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18. UPPER EOCENE SEQUENCE STRATIGRAPHY AND THE ABSECON INLET FORMATION,
NEW JERSEY COASTAL PLAIN1

James V. Browning,2 Kenneth G. Miller,2,3 and Laurel M. Bybell4
ABSTRACT

We evaluate the age, benthic biofacies, and sequence stratigraphy of thick and well-recovered upper Eocene sediments from
the New Jersey Coastal Plain. These strata are herein defined as a lithostratigraphic unit and named the Absecon Inlet Forma-
tion. The formation is divided into upper and lower portions. At its type locality in the Atlantic City borehole, the lower portion
of the Absecon Inlet Formation consists of 171 ft (52 m) of glauconitic silts and silty clays and is assigned to calcareous nanno-
plankton Zone NP 19/20 (late Eocene). At the ACGS#4 borehole, the type locality for its upper portion, the formation consists
of slightly sandy clays and is assigned to Zone NP 21 (late Eocene to earliest Oligocene). The continuous stratigraphic occur-
rence of Hantkenina spp. in these sediments is evidence of an Eocene age for the upper portion of the Absecon Inlet Formation.
Benthic foraminiferal analysis reveals five biofacies in the Absecon Inlet Formation, three of which can be related to paleowater
depth: a Siphonina biofacies inhabited water depths of 75 ± 25 m; a Cibicidoides biofacies inhabited water depths of 100 ± 30
m; and a Globobulimina biofacies inhabited water depths of 125 ± 30 m. In addition, a Gyroidinoides biofacies occurs only
within transgressive systems tracts. A Bulimina jacksonensis biofacies is believed to be related to a circum-Atlantic paleoceano-
graphic event unrelated to depth changes on the shelf. Gamma-log, lithologic, and faunal/floral data are used to interpret the
sequence stratigraphic architecture of the Absecon Inlet Formation. We conclude that the timing of unconformities (sequence
boundaries) and maximum flooding surfaces within the Absecon Inlet Formation is consistent with the eustatic record of Exxon
and the global δ18O record.
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INTRODUCTION

An important goal of the New Jersey Coastal Plain Drilling
Project (Ocean Drilling Program [ODP] Leg 150X) is to document
Paleogene sedimentary sequences and relate them to the Haq et al.
(1987) eustatic record and the δ18O proxy for sea-level change (see
Miller, Chapter 1, this volume, for an explanation). Sequence stratig-
raphy is a potentially powerful method for interpreting the strati-
graphic record. First proposed by Vail and Mitchum (1977) and re-
fined by Posamentier et al. (1988), sequence stratigraphy “is 
study of sediments and sedimentary rocks in terms of repetitively 
ranged facies and associated stratal geometry” (Christie-Blick a
Driscoll, 1995, p. 451). Sequence stratigraphy recognizes that s
low water sediments are deposited in distinctive packets bounded
unconformities. Because these unconformities separate older fr
younger rocks, sequences have both time and genetic significa
(Christie-Blick and Driscoll, 1995).

Sequence formation is interpreted to be controlled by eusta
change with the bounding unconformities being created during 
maximum rate of sea-level fall (Posamentier et al., 1988; Christ
Blick et al., 1990) or, in some situations, early in the relative fa
(Reynolds et al., 1991). Oligocene and Miocene sequence bounda
on the New Jersey slope and coastal plain correlate with the δ18O
proxy for sea-level change, indicating that sequence boundary form
tion was driven by glacioeustasy (Miller et al., 1996b). In contrast
the Miocene, the Paleocene to early Eocene were times of warm
mates (Wolfe, 1992) and may have been ice free (see Browning e
[Chapter 17, this volume] for discussion). There is general agreem
that ice was present on Antarctica by the earliest Oligocene (Miller

1Miller, K.G., and Snyder, S.W. (Eds.), 1997. Proc. ODP, Sci. Results, 150X:
College Station, TX (Ocean Drilling Program).

2Department of Geological Sciences, Rutgers University, Piscataway, NJ 08855,
U.S.A.

3Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964,
U.S.A.

4Correspondence author: 926 National Center, U.S. Geological Survey, Reston, VA
22092, U.S.A. lbybell@geochange.er.usgs.gov
3UHYLRXV�&KDSWHU3UHYLRXV�&KDSWHU 7DEOH�RI�&7DEOH�RI�&
he
ar-
nd
al-
 by
om
nce

tic
he
e-
ll
ries

a-
to
cli-
 al.
ent
 et

al., 1991; Zachos et al., 1992), and there is growing evidence th
significant ice sheet had formed on Antarctica by the late mid
Eocene (Barron et al., 1991; Browning et al., Chapter 17, this v
ume). Although we suspect that growth and decay of ice was res
sible for the formation of sequence boundaries in the late Eocen
yet, no attempt has been made to link New Jersey coastal plain
quence boundaries to the δ18O record.

The New Jersey coastal plain is an excellent place to study th
fects of changing sea-level on sedimentation. It is important to e
uate late Eocene sea-level changes on this margin because of u
tainties in mechanism. The New Jersey Margin was sediment sta
and subject to slow thermal subsidence (<10 m/m.y.) throughout
Cenozoic (e.g., Steckler and Watts, 1978), and sea-level cha
should be readily discernible in the sediments from this marg
However, upper Eocene sediments and benthic foraminiferal fau
are not well documented from the New Jersey Margin becaus
poor sampling of upper Eocene sections. The three Leg 150X b
holes recovered a total of 490 ft (149 m) of upper Eocene sedim
that for the first time allow a detailed analysis of faunas and se
ments (Fig. 1). The purpose of this paper is to describe the sedim
and faunas found in the New Jersey upper Eocene, place them i
sequence stratigraphic framework, and discuss possible mechan
for sequence boundary formation. We also formally name the Abs
on Inlet Formation.

