MCS Line 1027 that crosses ODP Leg 150 Sites 902, 904, and 906; cored intervals are shown in white. Locations and sampled intervals of DSDP Site 612 and COST B-3 stratigraphic test well are also shown. This profile is part of a seismic grid collected with NSF support by the Maurice Ewing during the New Jersey Sea-level Transect reconnaissance survey. We used a tuned air-gun array and 120 active sections of a 1500-m digital streamer, and then processed the data 60-fold using software developed at Lamont-Doherty. The data are displayed in two-way traveltime, with true amplitude color rendition prepared with JDseis© processing.
PROCEEDINGS
OF THE
OCEAN DRILLING
PROGRAM

VOLUME 150
INITIAL REPORTS
NEW JERSEY CONTINENTAL SLOPE AND RISE
Covering Leg 150 of the cruises of the Drilling Vessel JOIDES Resolution,
Lisbon Harbor, Portugal, to St. John's, Newfoundland, Sites 902-906
25 May-24 July 1993

Gregory S. Mountain, Kenneth G. Miller, Peter Blum, Per-Gunnar Alm,
Marie-Pierre Aubry, Lloyd H. Burckle, Beth Anne Christensen,
John Compton, John E. Damuth, Jean-François Deconinck,
Laurent de Verteuil, Craig S. Fulthorpe, Stefan Gartner,
Gilles Guérin, Stephen P. Hesselbo, Bryce Hoppie, Miriam E. Katz,
Nobuhiro Kotake, Juan Manuel Lorenzo, Stuart McCracken,
Cecilia M. McHugh, Wendy C. Quayle, Yoshihiko Saito, Scott W. Snyder,
Warner G. ten Kate, Michael Urbat, Mickey C. Van Fossen, Adam Vecsei,
Shipboard Scientists

Peter Blum
Shipboard Staff Scientist

Prepared by the
OCEAN DRILLING PROGRAM
TEXAS A&M UNIVERSITY

Eva M. Maddox
Volume Editor

in cooperation with the
NATIONAL SCIENCE FOUNDATION
and
JOINT OCEANOGRAPHIC INSTITUTIONS, INC.
This publication was prepared by the Ocean Drilling Program, Texas A&M University, as an account of work performed under the international Ocean Drilling Program, which is managed by Joint Oceanographic Institutions, Inc., under contract with the National Science Foundation. Funding for the program was provided by the following agencies at the time of this cruise:

Canada/Australia Consortium for the Ocean Drilling Program, Department of Energy, Mines and Resources (Canada), and Department of Primary Industries and Energy (Australia)
Deutsche Forschungsgemeinschaft (Federal Republic of Germany)
European Science Foundation Consortium for Ocean Drilling (Belgium, Denmark, Finland, Iceland, Italy, Greece, The Netherlands, Norway, Spain, Sweden, Switzerland, and Turkey)
Institut Français de Recherche pour l'Exploitation de la Mer (France)
National Science Foundation (United States)
Natural Environment Research Council (United Kingdom)
University of Tokyo, Ocean Research Institute (Japan)

Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation, the participating agencies, Joint Oceanographic Institutions, Inc., Texas A&M University, or Texas A&M Research Foundation.

It is recommended that reference to the whole or to part of this volume be made in one of the following forms, as appropriate:

Effective Publication Dates of ODP Proceedings

According to the International Code of Zoological Nomenclature, the date of publication of a work and of a contained name or statement affecting nomenclature is the date on which the publication was mailed to subscribers, placed on sale, or when the whole edition is distributed free of charge, mailed to institutions and individuals to whom free copies are distributed. The mailing date, not the printed date, is the correct one.

The mailing dates of recent Proceedings of the Ocean Drilling Program are as follows:

Volume 146 (Initial Reports): February 1993
Volumes 147/148 (Initial Reports): December 1993
Volume 149 (Initial Reports): June 1994
Volume 134 (Scientific Results): September 1994
Volume 135 (Scientific Results): April 1994
Volume 139 (Scientific Results): September 1994

Distribution

Copies of this publication may be obtained from Publications Distribution Center, Ocean Drilling Program, 1000 Discovery Drive, College Station, Texas 77845-9547, U.S.A. Orders for copies will require advance payment. See current ODP publication list for price and availability of this publication.
The National Science Foundation is proud to play a leading role in partnership with the U.S. oceanographic community in the operation and management of the Ocean Drilling Program (ODP). We are equally proud of the cooperation and commitment of our international partners, who contribute both financial and intellectual resources required to maintain the high quality of this unique program. The Ocean Drilling Program, like its predecessor, the Deep Sea Drilling Project (DSDP), is a model for the organization and planning of research to address global scientific problems that are of high priority internationally and of long-term interest to the scientific community and general public.

