This publication was prepared by the Ocean Drilling Program, Texas A&M University, as an account of work performed under the international Ocean Drilling Program, which is managed by Joint Oceanographic Institutions, Inc., under contract with the National Science Foundation. Funding for the program was provided by the following agencies at the time of this cruise:

Canada/Australia Consortium for the Ocean Drilling Program, Department of Energy, Mines and Resources (Canada), and Department of Primary Industries and Energy (Australia)

Deutsche Forschungsgemeinschaft (Federal Republic of Germany)

European Science Foundation Consortium for Ocean Drilling (Belgium, Denmark, Finland, Iceland, Italy, Greece, The Netherlands, Norway, Spain, Sweden, Switzerland, and Turkey)

Institut Français de Recherche pour l’Exploitation de la Mer (France)

National Science Foundation (United States)

Natural Environment Research Council (United Kingdom)

University of Tokyo, Ocean Research Institute (Japan)

Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation, the participating agencies, Joint Oceanographic Institutions, Inc., Texas A&M University, or Texas A&M Research Foundation.

It is recommended that reference to the whole or to part of this volume be made in one of the following forms, as appropriate:

Effective Publication Dates of ODP Proceedings

According to the International Code of Zoological Nomenclature, the date of publication of a work and of a contained name or statement affecting nomenclature is the date on which the publication was mailed to subscribers, placed on sale, or when the whole edition is distributed free of charge, mailed to institutions and individuals to whom free copies are distributed. The mailing date, not the printed date, is the correct one.

The mailing dates of recent Proceedings of the Ocean Drilling Program are as follows:

Volumes 147/148 (Initial Reports): December 1993
Volume 149 (Initial Reports): June 1994
Volume 150 (Initial Reports): November 1994
Volume 134 (Scientific Results): October 1994
Volume 135 (Scientific Results): May 1994
Volume 139 (Scientific Results): October 1994

Distribution

Copies of this publication may be obtained from Publications Distribution Center, Ocean Drilling Program, 1000 Discovery Drive, College Station, Texas 77845-9547, U.S.A. Orders for copies will require advance payment. See current ODP publication list for price and availability of this publication.

Printed December 1994

ISSN 0884-5883
Library of Congress 87-655-674
Printed in Canada by D.W. Friesen & Sons Ltd.

Foreword
By the National Science Foundation

The National Science Foundation is proud to play a leading role in partnership with the U.S. oceanographic community in the operation and management of the Ocean Drilling Program (ODP). We are equally proud of the cooperation and commitment of our international partners, who contribute both financial and intellectual resources required to maintain the high quality of this unique program. The Ocean Drilling Program, like its predecessor, the Deep Sea Drilling Project (DSDP), is a model for the organization and planning of research to address global scientific problems that are of high priority internationally and of long-term interest to the scientific community and general public.

Major scientific themes guiding the development of specific drilling cruises range from determining the causes and effects of oceanic and climatic variability to understanding the circulation of fluids in the ocean crust and the resultant formation of mineral deposits. Although such studies are at the forefront of basic scientific inquiry into the processes that control and modify the global environment, they are equally important in providing the background for assessing man's impact on the global environment or for projecting resource availability for future generations.

The transition from the DSDP to the ODP was marked by a number of changes. The 471-foot JOIDES Resolution, which replaced the Glomar Challenger, has allowed larger scientific parties and the participation of more graduate students, a larger laboratory and technical capability, and operations in more hostile ocean regions. The JOIDES Resolution has drilled in all of the world's oceans, from the marginal ice regions of the Arctic to within sight of the Antarctic continent. Over 1,200 scientists and students from 26 nations have participated on project cruises. Cores recovered from the cruises and stored in ODP repositories in the United States and Europe have provided samples to an additional 1,000 scientists for longer term post-cruise research investigations. The downhole geochemical and geophysical logging program, unsurpassed in either academia or industry, is providing remarkable new data with which to study the Earth.