METHODS

New Jersey Eocene sediments were studied in four boreh
from the coastal plain. The Island Beach, Atlantic City, and Ca
May boreholes were drilled as a part of Leg 150X (Miller et a
1994a, 1994b; Miller, et al., 1996). The Atlantic County Girl Sco
Council Camp 4 borehole (ACGS#4) was drilled by the U.S. Geol
ical Survey and the New Jersey Geological Survey near Mays La
ing, New Jersey in 1984 (Owens et al., 1988). Sequence bound
were based primarily on physical surfaces (including irregular c
tacts, reworking, bioturbation, and major facies changes), as we
planktonic foraminiferal and calcareous nannofossil biostratigrap
243RQWHQWVRQWHQWV 1H[W�&KDSWHU1H[W�&KDSWHU
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(Liu et al., Chapter 10, this volume; Miller et al., 1994a; Miller et al.,
1996b). Magnetostratigraphic studies in the upper Eocene at these
boreholes yielded a weak polarity signal (Van Fossen, Chapter 22,
this volume; Miller et al., 1990). Direct ties to the Geomagnetic Po-
larity Time Scale (GPTS) are difficult because of the possibility of
overprinting. The time scale of Berggren et al. (1995) is used
throughout.

Recognition of individual systems tracts in the upper Eocene is
difficult because of their subtle expression in these fine-grained,
deep-water sediments. In the New Jersey coastal plain, lowstand sys-
tems tracts (LST) are generally absent and only the transgressive
(TST) and highstand (HST) systems tracts have been identified. Typ-
ical New Jersey Miocene and Oligocene sequences have sand, often
containing glauconite, at the base, interpreted as the TST, overlain by
lower HST clays and silts with upper HST sands at the top (Sugarman
et al., 1993; Pekar et al., Chapter 15, this volume). The TSTs in the
Miocene and Oligocene are generally thin and sequences are domi-
nated by the HST (Miller et al., Chapter 14, this volume; Pekar et al.,
Chapter 15, this volume). The top of the glauconite in Miocene and
Oligocene sequences often coincides with peak abundances of benth-
ic foraminifers, especially Uvigerina. Peak abundances in Uvigerina
are commonly associated with peaks in total organic carbon (Miller
and Lohmann, 1982), which typically take place during times of max-
imum flooding (Loutit et al., 1988). In contrast to the Oligocene and
Miocene, upper Eocene sequences contain bioturbated clay through-
out with little sand. Thin glauconitic intervals are frequently present
at the bases of upper Eocene sequences. We cannot determine defin-
itively whether the maximum flooding surface (MFS) and the top of
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Figure 1. Location map showing locations of major boreholes on the New
Jersey Coastal Plain. Dark pattern indicates location of Eocene outcrop (after
Enright, 1969).
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the TST coincides with the glauconitic intervals or if they are higher
in the section and coincide with peak abundances of Uvigerina. The
HST sands are absent in the upper Eocene sequences probably be-
cause of their deposition in deeper water than the Miocene examples
of Sugarman et al. (1993).

Samples for benthic foraminiferal biofacies analysis were ob-
tained from the four boreholes. The sampling interval was 5 ft (1.5 m)
in the ACGS#4 borehole and ~10 ft (3.0 m) in the other boreholes.
Samples of ~20 cm3 were soaked in a sodium metaphosphate solution
to disaggregate the sediments. Samples that did not respond to the
treatment of sodium metaphosphate were boiled in sodium carbonate.
Samples were washed through a 63-µm mesh to remove the clay
silt. The dried samples were sieved to obtain the >150-µm fract
and random samples of ~300 specimens were picked for quantita
analysis. The 63- to 150-µm fraction was saved for qualitative an
ysis.

Benthic foraminifers were identified to the species level using t
taxonomy of Tjalsma and Lohmann (1983), Jones (1983), Ban
(1949), Enright (1969), Boersma (1984), and Charletta (1980). T
data set was normalized to percentages, and Q-mode factor ana
was used to compare variations among the samples. The factor
tained were rotated using a Varimax Factor rotation and Systat 5
on a Macintosh microcomputer. For this paper, the bathymetric zo
tion of van Morkhoven et al. (1986) is used: 0−30 m is inner neritic,
30−100 m is middle neritic, 100−200 m is outer neritic, and 200−600
m is upper bathyal.

PREVIOUS WORK

Upper Eocene sediments do not crop out in New Jersey. Their
istence in the New Jersey Coastal Plain subsurface was first repo
by Brown et al. (1972), who found upper Eocene (Jackson age) s
ments in four wells drilled at Island Beach, the Anchor Gas-Dick
son I well drilled near Cape May, a well drilled near Chadwick, a
a well drilled near Bennetts Mills (Fig. 1). Their study relied o
benthic foraminifers and ostracodes for recognition of the up
Eocene, and many of their purported upper Eocene samples ma
tually be middle Eocene. Problems in sampling (i.e., only rotary c
tings and occasional split-spoon cores were available prior to 19
and rare pelagic marker taxa have complicated the identification 
correlation of upper Eocene strata. For example, Olsson et al. (1
studied the Anchor Gas-Dickinson I well and found no upper Eoce
planktonic foraminifers. In contrast, the Anchor Dickinson and Isla
Beach boreholes were also examined by Poag (1985), who confir
the existence of upper Eocene at Anchor Dickinson, but found
planktonic foraminiferal evidence for upper Eocene in the sample
Island Beach. The presence of upper Eocene strata at Anchor Dic
son is confirmed by studies of calcareous nannoplankton (L. Byb
unpubl. data).

