VOLUME 146
INITIAL REPORTS
PART 1: CASCADIA MARGIN

Covering Leg 146 of the cruises of the Drilling Vessel JOIDES Resolution,
Victoria, Canada, to San Diego, California, Sites 888-892,
20 September-22 November 1992

Graham K. Westbrook, Bobb Carson, Robert J. Musgrave,
Juichiro Ashi, Boris Baranov, Kevin M. Brown, Angelo Camerlenghi,
Jean-Pierre Cauplet, Nickolai Chamov, M. Ben Clennell, Barry A. Cragg,
Peter Dietrich, Jean-Paul Foucher, Bernard Housen, Martin Hovland,
Richard D. Jarrard, Miriam Kastner, Achim Kopf, Mary E. MacKay, Casey Moore,
Kate Moran, Ronald John Parkes, James Sample, Takaharu Sato,
Elizabeth J. Screaton, Harold J. Tobin, Michael J. Whiticar, Sally D. Zellers
Shipboard Scientists

Robert J. Musgrave
Shipboard Staff Scientist

Prepared by the
OCEAN DRILLING PROGRAM
TEXAS A&M UNIVERSITY

in cooperation with the
NATIONAL SCIENCE FOUNDATION
and
JOINT OCEANOGRAPHIC INSTITUTIONS, INC.
This publication was prepared by the Ocean Drilling Program, Texas A&M University, as an account of work performed under the international Ocean Drilling Program, which is managed by Joint Oceanographic Institutions, Inc., under contract with the National Science Foundation. Funding for the program was provided by the following agencies at the time of this cruise:

Canada/Australia Consortium for the Ocean Drilling Program, Department of Energy, Mines and Resources (Canada), and Department of Primary Industries and Energy (Australia)

Deutsche Forschungsgemeinschaft (Federal Republic of Germany)

European Science Foundation Consortium for Ocean Drilling (Belgium, Denmark, Finland, Iceland, Italy, Greece, The Netherlands, Norway, Spain, Sweden, Switzerland, and Turkey)

Institut Français de Recherche pour l’Exploitation de la Mer (France)

National Science Foundation (United States)

Natural Environment Research Council (United Kingdom)

University of Tokyo, Ocean Research Institute (Japan)

Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation, the participating agencies, Joint Oceanographic Institutions, Inc., Texas A&M University, or Texas A&M Research Foundation.

It is recommended that reference to the whole or to part of this volume be made in one of the following forms, as appropriate:

Effective Publication Dates of ODP Proceedings

According to the International Code of Zoological Nomenclature, the date of publication of a work and of a contained name or statement affecting nomenclature is the date on which the publication was mailed to subscribers, placed on sale, or when the whole edition is distributed free of charge, mailed to institutions and individuals to whom free copies are distributed. The mailing date, not the printed date, is the correct one.

The mailing dates of recent Proceedings of the Ocean Drilling Program are as follows:

Volume 144 (Initial Reports): July 1993
Volume 145 (Initial Reports): July 1993
Volumes 147/148 (Initial Reports): December 1993
Volume 131 (Scientific Results): April 1993
Volumes 133/132 (Scientific Results): November 1993
Volume 136 (Scientific Results): December 1993

Distribution

Copies of this publication may be obtained from Publications Distribution Center, Ocean Drilling Program, 1000 Discovery Drive, College Station, Texas 77845-9547, U.S.A. Orders for copies will require advance payment. See current ODP publication list for price and availability of this publication.

Printed February 1994

ISSN 0884-5883
Library of Congress 87-655-674
Printed in Canada by D.W. Friesen & Sons Ltd.