In 1994, NSF and our international partners renewed our commitment to the program for its final phase. Of the 20 countries that supported ODP initially, only one, Russia, has been unable to continue for financial reasons. As the reputation and scientific impact of the program continue to grow internationally, we hope to add additional members and new scientific constituencies. This global scientific participation continues to assure the program's scientific excellence by focusing and integrating the combined scientific knowledge and capabilities of its member nations.

We wish the program smooth sailing and good drilling!

Neal Lane
Director
National Science Foundation

Arlington, Virginia
This volume presents scientific and engineering results from the Ocean Drilling Program (ODP). The papers presented here address the scientific and technical goals of the program, which include providing a global description of geological and geophysical structures including passive and active margins and sediment history, and studying in detail areas of major geophysical activity such as mid-ocean ridges and the associated hydrothermal circulations.

The Ocean Drilling Program, an international activity, operates a specially equipped deep-sea drilling ship, the JOIDES Resolution (Sedco/BP 471), which contains state-of-the-art laboratories, equipment, and computers. The ship is 471 feet (144 meters) long, is 70 feet (21 meters) wide, and has a displacement of 18,600 short tons. Her derrick towers 211 feet (64 meters) above the waterline, and a computer-controlled dynamic-positioning system stabilizes the ship over a specific location while drilling in water depths up to 27,000 feet (8230 meters). The drilling system collects cores from beneath the seafloor with a derrick and drawworks that can handle 30,000 feet (9144 meters) of drill pipe. More than 12,000 square feet (1115 square meters) of space distributed throughout the ship is devoted to scientific laboratories and equipment. The ship sails with a scientific and technical crew of 51 and a ship’s crew (including the drill crew) of 62. The size and ice-strengthening of the ship allow drilling in high seas and ice-infested areas as well as permitting a large group of multidisciplinary scientists to interact as part of the scientific party.

Logging, or measurements in the drilled holes, is an important part of the program. ODP provides a full suite of geochemical and geophysical measurements for every hole deeper than 1300 feet (400 meters). For each such hole, there are lowerings of basic oil-industry tools: nuclear, sonic, and electrical. In addition, a borehole televiewer is available for imaging the wall of the hole, a 12-channel logging tool provides accurate velocity and elastic property measurements as well as sonic waveforms for spectral analysis of energy propagation near the wall of the hole, and a vertical seismic profiler can record reflectors from below the total depth of the hole.

The management of the Ocean Drilling Program involves a partnership of scientists and governments. International oversight and coordination are provided by the ODP Council, a governmental consultative body of the partner countries, which is chaired by a representative from the United States National Science Foundation. The ODP Council periodically reviews the general progress of the program and discusses financial plans and other management issues. Overall scientific and management guidance is provided to the operators of the program by representatives from the group of institutions involved in the program, called the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES).

The Executive Committee (EXCOM), made up of the administrative heads of the JOIDES institutions, provides general oversight for ODP. The Planning Committee (PCOM), with its advisory structure, is made up of working scientists and provides scientific advice and detailed planning. PCOM has a network of panels and working groups that screen drilling proposals, evaluate instrumentation and measurement techniques, and assess geophysical-survey data and other safety and siting information. PCOM uses the recommendations of the panels and committees to select drilling targets, to specify the location and major scientific objectives of each two-month drilling segment or leg, and to provide the science operator with nominations for co-chief scientists.

Joint Oceanographic Institutions, Inc. (JOI), a nonprofit consortium of U.S. oceanographic institutions, serves as the National Science Foundation’s prime contractor for ODP. JOI is responsible for seeing that the scientific objectives, plans, and recommendations of the JOIDES committees are translated into scientific operations consistent with scientific advice and budgetary constraints. JOI subcontracts the operations of the program to two universities: Texas A&M University and Lamont-Doherty Earth Observatory of Columbia University. JOI is also responsible for managing the U.S. contribution to ODP.

