
Saunders, A.D., Larsen, H.C., and Wise, S.W., Jr. (Eds.), 1998
Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 152
9. ALTERATION OF UPPERMOST LAVAS AND VOLCANICLASTICS RECOVERED
DURING LEG 152 TO THE EAST GREENLAND MARGIN1

Mary Anne Holmes2

ABSTRACT

During the last stages of the eruption of syn-rift basalts along the East Greenland Margin, debris flows and/or pyroclastic
deposits were emplaced at Ocean Drilling Program Sites 915 and 916. The deposits and the tops of the lava flows at Site 918
were altered by subaerial weathering processes as indicated by downhole changes in mineral and chemical composition, and by
the mineral paragenesis. Kaolinite and goethite, which form in acidic waters, are abundant at the tops of the weathering profiles
and decrease in abundance downward. They are replaced by a smectite-hematite-opal assemblage at the bases of the weathered
profiles. Gibbsite is a minor component in the upper parts of the profiles. Good preservation of parent structure and stratifica-
tion indicate that only the bases of paleosols are preserved at all sites. The upper parts were probably eroded when these sites
subsided below sea level.

Abundant gibbsite in marine sediment overlying the paleosols and of middle to late Eocene age is probably derived from
the erosion of highly weathered soils formed in a subtropical to tropical climate. A highly weathered basaltic terrane supplied
abundant iron oxides in addition to gibbsite, kaolinite, illite/mica, and quartz through fluvially dominated deltaic systems on the
shelf through at least the late Eocene. Only small amounts of sediment spilled over into the adjacent Irminger Basin through the
Eocene, as indicated by the presence of felsic terrane-derived minerals (quartz, illite, and/or mica). Sedimentation rates were
low enough in the Irminger Basin to allow Mn oxide crusts to develop until quartzose turbidites spilled over in the late Oli-
gocene. Gibbsite was not detected in sediment of early Oligocene age and younger, suggesting a regional cooling, increased
aridity, and/or leveling of the source area at this time.
re-
he
as
ral

y at
ke-
INTRODUCTION

Ocean Drilling Program (ODP) Leg 152 sailed to the East Green-
land Margin to 63°N latitude and recovered sediment from a trans
of six drill sites (Fig. 1). The first four, Sites 914−917, were drilled in
relatively shallow water depths (510−530 m) on the southeast Green
land Shelf (Fig. 2; Larsen, Saunders, Clift, et al., 1994). The la
two, Sites 918−919, were drilled in the adjacent Irminger Basin, i
water depths of 1850−2100 m. On the shelf in this area, glaciogen
sediment (Quaternary?) unconformably overlies Eocene–Oligoc
sediment that, in turn, overlies weathered basalt. The lavas of the
saltic basement were subaerially erupted during the formation of 
volcanic, rifted margin (Larsen, Saunders, Clift, et al., 1994). Bas
ages were determined using 39Ar/40Ar isotopes by Sinton and Duncan
(this volume). The ages range from latest Maastrichtian (68.2 ± 1.6
Ma) to late Paleocene (60.4 ± 0.7 Ma). Weathering of the younges
lavas presumably dates from this time.

Pre-glacial sediment from the shelf includes paleosols form
from subaerially weathered basalt and “laterite-derivative facie
(sensu Goldbery, 1982), the latter being sediment derived fr
heavily (i.e., lateritic) weathered material. This study addresses
extent of soil development and preservation on the shelf and at 
918 in the Irminger Basin, and interprets paleoclimate and landsc
development as recorded in the paleosols and their eroded de
tives.

Previously, a paleosol was recovered in the region from Site 3
located atop the Iceland-Faeroe Ridge (Fig. 1). A 30-m-thick sub
rially weathered interval was identified above basalt and beneath 
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m of marine sediment by Nilsen and Kerr (1978) in core material 
covered during Deep Sea Drilling Project (DSDP) Leg 38 in t
North Atlantic. The interpretation that the red clay is a paleosol w
largely based on downhole variations in the chemical and mine
composition. The types of variations demonstrated for the red cla
Site 336 are typical of a subaerial weathering environment (Bir

in- Figure 1. Location of drill sites with paleosols and laterite-derivative facies
from ODP and DSDP cores in the North Atlantic.
115

http://www-odp.tamu.edu/publications/152_SR/152TOC.HTM
mailto:mholmes@unlinfo.unl.edu


M.A. HOLMES

d.”
ere
 in
t de-

edi-

ac-
cles
uc-
a-
or X-

te
s
l by
 an
m 2°
to
from

e
wn
n-

eak

lycol
W.
 the
ar-
eak
00.
land, 1984). The paleosol is thought to be a component of the Thulean
land bridge, which allowed the free exchange of mammalian fauna
between North America and Europe until the late Eocene.

Paleosols can provide a detailed geologic history of a region that
no other source can provide, based on morphological characteristics
of the weathered zone. Weathered basaltic material, some of it in situ
and some of it transported, was recovered from Sites 915, 916, 917,
and 918 and is the focus of this study.

METHODS

Samples were taken from the uppermost lava flows and from vol-
caniclastic sediment immediately overlying basement from Sites
915, 916, 917, and 918. A few samples from Hole 914A were exam-
ined as well. Material highly altered to clay and, in some cases, red-
dened by oxidation was selected for study. Seven samples were pre-
pared as thin sections using the method for soft samples of replacing
moisture with ethanol and acetone prior to resin impregnation (Mill-
er, 1988). The remaining samples were split for various analyses.
One split was wet-sieved for grain-size and mineralogic analyses.
Another split was used for determination of major, minor, and select-
ed trace elements by energy dispersive X-ray fluorescence analysis
(EDXRF) on pressed pellets (Knudsen et al., 1981).

Samples used for grain-size and mineralogic analyses were treat-
ed as follows: after a subsplit was taken for moisture determination,
the remaining moist sample was weighed and soaked in a 10% Cal-
gon solution (X-rayed and determined to be various sodium phos-
phates) overnight. The sample was then placed in an ultrasound bath
for up to three 2-min intervals to remove clay from larger size parti-
cles. Soaked samples were then wet-sieved using a 64-µm sc
Sand-sized particles caught on the screen were dried in an ove
105°C overnight and weighed. Dry sand weight over dry sam
1

Figure 2 Seismic reflection survey of East Greenland Shelf, showing drill sites for Leg 152.
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weight (i.e., corrected for moisture content) is given as “% San
Silt- and clay-sized particles that passed through the screen w
rinsed in alternate solutions of Calgon and distilled water, placed
a centrifuge, and the supernatant decanted up to six times to effec
flocculation.

Deflocculated (washed) fines were then analyzed using a S
graph Model 5000ET for grain-size distribution (size range 64−0.25
µm). Following grain-size analysis, a <40-µm and a <2-µm size fr
tion were extracted using the centrifuge to settle larger-size parti
following the method of Jackson (1975). These samples were s
tioned onto a cellulose nitrate filter membrane using a Milipore filtr
tion apparatus, and the sample was transferred to a glass slide f
ray diffraction (XRD) analysis (Drever, 1973).

