14. MAGNETIC ANISOTROPY FABRICS FROM THE CASCADIA ACCRETIONARY PRISM¹

Bernard A. Housen² and Takaharu Sato³

ABSTRACT

Magnetic anisotropy fabrics were measured in 495 specimens collected from the Cascadia accretionary prism to characterize the development of mineral preferred orientation fabrics during deformation. Comparison of high-field and low-field susceptibilities was used to determine the relative contributions of the paramagnetic clay minerals and the ferrimagnetic trace minerals (magnetite, greigite, pyrrhotite) to the magnetic susceptibility fabrics. Sites 888 and 891 have anisotropy of magnetic susceptibility (AMS) fabrics that are controlled primarily by the ferrimagnetic minerals. Sites 889/890 and 892 have AMS fabrics that are controlled, to varying degrees, by both paramagnetic clays and the ferrimagnetic minerals. Rock magnetic experiments indicate that both magnetite and magnetic sulfides (greigite and/or pyrrhotite) are present in nearly all the specimens. The AMS fabrics from all sites agree well with the observed structures in spite of the complex magnetic mineralogy in these sediments. In particular, Sites 888 and 891 appear to have comparable magnetic mineralogies, along with similar depositional environments, ages, and lithologies. Using Site 888 as an undeformed reference, a weak tectonic fabric overprint is indicated by the Site 891 AMS results.

INTRODUCTION

Magnetic anisotropy measures the preferred orientation of minerals in rocks and sediments and is useful to determine changes in mineral fabrics produced by progressive deformation. Relatively recent studies of magnetic anisotropy in the Barbados (Hounslow, 1990) and Nankai (Owens, 1993) accretionary prisms have provided evidence for the development of penetrative mineral fabrics in accreting sediments. These studies both suffered from either incomplete (Hounslow, 1990) or no (Owens, 1993) identification of the mineralogical sources of magnetic susceptibility in the specimens. Because all minerals contribute to the measured (low-field) magnetic susceptibility, variations in mineralogy can produce changes in the magnetic anisotropy fabrics that are greater than those produced by changes in mineral preferred orientation due to deformation. Additionally, to use magnetic anisotropy measurements as a proxy for finite strains in deformed sediments, the susceptibility carriers must be identified (Borradaile, 1991).

With these previous results in mind, we have conducted a study of magnetic anisotropy in conjunction with rock magnetic measurements designed to determine the major sources of magnetic susceptibility in sediments collected from the Cascadia accretionary prism during Ocean Drilling Program Leg 146. Five sites were drilled (Sites 888 through 892) in two areas, one off of Vancouver Island, the other off of the Oregon coast (Fig. 1). From these sites, a total of 495 specimens were measured for this study.

Figure 1. Location map of Sites 888, 889/890, 891, and 892 drilled during Ocean Drilling Program Leg 146.

METHODS

Anisotropy of magnetic susceptibility measurements were made using KLY-2 Kappabridge magnetic susceptibility devices at the University of Michigan Paleomagnetism Laboratory, and at the Hawaii Institute for Geophysics. The KLY-2 uses a low applied field (H = 0.08 mT at a frequency of 800 Hz) to generate an induced magnetization (J) in the specimen, the intensity of which is proportional to the low-field magnetic susceptibility (k = H/J). The specimens are measured in 15 orientations to define the susceptibility tensor (k_{ij}), from which the magnitudes and directions of the principal susceptibilities (k_{max} \ge k_{int} \ge k_{min}) are calculated.

To determine the mineralogical sources of the magnetic susceptibility, measurements of high-field (300 mT <H <1000 mT) magnetic

¹Carson, B., Westbrook, G.K., Musgrave, R.J., and Suess, E. (Eds.), 1995. Proc. ODP, Sci. Results, 146 (Pt. 1): College Station, TX (Ocean Drilling Program).

²University of Michigan, Department of Geological Sciences, 1006 C.C. Little Science Building, Ann Arbor, Michigan, 48109-1063, U.S.A. (Present address: Institute for Rock Magnetism, University of Minnesota, 293 Shepherd Labs., 100 Union St. SE, Minneapolis, MN 55455-0128, U.S.A.)

³Faculty of Engineering, Niigata University, Ikarashi 2-nocho 8050, Niigata 950-21, Japan.

susceptibility were made on 121 of the specimens using a Princeton instruments Vibrating Sample Magnetometer (VSM) at the Institute for Rock Magnetism in the University of Minnesota. Above the saturation magnetization of the ferrimagnetic minerals (e.g., magnetite, greigite, pyrrhotite) in the sediments, the increase in magnetization produced by increasing the applied field is proportional to the sum of the paramagnetic, antiferromagnetic, and diamagnetic susceptibilities of the specimen (Fig. 2). In these clay-rich specimens no antiferromagnetic minerals were found, and the diamagnetic contribution (quartz, silica, and carbonates) will be negligible compared to that of the paramagnetic clays (Borradaile et al., 1987). By comparing the high-field susceptibilities with the low-field susceptibilities, the relative contributions of the paramagnetic clays and ferrimagnetic trace minerals can be determined.

Additional characterization of the ferrimagnetic trace minerals was made by thermal demagnetization of multi-component Isothermal Remanent Magnetization (mIRM) (Lowrie, 1990). For this method IRM components (low coercivity [0.05 or 0.1 T], medium coercivity [0.4 T], and high coercivity [1.3 or 1.4 T]) were given to specimens in orthogonal directions using an electromagnet. The specimens were then thermally demagnetized in 15 to 20 steps from room temperature to 650°C, with the remanence measured after each thermal step. By comparing the thermal-unblocking temperature with the applied field of the mIRM components, the magnetic minerals in a specimen can be identified (see Lowrie, 1990 for further details). These measurements were made using the magnetometers at the University of Michigan Paleomagnetism Laboratory and the Kyoto University Paleomagnetic Laboratory.

Another magnetic anisotropy method, Anhysteretic Remanent Magnetization Anisotropy (ARMA) (McCabe et al., 1985) was used to determine the preferred orientation of the ferrimagnetic minerals. This method was used to constrain the ferrimagnetic fabrics in two of the sites where the low-field susceptibility was carried by both paramagnetic and ferrimagnetic minerals. Using a DC coil to generate a 0.1 mT biasing field, an ARM is imparted to the specimen using an alternating field demagnetizer. The ARMA tensor is calculated from the results of ARMs given in nine separate orientations, according to the scheme of Girdler (1961). The Sapphire Instruments SI-4 a.f. demagnetizer in the University of Michigan Paleomagnetism Laboratory is equipped to further refine the ARMA method by allowing a partial ARM (pARM) to be imparted to a specimen over a narrow alternating field window. Using the method of Jackson et al., 1988, pARMs are given to each specimen over a 10 mT wide window, in increments from 0 to 160 mT. The magnetization of the specimen was measured with a 2-G cryogenic magnetometer after each pARM step. The distribution of pARM intensities over this range is used to determine the optimum range over which to generate the ARM for the ARMA experiments.

From each core (9.5 meters of sediment), one to five specimens were collected in one of three ways: as 6 cm3 cubes carved out of the sediment with a scalpel, as 12 cm3 octagonal cylinders carved or pressed into the sediment, or as 12 cm3, 2.5 cm diameter, 2.2 cm long paleomagnetic "minicores" drilled from epoxy-encapsulated sediments. The epoxy-encapsulated specimens were prepared by immersing a 20- to 40-cm³ quarter-round specimen in a paper cup filled with epoxy mixed with ether (to lower the viscosity of the epoxy). The specimen was placed in a vacuum chamber for 10 to 25 minutes to remove air trapped in fractures. The sample chamber was then pressurized to 800 to 1000 psi with nitrogen gas for eight to ten hours. This process fills the fractures (and a limited amount of pore space) with epoxy, allowing the minicores to be drilled from these unconsolidated sediments. Please note that the declinations of the AMS orientations at all of the sites in this study are in arbitrary "core" coordinates (i.e., have no horizontal orientation), as all specimens are not corrected for rotation of the specimens as they were drilled. Attempts were made to reorient the cores using paleomagnetism, but because of the low quality of the paleomagnetic data for the majority

Figure 2. Hysteresis loop used to determine high-field (paramagnetic) susceptibility in samples from Leg 146. The vertical axis is measured magnetization in the sample (J, Am^2/kg), and the horizontal axis is applied magnetic field (H, T). The ferrimagnetic minerals in these samples reach saturation magnetization between 0.1 T and 0.4 T. Above this value, the linear increase of J with increasing H is proportional to the paramagnetic susceptibility (k_{para}), assuming negligible contributions from antiferromagnetic phases and diamagnetic carbonates and silica.

of the specimens, reorientation of the cores into true geographic coordinates can not be made with confidence.

RESULTS

Site 888

Site 888 is on the edge of the Nitinat Fan off of Vancouver Island (Fig. 1) and was drilled as an undeformed reference site. The drilled interval (0 to 567 meters below sea floor [mbsf]) is composed of a succession of turbidites. Three lithologic units were defined during shipboard work: Unit I (0–193 mbsf), composed of clayey silt with interbedded sand, Unit II (193–452.1 mbsf), composed of very fine to medium siliciclastic sand with intervals of coarse sand and clayey silt, and Unit III (452.1–567 mbsf), composed of clayey silt with sand and pebbles (Westbrook, Carson, Musgrave, et al., 1994).

Comparison of high-field and low-field susceptibility values of Site 888 specimens indicates that paramagnetic minerals contribute less than 7% of the low-field susceptibility and that there is little downhole variability in the relative contributions of the ferrimagnetic and paramagnetic minerals to susceptibility (Fig. 3). The AMS results from this site will thus provide preferred orientations of the ferrimagnetic minerals in these sediments. The mIRM results from this site are all dominated by the low coercivity (0.1 T) component. This component has two thermal unblocking temperatures (Tub): one at about 310°C, the other between 550° and 590°C (Fig. 4). The lowcoercivity, low-Tub component is carried by either pyrrhotite or greigite (maghemite is ruled out by the reducing conditions of pore waters at Site 888 (Westbrook, Carson, Musgrave, et al., 1994)), and the low-coercivity, high-Tub component is carried by magnetite (Lowrie, 1990). Both the magnetic sulfides and magnetite are present throughout Site 888, so the AMS results will be a composite fabric representing magnetite dimensional preferred orientations and greigite/ pyrrhotite crystallographic preferred orientations. Because magnetite has a much higher susceptibility than either of the magnetic sulfides (Borradaile et al., 1987), the AMS fabrics most likely are controlled by the magnetite orientations.

The AMS results from Site 888 (Table 1) are consistent with the structures observed at this undeformed reference site. The orientations of the minimum susceptibility axes are sub-vertical throughout

Figure 3. Depth (mbsf) vs. the percentage of low-field magnetic susceptibility carried by the paramagnetic minerals in sediments from Site 888, as determined by comparing the high-field and low-field susceptibilities. Here, the majority (>90%) of the low-field susceptibility is carried by the ferrimagnetic minerals.

the hole (Fig. 5A–C), agreeing with the shipboard observations of sub-horizontal bedding at this site (Westbrook, Carson, Musgrave, et al., 1994). The shapes of the susceptibility ellipsoids are predominantly oblate, with variable degrees of anisotropy (Fig. 5D–F). There is no noticeable trend relating either the degree of anisotropy (P = k_{max}/k_{min}) or of the degree of oblateness (F = k_{in}/k_{min}) with depth in specimens from Units I and II. An increase in degree of anisotropy with depth is found in Unit III specimens (Table 1), which is consistent with observations of decreasing porosity with depth in Unit III (Westbrook, Carson, Musgrave, et al., 1994).

Site 889/890

Sites 889 and 890 were drilled in the Cascadia accretionary prism to the north of Site 888 (Fig. 1). The sediments are primarily clayey silts and silty clays, and were divided into three structural domains based on shipboard observations. Structural domain I (0–104 mbsf) consists of slope sediments with sub-horizontal bedding. Structural domain II (104–127 mbsf) is marked by beds that dip from 36° to 74° and may represent either a sedimentary slump or a tectonically tilted block. Structural domain III (127 to 380 mbsf) is characterized by the progressive development of a weak fracture fabric (with dips from 40° to 60°), incipient scaly foliation, and occasional deformation bands (Westbrook, Carson, Musgrave, et al., 1994).

Comparison of the high-field and low-field susceptibilities for Site 889/890 specimens indicates a complex variation in the susceptibility carriers in these sediments. The percentage of the low-field susceptibility carried by paramagnetic minerals (k_{HF}/k_{LF}) varies from less than 5% to 80% (Fig. 6). There is no clear relationship (with the exception of the uppermost 40 meters of sediment) between either lithological variations, structural variations, and the variation in susceptibility carriers. The values of paramagnetic susceptibility (highfield susceptibility) are relatively constant downhole, so the large variations in k_{HF}/k_{LF} can be attributed to variations in the amount and species (or both) of the ferrimagnetic minerals. The mIRM results (Fig. 7) reflect this variation. Most of the specimens are dominated by the low coercivity (0.05 T) component, but several specimens also

Figure 4. Thermal demagnetization of multi-component Isothermal Remanent Magnetization (mIRM) results from two representative samples from Site 888. The left vertical axis is normalized magnetization of the 0.1 T and 0.4 T mIRM components, the right vertical axis is the normalized intensity of the 1.4 T mIRM component. The horizontal axis is the temperature of the thermal demagnetization step (°C). In all Site 888 samples the 0.1 T component carries most of the mIRM, and two thermal unblocking temperatures (T_{ub}), (one at about 300°C, the other at about 580°C) are observed. This indicates that both greigite and/or pyrrhotite ($T_{ub} \sim 300^{\circ}$ C) and magnetic ($T_{ub} \sim 580^{\circ}$ C) are the dominant magnetic minerals in these sediments.

have significant contributions from the 0.4 and 1.4 T components as well. These higher coercivity components indicate that fine-grained magnetite and/or pyrrhotite are present in the Site 889/890 specimens. Like the Site 888 specimens, two unblocking temperatures (one at about 310°C, the other between 550° and 590°C) are observed, indicating the presence of both magnetic sulfides and magnetite. (Again, the reducing conditions at this site rule out maghemite for the low T_{ub} component. In a few of the specimens the mIRM is carried almost entirely by the 310°C T_{ub} component (Fig. 7C). The AMS measurements from Site 889/890 specimens will thus represent composite fabrics of paramagnetic clays, magnetite, and magnetic sulfides.

