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6. PASS-THROUGH CORE MEASUREMENTS OF MAGNETIC SUSCEPTIBILITY
AND NATURAL GAMMA RAY, NEW JERSEY COASTAL PLAIN1

John M. Metzger,2,4 Steven C. Remer,2 Kenneth G. Miller,2,3 Dennis V. Kent,3 Mickey C. Van Fossen,2,3

James V. Browning,2 and Dave S. Goldberg3
ABSTRACT

We measured magnetic susceptibility (MS) and core gamma radiation (CGR) on 3162 ft (963.9 m) of core recovered by the
New Jersey Coastal Plain Drilling Project (Ocean Drilling Program Leg 150X) at Island Beach, Atlantic City, and Cape May,
New Jersey. Integration of core lithology, core/log (MS and CGR), and downhole gamma-ray (DGR) log studies have (1) doc-
umented the core/log expression of previously determined unconformities; (2) shown that MS is a proxy for glauconite percent
in the New Jersey Coastal Plain; (3) illustrated a major change in sedimentation from shelfal glauconite evidenced by very high
MS values to deltaic deposition with low MS values in the earliest Miocene (ca. 22 Ma); (4) shown that comparison of MS and
CGR with DGR can be used to resolve discrepancies in depth between downhole logs and cores; and (5) shown that the CGR
detects some zones noted in the lithology (e.g., phosphate rich zones) that are not resolved in the DGR.
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INTRODUCTION

The New Jersey Coastal Plain Drilling Project (Ocean Drilling
Program [ODP] Leg 150X; Miller et al., 1994a, 1994b; Miller, et al.,
1996) continuously cored and logged boreholes at Island Beach (1223
ft, 372.9 m total depth (TD) in Maastrichtian), Atlantic City (1450 ft,
442.1 m TD in middle Eocene), and Cape May (1500 ft, 457.3 m TD
in upper Eocene; Fig. 1). Previous studies have identified sequences in
the cores as generally shallowing upward successions and dated them
with integrated magnetostratigraphy, biostratigraphy, and Sr-isotopic
stratigraphy (Miller, et al., 1996; Miller et al., 1994a, 1994b, and stud-
ies in this volume). Although recovery was excellent at all three sites
(>80% mean), coring gaps limit stratigraphic resolution in critical in-
tervals. Downhole gamma-ray (DGR) and other downhole logs can be
used to evaluate sequences, particularly in intervals of poor recovery.
Pass-through logging techniques can be applied to the recovered
cores, enhancing information available from conventional downhole
logs alone. In addition, integration of core logs and downhole logs al-
lows the calibration of these two data sets, resulting in proper depth
placement of the core relative to the DGR and other downhole logs.

Although pass-through measurements of some core properties,
such as gamma-ray attenuation and porosity evaluator (GRAPE),
have been routine on Deep Sea Drilling Project (DSDP) and ODP
cruises, modern multisensor tracks have only recently become avail-
able. Core gamma radiation (CGR) was added as a standard multisen-
sor track measurement on the JOIDES Resolution as recently as Leg
150 (Hoppie et al., 1994). In the Paleomagnetics Laboratory at Lam-
ont-Doherty Earth Observatory (LDEO), a multisensor track was de-
signed and developed for the last hole of the Newark Basin coring
project (e.g., Kent et al., 1995) and built by ASC Inc. in 1993. The
track allows (stationary) measurements of contiguous intervals of
core in pass-through mode and is currently configured to measure
magnetic susceptibility (MS) and CGR at predetermined intervals.
Although the technique is best applied to freshly obtained cores (i.e.,
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before sampling and shrinkage), the track was not available when the
Island Beach and Atlantic City cores were obtained in March to Au-
gust, 1993. Cores obtained by Leg 150X were measured using the
LDEO multisensor track from June to November 1995. This contri-
bution presents CGR and MS data for the Island Beach, Atlantic City,
and Cape May boreholes.