Mounted samples were scanned from 2° to 45°2θ on a Scintag
PAD V X-ray diffractometer that was equipped with a graphi
monochromator using CuKα radiation at 40 kV and 35 mA. Sample
with peaks between 11 and 17 Å were treated with ethylene glyco
placing them in a desiccator over ethylene glycol and heating in
oven at 65°C overnight. These samples were scanned again fro
to 30°2θ for smectite identification. All samples were heated 
350°C for 2 hr to collapse expandable clays and scanned again 
2° to 15°2θ for chlorite determination.

Minerals were identified from diffraction data as illustrated in th
various figures, following guidelines in standard references (Bro
and Brindley, 1980; Brown, 1980; Moore and Reynolds, 1989). Ide
tification of silica phases followed Jones and Segnit (1971). The p
at 10 Å was generally sharp (< 0.2°2θ at half height; Reynolds, 1980),
but spread and exhibited asymmetry at the base upon ethylene g
solvation. This suggests the presence of a well-crystallized illite (
D. Huff, pers. comm., 1996). Relative abundances of minerals in
<2 µm fraction were determined from diffractograms using peak 
eas as determined by Scintag’s software, DMS v. 2.1. Weighted p
areas (Biscaye, 1965) for the clay minerals were normalized to 1
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Several samples were also analyzed using NEWMOD and MIXER
software (Reynolds, 1980), and good agreement was noted between
the two methods for clay mineral abundance. For illustration of gen-
eral trends, percentage values were assigned an integer value as fol-
lows for the accompanying diagrams: 0% = 0; 1%−30% = 1; 31%−
60% = 2; and >61% = 3. Relative peak heights within one drillhole
are used as a semiquantitative estimate for gibbsite, with integer val-
ues assigned as follows: 0 = absent; 1 = peak height below median
value for a given hole; and 2 = peak height above median value for a
given hole.

SEDIMENT DESCRIPTIONS
 AND ANALYTICAL RESULTS

Site 915: Basal Weathered Unit

Lithologic Unit III lies above oxidized, vesicular basalt in Core
152-915A-23R (187.1−189.3 meters below seafloor [mbsf]; Fig. 3),
and includes two types of deposits. The upper is a 1.2-m-thick basalt
cobble conglomerate, and the lower is a weathered zone, 105 cm
thick. The weathered zone is composed of yellow to brownish red
material with three distinct sediment types. The upper 26 cm of the
weathered zone, volcanic silty clay, is highly altered basalt, with only
remnants of parent structure still visible (Pl. 1, Fig. 1). A v-shaped,
tapering-downward feature suggests a root trace (Pl. 1, Fig. 1). The
interior of the structure is red and hematite-rich, while the exterior is
yellow and goethite-rich. Hematite is generally dissolved and re-
moved around decaying root structures (Schwertmann and Taylor,
1989), suggesting that this feature is probably not a root trace but an
outline of the edges of two boulders that have been intensely weath-
ered. Beneath the volcanic silty clay, 43 cm of very poorly sorted sed-
iment has a matrix of volcanic silty clay that hosts clasts up to 6 cm
in diameter (Pl. 1, Figs. 2, 3). It is crudely bedded. Weakly developed
normal grading occurs at interval 152-915A-23R-2, 42−70 cm. All of
the clasts are volcanic, although they differ in color, composition, and
degree of alteration. Some clasts appear as fresher basalt with alter-
ation mineral-filled vesicles, others are composed of a dark green
clay, and still others of a bright red clay. The basal 35 cm of this unit
is highly altered, red, vesicular basalt, with vesicles filled in by white
and green clay.

The matrix of this weathered unit comprise smectite group miner-
als, kaolinite, and goethite. Kaolinite dominates the upper 30 cm,
through the highly altered zone and into the underlying crudely lam-
inated zone. Within the crudely laminated zone and persisting to the
base of the unit, smectite group mineral(s) dominate and goethite lev-
els decline. Aluminum levels decrease over the interval, as do the
mobile bases, Ca, Mg, and K (relative to Al content) and the Si con-
tent as well (relative to the Al and/or Fe content). The minerals filling
the vesicles are dominantly kaolinite (the white fill), with smaller
amounts of smectite (the green outline).

Site 915: Other Laterite-Derivative Facies

Late middle Eocene to latest Eocene age sediment, lithologic Unit
II, overlies the altered basalt and volcaniclastic sediment of lithologic
Unit III (Fig. 3). Unit II is 102.3 m thick and is divided into three sub-
units. The upper and lower subunits are identical: they are massive,
black to dark gray, volcaniclastic sandy silt to silty clay that is rich in
glaucony. Several thin, highly bioturbated sand beds occur within the
silt or clay, each around 30 cm thick. The sand beds were interpreted
as storm deposits that punctuated deposition in an otherwise quiet
outer shelf environment (Larsen, Saunders, Clift, et al., 1994). Be-
tween the upper and lower subunits is a 19.2-m-thick dusky red, lam-
inated, volcaniclastic clayey silt with sand (Pl. 1, Fig. 4). Shipboard
smear slide examination revealed that the red color arises from abun-
dant ferruginous floccules. Smectite, illite, kaolinite, gibbsite, and
goethite comprise the clay fraction throughout this lithologic unit, but
their proportions differ among the subunits (Fig. 3). Kaolinite and
gibbsite are most abundant in the dusky red clay subunit, while smec-
tite dominates in the lower black silt (Fig. 3). Illite first appears up-
hole in Sample 152-915A-22R-3, 32−34 cm, dated as middle Eocene
age (nannofossil Biozone CP14a; Larsen, Saunders, Clift, et al.,
1994). Its abundance is sporadic in younger sediment, but it is gener-
ally most abundant in the dusky red silt.

Site 916

Two lithologic units recovered beneath glaciogenic sediment in
Hole 916A bear elements indicative of their derivation from highly
weathered basaltic terranes (Fig. 4). The younger lithologic Unit II is
an undated, 18.1-m-thick, dark brown to black, volcaniclastic silt to
silty sandstone, bearing bright red ferruginous particles, wood frag-
ments, and entire leaf fossils. It lies beneath calcite-cemented, basalt
cobble conglomerate similar to that recovered at Sites 917 and 915
and is dated as CP10 or early Eocene age by palynomorphs (Jolley,
this volume) (Fig. 4). Light bands showing ripples, convolute lami-
nae, and thin coarsening- and fining-upward beds are composed
dominantly of siderite (Pl. 1, Fig. 5). A few escape burrows occur,
and these are largely altered to pyrite. Three coarsening-upward se-
quences, 1–3 m thick, were observed within the unit, which was
terpreted as deltaic in origin (Larsen, Saunders, Clift, et al., 1994

Underlying the deltaic sediment is lithologic Unit III, 5.5 m o
matrix-supported volcaniclastic breccia, recovered in two cores (F
4). The sediment in each core is distinctive. The upper Core 1
916A-14R contains 2 m of massive, poorly sorted, dusky red to b
ish gray volcaniclastic conglomerate. Gravel-size rock fragments
all volcanic and vary in color, composition, and degree of alterati
Some clasts have alteration haloes evidently formed prior to dep
tion, as the degree and nature of alteration varies from one clast to
other. While indurated, the sediment is not welded and may h
formed as a debris flow or possibly lahar (Larsen, Saunders, Clif
al., 1994). The lower Core 152-916A-15R contains 3.5 m of volca
clastic conglomerate, but this sediment differs from that in the up
core by the absence of hard rock clasts. Beds are weakly develo
and are 5−50 cm thick. In some of the beds, soft clay pebbles of v
ious colors occur. These pebbles were compacted by burial of o
lying sediment as indicated by their mutually conforming shapes 
1, Fig. 6). A dendritic calcite vein, 25 cm wide, cuts across inter
152-916A-15R-2, 15−48 cm (Pl. 2, Fig. 1).