Texas A&M University (TAMU) serves as science operator for ODP. In this capacity, TAMU is responsible for planning the specific ship operations, actual drilling schedules, and final scientific rosters, which are developed in close cooperation with PCOM and the relevant
panels. The science operator also ensures that adequate scientific analyses are performed on
the cores by maintaining the shipboard scientific laboratories and computers and by providing
logistical and technical support for shipboard scientific teams. Onshore, TAMU manages
scientific activities after each leg, is curator for the cores, distributes samples, and coordinates
the editing and publication of scientific results.

Lamont-Doherty Earth Observatory (LDEO) of Columbia University is responsible for the
program's logging operation, including processing the data and providing assistance to
scientists for data analysis. The ODP Data Bank, a repository for geophysical data, is also
managed by LDEO.

Core samples from ODP and the previous Deep Sea Drilling Project are stored for future
investigation at four sites: ODP Pacific and Indian Ocean cores at TAMU, ODP and DSDP
Atlantic and Antarctic cores at LDEO, DSDP Pacific and Indian Ocean cores at the Scripps
Institution of Oceanography, and ODP Atlantic and Antarctic cores at the University of
Bremen, Federal Republic of Germany.

Scientific achievements of ODP include new information on early seafloor spreading and
how continents separate and the margins evolve. The oldest Pacific crust has been drilled and
sampled. We have new insights into glacial cycles and the fluctuations of ocean currents
throughout geological time. Many of the scientific goals can be met only with new technology;
thus the program has focused on engineering as well as science. To date, ODP engineers have
demonstrated the capability to drill on bare rock at mid-ocean-ridge sites and have developed
techniques for drilling in high-temperature and corrosive regions typical of hydrothermal vent
areas. A new diamond coring system promises better core recovery in difficult areas.

In addition, ODP is cooperating closely with other geological and geophysical programs;
for example, in 1991 the first hole was drilled by ODP for emplacement of a seismometer
near Hawaii for the Ocean Seismic Network. JOI is pleased to have been able to play a
facilitating role in the Ocean Drilling Program and its cooperative activities, and we are
looking forward to many new results to come.

\[\text{Signature}\]

D. James Baker
President
Joint Oceanographic Institutions, Inc.

Washington, D.C.
MEMBER ORGANIZATIONS OF THE JOINT OCEANOGRAPHIC INSTITUTIONS FOR DEEP EARTH SAMPLING (JOIDES):
University of California at San Diego, Scripps Institution of Oceanography
Columbia University, Lamont-Doherty Geological Observatory
University of Hawaii, School of Ocean and Earth Science and Technology
University of Miami, Rosenstiel School of Marine and Atmospheric Science
Oregon State University, College of Oceanography
University of Rhode Island, Graduate School of Oceanography
Texas A&M University, College of Geosciences and Maritime Studies
University of Texas at Austin, Institute for Geophysics
University of Washington, College of Ocean and Fishery Sciences
Woods Hole Oceanographic Institution
Canada/Australia Consortium for the Ocean Drilling Program, Department of Energy, Mines and Resources (Canada) and Department of Primary Industries and Energy (Australia)
European Science Foundation Consortium for Ocean Drilling, Belgium, Denmark, Finland, Iceland, Italy, Greece, The Netherlands, Norway, Spain, Sweden, Switzerland, and Turkey
Federal Republic of Germany, Bundesanstalt für Geowissenschaften und Rohstoffe
France, Institut Français de Recherche pour l'Exploitation de la Mer
Japan, University of Tokyo, Ocean Research Institute
United Kingdom, Natural Environment Research Council

PRIME CONTRACTOR
Joint Oceanographic Institutions, Inc.
Washington, D.C.
Thomas E. Pyle
Director, Ocean Drilling Programs

OPERATING INSTITUTION
College of Geosciences and Maritime Studies
Texas A&M University
College Station, Texas
Robert A. Duce
Dean

