3. UNDERWAY GEOPHYSICS

Shipboard Scientific Party

EQUIPMENT AND METHODS

Navigation

Primary navigation data were acquired during Leg 149 using a Magnavox Transit/Global Positioning System (GPS) Satellite Navigator, Model MX1107 GPS, which is located in the Underway Geophysics Laboratory. The receiving aerial is located 28 m forward of the stern, 45 m aft of the drill floor, and 89 m aft of the ship's bridge navigation system aerial. GPS position fixes were available on an essentially continuous basis. All fixes, together with course and speed information, were recorded digitally at various time intervals (depending on whether we were acquiring seismic reflection data or transiting between sites) using a Masscomp 561 computer system. A realtime navigation display program, AGCNAV, proved useful while re-occupying existing seismic track lines and for deploying beacons.

Bathymetry

Bathymetric data were acquired using both 3.5- and 12-kHz systems. Data for both systems were displayed using Raytheon Model 1807M line scanning recorders (LSR). The 3.5-kHz system used an EDO 248C transceiver, while the 12-kHz system used a Raytheon PTR105B transceiver to drive an EDO 323B transducer. Transducers for both systems are mounted in a sonar dome for improved noise conditions at high ship's speed and in rough weather conditions. Depth readings were recorded manually every 5 min for post-cruise processing. Preliminary onsite water depths were estimated using data from the 12-kHz system.

Magnetic Field Intensity

Measurements of total magnetic field intensity were collected along the ship's track using a Geometries 801 proton-precession magnetometer. The sensor was towed approximately 400 m behind the ship. Observations were made at 3-s intervals with a sensitivity of about 1 nT. Values were digitally recorded on the Masscomp computer at the same intervals as the navigation. Manual log entries of magnetic field intensity were made every 5 min. Magnetic field intensity data were processed after the cruise to remove the regional field using the IGRF-90.

Seismic Reflection Profiling

Two Seismic Systems, Inc., 200-in. water guns were towed approximately 14 m apart and approximately 24 m behind the stern. The guns were towed at a depth of about 13 m. They were fired simultaneously at approximately 2000 psi (13.8 MPa) at uniform time intervals of 17 or 12 s. The ship's speed was about 5 kt. A 100-m Teledyne Model 178 hydrophone streamer, containing 60 active hydrophones, was towed at a depth of 15-20 m. The midpoint of the streamer lay 370 m astern.

Analogue seismic reflection data were displayed on two Raytheon Model 1807M LSR recorders. The signal from the streamer was amplified and bandpass filtered at 25 to 150 Hz (Recorder 1) or 15 to 150 Hz (Recorder 2) before display. The seismic reflection data were recorded digitally on a Masscomp computer using the HIGHRES software package. The data were recorded in SEG-Y format at 1600 bpi.

Acquisition of Underway Geophysical Data During Leg 149

Charts of the ship's track while underway data were being acquired are shown in Figures 1 through 3. Table 1 indicates when and what types of underway geophysical data were acquired. Intervals of seismic reflection profile acquisition are discussed below.

Seismic Acquisition Along Line 2

The portion of Line 2 along which seismic data were acquired was a site approach survey acquired before deploying a beacon at proposed Site IAP-4 (which became Site 897) (Fig. 2). This seismic reflection profile (Fig. 4, backpocket foldout) is called Line 149-2 throughout this volume. We re-occupied a portion of Sonne Line 75-16, which passed through the proposed site. Our objective was to check the location of the site by comparing our seismic data and navigation with those of the Sonne survey. We determined that our new seismic data agreed well with those acquired earlier and that we could confidently deploy a beacon at the site. The bathymetric data were largely featureless, with the exception of an apparent seafloor step upward to the east by about 7 m (Fig. 8 in “Site 897” chapter, “Site Geophysics” section, this volume). The feature was visible on Sonne Line 75-16, but some of us had previously interpreted it as a timing artifact.

Seismic Acquisition Along Line 3

The portion of Line 3 along which seismic data were acquired was shot on 17-18 April 1993 (Fig. 2), before we departed the study area for the mid-leg port call in Lisbon. We had completed drilling and logging operations at Site 897 and, because of the deep water, no time was available for more drilling. This seismic reflection profile (Fig. 5, backpocket foldout) is called Line 149-3 throughout this volume. Our objectives for the seismic data acquisition were (1) to obtain a profile over proposed Site IAP-3C (which we did not end up drilling during the leg), (2) to obtain a profile over proposed Site IAP-2 (which became Site 898), and (3) to obtain profiles to fill two gaps in the existing seismic-reflection profile coverage in the study area. We acquired a profile across Site IAP-3C, re-occupying a portion of Sonne Line 75-16. While shooting from west to east, roughly between Sites 897 and IAP-2 (Site 898), we identified a previously unmapped acoustic basement high that came to within 490 m of the seafloor. After surveying Site IAP-2 (Site 898) and re-occupying a portion of Lusigal Line 12, we altered the originally planned track to cross the new basement high again, this time from south-southwest to north-northeast. At the time, this basement high seemed just like an interesting additon to the map of basement depth in the area. After the loss of about 3.3 km of drill string at Site 898, which left us with insufficient drill string to achieve our basement objectives there, we elected to drill on the new basement high, which then became Site 899.