The first detailed description of upper Eocene sediments in N
Jersey was by Owens et al. (1988) in the ACGS#4 borehole dri
near Mays Landing, New Jersey (Fig. 1). This unit, found betwe
761 and 615 ft (232 and 187 m) in the borehole, was informa
termed the ACGS Alpha unit. Owens et al. (1988) divided the u
into three subunits. Subunit A, a fine to medium glauconite sand,
curs between 761 and 735 ft (232 and 224 m). Subunit B, an ol
black clayey silt interbedded with slightly to moderately glauconit
fine sand, occurs between 735 and 695 ft (224 and 212 m). Sub
C, a brownish black, laminated, very clayey silt, occurs between 
and 615 ft (212 and 187 m). The environment of deposition was
terpreted to be inner to middle shelf, shallower water than the un
lying Shark River Formation. The biostratigraphy of the ACGS A
pha unit was examined by Poore and Bybell (1988). The age of
unit, based upon calcareous nannoplankton, spans upper Zone N
Zone NP 19/20 and the lower part of Zone NP 21. Late Eocene pla
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tonic foraminifers, including Hantkenina spp., continue to 624 ft
(190 m) in the ACGS#4 borehole. Foraminifers are rare in the upper
9 ft of the ACGS Alpha unit, and the absence of diagnostic Eocene
taxa may be caused by nonpreservation.

Miller et al. (1990) examined the upper Eocene stratigraphy in the
ACGS#4 borehole but were unable to improve on the late Eocene age
control of Poore and Bybell (1988). The paleomagnetic polarity se-
quence in these sandier facies could not readily be interpreted, and no
attempt was made to correlate to the GPTS. Seven Sr-isotopic age es-
timates support the conclusion that these are upper Eocene sedi-
ments.

Christensen et al. (1995) attempted to refine the sequence strati-
graphic interpretations of Miller et al. (1990) using benthic foramin-
iferal biofacies analysis. They reinterpreted the upper Eocene (Se-
quence E of Christensen et al., 1995) to extend from 755 to 615 ft
(230.1–187.5 m). Factor analysis in this interval did not reveal st
graphically distinct factors. Peaks in the abundance of Uvigerina
multistriata were used to infer flooding surfaces separating para
quences.

ABSECON INLET FORMATION

Lithology

Upper Eocene sediments are predominantly clays and silts 
occasional thin glauconite sand beds. These beds are lithologi
distinct from the overlying Oligocene sands and underlying mid
Eocene quartz and glauconite sands and sandy clays. The 
Eocene glauconitic silts and silty clays are here designated the A
on Inlet Formation, and the Leg 150X Atlantic City borehole is d
ignated as the type locality. The type locality for the upper portion
the formation (assigned to calcareous nannoplankton Zone NP 2
designated at the ACGS#4 borehole. The upper Eocene at Atl
City is 171 ft thick (52 m), with 152.9 ft (46.6 m; 89%) recovered.
ACGS#4, the Zone NP 21 section is 71 ft thick (21.6 m), with ne
100% recovery (Owens et al., 1988). Preservation of calcareous
nofossils is excellent in both sections. The name of the formatio
derived from the Absecon Inlet, which is adjacent to the Atlantic C
drill site.

The Absecon Inlet Formation at the type section at Atlantic C
(Fig. 2) overlies the Shark River Formation across a disconformi
1352 ft (412.1 m), where slightly glauconitic clays are overlain
highly fossiliferous black clay (Miller et al., 1994a). The unit und
lying the Absecon Inlet Formation is variable in lithology. At Isla
Beach, it consists of pebbly medium- to coarse-grained quartz 
with little clay (the Toms River Member of Enright, 1969). At Atla
tic City and ACGS#4, the underlying lithology is finer grained b
still contains glauconite and fine to medium quartz sand with ab
dant microfossils. This underlying unit, at both boreholes, conta
planktonic foraminifers and calcareous nannoplankton of differ
ages all mixed together. This underlying unit may be stratigraphic
equivalent to the Exmore Boulder Bed (Poag et al., 1992) and re
the effects of an impact event.

At Atlantic City, uniform clays continue up to 1333 ft (406.3 m
where a surface in the core separates silty clays below from gla
nitic clays. These glauconitic clays grade to silty clays, and thi
thology continues to ~1273 ft (388.0 m), where the percent qu
and glauconite fine sand increases to 15%–20%. This slightly sa
lithology continues to the top of the section, where a disconform
separates the Absecon Inlet Formation clays and silts below from
overlying Oligocene Sewell Point Formation (Pekar et al., Cha
15, this volume). The Sewell Point Formation contains a shell h
and glauconite sands at its base and overall is much coarser gr
than the silts and clays of the Absecon Inlet Formation. The do
hole gamma-ray log is very uniform throughout the stratotype an
ati-
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not helpful in interpreting facies in this formation. The gamma-r
log obtained on cores shows several distinct peaks that may corr
with flooding surfaces (Fig. 2; see Metzger et al., Chapter 6, this v
ume). Updip, at Island Beach, glauconite sand beds are thicker wi
the Absecon Inlet Formation, especially at the base.