Major scientific themes guiding the development of specific drilling cruises range from determining the causes and effects of oceanic and climatic variability to understanding the circulation of fluids in the ocean crust and the resultant formation of mineral deposits. Although such studies are at the forefront of basic scientific inquiry into the processes that control and modify the global environment, they are equally important in providing the background for assessing man’s impact on the global environment or for projecting resource availability for future generations.

The transition from the DSDP to the ODP was marked by a number of changes. The 471-foot JOIDES Resolution, which replaced the Glomar Challenger, has allowed larger scientific parties and the participation of more graduate students, a larger laboratory and technical capability, and operations in more hostile ocean regions. The JOIDES Resolution has drilled in all of the world’s oceans, from the marginal ice regions of the Arctic to within sight of the Antarctic continent. Over 1,200 scientists and students from 26 nations have participated on project cruises. Cores recovered from the cruises and stored in ODP repositories in the United States and Europe have provided samples to an additional 1,000 scientists for longer term post-cruise research investigations. The downhole geochemical and geophysical logging program, unsurpassed in either academia or industry, is providing remarkable new data with which to study the Earth.

In 1994, NSF and our international partners renewed our commitment to the program for its final phase. Of the 20 countries that supported ODP initially, only one, Russia, has been unable to continue for financial reasons. As the reputation and scientific impact of the program continue to grow internationally, we hope to add additional members and new scientific constituencies. This global scientific participation continues to assure the program’s scientific excellence by focusing and integrating the combined scientific knowledge and capabilities of its member nations.

We wish the program smooth sailing and good drilling!

Neal Lane
Director
National Science Foundation

Arlington, Virginia
Foreword
By Joint Oceanographic Institutions, Inc.

This volume presents scientific and engineering results from the Ocean Drilling Program (ODP). The papers presented here address the scientific and technical goals of the program, which include providing a global description of geological and geophysical structures including passive and active margins and sediment history, and studying in detail areas of major geophysical activity such as mid-ocean ridges and the associated hydrothermal circulations.

The Ocean Drilling Program, an international activity, operates a specially equipped deep-sea drilling ship, the JOIDES Resolution (Sedco/BP 471), which contains state-of-the-art laboratories, equipment, and computers. The ship is 471 feet (144 meters) long, is 70 feet (21 meters) wide, and has a displacement of 18,600 short tons. Her derrick towers 211 feet (64 meters) above the waterline, and a computer-controlled dynamic-positioning system stabilizes the ship over a specific location while drilling in water depths up to 27,000 feet (8230 meters). The drilling system collects cores from beneath the seafloor with a derrick and drawworks that can handle 30,000 feet (9144 meters) of drill pipe. More than 12,000 square feet (1115 square meters) of space distributed throughout the ship is devoted to scientific laboratories and equipment. The ship sails with a scientific and technical crew of 51 and a ship’s crew (including the drill crew) of 62. The size and ice-strengthening of the ship allow drilling in high seas and ice-infested areas as well as permitting a large group of multidisciplinary scientists to interact as part of the scientific party.

Logging, or measurements in the drilled holes, is an important part of the program. ODP provides a full suite of geochemical and geophysical measurements for every hole deeper than 1300 feet (400 meters). For each such hole, there are lowerings of basic oil-industry tools: nuclear, sonic, and electrical. In addition, a borehole televiewer is available for imaging the wall of the hole, a 12-channel logging tool provides accurate velocity and elastic property measurements as well as sonic waveforms for spectral analysis of energy propagation near the wall of the hole, and a vertical seismic profiler can record reflectors from below the total depth of the hole.

The management of the Ocean Drilling Program involves a partnership of scientists and governments. International oversight and coordination are provided by the ODP Council, a governmental consultative body of the partner countries, which is chaired by a representative from the United States National Science Foundation. The ODP Council periodically reviews the general progress of the program and discusses financial plans and other management issues. Overall scientific and management guidance is provided to the operators of the program by representatives from the group of institutions involved in the program, called the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES).