OCEAN DRILLING PROGRAM
Philip D. Rabinowitz
Director
Timothy J.G. Francis
Deputy Director
Richard G. McPherson
Administrator
Jack G. Baldauf, Manager Science Operations
Barry W. Harding, Manager Engineering and Drilling Operations
Russell B. Merrill, Curator and Manager Science Services
Robert E. Olivas, Manager Technical and Logistics Support
John C. Coyne, Manager Information Services

LOGGING OPERATOR
Borehole Research Group
Lamont-Doherty Earth Observatory
Columbia University
Palisades, New York
David Goldberg, Head
PARTICIPANTS ABOARD THE JOIDES RESOLUTION FOR LEG 152*

Hans Christian Larsen
Co-Chief Scientist
Geological Survey of Greenland
Øster Voldgade 10
DK-1350 København
Denmark

Andrew D. Saunders
Co-Chief Scientist
Department of Geology
University of Leicester
University Road
Leicester LE1 7RH
United Kingdom

Peter D. Clift
ODP Staff Scientist
Ocean Drilling Program
Texas A&M University Research Park
1000 Discovery Drive
College Station, Texas 77845-9547
U.S.A.

Jason Richard Ali
Paleomagnetist
Department of Oceanography
University of Southampton
Southampton SO9 5NH
United Kingdom

James Begét
Sedimentologist
Department of Geology and Geophysics
University of Alaska
Fairbanks, Alaska 99775-0760
U.S.A.

Hervé Cambray
LDEO Logging Scientist
Laboratoire de Mesures en Forage
ODP/Institut Mériditerranéen de Technologie
13451 Marseille Cedex 20
France

Alain Demant
Petrologist
Laboratoire de Pétrologie Magmatique
Université d'Aix-Marseille III
13397 Marseille Cedex 20
France

J. Godfrey Fitton
Petrologist
Department of Geology and Geophysics
University of Edinburgh
West Mains Road
Edinburgh EH9 3JW
United Kingdom

Miranda S. Fram
Petrologist
Department of Geology
University of California, Davis
Davis, California 95616
U.S.A.

Koji Fukuma
Paleomagnetist/Physical Properties Assistant
Department of Geology and Mineralogy
Faculty of Science
Kyoto University
Oiwake-cho, Kitashirakawa
Sakyo-ku, Kyoto 606-01
Japan

Joris M. Gieskes
Inorganic Geochemist
Scripps Institution of Oceanography
University of California, San Diego
La Jolla, California 92037-0215
U.S.A.

Mary Anne Holmes
Sedimentologist
Department of Geology
214 Bessey Hall
University of Nebraska-Lincoln
Lincoln, Nebraska 68588-0340
U.S.A.

John M. Hunt
Physical Properties Specialist
Department of Geography and Geology
Cheltenham and Gloucester
College of Higher Education
Shaftesbury Hall
St. Georges Place
Cheltenham, Gloucester GL5 03PP
United Kingdom

Christian Lacasse
Sedimentologist
Graduate School of Oceanography
University of Rhode Island
South Ferry Road South Laboratory
Narragansett, Rhode Island 02882-1197
U.S.A.

Lotte Melchior Larsen
Igneous Petrologist
Geological Survey of Greenland
Øster Voldgade 10
DK-1350 København
Denmark

*Addresses at time of cruise.
Holger Lykke-Andersen
Logger/Seismic Stratigraphic Specialist
Geological Institute
University of Aarhus
Finlandsvej 8
8200 Aarhus
Denmark

Alexandr Meltser
LDEO Logging Scientist
Lamont-Doherty Earth Observatory
Columbia University
Palisades, New York 10964
U.S.A.

Martin L. Morrison
Physical Properties Specialist
Atlantic Geoscience Centre
Bedford Institute of Oceanography
P.O. Box 1006
Dartmouth, Nova Scotia B2Y 4A2
Canada

Naoki Nemoto
Paleontologist (benthic foraminifers)
Department of Earth Sciences
Faculty of Science
University of Hirosaki
Hirosaki, Aomori 036
Japan

Nilgün Okay
Physical Properties Specialist
Department of Earth and Environmental Sciences
City University of New York
33 West 42nd Street
New York, New York 10036
U.S.A.

