12. PLANKTONIC FORAMINIFER BIOSTRATIGRAPHY AND PALEOENVIRONMENTAL IMPLICATIONS OF LEG 152 SITES (EAST GREENLAND MARGIN)¹

Silvia Spezzaferri²

ABSTRACT

Five sites and eight holes drilled on the East Greenland Margin during Ocean Drilling Program Leg 152 recovered Quaternary to middle Eocene sediments. Planktonic foraminiferal assemblages display generally low diversity; abundance and preservation varies from layer to layer. Several intervals devoid of planktonic foraminifers were identified in middle Miocene through Pliocene, lower upper Oligocene, and Eocene sediments. The more complete sedimentary sequence recovered at Site 918 spans the interval from the Quaternary to the middle Eocene. However, a major hiatus is recorded in the interval that spans the upper Eocene and the lower Oligocene. Two minor hiatuses occur in the lowermost Miocene and probably in the upper part of the middle Miocene, respectively.

Paleoclimatic interpretations based on species diversity, changes in assemblages, and comparison with the stable isotope record indicate that several alternating glacial-interglacial episodes occurred during the Pliocene and the Quaternary. These two intervals are, however, separated by a warmer episode in the early Pliocene. Cool conditions and glacial episodes also prevailed in the late Miocene, whereas a slight warming probably occurred in the middle Miocene. This period was, however, cooler than the late Oligocene, the early Miocene, and the middle Eocene. These latter intervals were characterized by a warmer climate as indicated by the presence of several warmer water taxa. The first occurrence of *Neogloboquadrina pachyderma* and the changes in coiling direction of *Neogloboquadrina atlantica* are also climatically controlled.

Comparison with previously drilled sites in the same area indicates that the short early Miocene hiatus and part of the hiatus spanning the late middle Eocene and the early Oligocene identified in Hole 918D may have interregional extensions in the North Atlantic Ocean.

INTRODUCTION

In this paper I study the biostratigraphy and the paleoenvironmental implications of Quaternary through middle Eocene planktonic foraminifers recovered from five sites and eight holes (914–916, 918, and 919) drilled in the North Atlantic Ocean during Ocean Drilling Program (ODP) Leg 152 (East Greenland Margin). Sites were drilled on the East Greenland shelf along an ideal north-northwest to southsoutheast transect from the inner shelf (Sites 914–917) to the continental rise (Sites 918–919). Figure 1 shows the location of the sites drilled during Leg 152 and some of the sites previously drilled in the North Atlantic. Table 1 shows geographic coordinates, water depth, and penetration at each hole.

A Quaternary–Pliocene sequence was recovered from Hole 918A and at Site 919, whereas middle Miocene to upper Oligocene sediments were recovered in Hole 918D. Upper Eocene sediments were recovered in Holes 915A and 916A. The oldest sediments, based on planktonic foraminifers, are considered as early middle Eocene in age (Hole 918D).

In the northern Atlantic, extended sedimentary sequences were previously recovered during Deep Sea Drilling Project (DSDP) Legs 12, 48, 49, 81, and 94 and ODP Legs 104 (Norwegian Sea) and 105 (Baffin Bay and Labrador Sea). Berggren (1972), Poore (1979), Murray (1979), Krasheninnikov (1979), Spiegler and Jansen (1989), and Aksu and Kaminski (1989) described the planktonic foraminifers from these legs. Only Holes 407 and 408 (Leg 49) are close to the Leg 152 sites. A summary of the biostratigraphic data obtained and a correlation with some of the more representative sites drilled in the North Atlantic are reported below.

METHODS

The present study is based on 1-3 samples per section for each core. Only a few representative core catchers were included. Sample volume was about 10 cm3. In case some specimens would prove suitable for isotope analyses, all samples were soaked in distilled water, washed through >40 µm sieve, and dried at room temperature. Samples were then dry-sieved through >40 μ m, 40–150 μ m, and >250 μ m sieves to obtain three size fractions. They were then studied under a binocular microscope. The three size fractions were obtained to facilitate comparison with previous paleoclimatological studies (Haq et al., 1977; Premoli Silva and Boersma, 1989; Spezzaferri, 1994a). Abundances of single species, groups of species, and other components over total faunal content were estimated in each sample (see Appendix). These include biogenic remains (radiolarians, diatoms, sponge spicules, benthic foraminifers, ostracodes, mollusk and echinoid fragments, and fish remains) as well as inorganic components (red clay, quartz, glauconite, oxides, pyrite, tephra, and dropstones). Seven categories are distinguished and plotted in the range charts. They are VR: very rare (1-3 specimens per sample), R: rare (<10 specimens), C: common (10-30 specimens), A: abundant (30-50 specimens), VA: very abundant (about 50-70 specimens), D: dominant (more than 70 specimens), X: simple occurrence. Planktonic foraminiferal preservation was graded with the following scale: VP: very poor preservation, P: poor preservation, M: moderate preservation, and G: good preservation (Larsen, Saunders, Clift, et al., 1994). Species diversity was estimated counting the number of species present in each sample.

The range charts report only samples containing planktonic foraminiferal faunas. However, a large number of the studied samples

¹Saunders, A.D., Larsen, H.C., and Wise, S.W., Jr. (Eds.), 1998. Proc. ODP, Sci. Results, 152: College Station, TX (Ocean Drilling Program).

²Dipartimento di Scienze della Terra, Università di Milano, Via Mangiagalli 34, 20133, Milano, Italia. Present address: ETH-Zentrum, Geologisches Institut, Sonneggstrasse 5, 8092 Zurich, Switzerland. silvia@erdw.ethz.ch

Figure 1. Location map of Leg 152 East Greenland Margin sites and of Sites 407 and 408 (East Greenland), 112 and 647 (Labrador Sea), 642 and 643 (Vøring Plateau), 116 and 406 (Rockall Plateau), and 611 (Rockall Trough).

Table 1. Geographic coordinates, water depth, and depth penetration of holes drilled during Leg 152.

Hole	Latitude	Longitude	Water depth (m)	Penetration (m)
914A	63°27.738'N	39°43.489 ′ W	533.2	18.6
914B	63°27.737'N	39°43.482'W	533.2	245.0
915A	63°28.285'W	39°46.909'W	533.1	209.4
916A	63°29.137'N	39°48.400'W	513.7	101.7
918A	63°5.569'N	38°38.336'W	1868.5	332.7
918D	63°5.572'N	38°38.334'W	1868.2	1310.1
919A	62°40.20'N	37°27.611′W	2088.2	93.5
919B	62°40.201'N	37°27.618 ′ W	2086.0	147.9

were devoid of planktonic faunas. All the studied samples, including those barren of planktonic faunas and the other organic and inorganic components, are listed in the Appendix.

PLANKTONIC FORAMINIFER BIOSTRATIGRAPHY

Preliminary investigations were conducted on board; data for each hole are included in Larsen, Saunders, Clift, et al. (1994). This chapter mainly deals with the major characteristics of planktonic foraminiferal assemblages, stratigraphic distribution, intensity of dissolution and/or displacement at each site, and paleoenvironmental implications in the North Atlantic.

The detailed study of planktonic foraminiferal faunas revealed that the Quaternary–Pliocene sediments were sometimes redeposited and planktonic faunas were affected by reworking (Holes 918A, 919A, and 919B). The assemblages generally show low diversity, as is expected at high latitudes. Preservation and degree of recrystallization vary from good to very poor.

Miocene faunas are apparently less affected by reworking (Hole 918D). They are generally richer and more diversified and reflect warmer water conditions. Their preservation, however, is poor to very poor. Most of the specimens are deformed, and wall textures do not retain the original pattern.

Upper Oligocene planktonic foraminifers are very rare, very poorly preserved, and often they cannot be identified (Hole 918D). Eocene planktonic faunas fluctuate in abundance and preservation from layer to layer. The assemblages are richer and well diversified in sediments with high red clay content, whereas planktonic foraminifers are totally absent in sediments rich in glauconite and/or quartz (Holes 915A, 916A, and 918D).

The zonation of Spiegler and Jansen (1989) is applied to the high latitude Quaternary–Pliocene assemblages. The zonations of Blow (1969, 1979) and Spezzaferri (1994b) are applied to the Miocene and Eocene, and Oligocene and early Miocene faunas, respectively. However, since most of the Oligocene and Miocene markers are missing, zonal attribution is often based on the entire assemblage and/or second order events, rather than on the first and last occurrence and/or presence of markers. Figures 2 and 3 show the main bioevents identified in this study, together with those of Spiegler and Jansen (1989) and some of the standard bioevents used to mark zonal boundaries at low and middle latitudes (Blow, 1979, with modification from Spezzaferri, 1994b; and Premoli Silva, pers. comm., 1995). They are plotted vs. the Geomagnetic Polarity Time Scale of Cande and Kent (1992) modified according to Cande and Kent (1995).