Based on the absence of Zone NP21, the upper portion of the
secon Inlet Formation is not represented at Atlantic City (Aubry
Miller et al., 1994a). The upper portion of the formation (Zone NP2
is represented at the ACGS#4 borehole, where it consists of slig
sandy clay at the base that grades upward to a silty clay at the to
the formation (Fig. 2). Sand is nearly absent from these very fi
grained sediments. The base of the upper Absecon Inlet at 69
(211.8 m) is a disconformity separating brownish black clayey 
above from fine to medium glauconite quartz sand below. The up
contact is at 615 ft (187.5 m) in the borehole, where there is a cha
from clays below to lowermost Oligocene glauconitic clayey san
above; this is the Mays Landing unit of Owens et al. (1988), which
equivalent to the Sewell Point Formation of Pekar et al. (Chapter
this volume).

Age

The age of the Absecon Inlet Formation is established us
planktonic foraminifers, calcareous nannoplankton, and Sr-isoto
age estimates. The formation overlies a biostratigraphically mix
layer in which upper Eocene calcareous nannoplankton are fo
mixed with middle Eocene planktonic foraminifers. At Atlantic City
Discoaster saipanensis ranges to the top of the Absecon Inlet Form
tion, indicating an age of Zone NP19/20 (Aubry in Miller et al
1994a; Fig. 2). The base of the formation coincides with the first 
currence of Porticulasphaera semiinvoluta, indicating planktonic
foraminiferal Zone P15 or younger. The highest occurrence of Tur-
borotalia cerroazulensis pomeroli at 1295 ft (394.7 m) indicates a
zonal assignment equivalent to the base of Zone P16 (Liu et
Chapter 10, this volume). In the ACGS#4 borehole, the highest 
currence of Discoaster saipanensis is associated with a disconformi-
ty at 695 ft (211.8 m). Because of the continuous occurrence of Hant-
kenina spp. between 695 and 624 ft (211.8 and 190.2 m), the s
ments at ACGS#4 are assigned to the Eocene. Sediments bet
624 and 615 ft (190.2 and 187.5 m) do not contain Hantkenina spp.
(Poore and Bybell, 1988) and may be lowermost Oligocene; how
er, it is more likely that the absence of Hantkenina is caused by dis-
solution or environmental exclusion. The upper part of the section
ACGS#4 is thus younger than the section at Atlantic City (Fig. 2)

Five Sr-isotopic age estimates obtained at the ACGS#4 boreh
between 695.7 and 624.5 ft (212.0 and 190.3 m) by Miller et 
(1990) range from 34.8 to 33.3 Ma (time scale of Berggren et
[1995] using the regressions of Oslick et al. [1994]; Table 1). Tw
other samples measured at 750.0 and 731.5 ft (228.6 and 223.0 m
too old to be dated using Sr-isotopic stratigraphy (Table 1). At the 
lantic City borehole, a Sr-isotopic age estimate of 34.8 Ma was 
tained at 1204.1 ft (367.0 m; Miller et al., 1994a). Two other samp
collected at 1335.0 and 1301.1 ft (406.9 and 369.6 m) are too ol
be dated using Sr-isotopic stratigraphy (Table 1). These dates a
with a late Eocene age assignment, although large errors from s
ples of this age (± 1.2 m.y.) make it impossible to date the sectio
further with Sr-isotopic stratigraphy.

BENTHIC FORAMINIFERS

Quantitative benthic foraminiferal studies were used to interp
the environments of deposition and to establish water depth fluc
tions in the upper Eocene sediments from New Jersey. Fifty-f
samples were examined and a total of 120 species were ident
245
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Figure 2. Composite lithologic column of the stratotypes for the Absecon Inlet Formation.
8).

 the
from approximately 21,586 specimens (see Browning [1996] for data
file). Five factors were extracted explaining 78.7% of the faunal vari-
ation (Fig. 3; see Browning [1996] for factor analysis). These are ar-
ranged from shallower to deeper, based on the biofacies model devel-
oped below.

Siphonina eocenica Biofacies

This biofacies is represented by Factor 1, explaining 20.2% of the
faunal variation (Fig. 4). It is strongly dominated by Siphonina
eocenica (score = 9.9). In addition, Hoeglundina elegans (score =
2.8), Cibicidoides speciosus (score = 2.6), and Ceratobulimina
eximia (score = 2.3) are important components of the fauna. This
factor is present in the ACGS#4, Atlantic City, and Cape May bore-
holes at the top of calcareous nannoplankton Zone NP19/20 and the
bottom of Zone NP21. In the modern ocean, Siphonina is known
from both neritic and bathyal depths (van Morkhoven et al., 1986),
but it was confined to neritic depths before the Oligocene (van
Morkhoven et al., 1986). H. elegans is widespread in the modern At-
lantic Ocean, with a depth range from 42 to >4000 m (van
Morkhoven et al., 1986). A Ceratobulimina-dominated fauna is
found updip in a split-spoon sample from Medford, New Jersey. A
Sr-isotopic age of 35.1 Ma was obtained for the Medford sample, in-
dicating that it is similar in age to the Absecon Inlet Formation at the
downdip boreholes. The sample contains abundant quartz sand, and
246
the fauna was affected by dissolution. Nevertheless, the Medford
borehole indicates that the abundance of Ceratobulimina increases
updip within this sequence. The average percent planktonic foramin-
ifers for samples belonging to this biofacies is 2.6%. As a result of
the very low percent of planktonic foraminifers and the dominance
of S. eocenica and Ceratobulimina, this is presumed to be the shal-
lowest biofacies recovered.