Because the AMS results will record the sum of these depositional, deformation, and diagenetic fabrics, the use of AMS as an indicator of structure must account for the occurrence of composite magnetic fabrics. Experiments and numerical models on composite magnetic fabrics have shown that the shape of the susceptibility ellipsoid is most sensitive to the effects of composite fabrics, while the orientation of the minimum AMS axis is relatively insensitive to

Core section	Denth	K	max	K	int	K	min	к	ĸ	K.	к				AMS
interval (cm)	(mbsf)	Dec	Inc	Dec	Inc	Dec	Inc	(1×10^{-6})	(1×10^{-6})	(1×10^{-6})	(1×10^{-6})	L	F	Р	dip
146-888B-															
1H-3, 42	3.4	210	18	302	7	51	71	956.4	944.0	932.7	944.4	1.01	1.01	1.03	19
1H-6, 38	7.9	240	58	61	32	330	0	2372.5	2276.4	2188.6	2279.2	1.04	1.04	1.08	90
2H-2, 54	11.5	89	34	209	36	330	36	2726.8	2690.0	2604.2	2673.7	1.01	1.03	1.05	54
2H-7, 9	14.6	212	16	121	2	23	74	2475.4	2446.6	2161.5	2361.2	1.01	1.13	1.15	16
311-2, 43	17.0	173	2	203	3	44	80	1/53.4	1/45.9	1488.8	1002.7	1.00	1.17	1.18	16
AH-3 56	24.5	223	37	130	10	15	91	2129.9	2101.7	1890.2	2042.0	1.01	1.11	1.12	10
4H-5 88	31.4	246	5	336	0	67	85	3902.9	3861.4	3446.2	3736.8	1.01	1.12	1 13	5
5H-4, 65	39.2	260	7	170	ő	77	83	2915.8	2906.8	2477.8	2766.8	1.00	1.17	1.18	7
5H-6, 45	42.0	118	52	228	15	328	34	3209.3	3096.5	3072.8	3126.2	1.04	1.01	1.04	56
6H-2, 72	45.7	176	8	266	1	2	82	2721.8	2712.2	2233.9	2556.0	1.00	1.21	1.22	8
6H-6, 67	51.7	210	12	120	1	26	78	2488.9	2425.0	2122.8	2345.6	1.03	1.14	1.17	12
7H-4, 88	58.4	219	10	310	3	57	79	2070.0	2056.2	1911.6	2012.6	1.01	1.08	1.08	11
7H-7, 44	62.5	174	3	265	6	60	84	2976.7	2954.1	2501.6	2810.8	1.01	1.18	1.19	6
8H-5, 92	69.4	190	5	99	3	335	84	2060.6	2024.1	1833.6	1972.8	1.02	1.10	1.12	6
8H-6, 26	70.3	185	13	95	2	354	77	2667.8	2585.3	2271.7	2508.3	1.03	1.14	1.17	13
911-2, 07	74.2	194	8	280	10	182	77	2/4/.9	2094.0	2529.4	2057.5	1.02	1.07	1.09	13
10H-2 70	83.8	199	15	275	0	182	70	2002.8	2037.5	1728.0	1052.5	1.01	1.18	1.09	15
10H-6 86	89.9	200	7	199	9	50	79	3884.3	3682.4	3237 4	3601.4	1.02	1.10	1.20	ii
11H-2, 30	92.8	204	5	294	2	48	84	2016.6	1991 4	1839.9	1949 3	1.01	1.08	1.10	6
11H-5, 40	97.3	199	12	289	ã.	39	77	2776.4	2728.5	2625.5	2710.1	1.02	1.04	1.06	13
11H-6, 115	99.5	190	60	335	25	72	15	3475.4	3374.3	3267.0	3372.2	1.03	1.03	1.06	75
12H-1, 17	100.7	162	27	64	14	310	59	6699.5	6149.6	5583.9	6144.3	1.09	1.10	1.20	31
12H-3, 10	103.6	194	34	76	35	315	37	6718.9	6313.9	6258.7	6430.5	1.06	1.01	1.07	53
13H-1, 13	108.7	147	18	53	12	292	68	1792.2	1757.8	1663.0	1737.7	1.02	1.06	1.08	22
13H-2, 38	110.5	175	60	325	27	62	13	2051.0	2024.6	2000.9	2025.5	1.01	1.01	1.03	77
13H-4, 72	113.8	144	14	53	2	314	76	2716.9	2663.4	2603.7	2661.3	1.02	1.02	1.04	14
14H-1, 89	119.0	209	11	302	15	84	71	2249.1	2122.0	1940.4	2105.8	1.00	1.09	1.10	19
14H-2, 40	120.0	200	30	13	57	142	39	2004.0	2305.6	2230.4	2408.8	1.02	1.15	1.10	10
14H-4 110	123.7	168	13	78	5	288	84	2539.9	2423.0	2180.3	2250.1	1.02	1.09	1.12	6
15H-1, 136	129.0	175	37	267	2	360	52	1465.4	1313.6	1021.3	1266.8	1.12	1.29	1.43	38
15H-2, 80	129.9	210	8	119	ĩ	18	82	1241.4	1219.3	1069.8	1176.8	1.02	1.14	1.16	8
15H-3,60	131.2	203	15	294	2	32	75	1231.6	1219.4	1067.9	1173.0	1.01	1.14	1.15	15
15H-4, 10	132.2	204	2	114	1	7	88	1480.0	1448.3	1321.0	1416.4	1.02	1.10	1.12	2
16H-1,80	137.9	237	8	145	15	354	73	1925.9	1866.0	1672.9	1821.6	1.03	1.12	1.15	17
16H-3, 57	140.7	209	15	119	1	27	75	2076.2	2045.7	1829.1	1983.7	1.01	1.12	1.14	15
17H-3, 82	150.4	195	17	105	1	13	73	2360.0	2229.9	1962.9	2184.3	1.06	1.14	1.20	17
17H-5,45	153.1	212	29	302	1	33	61	2304.9	2217.2	2071.5	2197.9	1.04	1.07	1.11	29
19X-3, 59	169.2	203	9	294	4	4/	80	2292.3	2281.9	1997.7	2190.6	1.00	1.14	1.15	10
27H-1 27	234.5	103	26	105	5	205	63	2203.0	1820.6	1654.0	1827.6	1 10	1.12	1.15	27
28H-1, 53	243.8	177	22	268	4	295	68	2486.8	2419 5	2192.4	2366.2	1.03	1.10	1.13	22
30H-1, 118	262.0	160	24	264	29	37	51	2092.4	2068.0	2015.8	2058.7	1.01	1.03	1.04	39
33H-1, 40	283.2	195	36	100	6	2	53	5070.0	5029.8	4882.9	4994.2	1.01	1.03	1.04	37
36H-1, 36	310.4	210	1	120	4	309	86	2595.4	2556.9	2390.6	2514.3	1.02	1.07	1.09	4
36H-4, 60	313.3	155	18	245	1	340	72	1877.1	1848.5	1798.4	1841.3	1.02	1.03	1.04	18
42X-1, 22	366.7	273	0	3	1	161	89	2144.7	2076.3	1769.6	1996.9	1.03	1.17	1.21	1
42X-2, 107	367.3	125	29	216	1	307	61	2775.4	2669.2	2427.0	2623.9	1.04	1.10	1.14	29
44X-6, 2	393.0	215	13	124	3	22	77	1838.6	1818.0	1608.6	1755.1	1.01	1.13	1.14	13
45X-1, 18	395.2	188	1	2/9	2	69	88	1927.3	1902.2	1791.9	18/3.8	1.01	1.00	1.08	2
43A-2, 113 57X-2, 101	397.0	281	24	180	5	269	8/	2201.5	2243.2	2044.2	2183.0	1.01	1.10	1.11	24
57X-3, 107	500.3	61	4	330	15	165	74	4757.0	4718 3	4454 0	4643 7	1.00	1.06	1.07	16
59P-1, 43	514.4	48	6	138	4	257	83	3135.4	3009.9	2722.9	2956.1	1.04	1.11	1.15	7
60X-CC, 21	515.6	240	ĭ	330	11	144	79	2600.6	2580.6	2230.0	2470.4	1.01	1.16	1.17	11
61X-1, 145	524.3	173	7	265	16	61	72	4197.2	3974.5	3701.4	3957.7	1.06	1.07	1.13	18
62X-3, 119	535.7	183	16	90	9	333	71	4383.2	4105.6	3475.6	3988.2	1.07	1.18	1.26	19
62X-CC, 12	535.9	110	11	20	4	269	79	4685.4	4672.5	3817.6	4391.8	1.00	1.22	1.23	11
64X-1, 71	549.9	27	4	297	11	135	78	4248.3	4032.7	3420.5	3900.5	1.05	1.18	1.24	12
65X-2, 68	560.3	201	24	108	7	3	65	4447.4	3906.6	3547.3	3967.1	1.14	1.10	1.25	25

Table 1. Anisotropy of magnetic susceptibility (AMS) data for Site 888.

Notes: Dec = declination (degrees); Inc = inclination (degrees); K_{max} , K_{int} , K_{min} , K_{mean} in SI volume units; $L = K_{max}/K_{int}$; $F = K_{int}/K_{min}$; $P = K_{max}/K_{min}$; AMS dip = (90 - K_{max} inc).

composite fabrics (Housen et al., 1993). In most cases the minimum AMS axis reflects the orientation of the dominant planar fabric (i.e., bedding or cleavage) in a specimen. The minimum AMS axes will thus serve as an accurate measure of the orientations of the dominant planar fabrics in the sediments from this site. Because composite fabrics tend (when the component fabrics are not parallel to each other) to depress the degree of anisotropy, the results from this site should be viewed as minimum estimates of the anisotropy of the dominant fabric.

The AMS results from Site 889/890 (Table 2) agree well with the observed structures, given the complexities of the susceptibility carriers at this site. In structural domain I the AMS foliations (the plane perpendicular to the minimum axis) are predominantly sub-horizon-

tal, reflecting the shallowly dipping bedding recorded in the upper 104 m of the sediment (Fig. 8A and B). The shapes of the susceptibility ellipsoids vary from moderately prolate to highly oblate (Fig. 8E and F). In structural domain II the AMS foliations are either steeply dipping (52° to 85°) or sub-horizontal (Fig. 8C). The steep magnetic foliations accurately reflect the moderately to steeply dipping bedding that characterizes structural domain II. The shapes of the susceptibility ellipsoids in these specimens are very weakly anisotropic and scattered (Fig. 8G). The AMS fabrics from structural domain III are highly variable in orientation (Fig. 8D), with weakly anisotropic susceptibility ellipsoids (Fig. 8H). Closer examination of the data reveals that the shallowly dipping AMS fabrics occur where shallowly dipping bedding was measured during shipboard observation of

Figure 5. Anisotropy of magnetic susceptibility results from Site 888. The basic structures (subhorizontal bedding) and lithologic unit boundaries are denoted in the schematic column. A-C. Equalarea stereographic projections of the principal susceptibility axes (kmax = solid squares, kint = solid triangles, k_{min}=solid circles) orientations for each lithologic unit. Note that the declinations of the axes are in un-oriented core coordinates. The minimum axes for almost all samples are steeply dipping. D-F. The shapes of the susceptibility ellipsoids are shown on Flinn-type diagrams. Vertical axes are magnetic lineation ($L = k_{max}/k_{int}$) and horizontal axes are magnetic foliations ($F = k_{int}/k_{int}$ kmin). For almost all samples, the AMS ellipsoids are nearly uniaxial-oblate in shape.

the cores. Where steeply dipping AMS fabrics occur, fractures with dips between 40° and 60° are the dominant structures (Westbrook, Carson, Musgrave, et al., 1994). The close agreement between the fracture dips and the AMS fabric dips suggests that the AMS fabrics reflect the dominant fracture orientation. Within one such location (Sample 146-889A-41X-2, 103 cm) steeply dipping bedding was also measured, so the fracture orientations (and AMS) could represent bedding in these sub-domains as well.

Measurement of the preferred orientation of the ferrimagnetic minerals, using ARMA, avoids the effects of composite fabrics that arise from variations in the low-field susceptibility carriers. Because both magnetic and magnetic sulfides are present, however, composite ARMA fabrics may still occur in these specimens. The coercivity spectra of specimens from Site 889 are similar throughout the section, with a peak in the pARM curves between 15 and 35 mT (Fig. 9). An alternating field window from 5 to 60 mT was selected for the ARMA experiments. The ARMA results (Table 3) agree fairly well

with the AMS fabrics. In structural domain I the ARMA foliation dips from 4° to 59° (Fig. 10A). All of the ARMA dips greater than 30° occur between 79 and 90 mbsf, and may represent a slump block within this interval. The lack of ARMA fabrics with dips greater than 60° in this interval (in contrast to the steep dips of the AMS foliations in several specimens) indicates that the steep AMS foliation dips are most likely inverse magnetic fabrics (Rochette, 1987; Potter and Stephenson, 1988) arising from elongate single-domain magnetites. The shapes of the ARMA ellipsoids vary between prolate to strongly oblate (Fig. 10D). In structural domain II ARMA dips are all between 60° and 90°, which agrees very well with the bedding dips in this domain (Fig. 10B). The shapes of the ARMA ellipsoids are nearly triaxial (Fig. 10E). The ARMA foliations in structural domain III have more widely variable dips, ranging from 7° to 75° (Fig. 10C). In most cases ARMA and AMS foliations from the same interval have similar dips. The shapes of the ARMA ellipsoids in domain III vary from weakly prolate to strongly oblate (Fig. 10F).

Figure 6. Depth (mbsf) vs. the percentage of low-field magnetic susceptibility carried by the paramagnetic minerals in sediments from Site 889/890, as determined by comparing the high-field and low-field susceptibilities. The low-field susceptibility carriers vary between greater than 90% ferrimagnetic minerals in the upper 40 meters, to 80% paramagnetic minerals deeper in the section.

Site 891

Site 891 was drilled across the frontal thrust in the Cascadia accretionary prism off of the Oregon coast (Fig. 1). Core recovery at this site was about 10% (and in the upper 100 meters less than 2%), which hampered interpretation of the section. The lithology of the drilled interval was fairly uniform, consisting of clayey silt, silt, and fine to medium sand intervals. Based on the limited information, five structural domains were defined during shipboard observations (Westbrook, Carson, Musgrave, et al., 1994). Structural domain I (0-198 mbsf) is characterized by steeply dipping bedding with occasional deformation bands. Structural domain II (198-95 mbsf) is marked by fracture fabrics of various intensity, which dip between 30° and 60°. Structural domain III (295-321 mbsf) is defined by a beddingparallel fissility, without any noticeable fracture fabric. Structural domain IV (321-383 mbsf) has a well-developed, steeply dipping fracture fabric. Structural domain V (383-472 mbsf) is characterized by weak, bedding-parallel fissility and a lack of fracture fabrics.

Comparison between the high-field and low-field susceptibilities (Fig. 11) indicates that for most of the section less than 10% of the low-field susceptibility is carried by paramagnetic minerals, so the AMS results will reflect the fabrics of the ferrimagnetic minerals. The mIRM results (Fig. 12) show that the low-coercivity (0.1 T) component carries the majority of the mIRM. This component has two thermal unblocking temperatures (one at about 310°C, the other between 550° and 590°C). The unblocking temperatures, combined with the reducing conditions in the pore waters (Westbrook, Carson, Musgrave, et al., 1994), indicates that both magnetic sulfides (greigite and/or pyrrhotite) and magnetite are the most abundant ferrimagnetic minerals in these sediments, and so the AMS fabrics will be controlled by the orientations of these minerals.

The AMS results from Site 891 (Table 4) agree well with the observed structural fabrics. In structural domain I (Fig. 13A), the AMS

Figure 7. Thermal demagnetization of mIRM results for representative Site 889/890 samples. The vertical axes are magnetization of the mIRM components (mA/m), the horizontal axes are temperature of the thermal demagnetization step. **A.** Sample dominated by the 0.05 T component, with two thermal unblocking temperatures (T_{ub}), one at about 300°C, the other at about 580°C. This indicates that both greigite and/or pyrrhotite ($T_{ub} \sim 300^{\circ}$ C) and magnetic ($T_{ub} \sim 580^{\circ}$ C) are the dominant magnetic minerals in this sample. **B.** Sample with strong contributions from both the 0.05 T and 0.4 T components, with T_{ub} similar to those in A. **C.** Sample dominated by 0.05 T (with a relatively strong 1.4 T component), which is carried almost entirely by greigite or pyrrhotite, indicated by the removal of nearly all the mIRM after the 320°C step.

foliations dip between 50° and 88°, which agrees closely with the measured bedding dips in this interval. The shapes of the AMS ellipsoids are predominantly oblate (Fig. 13F) and moderately to highly anisotropic. The specimens with prolate AMS ellipsoids occur near deformation bands in Cores 146-891B-20X to 23X. In structural domain II the AMS fabrics are much more variable in orientation (Fig.