The events used for identifying the Oligocene and Miocene zonal boundaries or zones are (from oldest to youngest):

Planktonic foraminiferal Zone/ Subzones Age(Ma) Polarity Chrons Epochs **Bioevents** (Ma) 30 11 Z. ampliapertura (29.7) P20 - P. opima (30.7) 31 P19 Oligocene 12 - Pseudohastigerina (31.9) 32 P18 33 Hantkenina (33.7) 13 34 - T. cocoaensis (34.1) P17 **-***C. inflata* (34.6) P16 Eocene 35 15 G. semiinvoluta and small Acarinina (35.1) 16 36 late] P15 37 17 38 G. semiinvoluta (38.5) 39 P14 **T**. frontosa (39.4) 18 G. beckmanni (40.1) <u>P13</u> O. beckmanni (40.6) 40 A. bullbrooki (40.6) 41 middle Eocene 19 42 P12 43-<u>T. pomeroli</u> (43.15) M. aragonensis (43.7) . G. index (43.9) 4420 M. lehneri (44.2) P11 45 G. kugleri and G. mexicana (45.6) 46 T. possagnoensis (46.6) 47-P10 21 48 49 ■Hantkenina (49.1) P9 Eo. 22 50-- G. palmerae (50.1) P8 نه First Occurrence - Last Occurrence

Figure 2. Summary of the Neogene bioevents identified in this study (in bold) plotted vs. some of the standard bioevents used at low and middle latitudes (from Larsen et al., 1994, modified by Spezzaferri, 1994b, and Premoli Silva, pers. comm., 1995). Geomagnetic Polarity Time Scale from Cande and Kent (1992) modified according to Cande and Kent (1995).

Figure 3. Summary of the Paleogene standard bioevents used at low and middle latitudes. In this study zonal attribution is based on the entire assemblage and/or second order events, rather than on the first and last occurrence and/or presence of markers.

- 1. The occurrence of *Chiloguembelina cubensis* and *Para-globorotalia opima* allows the identification of Zone P21, late Oligocene; however, the two Subzones P21a and P21b cannot be separated due to the scarcity of the specimens.
- 2. The occurrence of *Paragloborotalia pseudokugleri* is equated to Zone P22, late Oligocene.
- 3. The co-occurrence of *Paragloborotalia kugleri, Globiger-inoides* spp., and *Globoquadrina dehiscens* allows identification of Subzone N4b, early Miocene.
- 4. The LO (last occurrence) of *P. kugleri* marks the top of Biozone N4b, early Miocene.
- 5. The occurrence of *Catapsydrax dissimilis* in the absence of *P. kugleri* is here used to identify the interval including Zones N5–N6, early Miocene. The two zones, however, cannot be separated.
- 6. The LO of *Catapsydrax dissimilis* and the FO (first occurrence) of *Globigerinoides bisphericus* and *Praeorbulina transitoria* mark the base and the top of Zone N7, respectively, early Miocene.
- 7. The presence of *Globorotalia scitula* allows the tentative identification of Zone N9, middle Miocene.
- 8. The LO of *Praeorbulina glomerosa* indicates the upper boundary of Zone N9, middle Miocene.
- 9. The occurrence of *Globorotalia* cf. *suterae*, sensu Poore (1979), indicates the interval from Zone N9 through N14, middle Miocene. Single biozones cannot be identified.
- 10. The presence of *Neogloboquadrina acostaensis* is here used to identify Zone N16 (Blow, 1979) = N. *acostaensis* Zone (Spiegler and Jansen, 1989). However, the lower and upper boundaries of this interval were not observed.

SITE DESCRIPTIONS

Site 914

Site 914 is located on the East Greenland Shelf, approximately 60 km from the coast. Three holes were drilled at this site, with recovery from the first two holes only. The advanced piston corer (APC) was used at Hole 914A. Two cores were recovered with a core recovery of 63.9%. Hole 914B was drilled down to 93.8 meters below seafloor (mbsf) and then cored by rotary core barrel (RCB) to 245 mbsf. Sev-

enteen cores were retrieved from this hole with an average core recovery of 11.8%.

Sediments at Site 914 consist of Quaternary glaciogenic deposits overlying lower Oligocene–upper Eocene mixed volcaniclastic and siliciclastic shelf deposits.

Planktonic foraminifers are generally present in Hole 914A. The assemblages are diverse, abundant, and well preserved in the first 35 cm, then diversity, abundance, and preservation diminish to very rare and poor, respectively. The list of the identified species is reported in Table 2. Cores 152-914A-1H and 2H and 152-914B-7R are attributed to the *Neogloboquadrina pachyderma* sinistral Zone (Pleistocene). In some intervals this species occurs together with *N. pachyderma* dextral, *Neogloboquadrina dutertrei*, *N. acostaensis*, *Globigerina bulloides*, *G. scitula*, and *G. inflata*. Together, these species are interpreted as a warmer assemblage, typical of some interglacial stages (Aksu et al., 1989). This assemblage is hereafter referred to as a "warmer assemblage."

Zonal attribution is not possible from Samples 152-914A-15R-1, 50–52 cm, through 17R-5, 89–91 cm, which are devoid of planktonic foraminifers. Only a few specimens of *Neogloboquadrina pachyderma* sinistral were found in Hole 914B (see Appendix Table 1).

Site 915

Site 915 is located on the East Greenland Shelf approximately 58 km from the coast. A single hole was drilled at this site. The RCB was used throughout 209.4 mbsf, and 26 cores were retrieved with an average core recovery of 15.7%. The sedimentary sequence at this site consists of Pleistocene to Holocene glaciomarine mud and sand with dropstones overlying middle and upper Eocene volcaniclastic silty sandstone and silty siltstone with interbeds of calcareous mudstone and sandstone.

Planktonic foraminiferal assemblages are abundant to rare with moderate preservation in the Pleistocene to Holocene sediments, and very rare and poorly preserved in the Eocene (Table 3).

Samples 152-915A-1R-1, 0-2 cm, and 1R-1, 61-63 cm, contain *N. pachyderma* sinistral plus the "warmer assemblage" and are attributed to the *N. pachyderma* sinistral Zone (Pleistocene). In the sequence below, only Samples 152-915A-15R-CC and 16R-1, 123-125 cm, contain planktonic foraminifers. The occurrence of *Chiloguembelina cubensis* and "*Globoquadrina*" tapuriensis in the

Table 2. Stratigraphic ranges of selected Pleistocene planktonic foraminifers in Hole 914A.

152-914A Core, section, interval (cm)	Pl. foram. assembl.	N. pachyderma sinistr.	N. pachyderma dextr.	Tenuitellinata sp.	T. quinqueloba	G. juvenilis	G. bulloides	N. dutertrei	G. vivans	T. anfracta	H. riedeli	G. glutinata	N. acostaensis	G. uvula	G. conglomerata	G. inflata	Zones	Age
1H-1, 0-2	W	Α	С	R	С	С	С	С	-	-	-	С	-	R	R	R		
1H-1, 33-35	W	Α	R	R	C/R	С	С	C/R	VR	VR	VR	R/C	R	VR				
1H-1, 95-97		Х	-	Х	-	Х											ral	
1H-2, 83-85		Х	-	-	-												uist	e
1H-2, 96-98		Х	-	Х	-												sin	en
1H-2, 135-137		Х	-	-	-												ы	00
1H-3, 95-97		Х	-	-	-												ern	ist
2H-1, 26-28		Х	-	Х	-												byd	Je
2H-1, 32-35		Х	VR	-	-												acl	-
2H-3, 134-136		Х	-	-	-												l. p	
2H-4, 34-36		Х	-	Х	-												<	
2H-5, 62-64		Х	-	-	-													
2H-6, 13-15	1	X	VR	х	cf													

Notes: W = warm assemblage, VW = very warm assemblage. VR = very rare (1-3 specimens), R = rare (< 10 specimens), C = common (10-30 specimens), A = abundant (30-50 specimens), VA = very abundant (about 50-70 specimens), D = dominant (more than 70 specimens), X = simple occurrence, dash = not present.

Table 3. Stratigraphic ranges of selected Pleistocene and upper Eocene planktonic foraminifers in Hole 915A.

152-915A Core, section, interval (cm)	Barren Samples	Pl. foram. assembl.	Z. ampliapertura	"G." venezuelana	C. martini	C. unicavus	G. variabilis	"G." tapuriensis	Chiloguembelina sp.	Globorotaloides sp. 1	N. pachyderma sinistr.	N. pachyderma dextr.	Tenuitellinata sp.	N. acostaensis	G. bulloides	T. quinqueloba	G. juvenilis	N. humerosa	G. scitula	N. dutertrei	G. glutinata	G. uvula	T. minutissima	G. inflata	G. conglomerata	Zones	Age
1R-1, 0-2 1R-1, 61-63		W W	-	-	-	-	-		-	-	X X	X X	x	x	X X	X X	X X	- X	- X	X X	X X	- X	x	х	х	N. pachy. sinistral	Pleist.
15R-CC			1	-	-	-	-	Х	Х	Х																upper	
16R-1, 9-11	1		1	-	-	-	-																			Zone	late
16R-1, 123-125			Х	Х	Х	Х	Х																			P17	Eoc.
18R-1. 96-98 to 22R-3. 22-24	12																										?

former allows its assignment to the upper part of Zone P17 (upper Eocene).

Site 916

Site 916 is located on the East Greenland Shelf, approximately 50 km from the coast. Only one hole was drilled at this site with the RCB system, down to 102 mbsf. Fifteen cores were recovered with an average core recovery of 16.6%. The sedimentary sequence consists of Quaternary glaciomarine sediments and diamicton overlying volcaniclastic sandy silt with interbeds of silty sand. Abundance and preservation of planktonic foraminifers decrease from rare and moderate in the Pleistocene to very rare and poor in the Eocene (Table 4).

Sample 152-916A-5R-1, 61–63 cm, is assigned to the *N. pachyderma* sinistral Zone. The occurrence of *Subbotina linaperta* in Sample 152-916A-13R-3, 49–50 cm, allows identification of the interval spanning Zone P15 to lower P17 (late Eocene).