METHODS

Data Collection

Core/log data were measured on the intervals 0–1223 ft (0–373
1060 ft [323.1m] recovered) from Island Beach, 0–1452 ft (0−443 m;
977 ft [297.8 m] recovered) from Atlantic City, and 0–1500 ft (0−457
m; 1125 ft [343.0 m] recovered) from Cape May using the LDEO A
totrak system. Preliminary specifications for the setup of the proje
came from guidelines established for Leg 150 CGR studies (Hopp
et al., 1994). The cores were passed through both the CGR cou
and the MS meter with measurements taken at stationary 3-in (7
cm) intervals. The MS meter used in this study was the Barting
Magnetic Susceptibility Meter Model MS2, similar to the instrumen
used on board the JOIDES Resolution, with a 100-mm-diameter sen-
sor. The CGR counter used a Canberra multichannel system with 
detector operated in total natural gamma mode.The sensor is a m
channel passive gamma-ray counter, with each channel recording
number of gamma-rays detected (e.g., from the different isotopes
U, Th, and K present in the sample) per second. The multichan
counts at each depth interval were then combined to get a total co
per second. Magnetic susceptibility and natural gamma radiation
influenced by the volume and geometry of the core placed in the s
sor. A reference sample at a known CGR signal of 12 counts s–1 and
MS signal of 63.3 raw cgs, showed that the nominal stratigraphic res-
olution of the detectors was about 3 in.

For this survey study, CGR measurements used a count time of 10
s for each 3-in (10.3 cm) section; MS measurements were made si-
multaneously within this time interval on an offset section of core.
Hoppie et al. (1994) noted that 30 s apparently provided the best com-
promise between sampling statistics and sampling time for CGR data
(i.e. 11.2% standard error at 10 s and a 5.6% standard error at 30 s for
Leg 150). Our comparison of CGR repeat data shows that although
10 s apparently captures much of the 30-s signal, significant loss or
aliasing is possible in the 10-s measurements. To increase the statis-
65RQWHQWVRQWHQWV 1H[W�&KDSWHU1H[W�&KDSWHU
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Figure 1. Magnetic susceptibility (MS) data for Leg 150X boreholes showing generalized lithostratigraphy derived from site reports (Miller et al., 1994a, 1994b;
Miller, et al., 1996; SI × 10–6).
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tical confidence of the CGR data, a 30-s sampling time is recom-
mended in future work.

Although the CGR multichannel counter collected spectral gam-
ma-ray data that would potentially allow the K, U, and Th compo-
nents to be resolved, our routine sampling times were not sufficiently
long to obtain accurate counting statistics for spectral deconvolution.
The total counts obtained reflect the contribution of K, Th, and U.
Hesselbo (1996) provides a useful review of the contribution of each
component to spectral DGR logs obtained on New Jersey slope Leg
150.

All downhole logs were obtained with slimline tools by BPB In-
struments and are described by Miller et al. (1994a, 1994) and Miller,
et al. (1996). At Island Beach, the hole was cased with polyvinyl
chloride (PVC) pipe to 457 ft (139 m), and the following measure-
ments were obtained on each formation from surface to 1221 ft
(372.3 m): (1) DGR and focused electric (resistivity); (2) multichan-
nel sonic; (3) dual-spaced neutron; (4) gamma density caliper; (5)
dipmeter; and (6) temperature. The gamma-ray logs at Atlantic City
and Cape May were obtained through the drill pipe to total depth,
which suppresses the value of the gamma-ray signal at these sites.

The DGR logs at these sites have a sampling interval of 0.01 ft
(0.12 in, 0.25 cm), but were decimated to match the intrinsic 12- to
15-cm resolution of the DGR sensor (Goldberg et al., 1994). The
CGR measurements therefore have somewhat higher stratigraphic
resolution than the DGR, but the DGR tool typically measures higher
count rates than the CGR because of the larger volume of sediment
investigated.
66
Data Processing

The raw MS data, like the raw CGR data, were corrected for drift
and background with “baseline readings” taken at 10-ft (3-m) inte
vals. The Leg 150X cores are whole cores with diameters of 1.875
and 2.5 in (see Miller et al. [1994a, 1994b] and Miller, et al. [199
for specific core diameters). The raw MS and CGR data were c
verted to volume specific data using the correction factor (F = 0.
for 2.5-in [6.35 cm] core diameter; F = 0.48 for 1.875-in [5 cm] co
diameter) for the 100-mm-diameter sensor provided by the manuf
turer. MS was measured in cgs units (gain = 1.0) and later conve
to SI units using the equation: 

KSI = ([Kcgs]/[0.87 or 0.48]) × 4π.