Table 2. Anisotropy of magnetic susceptibility	y (AMS) data for Site 889/89	0.
--	------------------------------	----

Core section	Denth	K	tax.	K	nt	K,	nin	K	ĸ	K	ĸ				AMS
interval (cm)	(mbsf)	Dec	Inc	Dec	Inc	Dec	Inc	(1×10^{-6})	(1×10^{-6})	(1×10^{-6})	(1×10^{-6})	L	F	Р	dip
$\begin{array}{c} 146-889A,\\ 1H-1,29\\ 2H-2,66\\ 2H-6,109\\ 3H-2,60\\ 3H-5,36\\ 3H-7,82\\ 4H-5,74\\ 4H-6,78\\ 4H-6C,30\\ 5H-1,102\\ 5H-2,14\\ 5H-6,69\\ 6H-1,22\\ 6H-2,21\\ 4H-6,78\\ 4H-CC,30\\ 5H-2,14\\ 5H-6,69\\ 6H-1,22\\ 6H-2,21\\ 6H-3,121\\ 6H-4,115\\ 6H-5,46\\ 7H-1,89\\ 7H-1,89\\ 7H-3,7\\ 8H-1,40\\ 8H-2,39\\ 8H-4,29\\ 9H-2,33\\ 9H-6,82\\ 10H-2,60\\ 11H-1,62\\ 12H-3,72\\ 12H-4,67\\ 12H-6,22\\ 14H-2,32\\ 17X-1,12\\ 12H-4,67\\ 12H-6,22\\ 14H-2,32\\ 17X-1,12\\ 17X-2,14\\ 18X-5,72\\ 19X-2,75\\ 19X-3,75\\ 20X-1,69\\ 20X-4,118\\ 22X-6,111\\ 26X-1,142\\ 34X-3,82\\ 40X-1,137\\ 40X-2,137\\ 40X-3,27\\ 40X-3,27\\ 40X-4,23\\ \end{array}$	20.3 31.7 38.1 40.1 44.4 47.9 54.0 55.5 58.4 59.6 66.2 67.7 69.1 70.8 70.8 70.8 70.8 72.0 72.7 77.9 80.1 86.9 88.4 91.3 96.3 101.5 106.1 114.4 119.6 122.1 112.3 125.8 128.9 130.2 130.9 145.2 151.4 152.7 159.3 164.0 184.6 208.2 261.0 302.9 304.4 307.3 307.7 310.8 317.7 317.7 317.7 317.8 317.7 317.7 317.8 317.7 317.8 317.7 317.8 317.7 317.8 317.7 317.8 317.7 3	$\begin{array}{c} 247\\ 99\\ 152\\ 94\\ 140\\ 145\\ 329\\ 163\\ 244\\ 208\\ 8\\ 179\\ 169\\ 341\\ 140\\ 151\\ 149\\ 333\\ 303\\ 297\\ 202\\ 240\\ 222\\ 262\\ 73\\ 306\\ 298\\ 142\\ 243\\ 310\\ 226\\ 125\\ 95\\ 222\\ 316\\ 336\\ 133\\ 286\\ 160\\ 284\\ 91\\ 116\\ 55\\ 2\\ 2176\\ 16\\ 37\\ 300\\ 82 \end{array}$	$\begin{array}{c} 9\\ 7\\ 13\\ 3\\ 12\\ 12\\ 1\\ 8\\ 16\\ 13\\ 68\\ 3\\ 11\\ 2\\ 9\\ 11\\ 30\\ 21\\ 8\\ 20\\ 11\\ 11\\ 4\\ 22\\ 80\\ 10\\ 56\\ 380\\ 8\\ 10\\ 8\\ 5\\ 67\\ 13\\ 6\\ 71\\ 0\\ 31\\ 14\\ 1\\ 0\\ 0\\ 2\\ 53\\ 10\\ 5\\ 5\end{array}$	$\begin{array}{c} 155\\ 188\\ 243\\ 184\\ 232\\ 237\\ 238\\ 254\\ 347\\ 115\\ 149\\ 270\\ 261\\ 74\\ 230\\ 60\\ 56\\ 196\\ 170\\ 39\\ 107\\ 143\\ 125\\ 1\\ 327\\ 150\\ 207\\ 38\\ 351\\ 48\\ 88\\ 216\\ 185\\ 129\\ 226\\ 191\\ 38\\ 189\\ 66\\ 350\\ 17\\ 0\\ 26\\ 145\\ 271\\ 84\\ 142\\ 133\\ 37\\ 350\\ \end{array}$	$\begin{array}{c} 10\\ 1\\ 5\\ 9\\ 9\\ 7\\ 25\\ 7\\ 38\\ 16\\ 12\\ 5\\ 2\\ 6\\ 17\\ 5\\ 2\\ 6\\ 17\\ 5\\ 60\\ 56\\ 12\\ 31\\ 34\\ 10\\ 2\\ 56\\ 12\\ 6\\ 8\\ 5\\ 5\\ 18\\ 2\\ 20\\ 23\\ 51\\ 2\\ 4\\ 5\\ 4\\ 23\\ 54\\ 57\\ 7\\ 7\\ 42\\ 31\\ 54\\ 9\end{array}$	20 2 353 344 357 355 62 28 135 336 243 78 39 176 295 270 77 41 202 295 270 77 41 202 348 347 327 151 189 60 107 238 89 142 238 89 142 238 89 142 238 89 142 238 89 142 238 89 142 238 89 142 238 89 142 238 89 142 238 89 142 238 89 142 238 89 142 238 89 142 238 89 142 238 89 142 238 236 336 107 238 89 142 238 239 142 238 239 142 238 239 142 238 239 142 238 239 142 238 239 142 238 239 142 238 239 142 235 238 239 142 238 239 142 238 239 142 238 239 142 238 239 142 238 239 142 238 239 142 238 239 142 238 239 242 256 238 239 242 256 257 250 221 250 221 250 221 250 221 250 225 225 226 225 227 220 221 235 225 227 227 228 227 228 227 228 229 228 229 229 220 221 225 227 226 227 228 227 228 227 228 227 228 227 227	$\begin{array}{c} 77\\ 89\\ 76\\ 80\\ 75\\ 76\\ 65\\ 80\\ 47\\ 70\\ 13\\ 74\\ 74\\ 74\\ 88\\ 7\\ 79\\ 69\\ 21\\ 20\\ 33\\ 66\\ 57\\ 54\\ 48\\ 4\\ 80\\ 33\\ 32\\ 66\\ 57\\ 54\\ 48\\ 4\\ 80\\ 79\\ 70\\ 84\\ 12\\ 63\\ 38\\ 19\\ 86\\ 58\\ 55\\ 67\\ 36\\ 33\\ 43\\ 26\\ 57\\ 55\\ 80\\ \end{array}$	$\begin{array}{c} 1093.8\\ 1177.6\\ 887.8\\ 768.9\\ 501.2\\ 848.9\\ 501.2\\ 848.9\\ 1718.6\\ 319.3\\ 232.5\\ 129.5\\ 129.5\\ 129.5\\ 129.5\\ 129.5\\ 129.5\\ 129.5\\ 129.5\\ 129.5\\ 129.5\\ 129.5\\ 129.5\\ 129.5\\ 129.5\\ 146.6\\ 130.5\\ 244.8\\ 1251.1\\ 1707.0\\ 1234.6\\ 146.6\\ 140.6\\ 100.8\\ 103.7\\ 925.0\\ 1677.4\\ 146.6\\ 140.6\\ 100.8\\ 103.7\\ 925.0\\ 1677.4\\ 146.6\\ 140.6\\ 100.8\\ 103.7\\ 925.0\\ 1677.4\\ 146.6\\ 140.6\\ 100.8\\ 103.7\\ 925.0\\ 1677.4\\ 146.6\\ 140.6\\ 100.8\\ 103.7\\ 925.0\\ 1677.4\\ 146.6\\ 140.6\\ 100.8\\ 100.7\\ 925.0\\ 1677.4\\ 146.6\\ 140.6\\ 100.8\\ 100.7\\ 925.0\\ 1677.4\\ 146.6\\ 140.6\\ 100.8\\ 100.7\\ 925.0\\ 114.5\\ 98.8\\ 94.3\\ 108.2\\ 102.0\\ 124.1\\ 114.5\\ 98.8\\ 94.3\\ 103.2\\ 102.0\\ 135.5\\ 111.6\\ 123.5\\ 111.6\\ 111.6\\ 123.5\\ 111.6\\ 111.6\\ 123.5\\ 111.6\\ 111.6\\ 123.5\\ 111.6\\ $	1031.3 1164.5 878.4 758.6 491.5 839.1 1690.7 314.0 221.2 129.3 115.2 105.2 124.3 235.0 1210.4 1659.2 1166.2 655.9 106.5 113.1 145.0 138.4 99.9 103.2 904.2 1599.6 1530.7 109.0 170.4 93.4 92.6 60.2 76.0 61.2 74.7 457.4 56.3 82.9 107.6 75.3 96.5 123.0 113.3 96.9 93.5 102.5 101.9 133.8 110.5 122.6	1003.9 1116.8 858.7 728.4 468.3 820.0 1654.5 308.7 218.3 128.2 114.3 103.2 123.2 228.2 228.2 114.3 103.2 123.2 228.2 114.3 103.2 123.2 228.2 117.4 1475.7 1160.1 646.8 104.9 111.7 4 1475.7 1160.1 894.7 137.4 135.0 96.1 894.7 137.4 135.0 96.1 894.7 1576.9 1455.1 894.7 1576.9 1455.1 80.4 71.9 455.1 81.8 105.2 92.2 59.6 60.4 71.9 455.1 81.8 105.2 91.2 94.5 118.9 119.9	1043.0 1153.0 875.0 752.0 487.0 836.0 1687.9 314.0 224.0 129.0 105.0 126.0 236.0 1193.0 1614.0 1187.0 659.0 106.0 113.0 1143.0 113.0 1143.0 138.0 99.0 908.0 1618.0 1538.9 109.0 170.0 93.0 93.0 60.0 76.0 61.0 74.0 464.0 56.0 83.0 107.0 93.0 97.0 93.0 97.0 93.0 102.0 113.	1.06 1.01 1.01 1.02 1.02 1.02 1.02 1.05 1.00 1.00 1.01 1.03 1.03 1.03 1.03 1.03	1.03 1.04 1.02 1.04 1.05 1.02 1.02 1.01 1.01 1.01 1.01 1.03 1.08 1.12 1.01 1.03 1.08 1.12 1.01 1.01 1.01 1.01 1.01 1.01 1.01	$\begin{array}{c} 1.09\\ 1.05\\ 1.03\\ 1.06\\ 1.07\\ 1.04\\ 1.03\\ 1.07\\ 1.01\\ 1.03\\ 1.06\\ 1.07\\ 1.01\\ 1.03\\ 1.06\\ 1.07\\ 1.01\\ 1.03\\ 1.06\\ 1.02\\ 1.02\\ 1.07\\ 1.04\\ 1.02\\ 1.07\\ 1.04\\ 1.02\\ 1.07\\ 1.04\\ 1.02\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.02\\ 1.03\\$	$\begin{array}{c} 13\\1\\1\\14\\10\\16\\14\\26\\11\\43\\21\\77\\16\\22\\3\\11\\21\\69\\70\\57\\24\\34\\36\\10\\58\\58\\58\\58\\58\\10\\11\\20\\6\\78\\27\\52\\15\\23\\54\\57\\47\\43\\3\\55\\10\end{array}$
146-889B 4R-3, 3 6R-1, 37 7R-4, 42 8R-1, 88 8R-4, 19 9R-1, 72 10R-2, 97 12R-1, 71 13R-3, 60 15R-1, 122 17R-1, 113	227.8 244.7 257.7 263.6 267.4 272.3 282.9 298.9 310.5 325.8 343.2	238 344 321 97 91 106 68 341 280 183 62	30 24 24 49 16 26 15 33 1 35 11	123 245 55 284 196 219 273 218 11 324 231	36 20 7 41 43 40 74 40 19 49 79	356 120 160 190 345 353 159 96 187 79 331	40 58 65 4 239 7 33 71 20 2	119.4 70.3 148.8 302.7 183.4 90.5 286.4 138.0 132.5 123.7 137.4	118.0 70.1 147.9 297.5 179.3 90.2 284.5 137.8 131.9 123.1 136.9	116.5 69.6 147.2 293.8 177.2 281.2 135.2 131.6 122.1 133.7	118.0 70.0 148.0 298.0 180.0 90.0 284.0 137.0 132.0 123.0 136.0	$\begin{array}{c} 1.01 \\ 1.00 \\ 1.01 \\ 1.02 \\ 1.02 \\ 1.00 \\ 1.01 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \end{array}$	$\begin{array}{c} 1.01 \\ 1.01 \\ 1.00 \\ 1.01 \\ 1.01 \\ 1.01 \\ 1.01 \\ 1.02 \\ 1.00 \\ 1.01 \\ 1.02 \end{array}$	$\begin{array}{c} 1.02 \\ 1.01 \\ 1.03 \\ 1.04 \\ 1.01 \\ 1.02 \\ 1.02 \\ 1.01 \\ 1.01 \\ 1.03 \end{array}$	51 32 26 86 48 51 83 57 19 70 88
146-889D 3X-1, 60 4N-1, 88 4N-2, 10	140.6 150.4 151.1	179 179 64	51 35 12	279 86 154	8 4 6	15 350 268	38 54 76	89.1 282.8 155.9	88.6 279.6 154.9	86.3 274.6 148.2	88.0 279.0 153.0	1.00 1.01 1.01	1.03 1.02 1.05	1.03 1.03 1.05	52 36 14
$\begin{array}{c} 146\text{-}890B\\ 1\text{H-}1, 10\\ 1\text{H-}1, 132\\ 1\text{H-}5, 59\\ 2\text{H-}2, 84\\ 2\text{H-}5, 90\\ 3\text{H-}2, 64\\ 3\text{H-}4, 35\\ 3\text{H-}6, 81\\ 5\text{H-}3, 46\\ 5\text{H-}5, 74\\ 5\text{H-}7, 102\\ \end{array}$	0.1 1.3 6.6 9.7 14.4 18.9 21.6 25.1 41.4 44.4 47.5	141 64 304 84 306 276 139 125 71 260 88	73 62 5 6 31 1 19 5 8 16 5	307 197 36 353 216 7 232 216 181 162 182	17 20 10 2 1 12 10 18 69 25 42	39 294 190 248 124 181 348 20 338 19 352	4 19 79 84 59 78 68 72 20 59 48	714.2 1046.7 979.7 1431.8 1480.4 122.4 1260.8 107.9 108.8 116.3 215.0	711.6 1041.6 968.3 1416.3 1469.8 120.8 1249.6 107.4 108.1 114.6 208.8	701.1 1010.6 937.9 1249.7 1444.7 119.8 1224.5 105.8 107.1 114.1 200.2	709.0 1033.0 962.0 1365.9 1465.0 121.0 1245.0 107.0 108.0 115.0 208.0	1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01	1.02 1.03 1.03 1.13 1.02 1.01 1.02 1.01 1.00 1.04	$1.02 \\ 1.04 \\ 1.04 \\ 1.15 \\ 1.02 \\ 1.02 \\ 1.03 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.07 \\ $	86 71 11 6 32 12 22 18 70 31 42

Notes: Dec = declination (degrees); Inc = inclination (degrees); K_{max} , K_{int} , K_{mean} in SI volume units; $L = K_{max}/K_{int}$; $F = K_{int}/K_{min}$; $P = K_{max}/K_{min}$; AMS dip = (90-K_{min} inc).

Figure 8. AMS results and schematic column of the principal structures (bedding, fracture fabrics, and deformation bands) and boundaries of the structural domains of Site 889/890. A-D. The orientations of the AMS fabrics are plotted as histograms of AMS foliation dips for each structural domain. The AMS foliation dips are defined as 90° (inclination of the minimum axis) for each sample, and represent the dips of the dominant planar fabric measured by AMS in these samples. E-H. The shapes of the AMS ellipsoids are given as Flinn-type diagrams, as in Figure 5.