Site 918

Site 918 is located near the center of the seaward-dipping reflector sequence (SDRS) on the upper continental rise of the southeast Greenland Margin, approximately 130 km from the coast. Four holes were drilled at this site. Holes 918B and 918C were abandoned, however, because of drilling problems.

Thirty-eight cores were recovered in Hole 918A with an average core recovery of 78.2%. The APC was used to 171.3 mbsf. The extended core barrel (XCB) was used down to 332.7 mbsf. The sedimentary sequence spanning the interval from Pliocene to Holocene consists of glaciomarine, dark gray silt with volcaniclastic and continental derived components.

Pliocene to Holocene sediments yield generally abundant, rich, and well preserved planktonic foraminiferal assemblages. Abundance, however, fluctuate from level to level and decrease from the top to the bottom of the sequence. Planktonic faunas are rarer and often absent from Core 152-918A-16R to the bottom of the hole. Although several intervals with turbidites were observed, foraminiferal assemblages do not show clear evidence of reworking at this site. The main planktonic foraminiferal bioevents are reported in the range chart and the biostratigraphic log together with the occurrence of the "warmer assemblage" and species diversity trends (Fig. 4; Table 5).

Samples 152-918A-1H-1, 45–47 cm, through 9H-7, 48–50 cm (from the surface down to 77.02 mbsf), are attributed to the *N. pachy-derma* sinistral Zone (Pleistocene). Several and sometimes relatively extended intervals with the "warmer assemblage" are identified in this zone.

The upper *Neogloboquadrina atlantica* dextral Zone (Pliocene) is identified only in this hole, from 79.02 to 81.68 mbsf (Samples 152-918A-10H-1, 122–124 cm, through 10H-3, 88–90 cm). The *Neoglo*-

Table 4. Stratigraphic ranges of selected Pleistocene and upper	Eocene
planktonic foraminifers in Hole 916A.	

152-916A Core, section, interval (cm)	Barren Samples	Globorotaloides sp. 1	S. eocaena	C. unicavus	S. linaperta	"G." venezuelana	G. variabilis	G. glutinata	Tenuitellinata sp.	N. pachyderma dextr.	N. pachyderma sinistr.	Zones	Age
5R-1, 61-63		-	-	-	-	-	-	Х	Х	Х	Х	N. pachy. sin. Pl	eist.
13R-1, 68-69	В	-	-	-	-	-	-	-	-	-	-	?	?_
13R-2, 54-55		-	-	-	-	VR	VR					P15- 1	ate
13R-3, 49-50		VR	VR	VR	VR							lower P17	Eoc.

Note: Abbreviations defined in Table 2.

boquadrina atlantica sinistral Zone (Pliocene) is identified from 81.68 to 320.55 mbsf (Samples 152-918A-10H-4, 87–98 cm, to 37H-6, 10–12 cm). Several intervals with the "warmer assemblage" are identified and are often associated with *N. atlantica* dextral.

Hole 918D was drilled from the seafloor to 253.2 mbsf, and from 279.9 to 324 mbsf. A total of 113 RCB cores was recovered in this hole with an average core recovery of 25.1%. One of the more complete sedimentary records of the North Atlantic was recovered in this hole (Fig. 5). However, a major unconformity truncated the sequence in the middle Eocene (Zone P12) at the top of Core 152-918D-88R, which is overlain by upper Oligocene sediments belonging to Zone P21.

Minor hiatuses probably span the interval from the upper part of Zone P22 (late Oligocene) to the lower part of Subzone N4b (early Miocene) as well as the upper part of the middle Miocene.

Species diversity is commonly very low throughout the Pliocene and upper and middle Miocene sequences. It markedly increases in the lower Miocene and in part of the Oligocene interval (Tables 6–8). Assemblages are rich and well diversified in the middle Eocene sediments containing high abundance of red clay.

Generally scarce and moderately to poorly preserved Pliocene assemblages belonging to the *N. atlantica* sinistral Zone were identified from Samples 152-918D-11R-1, 81–83 cm, through 24R-2, 68–70 cm (386.91–505.38 mbsf). At the beginning of its range, *N. atlantica* sinistral is associated with relatively abundant and large specimens of *O. universa* (Fig. 5).

Sample 152-918D-24R-2, 120–122 cm, is difficult to assign to the biozones above and below because both *N. atlantica* sinistral and dextral are absent. However, based on the *Bolboforma* biostratigraphy, it may belong to the late Miocene *N. atlantica* dextral Zone (Spezzaferri and Spiegler, this volume). This late Miocene zone is identified from Sample 152-918D-24R-3, 26–28 cm, through 36R-3, 123–126 cm (506.27–621.63 mbsf).

Figure 4. Main planktonic foraminifer bioevents in Holes 918A, 918B, and 918C, plotted vs. biozone assignments and species diversity trends. Arrows, horizontal bands, and/or vertical bold lines indicate the intervals of occurrence of the relatively warmer assemblages consisting of *N. dutertrei*, *N. acostaensis*, *N. humerosa*, *G. juvenilis*, *G. glutinata*, *G. bulloides*, *T. quinqueloba*, *G. scitula*, and *G. inflata*

		1				ċ.									
152-918A Core, section, interval (cm) 1H-1, 45-47	Barren Samples PI foram assembl	× G. bulloides	N. atlantica sin.	× T. quinqueloba × G. glutinata	G. "venezuelana G. scitula	 Neogloboquadrina spi N. acostaensis 	N. humerosa Tenuitellinata G. obesa	G. uvula	× N. dutertrei - G. inflata - G. falconensis	Globigerina sp. A	 G. rubescens S. globigerum N. pachyderund 	T. minutissima	N. praehumerosa G. tehyeri G. ruber X.T. iota	Zones	Age
$\begin{array}{l} 2\mathrm{H-1}, 11-13\\ 2\mathrm{H-1}, 46-48\\ 2\mathrm{H-1}, 95-97\\ 2\mathrm{H-2}, 10-12\\ 2\mathrm{H-3}, 145-47\\ 2\mathrm{H-4}, 16-18\\ 2\mathrm{H-4}, 45-47\\ 2\mathrm{H-4}, 95-97\\ 2\mathrm{H-4}, 16-18\\ 2\mathrm{H-4}, 45-47\\ 2\mathrm{H-4}, 95-97\\ 2\mathrm{H-5}, 16-98\\ 2\mathrm{H-6}, 19-21\\ 2\mathrm{H-5}, 66-98\\ 2\mathrm{H-6}, 19-21\\ 2\mathrm{H-5}, 66-98\\ 2\mathrm{H-6}, 19-21\\ 2\mathrm{H-6}, 66-98\\ 2\mathrm{H-6}, 19-21\\ 2\mathrm{H-6}, 66-98\\ 2\mathrm{H-6}, 19-21\\ 2\mathrm{H-7}, 42-44\\ 3\mathrm{H-2}, 30-32\\ 3\mathrm{H-6}, 30-32\\ 3\mathrm{H-7}, 29-31\\ 3\mathrm{H-7}, 29-31\\ 3\mathrm{H-7}, 29-31\\ 3\mathrm{H-7}, 29-31\\ 4\mathrm{H-1}, 42-44\\ 4\mathrm{H-3}, 95-97\\ 4\mathrm{H-1}, 142-143\\ 4\mathrm{H-3}, 95-97\\ 4\mathrm{H-1}, 140-142\\ 4\mathrm{H-6}, 42-44\\ 4\mathrm{H-5}, 96-98\\ 4\mathrm{H-5}, 140-142\\ 4\mathrm{H-6}, 96-98\\ 4\mathrm{H-5}, 142-122\\ 5\mathrm{H-7}, 14-16\\ 5\mathrm{H-1}, 69-61\\ 5\mathrm{H-1}, 69-61\\ 5\mathrm{H-1}, 69-61\\ 5\mathrm{H-1}, 69-61\\ 5\mathrm{H-1}, 69-61\\ 5\mathrm{H-1}, 69-61\\ 5\mathrm{H-1}, 69-71\\ 5\mathrm{H-1}, 120-122\\ 5\mathrm{H-1}, 14-16\\ 5\mathrm{H-1}, 69-71\\ 5\mathrm{H-1}, 14-16\\ 5\mathrm{H-1}, 120-122\\ 5\mathrm{H-1},$? W		- V - V - R - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3				- X - X X X X X X - X X - X X - X X - X X - - X - X -		X - X			X	X	N. pachyderna sinistral	Pleistocene
10H-2, 133-135 10H-3, 88-90 10H-4, 87-89 10H-5, 54-56 10H-6, 64-65 10H-7, 14-16	? W	- - - - -	X X X X X X X X		> > > - X > >	X X X X - X - X	- X - X X - X X - X X -		X X X		V R X X X	X X - X X X X X X	X X	ntica dex. N. atla ntica sin.	Pliocene

Table 5. Stratigraphic ranges of selected Pleistocene and Pliocene planktonic foraminifers in Hole 918A.