Foreword

By the National Science Foundation

The Ocean Drilling Program (ODP) is a major component of the National Science Foundation’s continuing commitment to the study of the geologic processes that have shaped our planet and modified its environment. The scientific problems being addressed range from the geologic history and structure of continental margins to the processes responsible for the formation and alteration of the ocean’s crust. In a time of enhanced public and scientific interest in problems of global change, ODP provides critical data on changes in ocean circulation, chemistry, and biologic productivity and their relation to changes in atmospheric circulation and glacial conditions. The Ocean Drilling Program has a unique role in addressing these problems, since it is the only facility for continuously sampling the geologic record of the ocean basins, which cover 70% of our planet.

The ODP is the successor to the Deep Sea Drilling Project (DSDP), which was a global reconnaissance of the ocean basins. DSDP began operations in 1968 at Scripps Institution of Oceanography, using a 400-foot drillship, the Glomar Challenger. DSDP was supported initially by only the National Science Foundation, with extensive involvement of international scientists who were invited to participate on drilling cruises. As this international interest continued to grow in the early 1970’s, formal participation in the project was offered to the international geoscience community. In 1975, five nations (France, the Federal Republic of Germany, Japan, the United Kingdom, and the Soviet Union) accepted this commitment to joint planning and conduct of the project, as well as to financial support for operations. This International Phase of Ocean Drilling (IPOD) continued to 1983. Although the Challenger had reached the limits of her capabilities, the remarkable scientific success of the DSDP and the new questions it had generated demanded a continuing capability for drilling in the oceans.

The Ocean Drilling Program was organized, international participation was coordinated, a new drillship (the JOIDES Resolution) was contracted and outfitted, and her first cruise sailed in early 1985, within 18 months of the retirement of the Challenger. This is a remarkable accomplishment that reflects the efforts and excellence of the Joint Oceanographic Institutions, Inc. (prime contractor for ODP), Texas A&M University (science and ship operator), Lamont-Doherty Earth Observatory (logging operator), and the international science community in organizing and planning the new program. It was argued in planning for the ODP that a larger drillship was required to provide space for the increasing U.S. and international demand for shipboard participation, improved and expanded laboratory capabilities, and improvements in coring and logging systems. A larger and better equipped vessel would also provide better stability and working conditions in high-latitude regions of the oceans. The success of the JOIDES Resolution has proven the wisdom of these early arguments.

ODP now has operated in all oceans except the ice-covered Arctic. We have drilled above the Arctic circle and within sight of the Antarctic continent. Over 1000 scientists from 25 nations have participated in the initial ODP cruises. The larger scientific parties have allowed an increased emphasis on student participation and training aboard ship. The state-of-the-art laboratories support rapid and complete initial analyses of samples that provide both scientific results and guide subsequent shore-based studies. Nearly 1000 additional scientists have used these data and requested samples from the program’s core and data archives for continuing study. The geochemical and geophysical logging capability is unsurpassed in either academia or industry and has provided remarkable new data with which to study the Earth. New experiments to measure and monitor geologic processes have been deployed in ODP boreholes.

The international commitment to ocean drilling has increased in the ODP. In addition to our four partners in IPOD—France, the Federal Republic of Germany, Japan, and the United Kingdom—two consortia have joined ODP: Canada-Australia and the European Science Foundation (representing Belgium, Denmark, Finland, Greece, Iceland, Italy, The Netherlands, Norway, Spain, Sweden, Switzerland, and Turkey). The 19 countries of the ODP represent the community of nations that have a global interest in the geosciences and oceanography. This global scientific participation has assured the program’s scientific excellence by focusing and integrating the combined scientific knowledge and capabilities of the
program's 19 nations. It has allowed problems of a global nature to be addressed by providing databases and background studies which are openly shared for planning and interpreting drilling results. It has eased problems of access to territorial waters, allowing comparative studies to be done among oceans. Finally, the international sharing of program costs has allowed this important and large program to proceed without detrimental impact to the research budgets of any one nation.

The Ocean Drilling Program, like its predecessor, DSDP, serves as a model for planning, conducting, and financing research to address problems of global importance. The National Science Foundation is proud to have a leading role in this unique international program, and we look forward to its continuing success.

Washington, D.C.