The clay fraction of the deltaic sediment, lithologic Unit II, com
prises dominant smectite, some kaolinite, and traces of both illite 
gibbsite (Fig. 4). The silt fraction includes feldspar, opal-CT, sideri
and quartz. The upper part of lithologic Unit III contains smectite, k
olinite, traces of gibbsite, goethite and clinoptilolite, and has no illi
The lower part of the unit, Core 152-916A-15R, contains a very d
ferent assemblage: kaolinite dominates, followed by goethite, a
there is only a trace of smectite in one sample within the calcite v
(Fig. 4). Opal-CT (identified by XRD) is common, and a trace 
gibbsite occurs in alternate samples. Aluminum is concentrated in
upper parts of both the debris flow from Core 152-916A-14R and 
soft-clay pebbles of Core 152-916A-15R, while the bases are dep
ed relative to Al over the same intervals (Fig. 5). No Mg, and ve
low levels of K and Ca were detected in this lower interval, but all a
pear slightly elevated, along with Si and Fe contents, in the calc
hydrothermal vein (Fig. 6). Grain size is much finer in the vein 
well. Some clay enrichment occurs in the top of the debris flow u
and this enrichment is accompanied by an increase in gibbsite 
goethite levels (Fig. 6).

Site 917

A 62-cm-thick sedimentary unit is intercalated between la
flows in Core 152-917A-23R (Pl. 2, Figs. 2, 3). The sequence fin
upward from crudely cross-bedded gravel, with clasts up to sev
117
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Figure 3. Lithostratigraphy of weathered basement and laterite-derivative facies, Site 915, with results of grain-size and mineralogic analysis. Roman numerals
in Lithology column refer to lithologic units. The conglomerate is part of lithologic Unit III. Abundances of minerals are semiquantitative. For clay minerals,
0% = 0, 1%−30% = 1, 31%−60% = 2, and >61% = 3. For gibbsite, 0 = absent, 1 = peak height below median value of peak heights for samples from this hole,
and 2 = peak height above median value. 2.70/2.45 Å is the ratio between these two peaks. A value >0.6 indicates the presence of hematite in addition to goe-
thite, with increases in values indicating increases in hematite levels. X = a small amount of mineral is present, and tr = trace amount. Smc = smectite, Kao 
kaolinite, Ill = illite, Gib = gibbsite, Zeo = clinoptilolite, and Plg = plagioclase. 
118
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mm across (Pl. 2, Fig. 3), to cross-bedded sandstone, to rippled silt
and clay (Pl. 2, Fig. 2). This sequence was interpreted as fluvial in or-
igin and coincides with a significant change in the chemical compo-
sition of the enveloping lava flows (Larsen, Saunders, Clift, et al.,
1994). The mineral composition does not vary within the sequence
and comprises dominantly smectite group minerals with a small
amount of plagioclase in the clay-size fraction (Fig. 7). Smectite, pla-
gioclase, and quartz comprise the silt fraction. Neither kaolinite nor
gibbsite were detected.

Overlying the rift basalt and underlying glaciogenic sediment, 3.7
m of middle Eocene age sediment (nannofossil Biozone CP14a) were
recovered. This sediment is a massive dark green to black volcani-
clastic silt, virtually identical in appearance to that recovered as litho-
logic Unit II at Site 915, and interpreted as sediment deposited on a
quiet continental shelf occasionally disturbed by large storms (Lar-
sen, Saunders, Clift, et al., 1994). It overlies a basalt cobble conglom-
erate similar to that recovered at Sites 915 and 916. The mineral com-
position of the middle Eocene shelf sediment is similar to that of
lithologic Unit II at Site 915, with smectite group minerals illite, ka-
olinite, and gibbsite present. Quartz, plagioclase, amphibole, and py-
roxenes occur in the silt fraction.

Site 918

A sharp, uneven contact between overlying greensand and under-
lying reddish brown, highly altered basalt occurs at 1188.52 mbsf in
Section 152-918D-96R-3 (Pl. 2, Fig. 4). This weathered basalt per-
sists to 1206.0 mbsf. Parent structure of the basalt is visible at the top
of this weathered unit and throughout it. The parent structure is so ob-
vious that three igneous units were identified in this interval based on
the appearance of lava flow contacts at 1195.77 and 1200.89 mbsf
Figure 4. Lithostratigraphy of deltaic and subaerially 
weathered facies, Site 916. The ratio of the 0.25-µm fra
tion to the 2-µm fraction, as determined by Sedigraph 
analysis, is given as 0.25/2.0 µm. Abundances of miner
are semiquantitative. Smc = smectite, Ill = illite, Kao = 
kaolinite, Gib = gibbsite, and Goe = goethite.
(Larsen, Saunders, Clift, et al., 1994; Pl. 2, Fig. 5; Fig. 8). Neverthe-
less, this material is entirely altered to clay and iron sesquioxides.
Vesicles and veins are filled with bright red, iron oxides and clay. In-
terval 152-918D-96R-CC, 23−26 cm, contains drilling biscuits of
similar material, with one anomalous biscuit. This biscuit is bright
green, similar to the color of malachite. Despite this odd color, no
variation in mineral composition was detected between this and the
enclosing material. Near the base of the weathered zone, the clay fill-
ing the vesicles changes from brown to green. Below the lower con-
tact, vesicles are filled with banded agate. Alteration of the basalts in
the form of altered flow tops and bases persists to the base of the hole.
These parts of the flows are dull to bright red, with iron oxides, agate,
zeolites, and brown or green clay filling vesicles, veins, and fractures.

The ratios of Si/Al, Si/Fe, and mobile bases/Al are the reverse of
those of subaerially weathered material. Vertical distribution of Mg
and Ca is also the opposite of that expected in a subaerial weathering
environment (Fig. 9). Iron, Al, and Si levels show little variation with
depth within any flow unit or among all flow units. Potassium levels
do show a slight decrease from the top of each of the three flow units
to their bases, suggesting some downward movement of this ion.
However, the K levels are higher than that of the average of the basalt
below (Fig. 10; see Fitton, Saunders, et al., this volume). The only
mineral containing K detected in XRD is a small amount of illitic
mixed-layering in the smectite group mineral (Fig. 8). Ten percent il-
lite layers in the smectite were determined by comparison of XRD
traces to calculated profiles using the NEWMOD program (Rey-
nolds, 1985). This amount of mixed layering is sufficient to account
for the K levels as measured here.