Cibicidoides speciosus Biofacies

This biofacies is represented by Factor 3, explaining 23.4% of the
faunal variation (Fig. 5). It is dominated by Cibicidoides speciosus
(score = 10.1). In addition, Lenticulina cf. limbosus (score = 1.8), Gy-
roidinoides octocameratus (score = 1.6), and Cibicidoides cocoaen-
sis (score = 1.6) are components of the fauna. This fauna is also char-
acterized by the absence of Siphonina eocenica (score = −3.0). The
average percent of planktonic foraminifers for samples belonging to
this biofacies is 18.2%. This biofacies is the most common factor in
Unit B (735–695 ft [224–212 m] at ACGS#4) of Owens et al. (198

Globobulimina ovata Biofacies

This biofacies is represented by Factor 2, explaining 17.0% of
faunal variation (Fig. 6). It is dominated by Globobulimina ovata
(score = 10.3). In addition, Melonis barleeanum (score = 2.1), Cerato-
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bulimina eximia (score = 1.9), and Oridorsalis umbonatus (score =
1.6) are important components of the fauna. In the modern ocean, Glo-
bobulimina, an infaunal detritivore, is known in all environments from
the shelf to bathyal depths (Murray, 1991). Melonis, also an infaunal
detritivore in the modern ocean, ranges from neritic to bathyal depths
(Murray, 1991). Factor 2 is found at the top of the Eocene at the
ACGS#4 borehole. It is present in the Atlantic City borehole, but is ab-
sent from the Cape May borehole. It is usually found in the finest
grained sediments in the Absecon Inlet Formation and probably repre-
sents the deepest water fauna recovered. The average percent of plank-
tonic foraminifers for samples belonging to this biofacies is 21.3%.

Gyroidinoides octocameratus Biofacies

This biofacies is represented by Factor 5, which explains 9.5% of
the faunal variation (Fig. 7). It is dominated by Gyroidinoides octo-
cameratus (score = 6.5) and Uvigerina multistriata (score = 6.1). In
addition, Hanzawaia mauricensis (score = 3.9) and Alabamina wil-
coxensis (score = 3.0) are important components of the fauna. This
factor is dominant at the base of the Absecon Inlet Formation in the
ACGS#4 and Atlantic City boreholes. It is also important at Atlantic
City and Cape May in the sediments below peak abundances in Bu-
limina jacksonensis (Factor 4). Christensen et al. (1995) noted that
the upper Eocene at ACGS#4 was dominated by U. multistriata and
its distribution was characterized by peaks of occurrence, which they
inferred were associated with flooding surfaces separating paracon-
formities. The current study does not corroborate this finding, per-
haps because of the larger number of samples analyzed in the
ACGS#4 borehole and the fact that this study incorporates more than
one borehole in the New Jersey Coastal Plain. U. multistriata is re-
ported from shelf and upper bathyal sediments in association with
clays, quartz, and glauconite (Boersma, 1984). Modern Hanzawaia
spp. are epifaunal passive suspension feeders on the inner shelf. The
average percent of planktonic foraminifers for samples belonging to
Factor 5 is 28.0%.

Bulimina jacksonensis Biofacies

This biofacies is represented by Factor 4, explaining 8.6% of the
faunal variation (Fig. 8). It is dominated by Bulimina jacksonensis
(score = 11.0). In addition, Lenticulina cf. limbosus (score = 1.1) and
Gyroidinoides octocameratus (score = 1.0) are important compo-
nents of the fauna. Overall, B. jacksonensis accounts for 48% of the
total fauna. This fauna is found in all boreholes on the coastal plain
at approximately the same level, near the top of Zone NP19/20. It is
associated with the highest occurrence of Reticulofenestra reticulata
(identified as Cribrocentrum reticulatum at ACGS#4; Poore and
Bybell, 1988). B. jacksonensis is a widely distributed upper Eocene
benthic foraminifer and is found in middle neritic through upper

Table 1. Strontium age estimates for New Jersey Coastal Plain boreholes.

Note: Time scale of Berggren et al. (1995) is used throughout.

Location
Depth

(ft)
Depth
(m) 87Sr/86Sr

Precision
(±)

Estimated 
age

(Ma)

ACGS#4 624.5 190.3 0.707852 0.000014 34.0
635.0 193.5 0.707840 0.000004 34.3
664.5 202.5 0.707821 0.000007 34.8
680.5 207.4 0.707879 0.000013 33.3
695.7 212.0 0.707830 0.000005 34.6
731.5 223.0 0.707793 0.000004 35.6
750.0 228.6 0.707805 0.000005 35.3

Atlantic City 1204.1 367.0 0.707823 0.000013 34.8
1301.1 396.6 0.707784 0.000013 35.9
1335.0 406.9 0.707763 0.000007 36.4

Medford 162.2 49.4 0.707813 0.000008 35.1
bathyal sediments (van Morkhoven et al., 1986). A fauna dominated
by the morphologically similar Bulimina alazanensis occurred on the
New Jersey slope and other intermediate water depth locations in the
Atlantic ocean (Katz and Miller, 1996). This intra-late Eocene event
is expressed in the coastal plain by an apparently coeval Bulimina
biofacies. The reason for the occurrence of this biofacies is not clear,
although Katz and Miller (1996) speculate that it is related to pale-
oceanographic changes (e.g., low ventilation in intermediate waters).
Based on the similar, correlative faunas, we assume that this pale-
oceanographic event is expressed on the coastal plain by the Bulimina
biofacies and that this biofacies does not reflect water depth changes
on the New Jersey Coastal Plain.