For both the CGR and MS, we smoothed the data as indicated
low for each site. Primary sources of high frequency “noise” are c
ing voids, gaps from where samples were taken, and variations du
counting statistics for the CGR data. We tried to account for voi
and gaps by eliminating the associated measurements close to b
ground values in both MS and CGR. After experimenting with diffe
ent running mean filters, a 9-in (22.9 cm) filter seemed to yield t
clearest MS record with the least signal degradation and fewest a
facts and was thus used on the MS data. Similar studies (e.g., Ho
et al., 1994) show that a 30-in (76 cm) filter was most suitable f
CGR data, and thus it was used on the CGR data. Finally, interv
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with less than 50% recovery were removed from the final data to
avoid severe artifacts associated with frequent or large voids.

RESULTS

MS and CGR vs. Lithology

Comparisons of pass-through MS and CGR log data to the lithol-
ogies (Figs. 1−9) observed in the core revealed the following trends.

1. Percent glauconite is the factor that most influences MS signal
strength. The first-order trend observed at all three sites is an
interval of very high MS values corresponding approximately
to the Oligocene to lowermost Miocene section (Fig. 1). At Is-
land Beach, a major drop in the MS values occurs at the dis-
conformable contact between the Oligocene and Miocene
(hiatus between 24.3 and 21.6 Ma; Miller et al., 1994a). At At-
lantic City, this change occurs in the lowermost Miocene at the
contact between the Kw0 and Kw1a sequences (between 22.2
and 21.4 Ma). At Cape May, the change also occurs at the
Kw0/Kw1a contact (between 22.5 and 20.7 Ma), although el-
evated values continue into the base of the Kw1a sequence.
This change represents a dramatic shift from shelf- to deltaic-
dominated sedimentation that occurred at ca. 22.2−21.4 Ma
(see Miller et al., this volume for discussion of Miocene age
control on the Leg 150X boreholes). The influence of glauco-
nite is illustrated by matching a MS signal and the sieved
weight percent of glauconite in the interval of 450–800
(137.2–243.9 m) at Island Beach (Fig. 2). Future studies on
rock magnetic properties will need to be done to quantify t
relationship.

2. Glauconite displays a CGR signal similar to, but slightly gre
er than, clay. Dramatic increases in MS values occur at
three sites when glauconite first appears downsection; th
increases are not as apparent in the pass-through CGR log
cause the latter also reflect the relative influence of clays (F
5,7,9).

3. In the absence of glauconite, clays display high MS values
ative to quartz sands. For example, clay-rich intervals at ~
ft (137.2 m) and 255−279 ft (77.7−85.1 m) at Island Beach
show high MS values (Fig. 4).

4. Sands display the lowest MS signals relative to clay and g
conite. The best example of this is at Island Beach in the in
val between 750 and 800 ft (229 and 244 m; Fig. 5).

CGR vs. DGR Comparison

Comparison of the CGR with the DGR at Atlantic City and Ca
May shows that CGR often has much higher amplitude signals
displays peaks and troughs not present, or slightly offset from p
in the downhole logs. We attribute this to four effects.

1.  Most Leg 150X downhole logs (gamma and neutron) were
tained by logging the holes through drill rods. Downhole lo
ging through a drilling rod causes attenuation of the sign
relative to logs obtained in open hole or directly on the co
The pass-through logging technique on core provides stron
signals than the DGR logs through the pipe. Pratson e
(1992) show excellent examples of DGR logs through p
that are correlated with carbonate, sandstone, and clays
lithologies recovered on the Exmouth Plateau (ODP Leg 12
An example of CGR showing peaks attenuated by logg
through pipe is provided by figure 9 in Hoppie et al. (199
similar to examples from Leg 150X sites that were logg
through pipe (e.g., Atlantic City and Cape May).