The mineral composition of the weathered zone is dominated by
smectite group minerals with varying amounts of kaolinite, goethite,
and hematite (Fig. 8). Trace amounts of gibbsite occur in two samples
119
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Figure 5. Results of XRF analysis, Site 916. Al = %alu-
minum, Σ Bases = %calcium + %magnesium + %potas-
sium, Si = %silicon, Fe = %iron, and Ti = %titanium.
 gr
Figure 6. Results of XRF, XRD, and grain-size analyses for Core 152-916A-15R. Almost no Mg or Ca were detected in this material, but a slight elevation
occurs in the dendritic calcite vein, indicated by the horizontal shaded box. Al and Si have been concentrated in the upper part of the core by removal of the
more mobile bases. No smectite (Smc), illite (Il/M), or zeolite (Zeo) were detected. Kaolinite (Kao) and goethite (Goe) dominate, and there are small amounts
of gibbsite (Gib) and opal (Opl). This material is very fine grained, as indicated by the ratio of the 0.25 µm to the 2 µm size fractions, and it is most fineained
in the hydrothermal vein. A = mineral is absent, and P = mineral is present.
120
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and opal is present in the upper two flow units. The mineral compo-
sition of the altered tops and bases of underlying lava flows is very
pure smectite with varying amounts of hematite, calcite, and opal.
Kaolinite occurs only in Sample 152-918D-99R-3, 20−22 cm
(1208.62 mbsf).

DISCUSSION

Pedogenesis

Vertical variations in mineral and chemical compositions suggest
pedogenesis has affected the volcaniclastic sediment at Site 915, in
Core 152-916A-15R, and in the upper three lava flows at Site 918
(Figs. 8, 9). The most clear-cut variations occur at Sites 915 and 916
(Figs. 3, 6). The parent material for the paleosol at Site 915 is the sed-
iment in Cores 152-915A-23R, which is crudely bedded and weakly
graded. Debris flows rarely impart such features to a deposit, which
suggests this material was deposited from a viscous rather than plas-
tic fluid (Selby, 1994; Enos, 1977; Middleton and Hampton, 1973).
Pyroclastic flow deposits may exhibit subtle grading and poor bed-
ding (Fisher and Schmincke, 1994). These may show a lithic concen-
tration zone at the base, a mixed central zone, and a pumice concen-
tration zone at the top. This set of zones appears to be present over
interval 152-915A-23R-2, 7−10 cm, with the upper 15−20 cm of
pumice zone subsequently altered by pedogenesis (Pl. 1, Fig. 2).
Some of the clasts are rounded and of mixed lithology, suggesting
that there was a varied source area that included clasts rounded by
subaqueous processes prior to entrainment in either a pyroclastic or
viscous permutation of a debris flow.
Figure 7. X-ray diffractograms of ethylene glycol-treated, <2-µm fraction, fluvial sediment, Hole 917A. (A) Sample 152-917A-22R-1, 63−67 cm. (B) Sample
152-917A-22R-1, 108−110 cm. (C) Sample 152-917A-22R-1, 141−145 cm. Smc = smectite peaks and Plag = plagioclase feldspar peaks.
Features imparted by soil development indicate that the deposit at
Site 915 was emplaced on land rather than in a body of water. The red
color of the deposit probably developed pedogenically after the ma-
terial came to rest because the color is best developed along cracks
between clasts, and alternates with a yellow brown color (Pl. 1, Fig.
1). This yellow brown color is generally imparted by the presence of
goethite or lepidocrocite in excess of hematite (Schwertmann and
Taylor, 1989). Ratios of the 2.70/2.45Å XRD peaks, which are
around 0.6 (Fig. 3), indicate hematite levels are low. Goethite form
tion is favored at lower pH levels (pH of about 4) than hematite (
of about 6; Schwertmann and Taylor, 1989). Pedogenic proce
also caused the formation of kaolinite at the surface and smec
deeper in the profile (Fig. 3). Kaolinite is favored over smectite und
acidic, usually subtropical to tropical weathering conditions (Dixo
1989). Not much information on landscape development can be
rived from this paleosol, however. The presence of relict parent st
ture in all but the uppermost 30 cm of the profile indicates that eit
this soil was not deeply weathered or that the upper parts of the
profile were eroded prior to deposition of the overlying shelf se
ment. The indicators that this material was subaerially weathered
clude the types of minerals (goethite and kaolinite) that are favo
by acidic (i.e., nonmarine) conditions, and the variation in the mine
and chemical composition with depth (Figs. 3−6). The latter is im-
parted by enhanced leaching of the more mobile bases, espec
Mg, K, Ca, and to a lesser extent, Si, from the upper part of a we
ered profile relative to its base (Birkeland, 1984).

At Site 916, the lowermost lithologic unit consists of two separa
deposits, as indicated by the presence of smectite and kaolinite in
upper core, but only kaolinite in the underlying core. Kaolinite is t
121
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product of more intense weathering of basalt than is smectite (Caw-
sey and Mellon, 1983). As such, it is more concentrated in the upper
parts of a soil profile than the lower. The material in Core 152-916A-
15R has vertical Al and Fe distributions that suggest pedogenesis
(Fig. 6). Again, the presence of parent sedimentary structure indi-
cates that either this soil was not long in forming or erosion has re-
moved most of it. The calcite vein occurring in this core was probably
emplaced after pedogenesis, as it appears to have added a small
amount of Mg and Ca to the material (Fig. 6). These ions would have
been leached during pedogenesis. The vein was probably emplaced
at a low temperature, as no high temperature minerals (e.g., chlorite)
occur in the vein. Stable C and O isotopic data on this calcite are
forthcoming. A further indication that the vein emplacement fol-
lowed pedogenesis is preservation of the delicate dendritic pattern of
the calcite (Pl. 2, Fig. 1). This should have given some evidence of
dissolution in an environment wet and warm enough to generate ka-
olinite in the enclosing soil if it had formed while the soil was still ex-
posed to the elements of weathering. Overlying the paleosol is a poor-
ly sorted, matrix-supported conglomerate, with highly variable
clasts. Unlike the deposit at Site 915, however, the lack of any bed-
Figure 8. Lithostratigraphy and results of grain-size and 
mineralogic analyses, Hole 918D. G = glauconite, Smc = 
smectite, Kao = kaolinite, Goe = goethite, Hem = hema-
tite, and Gib = Gibbsite. The result from the Sedigraph 
analyses is the %0.25 µm/%2 µm fraction, showing no 
zone enriched by clay translocation. The ratio of the 
2.70Å to the 2.45Å XRD peaks is 2.70/2.45. A ratio of 
0.6 indicates the presence of goethite, but no hematite. 
Larger ratios indicate increasing levels of hematite. 
Numbers to the right of the figure (2, 3, and 4A) indicate 
separate igneous units.
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ding, grading, or any other indication of deposition from traction load
suggests this deposit is the product of a debris flow. This deposit may
also have been subject to pedogenesis, as both gibbsite and goethite
levels decrease with depth (Fig. 4). Aluminum content, mobile bases/
Al, and Si/Al also suggest some pedogenesis has occurred, but more
data is needed on this thin unit. The presence of both pyrite and cli-
noptilolite suggests the influence of either hydrothermal or marine
waters as well. Clinoptilolite is a fairly low temperature mineral that
may form in marine sediments rich in silica (from volcanic ash or bio-
genic silica), tuffaceous volcaniclastic deposits, or, more rarely, in
basalt at low temperatures (90°−150°C; Gottardi and Galli, 1985).