Saneatsu Saito
Sedimentologist
Marine Geology and Geophysics
Ocean Research Institute
University of Tokyo
1-15-1 Minamidai, Nakano-ku
Tokyo 164
Japan

Silvia Spezzaferri
Paleontologist (planktonic foraminifers)
Department of Earth Sciences
University of Milano
Via Mangiagalli - 34
20133 Milano
Italy

Rainer Stax
Organic Geochemist
Alfred Wegener Institute for Polar and Marine Research
Columbusstrasse 2
27568 Bremerhaven
Federal Republic of Germany

Tracy L. Vallier
Sedimentologist
Pacific Marine Geology Branch
U.S. Geological Survey
345 Middlefield Road
Menlo Park, California 94025
U.S.A.

Didier Vandamme
Paleomagnetist
J.E. Géochimie et Magnétisme des Roches
Université d’Aix-Marseille III
13397 Marseille Cedex 20
France

Wuchang Wei
Paleontologist (calcareous nannofossils)
Scripps Institution of Oceanography
University of California, San Diego
La Jolla, California 92030-0213
U.S.A.

Reinhard Werner
Sedimentologist
GEOMAR
Research Center for Marine Geosciences
Wischhofstrasse 1-3, Gebäude 4
D-24148 Kiel 14
Federal Republic of Germany

SEDCO OFFICIALS

Captain Edwin G. Oonk
Master of the Drilling Vessel
Overseas Drilling Ltd.
SEDCO Forex
707 Texas Ave. South, Suite 103D
College Station, Texas 77840-1917
U.S.A.

Wayne Malone
Drilling Superintendent
Overseas Drilling Ltd.
SEDCO Forex
707 Texas Ave. South, Suite 103D
College Station, Texas 77840-1917
U.S.A.
ODP ENGINEERING AND OPERATIONS PERSONNEL
Ron Grout Drilling Superintendent
William Rhinehart Development Engineer

ODP TECHNICAL AND LOGISTICS PERSONNEL
Roger Ball Marine Electronics and Downhole Tools Specialist
Barry Cochran Marine Laboratory Specialist/Photography
Mary Ann Cusimano Marine Laboratory Specialist/X-ray
John Dyke Marine Laboratory Specialist/Storekeeper
John R. Eastlund Marine Computer Specialist/System Manager
Ted (“Gus”) Gustafson Marine Laboratory Specialist/Thin Section
Michiko Hitchcox Marine Laboratory Specialist/Yeoperson
Brad Julson Laboratory Officer
Robert Kemp Marine Laboratory Specialist/Underway Geophysics/Fantail
Taku Kimura Marine Laboratory Specialist/Physical Properties
Eric Meissner Marine Electronics Specialist
Chieh Peng Marine Laboratory Specialist/Chemistry
Karl Pohl Schlumberger Logger
Philip Rumford Marine Laboratory Specialist/Chemistry
Don Sims Assistant Laboratory Officer
Lorraine Southey Marine Laboratory Specialist/Curatorial Representative
Monica Sweitzer Marine Laboratory Specialist/Magnetics
Barry Weber Marine Computer Specialist/System Manager

Ocean Drilling Program Publications Staff

Publications Supervisor William D. Rose
Senior Publications Coordinator Janalisa Braziel Soltis
Chief Illustrator Deborah L. Partain

Chief Editor Ann Klaus
Publications Coordinator Gudelia (“Gigi”) Delgado
Illustrators
Melany R. Borsack
L. Michelle Briggs (lead, this volume)
Michelle Cady
Garret D. Gaither*
William J. Moran
Linda C. Orsi*
Monica E. Rul

Editors
Chryseis O. Fox
Eva M. Maddox
Jennifer A. Marin
Nancy K. McQuistion
Sondra K. Stewart