Walter E. Massey
Director
National Science Foundation
This volume presents scientific and engineering results from the Ocean Drilling Program (ODP). The papers presented here address the scientific and technical goals of the program, which include providing a global description of geological and geophysical structures including passive and active margins and sediment history, and studying in detail areas of major geophysical activity such as mid-ocean ridges and the associated hydrothermal circulations.

The Ocean Drilling Program, an international activity, operates a specially equipped deep-sea drilling ship, the JOIDES Resolution (Sedco/BP 471), which contains state-of-the-art laboratories, equipment, and computers. The ship is 471 feet (144 meters) long, is 70 feet (21 meters) wide, and has a displacement of 18,600 short tons. Her derrick towers 211 feet (64 meters) above the waterline, and a computer-controlled dynamic-positioning system stabilizes the ship over a specific location while drilling in water depths up to 27,000 feet (8230 meters). The drilling system collects cores from beneath the seafloor with a derrick and drawworks that can handle 30,000 feet (9144 meters) of drill pipe. More than 12,000 square feet (1115 square meters) of space distributed throughout the ship is devoted to scientific laboratories and equipment. The ship sails with a scientific and technical crew of 51 and a ship's crew (including the drill crew) of 62. The size and ice-strengthening of the ship allow drilling in high seas and ice-infested areas as well as permitting a large group of multidisciplinary scientists to interact as part of the scientific party.

Logging, or measurements in the drilled holes, is an important part of the program. ODP provides a full suite of geochemical and geophysical measurements for every hole deeper than 1300 feet (400 meters). For each such hole, there are lowerings of basic oil-industry tools: nuclear, sonic, and electrical. In addition, a borehole teviewer is available for imaging the wall of the hole, a 12-channel logging tool provides accurate velocity and elastic property measurements as well as sonic waveforms for spectral analysis of energy propagation near the wall of the hole, and a vertical seismic profiler can record reflectors from below the total depth of the hole.

The management of the Ocean Drilling Program involves a partnership of scientists and governments. International oversight and coordination are provided by the ODP Council, a governmental consultative body of the partner countries, which is chaired by a representative from the United States National Science Foundation. The ODP Council periodically reviews the general progress of the program and discusses financial plans and other management issues. Overall scientific and management guidance is provided to the operators of the program by representatives from the group of institutions involved in the program, called the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES).

The Executive Committee (EXCOM), made up of the administrative heads of the JOIDES institutions, provides general oversight for ODP. The Planning Committee (PCOM), with its advisory structure, is made up of working scientists and provides scientific advice and detailed planning. PCOM has a network of panels and working groups that screen drilling proposals, evaluate instrumentation and measurement techniques, and assess geophysical-survey data and other safety and siting information. PCOM uses the recommendations of the panels and committees to select drilling targets, to specify the location and major scientific objectives of each two-month drilling segment or leg, and to provide the science operator with nominations for co-chief scientists.

Joint Oceanographic Institutions, Inc. (JOI), a nonprofit consortium of U.S. oceanographic institutions, serves as the National Science Foundation’s prime contractor for ODP. JOI is responsible for seeing that the scientific objectives, plans, and recommendations of the JOIDES committees are translated into scientific operations consistent with scientific advice and budgetary constraints. JOI subcontracts the operations of the program to two universities: Texas A&M University and Lamont-Doherty Earth Observatory of Columbia University. JOI is also responsible for managing the U.S. contribution to ODP.

Texas A&M University (TAMU) serves as science operator for ODP. In this capacity, TAMU is responsible for planning the specific ship operations, actual drilling schedules, and final scientific rosters, which are developed in close cooperation with PCOM and the relevant
panels. The science operator also ensures that adequate scientific analyses are performed on
the cores by maintaining the shipboard scientific laboratories and computers and by providing
logistical and technical support for shipboard scientific teams. Onshore, TAMU manages
scientific activities after each leg, is curator for the cores, distributes samples, and coordinates
the editing and publication of scientific results.