Table 5	(continued).
---------	--------------

<u> </u>	1		-				-1						1				-1						1			-1		1
		I.								'n.	a spp.														ex.			
	es	emb		.н		<i>a</i>		ana		ua si.	drin	s		z sp.	•					s	ex.	ip. A		1	na d	a		
	amp	i. ass	des	ica s	lis	telol	ata	ъли	r	dern	onbc	lensi	osa	inate		a sp		rei	ı	ensi	ica d	ina s	cens	erun	dern	ssim		
152-918A Core section	en S	nam	ulloi	lant	veni	inqu	utin	vena	itule	uchy	golg	osta	anuer	itell	besa	itell	oula	ttert	flatc	lcon	lant	iger	these	obig	uchy.	nuti	s	
interval (cm)	3arre	l. fc	3. bı	V. at	3. ju	. qu	5.81	ġ.	3. 50	V. Pc	Veog	V. ac	V. ht	[enu	10 .5	Гепи	J. W	V. dı	3. in	3. fa	V. at	Glob	3. ru	S. gle	N. 00	. mi	Zone	Age
11H-1, 41-43		F	-	cf	-	-	-	-	-	X	-	-	~	-	cf	-	-	-	-	-	-	-	-	-	-	x		~
11H-2, 81-85 11H-3, 39-41			-	R	-	cf	x	-	-	X	-	-	-	-	-	-	-	-	-	-	-	-	-	-	VI	ς -		
11H-4, 40-42 11H-5, 40-42	1		-	-	-	cf	-	2	2	x	2	2	-	2	2	-	-	2	-	2	2	1	-	-	R	-		
12H-1, 140-142 12H-2, 89-91		W?	-	cf -	X X	X X	-	-	-	X X	2	-	-	2	2	-	-	2	Х -	-	Ā	2	-	- -	R	X X		
12H-3, 68-70 12H-4, 85-87			-	2	Ā	-	-	2	R -	X X	2	2	-	2	2	-	-	2	2	2	-	1	R -	1	R X	-		
12H-5, 86-88 12H-6, 80-82			-	2	2	-	-	2	2	D R	2	2	-	x	t	-	-	2	2	2	-	ŀ	-	l	R R	x		
12H-7, 46-48 13H-1, 96-98			-	-	-	-	-	-	-	XX	-	-	-	-	-	-	-	-	-	-	-	-	-	VI	R -	X		
13H-3, 95-97			-	-	Х	-	-	-	-	X	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
13H-4, 94-96 13H-5, 95-97			-	x	-	-	-	-	-	X	-	x	x	-	-	-	x	-	-	-	-	-	-	-	VI	ς -		
13H-6, 95-97 14H-1, 95-97	1		-	-	-	-	-	-	-	<u>х</u>	-	-	-	-	-	-	-	-	- -	-	-	-	-	-	-	-		
14H-2, 95-97 14H-3, 78-80			-	Х -	-	x	-	-	-	X X	-	- -	X -	-	-	-	-	Х -	-	-	-	-	-	-	- -	-		
14H-4, 95-97 14H-5, 95-97		L	-	-	-	X	- -	-	-	X X	-	-	-	-	-	-	-	-	-	-	-		-			-		
15H-1, 95-97 15H-2, 95-97			-	2	-	Х -	-	-	-	X X	2	-	-	-	-	-	-	-	2	-	-	2	-	2	2	-		
15H-3, 95-97		w	-	- x	X	X	- x	-	X	X	-	X	-	- x	·x	-	X	cf	-	- \	/R	-	-	-	VI	۲- x		
15H-5, 95-97			1-	-	-	-	-	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Λ		
16H-2, 95-97	1		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
16H-3, 95-97 16H-4, 95-97	1		-	-	-	-	-	-	-	-	2	-	-	-	2	-	-	2	-	-	-	-	-	-	-			
16H-5, 95-97 16H-6, 95-97		W W	- -	cf	X X	X X	-	2	x	X X	Х -	х -	ct -	х -	Ĵ	-	- -	2	2	2	-	1	-	2	X R			
17H-1, 95-97 17H-2, 95-97				x	-	Ā	-	-	-	R A	1	-	-	x	- VR	-	-	-	1	-	-	1	-	1	VIX	ζ		
17H-3, 96-98 to 17R-4, 96-98	2		-	x	- x	- x	-	-	x	- x	2	2	-	- x	-	-	-	2	2	-	-	j	-	x				
17H-6, 95-97		w	-	- v	VR	<u>-</u>	-	-	- v	- v	-	-	-	-	-	-	- v	-	-	-	-	-	-				_	
18H-2, 95-97		w	-	X	X	X	x	-	-	X	X	X	x	x	-	x	-	x	-	-	- -	X	cf				stra	
18H-3, 95-97 18H-4, 95-97			-	л -	л -	-	x	-	-	л -	-	л -	-	-	-	-	-	-	-	-	-						sini	ne
18H-5, 95-97 to 19R-1, 95-97 19H-3, 95-97	3		-	-	-	-	-	-	-	-	Ā	-	-	-	-	-	-	-	Ā	-	-						ica	oce
19H-4, 95-97 19H-5, 95-97		W?	- -	Х -	х -	X X	- -	2	2	х -	X X	х -	-	х -	2	X X	C -	х -	2	2							lam	Pli
<u>19H-6, 95-97 to 20H-1, 95-97</u> 20H-1, 95-97	2		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-							(. at	
20H-2, 105-107 20H-3, 94-96	1		-	2	2	x	-	2	2	2	2	-	-	Ē	t	-	-	2	cf	2							~	
20H-4, 93-95 21H-1, 97-99 to 21H-2, 114-116	2		-	-	Х	<u>х</u>	-	-	-	<u>-</u>	-	-	-	-	-	-	-	-	-	-								
21H-3, 46-48 23H-1, 94, 96 to 23H-4, 95, 97	1		-	-	X	Х	-	-	- 1	VR	-	-	-	-	-	-	-	-	-	-								
23H-5, 94-96	1	W?	x	-	- -	X	-	-	-	-	-	-	-	-	-	- -	- v	-	cf	-								
24H-1, 96-98		W	-	-	X	X	-	-	x	-	x	-	-	-	-	X	-	-	x	-			\uparrow					
24H-2, 95-97 24H-3, 93-95	1		x	-	x	X	-	-	-	-	x	-	-	-	-	-	-	-	-	-								
24H-4, 94-96 24H-5, 92-94			-	-	Х -	X VR	-	-	-	-	-	-	-	-	-	-	-	-	-	-								
24H-6, 95-97 to 25H-1, 96-98 25H-2, 94-96	2		-	-	-	Ā	-	-	-	-	-	-	-	-	-	-	-	-	-	-			┢			-		
25H-3, 94-96 25H-4, 94-96	1	W?	-	-	Х -	Х -	-	-	- '	VR -	- 1	-	-	Ì	Ì	2	-	-	cf	Х								
25H-5, 94-96 25H-6, 94-96		W	X -	-	Х -	X VR	-	-	-	Х -	2	2	-	2	Ì	-	Х -	2	Х									
26H-1, 95-97 to 26H-3, 96-97 26H-4, 95-97	3		-	-	-	- x	-	-	2	-	2	-	-	-	-	2	-	2					T			-		
26H-5, 95-97 27H-1, 105-107	1		-	·	-	-	- X	-	-	-	-	-	-	-	-	-	-	-								_		
27H-2, 95-97		W?	-	л - v	x	X	- -	-	-	- -	- -	-	-	-	-	x	-	-										
27H-4, 95-97			-	л -	-	л -	-	-	-	л Х	л -	л -	-	-	-	x	-	-										
2/H-5, 95-97 27H-6, 94-96	1		-	2	-	2	-	2	2	x	2	2	-	2	2	2	-	2										
28H-1, 95-97 28H-2, 96-98	1		-	Ā	-	x	Ā	-	-	x	x	x	x	x	Ì	2	-	-										
28H-3, 95-97 28H-4, 97-99		W?	-	х -	X X	Х -	- -	-	-	Х -	2	X X	Х -	-	Х -	2	Х	Х										
29H-1, 97-99 31H-1, 95-97	1		-	-	-	- X	-	-	-	-	-	-	-	- X	-	- X												
31H-2, 95-97 31H-4, 95-97	1		-	-	-	X	-	-	-	х -	-	2	-	X	Х	·												
31H-5, 95-97	Ľ		-	-	-	-	-	-	-	ÿ	- v	ÿ	·v															
32H-1, 96-98	2		-	-	Ā	-	-	-	-	-	-	л	Λ															
37H-1, 94-90 to 35H-1, 31-33 37H-1, 95-97	3		-	x	-	-	-	-	-	-	-																	
5/H-2, 89-91 to 3/H-3, 95-97	2	w	x	- x	v	ż	- x	- x	- x	- v	v		1										1					

Figure 5. Main planktonic foraminifer bioevents in Hole 918D, plotted vs. biozone assignments.