The Executive Committee (EXCOM), made up of the administrative heads of the JOIDES institutions, provides general oversight for ODP. The Planning Committee (PCOM), with its advisory structure, is made up of working scientists and provides scientific advice and detailed planning. PCOM has a network of panels and working groups that screen drilling proposals, evaluate instrumentation and measurement techniques, and assess geophysical-survey data and other safety and siting information. PCOM uses the recommendations of the panels and committees to select drilling targets, to specify the location and major scientific objectives of each two-month drilling segment or leg, and to provide the science operator with nominations for co-chief scientists.

Joint Oceanographic Institutions, Inc. (JOI), a nonprofit consortium of U.S. oceanographic institutions, serves as the National Science Foundation’s prime contractor for ODP. JOI is responsible for seeing that the scientific objectives, plans, and recommendations of the JOIDES committees are translated into scientific operations consistent with scientific advice and budgetary constraints. JOI subcontracts the operations of the program to two universities: Texas A&M University and Lamont-Doherty Earth Observatory of Columbia University. JOI is also responsible for managing the U.S. contribution to ODP.

Texas A&M University (TAMU) serves as science operator for ODP. In this capacity, TAMU is responsible for planning the specific ship operations, actual drilling schedules, and final scientific rosters, which are developed in close cooperation with PCOM and the relevant
panels. The science operator also ensures that adequate scientific analyses are performed on the cores by maintaining the shipboard scientific laboratories and computers and by providing logistical and technical support for shipboard scientific teams. Onshore, TAMU manages scientific activities after each leg, is curator for the cores, distributes samples, and coordinates the editing and publication of scientific results.

Lamont-Doherty Earth Observatory (LDEO) of Columbia University is responsible for the program’s logging operation, including processing the data and providing assistance to scientists for data analysis. The ODP Data Bank, a repository for geophysical data, is also managed by LDEO.

Core samples from ODP and the previous Deep Sea Drilling Project are stored for future investigation at three sites: ODP Pacific and Indian Ocean cores at TAMU, ODP and DSDP Atlantic and Antarctic cores at LDEO, and DSDP Pacific and Indian Ocean cores at the Scripps Institution of Oceanography.

Scientific achievements of ODP include new information on early seafloor spreading and how continents separate and the margins evolve. The oldest Pacific crust has been drilled and sampled. We have new insights into glacial cycles and the fluctuations of ocean currents throughout geological time. Many of the scientific goals can be met only with new technology; thus the program has focused on engineering as well as science. To date, ODP engineers have demonstrated the capability to drill on bare rock at mid-ocean-ridge sites and have developed techniques for drilling in high-temperature and corrosive regions typical of hydrothermal vent areas. A new diamond coring system promises better core recovery in difficult areas.

In addition, ODP is cooperating closely with other geological and geophysical programs; for example, in 1991 the first hole was drilled by ODP for emplacement of a seismometer near Hawaii for the Ocean Seismic Network. JOI is pleased to have been able to play a facilitating role in the Ocean Drilling Program and its cooperative activities, and we are looking forward to many new results to come.

D. James Baker
President
Joint Oceanographic Institutions, Inc.

Washington, D.C.
MEMBER ORGANIZATIONS OF THE JOINT OCEANOGRAPHIC INSTITUTIONS FOR DEEP EARTH SAMPLING (JOIDES):
University of California at San Diego, Scripps Institution of Oceanography
Columbia University, Lamont-Doherty Geological Observatory
University of Hawaii, School of Ocean and Earth Science and Technology
University of Miami, Rosenstiel School of Marine and Atmospheric Science
Oregon State University, College of Oceanography
University of Rhode Island, Graduate School of Oceanography
Texas A&M University, College of Geosciences and Maritime Studies
University of Texas at Austin, Institute for Geophysics
University of Washington, College of Ocean and Fishery Sciences
Woods Hole Oceanographic Institution
Canada/Australia Consortium for the Ocean Drilling Program, Department of Energy, Mines and Resources (Canada) and Department of Primary Industries and Energy (Australia)
European Science Foundation Consortium for Ocean Drilling, Belgium, Denmark, Finland, Iceland, Italy, Greece, The Netherlands, Norway, Spain, Sweden, Switzerland, and Turkey
Federal Republic of Germany, Bundesanstalt für Geowissenschaften und Rohstoffe
France, Institut Français de Recherche pour l’Exploitation de la Mer
Japan, University of Tokyo, Ocean Research Institute
United Kingdom, Natural Environment Research Council