The material above relatively fresh basalt at Site 918 compri
three flow units, and each of these has been subjected to alter
prior to emplacement of each overlying flow. The presence of kao
ite throughout this lithologic unit indicates that the alteration to
place in fresh water, at pH levels of 6 or lower (e.g., Dixon, 198
The lack of any vertical variation in either the mineral or chemic
composition suggests, again, that either the material was not we
ered for very long or that this is the deep part of a soil profile (i.e
C horizon). Nahon (1991) estimates that it takes 1000 yr to wea
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4–40 mm of mafic material to a kaolinitic saprolite. Kaolinite occu
throughout the 17.5 m of weathered basalt, suggesting a weathe
duration from 437,500 to 4.4 m.y. In addition to pedogenic alterati
some process has added K to this material, as the K levels are h
than in the parent basalt (Fig. 10). Illite formation at depth in se
ment requires a K source, and in marine sediment that source is
erally K-feldspar (Hower et al., 1976). However, there is no K-fe
spar or other K source in the basalt, indicating the K must have c
from circulating waters. The distribution profile suggests that the
source is water circulating upward from depth, rather than diffus
downward from seawater in overlying sediment (Fig. 10). In contra
there is an increase upward in S content, suggesting that the so
for S here is diffusion downward from marine waters after subside
(Fig. 9).

A small amount of gibbsite, along with abundant kaolinite, su
gests a climate that was wet and warm. The basalts are reversely
netized and are most likely late Paleocene to early Eocene age
and Vandamme, this volume), while the oldest datable sedimen
Site 918 above the paleosol is early Eocene age (Wei, this volu
This indicates that subaerial exposure to this warm, wet climate
Figure 9. Results of XRF analysis, Site 918. Fe =
%iron, Al = %aluminum, Si = %silicon, Ca = %cal-
cium, Mg = %magnesium, Ti = %titanium, S = %sul-
fur, K = %potassium, Cr = %chromium, and V =
%vanadium. Numbers in the Lithology column (2, 3,
and 4A) indicate separate igneous units.
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curred in the late Paleocene and/or early Eocene. Goethite/hem
ratios increase with depth in the paleosol (Fig. 8), indicating no 
matite at the top of the preserved part of the paleosol and increa
amounts of hematite with depth. Goethite formation is favored o
hematite in soils where climates are warm to cool, in low-lying rat
than upland areas, and where there are relatively higher levels o
ganic matter in the soil (Schwertmann and Taylor, 1989). In contr
an increase in hematite at the expense of goethite occurs in soils
temperature variations ranging from 8° to 22°C (Schwertmann 
Taylor, 1989). The lower the temperature, the longer it would take
the other minerals, particularly kaolinite, to form (Dixon, 1989
Therefore, the goethite/hematite ratios indicate that Site 918 prob
never stood in an upland area, but rainfall was high enough to ge
ate gibbsite in the soil. It is impossible to know how much gibbs
might have occurred in the upper part of this profile, but in gene
high leaching rates favor gibbsite formation over kaolinite (Wolla
1967), as do moderate pH levels (6–7) and low concentrations o
ganic acids (Curtis, 1970; Reynolds, 1971). The presence of goe
abundant kaolinite, and sparse gibbsite all suggest a warm to tem
ate, wet climate with low leaching rates, probably due to a hi
123
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standing water table, as expected in a low-lying area. Organic matter
levels were high enough to favor goethite.

The lava flow tops and bases in Cores 152-918D-99R through
113R are all altered to dominantly smectite and hematite, with less
opal (as chalcedony) and calcite. None of these minerals uniquely in-
dicates either the freshwater or marine realm. This mineral paragen-
esis has been reported as the product of low-temperature seawater
weathering of mid-ocean ridge basalt on the southern flank of the
Bermuda Rise in the North Atlantic (Humphris et al., 1980). The
principal constraint on this mineral suite is that the temperature must
be relatively low (Velde, 1985). The absence of goethite and kaolinite
suggest only mildly acidic to neutral or alkaline conditions. This al-
teration might have occurred by meteoric groundwater or by cool
(<100°C) seawater.

Younger Laterite-Derivative Facies
and Their Paleoclimatic Implications

Sediment derived from highly weathered basaltic terranes is d
ignated here on the basis of its red color, mineral composition
both. These facies include, from oldest to youngest in age, the flu
sediment intercalated within lava flows at Site 917, the deltaic se
ment bearing traces of iron oxide and gibbsite at Site 916, gibbs
bearing green to black sandy mud or muddy sand at Sites 917
915, red laminated mud at Site 915, and the younger green to b
sandy mud or muddy sand at Site 915 (Fig. 11). Samples from sim
but still younger sediment at Site 914 are included for this discuss

The fluvial sediment at Site 917 occurs between lavas of disti
chemical composition in Core 152-917A-23R (Larsen, Saunde
Clift, et al., 1994), and its occurrence indicates a hiatus in the erup
of the syn-rift basalt. The well-preserved sequence, from very coa

