0.007          | 1.05          | 52.32          | 0                             | 0.3             |
| 105R-1, 82-84                  | 982.12             | 0.14             | 0.008            | 0.09                           | 0.05                           | 0.004          | 0.83          | 54.57          | 0                             | 0.05            |
| 103R-1, 60-62                  | 963.00             | 0.22             | 0.009            | 0.13                           | 0.07                           | 0.005          | 0.79          | 53.93          | 0                             | 0.3             |
| 108R-1, 55-57                  | 1010.75            | 0.05             | 0.006            | 0.07                           | 0.05                           | 0.006          | 0.8           | 54.12          | 0                             | 0.12            |
| 111R-1, 49-50                  | 1039.79            | 0.57             | 0.015            | 0.24                           | 0.11                           | 0.005          | 1.01          | 53.56          | 0                             | 0.66            |
| 115R-1, 22-26                  | 1078.12            | 68.95            | 0.007            | 0.05                           | 0.05                           | 0.004          | 0.27          | 15.87          | 0                             | 0.61            |
| 117R-1, 44-47                  | 1097.54            | 0.32             | 0.011            | 0.12                           | 0.07                           | 0.005          | 1.11          | 53.65          | 0                             | 1.07            |
| 118R-1, 144-146                | 1108.24            | 2.59             | 0.058            | 0.93                           | 0.47                           | 0.009          | 1.22          | 49.51          | 0                             | 1.64            |
| 121R-1, 56-58                  | 1136.26            | 1.42<br>0.16     | 0.022            | 0.50                           | 0.36                           | 0.006          | 13.19<br>8.61 | 38.46<br>45.14 | 0                             | 0.28            |
| 123R-1, 55-57<br>126R-2, 32-33 | 1155.65<br>1185.61 | 0.16             | 0.005            | 0.07                           | 0.05                           | 0.004          | 0.9           | 54.25          | 0                             | 0.18            |
| 129R-1, 77-78                  | 1213.67            | 2.03             | 0.003            | 0.76                           | 0.67                           | 0.004          | 10.8          | 40.20          | 0                             | 1.35            |
| 131R-1, 12–14                  | 1232.32            | 1.60             | 0.127            | 0.76                           | 0.34                           | 0.007          | 15.23         | 35.93          | 0                             | 1.08            |
| 132R-1, 40-41                  | 1242.30            | 2.08             | 0.069            | 0.78                           | 0.41                           | 0.005          | 17.41         | 32.98          | o                             | 0.48            |
| 133R-2, 108-1                  | 1254.18            | 0.05             | 0.006            | 0.02                           | 0.04                           | 0.003          | 18.14         | 34.08          | 0                             | 0.25            |
| 137R-2, 43-45                  | 1291.55            | 0.05             | 0.006            | 0.02                           | 0.04                           | 0.004          | 17.27         | 35.18          | 0                             | 0.19            |
| 139R-1, 45-47                  | 1309.65            | 0.05             | 0.005            | 0.06                           | 0.04                           | 0.005          | 1.08          | 53.99          | 0                             | 0.15            |
| 141R-CC, 18-19                 | 1328.78            | 0.05             | 0.006            | 0.02                           | 0.04                           | 0.003          | 16.77         | 35.87          | 0                             | 0.09            |
| 143R-1, 70-72                  | 1348.60            | 0.05             | 0.004            | 0.02                           | 0.04                           | 0.005          | 1.70          | 53.18          | 0                             | 0.08            |
| 145R-1, 82-84                  | 1367.62            | 3.64             | 0.013            | 0.08                           | 0.08                           | 0.006          | 17.51         | 32.91          | 0                             | 0.61            |
| 147R-1, 1-3                    | 1386.11            | 0.35             | 0.015            | 0.16                           | 0.12                           | 0.005          | 1.42          | 52.75          | 0                             | 0.6             |
| 147R-1, 21-22                  | 1386.31            | 0.65             | 0.036            | 0.26                           | 0.29                           | 0.007          | 1.49          | 52.68          | 0                             | 0.77            |
| 147R-1, 41-43                  | 1386.51            | 0.41             | 0.025            | 0.16                           | 0.14                           | 0.006          | 1.04          | 53.10          | 0                             | 0.45            |
| 147R-1, 49-52                  | 1386.59            | 0.17             | 0.008            | 0.09                           | 0.07                           | 0.006          | 1.63          | 53.41          | 0                             | 0.32            |
| 147R-1, 59-64                  | 1386.69            | 0.29             | 0.019            | 0.13                           | 0.10                           | 0.006          | 1.77          | 52.36          | 0                             | 0.33            |
| 147R-1, 75-78                  | 1386.85            | 0.31             | 0.020            | 0.15                           | 0.11                           | 0.006          | 1.54          | 52.85          | 0                             | 0.3             |
| 147R-1, 88-91                  | 1386.98            | 2.55             | 0.087            | 0.98                           | 0.53                           | 0.008          | 2.54          | 49.38          | 0                             | 0.35            |
| 147R-1, 95–98<br>148R-4, 35–37 | 1387.05<br>1399.65 | 0.28<br>3.04     | 0.014            | 0.13                           | 0.09<br>0.59                   | 0.007<br>0.015 | 0.88          | 54.23<br>50.87 | 0                             | 0.33            |
| 150R-1, 9-11                   | 1415.19            | 0.05             | 0.143            | 1.21                           |                                | 0.015          | 0.83<br>5.11  | 49.01          | 0                             | 0.84            |
| 152R-2, 93–95                  | 1415.19            | 0.05             | 0.006            | 0.06                           | 0.05<br>0.07                   | 0.006          | 0.92          | 53.61          | 0                             | 0.23            |
| 155R-3, 9-11                   | 1466.42            | 0.16             | 0.012            | 0.09                           | 0.04                           | 0.005          | 0.92          | 53.85          | 0                             | 0.17            |
| 157R-2, 52–54                  | 1484.78            | 0.03             | 0.007            | 0.03                           | 0.04                           | 0.005          | 0.93          | 54.23          | 0                             | 0.19            |
| 159R-2, 65-67                  | 1503.05            | 0.15             | 0.018            | 0.07                           | 0.05                           | 0.005          | 1.72          | 53.16          | 0                             | 0.13            |
| 159R-1, 87-89                  | 1501.77            | 0.05             | 0.009            | 0.07                           | 0.05                           | 0.004          | 13.79         | 39.47          | 0                             | 0.17            |
| 162R-2, 74-78                  | 1533.19            | 0.17             | 0.012            | 0.02                           | 0.09                           | 0.005          | 18.10         | 34.26          | ő                             | 0.23            |
| 164R-2, 140-42                 | 1552.64            | 1.16             | 0.041            | 0.23                           | 0.21                           | 0.005          | 8.21          | 44.42          | ő                             | 0.46            |
| 166R-1, 50-54                  | 1569.80            | 0.18             | 0.011            | 0.09                           | 0.06                           | 0.006          | 5.83          | 48.25          | 0                             | 0.18            |
|                                |                    |                  |                  |                                |                                |                |               |                | 0                             |                 |

Table 2 (continued).