OPERATING INSTITUTION
College of Geosciences and Maritime Studies
Texas A&M University
College Station, Texas
Robert A. Duce
Dean

OCEAN DRILLING PROGRAM
Philip D. Rabinowitz
Director
Timothy J.G. Francis
Deputy Director
Richard G. McPherson
Administrator
Jack G. Baldauf, Manager
Science Operations
Barry W. Harding, Manager
Engineering and Drilling Operations
Russell B. Merrill, Curator and Manager
Science Services
Robert E. Olivas, Manager
Technical and Logistics Support
John C. Coyne, Manager
Information Services

LOGGING OPERATOR
Borehole Research Group
Lamont-Doherty Earth Observatory
Columbia University
Palisades, New York
David Goldberg, Head
PARTICIPANTS ABOARD THE JOIDES RESOLUTION FOR LEG 150*

Gregory S. Mountain
Co-Chief Scientist
Lamont-Doherty Earth Observatory
Columbia University
Palisades, New York 10964
U.S.A.

Kenneth G. Miller
Co-Chief Scientist
Department of Geological Sciences
Rutgers University
Piscataway, New Jersey 08855, and
Lamont-Doherty Earth Observatory
Columbia University
Palisades, New York 10964
U.S.A.

Peter Blum
ODP Staff Scientist
Ocean Drilling Program
Texas A&M University Research Park
1000 Discovery Drive
College Station, Texas 77845-9547
U.S.A.

Per-Gunnar Alm
JOIDES Logging Scientist
Department of Engineering Geology
University of Lund
P.O. Box 118
S-221 00 Lund
Sweden

Marie-Pierre Aubry
Paleontologist (nannofossils)
Laboratoire de Géologie du Quaternaire
CNRS-Luminy
Marseille cedex 9
France, and
Woods Hole Oceanographic Institution
Woods Hole, Massachusetts 02543
U.S.A.

Lloyd H. Burckle
Paleontologist (diatoms)
Lamont-Doherty Earth Observatory
Columbia University
Palisades, New York 10964
U.S.A.

Beth Anne Christensen
Paleontologist (benthic foraminifers)
Department of Geological Sciences
University of South Carolina
Columbia, South Carolina 29208
U.S.A.

John Compton
Inorganic Geochemist
Department of Marine Science
University of South Florida
140 Seventh Avenue South
St. Petersburg, Florida 33701-5016
U.S.A.

John E. Damuth
Sedimentologist
Department of Geosciences
Earth Resource and Environment Center
University of Texas at Arlington
P.O. Box 19049
Arlington, Texas 76019
U.S.A.

Jean-François Deconinck
Sedimentologist
UFR Science de la Terre
Université de Lille 1
59655 Villeneuve D’Ascq cedex
France

Laurent de Verteuil
Paleontologist (dinoflagellates)
Department of Geology
Earth Sciences Center
University of Toronto
22 Russell Street
Toronto, Ontario M5S 3B1
Canada

Craig S. Fulthorpe
Physical Properties Specialist
Institute for Geophysics
University of Texas at Austin
8701 Mopac Boulevard
Austin, Texas 78759-8397
U.S.A.

Stefan Gartner
Paleontologist (nannofossils)
Department of Oceanography
Texas A&M University
College Station, Texas 77843-3146
U.S.A.

Gilles Guèrin
LDEO Logging Scientist
Borehole Research Group
Lamont-Doherty Earth Observatory
Columbia University
Palisades, New York 10964
U.S.A.

Stephen P. Hesselbo
Sedimentologist
Department of Earth Sciences
University of Oxford
Parks Road
Oxford, OX1 3PR
United Kingdom

*Addresses at time of cruise.
Bryce Hoppie
Physical Properties Specialist
Earth Sciences Board
University of California, Santa Cruz
Santa Cruz, California 95064
U.S.A.

Miriam E. Katz
Paleontologist (benthic foraminifers)
Lamont-Doherty Earth Observatory
Columbia University
Palisades, New York 10964
U.S.A.