Figure 9. pARM curves for representative Site 889/890 samples. The vertical axis are magnetization (mA/m), and the horizontal axes are the intensities of the alternating field used to generate the pARM for each step. A 10-mT-wide window was used, and the center of the window was marked in increments of 10 mT from 5 to 155 mT. All samples have peak pARMs between 15 mT and 35 mT, with most of the pARM occurring between 5 and 60 mT.

13B). The highest concentration of AMS foliation dips occurs between 40° and 50°, which agrees well with the orientations of the fracture fabrics in this domain. The shapes of the AMS el psoids are with few exceptions oblate and moderately anisotropic (1 g. 13G). The AMS foliations in structural domain III dip between 20° and 60°, which is similar to the dips of the fissility fabrics which characterize this interval (Fig. 13C). The shapes of the AMS ellipsoids in this domain vary between moderately prolate to oblate (Fig. 13H). In structural domain IV the AMS foliations dip predominantly between 30° and 70° (Fig. 13D), which, like domain II, agrees well with the measured dips of the fracture fabrics in this domain. The shapes of the AMS ellipsoids in domain IV are almost all moderately oblate (Fig. 13I). In structural domain V the distribution of the AMS foliation dips has two peaks (one between 5° and 40°, the other between 50° and 70°; Fig. 13E). The steeper AMS foliation dips occur in the upper portion of domain V (from 383 to 446 mbsf); below 446 mbsf all of the AMS foliation dips are shallow. The steeply dipping AMS fabrics occur near deformation bands, and may also be the result of a postulated fault between 410 and 446 mbsf (Westbrook, Carson, Musgrave, et al., 1994). The shapes of the AMS ellipsoids in domain V are mostly oblate (Fig. 13J). One specimen, which was taken near a deformation band in Core 146-891B-55X, has a prolate AMS ellipsoid.

Site 892

Site 892 was drilled through a thrust fault in the upper portion of the Cascadia accretionary prism to the E-NE of Site 891 (Fig. 1). The lithology of the drilled interval is clayey silt and silty clay. Based on shipboard observations, three structural domains were defined at this site (Westbrook, Carson, Musgrave, et al., 1994). Structural domain I (0 to 52 mbsf) was defined primarily by a change in bedding dips from 20°-36° above 52 mbsf to dips less than 20° below 52 mbsf in Hole 892A. Bedding dips in Hole 892D are shallow (less than 20°), and do not vary across the boundary at 52 mbsf. A reversal in biostratigraphic ages occurs near 52 mbsf, which, combined with the variation in dips in Hole 892A, indicates the presence of a thrust fault at this depth (Westbrook, Carson, Musgrave, et al., 1994). Structural domain II (52-110 mbsf) is marked by shallow (10° to 20°) bedding dips and a weak, steeply dipping fracture fabric. Domain III (110 to 170 mbsf) is characterized by the occurrence of well-developed stratal disruption and mélange fabrics. The mélange fabrics dip between 10° and 20°.

A wide variation in the relative contributions of paramagnetic clays and ferrimagnetic minerals in the Site 892 specimens is found by comparison between the high-field and low-field susceptibilities (Fig. 14). The contribution of the paramagnetic minerals to the lowfield susceptibility (k_{HF}/k_{LF}) varies from 20% to 80%. The AMS results from this site will thus represent composite magnetic fabrics, such as were found in the Site 889/890 specimens. Like the Site 889/ 890 specimens, the paramagnetic susceptibility is relatively constant at Site 892, so the variation in kHF/kLF can be attributed to variations in the amount and species of the ferrimagnetic minerals. In the mIRM experiments the low coercivity (0.05 T) component carried the majority of the mIRM, and as at the previous site, two thermal unblocking temperatures (310° C and between 550° and 590°C) were observed (Fig. 15). These mIRM results, along with the reducing pore water chemistry (Westbrook, Carson, Musgrave, et al., 1994) indicate the presence of both magnetic sulfides (greigite and/or pyrrhotite) and magnetite in most of the specimens.

Despite the variations in susceptibility carriers in the specimens from Site 892, the AMS results are fairly consistent with the observed structures (Table 5). In structural domain I, the majority of the specimens have AMS foliations dipping less than 40° (Fig. 16A). Unlike the measured bedding, there is no noticeable difference between foliation dips from Holes 892A and 892D. Susceptibility ellipsoid shapes from most of the specimens in domain I are weakly oblate (Fig. 16D). The AMS fabrics of specimens from structural domain II are similar to those of domain I. The AMS foliations have dips strongly concentrated between 10° and 40° (Fig. 16B). Like domain I, the shapes of the AMS ellipsoids are weakly oblate for most of the specimens from domain II (Fig. 16E). In structural domain III the mélange fabrics are well-recorded by the AMS results. The concentration of dips from 10° to 20° occur in specimens from the welldeveloped mélange fabrics (Fig. 16C). The steeper (20° to 40°) dips are in specimens without well-developed mélange fabrics, and agree with bedding orientations in this domain. The shapes of the susceptibility ellipsoids in domain III are oblate and more anisotropic than those of domains I and II (Fig. 16F).

Measurements of ARMA were made on specimens from Site 892 to avoid some of the effects of variations in susceptibility carriers on the magnetic fabrics. The pARM results for this site have peaks between 25 and 40 mT (Fig. 17), and from these results an alternating field window from 5 to 60 mT was selected for the ARMA experiments. The ARMA results (Table 6) are very well-clustered. In do-

Cora section	Danth	pAR	M _{max}	pAR	RM _{int}	pAR	M _{min}		pARM	(mA/m)					ADMA
interval (cm)	(mbsf)	Dec	Inc	Dec	Inc	Dec	Inc	Max	Int	Min	Mean	L	F	Р	dip
146-889A-												to status			
1H-1, 84	20.8	177	4	87	2	327	86	428.3	424.5	374.4	409.1	1.01	1.13	1.14	4
2H-5, 103	36.5	121	27	216	10	325	61	534.9	527.4	505.0	522.5	1.01	1.04	1.06	29
3H-2, 21	39.7	133	15	224	2	323	75	284.5	275.1	263.8	274.5	1.03	1.04	1.08	15
4H-4, 81	52.7	136	13	39	27	249	60	477.8	452.0	416.9	448.9	1.06	1.08	1.15	30
5H-3, 92	61.9	174	1	264	9	75	81	22.2	20.9	20.2	21.1	1.06	1.03	1.10	9
6H-2, 68	68.8	153	16	57	20	279	63	75.8	73.0	64.3	71.0	1.04	1.14	1.18	27
7H-2, 58	79.1	322	7	222	57	56	32	17.9	17.2	17.1	17.4	1.04	1.01	1.05	58
7H-6, 26	83.8	271	59	5	2	97	31	41.4	38.5	35.1	38.3	1.08	1.10	1.18	59
8H-3, 9	89.6	5	21	258	37	119	46	26.6	24.2	20.8	23.9	1.10	1.17	1.28	44
10H-1, 91	104.9	185	62	311	18	49	22	145.0	138.4	128.2	137.2	1.05	1.08	1.13	68
10H-6, 63	111.9	342	51	165	39	74	1	76.0	74.7	71.7	74.1	1.02	1.04	1.06	89
11H-1, 33	113.8	123	3	27	66	214	24	264.6	252.8	230.1	249.2	1.05	1.10	1.15	66
11H-4, 39	118.4	339	30	122	54	238	18	175.6	171.4	164.3	170.4	1.02	1.04	1.07	72
17X-1, 20	130.3	325	45	88	29	198	31	14.3	13.6	13.3	13.7	1.05	1.03	1.08	59
18X-6, 55	146.6	295	21	198	19	69	61	45.7	45.3	43.4	44.8	1.01	1.04	1.05	29
25X-1, 53	197.8	104	1	13	9	202	81	27.6	27.1	26.5	27.1	1.02	1.02	1.04	9
26X-2, 39	208.7	170	12	76	19	291	68	10.8	9.7	9.5	10.0	1.11	1.03	1.14	22
28X-5, 24	223.1	4	1	273	45	95	45	23.6	23.3	22.2	23.0	1.01	1.05	1.06	45
34X-3, 48	260.7	217	26	312	9.3	60	62	24.7	23.8	22.5	23.7	1.04	1.06	1.10	28
41X-1, 20	310.7	275	16	141	67	10	15	15.0	14.9	14.8	14.9	1.00	1.01	1.02	75
41X-2, 122	313.2	248	4.6	340	14	141	75	12.0	11.6	11.1	11.6	1.03	1.04	1.07	15
41X-4, 40	315.4	287	3.4	20	43	193	47	18.7	18.3	17.4	18.1	1.03	1.05	1.08	43
44X-2, 10	338.3	315	5	48	29	217	61	13.8	13.5	12.9	13.4	1.02	1.05	1.07	29
146-889B-															
4R-3, 15	227.8	44	23	306	18	181	60	59.3	44.8	33.6	45.9	1.32	1.33	1.76	30
8R-1, 65	263.4	10	0	280	60	100	30	47.4	46.2	45.2	46.3	1.03	1.02	1.05	60
146-889D-									100000	12/2010/04					_
4N-1, 41	149.9	323	5	53	5	185	83	21.4	20.4	19.1	20.3	1.05	1.07	1.12	7

Table 3. Anhysteretic remanent magnetization anistropy (ARMA) data for Site 889/890.

Notes: Dec = declination (degrees); Inc = inclination (degrees); Max, Int, Min, Mean = pARM in mA/m; L = max/int; F = int/min; P = max/min; ARMA dip = (90 - pARM_min inc).

main I, all ARMA dips are less than 30° (Fig. 18A) with triaxial to weakly oblate ellipsoid shapes (Fig. 18D). In structural domain II, the ARMA foliations dip less than 30° (Fig. 18B), and have either oblate or triaxial ellipsoid shapes (Fig. 18E). The ARMA fabrics from structural domain III have dips between 10° and 30° (Fig. 18C). The ARMA orientation of Specimen 146-892A-18X-1, 72 cm (145.3 mbsf) exactly matches the orientation of deformation bands in this interval measured while at sea. The shapes of the ARMA ellipsoids from this domain are moderately anisotropic and oblate (Fig. 18F).

DISCUSSION

Accretionary prisms are ideally suited for the use of magnetic fabrics as strain markers, as the low temperatures during deformation and high porosities of the accreting sediments will be most likely to develop mineral preferred orientations via grain rotation rather than pressure solution (Maltman, 1984). Grain rotation would allow the use of either passive line (March) or rigid marker solutions to numerical models correlating magnetic anisotropy and finite strain (Owens, 1974; Richter, 1992). Magnetic anisotropy can only be used as a proxy for finite strains in these models when a single mineral controls the measured magnetic fabric (Borradaile, 1991; Richter, 1992). Because the specimens from the Cascadia accretionary prism all have mixed contributions of either paramagnetic clays and ferrimagnetic minerals, or of two types of ferrimagnetic minerals, to the measured magnetic anisotropy fabrics, finite strains cannot be calculated from the results of this study. This conclusion clearly demonstrates the need for careful rock magnetic studies in conjunction with magnetic anisotropy work. More detailed rock magnetic techniques, such as measurement of the anisotropy of high-field (paramagnetic) susceptibility, or of low-temperature susceptibility (e.g., Richter and van der Pluijm, 1994) are needed to extract a single-mineral dominated magnetic fabric from these specimens.

This study has shown, despite the complications introduced by the composite magnetic fabrics, that magnetic anisotropy fabrics agree well with observed structures in weakly deformed accretionary prism sediments. At the very least magnetic anisotropy measurements can serve to augment the available structural data, which will aid interpretations of the structural geology of these sites. A more detailed comparison is possible between two of the sites (888 and 891) that have similar magnetic susceptibility carriers. In both of these sites, greater than 90% of the low-field susceptibility is carried by ferrimagnetic minerals (Figs. 3 and 11). Both magnetite and magnetic sulfides (greigite and pyrrhotite) are present in similar (relative) proportions in specimens from both sites (compare Figs. 4 and 12). Site 891 was interpreted to have been deposited in a submarine fan environment (Westbrook, Carson, Musgrave, et al., 1994) similar to that of Site 888. Both sites have similar lithologies, were deposited with rapid sedimentation rates, and are of similar (<780 ka) age. These similarities suggest that the AMS fabrics at Site 888 can serve as a sedimentary-fabric reference for the AMS fabrics measured in the deformed sediments of Site 891. The AMS fabrics from most of the Site 888 specimens are nearly uniaxial-oblate, and vary in degree of anisotropy from P (k_{max}/k_{min}) = 1.03 to 1.26. The AMS fabrics from Site 891 have a slightly lower degree of anisotropy, ranging from P = 1.03 to 1.16. The shapes of the AMS ellipsoids from Site 891 range from uniaxial-oblate, to triaxial shapes, to prolate. Most of the specimens from Site 891 with prolate ellipsoid shapes are from specimens near deformation bands or in intervals near faults (e.g., Cores 146-891B-23X and 146-891B-41X). The shift of the Site 891 AMS ellipsoid specimens to less-anisotropic, and, especially, to prolate shapes, indicates that significant modification of the mineral fabrics in these sediments has occurred. The overall reduction in degree of anisotropy at Site 891 is consistent with a weakly developed, horizontal-compression fabric superimposed on an initial bedding fabric (shallowly dipping, uniaxial-oblate). Similar modification of magnetic anisotropy fabrics by imposition of sub-horizontal compression on an initially oblate (vertical compaction) fabric in accretionary prism sediments was found in the Nankai prism (Byrne et al., 1993), and is consistent with AMS data from the Barbados accretionary prism as well (Hounslow, 1990). Magnetic anisotropy results thus suggest the occurrence of a weakly developed mineral fabric resulting from tectonic strains in the Site 891 specimens.

Figure 10. ARMA results for Site 889/890 samples. The ARMA orientations (A-C) and ellipsoid shapes (D-F) are plotted for each structural domain as in Figure 8.

ACKNOWLEDGMENTS

B. Housen thanks JOI/USSAC and B. van der Pluijm (NSF grant EAR-91-19196) for funding this research, and the NSF, Keck Foundation, and University of Minnesota for funding two visits to the Institute for Rock Magnetism. Subir Banerjee, Chris Hunt, Jim Marvin and Bruce Moscowitz are thanked for their help and comments while at the *IRM*. T. Sato thanks E. Herrero-Bervera (Hawaii Institute for Geophysics) and M. Torii (Kyoto University) for assistance while using their laboratories. Carl Richter and Ken Kodama are thanked for their helpful reviews of this manuscript. Ben van der Pluijm, John Stamatakos, Rob Van der Voo, Bob Musgrave, Harold Tobin and Casey Moore are thanked for their various comments during this project.

REFERENCES

- Borradaile, G.J., 1991. Correlation of strain with anisotropy of magnetic susceptibility (AMS). Pure Appl. Geophys., 135:15–29.
- Borradaile, G.J., Keeler, W., Alford, C., and Sarvas, P., 1987. Anisotropy of magnetic susceptibility of some metamorphic minerals. *Phys. Earth Planet. Inter.*, 48:161–166.
- Byrne, T., Brückmann, W., Owens, W., Lallemant, S., and Maltman, A., 1993. Structural synthesis: correlation of structural fabrics, velocity anistropy, and magnetic susceptibility data. *In* Hill, I.A., Taira, A., Firth, J.V., et al., *Proc. ODP, Sci. Results*, 131: College Station, TX (Ocean Drilling Program), 365–378.
- Girdler, R.W., 1961. The measurement and computation of anisotropy of magnetic susceptibility of rocks. *Geophys. J. R. Astron. Soc.*, 5:34–44.
- Hounslow, M.W., 1990. Grain fabric measured using magnetic susceptibility anisotropy in deformed sediments of the Barbados Accretionary Prism:

Leg 110. In Moore, J.C., Mascle, A., et al., Proc. ODP, Sci. Results, 110: College Station, TX (Ocean Drilling Program), 257–275.