| LOI<br>(%)     | Ba<br>(mg/kg) | Ce<br>(mg/kg) | Cr<br>(mg/kg) | Cu<br>(mg/kg) | La<br>(mg/kg) | Sr<br>(mg/kg) | V<br>(mg/kg) | Zn<br>(mg/kg) | Zr<br>(mg/kg) |
|----------------|---------------|---------------|---------------|---------------|---------------|---------------|--------------|---------------|---------------|
| 44.22          | 14            | 21            | 1             | 81            | 17            | 165           | 18           | 1             | 8             |
| 44.28          | 14            | 20            | 12            | 1             | 1             | 191           | 11           | 8             | å             |
| 44.40          | 20            | 16            | 11            | i             | 31            | 147           | 15           | 11            | 9             |
| 44.28          | 13            | 1             | 1             | 10            | 23            | 161           | 1            | 7             | 9             |
| 44.38          | 13            | 23            | î             | 11            | 22            | 164           | î            | 8             | 1             |
| 44.17          | 23            | 1             | 1             | 1             | 14            | 159           | 12           | 1             | 1             |
| 44.36          | 16            | 1             | 1             | 1             | 14            | 147           | 1            | 1             | 1             |
| 43.97          | 14            | 1             | 7             | 17            | 21            | 152           | 16           | 1             | 1             |
| 44.45          | 15            | 1             | 8             | 14            | 22            | 149           | 10           | 1             | 7             |
| 44.39          | 11            | 21            | 1             | 20            | 11            | 145           | 1            | 8             | 8             |
| 44.20<br>44.02 | 11<br>12      | 20<br>16      | 1             | 25            | 30<br>21      | 135           | 1            | 1<br>10       | 1 8           |
| 44.38          | 13            | 20            | 13<br>12      | 1<br>19       | 23            | 122<br>163    | 1<br>15      | 23            | 1             |
| 44.43          | 13            | 1             | 1             | 21            | 22            | 193           | 10           | 14            | 8             |
| 44.26          | 1             | î             | î             | 14            | 15            | 155           | 1            | 12            | 7             |
| 44.69          | 11            | 26            | 1             | 16            | 5             | 165           | 18           | 1             | 7 7           |
| 44.85          | 11            | 1             | 1             | 1             | 32            | 241           | 1            | 10            | 8             |
| 44.58          | 24            | 1             | 8             | 20            | 19            | 300           | 13           | 10            | 13            |
| 44.49          | 18            | 16            | 1             | 10            | 19            | 264           | 1            | 8             | 10            |
| 44.61          | 17            | 20            | 11            | 12            | 30            | 249           | 12           | 13            | 1             |
| 42.72          | 14            | 1             | 27            | 13            | 38            | 237           | 46           | 32            | 16            |
| 44.94          | 12            | 1             | . 8           | 21            | 19            | 314           | 32           | 16            | 8             |
| 24.26<br>44.12 | 145<br>12     | 21            | 151           | 57<br>17      | 19            | 52            | 93           | 101           | 123           |
| 44.01          | 16            | 1             | 1             | 47            | 6<br>20       | 248<br>300    | 1            | 26<br>16      | 111           |
| 43.13          | 22            | 1             | 15            | 60            | 30            | 450           | 11           | 99            | 15            |
| 44.18          | 15            | î             | 1             | 44            | 16            | 235           | 1            | 31            | 11            |
| 44.48          | 10            | 21            | î             | 17            | 15            | 271           | î            | 18            | 1             |
| 44.32          | 1             | 22            | 1             | 11            | 13            | 249           | 1            | 17            | 8             |
| 44.29          | 15            | 1             | 1             | 123           | 18            | 217           | 1            | 13            | 1             |
| 44.28          | 12            | 1             | 1             | 1             | 22            | 229           | 10           | 8             | 1             |
| 44.14          | 1             | 18            | 1             | 12            | 9             | 241           | 1            | 1             | 7             |
| 44.50          | .1            | 15            | 1             | 24            | 17            | 202           | 1            | 1             | 8             |
| 44.09<br>44.99 | 14<br>17      | 32            | 1             | 24            | 22<br>19      | 212           | 1<br>162     | 81            | 7<br>14       |
| 43.99          | 24            | 1             | 1             | 29<br>18      | 19            | 373<br>241    | 102          | 26            | 8             |
| 44.36          | 26            | 24            | 1             | 11            | 18            | 265           | 1            | 20            | 8             |
| 40.01          | 38            | 18            | 12            | 20            | 26            | 369           | 46           | 27            | 65            |
| 43.23          | 21            | 19            | 1             | 15            | 19            | 277           | 13           | 13            | 15            |
| 44.21          | 17            | 25            | 1             | 12            | 1             | 210           | 1            | 10            | 1             |
| 44.24          | 17            | 1             | 1             | 13            | 12            | 202           | 1            | 9             | 1             |
| 44.31          | 15            | 1             | 1             | 26            | 18            | 299           | 11           | 7             | 9             |
| 43.86          | 1             | 1             | 1             | 23            | 20            | 341           | 1            | 1             | 13            |
| 13.75          | 17            | 1             | 1             | 17            | 17            | 92            | 1            | 9             | 1             |
| 43.51          | 13            | 1             | 1             | 16            | 21            | 263           | 10           | 1             | 1             |
| 43.22<br>45.63 | 28<br>12      | 1<br>16       | 14            | 31            | 28<br>20      | 347<br>145    | 10<br>21     | 24<br>15      | 17<br>1       |
| 45.80          | 15            | 26            | 1             | 16<br>29      | 8             | 163           | 1            | 33            | 1             |
| 44.46          | 13            | 18            | i             | 17            | 11            | 273           | i            | 15            | î             |
| 43.73          | 18            | I             | 10            | 25            | î             | 199           | 20           | 21            | 14            |
| 44.93          | 13            | 1             | 7             | 21            | 1             | 152           | 12           | 12            | 11            |
| 45.37          | 18            | 1             | 1             | 25            | 5             | 129           | 44           | 41            | 17            |
| 47.27          | 14            | 1             | 1             | 24            | 15            | 132           | 1            | 20            | 1             |
| 46.92          | 10            | 1             | 1             | 20            | 9             | 138           | 1            | 90            | 1             |
| 44.55          | 13            | 1             | 1             | 15            | 21            | 259           | 1            | 1             | 8             |
| 46.91<br>44.74 | 16<br>11      | 1             | 1             | 14            | 10            | 140           | 1            | 23<br>8       | 1             |
| 45.11          | 13            | 1             | i             | 14            | 14<br>18      | 320<br>96     | 1            | 1             | 1             |
| 44.33          | 10            | 26            | 8             | 34            | 14            | 330           | 15           |               |               |
| 43.71          | 19            | 1             | 8             | 37            | 19            | 283           | 13           | 12<br>12<br>9 | 12<br>8       |
| 44.37          | 16            | 1             | 1             | 19            | 15            | 241           | 1            | 9             | 10            |
| 44.43          | 12            | 1             | 8             | 18            | 17            | 256           | 1            | 1             | 1             |
| 44.64          | 14            | 1             | 1             | 24            | 14            | 302           | 19           | 11            | 11            |
| 44.44          | 13            | 1             | 1             | 26            | 23            | 311           | 15           | .1            | 10            |
| 42.39          | 19            | 29            | 1             | 25            | 17            | 293           | 24           | 10            | 23            |
| 44.16          | 15            | 24<br>37      | 1             | 27            | 20            | 246           | 1            | 8<br>9        | 32            |
| 42.08<br>45.30 | 21<br>12      | 1             | 8             | 25<br>29      | 33<br>26      | 390<br>264    | 14<br>16     | 14            | 1             |
| 44.63          | 13            | 1             | 1             | 17            | 6             | 256           | 14           | 11            | 1             |
| 44.76          | 12            | 1             | 10            | 17            | 24            | 351           | 11           | 13            | 12            |
| 44.38          | 13            | 32            | 1             | 34            | 33            | 319           | 1            | 14            | 11            |
| 44.56          | 1             | 19            | i             | 26            | 27            | 321           | 13           | 11            | 7             |
| 46.42          | 14            | 18            | i             | 37            | 24            | 159           | 1            | 16            | 1             |
| 46.96          | 11            | 1             | 1             | 19            | 23            | 129           | 1            | 9             | 1             |
| 44 92          | 12            | 28            | 14            | 25            | 17            | 271           | 24           | 26            | 10            |
| 44.83          |               |               |               |               |               |               |              |               |               |
| 45.15<br>46.32 | 11<br>11      | 27<br>1       | 1             | 22<br>14      | 27<br>16      | 290<br>188    | 1<br>16      | 15<br>12      | 7             |

Table 3. Major, minor, and trace elements (XRF) of Sites 867 and 868.

| Core, section,<br>interval (cm) | Depth<br>(mbsf) | SiO <sub>2</sub> (%) | TiO <sub>2</sub> (%) | Al <sub>2</sub> O <sub>3</sub><br>(%) | Fe <sub>2</sub> O <sub>3</sub> (%) | MnO<br>(%) | MgO<br>(%) | CaCO <sub>3</sub><br>(%) | P <sub>2</sub> O <sub>5</sub><br>(%) | SO <sub>3</sub><br>(%) | Ba<br>(mg/kg |
|---------------------------------|-----------------|----------------------|----------------------|---------------------------------------|------------------------------------|------------|------------|--------------------------|--------------------------------------|------------------------|--------------|
| 143-867B-                       |                 |                      |                      |                                       |                                    |            |            |                          |                                      |                        |              |
| 1R-1, 11-13                     | 0.11            | 73.41                | 0.011                | 0.12                                  | 0.08                               | 0.011      | 0.07       | 24.15                    | 3.48                                 | 0.25                   | 1674         |
| 3R-1, 54-57                     | 15.64           | 0.27                 | 0.016                | 0.15                                  | 0.08                               | 0.006      | 0.28       | 95.86                    | 19.54                                | 0.96                   | 27           |
| 4R-1, 68-70                     | 18.78           | 1.12                 | 0.009                | 0.12                                  | 0.06                               | 0.005      | 0.62       | 94.68                    | 0.30                                 | 0.02                   | 75           |
| 6R-1, 35-37                     | 34.25           | 0.10                 | 0.008                | 0.06                                  | 0.05                               | 0.004      | 0.53       | 98.40                    | 0.32                                 | 0.02                   | 15<br>20     |
| 7R-1, 37-39                     | 43.57           | 0.18                 | 0.006                | 0.08                                  | 0.04                               | 0.004      | 0.49       | 97.88                    | 0.00                                 | 0.02                   | 20           |
| 8R-2, 44-46                     | 54.44           | 0.17                 | 0.006                | 0.08                                  | 0.05                               | 0.004      | 0.72       | 97.36                    | 0.01                                 | 0.02                   | 1            |
| 9R-1, 129-132                   | 63.09           | 0.46                 | 0.021                | 0.24                                  | 0.08                               | 0.006      | 0.75       | 97.40                    | 0.24                                 | 0.02                   | 14           |
| 10R-1, 111-114                  | 67.51           | 0.28                 | 0.007                | 0.08                                  | 0.05                               | 0.005      | 0.78       | 97.02                    | 0.06                                 | 0.02                   | 14<br>13     |
| 143-868A-                       |                 |                      |                      |                                       |                                    |            |            |                          |                                      |                        |              |
| 1R-2, 58-60                     | 0.11            | 0.28                 | 0.027                | 0.16                                  | 0.08                               | 0.006      | 0.69       | 97.59                    | 0                                    | 0.02                   | 12<br>13     |
| 3R-1, 119-121                   | 15.64           | 0.20                 | 0.011                | 0.09                                  | 0.10                               | 0.006      | 0.46       | 97.84                    | 0.03                                 | 0.02                   | 13           |
| 4R-1, 131-133                   | 18.78           | 0.14                 | 0.011                | 0.08                                  | 0.06                               | 0.005      | 0.81       | 99.49                    | 0.09                                 | 0.02                   | 12           |
| 1R-1, 87-88                     | 34.25           | 0.05                 | 0.005                | 0.06                                  | 0.04                               | 0.005      | 0.93       | 98.09                    | 0.04                                 | 0.02                   | 11           |

Table 4. Microprobe analyses of Sites 865 through 868.

| Core, section,  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CaO      | SrO           | MgO   |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------|-------|
| interval (cm)   | Lithology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Component                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (%)      | (%)           | (%)   |
| 143-866A-       | Tall (* Doorbert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 07.400 F.101 #F.100.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15000000 | Substituted . |       |
| 74R-2, 94-97    | Oolite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Blocky calcite cement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 55.09    | 0.08          | 0.98  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Blocky calcite cement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 55.02    | 0.00          | 0.79  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Blocky calcite cement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 54.54    | 0.01          | 0.86  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Blocky calcite cement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 56.36    | 0.00          | 0.61  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Blocky calcite cement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 56.50    | 0.03          | 1.41  |
| 867B-           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |               |       |
| 1R-3, 23-24     | Rudstone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Blocky calcite cement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 63.83    | 0.04          | 1.52  |
|                 | , and the same of | Blocky calcite cement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 58.07    | 0.05          | 1.99  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Blocky calcite cement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 62.42    | 0.00          | 1.69  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Blocky calcite cement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 55.05    | 0.00          | 0.98  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Scalenohedral cement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 53.57    | 0.07          | 0.76  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Scalenohedral cement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 55.74    | 0.00          | 1.82  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |               | 2.09  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Scalenohedral cement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 61.88    | 0.10          | 2.09  |
| 865A-           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |               |       |
| 73R-1, 92-94    | Packstone/grainstone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Blocky calcite cement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 55.65    | 0.02          | 1.37  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Blocky calcite cement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 57.76    | 0.01          | 1.30  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Blocky calcite cement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 56.72    | 0.00          | 0.93  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Blocky calcite cement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 59.70    | 0.01          | 1.13  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Blocky calcite cement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 57.50    | 0.02          | 1.55  |
| 866A-           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |               |       |
| 164R-2, 140-14  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ooid core                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 56.81    | 0.06          | 1.80  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ooid core                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 59.48    | 0.08          | 1.97  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ooid core                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 58.11    | 0.07          | 1.84  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ooid margin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 55.66    | 0.06          | 1.57  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ooid margin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 53.47    | 0.05          | 1.51  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ooid margin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50.35    | 0.02          | 1.35  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Blocky calcite cement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 38.42    | 0.01          | 20.15 |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Blocky calcite cement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 36.46    | 0.00          | 19.71 |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Blocky calcite cement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 35.82    | 0.00          | 18.82 |
| 866A-           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |               |       |
| 129R-1, 124-128 | Oolite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ooid core                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 53.87    | 0.03          | 1.53  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ooid core                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 51.58    | 0.08          | 1.36  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ooid core                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 42.14    | 0.00          | 1.05  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ooid core                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 48.90    | 0.06          | 1.55  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ooid core                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 49.32    | 0.09          | 1.59  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Blocky calcite cement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 55.14    | 0.01          | 0.90  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Blocky calcite cement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 53.76    | 0.00          | 1.49  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Blocky calcite cement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 53.09    | 0.01          | 1.32  |
| 865A-           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1000 - 500 - 1000 - 500 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 |          |               |       |
| 28R-1, 26-27    | Wackestone/packstone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Blocky calcite cement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 56.58    | 0.00          | 1.07  |
|                 | . acatemore, pacitatione                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Blocky calcite cement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 55.41    | 0.00          | 0.97  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Blocky calcite cement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 56.76    | 0.01          | 1.15  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Shell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 58.88    | 0.19          | 0.93  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Shell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 54.62    | 0.19          | 4.08  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |               |       |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Shell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 55.81    | 0.14          | 0.71  |
| 868A-           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Shell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 55.81    | 0.14          | 0.71  |