Nobuhiro Kotake
Sedimentologist
Division of Environmental Science
Graduate School of Science and Technology
Chiba University
Chiba 263
Japan

Juan Manuel Lorenzo
Physical Properties Specialist
Department of Geology and Geophysics
Louisiana State University
Baton Rouge, Louisiana 70803-4101
U.S.A.

Stuart McCracken
Sedimentologist
Department of Geology
University of Western Australia
Nedlands, Western Australia 6009
Australia

Cecilia M. McHugh
Sedimentologist
Lamont-Doherty Earth Observatory
Columbia University
Palisades, New York 10964
U.S.A.

Wendy C. Quayle
Organic Geochemist
Fossil Fuels and Environmental Geochemistry
Newcastle Research Group
University of Newcastle
Newcastle upon Tyne, NE1 7RU
United Kingdom

Yoshiki Saito
Sedimentologist
Marine Geology Department
Geological Survey of Japan
Higashi 1-1-3
Tsukuba, Ibaraki 305
Japan

Scott W. Snyder
Paleontologist (planktonic foraminifers)
Department of Geology
East Carolina University
Greenville, North Carolina 27858-4353
U.S.A.

Warner G. ten Kate
Sedimentologist
Institute of Earth Sciences
Free University
de Boelelaan 1085
1081 HV Amsterdam
The Netherlands

Michael Urbat
Paleomagnetist
Geologisches Institut
Universität zu Köln
Zülpicherstrasse 49
5000 Köln
Federal Republic of Germany

Mickey C. Van Fossen
Paleomagnetist
Department of Geological Sciences
Rutgers University
Piscataway, New Jersey 08855, and
Lamont-Doherty Earth Observatory
Columbia University
Palisades, New York 10964
U.S.A.

Adam Vecsei
Physical Properties Specialist
Geologisches Institut der Universität
Albertstrasse 23B
79104 Freiburg i.Br.
Federal Republic of Germany

SEDCO OFFICIALS

Captain Edwin G. Oonk
Master of the Drilling Vessel
Overseas Drilling Ltd.
SEDCO Forex
707 Texas Avenue South, Suite 103D
College Station, Texas 77840-1917
U.S.A.

Wayne Malone
Drilling Superintendent
Overseas Drilling Ltd.
SEDCO Forex
707 Texas Avenue South, Suite 103D
College Station, Texas 77840-1917
U.S.A.
ODP ENGINEERING AND OPERATIONS PERSONNEL

Glen N. Foss Drilling Superintendent
Patrick Thompson Assistant Research Engineer

ODP TECHNICAL AND LOGISTICS PERSONNEL

Roger Ball Marine Electronics and Downhole Tools Specialist
Barry Cochran Marine Laboratory Specialist/Photography
Mary Ann Cusimano Marine Laboratory Specialist/X-ray
Edwin Garrett Marine Computer Specialist/System Manager
Ted ("Gus") Gustafson Marine Laboratory Specialist/Thin Section
Burney W. Hamlin Laboratory Officer
Michiko Hitchcox Marine Laboratory Specialist/Yeoperson
Joel Huddleston Marine Computer Specialist/System Manager
Robert Kemp Marine Laboratory Specialist/Underway Geophysics
Taku Kimura Marine Laboratory Specialist/Physical Properties
Eric Meissner Marine Electronics and Downhole Tools Specialist
Sebastian Mercier Marine Laboratory Specialist
Claudia Müller Marine Laboratory Specialist/Physical Properties
Chieh Peng Marine Laboratory Specialist/Chemistry
Philip Rumford Marine Laboratory Specialist/Chemistry
Don Sims Senior Marine Laboratory Specialist
Lorraine Southey Marine Laboratory Specialist/Curatorial Representative
Chuanwen Sun Marine Laboratory Specialist
Monica Sweitzer Marine Laboratory Specialist/Paleomagnetics

Ocean Drilling Program Publications Staff

Publications Supervisor
William D. Rose

Senior Publications Coordinator
Janalisa Braziel Soltis

Chief Illustrator
Deborah L. Partain

Editors
Chryseis O. Fox
Eva M. Maddox
Jennifer A. Marin
Nancy K. McQuistion
Sondra K. Stewart