Figure 10. Subaerially weathered zone of Site 918 is enriched in %K2O rela-
tive to the average K2O content of 15 lava flows beneath the weathered zone
(%K2O in lava flows courtesy of Fitton, Saunders, et al., this volume). 
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grained at the base, through cross-bedded sands, to fine silt and
at the top, suggest a well-developed, meandering stream at this
The stream was as deep or deeper than the size of the bed fo
which are all only a few tens of centimeters thick. The threshold sh
velocity for entrainment of the largest clasts, 4 mm in size, is ab
30 cm/s (Allen, 1994). The Hjülstrom diagram (Hjülstrom, 1939) i
dicates velocities of 20−30 cm/s to keep a 4-mm-size particle in mo
tion. Thus a shallow, moderately paced, meandering stream in
lower flow regime would account for the sequence of bed forms 
served here. The larger clasts are all bits of only moderately we
ered basalt. Quartz is present in the silt-size fraction. The small g
size, the absence of quartz in the sand fraction, and the absence o
other felsic mineral all suggest an eolian origin for the quartz silt. T
silt and clay fractions are composed entirely of smectite, hema
and the primary minerals, plagioclase and magnetite. Such a min
composition suggests the stream drained a very mildly weathered
saltic terrane, that is, a poorly developed pedotype (sensu Retal
1994) with no contribution from a felsic provenance. The absence
kaolinite suggests a limited amount of time for weathering of the 
salt. Based on similarities in kaolinite content (derived from t
weathering of K-feldspar) in loess deposits from subtropical (Loui
ana) to cool temperate (Wisconsin) regions in North America, Dix
(1989) estimated that it takes more than 10,000 years to produ
soil containing pedogenic kaolinite as a major constituent. So
formed on the island of Hawaii, where surface basalts range in 
from 0 to 500,000 yr (Clague and Dalrymple, 1987), are domina
by smectite or semi-amorphous materials such as imogolite or a
phane (Foote et al., 1972). They may contain significant amount
halloysite (Sato et al., 1973; Bates, 1962; Parfitt et al., 1988; W
and Wada, 1976). Even where rainfall is greater than 1000 mm/yr
the windward side of the island) and the soil has formed from a
there are no soils on Hawaii Island that are classified in the kaolin
mineral family (Foote et al., 1972). In contrast, some soils on the o
er island of Maui are classified in the kaolinitic mineral family (i.e
are dominantly kaolinitic; Foote et al., 1972). The youngest lavas
Maui Island are 800,000 yr. Thus the hiatus between the middle 
upper series of lavas at Site 917 lasted no more than 800,000 yr.
longer hiatus would have allowed kaolinite-rich soils to develo
leaving at least some kaolinite detectable in the fluvial deposits. 
olinite was not detected in any of the altered lavas from Site 917 (
Demant, this volume).

The deltaic sediment at Site 916 must have been deposited 
marginal marine setting, as a lacustrine setting would not have su
cient sulfate to generate the abundant pyrite-lined and replaced 
rows in this sequence. The sediment filled a half-graben (Fig. 2).
of the sand-size sediment is siderite and only a few bright red, he
titic grains remain in this sediment, all suggesting that the origi
sand-size material was oxidic, ferruginous sediment derived from
highly weathered basaltic terrane that was subsequently reduced
altered to siderite in an organic-rich environment. The mine
paragenesis comprises dominant smectite with some kaolinite 
traces of illite and gibbsite in the clay fraction, along with quartz a
feldspar in the silt fraction (Fig. 4), all suggesting a mixed prov
nance. Plagioclase in the silt fraction indicates a source from fr
rather than weathered basalt. Kaolinite, the ferric sand particles (n
altered to siderite), and gibbsite indicate a highly weathered sou
terrane, either mafic or felsic. The abundant iron suggests a so
area rich in iron. There may be a third terrane, less weathered tha
kaolinite/gibbsitic area, as indicated by the presence of illite. Th
areas were contributing sediment during the early to middle Eoce
indicating that by this time rivers were tapping quartzose terranes
neath and/or interior to the rift basalt.

Sediment dated as middle Eocene (nannofossil Biozone CP14
Sites 917 and 915 indicates subsidence of the central shelf be
wave base by this time (Fig. 11). Illite and quartz occur in this se
ment, indicating the continued contribution of a felsic source ar
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The abundance of gibbsite on the East Greenland Shelf indicates a
source area with abundant gibbsite generated by subtropical to tropi-
cal weathering conditions.

Gibbsite is also present in the overlying laminated red silt at Site
915, with higher levels of goethite, kaolinite, and illite (Figs. 3, 11).
The paucity of sand in this unit, its lamination (Pl. 1, Fig. 4), and its
complete lack of marine macrofossils or bioturbation suggest more
rapid rates of deposition. The mineral composition, which is richer in
illite, gibbsite, and kaolinite than the enclosing sediment, suggests a
stronger terrestrial influence (Chamley, 1989) than the enclosing
(and hence, probably lateral) green-black shelf facies. These features
all suggest that this sediment is prodelta mud (Galloway and Hobday,
1983), and a more distal, albeit younger, facies of the interdistribu-
tary bay sediment from Site 916. Both contain abundant iron as sand
and silt-size iron sesquioxides. These have been altered to siderite in
the organic-rich facies at Site 916, but are preserved in the more or-
ganic-poor facies at Site 915. Following this terrestrial interruption,
glauconitic green-black muds were again deposited in this area in the
late Eocene (nannofossil Zone CP15), which also bear gibbsite, ka-
olinite, goethite, and illite.

While deltas were feeding terrestrial sediment rich in iron sesqui-
oxides, gibbsite, kaolinite and illite to the East Greenland Shelf, sed-
imentation in the adjacent Irminger Basin was very slow to nonexist-
ent. A Mn oxide crust indicative of nondeposition occurs in thin vol-
caniclastic silts of middle Eocene age at Site 918 (Pl. 2, Fig. 6;
Larsen, Saunders, Clift, et al., 1994). A sediment dam, possibly a
half-horst, must have existed between the shelf area where Sites 914−
917 were drilled and the Irminger Basin (Fig. 11). The dam was over-
stepped in the late Oligocene (nannofossil Zones CP18−19a) when
quartzose, gravelly to sandy turbidites were deposited at Site 918
(Larsen, Saunders, Clift, et al., 1994).

Gibbsite is not detected in sediment from Site 914 on the East
Greenland Shelf that is early Oligocene age and younger (Fig. 11;
nannofossil Biozones CP16, 17, and 18). Thus the conditions that
generated and/or supplied gibbsite to the shelf disappeared at the end
of the Eocene.

SUMMARY AND CONCLUSIONS

Paleosols formed by the subaerial weathering of basalt and volca-
niclastic sediment were identified at Sites 915, 916, and 918. The pa-
Figure 11. Summary of gibbsite occurrences in
Eocene–Oligocene sediment from the East Gre
land Shelf (Sites 917−914), and from the Irminger
Basin (Site 918). Shaded boxes indicate presenc
gibbsite. Type of sediment is given in each bo
Paleo-water depths (m) are indicated by benthic f
aminifers (Larsen, Saunders, Clift, et al., 1994). B
with solid circles indicates the location of mete
thick, calcite-cemented, basalt-cobble conglomer
recovered at Sites 915−917.
leosols are either poorly developed or deeply eroded, with only the C
horizons preserved, as indicated by good preservation of primary
sedimentary or igneous structures. Two debris flow deposits at Site
916 were subjected to separate subaerial weathering events, as were
the upper three lava flows at Site 918. The presence of gibbsite in the
soil profiles at Sites 915 and 916, and the absence of caliche at all
three sites, indicates that soil conditions were acidic and rainfall was
high, on the order of 1000 mm/yr, during pedogenesis (Retallack,
1994). A high goethite/hematite ratio in the paleosol of Site 918 indi-
cates this soil formed in a low-lying area. A much less weathered pe-
dotype, bearing no kaolinite or goethite, was eroded by a shallow,
meandering stream to form the fluvial sediment recovered between
the middle and upper volcanic series at Site 917.