One sample at 1273 ft (388.0 m) in the Atlantic City borehole did
not have high loadings for any of the factors extracted. This unusual
assemblage was dominated by Uvigerina nuttalli (>80%), an other-
wise uncommon taxon in the Absecon Inlet Formation. Close sam-
pling reveals that this U. nuttalli flood is ~2 ft (0.6 m) thick in the At-
lantic City borehole. This species usually occurs in relatively shal-
low-water carbonate-rich clays (Boersma, 1984).

Depth Model

These assemblages represent distinct groupings of foraminifers
that inhabited discrete paleoenvironments on the continental shelf.
Thus, they are biofacies with predictive value concerning the envi-
ronments they inhabited. Because of the limited number of boreholes
present and the lack of detailed age control in these sediments (i.e.,
better than 0.5−1.0 m.y. resolution), it is not possible to rigorously
calibrate a paleoslope model using the techniques of Olsson and
Nyong (1984), or to interpret the preferred depths for these biofacies.
For example, the Cape May borehole recovered only approximately
one-half of the formation, and differences in the timing of biofacies
changes between the ACGS#4 and Atlantic City boreholes are diffi-
cult to resolve (Fig. 9).

Using the microfauna found at Medford, New Jersey, and assuming
that it represents water depths of ~30 m (based upon the high percent-
age of quartz sand and very low planktonic foraminiferal abundances),
it is possible to crudely assign paleodepths to the faunas considered
here. As noted earlier, the Siphonina eocenica biofacies appears to be
the shallowest water biofacies, followed by the Cibicidoides speciosus
biofacies and the Globobulimina ovata biofacies. The Gyroidinoides
octocameratus biofacies is found only at the base of the sections in as-
sociation with glauconite, and most likely is confined to the transgres-
sive systems tracts, whereas the Bulimina jacksonensis fauna may be
related to a paleoceanographic event unrelated to water depth changes.
The Medford sample is 70 km updip from Atlantic City. Assuming that
the upper Eocene paleoshelf had a gradient similar to that of the mod-
ern shelf (1:1000), there was ~70-m water depth difference between
the two sites. Because the Cibicidoides speciosus biofacies is the most
common biofacies at Atlantic City, it is reasonable to assume that it is
the downdip equivalent of the assemblage in the Medford sample and
that it thus has a paleodepth of 100 ± 30 m. The updip Siphonina bio-
facies is assigned a paleodepth of 75 ± 25 m, and the downdip Globob-
ulimina biofacies is assigned a paleodepth of 125 ± 25 m. Biofacies 5
is difficult to assign to a specific water depth, but is inferred to be from
depths similar to those of Biofacies 2. This biofacies is restricted to the
transgressive systems tracts. Overlap between these water depth esti-
mates represents the uncertainties involved.

Based upon the depth zonation derived for the biofacies defined,
we derived a chart showing the preferred depth habitat for the species
identified in this study (Fig. 10). Following the example of Olsson
and Nyong (1984), these distributions are based upon the percent oc-
currence of each species in the different biofacies arranged according
to depth. The figure represents a composite of all of those samples be-
longing to the same biofacies. Species whose occurrences are less
than 1% in all biofacies have been excluded from this chart because
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Figure 3. Distribution of upper Eocene benthic foraminiferal factors found on the New Jersey Coastal Plain. Shaded areas represent sediments where a particular
factor is significant.
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Figure 3 (continued).
they are too rare for meaningful generalizations to be drawn about
their preferred depth habitat.

DISCUSSION

The Absecon Inlet Formation consists of marine sediments depos-
ited in middle to outer neritic paleowater depths (between 30 and 150
m). To understand the patterns of deposition, an attempt was made to
identify and date sequence boundaries and to tie the facies within se-
quences to specific systems tracts (Posamentier et al., 1988).

Sequence E10

Eocene Sequence E10 is found in all boreholes (ACGS#4 be-
tween 755 and 695 ft [230.1 and 211.8 m], Island Beach between 752
and 710 ft [229.2 and 216.4 m], Atlantic City between 1352 and 1183
ft [412.1 and 360.6 m], and Cape May between 1500 and 1360 ft
[457.2 and 414.5 m]; Fig. 11). The base of this sequence was not pen-
etrated at Cape May. A split-spoon sample from this sequence was re-
covered at 161 ft (49.1 m) at Medford. This sequence is assigned to
calcareous nannoplankton Zone NP19/20 and planktonic foramin-
iferal Zone P16 (Miller et al., 1994a, 1994b; Liu et al. Chapter 10, this
volume; Poore and Bybell, 1988). The base of this sequence is gen-
erally a sharp surface, separating black clays with an abundant micro-
fauna below from gray clays above. At Island Beach, the surface is
marked by an abrupt change from clayey medium to coarse quartz
sands below (Toms River Member of the Shark River Formation) to
fine to very fine sandy clays. This surface is associated with the high-
est occurrence of acarininids, truncorotalids, morozovellids, and oth-
er middle Eocene planktonic foraminifers (Browning et al., Chapter
16, this volume), which are interpreted as reworked.