																														_				
152-918D Core, section, interval (cm)	Barren samples	Pl. foram. sssembl.	Species diversity	N. pachyderma sinistr.	N. acostaensis	N. atlantica dextr.	G. juvenilis	G. glutinata	T. neoclemenciae	T. quinqueloba	G. uvula	N. praehumerosa	G. bulloides	"G." venezuelana	G. quadrilobatus	G. immaturus	S. seminulina	G. menardii	G. obesa	Tenuitellinata sp.	Z. woodi	G. scitula	N. humerosa	G. lenguaensis	G. bulbosa	P. continuosa	Neogloboquadrina sp.	0. universa	G. falconensis	N. atlantica sinistr.	D. larmeui	N. dutertrei	Zones	Age
11R-1, 81-83	1		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	al	
13R-1, 52-54			1	-	-	-	-	-	-	-	-	-	-	Х	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Ë	
14R-1, 6-8			1	-	-	-	-	-	-	-	-	-	-	Х	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	is	
14R-1, 95-97	1		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	÷Ľ	e
14R-2, 95-97			3	-	-	-	-	-	-	-	-	-	х	cf	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	х	-	-	3	ğ
18R-1, 28-30	1		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ić.	ŭ
22R-1, 134-136		W	11	-	Х	-	Х	Х	-	Х	Х	-	-	-	-	-	Х	-	cf	-	cf	-	-	-	-	-	Х	-	-	Х	-	Х	nt	lic
22R-2, 8-10		w	8	х	-	-	Х	-	-	-	-	Х	Х	х	-	-	-	-	-	-	х	-	-	-	-	-	-	Х	-	х	-	х	la	Р
22R-3, 8-10		w	9	-	-	-	х	-	-	Х	-	-	х	х	-	-	-	-	-	-	Х	Х	-	-	-	-	Х	-	-	х	х		aı	
24R-1, 97-99			2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Х	VR			>	
24R-2, 68-70		W	12	х	-	-	Х	х	-	Х	-	-	Х	х	-	-	-	-	-	-	х	х	-	-	-	-	х	Х	х	х			j	
24R-2, 120-122			1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	х					ſ	?	?
24R-3, 26-28			2	-	VR	Х	-	-	-	-	-	-	-	-	-	-	-	-	-	-	VR	-	-	-	-	-								
25R-1, 45-48			1	VR	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-								
25R-2, 14-16			2	-	-	-	Х	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Х	-	-	-	-								
25R-3, 44-46			1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	cf	-	-	-	-	-							_	
25R-4, 72-74			8	VR	х	-	Х	-	-	Х	-	-	Х	cf	-	-	-	-	-	-	-	-	-	-	Х	cf							ra.	
25R-5, 3-4			3	-	-	-	-	Х	-	Х	-	-	Х	-	-	-	-	-	-	-	-	-	-	-									xt	e
27R-1, 44-46 to 28R-4, 7-9	7		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-									qe	en
29R-1, 95-97			6	-	х	х	-	-	-	-	х	-	-	х	-	-	-	-	-	-	cf	х	-	-									a	ž
29R-2, 95-97			5	-	Х	Х	-	-	-	-	-	-	Х	Х	-	-	-	-	-	-	-	Х	-	-									ic	Ĕ
31R-1, 73-75	1		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-									u	2
32R-1, 95-97			7	-	Х	Х	Х	Х	-	Х	-	-	-	-	-	-	-	-	Х	-	-	Х	-	cf									tla	te
33R-1, 93-95			7	-	Х	Х	Х	Х	-	-	-	-	Х	-	-	-	-	-	-	-	-	Х	х	VR									a	la
34R-1, 121-122			7	-	Х	-	Х	-	-	-	Х	-	Х	Х	-	Х	-	-	-	-	Х												N.	
35R-1, 68-69	1		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-														
35R-2, 66-68			2	-	-	X	-	-	-	-	-	-	-	-	-	-	-	-	-	VR														
36K-1, 130-132			8	-	X	X	X	X	X	-	-	X	-	X	-	v	-	-	-	х														
30K-2, /5-/8		W	14	X	X	X	X	X	X	-	-	х	х	x	х	х	х	х	х															
30K-2, 123-120			8	x	х	х	х	х	х	х	cf	-																						

Table 6. Stratigraphic ranges of selected Pliocene planktonic foraminifers in Hole 918D.

Sample 152-918D-37R-3, 13–16 cm (at 631.73 mbsf), yields common to rare and moderately preserved planktonic foraminifers attributable to Zone N16 = N. *acostaensis Zone* (late Miocene). This zonal assignment is based on the presence of N. *acostaensis*. However, the lower and upper boundaries of this zone were not observed.

The middle and lower Miocene assemblages are more problematic. The entire sequence is characterized by very monotonous and similar assemblages with minor faunal variations perhaps (but not necessarily) corresponding to cooler episodes with stronger dissolution (Table 7). Assemblages are generally poorly preserved, and specimens are often corroded and deformed.

Samples 152-918D-38R-1, 98-100 cm, to 44R-3, 98-100 cm, yield generally rare and poorly preserved middle Miocene foraminiferal faunas. A few samples are devoid of planktonic foraminifers; however, their abundance and preservation slightly increase from the top to the bottom of the sequence. The interval from Sample 152-918D-38R-1, 98-100 cm, through 41R-1, 76-78 cm (639.18-667.96 mbsf), is attributed to an undifferentiated interval belonging to Zones N9 through N14 based on the presence of Globorotalia cf. suterae, sensu Poore (1979). Samples 152-918D-41R-2, 63-65 cm, through 44R-3, 98-101 cm (669.33-701.53 mbsf), are tentatively assigned to Zone N9, based on the presence of Globorotalia scitula together with Praeorbulina glomerosa. According to Blow (1969), G. scitula first occurs at the middle of Zone N9; therefore, the lower part of this zone may not be present. Neogloboquadrina pachyderma sinistral is first observed in Sample 152-918D-47R-2, 95-97 cm, close to the Zone N8–N9 transition.

Samples 152-918D-44R-4, 97–110 cm, through 55R-1, 134–136 cm (703.34–803.14 mbsf), contain planktonic foraminiferal assemblages attributable to Zone N8 based on the presence of rare specimens of *Praeorbulina transitoria*, *P. glomerosa*, and *P. sicana*. Its lower boundary is based on the FO of *Globigerinoides bisphericus*. Species diversity markedly increases within this zone. The genus *Globigerinoides*, represented by *G. immaturus* and *G. bisphericus* and *Dentoglobigerina altispira globosa*, which are interpreted as

warm water species (Spezzaferri and Premoli Silva, 1991; Spezzaferri, 1994a), is more consistently present and more abundant throughout.

The FO of *G. bisphericus* and the LO of *Catapsydrax dissimilis* mark the upper and the lower boundary of Zone N7, respectively (Samples 152-918D-55R-2, 4–6 cm, through 55R-3, 40–42 cm, 803.34–804.20 mbsf). The assemblage in this zone includes *Zeaglobigerina woodi, Globorotalia birnageae, Globigerinoides trilobus,* and *Praeorbulina transitoria.*

Only two of the studied samples belong to the undifferentiated interval from Zone N6 through N5 (Samples 152-918D-55R-3, 66–68 cm, through 55R-4, 72–74 cm, 805.46–807.02 mbsf). The upper and the lower boundary are based on the LO of *Catapsydrax dissimilis* and *Paragloborotalia kugleri*, respectively. The accompanying assemblages include *G. praescitula, Catapsydrax unicavus, Dentoglobigerina langhiana, Paragloborotalia semivera, Globorotalia zealandica*, and Zeaglobigerina woodi.

Subzone N4b is identified from Sample 152-918D-55R-5, 11–13 cm, through 58R-1, 42–44 cm (807.63–831.12 mbsf). The zonal marker *P. kugleri* is present in the upper three samples attributable to this zone only. The presence of *Globoquadrina dehiscens, Globigerinoides immaturus,* and *Globigerinoides trilobus* since Core 152-918D-58R, however, allows assignment of the entire interval to Subzone N4b (Spezzaferri, 1994a, 1994b). Subzone N4a is not identified in the studied samples.

The late Oligocene Zone P22 is identified from Sample 152-918D-62R-1, 87–90 cm, through 63R-1, 93–96 cm (880.74–879.83 mbsf). Faunal assemblages are generally rich and well diversified. Zonal assignment is based on the presence of *Paragloborotalia pseudokugleri*. The accompanying assemblage includes *Z. woodi*, *Zeaglobigerina connecta*, *Globorotaloides stainforthi*, *Globorotalia birnageae*, *Globoquadrina praedehiscens*, and *Dentoglobigerina altispira globosa* (Table 8).

Planktonic foraminiferal assemblages are very scarce and very poorly preserved in the late Oligocene Zone P21 (Samples 152-