Publications Distribution Specialist Fabiola Muñoz Byrne*
Data Entry/Copier Operator Ann Mitchell

Chief Production Editor Jennifer Pattison Hall
Senior Photographer John W. Beck
Production Assistants
Carrie R. Castillón
Angelina T. Miller
Mary Elizabeth Mitchell

Production Editors
Mauri L. Coulter (this volume)
Jaime A. Gracia
Photographers
Barry C. Cochran*
Bradley James Cook

Student Assistants
Pamela Ivette Baires, Shanna Olesko Collie,* Michael F. Cordova, Shelley René Cormier, Stephanie Dusek, Amy C. Knapp, Lisa Nicole Larson, Ivy E. Oliver, M. Kathleen Phillips, Tai-Fang Wu, Yvonne C. Zissa

*No longer with ODP Publications.
TABLE OF CONTENTS

VOLUME 152—INITIAL REPORTS

Acknowledgments

SECTION 1: INTRODUCTION

1. Introduction: Breakup of the Southeast Greenland Margin and the formation of the Irminger Basin: Background and Scientific Objectives
 H.C. Larsen, A.D. Saunders, P.D. Clift, and the Shipboard Scientific Party
 - Volcanic and nonvolcanic rifted margins
 - Physiography and development of the Northeast Atlantic
 - Initial line of breakup and the seaward-dipping reflector sequences
 - The Southeast Greenland transect: principal characteristics
 - Tertiary magmatism and principal results of previous ocean drilling of SDRS in the North Atlantic
 - Influence of the Iceland Plume
 - Volcaniclastic deposits
 - Subsidence analysis
 - Paleoceanographic and paleoclimatic objectives
 - Chronostratigraphic studies
 - Summary of the principal scientific objectives of Leg 152

2. Explanatory Notes
 Shipboard Scientific Party
 - Introduction
 - Authorship of site chapter
 - Drilling characteristics
 - Shipboard scientific procedures
 - Core handling
 - Visual core descriptions and the barrel sheet program
 - Sediment classification
 - Biostratigraphy
 - Paleomagnetism
 - Igneous petrology
 - Organic geochemistry
 - Inorganic geochemistry
 - Physical properties
 - Downhole measurements

3. Underway Geophysics
 Shipboard Scientific Party
 - Introduction
 - Shipboard underway geophysical data
 - Navigation
 - Magnetism
 - Bathymetry and sub-bottom profiling
Seismic-reflection profiling ... 41

4. Pre-cruise Site Survey .. 45
Shipboard Scientific Party

SECTION 2: SITE CHAPTERS

5. Background and Scientific Objectives: Shelf Sites 914 through 917 49
Shipboard Scientific Party
 Introduction .. 49
 Background and general setting of Sites 914 through 917 49
 Main scientific objectives ... 51

6. Site 914 ... 53
Shipboard Scientific Party
 Site summary .. 53
 Principal results ... 53
 Operations .. 55
 Lithostratigraphy .. 57
 Biostratigraphy ... 62
 Sedimentation rates .. 66
 Organic geochemistry ... 66
 Inorganic geochemistry .. 67
 Physical properties ... 67

7. Site 915 ... 73
Shipboard Scientific Party
 Site summary .. 73
 Principal results ... 73
 Operations .. 74
 Lithostratigraphy .. 75
 Biostratigraphy ... 78
 Paleomagnetism ... 78
 Sedimentation rates .. 79
 Igneous petrology .. 80
 Organic geochemistry ... 82
 Inorganic geochemistry .. 83
 Physical properties ... 83

8. Site 916 ... 89
Shipboard Scientific Party
 Site summary .. 89
 Principal results ... 89
 Operations .. 90
 Lithostratigraphy .. 90
 Biostratigraphy ... 94
 Paleomagnetism ... 96
 Sedimentation rates .. 97
 Organic geochemistry ... 97
13. Summary and Principal Results