Publications Coordinator
Gudelia ("Gigi") Delgado

Publication Distribution Specialist
Fabiola Muñoz Byrne*
Alexandra F. Moreno

Data Entry/Copier Operator
Ann Mitchell

Chief Production Editor
Jennifer Pattison Hall

Senior Photographer
John W. Beck

Production Assistants
Carrie R. Castillón
Angeline T. Miller
Mary Elizabeth Mitchell

Production Editors
Mauri L. Coulter (this volume)
Jaime A. Gracia

Photographers
Barry C. Cochran*
Bradley James Cook

*No longer with ODP Publications.
TABLE OF CONTENTS

VOLUME 150—INITIAL REPORTS

Acknowledgments ... 1

SECTION 1: INTRODUCTION

1. Introduction ... 5
 K.G. Miller, G.S. Mountain, and Shipboard Scientific Party

2. Global sea-level change and the New Jersey margin 11
 K.G. Miller and G.S. Mountain

3. Explanatory notes ... 21
 Shipboard Scientific Party

4. Underway geophysics ... 43
 G.S. Mountain, J.M. Lorenzo, and C.S. Fulthorpe

5. Natural gamma-ray measurements on ODP cores: introduction to procedures with examples from Leg 150 51
 B.W. Hoppie, P. Blum, and Shipboard Scientific Party

SECTION 2: SITE CHAPTERS

6. Site 902 ... 63
 Shipboard Scientific Party
 Site summary .. 63
 Principal results ... 63
 Background and objectives ... 65
 Operations ... 67
 Lithostratigraphy ... 69
 Biostratigraphy ... 76
 Paleomagnetism ... 86
 Sedimentation rates .. 89
 Organic geochemistry ... 91
 Inorganic geochemistry .. 98
 Physical properties .. 101
 APC downhole temperature measurements 104
 Downhole logging ... 105
 Seismic stratigraphy .. 111
 Summary and conclusions .. 115
 Shore-based processed logs 117

7. Site 903 ... 129
 Shipboard Scientific Party
 Site summary .. 129
 Principal results ... 130
 Background and objectives ... 131
 Operations ... 131
 Lithostratigraphy ... 135
Biostratigraphy ... 149
Paleomagnetism .. 157
Sedimentation rates ... 159
Organic geochemistry .. 163
Inorganic geochemistry .. 167
Physical properties ... 173
Downhole logging ... 178
Seismic stratigraphy ... 183
Summary and conclusions ... 189
Shore-based processed logs ... 190

8. Site 904 ... 207
 Shipboard Scientific Party
 Site summary ... 207
 Principal results ... 207
 Background and objectives ... 208
 Operations ... 208
 Lithostratigraphy ... 209
 Biostratigraphy .. 221
 Paleomagnetism .. 227
 Sedimentation rates .. 228
 Organic geochemistry .. 231
 Inorganic geochemistry ... 233
 Physical properties ... 235
 Downhole logging ... 239
 Seismic stratigraphy .. 241
 Summary and conclusions ... 243
 Shore-based processed logs ... 245

9. Site 905 ... 255
 Shipboard Scientific Party
 Site summary ... 255
 Principal results ... 255
 Background and objectives ... 256
 Operations ... 258
 Lithostratigraphy ... 260
 Biostratigraphy .. 272
 Paleomagnetism .. 280
 Sedimentation rates .. 280
 Organic geochemistry .. 282
 Inorganic geochemistry ... 286
 Physical properties ... 291
 Downhole logging ... 293
 Seismic stratigraphy .. 295
 Summary and conclusions ... 299
 Shore-based processed logs ... 301

10. Site 906 ... 309
 Shipboard Scientific Party
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site summary</td>
<td>309</td>
</tr>
<tr>
<td>Principal results</td>
<td>309</td>
</tr>
<tr>
<td>Background and objectives</td>
<td>310</td>
</tr>
<tr>
<td>Operations</td>
<td>311</td>
</tr>
<tr>
<td>Lithostratigraphy</td>
<td>312</td>
</tr>
<tr>
<td>Biostatigraphy</td>
<td>319</td>
</tr>
<tr>
<td>Paleomagnetism</td>
<td>325</td>
</tr>
<tr>
<td>Sedimentation rates</td>
<td>326</td>
</tr>
<tr>
<td>Organic geochemistry</td>
<td>328</td>
</tr>
<tr>
<td>Inorganic geochemistry</td>
<td>330</td>
</tr>
<tr>
<td>Physical properties</td>
<td>334</td>
</tr>
<tr>
<td>Downhole logging</td>
<td>336</td>
</tr>
<tr>
<td>Seismic stratigraphy</td>
<td>338</td>
</tr>
<tr>
<td>Summary and conclusions</td>
<td>344</td>
</tr>
<tr>
<td>Shore-based processed logs</td>
<td>345</td>
</tr>
</tbody>
</table>