2. The stationary and discrete sampling interval of the pa
through technique can image some horizons better than do
t
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hole logs (Hoppie et al., 1994). This is shown at 421, 510, 68
and 854 ft (128.4, 155.5, 207.3, and 260.4 m, respective
Figs. 8, 9) at Cape May where indurated zones containin
small pebble-sized phosphatic nodules are resolved as peak
the CGR and not in the DGR. This is partly because of the fa
that in these intervals the DGR was run through the drill pip
causing attenuation of the signal. It may also result from th
fact that downhole logs image considerable volumes of se
ment, thus averaging out these discrete intervals. These h
zons may also be thinner than the minimum vertical resolutio
of the DGR tool.

3. The precise depths of cores are only known within a few fe
offsets between DGR and CGR/MS/lithology may thus be a
tifacts, and comparisons of CGR and DGR can be used to c
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Figure 2. Relationship between glauconite percent and MS signal strength,
Island Beach, 450−800 ft (SI × 10–6).
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rect these errors. The differences in detail in the interval from
846 to 876 ft (258−267 m) illustrate offsets between DGR and
CGR/MS/lithologic peaks (Fig. 3). The MS peaks at 857 and
862 ft (261.3 and 262.8 m) correspond precisely with glauco-
nite peaks noted in the core and are causally linked. Whereas
the DGR shows peaks at about these depths, the CGR shows
large peaks centered at 860 ft (262 m) and 868 ft (264.6 m),
which are intervals of peak clay content. Intervals such as
these having poor correlation between CGR and DGR logs are
likely caused by depth uncertainty of the core samples. In ad-
dition, poor counts statistics can exacerbate CGR/DGR corre-
lation problems, particularly in intervals of low gamma-ray
emissions (e.g. sands). In this specific case, we minimized
counting problems by choosing an interval of high gamma val-
ues and by counting at 30 s. We conclude that the interval
shown in Fig. 3 documents a clear misregistry in depth be-
tween core and DGR data. Other similar offsets occur in At-
lantic City at 240 ft (73.2 m) and in Cape May between 275
and 280 ft (83.8−85.4 m) and 1060 and 1062 ft (323.2 and
323.8 m).

4. The CGR resolves several fine-scale cycles that may be inter-
preted as parasequences (i.e., successions bounded by flood-
ing surfaces). For example, in the Island Beach Miocene
Kirkwood Formation (78−508 ft [23.8−154.9 m]), the pass-
through technique allows for better resolution of several cy-
cles shown by decreasing CGR values upsection. These are in-
terpreted as stacked parasequences within the overall
shallowing upward Kw1a, Kw1b, and Kw2a sequences. Al-
though most of these are reflected in the DGR (Fig. 4), others
are not, in part, because logs were obtained through the pipe.

DISCUSSION

The data presented here from the Island Beach, Atlantic City, and
Cape May boreholes demonstrate the potential of core/log data for
complementing conventional downhole logs and lithologic studies of
cores. Such syntheses may enhance stratigraphic interpretations, es-
pecially the delineation of stratal surfaces (unconformities/sequence
boundaries, flooding surfaces and transgressive/ravinement surfac-
es), facies changes within sequences (i.e., Systems Tracts of Posa-
mentier et al., 1988), and proper depth and thicknesses of sequences.
We caution that such studies are in their infancy and that the obser-
vations made in one setting do not necessarily apply in others. For ex-
ample, Leg 150 drilling on the New Jersey slope showed that high-
MS values are associated with intervals of coarser sediments because
68
of detrital input during glacial intervals (Mountain, Miller, Blum et
al., 1994); on shore we show that high-MS values correspond with
glauconite sands. We are still in an inductive mode of interpreting
changes in core log data as proxies for lithologic or paleoenviron-
mental changes. Despite these limitations, our results have been en-
couraging. We find that the CGR logs may delineate thin phosphate-
rich horizons that are not observed in the through-pipe DGR logs.
core. Both the CGR and MS logs could be used to delineate strati-
graphic successions and be readily interpreted in terms of sequence
stratigraphy.
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Figure 6. Miocene to Holocene lithostratigraphy, recovery, sequences, ages, MS, CGR, and DGR. at Atlantic City (0−800 ft). Lithology modified after Miller et
al., 1994a (SI × 10–6). Open intervals are sections with no recovery.
71