Introduction

Principal drilling results

Nature and development of the breakup volcanism

Tectonic history and subsidence of the margin

SECTION 3: REFERENCES

References

SECTION 4: CORES

Core description forms and core photographs for:

Site 914
Site 915
Site 916
Site 917
Site 918
Site 919

SECTION 5: SMEAR SLIDES

Smear slide descriptions for:

Site 914
Site 915
Site 916
Site 917
Site 918
Site 919

SECTION 6: THIN SECTIONS

Thin section descriptions for:

Site 915
Site 917
Site 918

(For JOIDES Advisory Groups and ODP Sample-Distribution Policy, please see ODP Proceedings, Initial Reports, Volume 146, Part 2, pp. 85-92)

Back Pocket

Figure 1. Multichannel seismic line CGU 81-08 of the 63°N transect showing the locations of Sites 914–918.

Figure 2. Multichannel seismic line CGU 92-94 of the 63°N transect on the Greenland shelf.
Leg 152 Southeast Greenland Margin and Irminger Basin Well-logging Data CD-ROM
(in back pocket)

The CD-ROM in the back of this volume is a "data-only" CD-ROM that contains both depth-shifted and processed logging data that have been provided by the Borehole Research Group at Lamont-Doherty Earth Observatory, as well as shipboard gamma-ray attenuation porosity evaluation (GRAPE), index properties, magnetic susceptibility, and natural gamma-ray data of cores collected on board the JOIDES Resolution during Leg 152. CD-ROM production was done by the Borehole Research Group at Lamont-Doherty Earth Observatory, Wireline Logging Operator for ODP.

The CD-ROM is structured as follows for Leg 152:

GENERAL INFORMATION directory
- Format documentation file
- INDEX file
- Software documentation file

LOG DATA directory
- README document
- HOLE NUMBER subdirectory
 - Conventional logging subdirectory
 - General information subdirectory
 - Acronyms and units file
 - Processing history of logging data file (info.doc and infoswf.doc)
 - Logging data subdirectory
 - Individual tool data files
 - FMS and dipmeter data subdirectory
 - Dipmeter file(s) in ASCII format
 - FMS images in portable bit map (PBM - 8-bit binary)
 - Format subdirectory
 - 1:1 ratio image raster files (every 10 m) subdirectory
 - Data files
 - Raster documentation file
 - 1:10 ratio image raster files (every 100 m) subdirectory
 - Data files
 - Raster documentation file

CORE DATA directory
- README document
- LEG subdirectory
 - GRAPE documentation file
 - Index properties documentation file
 - Magnetic susceptibility documentation file
 - Natural gamma-ray documentation file
- SITE NUMBER subdirectory
 - GRAPE data file
 - Index properties data file
 - MAGSUS data file
 - Natural gamma-ray data file

The above structure is identical in each site and/or hole. The INDEX file contains a summary of all the files loaded on the CD-ROM. The software documentation file in the GENERAL INFORMATION directory contains information on which software packages work best to import PBM raster files. It also includes network sources for the graphics software and data compression information. The README file gives information about whom to contact with any questions about the production of or data on the CD-ROM.

All of the ASCII files (basic logging, dipmeter, sonic waveforms, GRAPE, index properties, magnetic susceptibility, and natural gamma-ray) are TAB delimited for compatibility with most spreadsheet and database programs. Holes that have more than one logging pass using the same tools are labeled Pass 1, Pass 2, and so forth. Holes that have long logging runs are often divided into TOP, MIDDLE, and BOTTOM sections. This is noted by adding “top,” “mid,” or “bot” to the data file names where space permits or a “t,” “m,” or “b” where room for only one character is available.
In the FMS-PBM format subdirectory are two subdirectories: 1:1 ratio with maximum 10-m-long image raster files and 1:10 ratio with maximum 100-m-long image raster files. The image raster files are named according to their depth interval. The raster documentation files contain image file parameter information necessary for use with most graphic software packages.