- Housen, B.A., Richter, C., and van der Pluijm, B.A., 1993. Composite magnetic anisotropy fabrics: experiments, numerical models, and implications for the quantification of rock fabrics. *Tectonophysics*, 220:1–12.
- Jackson, M., Gruber, W., Marvin J., and Banerjee, S.K., 1988. Partial anhysteretic remanence and its anisotropy: applications and grainsize-dependence. *Geophys. Res. Lett.*, 15:440–443.
- Lowrie, W., 1990. Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. *Geophys. Res. Lett.*, 17:159–162.
- Maltman, A., 1984. On the term "soft-sediment deformation." J. Struct. Geol., 6:589–592.
- McCabe, C., Jackson, M., and Ellwood, B.B., 1985. Magnetic anisotropy in the Trenton Limestone: results of a new technique, anisotropy of anhysteretic susceptibility. *Geophys. Res. Lett.*, 12:333–336.
- Owens, W.H., 1974. Mathematical model studies on factors affecting the magnetic anisotropy of deformed rocks. *Tectonophysics*, 24:115–131.
 - , 1993. Magnetic fabric studies of samples from Hole 808C, Nankai Trough. In Hill, I.A., Taira, A., Firth, J.V., et al., Proc. ODP, Sci. Results, 131: College Station, TX (Ocean Drilling Program), 301–310.

Figure 11. Depth (mbsf) vs. the percentage of low-field magnetic susceptibility carried by the paramagnetic minerals in sediments from Site 891, as determined by comparing the high-field and low-field susceptibilities. Here, the majority (>90%) of the low-field susceptibility is carried by the ferrimagnetic minerals, with the exception of two horizons (one at 280–290 mbsf, the other at 430–440 mbsf) that have higher paramagnetic contributions.

- Potter, D.K., and Stephenson, A., 1988. Single-domain particles in rocks and magnetic fabric analysis. *Geophys. Res. Lett.*, 15:1097–1100.
- Richter, C., 1992. Particle motion and the modelling of strain response in magnetic fabrics. *Geophys. J. Int.*, 110:451–464.
- Richter, C., and van der Pluijm, B.A., 1994. Separation of paramagnetic and ferrimagnetic susceptibilities using low temperature magnetic susceptibilities and comparison with high field methods. *Phys. Earth Planet. Inter.*, 82:113–123.
- Rochette, P., 1987. Magnetic susceptibility of the rock matrix related to magnetic fabric studies. J. Struct. Geol., 9:1015–1020.
- Westbrook, G.K., Carson, B., Musgrave, R.J., et al., 1994. Proc. ODP, Init. Repts., 146 (Pt. 1): College Station, TX (Ocean Drilling Program).

Date of initial receipt: 2 September 1994 Date of acceptance: 9 March 1995 Ms 146SR-217

Figure 12. Thermal demagnetization of mIRM results from two representative samples from Site 891. The left vertical axis is normalized magnetization of the 0.1 T and 0.4 T mIRM components, and the right vertical axis is the normalized intensity of the 1.4 T mIRM component. The horizontal axis is the temperature of the thermal demagnetization step (°C). In all Site 891 samples the 0.1 T component carries most of the mIRM, and two thermal unblocking temperatures (T_{ub}), (one at about 300° to 350°C, and the other at about 580°C) are observed. This indicates that both greigite and/or pyrrhotite ($T_{ub} \sim 300^{\circ}$ C) and magnetite ($T_{ub} \sim 580^{\circ}$ C) are the dominant magnetic minerals in these sediments.

Table 4. Anisotropy of	f magnetic susceptibility	(AMS) d	ata for	Site 891.
------------------------	---------------------------	---------	---------	-----------

$ \begin{array}{ $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Core section	Denth	K	max	K	int	K	min	к	ĸ	ĸ	к				AMS
interval (cm)	(mbsf)	Dec	Inc	Dec	Inc	Dec	Inc	(1×10^{-6})	(1×10^{-6})	(1×10^{-6})	(1×10^{-6})	L	F	Р	dip
55X-3, 72	439.9	146	9	238	10	15	77	363.7	358.2	319.1	347.0	1.02	1.12	1.14	13
56X-1, 29	446.1	141	47	32	18	287	37	538.3	526.3	486.4	517.0	1.02	1.08	1.11	53
56X-1, 36	446.2	351	19	241	45	97	39	355.3	346.4	328.5	343.4	1.03	1.05	1.08	51
56X-2, 33	447.0	244	23	151	7	44	66	389.6	380.3	364	378.0	1.02	1.04	1.07	24
56X-2, 41	447.1	199	31	101	13	352	56	333.3	324.7	314.0	324.0	1.03	1.03	1.06	35
56X-CC, 15	447.7	120	35	233	29	352	41	971.6	957	919.5	949.4	1.02	1.04	1.06	49
57X-1, 10	454.8	92	0	2	2	191	88	1040.7	995.1	940.1	992.0	1.05	1.06	1.11	2
57X-1, 33	455.0	277	14	186	3	86	76	1723.3	1687.4	1506.3	1639.0	1.02	1.12	1.14	14
58X-1, 27	463.8	87	18	182	15	310	66	1612.5	1522.9	1442.6	1526.0	1.06	1.06	1.12	24
58X-2, 29	464.8	4	13	101	28	251	58	1299.8	1231.8	1167.4	1233.0	1.06	1.06	1.11	32
58X-2, 77	465.2	92	10	359	13	218	74	1087.5	1044.6	972.9	1035.0	1.04	1.07	1.12	16
58X-2, 82	465.3	62	23	160	18	284	61	2614.3	2576.6	2447.1	2546.0	1.01	1.05	1.07	29
58X-CC, 4	465.4	90	15	181	3	281	75	2221.2	2217.8	2022.9	2154.0	1.00	1.10	1.10	15
58X-CC, 6	465.4	262	13	171	3	68	77	1513.9	1502.6	1411.4	1476.0	1.01	1.06	1.07	13

Table 4. (Continued.)

Notes: Dec = declination (degrees); Inc = inclination (degrees); K_{max} , K_{int} , K_{man} in SI volume units; $L = K_{max}/K_{int}$; $F = K_{int}/K_{min}$; $P = K_{max}/K_{min}$; AMS dip = (90 - K_{min} inc).

Figure 13. AMS results and schematic column of the principal structures (bedding, fracture fabrics, and deformation bands) and boundaries of the structural domains of Site 891. A-E. Orientations of the AMS fabrics are plotted as histograms of AMS foliation dips for each structural domain. The AMS foliation dips are defined as 90° (inclination of the minimum axis) for each sample, and represent the dips of the dominant planar fabric measured by AMS in these samples. F-J. Shapes of the AMS ellipsoids given as Flinn-type diagrams, as in Figure 5.

Figure 14. Depth (mbsf) vs. the percentage of low-field magnetic susceptibility carried by the paramagnetic minerals in sediments from Site 892, as determined by comparing the high-field and low-field susceptibilities. The proportion of the low-field susceptibility carried by the paramagnetic minerals varies from >80% to <10%, with most values ranging from 60% to 80%.

Figure 15. Thermal demagnetization of mIRM results for representative Site 892 samples. The vertical axes are magnetization of the mIRM components (mA/m), and the horizontal axes are temperature of the thermal demagnetization step. **A.** Sample dominated by the 0.05 T component, with two thermal unblocking temperatures (T_{ub}), one at about 300°C, and the other at about 580°C. This indicates that both greigite and/or pyrrhotite ($T_{ub} \sim 300^{\circ}$ C) and magnetite ($T_{ub} \sim 580^{\circ}$ C) are the dominant magnetic minerals in this sample. **B.** Sample dominated by the 0.05 T component, which is carried almost entirely by magnetite, indicated by the 590°C thermal unblocking temperature of this component.

Table 5. Anisotropy of	f magnetic susceptibility	(AMS) da	ta for Site 892.
------------------------	---------------------------	----------	------------------