152-9 Core, interv	18D section, al (cm)	Barren samples	Species diversity	Pl. foram. assembl.	"G." venezuelana G. suteri	G. rohri G. variabilis	G. dehiscens	G. glutinata G. glutinata C. umicavus	D. larmeui G. praedehiscens	Tenuitellinata sp. T. praestainforthi	P. nana T. neoclemenciae B	G. stainforthi	C. dissimilis Z. connecta D. Izmahima	G. prasaepis	P. siakensis G. trilopus	G. uvula G. juvenilis	P. semivera	G. praeblloides G. birnageae	Z. woodi G. obesa	G. tripartita G. subsacculifier	D. altispira globosa G. parawoodi	P. pseudokugleri P. kueleri	Z. brazieri Z. lahiacrassata	<u>G. subquadratus</u> "G." ciperoensis	G. falconensis P. incomita	C. chipolensis T. munutssima	G. praescitula G. zealandica	G. peripheroronda P. acrostoma P. acrostoma	G. quadrilobatus	F. transuoria G. bisphericus G. miozea	"Ci." pseudociperoensis P. peripheroronda/P. peripheroacuta	G. cf suterae G. siphonifera	Guembelitria sp. Z. decoraperta	P. sicana Z. drurvi	G. bulbosa G. diminutus	<u>N. pacnyaerma suusu.</u> P. scitula	P. glomerosa Globigerina sp. A	D. baroemoenensis G. ruber	O. universa N. acostaensis	Zones	Age
37R-2, 14 37R-3, 1 37R-3, 5	4-16 3-16 8-60 to 37R-5 20-22	B 3	0 7 0					x -	: :		>	c				x	- 1	k -	cf -																;	x -			- x	? -	I.M.
38R-1, 99 38R-2, 1 38R-3, 60 38R-4, 13 38R-4, 5 38R-5, 11 39R-2, 19 39R-2, 19 39R-2, 9 39R-4, 9 39R-4, 9 39R-6, 0 39R-6, 0 39R-6, 7 40R-1, 4 40R-2, 11	8-100 14-116 14-116 14-13 14-116 2-54 3-15 13-115 to 39R-1,135-137 6-18 3-95 to 39R-4, 16-18 -6-18 -75 -75 -75 -75 -75 -75 -75 -75	7 4 4 3	11 15 16 2 8 3 0 1 0 7 2 5 9 0 4	W W W W	X - X - X - X - - -		- X - X - X 		X	- X - X - X - X - X - X	- X - - X - - X - 				X - X - X - X - X - X - X - X - X - X -				X X - X X - cf - 		X						x - x - x -		X -	- X 		X - X -				× × ×			x	N14	IN. AC OSTA ET ST
40R-3, 3 40R-3, 1 40R-4, 6 40R-5, 1 40R-5, 6 40R-6, 2 40R-6, 4	4-36 16-118 4-66 to 40R-4, 120-122 1-13 4-66 3-25 8-50	2 B	340 540 1					x -	· · · · · · · · · · · · · · · · · · ·		- X - - X - - X - - X -					X X X VR	- 2	K - K - K - K -	- X			 				· · · · · · · · · · · · · · · · · · ·				- R			· · ·			·		x x		N9	
41R-1, 3 41R-1, 7 41R-2, 6 41R-2, 1 41R-3, 3 41R-3, 1 41R-4, 3 41R-4, 1 41R-6, 10 41R-6, 7	4-36 6-78 3-65 17-119 2-34 21-123 4-36 18-120 02-104 6-18 8-80 0-104	в	21530234160	w w w			- c1	x -			- X - - X - - X - - Cf -		cf -		cf X	X X X X	- 2	K -						· · · · · · · · · · · · · · · · · · ·				- X -		- R					- VR	- cf	X -			?_	ddle Miocene
42R-1, 7 42R-2, 10 42R-3, 1 42R-3, 1 42R-4, 11 42R-5, 9 42R-6, 9 43R-1, 2 43R-1, 10 43R-2, 1	9-81 09-111 32-134 27-129 9-101 5-97 4-27 03-107 8-52 8-52 8-52 8-54	в		w	· · · · · · · · · · · · · · · · · · ·						- X - - X - - X -		VR-			X VR VR VR X	R -		 VR - X - cf -		V		- VB							- VR						- cf 	-			N9	Ē
44R-1, 9 44R-2, 9 44R-3, 9 44R-4, 9 44R-4, 9 44R-5, 1 47R-2, 9	6-98 7-100 8-101 7-100 24-127 5-97	в	4 21 4 2 0 9	W W W W	x -		 	x -	X -	xx	- X - - X - - cf -		x -	-)	x x	X - X - X - X - X - X - X - X - X - X -	- 3	к -	X -				xx	· · · · · · · · · · · · · · · · · · ·	X -	· · ·	- X - X X - X -				(x - 2 2	X X X X	x				
51R-1, 9 51R-2, 1 51R-3, 8 51R-4, 1 51R-5, 2 51R-5, 8 51R-6, 4 51R-6, 4 52R-1, 4	3-95 11-113 1-83 32-134 8-30 0-82 2-44 1-44	в	12 3 10 10 13 0 6 17	W W W W W	X - X - X - X - - - -		X - X - X	X - X - X -	X - 	cf - X	- X - - X - - X - - X -		X -		X			K	X - X - cf - X - - - - - - - - - - - - - -		· · · ·	 	- X		 	· · · · · · · · · · · · · · · · · · ·		· · · ·		X - X -		x - x - x - x - x - x - x -			X - - X	_					
52R-1, 10 52R-2, 3 52R-2, 9 52R-3, 1 52R-3, 1 52R-4, 3 52R-4, 1 52R-4, 1 52R-5, 5 52R-5, 8	06-109 4-36 2-94 5-18 21-124 7-40 24-126 2-55 3-85		21 12 13 13 11 12 25 19 17	W W W W W W W W W W W	X - X - X - X - X - X - X - X - X - X -		- X - X - X - X - X - X X X - X X X	X - X - X - X - X - X - X - X -	X - X - X - X - X - X -	- X X X X X - X X - X X - X - X	- X - - X -		X - X - X - X - X - X - X - X - X - X -	>				X - X - X - X - X - X - X - X - X - X -	X - - X - X X X X X				- X		X		X X X X X X X X X X X X X X X X X X X X	- X -		- cf	X - 2 X - 2 	X -		cf							
53R-1, 3 53R-2, 1 53R-2, 9 53R-3, 4 53R-3, 4 53R-3, 1 53R-4, 1 53R-4, 1 53R-5, 1 53R-5, 1 53R-6, 2 53R-6, 1	0-31 21-123 3-95 7-49 24-126 8-40 05-107 6-27 19-121 9-31 19-121		12 16 8 11 6 4 7 12 15 7	WWWWWWWWWWW	X - VR - X - X - X - X - X - X -	· · · · · · · · · · · · · · · · · · ·	X - X - 	X - X - X - X - X - X - X - X -		X X - X X - - X	- X - - X -		- X		- X	- X X - X X - X - - X -		ζ - ζ - ζ - ζ - ζ - ζ - ζ - ζ - ζ -	- X X - X - X - X X X - X X X - X X	- X - X - X - X	X					R	X X X X X X X - X - Cf - - -	X X - - X - 			X - 2 X - 2	X - X - X - X - X - X X	- cf							N8	Vliocene
55R-1, 6 55R-1, 1 55R-2, 4 55R-2, 8 55R-3, 4 55R-3, 6 55R-3, 6 55R-4, 7 55R-5, 1 55R-6, 3	4-66 34-136 -6 0-42 6-68 2-74 1-13 07-109 1-33		17 24 18 22 19 20 23 18 18 20	WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	X - X - X - X - X - X - X - X - X - X -	VR - - X - X cf - X X X X	X X X X X X X X VR - X	X - X - X - X - X - X - X - X - X - X -	X - X - R - - - X - X - X X X -	- X - X - X - X - X - X - X - X - X - X	- X - - X - X - X - X - X - X - - X -		- X - X - - X X - X X - X X - X X - X - -		- X - X - X - X - X - X - X - X - X - X		R - 2 R - 2 X X VR X X X X	x	 X - X X X X X X X X R X R X A - X X	- X	X X X c X c X		X - X - X - X - X X X	X -	- X - X - X - X cf X	VR -	cf X X X cf X	- X - - X - X X - cf A - - X cf X	X	f X X										N7 N5-N	early]
57R-1, 4 57R-1, 1 57R-2, 50 57R-2, 1 57R-3, 2 57R-3, 1 58R-1, 4	3-45 18-120 0-52 16-118 -4 47-149 -2-44		10 9 7 12 9 20 15	W W W W W W	X - X - X - X - X - X X	X - - X - X - X - X - X - X	- VI - X X X cf X	X - X - X - X - X - X - X X	x - x x x x <u>x x</u> x x	X - X -	x X - - X - - X - - X - - X - - X - - X -	- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	<pre>< </pre>		X	- X - - X - - X - - X - - X - - X - - X -		x x	x x	- X X																_				N4b	

Table 7. Stratigraphic ranges of selected Miocene planktonic foraminifers in Hole 918D.

918D-63R-2, 34–37 cm, through 86R-2, 69–71 cm, 880.74–1100.69 mbsf). Identification of this zone is based on the presence of *Paragloborotalia opima* together with *Globoquadrina sellii, Globigerinita juvenilis, Paragloborotalia semivera,* and very rare and random specimens of *C. cubensis.*

An undifferentiated interval spanning the lower part of Zone P10 through Zone P12 (early middle Eocene) is identified from Sample 152-918D-88R-1, 70–72 cm, down to the bottom of the sequence (1118.50–1188.16 mbsf). Planktonic faunas are generally scarce and poorly preserved or absent, with the exception of the red clay-rich interval from Sample 152-918A-89R-3, 28–30 cm, through 88R-1, 70–

72 cm, where faunal assemblages are richer, well diversified, and typical of warmer water (Plates 1, 2). The presence of *Turborotalia possagnoensis, T. praecentralis, T. pseudomayeri, T. boweri, Acarinina bullbrooki, A. matthewsae,* and globigerinathekids indicates that this assemblage cannot be older than the early middle Eocene (Premoli Silva and Boersma, 1988; Premoli Silva, pers. comm., 1995). The accompanying assemblage also includes abundant *A. pentacamerata, Subbotina utilisindex, S. angiporoides, S. hornibrooki,* the *Catapsydrax* group, *Globorotaloides,* and pseudohastigerinids, and rarer *Acarinina acceleratoria, A. soldadoensis angulosa, A. lozanoi, A. densa, A. intermedia,* and *Subbotina linaperta.*

Table 8. Stratigraphic ranges of selected middle Eocene and upper Oligocene planktonic foraminifers in Hole 918D.