Summary of LDEO Logging Data

<table>
<thead>
<tr>
<th>Hole 917A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional logs</td>
</tr>
<tr>
<td>FMS data</td>
</tr>
<tr>
<td>Dipmeter data</td>
</tr>
<tr>
<td>Sonic waveforms</td>
</tr>
</tbody>
</table>

Summary of ODP Core Data

<table>
<thead>
<tr>
<th>Hole 914A</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRAPE data</td>
</tr>
<tr>
<td>Index property data</td>
</tr>
<tr>
<td>MAGSUS data</td>
</tr>
<tr>
<td>Natural gamma-ray data</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hole 914B</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRAPE data</td>
</tr>
<tr>
<td>Index property data</td>
</tr>
<tr>
<td>MAGSUS data</td>
</tr>
<tr>
<td>Natural gamma-ray data</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hole 915A</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRAPE data</td>
</tr>
<tr>
<td>Index property data</td>
</tr>
<tr>
<td>MAGSUS data</td>
</tr>
<tr>
<td>Natural gamma-ray data</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hole 916A</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRAPE data</td>
</tr>
<tr>
<td>Index property data</td>
</tr>
<tr>
<td>MAGSUS data</td>
</tr>
<tr>
<td>Natural gamma-ray data</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hole 917A</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRAPE data</td>
</tr>
<tr>
<td>grape_1.dat: cores 1–29</td>
</tr>
<tr>
<td>grape_2.dat: cores 30–69</td>
</tr>
<tr>
<td>grape_3.dat: cores 70–110</td>
</tr>
<tr>
<td>Index property data</td>
</tr>
<tr>
<td>MAGSUS data</td>
</tr>
<tr>
<td>magsus_1.dat: cores 1–48</td>
</tr>
<tr>
<td>magsus_2.dat: cores 52–110</td>
</tr>
<tr>
<td>Natural gamma-ray data</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hole 918A</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRAPE data</td>
</tr>
<tr>
<td>Index property data</td>
</tr>
<tr>
<td>MAGSUS data</td>
</tr>
<tr>
<td>Natural gamma-ray data</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hole 918B</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRAPE data</td>
</tr>
<tr>
<td>Index property data</td>
</tr>
<tr>
<td>MAGSUS data</td>
</tr>
<tr>
<td>Natural gamma-ray data</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hole 918C</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRAPE data</td>
</tr>
<tr>
<td>Index property data</td>
</tr>
<tr>
<td>MAGSUS data</td>
</tr>
<tr>
<td>Natural gamma-ray data</td>
</tr>
</tbody>
</table>
Hole 918D
GRAPE data
 grape_1.dat: cores 14–57
 grape_2.dat: cores 58–110
Index property data
MAGSUS data
Natural gamma-ray data
Hole 919A
GRAPE data
Index property data
MAGSUS data
Natural gamma-ray data
Hole 919B
GRAPE data
Index property data
MAGSUS data
Natural gamma-ray data
ACKNOWLEDGMENTS

The Scientific Party wishes to thank the following people for ensuring a successful outcome to Leg 152:

Captain Ed Oonk and the crew of the JOIDES Resolution (SEDCO/BP 471), for enabling drilling operations in very challenging conditions; SEDCO Drilling Superintendent Wayne Malone and the drilling crew for achieving—and surpassing—our drilling objectives; Operations Superintendent Ron Grout for making it all work so smoothly, and for giving essential and helpful advice at crucial moments;

Laboratory Officer Brad Julson and the ODP technical staff, who provided crucial support during a challenging leg; Yeoperson Michiko Hitchcox for making deadlines seem so friendly; and, finally, José Loucao and the Catermar staff for the excellent catering that made the long periods below decks bearable.

To all these people, and the ODP Staff, who made the operation from planning, to inception, and to publication, run so smoothly, we say thank you. The Danish Natural Research Council is acknowledged for funding of the site survey prior to Leg 152.