Lamont-Doherty Earth Observatory (LDEO) of Columbia University is responsible for the
program’s logging operation, including processing the data and providing assistance to
scientists for data analysis. The ODP Data Bank, a repository for geophysical data, is also
managed by LDEO.

Core samples from ODP and the previous Deep Sea Drilling Project are stored for future
investigation at three sites: ODP Pacific and Indian Ocean cores at TAMU, ODP and DSDP
Atlantic and Antarctic cores at LDEO, and DSDP Pacific and Indian Ocean cores at the Scripps
Institution of Oceanography.

Scientific achievements of ODP include new information on early seafloor spreading and
how continents separate and the margins evolve. The oldest Pacific crust has been drilled and
sampled. We have new insights into glacial cycles and the fluctuations of ocean currents
throughout geological time. Many of the scientific goals can be met only with new technology;
thus the program has focused on engineering as well as science. To date, ODP engineers have
demonstrated the capability to drill on bare rock at mid-ocean-ridge sites and have developed
techniques for drilling in high-temperature and corrosive regions typical of hydrothermal vent
areas. A new diamond coring system promises better core recovery in difficult areas.

In addition, ODP is cooperating closely with other geological and geophysical programs;
for example, in 1991 the first hole was drilled by ODP for emplacement of a seismometer near
Hawaii for the Ocean Seismic Network. JOI is pleased to have been able to play a facilitating
role in the Ocean Drilling Program and its cooperative activities, and we are looking forward
to many new results to come.

D. James Baker
President
Joint Oceanographic Institutions, Inc.

Washington, D.C.
OCEAN DRILLING PROGRAM

MEMBER ORGANIZATIONS OF THE JOINT OCEANOGRAPHIC INSTITUTIONS FOR DEEP EARTH SAMPLING (JOIDES):
University of California at San Diego, Scripps Institution of Oceanography
Columbia University, Lamont-Doherty Earth Observatory
University of Hawaii, School of Ocean and Earth Science and Technology
University of Miami, Rosenstiel School of Marine and Atmospheric Science
Oregon State University, College of Oceanography
University of Rhode Island, Graduate School of Oceanography
Texas A&M University, College of Geosciences and Maritime Studies
University of Texas at Austin, Institute for Geophysics
University of Washington, College of Ocean and Fishery Sciences
Woods Hole Oceanographic Institution
Canada/Australia Consortium for the Ocean Drilling Program, Department of Energy, Mines and Resources (Canada) and Department of Primary Industries and Energy (Australia)
European Science Foundation Consortium for Ocean Drilling, Belgium, Denmark, Finland, Iceland, Italy, Greece, The Netherlands, Norway, Spain, Sweden, Switzerland, and Turkey
Federal Republic of Germany, Bundesanstalt für Geowissenschaften und Rohstoffe
France, Institut Français de Recherche pour l’Exploitation de la Mer
Japan, University of Tokyo, Ocean Research Institute
United Kingdom, Natural Environment Research Council

PRIME CONTRACTOR
Joint Oceanographic Institutions, Inc.
Washington, D.C.
Thomas E. Pyle
 Director, Ocean Drilling Programs

OPERATING INSTITUTION
College of Geosciences and Maritime Studies
Texas A&M University
College Station, Texas
Robert A. Duce
Dean

OCEAN DRILLING PROGRAM
Philip D. Rabinowitz
 Director
Timothy J.G. Francis
 Deputy Director
Richard G. McPherson
 Administrator
Jack G. Baldauf, Manager
 Science Operations
Barry W. Harding, Manager
 Engineering and Drilling Operations
Russell B. Merrill, Curator and Manager
 Science Services
Robert E. Olivas, Manager
 Technical and Logistics Support
John C. Coyne, Manager
 Information Services

LOGGING OPERATOR
Borehole Research Group
Lamont-Doherty Earth Observatory
Columbia University
Palisades, New York
David Goldberg, Head
PARTICIPANTS ABOARD THE JOIDES RESOLUTION FOR LEG 146*

Graham K. Westbrook
Co-Chief Scientist
School of Earth Sciences
University of Birmingham
P.O. Box 363
Edgbaston, Birmingham B15 2TT
United Kingdom

Bobb Carson
Co-Chief Scientist
Department of Earth and Environmental Sciences
Lehigh University
31 Williams Drive
Bethlehem, Pennsylvania 18015
U.S.A.