SECTION 3: REFERENCES

References | 361

SECTION 4: CORES

Core-description forms and core photographs for:
- Site 902 | 369
- Site 903 | 467
- Site 904 | 621
- Site 905 | 681
- Site 906 | 773

SECTION 5: SMEAR SLIDES

Smear slide forms for:
- Site 902 | 833
- Site 903 | 839
- Site 904 | 855
- Site 905 | 861
- Site 906 | 869

SECTION 6: THIN SECTIONS

Thin-section descriptions for:
- Site 902 | 875
- Site 903 | 877
- Site 904 | 881
- Site 905 | 883
- Site 906 | 885

Back-pocket Plates

Plate 1. Two 60-fold multichannel lines and interpreted line drawings collected during cruise 9009 of the *Maurice Ewing* across the shelf-slope break off New Jersey.

Plate 2. Detailed summary lithologic columns for Holes 902C and 902D, 903A through 903D, 904A, 905A, and 906A.
The CD-ROM in the back of this volume is a “data-only” CD-ROM that contains both depth-shifted and processed logging data that has been provided by the Borehole Research Group at Lamont-Doherty Earth Observatory as well as shipboard gamma-ray attenuation porosity evaluator (GRAPE), index properties, and magnetic susceptibility data of cores collected on board JOIDES Resolution during Legs 149, 150, and 150X (land-based portion of Leg 150). Also included on this CD-ROM is the Macintosh image-viewing application NIH image. CD-ROM production was done by the Borehole Research Group at Lamont-Doherty Earth Observatory, Wireline Logging Operator for ODP.

The CD-ROM is structured as follows for Leg 150:

GENERAL INFORMATION directory
- Format documentation file (this file)
- INDEX file (contents)
- Software documentation file

LOGGING DATA directory
- README document
- HOLE NUMBER subdirectory
 - Conventional logging subdirectory
 - General information subdirectory
 - Acronyms and units file
 - Processing history of log data file
 - Depth-shifting history (Leg 150 only)
 - Logging data subdirectory
 - Individual tool data files
 - FMS subdirectory
 - FMS DIP subdirectory
 - Dipmeter files in ASCII format
 - FMS images in portable bit map (PBM - 8-bit binary)
 - Format subdirectory
 - Information about processing file
 - 1:1 ratio image raster files (every 10 m) subdirectory
 - Data files
 - Raster documentation file
 - 1:10 ratio image raster files (every 100 m) subdirectory
 - Data files
 - Raster documentation file
 - Temperature data subdirectory
 - Temperature data in ASCII format file

CORE DATA directory
- README document
- SITE NUMBER subdirectory
 - GRAPE documentation file
 - Magnetic susceptibility documentation file
 - Index properties documentation file
- HOLE NUMBER subdirectory
 - GRAPE data file
 - MAGSUS data file
 - Index properties data file

The INDEX file contains a summary of all the files loaded on the CD-ROM. The software documentation file in the GENERAL INFORMATION directory contains information on which software packages work best to import portable bit map (PBM - 8-bit binary) raster files. It also includes network sources for the graphics software and data compression information. The README file gives information about whom to contact with any questions about the production of or data on the CD-ROM.

All of the ASCII files (basic log and dipmeter files) are TAB delimited for compatibility with most spreadsheet and database programs. Holes that have more than one logging pass with the same tools are labeled Pass 1, Pass 2, etc. Holes that have long logging runs are often divided into TOP, MIDDLE, and
BOTTOM directories. If the data were collected continuously or if two or more sections of data were spliced together, the files will be in the SPLICED directory.

In the FMS-PBM format subdirectory, there are two subdirectories: 1:1 ratio with maximum 10-m-long image raster files, and 1:10 ratio with maximum 100-m-long image raster files. The image raster files are named according to their depth interval. The raster documentation files contain image file parameter information necessary for use with most graphic software packages.