Core, section,	Depth	K	nax	K	nt	K	nin	к	ĸ	ĸ	к				AMS
interval (cm)	(mbsf)	Dec	Inc	Dec	Inc	Dec	Inc	(1×10^{-6})	(1×10^{-6})	(1×10^{-6})	(1×10^{-6})	L	F	Р	dip
$\begin{array}{c} 146-892A-1\\1X-1, 15\\1X-1, 105\\1X-1, 105\\1X-1, 105\\1X-1, 130\\1X-2, 41\\1X-2, 96\\1X-2, 99\\1X-2, 137\\1X-3, 11\\1X-3, 11\\1X-3, 37\\2X-3, 48\\2X-3, 54\\3X-1, 54\\3X-1, 54\\3X-1, 54\\3X-1, 54\\3X-1, 54\\3X-1, 54\\3X-1, 52\\3X-2, 20\\3X-2, 34\\3X-2, 20\\3X-2, 34\\4X-1, 52\\4X-1, 52\\4X-1, 52\\4X-1, 52\\4X-2, 5$	$\begin{array}{c} 0.2\\ 1.1\\ 1.3\\ 1.9\\ 2.5\\ 2.5\\ 2.9\\ 3.1\\ 3.3\\ 13.0\\ 13.0\\ 19.1\\ 20.2\\ 20.7\\ 20.8\\ 21.4\\ 22.0\\ 22.4\\ 22.0\\ 22.4\\ 22.0\\ 22.4\\ 22.0\\ 22.4\\ 22.0\\ 29.4\\ 30.0\\ 30.3\\ 39.3\\ 40.2\\ 41.1\\ 7\\ 41.7\\ 42.2\\ 39.3\\ 39.3\\ 40.2\\ 41.1\\ 7\\ 41.7\\ 42.3\\ 39.3\\ 40.2\\ 41.7\\ 41.7\\ 53.5\\ 55.6\\ 4.5\\ 51.2\\ 55.2\\ 55.8\\ 55.4\\ 25.9\\ 55.3\\ 55.4\\ 25.9\\ 55.3\\ 55.4\\ 25.9\\ 55.3\\ 55.4\\ 25.9\\ 55.5\\ 57.7\\ 58.6\\ 59.4\\ 59.9\\ 59.9\\ 51.2\\ 55.6\\ 57.7\\ 58.6\\ 57.7\\ 58.6\\ 59.4\\ 59.9\\ 59.9\\ 51.2\\ 55.8\\ 56.4\\ 45.2\\ 57.6\\ 57.7\\ 58.6\\ 61.7\\ 62.4\\ 62.9\\ 63.0\\ 63.7\\ 64.1\\ 64.5\\ 59.9\\ 80.9\\ 88.0\\ 88.4\\ 97.1\\ 97.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.7\\ 98.$	$\begin{array}{c} 101\\ 38\\ 93\\ 29\\ 234\\ 225\\ 266\\ 291\\ 204\\ 86\\ 48\\ 231\\ 108\\ 82\\ 146\\ 93\\ 250\\ 73\\ 331\\ 269\\ 180\\ 20\\ 171\\ 78\\ 281\\ 301\\ 246\\ 117\\ 45\\ 142\\ 281\\ 301\\ 248\\ 273\\ 230\\ 67\\ 121\\ 344\\ 273\\ 230\\ 67\\ 121\\ 309\\ 62\\ 140\\ 78\\ 106\\ 66\\ 152\\ 145\\ 72\\ 309\\ 62\\ 140\\ 78\\ 106\\ 66\\ 152\\ 145\\ 72\\ 344\\ 94\\ 208\\ 268\\ 73\\ 319\\ 112\\ 185\\ 96\\ 152\\ 57\\ 72\\ 344\\ 94\\ 208\\ 268\\ 73\\ 319\\ 112\\ 185\\ 96\\ 132\\ 57\\ 72\\ 311\\ 193\\ 263\\ 232\\ 72\\ 31\\ 106\\ 152\\ 145\\ 77\\ 23\\ 344\\ 94\\ 208\\ 268\\ 73\\ 319\\ 112\\ 185\\ 96\\ 232\\ 72\\ 31\\ 106\\ 152\\ 57\\ 72\\ 344\\ 94\\ 208\\ 268\\ 73\\ 319\\ 112\\ 185\\ 96\\ 232\\ 72\\ 31\\ 106\\ 152\\ 57\\ 72\\ 344\\ 94\\ 208\\ 268\\ 73\\ 319\\ 112\\ 185\\ 96\\ 232\\ 72\\ 31\\ 101\\ 113\\ 428\\ 228\\ 219\\ 113\\ 48\\ 228\\ 228\\ 219\\ 113\\ 134\\ 228\\ 228\\ 219\\ 113\\ 134\\ 228\\ 228\\ 219\\ 113\\ 134\\ 228\\ 228\\ 219\\ 113\\ 134\\ 228\\ 228\\ 219\\ 113\\ 134\\ 228\\ 228\\ 219\\ 113\\ 134\\ 228\\ 228\\ 219\\ 113\\ 134\\ 228\\ 228\\ 219\\ 113\\ 134\\ 228\\ 228\\ 219\\ 113\\ 134\\ 228\\ 228\\ 219\\ 1134\\ 228\\ 228\\ 219\\ 1134\\ 228\\ 228\\ 219\\ 1134\\ 228\\ 228\\ 219\\ 1134\\ 228\\ 228\\ 219\\ 1134\\ 228\\ 228\\ 228\\ 219\\ 1134\\ 228\\ 228\\ 228\\ 219\\ 1134\\ 228\\ 228\\ 228\\ 219\\ 1134\\ 228\\ 228\\ 219\\ 1134\\ 228\\ 228\\ 219\\ 1134\\ 228\\ 228\\ 219\\ 1134\\ 228\\ 228\\ 219\\ 1134\\ 228\\ 228\\ 219\\ 1134\\ 228\\ 228\\ 219\\ 1134\\ 228\\ 228\\ 219\\ 210\\ 210\\ 210\\ 210\\ 210\\ 210\\ 210\\ 210$	$\begin{matrix} 18 \\ 2 \\ 5 \\ 30 \\ 15 \\ 1 \\ 13 \\ 53 \\ 17 \\ 26 \\ 215 \\ 4 \\ 6 \\ 20 \\ 4 \\ 39 \\ 0 \\ 5 \\ 7 \\ 6 \\ 20 \\ 4 \\ 39 \\ 0 \\ 5 \\ 7 \\ 6 \\ 20 \\ 4 \\ 15 \\ 9 \\ 14 \\ 32 \\ 1 \\ 12 \\ 14 \\ 32 \\ 1 \\ 20 \\ 22 \\ 16 \\ 8 \\ 2 \\ 7 \\ 5 \\ 61 \\ 2 \\ 7 \\ 6 \\ 24 \\ 18 \\ 23 \\ 27 \\ 6 \\ 4 \\ 18 \\ 23 \\ 27 \\ 6 \\ 4 \\ 18 \\ 23 \\ 30 \\ 11 \\ 10 \\ 5 \\ 11 \\ 10 \\ 5 \\ 11 \\ 10 \\ 10$	$\begin{array}{c} 192\\ 308\\ 3\\ 151\\ 330\\ 316\\ 174\\ 39\\ 108\\ 177\\ 184\\ 344\\ 200\\ 352\\ 56\\ 220\\ 341\\ 200\\ 352\\ 56\\ 220\\ 341\\ 200\\ 352\\ 214\\ 312\\ 51\\ 347\\ 30\\ 93\\ 180\\ 183\\ 299\\ 353\\ 260\\ 157\\ 27\\ 254\\ 335\\ 260\\ 157\\ 27\\ 254\\ 335\\ 260\\ 157\\ 27\\ 254\\ 335\\ 260\\ 157\\ 27\\ 254\\ 335\\ 200\\ 157\\ 27\\ 254\\ 335\\ 200\\ 157\\ 27\\ 254\\ 335\\ 200\\ 157\\ 27\\ 254\\ 335\\ 200\\ 157\\ 27\\ 254\\ 335\\ 200\\ 157\\ 27\\ 254\\ 355\\ 236\\ 316\\ 279\\ 336\\ 315\\ 244\\ 12\\ 243\\ 52\\ 236\\ 315\\ 244\\ 12\\ 243\\ 52\\ 118\\ 237\\ 169\\ 336\\ 315\\ 244\\ 12\\ 243\\ 52\\ 118\\ 237\\ 169\\ 336\\ 315\\ 244\\ 12\\ 243\\ 52\\ 118\\ 237\\ 126\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 326\\ 157\\ 157\\ 157\\ 157\\ 157\\ 157\\ 157\\ 157$	$\begin{array}{c}3\\14\\1\\3\\21\\12\\7\\12\\19\\6\\56\\39\\7\\0\\11\\59\\15\\41\\2\\4\\38\\5\\60\\1\\9\\9\\7\\0\\12\\2\\6\\3\\2\\75\\62\\77\\14\\13\\27\\28\\15\\2\\0\\32\\75\\62\\77\\14\\13\\27\\28\\15\\2\\0\\34\\8\\5\\4\\56\\6\\7\\25\\8\\2\\14\\3\\2\\12\\5\\9\\3\\0\\5\end{array}$	292 137 266 277 112 128 56 136 332 307 117 315 254 262 354 142 322 71 127 82 240 269 276 68 179 353 315 212 248 201 102 137 350 85 318 110 250 41 223 90 234 218 102 234 219 234 210 251 223 90 234 218 102 258 315 212 248 201 102 137 350 85 318 110 250 41 251 223 90 234 218 100 251 223 90 234 218 100 251 223 90 234 218 100 251 223 90 234 218 100 251 223 90 234 218 100 251 223 90 234 218 100 251 223 90 234 218 100 251 223 90 234 218 100 251 223 90 234 218 100 251 272 288 110 253 222 298 121 243 100 251 271 127 350 85 318 110 251 272 288 313 314 296 198 303 223 40 251 290 258 321 292 298 121 292 298 121 290 234 214 201 117 250 257 267 258 272 298 137 272 350 258 272 269 258 277 269 258 270 269 258 270 269 258 270 269 258 270 269 258 270 269 258 270 269 258 270 269 258 270 269 277 272 269 277 272 269 277 272 269 277 272 269 277 272 269 277 272 269 277 272 269 277 272 269 277 272 272 272 272 272 272 27	$\begin{array}{c} 71\\ 76\\ 85\\ 33\\ 64\\ 75\\ 34\\ 64\\ 81\\ 20\\ 40\\ 74\\ 88\\ 83\\ 51\\ 21\\ 85\\ 72\\ 64\\ 91\\ 61\\ 80\\ 75\\ 88\\ 83\\ 51\\ 21\\ 85\\ 72\\ 64\\ 95\\ 65\\ 64\\ 40\\ 76\\ 61\\ 78\\ 64\\ 76\\ 61\\ 78\\ 64\\ 76\\ 61\\ 78\\ 64\\ 76\\ 84\\ 76\\ 84\\ 77\\ 84\\ 77\\ 84\\ 77\\ 84\\ 77\\ 84\\ 77\\ 84\\ 77\\ 84\\ 77\\ 84\\ 77\\ 84\\ 77\\ 84\\ 77\\ 84\\ 77\\ 84\\ 77\\ 84\\ 77\\ 84\\ 77\\ 84\\ 77\\ 84\\ 77\\ 84\\ 77\\ 84\\ 77\\ 84\\ 77\\ 84\\ 77\\ 84\\ 77\\ 84\\ 77\\ 84\\ 77\\ 84\\ 77\\ 84\\ 77\\ 84\\ 77\\ 84\\ 77\\ 84\\ 77\\ 84\\ 77\\ 84\\ 77\\ 84\\ 77\\ 84\\ 77\\ 84\\ 77\\ 84\\ 77\\ 84\\ 77\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 75\\ 83\\ 83\\ 75\\ 83\\ 83\\ 83\\ 83\\ 83\\ 83\\ 83\\ 83\\ 83\\ 83$	$\begin{array}{c} 88.8\\ 95.4\\ 76.5\\ 117.8\\ 74.7\\ 108.8\\ 73.7\\ 711.0\\ 116.6\\ 88.6\\ 163.7\\ 47.3\\ 102.7\\ 63.7\\ 104.1\\ 102.9\\ 60.5\\ 64.8\\ 150.3\\ 60.8\\ 116\\ 60.3\\ 51\\ 26.3\\ 34.8\\ 46.4\\ 79.8\\ 111.2\\ 61.9\\ 44.4\\ 90\\ 79.8\\ 49.4\\ 112.6\\ 65.9\\ 77.3\\ 38.5\\ 55.5\\ 35.4\\ 46.4\\ 49.4\\ 112.6\\ 65.9\\ 77.3\\ 38.5\\ 55.5\\ 35.4\\ 112.5\\ 153.3\\ 102.6\\ 141.4\\ 89.6\\ 156\\ 144.2\\ 132.7\\ 129.8\\ 111.6\\ 69.0\\ 116.7\\ 113.3\\ 112.5\\ 153.3\\ 152.7\\ 124.8\\ 77.9\\ 126.8\\ 111.2\\ 69.0\\ 116.7\\ 113.3\\ 112.5\\ 153.3\\ 152.7\\ 124.8\\ 116.6\\ 104.2\\ 125.9\\ 94.3\\ 65.6\\ 149.2\\ 155.4\\ 114.3\\ 102.6\\ 144.4\\ 112.6\\ 104.2\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 125.9\\ 1$	$\begin{array}{c} 88.5\\ 94.9\\ 76.0\\ 117.4\\ 74.0\\ 108.1\\ 73.2\\ 701.1\\ 116.1\\ 88.3\\ 163.1\\ 47.0\\ 106.6\\ 101.3\\ 63.1\\ 102.8\\ 101.5\\ 60.3\\ 64.6\\ 149.8\\ 60.2\\ 116\\ 60.1\\ 50.6\\ 26.1\\ 34.5\\ 46.0\\ 79\\ 110.6\\ 61.5\\ 44.1\\ 89.7\\ 79.4\\ 49.2\\ 111.6\\ 61.5\\ 44.1\\ 89.7\\ 79.4\\ 49.2\\ 111.6\\ 59\\ 38.0\\ 56.1\\ 35.0\\ 65.7\\ 65.0\\ 63.3\\ 141.8\\ 87.2\\ 140.4\\ 102.3\\ 140.3\\ 87.8\\ 154.1\\ 143.1\\ 132.3\\ 129.6\\ 111\\ 68.7\\ 116\\ 61.5\\ 152\\ 150.1\\ 123.6\\ 68.1\\ 115.9\\ 91.2\\ 129.6\\ 87.2\\ 137.6\\ 77.6\\ 57.2\\ 157.7\\ 48.1\\ 65.4\\ 147.9\\ 157\\ 134.4\\ 87.6\\ 74.7\\ 134.8\\ 124\\ 93.8\\ 62.6\\ 55.1\\ 113.1\\ 102.3\\ 103.5\\ \end{array}$	$\begin{array}{c} 86.7\\ 93.3\\ 75.5\\ 116.7\\ 73.3\\ 107.4\\ 72.1\\ 624.8\\ 115.6\\ 87.8\\ 141.2\\ 46.7\\ 104.7\\ 98.7\\ 102.1\\ 100.5\\ 59.1\\ 102.1\\ 100.5\\ 59.1\\ 102.1\\ 100.5\\ 59.7\\ 48.8\\ 45.6\\ 32.8\\ 45.6\\ 32.8\\ 45.6\\ 32.8\\ 45.6\\ 32.8\\ 45.6\\ 32.8\\ 45.6\\ 32.8\\ 45.6\\ 32.8\\ 45.6\\ 32.8\\ 45.6\\ 32.8\\ 45.6\\ 32.8\\ 45.6\\ 32.8\\ 45.6\\ 32.8\\ 45.6\\ 32.8\\ 45.6\\ 32.8\\ 45.6\\ 32.8\\ 45.6\\ 32.8\\ 45.6\\ 32.8\\ 45.6\\ 32.8\\ 45.6\\ 32.8\\ 45.6\\ 32.8\\ 48.4\\ 111.2\\ 58.4\\ 48.4\\ 111.2\\ 58.4\\ 48.4\\ 111.2\\ 58.4\\ 48.4\\ 111.2\\ 58.4\\ 48.4\\ 111.2\\ 58.6\\ 64.2\\ 62.0\\ 127.9\\ 126.2\\ 109.1\\ 139.5\\ 86.6\\ 149.6\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 128.8\\ 109.0\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.9\\ 127.$	$\begin{array}{c} 88.0\\ 94.5\\ 76.0\\ 117.3\\ 74.0\\ 108.1\\ 73.0\\ 679.0\\ 116.1\\ 88.2\\ 156.0\\ 47.0\\ 106.2\\ 100.9\\ 63.0\\ 103.0\\ 101.6\\ 60.0\\ 103.0\\ 101.6\\ 60.0\\ 149.3\\ 60.0\\ 149.3\\ 60.0\\ 149.3\\ 60.0\\ 144.0\\ 89.5\\ 79.2\\ 110.3\\ 61.2\\ 44.0\\ 89.5\\ 79.3\\ 49.0\\ 111.8\\ 59.0\\ 38.0\\ 55.8\\ 35.0\\ 65.4\\ 65.0\\ 63.0\\ 141.8\\ 87.0\\ 140.3\\ 102.0\\ 140.4\\ 88.0\\ 152.9\\ 142.3\\ 131.0\\ 122.9\\ 142.3\\ 131.0\\ 122.9\\ 142.3\\ 131.0\\ 122.9\\ 142.3\\ 131.0\\ 122.9\\ 142.3\\ 131.0\\ 152.9\\ 142.3\\ 131.0\\ 122.9\\ 142.3\\ 131.0\\ 122.9\\ 142.3\\ 131.0\\ 152.9\\ 142.3\\ 131.0\\ 152.9\\ 142.3\\ 131.0\\ 155.5\\ 112.0\\ 111.0\\ 155.5\\ 112.0\\ 111.0\\ 155.5\\ 112.0\\ 111.0\\ 155.5\\ 123.5\\ 93.4\\ 62.7\\ 55.0\\ 122.9\\ 102.0\\ 103.3\\ 12.9\\ 102.0\\ 103.3\\ 12.0\\ 102.0\\ 103.3\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 1$	1.00 1.01 1.01 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01	1.02 1.02 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.02 1.03 1.01 1.02 1.03 1.01 1.02 1.03 1.01 1.02 1.03 1.01 1.02 1.03 1.01 1.02 1.04 1.02 1.04 1.02 1.04 1.02 1.05 1.01 1.02 1.00 1.01 1.02 1.03 1.01 1.02 1.04 1.02 1.05 1.01 1.02 1.00 1.01 1.02 1.02 1.01 1.02 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.02 1.01 1.02 1.02 1.01 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02	1.02 1.02 1.02 1.01 1.01 1.02 1.14 1.01 1.02 1.04 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.04 1.02 1.04 1.03 1.04 1.03 1.04 1.02 1.03 1.04 1.02 1.03 1.04 1.02 1.03 1.04 1.02 1.03 1.04 1.02 1.03 1.04 1.02 1.03 1.02 1.03 1.02 1.03 1.02 1.03 1.02 1.03 1.02 1.03 1.02 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.02 1.03 1.03 1.03 1.03 1.03 1.02 1.03 1.03 1.02 1.03 1.03 1.02 1.03 1.03 1.03 1.03 1.02 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.02 1.03 1.03 1.03 1.02 1.03 1.03 1.02 1.03 1.03 1.02 1.03 1.03 1.02 1.03 1.03 1.02 1.03 1.03 1.02 1.03 1.02 1.03 1.02 1.03 1.03 1.02 1.03 1.03 1.02 1.03 1.03 1.02 1.03 1.02 1.03 1.02 1.03 1.02 1.03 1.02 1.03 1.02 1.03 1.03 1.02 1.03 1.03 1.02 1.03 1.03 1.02 1.03 1.03 1.02 1.03 1.02 1.03 1.03 1.02 1.03 1.03 1.02 1.03 1.03 1.02 1.03 1.02 1.03 1.02 1.03 1.03 1.02 1.03 1.03 1.02 1.03 1.03 1.02 1.03 1.03 1.02 1.03 1.03 1.02 1.03 1.03 1.02 1.03 1.03 1.02 1.03 1.03 1.02 1.03 1.03 1.02 1.03 1.03 1.02 1.03 1.03 1.02 1.03 1.03 1.02 1.03 1.03 1.02 1.03 1.03 1.02 1.03 1.03 1.02 1.03 1.03 1.02 1.03 1.03 1.02 1.03 1.03 1.02 1.03 1.03 1.02 1.03 1.03 1.02 1.03 1.03 1.02 1.03 1.03 1.02 1.03 1.02 1.03 1.02 1.03 1.02 1.03 1.02 1.03 1.03 1.02 1.03 1.02 1.03 1.02 1.03 1.02 1.03 1.02 1.03 1.02 1.03 1.02 1.03 1.02 1.03 1.02 1.03 1.02 1.03 1.02 1.03 1.02 1.03 1.02 1.03 1.02 1.03 1.02 1.03 1.03 1.02 1.03 1.03 1.02 1.03 1.03 1.02 1.03 1.03 1.02 1.03 1.03 1.02 1.03 1.03 1.02 1.03 1.03 1.02 1.03 1.02 1.03 1.02 1.03 1.03 1.02 1.03 1.02 1.03 1.02 1.03 1.02 1.03 1.02 1.03 1.02 1.03 1.02 1.03 1.02 1.03 1.02 1.03 1.03 1.03 1.03 1.02 1.03 1.03 1.03 1.02 1.03 1.02 1.03	$\begin{array}{c} 19\\ 15\\ 5\\ 7\\ 26\\ 2\\ 9\\ 70\\ 51\\ 6\\ 6\\ 2\\ 7\\ 9\\ 8\\ 9\\ 5\\ 18\\ 4\\ 19\\ 29\\ 13\\ 0\\ 13\\ 21\\ 26\\ 50\\ 4\\ 29\\ 22\\ 51\\ 16\\ 8\\ 21\\ 26\\ 39\\ 29\\ 22\\ 51\\ 18\\ 8\\ 21\\ 26\\ 35\\ 75\\ 0\\ 78\\ 8\\ 22\\ 86\\ 43\\ 39\\ 14\\ 23\\ 16\\ 64\\ 62\\ 20\\ 16\\ 42\\ 14\\ 15\\ 72\\ 28\\ 61\\ 23\\ 12\\ 26\\ 12\\ 20\\ 12\\ 20\\ 22\\ 51\\ 18\\ 8\\ 21\\ 26\\ 35\\ 75\\ 0\\ 78\\ 8\\ 22\\ 86\\ 43\\ 39\\ 14\\ 23\\ 16\\ 64\\ 62\\ 20\\ 16\\ 42\\ 15\\ 72\\ 28\\ 61\\ 12\\ 23\\ 16\\ 12\\ 12\\ 20\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12$