Robert J. Musgrave
ODP Staff Scientist/Paleomagnetist
Ocean Drilling Program
Texas A&M University Research Park
1000 Discovery Drive
College Station, Texas 77845-9547
U.S.A.

Juichiro Ashi
Physical Properties Specialist
Ocean Research Institute
University of Tokyo
1-15-1 Minamidai, Nakano-ku
Tokyo 164
Japan

Boris Baranov
Structural Geologist/Sedimentologist
Institute of Oceanology
Academy of Sciences
23 Krasikova St.
Moscow 117218
Russia

Kevin M. Brown
Physical Properties Specialist
Scripps Institution of Oceanography
University of California, San Diego
La Jolla, California 92093
U.S.A.

Angelo Camerlenghi
Sedimentologist
Osservatorio Geofisico Sperimentale
Dipartimento di Geofisica della Litosfera
P.O. Box 2011
I-34016 Trieste Opicina
Italy

Jean-Pierre Caulet
Paleontologist (radiolarians)
Laboratoire de Géologie
Muséum National d Histoire Naturelle
43 rue Buffon
75005 Paris
France

Nickolai Chamov
Sedimentologist
Geological Institute
Academy of Sciences
Pyzhevsky per., 7
Moscow, 109017
Russia

M. Ben Clennell
Sedimentologist
School of Earth Sciences
University of Birmingham
P.O. Box 363
Edgbaston, Birmingham B15 2TT
United Kingdom

Barry A. Cragg
Biologist
Department of Geology
University of Bristol
Queen's Road
Bristol BS8 1RJ
United Kingdom

Peter Dietrich
Sedimentologist
Bergakademie Freiberg
Institut für Geologie
Postfach 47
D09200 Freiberg
Federal Republic of Germany

Jean-Paul Foucher
Physical Properties Specialist
Centre de Brest
IFREMER
BP 70
29280 Plouzané Cedex
France

Bernard Housen
Paleomagnetist
Department of Geological Sciences
1006 C.C. Little Building
University of Michigan
Ann Arbor, Michigan 48109-1063
U.S.A.

Martin Hovland
Organic Geochemist
STATOIL
P.O. Box 300
N-4001 Stavanger
Norway

Richard D. Jarrard
LDGO Logging Specialist
Department of Geology and Geophysics
717 W.C. Browning Building
University of Utah
Salt Lake City, Utah 84112-1183
U.S.A.

*Addresses at time of cruise.
Miriam Kastner
Inorganic Geochemist
Scripps Institution of Oceanography
University of California, San Diego
La Jolla, California 92093
U.S.A.

Achim Kopf
Sedimentologist
Geologisches Institut
Universität Giessen
Senckenbergstrasse 3
D-63000 Giessen
Federal Republic of Germany

Mary E. MacKay
Logging Scientist
Institute of Geophysics
SOEST, University of Hawaii
2525 Correa Road
Honolulu, Hawaii 96822
U.S.A.

Casey Moore
Structural Logging Scientist
Earth Sciences Board of Studies
University of California, Santa Cruz
Santa Cruz, California 95064
U.S.A.

Kate Moran
Physical Properties Specialist
Atlantic Geoscience Centre
Bedford Institute of Oceanography
P.O. Box 1006
Dartmouth, Nova Scotia B2Y 4A2
Canada

Ronald John Parkes
Biologist
Department of Geology
University of Bristol
Queen's Road
Bristol BS8 1RJ
United Kingdom

James Sample
Inorganic Geochemist
Department of Geological Sciences
California State University
Long Beach, California 90840-3902
U.S.A.