Summary of LDEO Log Data, Leg 150

Hole 902D:
 Conventional logs
 FMS data
Hole 903A:
 Conventional logs
 Temperature log
Hole 903C:
 Conventional logs
 Temperature log
Hole 904A:
 Conventional logs
 FMS data
 Temperature log
Hole 905A:
 Conventional logs
 Temperature log
Hole 906A:
 Conventional logs
 FMS data
 Geochemical logs (element and oxide weight %)
 Temperature log

Summary of ODP Core Data, Leg 150

Hole 902A:
 Index properties data
Hole 902B:
 Index properties data
Hole 902C:
 GRAPE data
 Index properties data
 MAGSUS data
Hole 902D:
 GRAPE data
 grape_1.dat: cores 1-40
 grape_2.dat: cores 41-82
 Index properties data
 MAGSUS data
Hole 903A:
 GRAPE data
 grape_1.dat: cores 1-40
 grape_2.dat: cores 41-70
 grape_3.dat: cores 71-76
 Index properties data
 MAGSUS data
Hole 903B:
 GRAPE data
 Index properties data
 MAGSUS data
Hole 903C:
 Index properties data
Hole 903D:
 Index properties data
Hole 904A:
GRAPE data
 grape_1.dat: cores 1–24
 grape_2.dat: cores 25–48
 grape_3.dat: cores 49–62
Index properties data
MAGSUS data

Hole 905A:
GRAPE data
 grape_1.dat: cores 1–35
 grape_2.dat: cores 36–60
 grape_3.dat: cores 61–85
 grape_4.dat: cores 86–103
Index properties data
MAGSUS data

Hole 906A:
GRAPE data
 grape_1.dat: cores 1–24
 grape_2.dat: cores 25–50
 grape_3.dat: cores 51–68
Index properties data
MAGSUS data

Schematic diagram of CD-ROM file organization.
ACKNOWLEDGMENTS

We thank Captain Oonk, the officers, and the crew of the SEDCO/BP 471 for their part in making Leg 150 a safe, comfortable and scientifically rewarding expedition. The drillers and rig-floor crew deserve high praise for consistently retrieving cores at record-setting speed and extraordinarily high recovery; whatever scientific payoff comes from Leg 150 will have been made possible by their hard work. The marine technical staff led by Burney Hamlin labored under challenging conditions of rapid core flow and demonstrated professionalism throughout the cruise. We gratefully acknowledge the patience and understanding of Jack Baldauf and the shore-based staff in College Station who guided us through the disappointing termination of Site 905. During the many ship-to-shore communications related to that and other modifications of the original plan, ODP personnel showed a clear commitment to helping us achieve our objectives. As much as any single person, Operations Superintendent Glen Foss made Leg 150 the enormous success that it was. He provided expert guidance, and the entire scientific party extends to him their deepest thanks and appreciation for a job very well done.

Leg 150 and the New Jersey Sea-level/Mid-Atlantic Transect was made possible by the efforts of many individuals who contributed to the background and design of the project. C.W. Poag (USGS) proposed a sea-level transect on the New Jersey margin that began with DSDP Legs 93 and 95. Plans for a shelf transect were conducted in collaboration with N. Christie-Blick (LDEO). Exxon Production Research provided MCS data, and S. Greenlee and W. Devlin (both EPR) provided guidance in interpreting the sequence stratigraphy of the New Jersey shelf. N. Christie-Blick, S. Greenlee, W. Devlin, P. Flemings (Penn State), M. Steckler (LDEO), D. Reynolds (LDEO), and R. Sheridan (Rutgers) participated in a workshop at Rutgers University in 1990 that reviewed the Exxon data and helped to plan MCS surveys. We thank the shipboard party of Ewing Cruise 9009, which collected the MCS and SCS data on the shelf and slope, and the shipboard parties of Atlantis II Cruises 120 and 124, which mapped the slope and sampled outcrops using the Alvin. W. Ryan (LDEO) and D. Twichell (USGS) provided processed SeaBeam maps of the Atlantis II surveys. The National Science Foundation Continental Dynamic and Ocean Drilling Program funded the onshore boreholes (Leg 150X), the Marine Geology and Geophysics Program funded the Atlantis II cruises, and the Ocean Drilling Program funded the seismic surveys.