Core, section.	Depth	K,	max	K	int	K	min	К	K	K	К				AM
interval (cm)	(mbsf)	Dec	Inc	Dec	Inc	Dec	Inc	(1×10^{-6})	(1×10^{-6})	(1×10^{-6})	(1×10^{-6})	L	F	Р	dip
13X-4, 45 13X-5, 16 13X-5, 16 13X-5, 16 13X-5, 61 13X-5, 61 13X-7, 112 13X-8, 9 13X-8, 9 13X-8, 9 13X-8, 9 13X-8, 9 13X-8, 9 13X-8, 9 13X-8, 9 13X-8, 9 13X-9, 49 13X-9, 49 13X-9, 102 15X-1, 37 15X-1, 37 15X-1, 37 15X-1, 17 15X-1, 18 16X-CC, 13 17X-1, 37 17X-2, 22 18X-1, 17 18X-1, 18 18X-1, 18 18X-1, 18 18X-1, 18 18X-1, 18 18X-1, 49 20X-1, 116 20X-2, 22 20X-2, 126 20X-2, 126 20X-2, 126 20X-2, 126	$\begin{array}{c} 99.2 \\ 99.2 \\ 100.3 \\ 100.7 \\ 101.1 \\ 102.5 \\ 103.1 \\ 103.5 \\ 104.4 \\ 105.3 \\ 105.8 \\ 116.4 \\ 116.5 \\ 116.6 \\ 116.4 \\ 116.5 \\ 116.6 \\ 116.5 \\ 116.5 \\ 116.6 \\ 116.4 \\ 116.4 \\ 116.4 \\ 116.4 \\ 116.4 \\ 116.4 \\ 116.5 \\ 116.5 \\ 116.5 \\ 116.5 \\ 116.1 \\ 105.3 \\ 145.4 \\ 146.4 \\ 164.2 \\ 165.3 \\ 166.1 \\ 166.3 \\ 166.1 \\ 166.3 \\ 166.4 \\ 167.3 \\ 167.4 \\ 1$	143 25 81 90 126 104 34 71 66 100 88 143 166 156 109 115 64 114 79 118 236 168 9 243 288 98 116 300 37 311 114	$\begin{array}{c} 112\\ 29\\ 15\\ 12\\ 13\\ 12\\ 13\\ 29\\ 24\\ 125\\ 8\\ 3\\ 4\\ 6\\ 0\\ 10\\ 22\\ 12\\ 7\\ 0\\ 4\\ 6\\ 14\\ 4\\ 10\\ 13\\ 1\end{array}$	39 118 196 190 138 22 216 196 126 337 168 203 356 239 72 65 200 207 157 204 172 29 328 78 274 333 195 191 206 122 31 129 129 129 129 129 129 129 12	$\begin{array}{c} 30\\ 10\\ 37\\ 34\\ 18\\ 67\\ 2\\ 10\\ 11\\ 10\\ 24\\ 21\\ 6\\ 20\\ 8\\ 6\\ 29\\ 23\\ 23\\ 5\\ 5\\ 17\\ 0\\ 46\\ 4\\ 36\\ 12\\ 32\\ 22\\ 1\\ 44\\ 10\\ 4\\ 7\\ 10 \end{array}$	311 324 339 281 165 313 327 265 224 295 324 251 16 325 299 13 17 318 319 297 143 332 109 149 25 352 300 310 190 241 263 4	79 39 52 68 19 77 76 66 53 65 64 80 66 66 66 66 66 66 66 66 80 47 78 78 78 78 76 76 66 80 47 78 79 79 75 80	102.1 52.4 110.7 92.7 75.3 90.1 139.3 60.8 114.9 99.6 105.6 89.2 126.4 81.1 122 65.6 86.7 82.3 67.3 79.1 117.7 112.3 310.7 167.1 82.6 120.1 88.1 132.2 89.9 125.8 75.8 137.6	101.7 51.8 52.1 109.8 92.3 74.3 98.4 137.4 60.3 113.5 98.4 104.8 80.5 121.6 65.1 86.2 81.6 65.1 86.2 81.6 97.4 110.3 295.9 165.8 82.1 118.4 87.1 131 89.3 125.0 136.6	100.7 51.8 51.5 108.9 91.7 72.4 87.5 134.9 59.0 112.7 97.2 104 86.0 124.3 78.4 118.8 64.3 85.9 80.4 66 76.5 111.6 104.4 289.5 163.8 81.3 113.4 85.7 129.2 87.8 113.4 287.5 129.2 87.8 121.5 129.2 87.8 121.5 129.2 87.8 121.5 129.2 87.8 121.5 129.2 87.8 121.5 129.2 87.8 121.5 129.2 87.8 121.5 129.2 129.2 123.5 129.2 129.	$\begin{array}{c} 30.5\\ 101.5\\ 52.0\\ 52.0\\ 109.8\\ 92.2\\ 74.0\\ 89.0\\ 137.2\\ 60.0\\ 113.7\\ 98.4\\ 104.8\\ 88.0\\ 125.5\\ 80.0\\ 125.5\\ 80.0\\ 125.5\\ 80.0\\ 125.5\\ 80.0\\ 125.5\\ 80.0\\ 125.5\\ 80.0\\ 125.5\\ 80.0\\ 125.5\\ 82.0\\ 117.3\\ 87.0\\ 130.8\\ 89.0\\ 124.1\\ 75.0\\ 135.7\\ \end{array}$	1.00 1.01	$\begin{array}{c} 1.01\\ 1.01\\ 1.00\\ 1.01\\ 1.01\\ 1.01\\ 1.02\\ 1.02\\ 1.02\\ 1.02\\ 1.02\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.03\\ 1.02\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.02\\ 1.04\\ 1.06\\ 1.02\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.02\\ 1.01\\ 1.01\\ 1.01\\ 1.02\\ 1.01\\ 1.03\\ 1.01\\ 1.03\\$	$\begin{array}{c} 1.01\\ 1.01\\ 1.02\\ 1.02\\ 1.02\\ 1.03\\ 1.03\\ 1.03\\ 1.03\\ 1.03\\ 1.03\\ 1.02\\ 1.02\\ 1.02\\ 1.02\\ 1.04\\ 1.02\\ 1.04\\ 1.02\\ 1.02\\ 1.02\\ 1.03\\ 1.05\\ 1.08\\ 1.07\\ 1.02\\ 1.02\\ 1.02\\ 1.02\\ 1.02\\ 1.02\\ 1.02\\ 1.02\\ 1.02\\ 1.02\\ 1.02\\ 1.03\\ 1.02\\ 1.02\\ 1.03\\ 1.02\\ 1.03\\ 1.02\\ 1.03\\ 1.02\\ 1.03\\$	16 51 51 38 82 22 71 13 38 22 27 11 33 15 5 5 26 26 26 26 26 20 29 24 25 5 5 5 20 00 29 24 24 25 5 5 5 20 00 29 24 24 25 25 20 10 10 29 20 24 24 25 20 20 20 20 20 20 20 20 20 20 20 20 20
6-892D- 4X-1, 33 4X-2, 42 4X-3, 40 4X-3, 77 5X-1, 90 5X-2, 24 5X-3, 54 5X-4, 28 5X-3, 54 5X-4, 67 6X-1, 126 6X-1, 126 6X-1, 126 6X-1, 126 6X-1, 128 6X-3, 79 6X-3, 79 6X-4, 122 6X-5, 94 7X-1, 27 7X-1, 76 7X-2, 95 7X-2, 103 7X-3, 20 7X-3, 20 7X-3, 114 7X-4, 31 7X-4, 31 7X-4, 31 7X-4, 31 7X-5, 63 7X-5, 79 8X-1, 22 7X-5, 63 7X-5, 79 8X-1, 22 7X-5, 61 8X-2, 19 8X-2, 60 8X-3, 32 8X-4, 26 9X-1, 41 9X-2, 50 9X-2, 57 9X-4, 85 9X-4, 72 9X-4, 85 9X-5, 74	$\begin{array}{c} 27.8\\ 29.4\\ 30.4\\ 30.8\\ 37.4\\ 30.8\\ 37.9\\ 38.7\\ 40.5\\ 41.8\\ 42.2\\ 47.2\\ 47.8\\ 48.2\\ 49.7\\ 50.0\\ 52.0\\ 53.2\\ 54.3\\ 56.5\\ 57.0\\ 57.9\\ 58.6\\ 59.3\\ 60.6\\ 61.9\\ 26.5\\ 57.0\\ 58.6\\ 59.3\\ 60.6\\ 61.9\\ 26.2\\ 63.7\\ 64.7\\ 64.8\\ 65.7\\ 66.4\\ 69.7\\ 71.3\\ 71.4\\ 73.3\\ 73.4\\ 73.8\\ 74.3\\ 73.8\\ 74.3\\$	$\begin{array}{c} 108\\ 42\\ 50\\ 52\\ 2297\\ 134\\ 103\\ 162\\ 23\\ 64\\ 96\\ 65\\ 75\\ 84\\ 127\\ 360\\ 113\\ 13\\ 115\\ 138\\ 150\\ 75\\ 103\\ 87\\ 55\\ 162\\ 96\\ 166\\ 35\\ 341\\ 111\\ 66\\ 202\\ 49\\ 69\\ 343\\ 341\\ 233\\ 116\\ 227\\ 142\\ 180\\ 105\\ 95\\ 69\\ 97\\ 202\\ 102\\ 102\\ 102\\ 102\\ 102\\ 102\\ 102$	$\begin{array}{c} 16\\ 13\\ 5\\ 7\\ 2\\ 9\\ 7\\ 6\\ 12\\ 15\\ 22\\ 4\\ 9\\ 22\\ 1\\ 2\\ 8\\ 3\\ 19\\ 224\\ 11\\ 26\\ 8\\ 22\\ 1\\ 126\\ 8\\ 22\\ 1\\ 4\\ 16\\ 38\\ 1\\ 5\\ 7\\ 10\\ 11\\ 18\\ 42\\ 3\\ 9\\ 15\\ 33\\ 19\\ 8\\ 20\\ 22\\ 17\\ 1\end{array}$	$\begin{array}{c} 203\\ 137\\ 140\\ 144\\ 300\\ 200\\ 42\\ 346\\ 275\\ 283\\ 159\\ 5\\ 331\\ 166\\ 352\\ 219\\ 90\\ 22\\ 93\\ 203\\ 353\\ 231\\ 260\\ 168\\ 1\\ 181\\ 150\\ 255\\ 0\\ 130\\ 264\\ 301\\ 78\\ 21\\ 334\\ 109\\ 149\\ 163\\ 1\\ 76\\ 73\\ 11\\ 208\\ 348\\ 241\\ 294\\ 13\\ 191\\ 158\\ 203\\ 203\\ 203\\ 203\\ 203\\ 203\\ 203\\ 203$	$\begin{array}{c} 19\\ 17\\ 7\\ 9\\ 3\\ 41\\ 8\\ 33\\ 61\\ 33\\ 9\\ 11\\ 21\\ 18\\ 7\\ 60\\ 7\\ 3\\ 16\\ 7\\ 52\\ 6\\ 42\\ 14\\ 24\\ 8\\ 53\\ 13\\ 11\\ 4\\ 24\\ 3\\ 15\\ 14\\ 29\\ 22\\ 5\\ 4\\ 29\\ 33\\ 9\\ 39\\ 24\\ 28\\ 5\\ 10\\ 0\\ 40\\ 9\end{array}$	$\begin{array}{c} 341\\ 277\\ 283\\ 284\\ 204\\ 37\\ 262\\ 226\\ 66\\ 133\\ 270\\ 207\\ 177\\ 338\\ 244\\ 36\\ 252\\ 270\\ 263\\ 313\\ 218\\ 333\\ 40\\ 308\\ 234\\ 286\\ 267\\ 6\\ 190\\ 256\\ 10\\ 207\\ 218\\ 266\\ 179\\ 325\\ 292\\ 285\\ 252\\ 173\\ 245\\ 116\\ 327\\ 110\\ 18\\ 50\\ 267\\ 296\\ 250\\ 350\\ 6\end{array}$	$\begin{array}{c} 65\\ 68\\ 81\\ 78\\ 68\\ 48\\ 79\\ 326\\ 53\\ 66\\ 78\\ 72\\ 72\\ 67\\ 30\\ 29\\ 65\\ 41\\ 73\\ 61\\ 65\\ 68\\ 75\\ 60\\ 22\\ 73\\ 44\\ 59\\ 99\\ 99\\ 57\\ 75\\ 68\\ 75\\ 80\\ 22\\ 73\\ 34\\ 59\\ 99\\ 57\\ 75\\ 68\\ 75\\ 80\\ 22\\ 73\\ 34\\ 59\\ 99\\ 57\\ 75\\ 68\\ 75\\ 80\\ 22\\ 73\\ 34\\ 59\\ 99\\ 57\\ 75\\ 75\\ 80\\ 22\\ 73\\ 34\\ 59\\ 99\\ 57\\ 75\\ 75\\ 80\\ 22\\ 73\\ 34\\ 59\\ 99\\ 57\\ 75\\ 75\\ 80\\ 22\\ 73\\ 34\\ 59\\ 99\\ 57\\ 75\\ 75\\ 80\\ 22\\ 73\\ 34\\ 59\\ 99\\ 57\\ 75\\ 75\\ 80\\ 22\\ 73\\ 34\\ 59\\ 99\\ 57\\ 75\\ 70\\ 55\\ 75\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70$	$\begin{array}{c} 63.7\\ 62.8\\ 77.1\\ 115\\ 89.9\\ 169.5\\ 76.2\\ 66.4\\ 46.4\\ 55.5\\ 97\\ 54.3\\ 68.6\\ 103\\ 69.8\\ 81.5\\ 138\\ 37.6\\ 39.3\\ 49.4\\ 41.7\\ 76\\ 50.3\\ 42.5\\ 44.6\\ 53.4\\ 104\\ 46.6\\ 63.4\\ 86.5\\ 45.5\\ 66.8\\ 121\\ 19.3\\ 65.6\\ 85.0\\ 144\\ 69.7\\ 134\\ 72.8\\ 153\\ 101\\ 92.6\\ 111\\ 73.7\\ 76.5\\ 79.6\\ 84.7\\ 71.7\\ 76.5\\ 79.6\\ 84.7\\ 76.5\\ $	$\begin{array}{c} 63.0\\ 62.4\\ 76.8\\ 113.9\\ 189\\ 75.8\\ 65.4\\ 46.0\\ 55.0\\ 96.1\\ 54.2\\ 68.0\\ 102.4\\ 68.9\\ 80.9\\ 138.1\\ 37.4\\ 39.2\\ 49.4\\ 40.9\\ 75.2\\ 49.9\\ 44.1\\ 53.0\\ 102.7\\ 46.1\\ 62.7\\ 149.2\\ 65.8\\ 120\\ 19.2\\ 65.1\\ 84.8\\ 120\\ 19.2\\ 65.1\\ 84.3\\ 69.1\\ 132.7\\ 71.9\\ 152.1\\ 99.7\\ 71.9\\ 152.1\\ 99.7\\ 71.9\\ 152.1\\ 99.7\\ 71.9\\ 152.1\\ 99.7\\ 71.9\\ 152.1\\ 99.7\\ 71.9\\ 152.1\\ 99.7\\ 71.9\\ 152.1\\ 99.7\\ 71.9\\ 152.1\\ 99.7\\ 71.9\\ 152.1\\ 99.7\\ 71.9\\ 152.1\\ 99.7\\ 71.9\\ 152.1\\ 99.7\\ 71.9\\ 152.1\\ 99.7\\ 71.9\\ 152.1\\ 99.7\\ 71.9\\ 152.1\\ 99.7\\ 71.9\\ 152.1\\ 99.7\\ 71.9\\ 152.1\\ 99.7\\ 71.9\\ 152.1\\ 99.7\\ 71.9\\ 152.1\\ 99.7\\ 71.9\\ 152.1\\ 71.9\\ 71.9\\ 152.1\\ 71.9\\ 71.9\\ 152.1\\ 71.9\\ 71.$	$\begin{array}{c} 62.3\\ 62\\ 74.0\\ 112.9\\ 87.9\\ 168.6\\ 74.8\\ 65\\ 45.6\\ 54.5\\ 95.1\\ 53.5\\ 67.3\\ 101.8\\ 67.8\\ 80.6\\ 136.9\\ 38.5\\ 48.2\\ 40.4\\ 74.2\\ 49\\ 41.7\\ 43.3\\ 52.5\\ 100.3\\ 45.3\\ 62.2\\ 84.1\\ 44.3\\ 65.4\\ 117.4\\ 18.5\\ 64.4\\ 82.2\\ 130.2\\ 71.2\\ 150.2\\ 99.4\\ 88.6\\ 105.1\\ 69.8\\ 75.3\\ 78.3\\ 83.1\\ 70.0\\ 65.2\\ 99.4\\ 88.6\\ 105.1\\ 69.8\\ 75.3\\ 78.3\\ 83.1\\ 70.0\\ 65.2\\ 99.4\\ 88.6\\ 105.1\\ 69.8\\ 75.3\\ 78.3\\ 83.1\\ 70.0\\ 65.2\\ 99.4\\ 88.6\\ 105.1\\ 69.8\\ 75.3\\ 78.3\\ 83.1\\ 70.0\\ 65.2\\ 90.4\\ 88.6\\ 105.1\\ 69.8\\ 75.3\\ 78.3\\ 83.1\\ 70.0\\ 65.2\\ 90.4\\ 88.6\\ 105.1\\ 69.8\\ 75.3\\ 78.3\\ 83.1\\ 70.0\\ 65.2\\ 90.4\\ 88.6\\ 105.1\\ 69.8\\ 75.3\\ 78.3\\ 83.1\\ 70.0\\ 65.2\\ 90.4\\ 88.6\\ 105.1\\ 69.8\\ 75.3\\ 78.3\\ 83.1\\ 70.0\\ 65.2\\ 90.4\\ 80.6\\ 105.1\\ 100.4\\$	$\begin{array}{c} 63.0\\ 62.4\\ 76.0\\ 113.9\\ 89.0\\ 169.0\\ 75.6\\ 65.6\\ 46.0\\ 55.0\\ 96.1\\ 54.0\\ 68.0\\ 102.4\\ 68.8\\ 81.0\\ 137.3\\ 39.0\\ 49.0\\ 102.3\\ 46.0\\ 65.0\\ 84.0\\ 119.0\\ 65.0\\ 84.0\\ 119.0\\ 108.4\\ 72.0\\ 79.0\\ 84.0\\ 79.0\\ 84.0\\ 79.0\\ 84.0\\ 79.0\\ 84.0\\ 71.0\\ 65.6\\ 69.0\\ 100.0\\ 91.0\\ 108.4\\ 72.0\\ 79.0\\ 84.0\\ 71.0\\ 65.6\\ 71.0\\ 65.6\\ 71.0\\ 65.6\\ 71.0\\ 65.6\\ 71.0\\ 65.6\\ 71.0\\ 71.0\\ 65.6\\ 71.0\\ 7$	1.01 1.01 1.01 1.00 1.01 1.00	1.01 1.01 1.04 1.01 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.02 1.00 1.01 1.02 1.00 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.00 1.01 1.02 1.01 1.02 1.00 1.01 1.02 1.00 1.01 1.02 1.00 1.02 1.01 1.02 1.00 1.02 1.00 1.02 1.00 1.02 1.00 1.02 1.00 1.02 1.00 1.02 1.00 1.02 1.01 1.02 1.02 1.02 1.02 1.01 1.02 1.02 1.01 1.02 1.02 1.01 1.02 1.02 1.01 1.02 1.02 1.01 1.02 1.02 1.01 1.02 1.02 1.01 1.02 1.02 1.01 1.02 1.02 1.01 1.02 1.02 1.02 1.01 1.02	1.02 1.01 1.04 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02	$\begin{array}{c} 2 \pm 2 \\ 2 \pm 2 \\$