Takaharu Sato
Paleomagnetist
Faculty of Engineering
Niigata University
Ikarashi 2-nocho 8050
Niigata, 950-21
Japan

Elizabeth J. Screaton
Logging/Packer Scientist
Department of Earth and Environmental Sciences
Lehigh University
31 Williams Drive
Bethlehem, Pennsylvania 18015
U.S.A.

Harold J. Tobin
Structural Geologist
Earth Sciences Board of Studies
University of California, Santa Cruz
Santa Cruz, California 95064
U.S.A.

Michael J. Whiticar
Organic/Inorganic Geochemist
Centre for Earth and Ocean Research
University of Victoria
P.O. Box 1700
Victoria, BC V8N 1Y2
Canada

Sally D. Zellers
Paleontologist (foraminifers)
Department of Geological Sciences
University of Texas at Austin
Austin, Texas 78712
U.S.A.

SEDCO OFFICIALS

Captain Anthony Ribbens
Master of the Drilling Vessel
Overseas Drilling Ltd.
707 Texas Avenue South
Suite 103D
College Station, Texas 77840-1917
U.S.A.

Bob Caldow
Drilling Superintendent
Overseas Drilling Ltd.
707 Texas Avenue South
Suite 103D
College Station, Texas 77840-1917
U.S.A.
ODP ENGINEERING AND OPERATIONS PERSONNEL

Jim Briggs Electrical Engineer
Glen N. Foss Operations Superintendent
Thomas L. Pettigrew Development Engineer

ODP TECHNICAL AND LOGISTICS PERSONNEL

Wendy J. Autio Marine Laboratory Specialist/FMS
Timothy Bronk Marine Laboratory Specialist/Storekeeper
Jo Claeysens Marine Laboratory Specialist/Yeoperson
Bradley Cook Marine Laboratory Specialist/Photographer
John R. Eastlund Marine Computer Specialist/System Manager
Dennis K. Graham Marine Laboratory Specialist/Chemistry
Margaret Hastedt Marine Laboratory Specialist/Paleomagnetics
Brad Julson Laboratory Officer
Kazushi (“Kuro”) Kuroki Marine Laboratory Specialist/X-ray
Jaquelyn K. Ledbetter Marine Laboratory Specialist/Downhole Tools
Jon S. Lloyd Marine Laboratory Specialist/Physical Properties
Erinn McCarty Marine Laboratory Specialist/Curatorial Representative
Robert McDonald Marine Laboratory Specialist/Downhole Tools
Dwight E. Mossman Marine Laboratory Specialist/Underway Geophysics
Anne Pimmel Marine Laboratory Specialist/Chemistry
Katherine Rodway LDGO Logging Technician
William Stevens Marine Electronics Specialist
Mark Watson Marine Electronics Specialist

Ocean Drilling Program Publications Staff

Publications Supervisor William D. Rose
Senior Publications Coordinator Janalisa Braziel Soltis
Chief Illustrator Deborah L. Partain

Chief Editor Ann Klaus

Editors
Chryseis O. Fox
Eva M. Maddox
Jennifer A. Marin
Nancy K. McQuistion
Sandra K. Stewart

Production Editors
Jill Butler (this volume)
Mauri L. Coulter (this volume)
Jaime A. Gracia

Production Assistants
Carrie R. Castillón
Mary Elizabeth Mitchell
Alexandra F. Moreno
TABLE OF CONTENTS