#### Site 868 (Resolution Guyot)

Site 868 is characterized by high carbonate contents (96% to 98% CaCO<sub>3</sub>, Table 3). Phosphatization plays only a minor part in the investigated samples: Sample 143-868A-4R-1, 119–121 cm (18.78 mbsf) consists of up to 0.09% P<sub>2</sub>O<sub>5</sub>. With increasing distance from the sediment/water interface, the SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, TiO<sub>2</sub>, MnO, and Cu values decrease continuously downward (Table 3).

# Cement Geochemistry

## Microprobe Analyses

Selected samples from Sites 865 to 868 have been analyzed for their Ca, Mg, and Sr contents of blocky calcite cement (Table 4). Where possible, scalenohedral cements, shells or different ooid layers were separated and analyzed. Strontium contents are mainly below the detection limit for this method.

Table 3 (continued).

| Ce<br>(mg/kg) | Cr<br>(mg/kg) | Cu<br>(mg/kg) | La<br>(mg/kg) | Sr<br>(mg/kg) | Zn<br>(mg/kg) | Zr<br>(mg/kg) |
|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| 1             | 7             | 15            | 20            | 286           | 12            | 1             |
| 33            | 1             | 17            | 20            | 1057          | 28            | 9             |
| 22            | 9             | 14            | 19            | 332           | 27            | 33            |
| 24            | 1             | 1             | 20            | 177           | 12            | 1             |
| 19            | 1             | 1             | 21            | 445           | 9<br>8        | 1             |
| 20            | 1             | 18            | 23            | 216           | 8             | 1             |
| 1             | 11            | 18            | 21            | 286           | 1             | 1             |
| 1             | 1             | 1             | 22            | 251           | 8             | 1             |
| 1             | 1             | 23            | 5             | 260           | 1             | 1             |
| 1             | ĩ             | 21            | 21            | 845           | 8             | ĩ             |
| 20            | 8             | 1             | 22            | 243           | 1             | 1             |
| 1             | 1             | 1             | 21            | 263           | 1             | 1             |

All of the cement samples are of low-Mg calcite (blocky cements consist of 0.37% to 0.59% Mg, and the scalenohedral cement in Sample 143-867B-1R-3, 23–24 cm shows values between 1.09% and 1.26% Mg, Table 4). The gastropod shell in Sample 143-865A-28R-1, 26–27 cm, consists of up to 2.46% Mg of pronounced higher contents. Ooids of Sample 143-866A-129R-1, 124–128 cm, exhibit decreasing Mg and Ca contents from the center to the margin of the ooid (Fig. 7), which is probably related to leaching that preceding the dolomitization of pore spaces. The blocky, pore-filling cement is of dolomite mineralogy (Fig. 7) and consists of 11.35% to 12.15% Mg.

#### AA/ICP Analyses

Twenty samples of blocky calcite cement, shells, dolomite crystals (rhombs), fine-grained dolomite, and oncoids were analyzed for their Ca, Mg, Sr, Mn, Fe, and Zn contents (Table 5). The samples of calcite cement exhibit contents of 33.3% to 40.0% Ca, the shells have values of about 38.8%, and the blocky cements values are about 37.8% Ca. The dolomite samples consist of 26.3% Ca. The Mg values vary between 0.13% and 0.33% in the calcite samples, while in the dolomite samples, between 8.73% and 11.1% Mg. The Sr contents are lowest in the blocky cement samples of Site 866, while we obtained values of 151 mg/kg Sr for Site 865. Oncoids consist of 334 mg/kg Sr, dolomite cement of 156 mg/kg Sr (mean). Mollusk shells contain 838 to 973 mg/kg Sr. These values are within the range of values analyzed by Maliva and Dickson (1992) for different bivalves of the Purbeck Formation of southern England and are related to the primary aragonite mineralogy.

The Mn and Fe contents (Fig. 8) are low in Hole 866A (Table 5), but relatively high in the lower third of Hole 865A (Unit IV, see Table 5). The distributions of both Fe and Mn and especially the Mn/Fe ratios (10 to 42 at Site 865, <1 to 13 at Site 866), are the reason that the samples of Site 865 Unit IV show cathodoluminescence, while those of Site 866 do not (cf. Hemming et al., 1989). The dolomite samples have low Mn values (2 to 44 mg/kg), but Fe values of up to 3172 mg/kg. Zn contents are relatively high in the dolomites (10 to 15 mg/kg) and oncoids (9 to 12 mg/kg), which may be interpreted as having originated under hypersaline conditions, in which Zn is more readily incorporated into the calcite/dolomite crystal lattice (cf. Thein, 1985; Farr, 1992). Shells and blocky calcite cements contain only minor amounts of Zn.

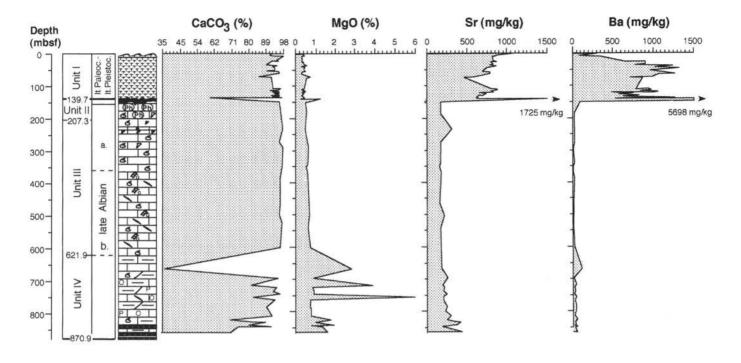
# Stable Isotope Analyses (δ180/δ13C)

Although the morphology and texture of the analyzed cement samples indicate a meteoric-phreatic origin (see chapter on cements), the  $\delta^{13}$ C values that we found are not negative, as expected (Hudson, 1977), but range from +1.1 to +3.4 (Fig. 9). An explanation of positive  $\delta^{13}$ C values for cements of freshwater origin would be a nonvegetated island and where soil gas would be absent as the source for carbon (cf. Winterer et al., this volume).

The  $\delta^{18}O$  values are mainly negative and range between +1.5 and -5.9. The most negative values indicate a trend toward meteoric cement composition.

However, the data plotted in Figure 9 could not be interpreted as definitive marine or freshwater signals. Comparison with published data (Algeo et al., 1992; Anderson and Arthur, 1983; Dickson and Coleman, 1980; Hudson, 1977; Nesse et al., 1980; Quinn and Matthews, 1990; Saller and Moore, 1989) shows that some samples suggest a marine-phreatic origin, and one sample would imply burial diagenesis. Most of the samples are located on a path from marine-phreatic to burial. This leads us to conclude that many originally freshwater cements may have been overprinted in a marine or shallow burial diagenetic environment. However, no petrographic evidence, such as marine cements growing on top of freshwater cements, could be found.

## Chemistry/Microfacies Relationships


Petrographical data, including components, matrix, cements, and porosity in samples from all sites (Figs. 2 and 3), were used to compare geochemical compositions with the lithofacies.

The component-, porosity- and cement-rich grainstones and rudstones show the highest MgO contents (Fig. 10A), which result from the close relationship of most of these limestones with the dolomitized unit in the lower part of Site 866. The highest CaCO<sub>3</sub> contents were found within the floatstones, grainstones, and wackestones to packstones, and the lowest are in the grainstones to rudstones and rudstones of the lower part of Site 866 (compare with MgO in Fig. 10A). SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, Fe<sub>2</sub>O<sub>3</sub>, Zr, and V contents are more common in mud-supported lithologies and represent the clayey portion of these facies types (Fig. 10B). The distributions of MnO, Ba, and phosphate demonstrate that these elements, respective compounds, are enriched during a later diagenetic/epigenetic phase: precipitation of a manganese crust and some barite on top of the shallow-water sections and the penetrative phosphatization in the upper portion of the platform carbonates. The instability of Sr, which is highly mobile (Morse and Mackenzie, 1990), is higher in samples having relatively high percolation rates from increased porosity and/or permeability. Therefore, Sr values (Fig. 10A) are lower in the grain-supported lithologies. SO3 shows maximum values in wackestones and mudstones (Fig. 10A), which is probably related to a greater sealing effect in the muddier limestones. The good correlation of SO3 with TOC (cf. Baudin et al., this volume) in distinct layers confirms this interpretation.

Figure 11 shows a cluster analysis in R-mode by a weighted-pergroup method (program MEKO; A. Siehl, unpubl. data). A clear differentiation is seen between two main groups: variables that reflect the calcareous part of the samples on one side, and elements responsible for the terrigenous portion on the other side. CaCO3 and MgO group with most of the variables obtained from thin-section descriptions except for "matrix," "bioturbation," and "sponge spicules." These descriptions are included within the terrigenous group and are typical for the muddier (more clayey) limestones. Within the calcareous group, variables that are related to calcite or dolomite are forming subunits: the amount of components and of porosity show good correlations with the CaCO3 content, dolomite content, and the depth below seafloor with MgO. The terrigenous portion in Figure 11 is subdivided into metals and oxides, and the metals show the best correlations, especially the elements that are related to the manganese crusts (Mn, Cu, Zn, Ba). Strontium and phosphate cluster because their distribution is related to diagenetic alteration.

#### CONCLUSIONS

This study indicates that distinct geochemical trends and diagenetic features allow for the reconstruction of primary mineralogical composition and early to late diagenetic alterations in relation to sedimentary sequences.