All boreholes exhibit a similar succession of lithofacies and bio-
facies within this sequence (Fig. 11). In all boreholes, the amount of
glauconite sand increases in the sediments above the black clays. At
Atlantic City, these glauconite sands, which are dominated by the Gy-
roidinoides biofacies (125 ± 25 m), extend to ~1310 ft (399.3 m). The
percent of planktonic foraminifers is generally highest in this unit,
which is interpreted as the TST. Above this, the sediments are domi-
nated by clay with less sand. They are dominated by Biofacies 2
(Globobulimina ovata, 125 ± 25 m). A flood of Uvigerina nuttalli oc-
curs at 1273 ft (388.0 m) in the Atlantic City borehole. The U. nuttalli
flood is interpreted as the MFS. Above 1273 ft (388.0 m) the amount
of fine to very fine quartz and glauconite sand in the sediments in-
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Figure 4. Species graph for Factor 1 (Siphonina biofacies) and related species. Distribution of species with high loadings are graphed (percent of the total sample).
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Figure 4 (continued).
creases. These sediments are generally dominated by the Cibici-
doides speciosus biofacies (100 ± 30 m). At the top of this sequence
(1200 ft [365.8 m] at Atlantic City), the Siphonina eocenica biofacies
(75 ± 25 m) becomes dominant. These sandier facies are interpreted
as the regressive HST.

At the ACGS#4 borehole, Owens et al. (1988) divided this unit
into two parts based upon the presence of a surface at 735 ft (224.0
m) in the borehole. This surface, and a similar one at Atlantic City at
1333 ft (406.3 m), are found within the transgressive systems tract as
interpreted here. The significance of these surfaces is not certain. A
coarse glauconite sand at 719 ft at ACGS#4 contains two-colored
glauconite, which is assumed to be recycled (see Owens et al. [Chap-
ter 2, this volume] for discussion of recycled glauconite).

Sequence E11

A second sequence (E11), with a more limited occurrence, is
found at ACGS#4 between 695 and 615 ft (211.8 and 187.5 m) and
at Island Beach between 710 and 698 ft (216.4 and 212.8 m; Fig. 11).
The base of this sequence may occur at Cape May at 1383 ft (421.5
m). The sequence is absent at Atlantic City. The basal contact at
ACGS#4, as described by Owens et al. (1988) at 695 ft (211.8 m),
separates an olive-black, medium glauconite quartz sand below from
a brownish black, very clayey silt containing more glauconite than
the beds above. This also approximates the boundary between calcar-
eous nannoplankton Zones NP19/20 and NP21. According to Poore
and Bybell (1988), the highest occurrence of Discoaster saipanensis
is at 694 ft (211.5 m). At ACGS#4, Eocene planktonic foraminifers
such as the Turborotalia cerroazulensis lineage and Hantkenina in-
dicate uppermost Zone P16 or Zone P17. The highest occurrence of
D. saipanensis at Island Beach, at 710 ft (216.4 m; Miller et al.,
1994b), is similarly associated with a disconformable surface and an
increase in glauconite. Hantkenina is found in the Island Beach core
to 698 ft (212.8 m). At Cape May, there is no physical surface asso-
ciated with the highest occurrence of D. saipanensis at 1383 ft (421.5
m). Because of the continued occurrence of Eocene planktonic fora-
minifers in the section between 1383 and 1360 ft (421.5 and 414.5
m), this section may be correlative with Sequence E11.

Sequence E11 is thickest at the ACGS#4 borehole. The sediments
within this sequence are very fine grained. The percent of sand at the
base of the sequence is ~8%, and at the top it decreases to 2%. The
benthic foraminiferal biofacies change from the Siphonina biofacies
at the base to the Globobulimina biofacies at the top. The percent
planktonic foraminifers in the sequence increases from 0% to 6% at
the base and from 15% to 40% at the top. A rapid deepening is indi-
cated by an increase in percent planktonic foraminifers, a decrease in
grain size, and the overstepping of biofacies (i.e., a change from the
Siphonina biofacies [75 ± 25 m] to the Globobulimina biofacies [125
± 25 m] without the Cibicidoides speciosus biofacies in between [100
± 30 m]). Thus, the sequence preserved is interpreted as TST truncat-
ed on top by a disconformity separating the Absecon Inlet Formation
from the glauconitic and coarser grained Oligocene Mays Landing
unit (Owens et al., 1988; Christensen et al., 1995).

Integrated stratigraphy yields approximate dates for MFS and se-
quence boundaries and estimates for the duration of the associated
unconformities from the New Jersey upper Eocene. Precise dating of
the New Jersey Coastal Plain upper Eocene sequences was not pos-
sible because of the difficulty in identifying time-significant bio-
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Figure 5. Species graph for Factor 3 (Cibicidoides biofacies) and related species. Distribution of species with high loadings are graphed (percent of the total
sample).
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stratigraphic events in these mid-latitude, neritic sediments. Based on
the occurrence of Isthmolithus recurvus, the base of Sequence E10 is
no older than 36 Ma, and based on the occurrence of Turborotalia
cerroazulensis pomeroli, it is no younger than 35.3 Ma (Fig. 12). The
highest occurrence of Reticulofenestra reticulata consistently occurs
in the middle of this sequence, stratigraphically below the highest oc-
currences of Discoaster barbadiensis and Globigerapsis index,
which are consistently found at the top of this sequence. This places
the top of the sequence between 35 and 34.3 Ma. Magnetostrati-
graphic studies of the Absecon Inlet Formation at ACGS#4 (Miller et
al., 1990) and Atlantic City (Van Fossen, Chapter 22, this volume)
show are predominantly normal polarity compared with the GPTS,
which shows predominantly reversed polarity (Figs. 12, 13). This is
attributed to normal overprinting, and magnetostratigraphy offers lit-
tle assistance in dating these sediments. An age-depth plot integrat-
ing time significant events for the Atlantic City borehole (Fig. 12) fa-
vors placing the base of this sequence at 35.5 Ma and the top at 34.8
Ma, assuming a constant sedimentation rate. This yields an approxi-
mate sedimentation rate of 74 m/m.y. for Sequence E10. The age of
the MFS, equivalent to the Uvigerina nuttalli flood, is 35.2 Ma.