VOLUME 146—INITIAL REPORTS
PART 1: CASCADIA MARGIN

Acknowledgments
1

SECTION 1: INTRODUCTION

1. Leg 146 Introduction: Cascadia Margin
 Shipboard Scientific Party
 5

2. Explanatory Notes
 Shipboard Scientific Party
 15

SECTION 2: OPERATIONS AT HOLE 857D

3. Operations at Hole 857D
 G. Foss and T. Pettigrew
 51

SECTION 3: SITE CHAPTERS

4. Site 888
 Shipboard Scientific Party
 Site summary
 55
 Principal results
 55
 Background and objectives
 56
 Seismic stratigraphy
 57
 Operations
 57
 Lithostratigraphy
 59
 Biostratigraphy
 71
 Paleomagnetism
 73
 Structural geology
 77
 Organic geochemistry
 78
 Inorganic geochemistry
 83
 Physical properties
 86
 WSTP and ADARA temperature measurements
 91
 Downhole logging
 95
 Summary and conclusions
 98
 References
 109

5. Sites 889 and 890
 Shipboard Scientific Party
 Site summaries
 127
 Principal results
 128
 Background and objectives
 129
SECTION 4: SUMMARY: CASCADIA

8. Growth of accretionary wedges off Vancouver Island and Oregon .. 381
 G.K. Westbrook

9. Summary of Cascadia drilling results .. 389
 G.K. Westbrook, B. Carson, and Shipboard Scientific Party

SECTION 5: CONTRIBUTED PAPERS

10. Regional geophysics and structural framework of the Vancouver Island Margin
 accretionary prism .. 399
 R.D. Hyndman, G.D. Spence, T. Yuan, and E.E. Davis

11. Consolidation and deformation of sediments at the toe of the central Oregon accretionary prism
 from multichannel seismic data .. 421
 G.R. Cochrane, M.E. MacKay, G.F. Moore, and J.C. Moore

SECTION 6: CORES

Core-description forms and core photographs for:

Site 888 .. 429
Sites 889 and 890 .. 479
Site 891 .. 531
Site 892 .. 555

SECTION 7: SMEAR SLIDES

Smear slide forms for:

Site 888 .. 590
Sites 889 and 890 .. 596
Site 891 .. 604
Site 892 .. 609
Leg 146 Cascadia Margin Well-log Data CD-ROM
(in back pocket)

Structure

The CD-ROM in the back of this volume is a “data-only” CD-ROM, containing depth-shifted and processed logging data provided by the Borehole Research Group at Lamont-Doherty Earth Observatory as well as shipboard GRAPE (gamma-ray attenuation porosity evaluation), index property, and magnetic susceptibility data of cores collected on board JOIDES Resolution during Leg 146. CD-ROM production was conducted by the Borehole Research Group at Lamont-Doherty Earth Observatory, Wireline Logging Operator for the Ocean Drilling Program.

The CD-ROM is structured as follows:
- **GENERAL INFORMATION directory**
 - Format documentation file
 - INDEX file
 - Software documentation file
- **LOG DATA directory**
 - README file
 - HOLE # subdirectory
 - Conventional logs subdirectory
 - General information subdirectory
 - Acronyms and units file
 - Processing history of log data file
 - Log data subdirectory
 - Individual tool data files
 - FMS and dipmeter data subdirectory
 - Dipmeter in ASCII format file(s)
 - FMS images in PBM (portable bit map—8-bit binary) format subdirectory
 - 1:1 ratio image raster files (every 10 m) subdirectory
 - Data files
 - Raster documentation file
 - 1:10 ratio image raster files (every 100 m) subdirectory
 - Data files
 - Raster documentation file
- **CORE DATA directory**
 - README document
 - SITE # subdirectory
 - GRAPE documentation file
 - Index properties documentation file
 - Magnetic susceptibility documentation file
 - HOLE # subdirectory
 - GRAPE data file
 - MAGSUS data file

The preceding structure is identical in each hole.

The INDEX file contains a summary of all the files loaded on the CD-ROM.

The software documentation file in the GENERAL INFORMATION directory contains information on which software packages work best to import PBM (portable bit map—8-bit binary) raster files. It also includes network sources for the graphics software and data compression information. The README file gives information on whom to contact with any questions about the production of or data on the CD-ROM.