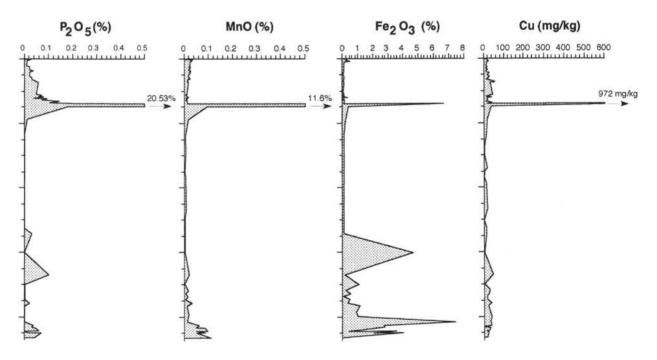



Figure 4. CaCO<sub>3</sub>, MgO, Sr, Ba, P<sub>2</sub>O<sub>5</sub>, MnO, Fe<sub>2</sub>O<sub>3</sub>, and Cu contents in Hole 865A (Allison Guyot). Note the dramatical change in Ba and Sr contents between the Tertiary pelagic cap nannofossil/foraminifer oozes and the Cretaceous shallow-water limestones, and significant penetrative phosphatization and manganese mineralization, including associated metals.

# Cementation and Porosity Development

The generally low recovery implies that a relatively larger portion of the guyot limestones is less lithified. Recovery increased downward, which on one side is related to the facies, on the other side to higher porosity in the upper part of the drill holes. However, generally uncemented layers may be present repeatedly throughout the sections. Allison and Resolution Guyot Cretaceous limestones were exposed to percolating meteoric waters at various times during their history. Because they were deposited mostly in shallow water, small changes in sea level resulted in subaerial exposure early in their history (see also Enos, 1985). Minor surficial exposure might result

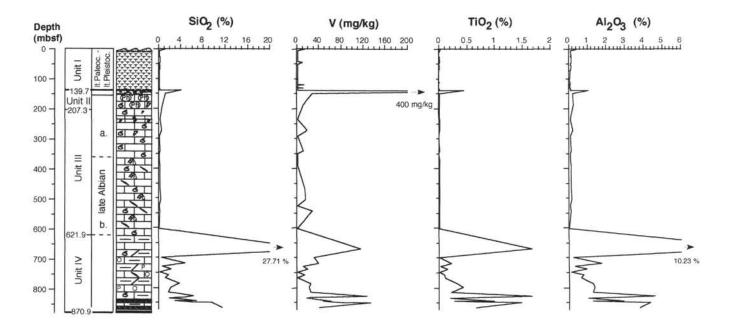



Figure 5. The distribution of the elements SiO<sub>2</sub>, V, TiO<sub>2</sub>, and Al<sub>2</sub>O<sub>3</sub> can be used as a proxy for the clay content of limestone samples (Hole 865A, Allison Guyot).

in relatively deep percolation of freshwater and creation of accompanying cement and porosity types, and earlier stages of diagenesis may have been obliterated. As the rocks are now in the marine environment, some of the chemical signals currently present may be the result of later superimposing.

## Distribution of Major, Minor, and Trace Elements

The uphole decreasing clayey fraction in these sediments documents directly the subsidence of the volcanic island, which, at one stage, was completely overgrown by the carbonate bank. The distribution of minor and trace elements, which are related to terrigenous influx reflects a cyclical pattern, which is probably related to lowamplitude sea-level fluctuations. Cyclicity of chemical data in Site 866 shows a high correlation with sequence stratigraphic interpretations. Low Mn concentrations explain the nonluminescence of most of the samples. Phosphatized levels contain between 0.01% and 20% P2O5. We can distinguish between two main processes responsible for phosphate enrichment: on one hand, we identified syngenetic phosphate on maximum flooding surfaces; and on the other hand, more obvious phosphate enrichment occurred on the platform tops by late diagenetic phosphatization (Hein et al., 1993). SO3 and V show good correlations with the organic matter and are therefore related to more restricted depositional conditions.

## Isotopic Trends

Oxygen and carbon isotopic compositions of different cement samples show gradual enrichment with depth (cf. Zempolich, 1989; Site 866: compare also with Jenkyns, this volume), but no clear meteoric or marine signal was found. However, a distinct diagenetic trend emerges: most of the data are located on a path from the meteoric to the marine values of published data. This may be explained by marine overprinting of the freshwater-cemented limestones during development from an emerged carbonate bank toward a submarine plateau. Similar observations have been made at other drowned shallow-water carbonate plateaus (e.g., Wombat Plateau, off Northwest Australia, cf. Röhl et al., 1992).

# Facies Dependence of Diagenetic Alterations and the Diagenetic Model

Although the Cretaceous open-marine carbonate banks show structural and morphological differences in comparison to modern atolls (Fig. 12), distinct facies types or small-scale sequences exhibit common associations of diagenetic alterations typically found in shallowwater carbonates. The recovered material may represent well-cemented diagenetic caps of the sequences, whereas the nonrecovered portions probably are less cemented and highly porous. This interpretation agrees with the model of large amounts of seawater flushing through the upper part of the shallow-water limestones, as proposed by Paull et al. (this volume). Diagenesis commenced soon after deposition. Differences in primary composition, microstructure, sorting, and packing in combination with the changing influence of meteoric and marine waters resulted in a complex diagenetic development. The guyot limestones have been in an unconfined aquifer with diffuse flow throughout most of their history. The diagenetic development of the carbonates can be divided into two main phases: (1) an early phase was dominated by pore waters that percolated through the sediment pile, while (2) the carbonates were influenced alternatively by seawater and/or freshwater. Diagenesis in this situation shows the effects of both marinephreatic and meteoric-phreatic to meteoric-vadose environments. In the course of this development, the limestones were affected by neomorphism, replacement, dissolution, cementation, and fracturing. In a later phase, subaerial exposure and karstification development (cf. Winterer et al., this volume) overprinted the earlier diagenetic stages in the upper portion of the sections, before the carbonate edifices subsided and drowned.

All observations of diagenetic features are combined to form a diagenetic model shown in Figure 13, which summarizes the stages recognized in different types of small-scale sequences defined by Strasser et al. (this volume).

## ACKNOWLEDGMENTS

The authors are grateful to the Ocean Drilling Program for inviting us to participate on Leg 143, to all members of the Shipboard A

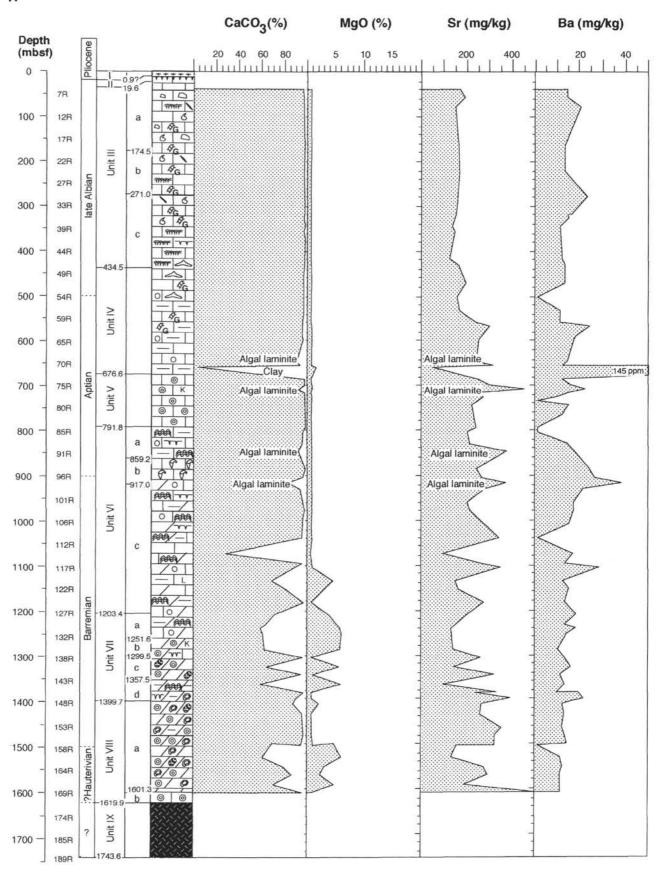



Figure 6. A. CaCO<sub>3</sub>, MgO, Sr, and Ba contents in Hole 866A (Resolution Guyot). Incisions in the carbonate distribution result from algal laminite or clay layers and, in the lower portion, are caused by dolomitized limestones or dolomites. B.  $P_2O_5$ ,  $Al_2O_3$ ,  $SiO_2$ , and MnO contents in Hole 866A (Resolution Guyot). Because of fewer samples, the penetrative phosphatization is not as clearly visible as in Hole 865A, but several levels with phosphate peaks occur. Arrows indicate a cyclicity of MnO distribution. Peaks of  $Al_2O_3$  and  $SiO_2$  in the same level reflect clay contents, single  $SiO_2$  peaks are possibly volcanic ash. C.  $SO_3$ , V, Cu, and Zn contents in Hole 866A (Resolution Guyot). Arrows indicate a cyclicity of both Cu and Zn. Peaks of  $SO_3$ , in some cases also V, reflect the distribution of organic material (for further explanation see text).

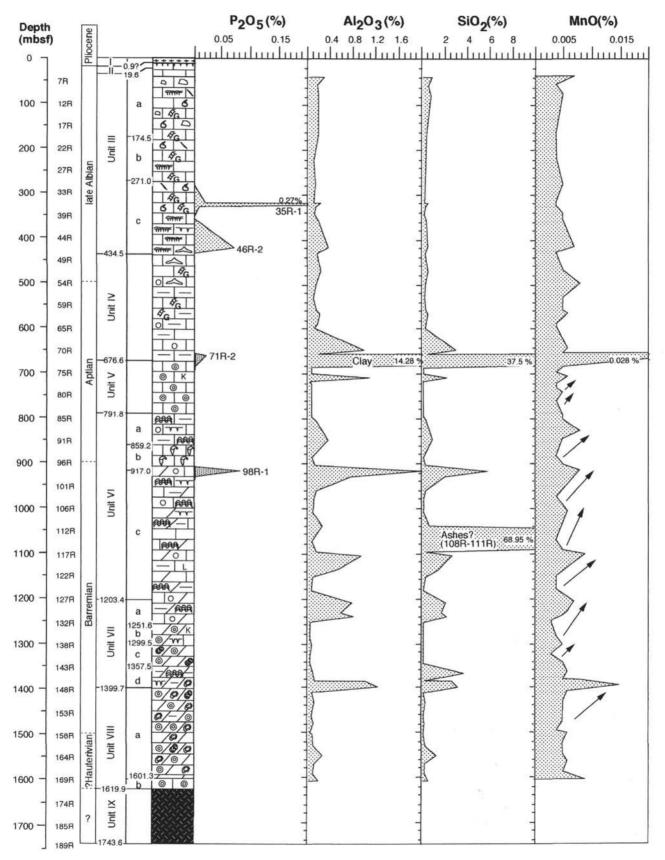



Figure 6 (continued).