152-918D Core, section, interval (cm)	Barren samples Pl. foram. sssembl.	Species diversity P. wilcoxensis P. micra S. crociapertura	1. pseudomayerı T. praecentralis T. griffinae	T. possagnoensis G. suteri Guembelitria spp. "G "veneruelana	T. clemenciae S. eocaenica	1. boweri S. utilisindex S. angiporoides minima	T. gemma S. eocaena S. hornibrooki A. rugosoaculeata	G. permicus A. intermedia Globorotalodes sp. 1 A. interposita	A. mura A. cuneicamerata A. densa A. pentacamerata	A. primitiva S. inaequispira A. lozanoi A. tybiri	M. proedermann T. pseudotopilensis A. medizzai C. unicgvus	A. mannewsae "G.". sennii Catapsydrax sp. C. taroubaensis T. reissi	C. cubensus Globigerinatheka sp. G. carcosellensis P. planoconicus	A. souddoensis anguosa A. acceleratoria S. praeturritilina D. sellii G. sellii	G. praebuloides P. semivera P. semivera S. angiporoides angip. G. juvenilis P. ovina	P. nana G. officinalis T. munda P. pseudocontinuosa	G. tripartita G. variabilis Z. connecta P. pseudokugleri "G." cineroansis	G. birnageae G. glutinata G. stainforthi T. angustiumbilicata D. harroenen sis	D. larmeui D. altispira globosa G. rohri G. obesa G. praedehiscens	T. praestainforthi "G." anguliofficinalis	Zones Age
62R-1, 87-90	W	26		X	X		X					- X		X	X X	XXX - cf	XXXXVR	- A X X -	- X X XVR	хх	
62R-2, 77-81	W	20		- X - X	X		X					- X			ХХ	X - X X X	XXX	- X X - X	ХХ	P	22
63R-1, 93-96	W	19		- X - cf	f		X					- X			ХХ	X - X - X	ххххх	X X cf X		-	e
63R-2, 34-37	W	7			X			X						X	- X X	X					er
68R-1, 45-47	В	0																			ŏ
72R-1, 25-27	W	2													X	X -					. <u>e</u>
75R-1, 53-55	W	2										- X			X -						ō
75R-1, 133-135	W	14		- X - X			X					- X R		X		X	хх				e
75R-2, 26-28	W	1													X -					P	21 5
75R-2, 108-110	W	9		- X								- XVI	R		cf X X	X - X X					
75R-3, 5-8	W	6		- X		}	/ <u>R</u>					· X			X -	- X X					
/6K-1, 28-30	w	9		- X	к		к					- X X			X X X	х					
76R-1, 97-100 to 78R-1, 25-27	2	0														-					
84K-1, 39-01	w	2		v v		v								· · · · · · · · · · · · · · · · · · ·	of V V	- v					
86R-2 69-71	w	6		- A - A		Λ-								of X	V V V V V V	л					
88R-1 70-72	w	31 X X X R	x .	. cf X .	- X -	CX		X X	X	. x x x .	x . x	cf X cf	XX.cfX	X . R							~~~
88R-CC 3-5	w	73 X X X -		- cf R -	- X -	XX	X X -	- cf X X X	X	- X - X -		cf - X -	- X - X	X cf -							
89R-1 37-38	w	14 X X			- X -		X X	X VR -	x x	X	- x	X - X	x x								
89R-1 106-108	w	18 - X	х -		x	(X -	xxxxx		X		x - x >	(X -)	x x - x	x							
89R-2, 13-15	w	30 X X X -	X cf	х - х -	- X R	XX	- x x x x	x x -	x - x x	- X VR	X X	- x 2	X X - c	fX - cf							2 0
89R-2, 97-99	W	23 X X cf -	cf X	R -	X	(- X	- X - X -	X X -	X	x x	- X - cf		XX cf c	f X cf						i	- d
89R-3, 28-30		26 X X	cf -	- cf X -	- X c	f	XXXX-	X	X X	хх	- X X X	x x x x	X - X X VRY	< C							୍ ର
89R-3, 63-65	W	16 X X	Х -		- cf X	ζ	X X X	X X	K X	X X cf	- X		- X								포 영
89R-3, 98-99	W	24 X		- cf X -	- X -		cf X X	2	x - x x	X X cf	- x x x x x	C cf X X cf X	X								
89R-4, 34-36	W	25 X cf		- cf	- X -	XX	- X - X X	- X - X X	XXXRX	X cf R X cf	хххх										
90R-2, 16-18	W	11 X - X -			- cf -	- X	хххх -	X cf X													
90R-2, 113-115	W	9 X		- cf	- cf -	- X	- X X X X	X													ē
90R-3, 31-33	ΒW	1					- X														ta 🗌
90R-3, 89-91	W	7 x	- X		- X X	C cf X	X														ä
91R-1, 14-16	W	3 X		cf	fX																'er
91R-1, 105-107	W	2		- cf X							+				+						Ň
92R-1, 17-19 to 92R-2, 41-43	3	0		-	1			1	1	1					1						-
93R-1, 24-26	W	4 X	XX	Х	1			1	1		1				1						
93R-1, 38-40 to 95R-1, 21-23	3 W	0																			
90K-2, 43-45	w	5 X cf X			1			1	1						1						
190K-2, $9/-99$ to $90K-3$, $94-96$	3	0	1		1			1	1	1	1	1	1	1	1	1	1	1	1 1	1	

Note: Abbreviations defined in Table 2.

Site 919

Site 919 is located on the continental rise of southeastern Greenland, within the western part of the Irminger Basin. Three holes were drilled, with recovery from Holes 919A and 919B only. The sedimentary sequence at this site is composed predominantly of silty clay, clayey silt, and clay with silt. It is characterized by numerous levels with fining-upward grain sizes and very sharp basal contacts, typical of transportation by, and deposition from, turbidity currents.

Ten cores were retrieved with the APC at Hole 919A with an average core recovery of 100%. Pleistocene planktonic foraminifers are generally abundant and well preserved throughout the sequence.

Eight cores were recovered with the APC at Hole 919B. The core recovery was 100%.

Pleistocene planktonic foraminiferal faunas are generally abundant and well preserved; however, both abundance and preservation diminish toward the bottom of the sequence. The main planktonic foraminiferal bioevents at Site 919 are reported in the range charts and the biostratigraphic log together with the occurrence of the "warmer assemblage" and species diversity trends (Fig. 6; Tables 9, 10).

DISCUSSION

Pliocene-Pleistocene Transition

The transition from the late Pliocene to the early Pleistocene deserves comment. Spiegler and Jansen (1989) described the upper *Neogloboquadrina atlantica* dextral and *Neogloboquadrina pachyderma* dextral Zones in the uppermost Pliocene sediments of the Vøring Plateau (Leg 104). In those sites, the two zones were characterized by the presence of small specimens of the marker species only (D. Spiegler, pers. comm., 1995) or more rarely were associated with *Globigerina bulloides* and *Turborotalita quinqueloba* (Spiegler and Jansen, 1989).

The upper *N. atlantica* dextral and *N. pachyderma* dextral Zones are not present at the Leg 152 sites. The only exception is a very short upper *N. atlantica* dextral Zone in Hole 918A, where the marker species is associated with *N. pachyderma* dextral. In the Leg 152 holes, these two species generally occur together with the temperate transitional species *Globorotalia scitula* and *Globorotalia inflata* (Ruddiman and McIntyre, 1976; Aksu et al., 1989) in well diversified assemblages. Therefore, they may be considered as relatively warmer species. This interpretation is also supported by the co-occurrence of a change in coiling direction from dextral to sinistral in *N. atlantica* together with a significant increase in planktonic foraminifer δ^{18} O values in the Labrador Sea (Aksu and Hillaire-Marcel, 1989).

Based on these data the presence of *N. atlantica* dextral and *N. pachyderma* dextral as the only components of the assemblages and the diachroneity of the change in coiling direction (Aksu and Kaminski, 1989) may be related to warming episodes. This warming on the Vøring Plateau was, however, probably not enough to produce the proliferation of the richer and relatively more diversified assemblages observed in the Irminger Basin at Site 918. On the other hand, the warmer North Atlantic Current and the persistence of the Gulf Stream off the eastern Canadian Margin and the southern Labrador Sea may have had a more marked influence on the surface water along the East Greenland coasts (Berggren and Schnitker, 1983; Eldholm et al., 1989).

First Occurrence of N. pachyderma and N. acostaensis

The first occurrences of the species *Neogloboquadrina pachyderma* and *N. acostaensis* also deserve comment. In the East Greenland sites, *Neogloboquadrina pachyderma* sinistral first occurs in the uppermost part of Zone N8 in the upper lower Miocene, very close to

Figure 6. Main planktonic foraminifer bioevents in Holes 919A and 919B, plotted vs. biozone assignments and species diversity trend.