The presence of quartz and illite in the pre- or syn-middle Eocene
deltaic sediment at Site 916 indicates that rivers had eroded through
the basaltic edifice and were tapping felsic terranes interior to or be-
neath the rift basalts by this time. The mineral composition of the sed-
iments on the shelf records the warm to temperate, wet climate of the
Eocene in the form of abundant gibbsite in marine sediment. Kaolin-
ite and goethite in paleosols indicate acidic, organic-rich conditions
in low-lying areas. Kaolinite, gibbsite, and goethite persist in sedi-
ment through late Eocene age, but are not present in early Oligocene
age sediment and younger, suggesting a cooling or drying of this re-
gion as glaciation onset in Antarctica (Breza and Wise, 1992).

ACKNOWLEDGMENTS

I would like to thank the reviewers, Warren Huff and Hervé
Chamley, for their helpful comments and suggestions. I would a
like to thank the people who helped bring this paper together, incl
ing my lab assistants who prepared samples for and ran the Sedig
and XRD: Kraig Heiden, Justin Spence, Connie Kaplan, Holly W
senk, and Brandon Wilken. Mr. Joe Denning and the staff of the U
Soils Testing Lab provided the XRF results. Thanks to Ron Grout 
the crew of the JOIDES Resolution for providing us with great core
during some pretty harrowing North Atlantic weather, to the rea
excellent ODP marine techs, and to the scientists, hardy and ot
wise, who provided a stimulating mental atmosphere to match 
high latitude one.

The U.S. Science Advisory Committee (USSAC) provided fun
ing for this study.
125



M.A. HOLMES

o

ury,

l

f
:

r

REFERENCES

Allen, J.R.L., 1994. Fundamental properties of fluids and their relation to
sediment transport processes. In Pye, K. (Ed.), Sediment Transport and
Depositional Processes: Oxford (Blackwell Sci. Publ.), 25−60.

Bates, T.F., 1962. Halloysite and gibbsite formation in Hawaii. 9th Inter.
Conf., Clays Clay Minerals, 9:315−328.

Birkeland, P.W., 1984. Soils and Geomorphology: New York: (Oxford Univ.
Press), 60−94.

Biscaye, P.E., 1965. Mineralogy and sedimentation of Recent deep-sea clays
in the Atlantic Ocean and adjacent seas and oceans. Geol. Soc. Am. Bull.,
76:803−832.

Breza, J.R., and Wise, S.W., Jr., 1992. Lower Oligocene ice-rafted debris on
the Kerguelen Plateau: evidence for East Antarctic continental glaciation.
In Wise, S.W., Jr., Schlich, R., et al., Proc. ODP, Sci. Results, 120: Col-
lege Station, TX (Ocean Drilling Program), 161−178.

Brown, G., 1980. Associated minerals. In Brindley, G.W., and Brown, G.
(Eds.), Crystal Structures of Clay Minerals and Their X-ray Identifica-
tion. Mineral. Soc. Monogr. London, 5:361−410. 

Brown, G., and Brindley, G.W., 1980. X-ray diffraction procedures for clay
mineral identification. In Brindley, G.W., and Brown, G. (Eds.), Crystal
Structures of Clay Minerals and Their X-ray Identification. Mineral. Soc.
Monogr. London, 5:305−359. 

Cawsey, D.C., and Mellon, P., 1983. A review of experimental weathering of
basic igneous rocks. In Wilson, R.C.L. (Ed.), Residual Deposits: Surface
Related Weathering Processes and Materials: Oxford (Blackwell Sci.
Publ.), 19−24.

Chamley, H., 1989. Clay Sedimentology: Berlin (Springer-Verlag). 
Clague, D.A., and Dalrymple, G.B., 1987. The Hawaiian-Emperor volcanic

chain, Part I. Geologic evolution. In Decker, R.W., Wright, T.L., and
Stauffer, P.H. (Eds.), Volcanism in Hawaii (Vol. 1). Geol. Surv. Prof. Pap.
U.S., 1350:5−54. 

Curtis, C.D., 1970. Differences between lateritic and podzolic weathering.
Geochim. Cosmochim. Acta, 34:1351.

Dixon, J.B., 1989. Kaolin and serpentine group minerals. In Dixon, J.B., and
Weed, S.B. (Eds.), Minerals in Soil Environments (2nd ed.). Soil Sci.
Soc. Am., 467−525.

Drever, J.I., 1973. The preparation of oriented clay mineral specimens for X-
ray diffraction analysis by a filter-membrane peel technique. Am. Min-
eral., 58:553−554.

————, 1982. The Geochemistry of Natural Waters: London (Prentice-
Hall).

Enos, P., 1977. Flow regimes in debris flow. Sedimentology, 24:133−142.
Fisher, R.V., and Schmincke, H.-U., 1994. Volcaniclastic sediment transp

and deposition. In Pye, K. (Ed.), Sediment Transport and Depositional
Processes: Oxford (Blackwell Sci. Publ.), 351−388.

Foote, D.E., Hill, E.L., Nakamura, S., and Stephens, F., 1972. Soil Survey of
the Islands of Kauai, Oahu, Maui, Molokai, and Lanai, State of Hawaii:
Washington (U.S. Govt. Printing Office). 

Galloway, W.E., and Hobday, D.K., 1983. Terrigenous Clastic Depositional
Systems: New York (Springer-Verlag).

Goldbery, R., 1982. Paleosols of the Lower Jurassic Mishor and Ardon 
mations (“Laterite Derivative Facies”), Makhtesh Ramon, Israel. Sedi-
mentology, 29:669−690.

Gottardi, G., and Galli, E., 1985. Natural Zeolites: Berlin (Springer-Verlag).
Hower, J., Eslinger, E.V., Hower, M.E., and Perry, E.A., 1976. Mechanism

burial metamorphism of argillaceous sediment. 1. Mineralogical a
chemical evidence. Geol. Soc. Am. Bull., 87:725−737.

Hjülstrom, F., 1939. Transportation of detritus by moving water. In Trask,
P.D. (Ed.), Recent Marine Sediments−A Symposium. Soc. Econ. Paleon-
tol. Mineral., 5−31.

Humphris, S.E., Thompson, R.N., and Marriner, G.F., 1980. The mineral
and geochemistry of basalt weathering, Holes 417A and 418A. In Don-
126
ort

for-

 of
nd

gy

nelly, T., Francheteau, J., Bryan, W., Robinson, P., Flower, M., Salisb
M., et al., Init. Repts. DSDP, 51, 52, 53: Washington (US Govt. Printing
Office), 1201−1217. 

Jackson, M.L., 1975. Soil Chemical Analysis—Advanced Course (2nd ed.):
Madison, WI (Published by the author).

Jones, J.B., and Segnit, E.R., 1971. The nature of opal. I. Nomenclature and
constituent phases. J. Geol. Soc. Aust., 18:57−68.

Knudsen, D., Clark, R.B., Denning, J.L., and Pier, P.A., 1981. Plant analysis
of trace elements by X-ray. J. Plant Nutri., 3:61−75.