C

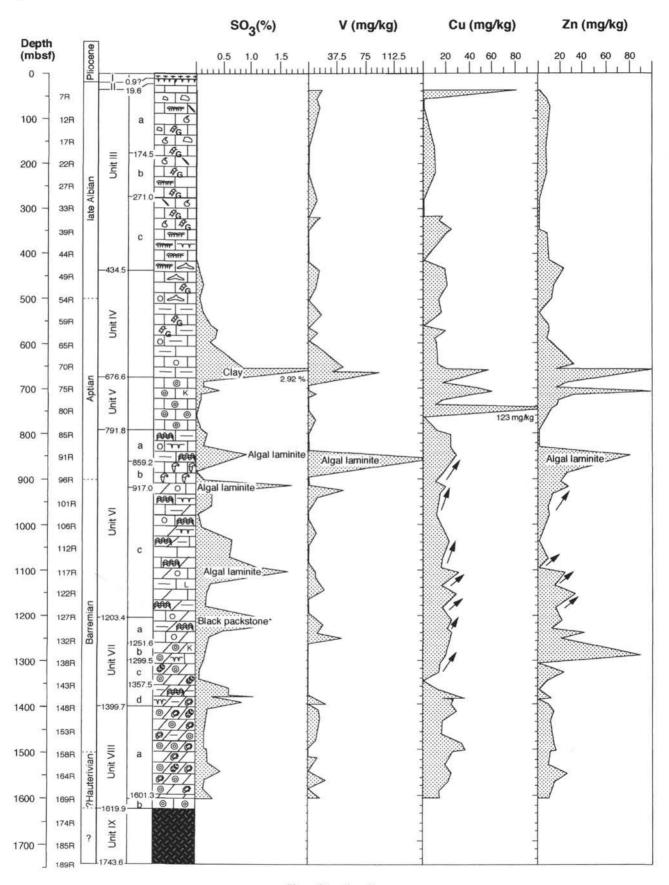



Figure 6 (continued).

Table 5. ICP/AA analyses of Sites 865 to 868.

| Core, section,<br>interval (cm) | Component        | Depth<br>(mbsf)                            | Mn<br>(mg/kg) | Ca<br>(‰) | Mg<br>(‰) | Fe<br>(mg/kg) | Sr<br>(mg/kg) | Zn<br>(mg/kg |
|---------------------------------|------------------|--------------------------------------------|---------------|-----------|-----------|---------------|---------------|--------------|
| 143-865A-                       |                  | 5.785/************************************ |               |           | Ma*co.co  |               | E 400 (1974). |              |
| 28R-1, 76-77                    | Recryst. shells  | 237.06                                     | 2             | 389       | 2.6       | 84            | 978           | 3.9          |
| 39R-CC, 28-29                   | Brown patches    | 342.18                                     | 15            | 386       | 3.5       | 392           | 170           | 2.5          |
| 87R-2, 100-103                  | Cem. pelec. mold | 807.81                                     | 118           | 381       | 4.1       | 1,614         | 158           | 1.3          |
| 89R-1, 46-48                    | Big shell, cem.  | 825.26                                     | 394           | 400       | 3.4       | 3,938         | 117           | 4.1          |
| 89R-4, 42-45                    | Cem. pelec. mold | 829.34                                     | 506           | 353       | 6.5       | 10,390        | 243           | 3.3          |
| 91R-4, 67-71                    | Cem. pelec. mold | 846.03                                     | 2100          | 379       | 2.2       | 801           | 87            | 1.0          |
| 94R-3, 129-131                  | Elongated shells | 867.19                                     | 133           | 381       | 1.3       | 891           | 838           | 1.8          |
| 143-867B-                       |                  |                                            |               |           |           |               |               |              |
| 1R-1, 11-13                     | Cem. pelec. mold | 0.11                                       | 3254          | 379       | 3.1       | 152           | 551           | 35.8         |
| 2R-2, 28-30                     | Cem. pelec. mold | 9.88                                       | 12            | 386       | 3.7       | 207           | 260           | 5.0          |
| 7R-1, 37-39                     | Cem. pelec. mold | 43.57                                      | 9             | 333       | 2.8       | 60            | 188           | 1.7          |
| 8R-2, 44-46                     | Cem. pelec. mold | 54.44                                      | 4             | 360       | 2.7       | 122           | 72            | 18.3         |
| 143-868A-                       |                  |                                            |               |           |           |               |               |              |
| 3R-2, 34-36                     | Cem. pelec. mold | 12.76                                      | 2             | 386       | 2.8       | 40            | 262           | 1.6          |
| 143-866A-                       |                  |                                            |               |           |           |               |               |              |
| 8R-CC, 3-5                      | Cem, shell       | 57.33                                      | 8             | 395       | 3.5       | 104           | 263           | 4.8          |
| 46R-1, 108-110                  | Cem. pelec. mold | 416.38                                     | ĭ             | 381       | 3.1       | 29            | 72            | 20.3         |
| 88R-1, 22-25                    | Cem. pelec, mold | 821.12                                     | 18            | 383       | 3.7       | 143           | 129           | 1.5          |
| 103R-1, 60-62                   | Cem. pelec. mold | 963.00                                     | 11            | 383       | 2.8       | 13            | 56            | 1.0          |
| 105R-1, 82-84                   | Cem. pelec. mold | 982.12                                     | 11            | 398       | 3.3       | 9             | 77            | 2.2          |
| 133R-1, 129-121                 | Dolomite rhombs  | 1252.79                                    | 17            | 238       | 111.0     | 87            | 135           | 14.2         |
| 134R-2, 26-28                   | Dolomite rhombs  | 1262.96                                    | 5             | 237       | 111.0     | 155           | 125           | 15.0         |
| 146R-2, 33-35                   | Cem. pelec. mold | 1378.23                                    | 24            | 386       | 4.2       | 24            | 58            | 11.7         |
| 159R-1, 87-89                   | Oncoids          | 1501.77                                    | 10            | 346       | 31.0      | 61            | 286           | 12.1         |
| 159R-1, 87-89                   | Dolom, matrix    | 1501.77                                    | 15            | 265       | 90.5      | 70            | 132           | 9.9          |
| 168R-3, 78-79                   | Oncoids          | 1593.82                                    | 28            | 369       | 8.0       | 388           | 368           | 8.8          |
| 168R-3, 78-79                   | Dolom, matrix    | 1593.82                                    | 2             | 318       | 8.9       | 2,055         | 239           | 10.1         |
| 163R-1, 75-78                   | Oncoids          | 1541.05                                    | 9             | 370       | 11.8      | 163           | 348           | 2.7          |
| 163R-1, 75-78                   | Dolom, matrix    | 1541.05                                    | 44            | 259       | 87.3      | 3,172         | 151           | 2.0          |

Note: For further explanation, see text.

Table 6. Stable isotope analyses.

| Core, section,  |                |                |
|-----------------|----------------|----------------|
| interval (cm)   | $\delta^{13}C$ | $\delta^{18}O$ |
| 143-865 A-      |                |                |
| 20R-1, 26-27    | 2.77           | -1.51          |
| 89R-1, 46-48    | 3.27           | -5.90          |
| 143-866A-       |                |                |
| 46R-1, 108-110  | 2.83           | 1.51           |
| 62R-1, 53-55    | 2.50           | -2.16          |
| 92R-1, 20-21    | 2.49           | -3.37          |
| 97R-1, 16-18    | 3.44           | -2.11          |
| 103R-1, 60-62   | 1.79           | -2.19          |
| 105R-1, 82-84   | 2.25           | -2.69          |
| 106R-1, 42-43   | 2.40           | -2.75          |
| 108R-1, 55-57   | 2.00           | -2.84          |
| 118R-1, 104-106 | 1.13           | -3.35          |
| 119R-1, 34-35   | 1.83           | -2.87          |
| 125R-1, 2-4     | 2.05           | -3.21          |
| 127R-1, 31-33   | 1.96           | -3.30          |
| 143-867B-       |                |                |
| 1R-3, 23-24     | 2.96           | -1.84          |
| 8R-2, 44-46     | 3.02           | 0.07           |
| 9R-2, 24-27     | 2.60           | -0.89          |
| 3R-1, 119-121   | 2.39           | -3.02          |
| 3R-1, 119-121   | 2.01           | -4.55          |
| 4R-2, 33-35     | 2.68           | -1.05          |

Scientific Party of Leg 143 for their excellent cooperation on board the ship, and the free exchange of data after the cruise, and to the ODP personnel and the SEDCO crew, who made Leg 143 a success. U.R. acknowledges financial support by the Deutsche Forschungsgemeinschaft. A.S. was financially supported by the Swiss National Science Foundation. J. Lodziak and D. Requard, Hannover, provided XRF analyses; H. Rösch, Hannover, XRD analyses; M. Geyh and P. Posimowski, Hannover, analyses of stable isotopes; and O. Elsholz, Hannover, ICP/AA analyses. A. Bruns, Hannover, and D. Cao, Fribourg, helped with the SEM analysis, and G. Hartmann, Göttingen, with microprobe analyses. We are grateful for critical comments by L. Land, J. Sinton, and an unknown reviewer.

#### REFERENCES\*

Aissaoui, D.M., 1988. Magnesian calcite cements and their diagenesis: dissolution and dolomitization, Mururoa Atoll. Sedimentology, 35:821–841.

Algeo, T.J., Wilkinson, B.H., and Lohmann, K.C., 1992. Meteoric-burial diagenesis of middle Pennsylvanian limestones in the Orogrande Basin, New Mexico: water/rock interactions and basin geothermics. J. Sediment. Petrol., 62:652–670.

Anderson, T.F., and Arthur, M.A., 1983. Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems. SEPM Short Course, 10:1–151.

Budd, D.A., 1989. Micro-rhombic calcite and microporosity in limestones: a geochemical study of the Lower Cretaceous Thamama Group. Sediment. Geol., 63:293–311.

Chafetz, H.S., 1986. Marine peloids: a product of bacterially induced precipitation of calcite. J. Sediment. Petrol., 56:812–817.

Choquette, P.W., and Pray, L.C., 1970. Geologic nomenclature and classification of porosity in sedimentary carbonates. AAPG Bull., 54:207–244.