Table 5 (continued).

Table 5 (continued).

Core section	Denth	K	max	K	int	K	min	ĸ	K	K	ĸ				AMS
interval (cm)	(mbsf)	Dec	Inc	Dec	Inc	Dec	Inc	(1×10^{-6})	(1×10^{-6})	(1×10^{-6})	(1×10^{-6})	L	F	Р	dip
9X-CC, 14	75.5	148	8	56	16	263	72	62.6	62.4	60.9	62.0	1.00	1.02	1.03	18
9X-CC, 28	75.6	110	3	201	27	13	63	77.1	76.3	73.9	75.8	1.01	1.03	1.04	28
10X-1, 2	100.0	203	18	38	10	156	09	102	102	101.6	101.9	1.00	1.00	1.00	20
10X-2 27	101.0	135	49	35	8	207	40	167	165.2	160.9	164.4	1.01	1.04	1.04	50
10X-2, 29	101.0	138	32	37	19	281	52	108.7	107.2	105.1	107.0	1.01	1.02	1.03	38
10X-3, 6	102.3	113	49	13	8	276	40	141	139.9	138.5	139.8	1.01	1.01	1.02	50
10X-3, 8	102.3	118	35	17	15	267	51	89.3	88.0	86.7	88.0	1.02	1.01	1.03	39
10X-4, 105	104.8	349	18	252	21	116	61	68.8	68.1	67.1	68.0	1.01	1.02	1.02	29
10X-4, 138	105.1	260	66	170	0	79	24	161	158.5	156.7	158.7	1.02	1.01	1.03	00
10X-6 21	105.7	192	44	280	3	185	35	138	138	133.6	136.5	1.00	1.03	1.03	45
10X-6, 53	106.9	279	54	16	5	109	36	90.7	89.0	87.3	89.0	1.02	1.02	1.04	54
10X-7, 31	108.1	5	50	258	14	157	36	137	135.2	134.3	135.5	1.01	1.01	1.02	54
10X-7, 134	109.2	292	65	185	7	93	24	96.2	95.7	93.1	95.0	1.01	1.03	1.03	67
10X-8 54	109.9	97	12	191	16	331	70	124	122.8	119.7	122.2	1.01	1.03	1.04	21
11X-1, /1	110.2	293	22	202	12	26	78	87.9	87.8	85.3	87.0	1.00	1.05	1.03	12
11X-2 132	112.3	124	17	214	50	307	72	01.0	01.8	86.3	90.0	1.00	1.05	1.00	17
11X-2, 145	112.5	69	16	160	4	264	74	133	130.7	127.7	130.5	1.02	1.02	1.04	17
11X-3, 1	112.5	69	21	177	37	316	45	132	130.2	128.2	130.1	1.01	1.02	1.03	45
11X-3, 4	112.5	113	8	206	16	359	72	92.3	91.7	89.0	91.0	1.01	1.03	1.04	18
11X-CC, 17	112.9	67	46	171	13	272	42	175	173.4	169.9	172.8	1.01	1.02	1.03	48
12X-1, 59	119.6	70	43	194	32	305	31	67.4	66.9	66.7	67.0	1.01	1.00	1.01	39
12X-2, 31	120.8	290	6	145	29	253	83	85.0	121.2	82.2	110.8	1.02	1.02	1.04	50
12X-3.76	122.8	38	5	130	13	287	76	119	118.1	116.2	117.8	1.01	1.02	1.02	14
12X-3, 96	123.0	25	12	286	36	131	52	103.8	102.5	99.7	102.0	1.01	1.03	1.04	38
12X-4, 21	123.7	249	58	49	30	144	9	65.4	65.1	64.5	65.0	1.00	1.01	1.01	81
12X-4, 43	123.9	71	11	169	32	325	56	81.7	81.5	80.9	81.4	1.00	1.01	1.01	34
12X-4, 99	124.5	94	12	195	1	267	78	64.8	64.1	63.1	64.0	1.01	1.02	1.03	12
15X-1.77	148.3	76	16	343	9	295	72	86.1	85.3	83.6	85.0	1.01	1.02	1.03	18
15X-1, 95	148.5	80	18	175	14	300	67	155	153.8	150.6	153.1	1.01	1.02	1.03	23
15X-2, 75	149.8	114	10	204	2	307	80	157	155.9	152.7	155.2	1.01	1.02	1.03	10
15X-2, 78	149.8	97	5	7	4	239	84	77.9	77.6	75.6	77.0	1.00	1.03	1.03	6
15X-3, 24	150.7	35	6	300	35	132	55	69.0	68.6	66.3	68.0	1.01	1.03	1.04	35
15X-3, 59	151.1	08	3	158	8	315	81	219.4	215.0	204.6	213.0	1.02	1.05	1.07	15
15X-3, 145	152.0	24	20	124	25	261	57	109	108.1	107.6	108.2	1.01	1.02	1.03	33
15X-CC, 5	152.2	122	15	26	17	249	67	121	120.2	119.3	120.2	1.01	1.01	1.01	23
16X-1, 41	157.4	78	36	334	19	221	48	117	116.1	114.8	116.0	1.01	1.01	1.02	42
16X-2, 5	158.1	19	11	111	7	234	77	89.5	88.8	87.3	88.5	1.01	1.02	1.03	13
16X-3, 25	159.8	46	5	135	4	265	84	80.8	80.7	78.5	80.0	1.00	1.03	1.03	20
16X-4, 24	163.8	207	33	206	19	292	70	45.0	45.0	44.4	45.0	1.00	1.01	1.03	59
16X-5, 127	163.8	106	30	199	4	296	59	46.6	45.9	45.5	46.0	1.01	1.01	1.02	31
146 902E		0.222						1010					075575		
3H-1.16	33.2	92	7	186	37	353	52	35 5	35.2	34.4	35.0	1.01	1.02	1.03	38
3H-1, 95	34.0	299	20	185	50	42	34	47.6	47.3	46.2	47.0	1.01	1.02	1.03	56
3H-2, 2	34.2	57	8	321	41	157	48	59.3	58.6	58.3	58.7	1.01	1.01	1.02	42
3H-2, 7	34.2	198	10	291	13	72	73	29.4	29.1	28.5	29.0	1.01	1.02	1.03	17
3H-3, 74	35.9	191	49	329	33	74	22	28.4	28.0	27.7	28.0	1.01	1.01	1.02	68
3H-4, 52	37.2	100	10	228	48	68	40	21.3	21.1	20.7	21.0	1.01	1.02	1.03	12
3H-4, 120	37.0	190	6	281	5	52	81	01.4	78.3	90.2	90.9	1.00	1.02	1.02	9
3H-5, 9	38.2	77	18	306	63	174	19	38.8	38.5	37.8	38.4	1.01	1.02	1.03	71
3H-5, 65	38.8	67	0	157	70	336	20	44.6	43.9	43.5	44.0	1.02	1.01	1.03	70
3H-6, 41	40.0	243	36	146	9	44	52	55.6	55.4	54.0	55.0	1.00	1.03	1.03	38
3H-CC, 9	40.5	226	32	134	3	37	58	55.9	55.9	55.7	55.8	1.00	1.00	1.00	32
3H-CC, 25	40.6	82	6	191	73	350	16	48.5	47.8	47.7	48.0	1.02	1.00	1.02	74
4H-1 51	43.0	219	42	204	31	316	22	85.1	84.2	05.9	96.6	1.01	1.02	1.03	58
4H-2, 42	44.2	61	5	155	46	326	44	464	46.1	45.5	46.0	1.01	1.01	1.02	47
4H-CC, 5	46.2	205	36	298	5	35	54	80.1	79.5	77.4	79.0	1.01	1.03	1.03	36
4H-CC, 16	46.3	219	20	123	16	356	64	132.1	131.1	129.5	130.9	1.01	1.01	1.02	26
	1. 1. A. C. C. S. S.			a contrate a		us dense	- 25 - 56		1000000 PM-2				and the second second	N-94074 M	

Notes: Dec = declination (degrees); Inc = inclination (degrees); K_{max} , K_{int} , K_{mean} in SI volume units; $L = K_{max}/K_{int}$; $F = K_{imt}/K_{min}$; $P = K_{max}/K_{min}$; AMS dip = (90 - K_{min} inc)

Figure 16. AMS results and schematic column of the principal structures (bedding, mélange, fracture fabrics, and deformation bands) and boundaries of the structural domains of Site 892. A–C. Orientations of the AMS fabrics are plotted as histograms of AMS foliation dips for each structural domain. The AMS foliation dips are defined as 90° (inclination of the minimum axis) for each sample, and represent the dips of the dominant planar fabric measured by AMS in these samples. D–F. Shapes of the AMS ellipsoids given as Flinn-type diagrams, as in Figure 5.

Figure 17. pARM curves for representative Site 892 samples. The vertical axis are magnetization (mA/m), and the horizontal axes are the intensities of the alternating field used to generate the pARM for each step. A 10-mT-wide window was used, and the center of the window was marked in increments of 10 mT from 5 to 155 mT. All samples have peak pARMs between 25 mT and 35 mT, with most of the pARM occurring between 5 mT and 60 mT.

Core section	Denth	pAR	M _{max}	pAR	Mint	pAR	M _{min}		pARM	(mA/m)					ADMA
interval (cm)	(mbsf)	Dec	Inc	Dec	Inc	Dec	Inc	Max	Int	Min	Mean	L	F	Р	dip
146-892A-															
1X-1, 132	1	232	22	140	4	39	67	8.1	8.0	7.7	7.9	1.01	1.04	1.05	23
3X-2, 59	21	127	0	37	11	218	79	12.4	12.14	11.68	12.1	1.02	1.04	1.06	11
4X-1, 59	29	121	11	212	3	315	79	9.18	8.58	8.18	8.6	1.07	1.05	1.12	11
6X-1, 44	39	205	14	112	13	340	71	7.74	7.57	7.29	7.5	1.02	1.04	1.06	19
7X-1, 42	49	328	1	237	5	73	85	9.17	8.93	8.49	8.9	1.03	1.05	1.08	5
7X-6,80	57	119	18	22	20	247	63	12.02	11.91	11.48	11.8	1.01	1.04	1.05	27
8X-3, 53	62	138	6	48	2	301	84	14.61	14.04	13.65	14.1	1.04	1.03	1.07	6
11X-1,90	79	57	19	321	17	192	65	9.08	9.04	8.76	9.0	1.00	1.03	1.04	25
12X-1, 18	88	190	26	287	13	42	61	7.88	7.82	7.36	7.7	1.01	1.06	1.07	29
13X-7,64	103	133	20	43	0	313	70	9.41	9.06	8.71	9.1	1.04	1.04	1.08	20
17X-CC, 20	137	48	27	315	6	213	62	9.22	8.74	8.12	8.7	1.05	1.08	1.14	28
18X-1, 72	145	152	6	61	10	271	78	8.96	8.8	8.39	8.7	1.02	1.05	1.07	12
18X-CC, 3	146	331	3	240	17	71	73	19.2	18.62	17.21	18.3	1.03	1.08	1.12	17
146-892D-															
5X-1, 100	38	3	7	95	14	247	74	14.26	13.5	13.01	13.6	1.06	1.04	1.10	16
5X-3, 36	40	10	27	104	8	210	62	12.14	12	11.63	11.9	1.01	1.03	1.04	28
6X-1, 89	47	314	2	224	9	58	81	11.99	11.79	11.5	11.8	1.02	1.03	1.04	9

Table 6. Anhysteretic remanent magnetization anistropy (ARMA) data for Site 892.

Notes: Dec = declination (degrees); Inc = inclination (degrees); Max, Int, Min, Mean = pARM in mA/m; L = max/int; F = int/min; P = max/min; ARMA dip = (90 - pARM_min inc).

Figure 18. ARMA results for Site 892 samples. ARMA orientations (A-C) and ellipsoid shapes (D-F) are plotted for each structural domain as in Figure 16.