Ms 149IR-103

2 Shipboard Scientific Party is as given in list of participants preceding the contents.

Reproduced online: 15 October 2004.
Figure 1. Chart of ship's track for JOIDES Resolution transits from Panama City to Ponta Delgada, and Ponta Delgada, to the start of seismic reflection profiling near Site 897.

Figure 2. Chart of ship's track for JOIDES Resolution during acquisition of reflection seismic profiles 149-2 and 149-3.

Figure 3. Chart of ship's track for JOIDES Resolution transits from Leg 149 sites to and from Lisbon.
Table 1. Intervals of underway geophysical data acquisition during Leg 149.

<table>
<thead>
<tr>
<th>Subleg</th>
<th>Line no.</th>
<th>From/To</th>
<th>Bathymetry</th>
<th>Magnetometer</th>
<th>Seismic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Date</td>
<td>Time</td>
<td>Date</td>
</tr>
<tr>
<td>149A</td>
<td>1</td>
<td>Panama/Azores</td>
<td>15–28 March</td>
<td>0450–0900</td>
<td>15–28 March</td>
</tr>
<tr>
<td>149B</td>
<td>3</td>
<td>Site 897 / Lisbon</td>
<td>17–19 April</td>
<td>1330–0053</td>
<td>17–18 April</td>
</tr>
<tr>
<td>149C</td>
<td>4</td>
<td>Lisbon / Site 898</td>
<td>20–20 April</td>
<td>0515–1010</td>
<td>None</td>
</tr>
<tr>
<td>149C</td>
<td>5</td>
<td>Site 899 / Site 900</td>
<td>10–10 May</td>
<td>1410–1800</td>
<td>10–10 May</td>
</tr>
<tr>
<td>149C</td>
<td>6</td>
<td>Site 900 / Site 901</td>
<td>22–22 May</td>
<td>1325–1700</td>
<td>None</td>
</tr>
<tr>
<td>149C</td>
<td>7</td>
<td>Site 901 / Lisbon</td>
<td>24–25 May</td>
<td>1210–0100</td>
<td>24–25 May</td>
</tr>
</tbody>
</table>
Figure 4. Reflection profile 149-2.

Ocean Drilling Program
Leg 149
Line 2

Field Parameters
Date recorded: 30 March 1993
Vessel: JOIDES Resolution
Source type (Nominal shot spacing): 2 x 200 in.3 water gun, 2000 psi
Source interval: 12 s (31 m)
Ship's speed: 5 kt
Sample rate: 1 ms
Record end time: 10 s
Offset: 345 m
Low cut filter: 20 Hz
High cut filter: 250 Hz
Instruments: Single-channel Teledyne Model 178 hydrophone
Format: SEG-Y
Number data chains: 1
Processing Sequence
Trace length extended: 10 s
Recording delay removed: 6 s
Filter type: Butterworth
Filter parameters: 30, 18, 170,18
Automatic gain control: 200 ms
Trace mix: (1, 2, 1)
Decimation for plotting: 4
Water bottom mute: 2 cm = 1 km

Display
Bias % = 0
Gain set = 2
Gain constant = 1.7504
RMS amplitude = 0.930194

Traces/cm = 64.864 cm/s = 5

Two-way traveltime (s)
Ocean Drilling Program
Leg 149
Line 1

Field Parameters
Date recorded: 17-18 April 1993
Vessel: JOIDES Resolution

Source type: 2 × 200 in.3 water gun, 2000 psi
Shot interval (Nominal shot spacing): BOL-16:27 14 s (36 m), 16-20:20:15 x (36 m), 16-20-20:15 x (34 m)
Ship’s speed: 15 kn
Sample rate: 1 cm
Recorded line time: 5.5 s
Offset: 20 km
Sample rate (Hz): 250 Hz
High-cut filter: 250 Hz
Instrument: Single-channel Teledyne Model 178 hydrophone
Format: SEG-Y
Number data channels: 1

Processing Sequence
Trace length extended: 10 s
Recording delay removed: 6 s
Filter type: Butterworth
Filter parameters: 30.02, 17.13
Antenna gain controlled: 200 cm
Gain constant: 1.75.04
RMS amplitude: 0.930194

Figure 5. Reflection profile 149-2.