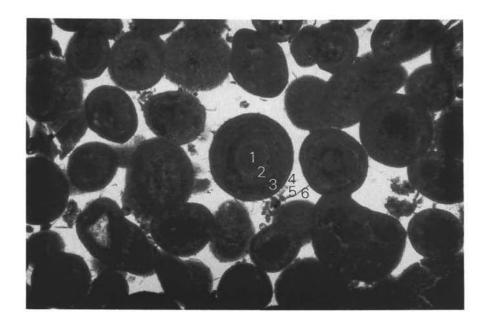
Dickson, J.A.D., and Coleman, M.L., 1980. Changes in carbon and oxygen isotope composition during limestone diagenesis. *Sedimentology*, 27:107– 118.

Enos, P., 1985. Diagenetic evolution of Cretaceous reefs in Mexico. Proc. 5th Int. Coral Reef Congr., 5:301–305.

Farr, M.R., 1992. Geochemical variation of dolomite cement within the Cambrian Bonneterre Formation, Missouri: evidence for fluid mixing. J. Sediment. Petrol., 62:636–651.

Grötsch, J., and Flügel, E., 1992. Facies of sunken Early Cretaceous atoll reefs and their capping late Albian drowning succession (northwestern Pacific). Facies, 27:153–174.

Hein, J.R., Yeh, H.-W., Gunn, S.H., Sliter, W.V., Benninger, L.M., and Wang, C.-H., 1993. Two major Cenozoic episodes of phosphogenesis recorded in equatorial Pacific seamount deposits. *Paleoceanography*, 8:293–311.


Hemming, G.N., Meyers, W.J., and Grams, J.C., 1989. Cathodoluminescence in diagenetic calcites: the roles of Fe and Mn as deduced from electron probe and spectrophotometric measurements. J. Sediment. Petrol., 59:404–411.

<sup>\*</sup>Abbreviations for names of organizations and publications in ODP reference lists follow the style given in Chemical Abstracts Service Source Index (published by American Chemical Society).

- Hudson, J.D., 1977. Stable isotopes and limestone lithification. J. Geol. Soc. London, 133:637–660.
- James, N.P., and Bone, Y., 1989. Petrogenesis of Cenozoic temperate water calcarenites, south Australia: a model for meteoric/shallow burial diagenesis of shallow water calcite sediments. J. Sediment. Petrol., 59:191–204.
- Koch, R., Ogorelec, B., and Orehek, S., 1989. Microfacies and diagenesis of Lower and Middle Cretaceous carbonate rocks of NW-Yugoslavia (Slovenia, Trnovo Area). Facies, 21:135–170.
- Longman, M.W., 1980. Carbonate diagenetic textures from near-surface diagenetic environments. AAPG Bull., 64:461–487.
- Maliva, R.G., and Dickson, J.A.D., 1992. The mechanism of skeletal aragonite neomorphism: evidence from neomorphosed mollusks from the upper Purbeck Formation (Late Jurassic-Early Cretaceous), southern England. Sediment. Geol., 76:221–232.
- McKenzie, J., Bernoulli, D., and Schlanger, S.O., 1980. Shallow-water carbonate sediments from the Emperor Seamounts: their diagenesis and paleogeographic significance. *In Jackson*, E.D., Koizumi, I., et al., *Init. Repts. DSDP*, 55: Washington (U.S. Govt. Printing Office), 415–455.
- Miller, J., 1986. Facies relationships and diagenesis in Waulsortian mudmounds from the Lower Carboniferous of Ireland and N. England. In Schroeder, J.H., and Purser, B.H. (Eds.), Reef Diagenesis: Berlin (Springer), 311–335.
- Moore, C.H., 1989. Carbonate Diagenesis and Porosity: Amsterdam (Elsevier), Devl. in Sedimentol. Ser., 46.
- Morse, J.W., and Mackenzie, F.T., 1990. Geochemistry of Sedimentary Carbonates: Amsterdam (Elsevier), Dev. in Sedimentol. Ser., 48.
- Nesse, D.G., Burr, A., Silver, A., and Bernie, B.B., 1980. Carbon isotopic signature as criterion for interpreting origin of synsedimentary cements, patch reef facies, Enewetak Atoll. AAPG Bull., 64:756.
- ODP Leg 143 Shipboard Scientific Party, 1993. Examining guyots in the Mid-Pacific Mountains. Eos, 74:201–206.
- Quinn, T.M., and Matthews, R.K., 1990. Post-Miocene diagenetic and eustatic history of Enewetak Atoll: model and data comparison. *Geology*, 18:942– 945.
- Röhl, U., von Rad, U., and Wirsing, G., 1992. Microfacies, paleoenvironment, and facies-dependent carbonate diagenesis in Upper Triassic platform carbonates off northwest Australia. In von Rad, U., Haq, B.U., et al., Proc. ODP, Sci. Results, 122: College Station, TX (Ocean Drilling Program), 129–159.
- Sager, W.W., Winterer, E.L., Firth, J.V., et al., 1993. Proc. ODP, Init. Repts., 143: College Station, TX (Ocean Drilling Program).
- Saller, A.H., 1984. Petrologic and geochemical constraints on the origin of subsurface dolomite, Enewetak Atoll: an example of dolomitization by normal seawater. *Geology*, 12:217–220.

- Saller, A.H., and Moore, C.H., Jr., 1989. Meteoric diagenesis, marine diagenesis, and microporosity in Pleistocene and Oligocene limestones, Enewetak Atoll, Marshall Islands. Sediment. Geol., 63:253–272.
- Schroeder, J.H., 1988. Spatial variations in the porosity development of carbonate sediments and rocks. Facies, 18:181–204.
- Strasser, A., and Davaud, E., 1986. Formation of Holocene limestone sequences by progradation, cementation and erosion: two examples from the Bahamas. J. Sediment. Petrol., 56:422–428.
- Strasser, A., Strohmenger, C., Davaud, E., and Bach, A., 1992. Sequential evolution and diagenesis of Pleistocene coral reefs (South Sinai, Egypt). Sediment. Geol., 78:59–79.
- Sun, S.Q., Fallick, A.E., and Williams, B.P.J., 1992. Influence of original fabric on subsequent porosity evolution: an example from the Corallian (Upper Jurassic) reefal limestones, the Weald Basin, southern England. Sediment. Geol., 79:139–160.
- Thein, J., 1985. Die Paläogeographie des Turon im Hohen Atlas Marokkos: Ergebnisse geochemischer und mikrofazieller Untersuchungen. Habilitation thesis.
- Tucker, M.E., 1990. Burial diagenesis. In Tucker, M.E., and Wright, V.P. (Eds.), Carbonate Sedimentology: Oxford (Blackwell).
- van Waasbergen, R.J., and Winterer, E.L., 1993. Summit geomorphology of Western Pacific guyots. In Pringle, M.S., Sager, W.W., Sliter, W.V., and Stein, S. (Eds.), The Mesozoic Pacific: Geology, Tectonics, and Volcanism. Geophys. Monogr., Am. Geophys, Union, 77:335–366.
- Vollbrecht, R., and Meischner, D., 1993. Sea level and diagenesis: a case study on Pleistocene beaches, Whalebone Bay, Bermuda. Geol. Rundsch., 82:248–262.
- Walkden, G.M., and Berry, J.R., 1984. Syntaxial overgrowth in muddy crinoidal limestones: cathodoluminescence sheds new light on an old problem. Sedimentology, 31:251–267.
- Winterer, E.L., 1991. The Tethyan Pacific during Late Jurassic and Cretaceous times. Palaeogeogr., Palaeoclimatol., Palaeoecol., 87:253–265.
- Wright, V.P., 1992. A revised classification of limestones. Sediment. Geol., 76:177–185.
- Zempolich, W.G., 1989. Meteoric stabilization and preservation of limestone within the Late Proterozoic Beck Spring Dolomite of eastern California. In Cooper, J.D., Albright, G., Griffin, K.M., McCutcheon, K.F., and Zempolich, W.G. (Eds.), Calvacade of Carbonates. SEPM Field Trip Guidebook, 61:61–75.

Date of initial receipt: 15 November 1993 Date of acceptance: 6 July 1994 Ms 143SR-224



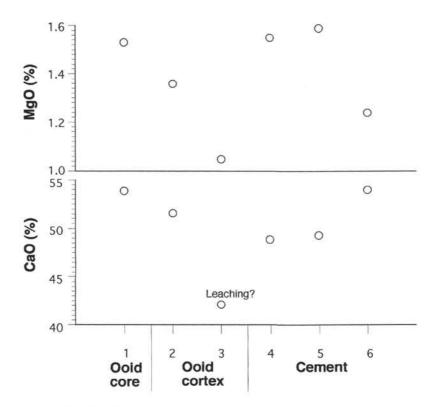



Figure 7. CaO and MgO microprobe analyses of Sample 143-866A-129R-1, 124-128 cm.

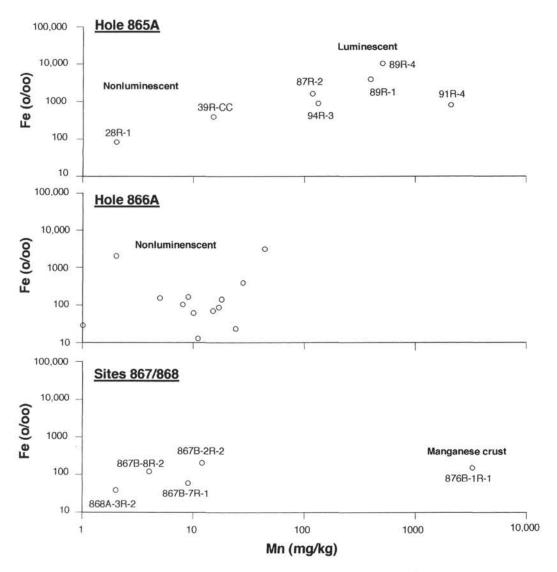


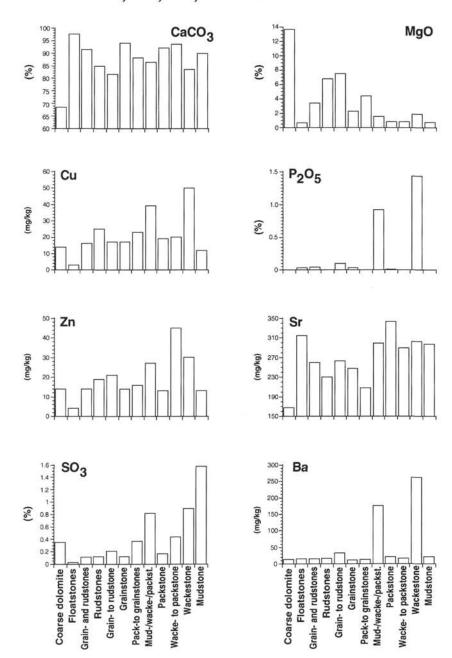
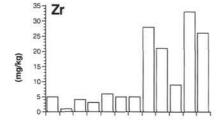
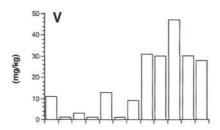
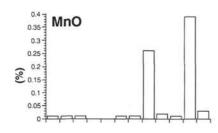

Figure 8. Mn vs. Fe contents of cements (ICP-AES, AA analyses). For further explanation see text.