Sequence E11 was deposited in the latest Eocene between the last
occurrence of D. saipanensis (34.2 Ma) and the last occurrence of
Hantkenina (33.8 Ma). More precise dates are not available at this
time (Fig. 12). The duration of the unconformity separating Sequenc-
es E10 and E11 is ~0.6 m.y. The sedimentation rate for Sequence E11
is on the order of 60 m/m.y. The MFS for Sequence E11 is not clearly
defined. The hiatus represented by the unconformity separating the
Absecon Inlet Formation from the overlying Oligocene Sewell Point
Formation is ~1 m.y. (Pekar et al., Chapter 15, this volume).

We compare the record of sea-level change from the New Jersey
upper Eocene to the record of third-order sea-level events devel-
oped by Haq et al. (1987) and the global deep-sea δ18O record (Za-
chos et al., 1996; Fig. 13). We recalibrated the Haq et al. (1987)
record to the Berggren et al. (1995) time scale using the magneto-
stratigraphy and biostratigraphy provided in the “cycle chart.” Th
record of Haq et al. (1987) contains three upper Eocene sequen
with the bases of the sequences dated at 37.0 Ma (base of TA4
35.7 Ma (base of TA4.2), and 34.3 Ma (base of TA4.3), wherea
fourth at 33.6 Ma (base of TA4.4) marks the Eocene/Oligoce
boundary. The record of deposition from New Jersey is in agre
ment with the Haq et al. (1987) record, because the base of 
quence E10 (~35.7 Ma) corresponds to the base of TA4.2 (37 M
the base of Sequence E11 (~34.1 Ma) corresponds to the bas
TA4.3 (34.3 Ma), and the top of Sequence E11 (~33.8 Ma) cor
sponds to the base of TA4.4 (33.6 Ma).

To understand the causes of the sequence boundaries found in
upper Eocene, we compare the record of sedimentation to the glo
δ18O (Fig. 12). A high-resolution benthic foraminiferal δ18O record
for the late Eocene/early Oligocene transition has recently been p
lished (Zachos et al., 1996). Similar high-resolution, low-latitud
planktonic δ18O records do not yet exist, and covariance cannot 
used to infer ice-volume changes. Comparison of the benthic δ18O
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Figure 6. Species graph for Factor 2 (Globobulimina biofacies) and related species. Distribution of species with high loadings are graphed (percent of the total
sample).
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Figure 6 (continued). 
records with the New Jersey upper Eocene shows that the major un-
conformity separating Sequence E11 from Oligocene sediments cor-
relates well with the major δ18O increase that takes place in the earli-
est Oligocene (the increase associated with Zone Oi1 of Miller et al.,
1991). The unconformity between Sequences E10 and E11 occurred
before the major increase began. Hole 522A contains a δ18O increase
that correlates approximately with the E10/E11 sequence boundary
(Fig. 13). The data may indicate that the cooling and growth of ice at
the end of the Eocene consisted of a two-step event, a smaller event
at 34.2 Ma that created small unconformities on the shelf, and a larger
cooling and ice build up that separates Eocene and Oligocene strata.
Thus, late Eocene sequence boundaries appear to correlate with in-
ferred glacioeustatic lowerings, as they do in the Oligocene to Mio-
cene (Miller et al., 1996b). However, we caution that chronologic res-
olution in the upper Eocene of these boreholes (0.5−1.0 m.y.) is not
refined enough and that the δ18O record of this interval is not known
well enough to establish an unequivocal link.

CONCLUSION

Upper Eocene sediments are currently known from five boreholes
on the New Jersey Coastal Plain. These glauconitic, clayey sediments
are here named the Absecon Inlet Formation. Upper Eocene sedi-
ments consist of clays and silts with thin glauconitic sand beds. This
upper Eocene silty clay is lithologically distinct from the overlying
Oligocene sands and underlying middle Eocene quartz and glauco-
nite sands. These sediments were deposited as two sequences, one in
planktonic foraminiferal Zones P15−16 and calcareous nannoplank-
ton Zone NP 19/20, and the second in Zones P16−17 and Zone NP21.
Benthic foraminiferal biofacies analysis reveals that paleowater
depths at the sites considered ranged from 75 to 125 m. The timing of
the unconformities bounding the two sequences comprising the Ab-
secon Inlet Formation agrees with the Haq et al. (1987) eustatic
record and with the global δ18O record.
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Figure 8. Species graph for Factor 4 (Bulimina jacksonensis biofacies) and related species. Distribution of species with high loadings are graphed (percent of
the total sample).
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