Larsen, H.C., Saunders, A.D., Clift, P.D., et al., 1994. Proc. ODP, Init.
Repts., 152: College Station, TX (Ocean Drilling Program). 

Middleton, G.V., and Hampton, M.A., 1973. Sediment gravity flows:
mechanics of flow and deposition. In Middleton, G.V., and Bouma, A.H.
(Eds.), Turbidites and Deep Water Sedimentation. Short Course Notes,
Soc. Econ. Paleontol. Mineral., Pacific. Sect., 1−38.

Miller, J., 1988. Microscopical techniques: I. Slices, slides, stains and peels.
In Tucker, M. (Ed.), Techniques in Sedimentology: Oxford (Blackwell
Sci. Publ.), 90−91.

Moore, D.M., and Reynolds, R.C., Jr., 1989. X-ray Diffraction and the Iden-
tification and Analysis of Clay Minerals: Oxford (Oxford Univ. Press).

Nahon, D.B., 1991. Introduction to the Petrology of Soils and Chemica
Weathering: New York (Wiley).

Nilsen, T.H., and Kerr, D.R., 1978. Paleoclimatic and paleogeographic impli-
cations of a lower Tertiary laterite (latosol) on the Iceland-Faeroe Ridge,
North Atlantic region. Geol. Mag., 115:153−236. 

Parfitt, R.L., Childs, C.W., and Eden, D.N., 1988. Ferrihydrite and allophane
in four andepts from Hawaii and implications for their classification.
Geoderma, 41:223−241.

Retallack, G.J., 1994. A pedotype approach to latest Cretaceous and earliest
Tertiary paleosols in eastern Montana. Geol. Soc. Am. Bull., 106:1377−
1397.

Reynolds, R.C., Jr., 1971. Clay mineral formation in an alpine environment.
Clays Clay Miner., 19:361−374.

————, 1980. Interstratified clay minerals. In Brindley, G.W., and Brown,
G. (Eds.), Crystal Structures of Clay Minerals and Their X-ray Identifica-
tion. Mineral. Soc. Monogr:, 5:249−303.

————, 1985. NEWMOD© a Computer Program for the Calculation o
One-Dimensional Diffraction Patterns of Mixed-Layered Clays
Hanover, NH (Published by the author, 8 Brook Rd.).

Sato, H.H., Ikeda, W., Paeth, R., Smythe, R., and Takehiro, M., Jr., 1973. Soil
Survey of the Island of Hawaii, State of Hawaii: Washington (U. S. Govt.
Printing Office).

Schwertmann, U., and Taylor, R.M., 1989. Iron oxides. In Dixon, J.B., and
Weed, S.B. (Eds.), Minerals in Soil Environments (2nd ed.). Soil Sci.
Soc. Am., 379−438.

Selby, M.J., 1994. Hillslope sediment transport and deposition. In Pye, K.
(Ed.), Sediment Transport and Depositional Processes: Oxford (Black-
well Sci. Publ.), 61−87.

Velde, B., 1985. Clay Minerals: A Physico-Chemical Explanation of Thei
Occurrence: Amsterdam (Elsevier), Dev. Sedimentol., 40.

Wada, K., and Wada, S.-I., 1976. Clay mineralogy of the B horizons of two
hydrandepts, a torrox and a humitropept in Hawaii. Geoderma, 16:139−
157.

Wollast, R., 1967. Kinetics of the alteration of K-feldspar in buffered solu-
tions at low temperature. Geochim. Cosmochim. Acta, 31:635.

Date of initial receipt: 1 November 1995
Date of acceptance: 15 May 1996
Ms 152SR-204



ALTERATION OF UPPERMOST LAVAS AND VOLCANICLASTICS
Plate 1. Core photos from shelf sites drilled during Leg
152. 1. Sample 152-915A-23R-1, 7−23 cm. Uppermost
part of altered basalt zone, now entirely altered to
kaolinite and goethite. Parent structure of pebbles from
original volcaniclastic deposit are visible below 20 cm.
2. Sample 152-915A-23R-1, 20−40 cm. Upper part of
possible pyroclastic flow, showing concentration of
lighter, large clasts. This interval is also entirely altered
to kaolinite and goethite. 3. Sample 152-915A-23R-1,
40−60 cm. Crudely bedded and graded sediment, depos-
ited by a dilute debris flow or the base of a pyroclastic
flow. 4. Sample 152-915A-20R-1, 15−31 cm. Lami-
nated clayey silt, dusky red in color, deposited as
prodelta mud during the middle or late Eocene. 5. Sam-
ple 152-916A-13R-2, 15−23 cm. More proximal deltaic
facies filled the half-graben at Site 916. Convolute lami-
nae in this photo and all light material are composed of
siderite, an alteration product from the original sandy
material, which was probably some type of iron sesqui-
oxide. Wood, pyrite, and entire leaves are also present in
this sediment. 6. Sample 152-916A-14R-2, 0−13 cm.
Soft, clayey clasts were deposited from a debris flow
and were later compacted, causing the clasts to flow into
one another. This deposit was emplaced atop a subaeri-
ally weathered soil (see Pl. 2, Fig. 1).
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Plate 2. Core photos from Sites 916, 917, and 918. 1. Sample 152-
916A-15R-2, 15−40 cm. Dendritic calcite vein emplaced after soil
development at Site 916. 2. Sample 152-917A-22R-1, 60−100 cm. Top
of fluvial sequence deposited between eruption of middle and upper
series of lavas at Site 917. Cross-bedded sand at the base gives way to
laminated silt and clay at the top. The mineral composition is imma-
ture, comprising smectite, iron sesquioxides, and plagioclase, with
quartz in the silt fraction. This paragenesis indicates minimal weather-
ing of the basaltic, East Greenland landscape in the Paleogene. Quartz
is probably of eolian origin. 3. Sample 152-917A-22R-1, 80−110 cm.
Base of fluvial sediment illustrated in Fig. 2. Gravel is composed of
moderately weathered basalt and soft pebbles composed of iron sesqui-
oxide and smectite. The latter are rip-up clasts from immature soils. 4.
Sample 152-918D-96R-3, 120−140 cm. The contact between green-
sand and subaerially weathered basalt at Site 918 in the Irminger Basin.
Structure of the parent basalt as vesicles and veins, now filled with clay
and iron sesquioxides, indicates that this is from the deep part of a
deeply eroded soil profile or an only moderately weathered soil. 5.
Sample 152-918D-97R-2, 73−97 cm. Base of flow from igneous Unit 2
is indicated by abundant vesicles. The contact between flows 2 and 3
occurs at 83 cm. 6. Sample 152-918D-88R-1, 0−12 cm. Manganese
oxide crust formed in the Irminger Basin in the middle Eocene while
deltas (Pl. 1, Figs. 4, 5) were bringing iron oxide-rich sediment and
gibbsite-rich sediment to the adjacent shelf. A sediment dam as an
upthrown half-horst (Fig. 11) starved the Irminger Basin until the late
Oligocene, when coarse, gravelly, and sandy turbidites spilled over to
Site 918. 
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