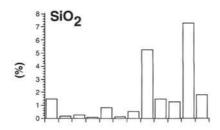


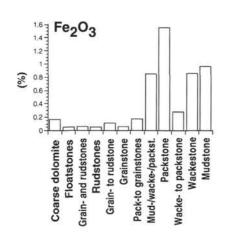
Figure 9. Stable isotope analyses of selected cement samples (Sites 865 to 868). For further explanation see text.

A

# Sites 865, 866, 867, and 868



Figure 10. A.  $CaCO_3$ , MgO, Cu,  $P_2O_5$ , Zn, Sr,  $SO_3$ , and Ba contents. B. Zr, V, MnO,  $SiO_2$ ,  $Fe_2O_3$ , and  $Al_2O_3$  contents vs. different microfacies types.


# Sites 865, 866, 867, and 868











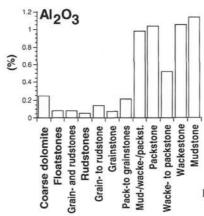



Figure 10 (continued).

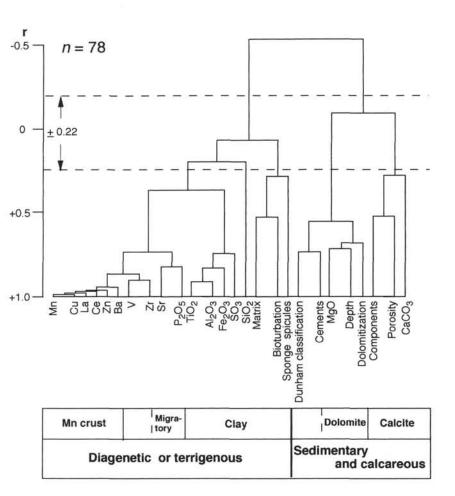



Figure 11. Cluster analysis of both microfacies and chemistry data. For further explanation see text.

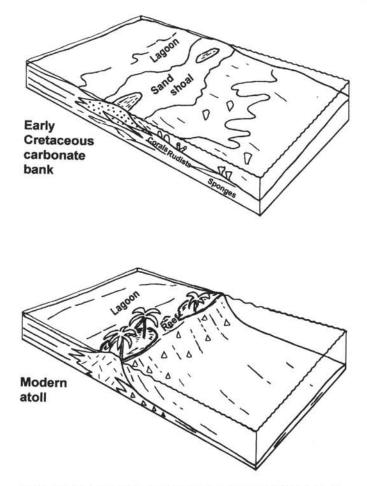



Figure 12. Morphology and facies differences between modern atolls and Lower Cretaceous guyots.

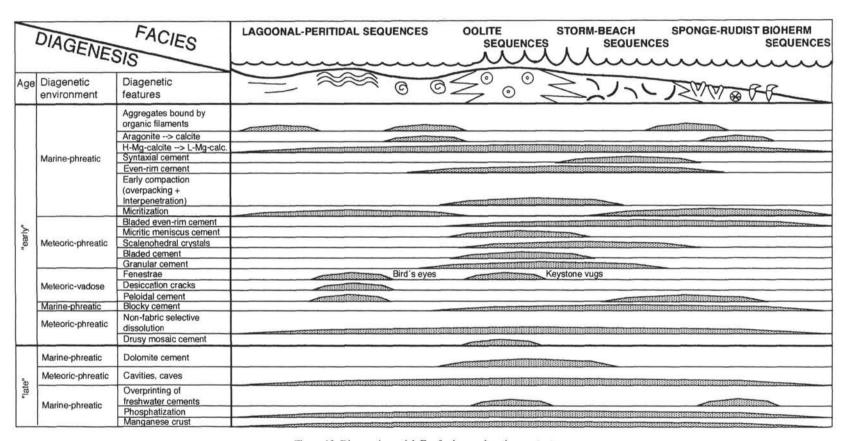



Figure 13. Diagenetic model. For further explanation see text.

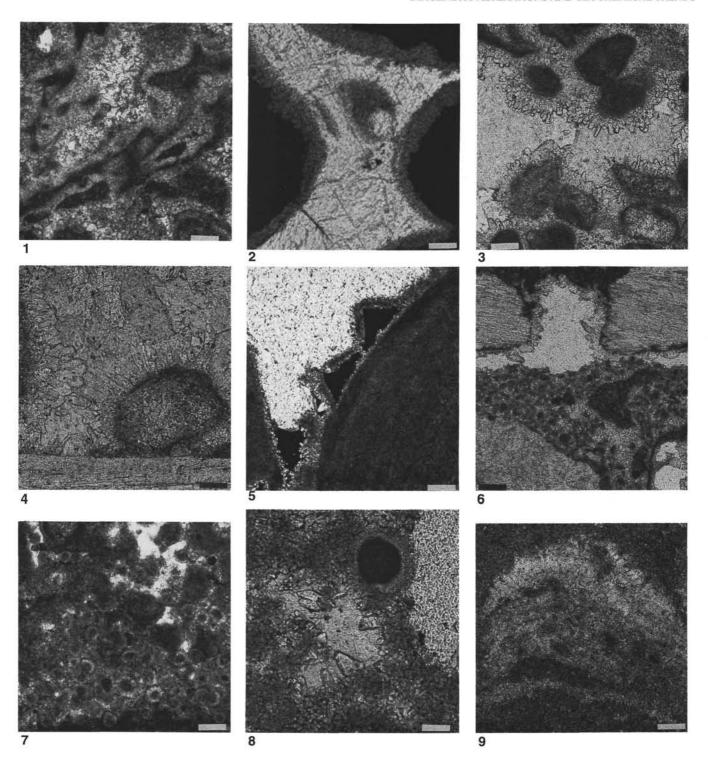



Plate 1. 1. Recrystallized micritic matrix and fragment of calcareous algae; pore filled by medium-grained cement probably of fresh-water origin, Sample 143-865A-34R-1, 8–9 cm, scale 0.1 mm. 2. Micritic, probably marine-phreatic cement (even-rim cement) coating ooids. Pore space filled with blocky meteoric-phreatic cement, Sample 143-866A-164R-1, 140–143 cm, scale 0.1 mm. 3. Thick coating of thinly bladed marine-phreatic cement with some scalenohedral crystal terminations. Pore space is almost completely filled by blocky meteoric-phreatic cement, Sample 143-868A-1R-2, 15–17 cm, scale 0.1 mm. 4. Bladed crystals and clearly visible scalenohedral terminations suggest an original composition of high-Mg calcite formed in a marine-phreatic diagenetic environment. Pores filled with blocky meteoric-phreatic cement, Sample 143-867B-1R-3, 15–18 cm, scale 0.05 mm. 5. Early compaction caused spalling of the outermost ooid layer and early fringing cement. Pore space partly filled with coarse meteoric-phreatic cement, black = porosity, Sample 143-866A-157R-2, 84–86 cm, scale 0.05 cm. 6. Peloidal cement of possibly high-Mg calcite origin behaved like an internal sediment and partly filled pore space in a marine-phreatic environment, Sample 143-867B-8R-2, 30–33 cm, scale 0.2 mm. 7. Spherulites of probable microbial origin in an algal mat, Sample 143-866A-71R-1, 64–67 cm, scale 0.1 mm. 8. Spherulite and early cement growing in pore space, Sample 143-866A-148R-1, 4–7 cm, scale 0.05 mm. 9. Caliche crust formed in a freshwater diagenetic environment which periodically underwent subaerial exposure, Sample 143-866A-39R-1, 23–24 cm, scale 0.1 mm.

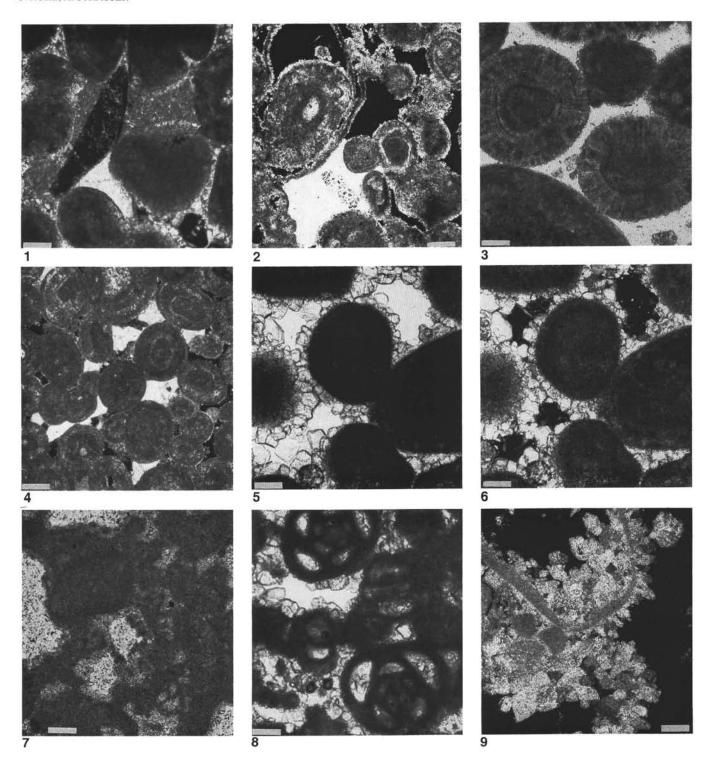



Plate 2. 1. Syntaxial cement surrounding echinoderm fragment, oolitic grainstone, Sample 143-866A-77R-3, 90–94 cm, crossed nicols, scale 0.1 mm. 2. Early precipitation of syntaxial cement around echinoderm fragment prevented compaction of this grainstone. Note collapsed large ooid, suggesting that part of the cortex (aragonite?) was dissolved during freshwater diagenesis, black = porosity, Sample 143-866A-78R-3, 90–91 cm scale 0.1 mm. 3. Barely cemented oolite, and ooids displaying radial cortices, Sample 143-866A-78R-2, 85–87 cm, scale 0.1 mm. 4. Blocky calcite cement (light) of meteoric-phreatic origin. Note overpacking resulting from compaction prior to freshwater cementation in the oolitic grainstone, Sample 143-866A-129R-1, 124–128 cm, crossed nicols, scale 0.3 mm. 5. Coarse meteoric-phreatic cement in oolitic grainstone, Sample 143-866A-74R-2, 94–97 cm, scale 0.1 mm. 6. As Figure 5, but crossed nicols. 7. Micritic meniscus cement indicating a vadose diagenetic environment. Glaebules point to pedogenetic overprinting of originally lagoonal facies, Sample 143-866A-25R-1, 68–70 cm, scale 0.1 mm. 8. Intraparticle and interparticle porosity partly filled by coarse freshwater cement, bioclastic packstone to grainstone, Sample 143-866A-76R-1, 62–64 cm, scale 0.1 mm. 9. Intense carbonate dissolution leading to high interparticle and intraparticle porosity resulted from percolating freshwater. Only the micritic envelope of the original particles is preserved. Cements are phreatic and probably of freshwater origin; Sample 143-866A-94R-1, 8–9 cm, crossed nicols, scale 0.1 mm.