J.M. METZGER ET AL.
Leg 150X  Atlantic City Site

Series

11
81

lo
w

er
O

lig
oc

en
e

11
66

11
18

92
3

91
4

88
5

Unit

K
w

0
O

4

O
3

O
2 S
ew

el
l P

oi
nt

K
w

1a
O

6
O

5

CGR DGRMS

lo
. M

io
ce

ne

100
API

0 100
counts / second

u.
 E

oc
en

e

(u
pp

er
)

14
31

13
33

A
bs

ec
on

 In
le

t

13
95

E
10

E
8

E
7

S
ha

rk
 R

iv
er

E
9

m
. E

oc
en

e

100

Lo
w

 R
ec

ov
er

y

Lo
w

 R
ec

ov
er

y

0 SI

300

350

400

450

D
ep

th
 (

m
)

up
pe

r 
O

lig
oc

en
e

A
tla

nt
ic

 C
ity

1200

1300

D
ep

th
 (

ft)

Lithology

900

1100

800

Cumulative
Percent

sands glauconite 

claysmuddy sands or
sandy muds

silty clays

K
E

Y

disconformity

med./coarse
sands

shellsforaminifera

glauconite
gg g g g

1400

gg
g

g

g

g

g

g

g
g

g g
g

g

g

g

g

g g

carbonate clay

gg gg g

gg g g g

gg g g g

gg
g

g

gg
g

g

gg
g

g

g

g

g

1000

Figure 7. Eocene, Oligocene, and Miocene lithostratigraphy, recovery, sequences, ages, MS, CGR, and DGR at Atlantic City (800−1452 ft). Lithology modified
after Miller et al., 1994a (SI × 10–6). Open intervals are section with no recovery.
72



PASS-THROUGH CORE MEASUREMENTS
D
e

p
th

 (
ft

)

Recov.Lithology

U
n

n
a

m
e

d
 s

a
n

d
s

 a
n

d
 c

la
y

s

u
p

p
e

r 
M

io
c

e
n

e
 -

 P
lio

c
e

n
e

?

Unit

C
a

p
e

 M
a

y

P
le

is
t.

-H
o

lo
.

?
P

le
is

t.

1
4

0
7

5
9

0

Ser. CGRMS DGR

L
o

w
 R

e
co

ve
ry

SI counts / second API

4
3

2
4

2
1

3
5

7
6

8
0

6
1

5
?

5
7

6
5

0
3

K
ir

k
w

o
o

d
 3

K
ir

k
w

o
o

d
 2

a
K

w
 2

b
K

w
 2

c

Sandy muds

RecoveredNot recoveredggg

Disconformity L - Lignite

p - Phosphate
FossilsCoarse sands

Sand

Glauconite

N
o

 D
a

ta
 A

va
ila

b
le

Cum. %
0

100

200

300

400

500

600

ind.

ind.

ind.

ind.

700

K
ir

k
w

o
o

d
 -

 C
o

h
a

n
s

e
y

0

50

100

150

200

D
e

p
th

 (
m

)

LLL

L L

 
p

 
p

lo
w

e
r 

  
m

id
d

le
  

 M
io

c
e

n
e

500 100 50 0

Cape May Site

L
o

w
 R

e
c
o

v
e

ry

L
o

w
 R

e
c

o
v

e
ry

L
o

w
 R

e
c

o
v

e
ry

L
o

w
 R

e
co

ve
ry

L
o

w
 R

e
c
o

v
e

ry

Figure 8. Miocene to Holocene lithology, recovery, sequences, ages, MS, CGR, and DGR at Cape May (0−700 ft). Open intervals are sections with no recovery.
Lithology modified after Miller, et al. (1996; SI × 10–6).
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Figure 9. Eocene, Oligocene, and Miocene lithology, recovery, sequences, ages, MS, CGR, and DGR at Cape May (700−1500 ft). Open intervals are sections
with no recovery. Lithology modified after Miller, et al. (1996; SI × 10–6).
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