All of the ASCII files (basic log, dipmeter, GRAPE, index property, and magnetic susceptibility files) are TAB delimited for compatibility with most spreadsheet and database programs. Holes that have more than one logging pass with the same tools are labeled Pass 1, Pass 2, etc. Holes that have long logging
runs are often divided into TOP, MIDDLE, and BOTTOM sections. This is noted by adding "top," "mid," or "bot" to the data file names where space permits or a "t," "m," or "b" where there is room for only one character.

In the FMS-PBM format subdirectory there are two subdirectories, 1:1 ratio with maximum 10-m-long image raster files and 1:10 ratio with maximum 100-m-long image raster files. The image raster files are named according to their depth interval. The raster documentation files contain image file parameter information necessary for use with most graphic software packages.

Summary of Leg 146 Cascadia Margin Log Data
Hole 888C:
Conventional logs
FMS data
Dipmeter data
Hole 889A:
Conventional logs
FMS data
Dipmeter data
Hole 891C:
Conventional logs
FMS data
Dipmeter data
Geochemical logs (element and oxide weight %)
Hole 892C:
Conventional logs
FMS data
Dipmeter data

Summary of Leg 146 Cascadia Margin Core Data
Holes 888A and 888B:
GRAPE data
Index property data
MAGSUS data
Holes 889A:
Index property data
MAGSUS data
Hole 889B:
GRAPE data
Index property data
MAGSUS data
Hole 889D:
Index property data
Hole 890B:
GRAPE data
Index property data
MAGSUS data
Hole 891A:
GRAPE data
MAGSUS data
Hole 891B:
Index property data
MAGSUS data
Holes 892A, 892D, and 892E:
GRAPE data
Index property data
MAGSUS data

Back-pocket Foldout
Chapter 10: Figure 10. Multichannel seismic sections along lines 89-04 (A), 89-08 (B), and 89-10 (C) across the Leg 146 drill sites.
Chapter 10: Figure 11. A. Detailed bathymetry of the southern Vancouver Island deformation front region. B. SeaMARC II acoustic imagery mosaic of the southern Vancouver Island deformation front region.

Chapter 11: Figure 2: Time section of 1989 MCS data from line 5.
Chapter 11: Figure 3. Time section of 1989 MCS data from line 9.
Chapter 11: Figure 4. Depth section of 1989 MCS data from line 5.
Chapter 11: Figure 5. Depth section of 1989 MCS data from line 9.
Chapter 11: Figure 6. Depth section of FK-filtered 1989 MCS data from line 9.
ACKNOWLEDGMENTS

The Cascadia Margin drilling program conducted during Leg 146 presented a variety of challenges, from difficult drilling conditions and the testing and operation of new downhole equipment, through bad weather and the twin hazards of mustard gas (anticipated, but fortunately not encountered) and hydrogen sulfide (not anticipated, and potentially deadly). Through all this the ship’s crew and the marine specialists performed all that we asked them, and a great deal more. We would especially like to recognize the contributions of the Captain, Tom Ribbens, and the SEDCO Drilling Superintendent, Bob Caldow, who went out of their way to meet the operational demands we placed on them. ODP Operations Superintendent Glen Foss displayed a remarkable combination of an understanding of what the scientific party wanted and a determination to achieve those ends. Brad Julson, the Laboratory Officer, dealt with a challenging range of requests with skill and good humor. Tom Pettigrew was essential to the successful deployment of borehole seals at Sites 889 and 892, and to the successful packer test at the latter site.

The ODP marine specialists performed efficiently and tirelessly; we especially thank them for their Olympian effort during many VSP runs. Their professionalism during the mustard gas and hydrogen sulfide alerts was greatly admired. We would also like to thank guest marine specialist Bob MacDonald and Hartley Hoskins for his work in preparing the VSP equipment at the Victoria port-call and during the rendezvous with the New Horizon.