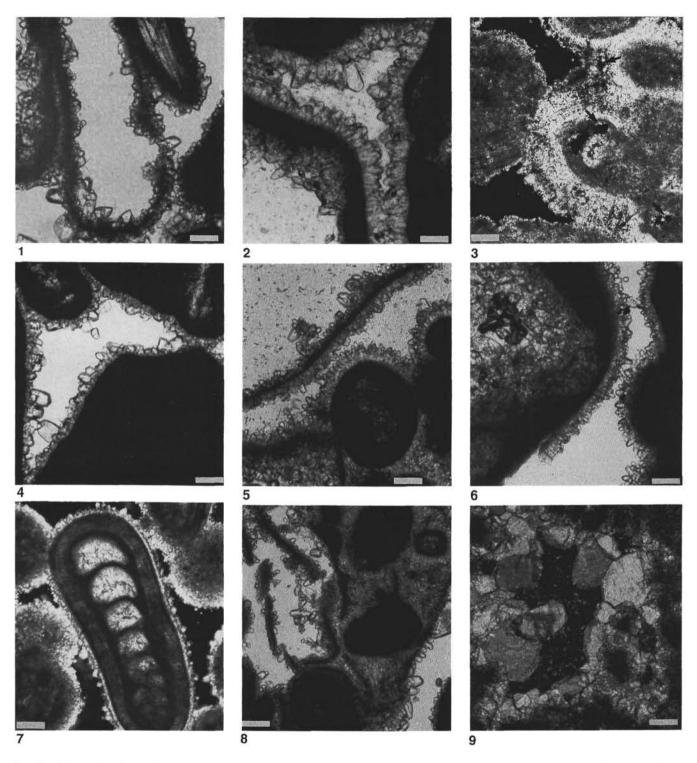



Plate 3. 1. Scalenohedral crystal terminations on micritized, dissolution-resistant rim of pelecypod fragment, Sample 143-867B-4R-1, 68–70 cm, scale 0.1 mm.

2. Bladed even-rim cement with scalenohedral terminations, Sample 143-866A-94R-1, 31–33 cm, scale 0.1 mm.

3. Reworked hardground piece with thick fibrous cement of marine-phreatic origin, microbially induced framboidal pyrite (arrows), and interparticle porosity, Sample 143-866A-78R-3, 90–91 cm, scale 0.1 mm.

4. Scalenohedral crystal terminations, Sample 143-867B-4R-1, 68–70 cm, scale 0.1 mm.

5. Preserved ooids, dissolved pelecypod shells except for outer micritized part, fringing cements, and scalenohedral crystals, Sample 143-866A-93R-1, 17–19 cm, scale 0.1 mm.

6. Recrystallized and micritized shell fragment, fringing cements, and scalenohedral crystal terminations, Sample 143-866A-95R-1, 21–24 cm, scale 0.1 mm.

7. Foraminifer as ooid core, cemented single chambers of test, early fringing cement, and scalenohedral terminations, Sample 143-867B-6R-1, 35–37 cm, crossed nicols, scale 0.1 mm.

8. Oolitic grainstone, ooids are partly well cemented with thick fringing cement layers, micritized parts of shells are not dissolved, and scalenohedral terminations, Sample 143-866A-75R-3, 67–69 cm, scale 0.1 mm.

9. Blocky calcite cement in dissolution void of peloidal packstone, Sample 143-866A-47R-1, 38–40 cm, crossed nicols, scale 0.1 mm.

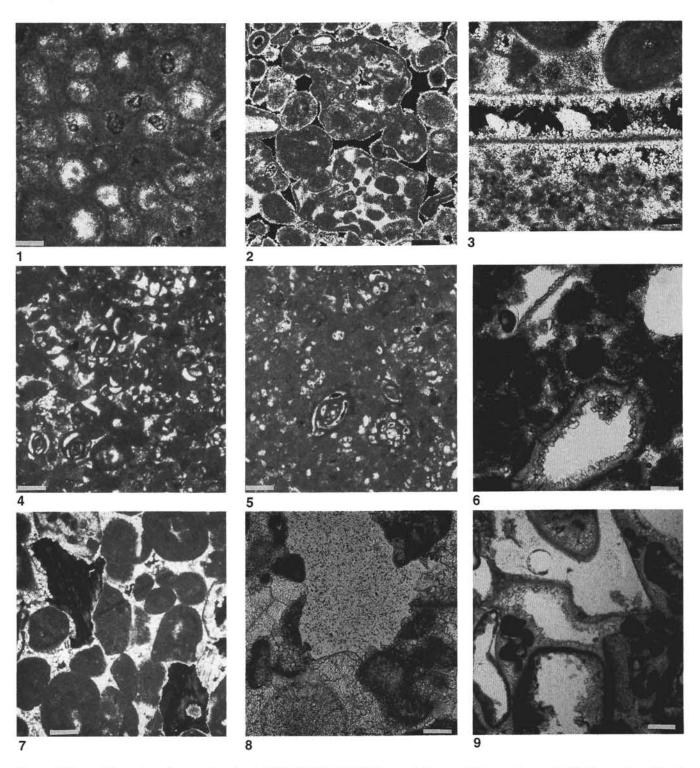



Plate 4. 1. Intraparticle porosity, calcareous algae, Sample 143-866A-55R-CC, 30–31 cm, scale 0.1 mm. 2. Interparticle porosity (black), grapestones, Sample 143-866A-153R-2, 20–22 cm, crossed nicols, scale 0.2 mm. 3. Peloidal cement, moldic porosity within shell fragment, only micritized part of shell is retained, pore space partly reduced by growing of early fringing cement and some blocky calcite crystals, Sample 143-866A-95R-1, 26–28 cm, scale 0.1 mm. 4. Interparticle and intraparticle porosity of foraminiferal (miliolids) packstone, Sample 143-866A-70R-1, 1–3 cm, scale 0.3 mm. 5. Porosity of foraminiferal wackestone, Sample 143-866A-70R-1, 1–3 cm, scale 0.3 mm. 6. Moldic porosity, even-rim cements with scalenohedral terminations, Sample 143-866A-58R-1, 72–75 cm, scale 0.1 mm. 7. Dissolution on grain surfaces by fresh water in oolitic grainstone, Sample 143-866A-74R-2, 94–97 cm, scale 0.3 mm. 8. Enlargement of keystone vug by destructive, nonselective dissolution within peloidal grainstone, Sample 143-865A-34R-1, 15–16 cm, scale 0.1 mm. 9. Interparticle and intraparticle porosities in bioclastic grainstone to rudstone, note relatively thick crust of fringing cement, partly with scalenohedral crystal terminations, Sample 143-866A-94R-1, 31–33 cm, scale 0.3 mm.

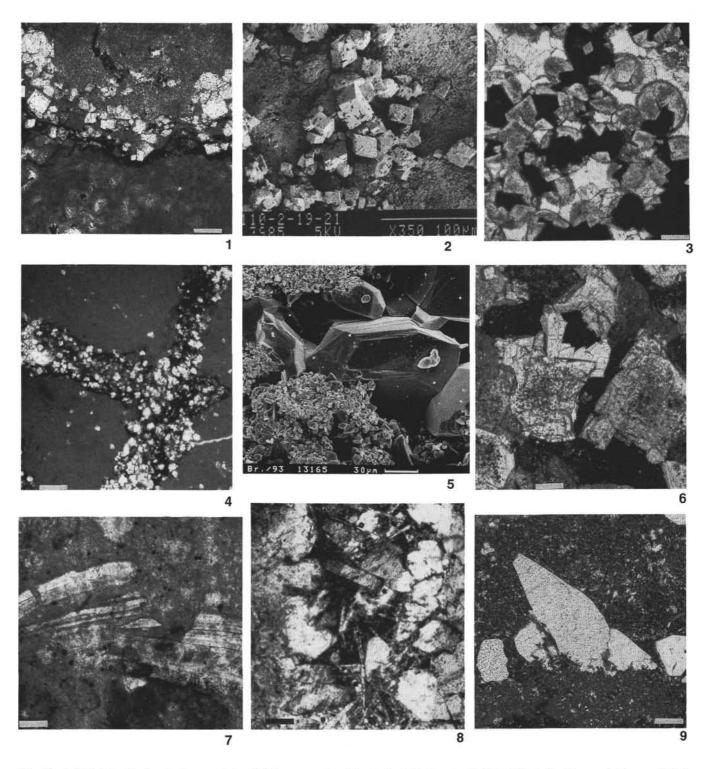



Plate 5. 1. Early dolomitization, clay layers sealed underlying strata against dolomitizing fluids, Sample 143-866A-119R-1, 70–72 cm, scale 0.1 mm. 2. Early dolomitization, single dolomite rhombs exhibit dissolution features, Sample 143-866A-110R-2, 19–21 cm, SEM, slightly etched with acid, scale 0.1 mm. 3. Strongly dolomitized oolitic grainstone, black = porosity, the ooids appear as ghosts formed by inclusion-rich dolomite. The early fringing cements retained a calcitic mineralogy (stained by Alizarin-Red-S), Sample 143-866A-168R-1, 108–109 cm, scale 0.3 mm. 4. Early dolomitization started in millimeter-scale cracks, Sample 143-866A-138R-1, 22–24 cm, scale 0.3 mm. 5. Dolomitic blocky cement, Sample 143-866A-168R-3, 78–79 cm, scale 0.03 mm. 6. Intracrystalline and intercrystalline porosity in dolomitized oosparite, Sample 143-866A-145R-1, 82–84 cm, scale 0.1 mm. 7. Fracturing of pelecypod shell preceded sedimentation of micrite, framboidal pyrite (dark dots), Sample 143-866A-74R-2, 72–74 cm, scale 0.1 mm. 8. Phosphatized limestone with silicification (bright areas) and bladed and fibrous crystal forms of barite, Sample 143-867B-1R-1, 11–13 cm, scale 0.3 mm. 9. Large apatite crystals growing in distinct layers, matrix is penetratively phosphatized wackestone, Sample 143-867B-2R-2, 11–13 cm, scale 0.2 mm.