•	
Age	Pleistocene
Zones	N. pachyderma sinistral
G. obesa	
0. universa	0 - - - - - - - - - - - - -
G. uvula	OW Control - - - -
T. minutissima	<u>N</u> X X X
N. atlantica sin.	
N. humerosa	N x x x x x x x x x x x x x x x x x x x
Z. decoraperta	
G. glutinata	OVR -
G. inflata	O C C C C C C C C C C C C C C C C C C C
G. scitula	C C C C C C C C C C C C C C C C C C C
N. pachyderma dex.	$\frac{\sqrt{R}}{\sqrt{R}} + \frac{1}{\sqrt{R}} + $
S. globigerum	55 X
G. juvenilis	0x x x x x x x
T. quinqueloba	<u>I</u> X A X X X X X X X X X X X X X X X X X X
Tenuitellinata sp.	Lxxxxxxxx · x · x · x · x · x · x · x ·
N. dutertrei	\mathbb{V} XXXXXXX R · X · X X \mathbb{Y} X · X X \mathbb{C} · X · X · X · X X X \mathbb{C} · X · · X · · \mathbb{X} \mathbb{X} \mathbb{X} \mathbb{Y} \mathbb{X} \mathbb{R} · X \mathbb{X}
N. acostaensis	<u>×</u> xxxx x <u>x</u>
G. bulloides	0x x
T. humilis	N N - -
N. pachyderma sin.	<u>V</u> x x x x x x x x x x x x x x x x x x x
Pl. foram. assembl.	
152-919A Core, section, interval (cm)	$\begin{split} & \text{H-1}, 130-132\\ & \text{H-2}, 20-22\\ & \text{H-2}, 96-98\\ & \text{H-3}, 130-132\\ & \text{H-3}, 130-132\\ & \text{H-4}, 20-22\\ & \text{H-4}, 130-132\\ & \text{H-5}, 20-22\\ & \text{H-5}, 57-99\\ & \text{H-5}, 130-132\\ & \text{H-5}, 130-132\\ & \text{H-1}, 96-98\\ & \text{H-4}, 130-132\\ & \text{H-1}, 15-17\\ & \text{H-1}, 96-98\\ & \text{H-2}, 95-97\\ & \text{H-3}, 13-15\\ & \text{H-3}, 13-15\\ & \text{H-4}, 101-103\\ & \text{H-5}, 95-97\\ & \text{H-2}, 95-97\\ & \text{H-2}, 95-97\\ & \text{H-2}, 95-97\\ & \text{H-2}, 95-97\\ & \text{H-3}, 8-10\\ & \text{H-4}, 96-98\\ & \text{H-4}, 96-98\\ & \text{H-4}, 96-98\\ & \text{H-4}, 96-98\\ & \text{H-4}, 95-97\\ & \text{H-2}, 95-97\\ & \text{H-3}, 97-99\\ & \text{H-3}, 97-99\\ & \text{H-3}, 97-99\\ & \text{H-3}, 97-99\\ & \text{H-2}, 95-97\\ & \text{H-4}, 96-98\\ & \text{H-1}, 105-97\\ & \text{H-2}, 95-97\\ & \text{H-3}, 90-92\\ & \text{H-4}, 96-98\\ & \text{H-4}, 110-132\\ & \text{H-4}, 27-31\\ & \text{DH-1}, 46-48\\ & \text{DH-1}, 116-120\\ & \text{DH-5}, 70-72\\ & \text{DH-6}, 41-43\\ & \text{DH-1}, 42-38\\ & \text{DH-1}, 37-37\\ & \text{DH-5}, 70-72\\ & \text{DH-6}, 41-43\\ & \text{DH-1}, 46-48\\ & \text{DH-1}, 570-72\\ & \text{DH-6}, 41-43\\ & \text{DH-1}, 45-48\\ & \text{DH-1}, 45-38\\ & \text$

Table 9. Stratigraphic ranges of selected Pleistocene planktonic foraminifers in Hole 919A.

Notes: * = the presence of specimens of *N. atlantica* sinistral that are probably reworked. Abbreviations defined in Table 2.

152-919B Core, sectior interval (cm)	Pl foram assembl	Barren Samples	N. pachyderma	N. pachyderma	N. atlantica sin.	G. juvenilis	Tenuitellinata sp.	G. glutinata	T. quinqueloba	G. bulloides	N. dutertrei	T. minutissima	N. atlantica dex.	G. scitula	N. acostaensis	S. globigerum	G. inflata	G. uvula	N. humerosa	Zones	Age
3H-1, 94-96 3H-2, 100-10: 3H-3, 95-97 3H-4, 96-98 3H-5, 95-97 3H-6, 96-98 4H-1, 95-97 4H-2, 95-97 4H-3, 95-97 4H-4, 95-97 4H-5, 95-97 5H-1, 95-97	2 W W W		C X X C C C C C C X X C	K R VR - R/C VR - R VR - R VR -	- *	X - - - - - - - - - - - - - - - - - - -	X X X X X X X X X X X X X X	- - - - - - - - - - - - - - - - - - -	X X X VR X X X X X X X X X	x C 	x - - - - - - - - - - - - - - - - - - -	- X 		R - - - - - - - - - - - - - - - - - - -	X VR X X Cf R		VR - C/R - - - X X - X -	- VR - - X X - X - VR -	-		
5H-2, 95-97 5H-3, 95-97 5H-4, 94-96 5H-5, 97-99 5H-6, 97-99 6H-1, 95-97 6H-2, 94-96 6H-3, 96-98 6H-4, 95-97	WW		X C X C X C X C X X C X	- R - R R R -	- * * * * -	- X - X X X -	X X X X X X	- - - - - - - - - - - - - - - - - - -	X X X X X X	x	cf X - X X X X	- x - - x x - x	* * -		X X X X X X X	-	- - - R C -	- X - X X -	- - - - X	<i>derma</i> sinistral	istocene
6H-6, 58-60 7H-1, 21-23 7H-2, 35-37 7H-2, 112-114 7H-3, 59-61 7H-3, 112-114 7H-4, 30-32 7H-4, 125-127 7H-5, 125-127 7H-5, 125-127 7H-6, 19-21 7H-6, 143-144			C C C C X X X X X X X X X X X X X X X X	R VR VR - VR - X VR X R	* * * - * *	X - - - - - - - - - - - - - - - - - - -	X 	X 		<u>X</u>	X - - - - - - - - - - - - - - - - - - -	X				- - - - - - - - - - - -	x			N. pachy	Ple
8H-1, 56-58 8H-1, 120-12: 8H-2, 29-31 8H-2, 138-140 8H-3, 67-69 8H-3, 119-12: 8H-4, 9-11 8H-4, 128-130 8H-5, 12-14 8H-5, 108-110 8H-5, 108-110	2)) W W	в		R VR R - - R VR - -	* * * * * *	- - - - - - - - - - - - - - - - - - -	X R X VR X X X X	- - - R - - - - - R		X VR X	cf cf X - X X X	- - - - - - - - - - - - - - - - - - -	*	- - - VR	X - - cf	C					

Table 10. Stratigraphic ranges of selected Pleistocene planktonic foraminifers in Hole 919B.

Notes: * = the presence of specimens of *N. atlantica* sinistral and dextral that are probably reworked. Abbreviations defined in Table 2.

the Zone N8–N9 transition. Therefore, it occurs much earlier than at other middle and high latitude sites in the North Atlantic where it commonly occurs in the *N. pachyderma* sinistral Zone, at about 1.8 Ma (Hooper and Weaver, 1987; Raymo et al., 1987). However, Aksu and Kaminski (1989) and Spiegler and Jansen (1989) first observed this species within the *N. atlantica* dextral Zone in the upper Miocene, in the Labrador Sea and the Norwegian Sea, respectively. Premoli Silva et al. (1993) found this species within Zones N16–N17 in the upper Miocene in the Northwestern Pacific. Based on these previous data and in accordance with Spiegler and Jansen (1989) and Spiegler (pers. comm., 1995), this event may not be an isochronous stratigraphic marker over large distances at high northern latitudes.

The FO of *Neogloboquadrina acostaensis* was used by Spiegler and Jansen (1989) to indicate the middle/late Miocene boundary. In a later revision of the biostratigraphy of the Vøring Plateau, Spiegler and Müller (1992) and Müller and Spiegler (1993) equated the middle/late Miocene boundary to the boundary between calcareous nannofossil Zones NN8 and NN9 of Martini (1971) and Zones CN6 and CN7 of Okada and Bukry (1980). It also corresponds to the boundary between the *Bolboforma laevis* and *B. subfragoris* Zones (see also Spezzaferri and Spiegler, this volume). Based on this revision, the FO of *Neogloboquadrina acostaensis* in the North Atlantic lies in the upper middle Miocene.

In Leg 152 sediments the first finding of *N. acostaensis* is preceded by an extended interval devoid of planktonic foraminifers. There-

fore, these sites may not record its FO. Sample 152-918D-37R-3, 13–16 cm, is only tentatively placed in the late Miocene. Its assignment to the middle Miocene, however, cannot be ruled out.

Comparison With Other Sites in the North Atlantic

Figure 7 summarizes age assignments for middle Eocene through Holocene sediments recovered in Hole 918D and 915A relative to some of the more representative sites previously drilled in nearby areas in the North Atlantic. This summary is compiled using, and in some cases reinterpreting, the previous biostratigraphic data of Berggren (1972), Poore (1979), Krasheninnikov (1979), Weaver (1987), Spiegler and Jansen (1989), Aksu and Kaminski (1989), and Firth (1989) as well as the lithostratigraphic data in Laughton, Berggren, et al. (1972); Montadert, Roberts, et al. (1979); Eldholm, Thiede, Taylor, et al. (1989); and Srivastava, Arthur, Clement, et al. (1989). Included are Sites 407 and 408 (East Greenland Margin), Holes 112, 112A, and 647A (Labrador Sea), Holes 642B and 643A (Vøring Plateau), Sites 406 and 116 (Rockall Plateau), and Hole 611C (Rockall Trough).

Eocene sediments were recovered from the Leg 152 sites, plus Sites 112, 116, 406, 408, 647, and Hole 643A. As at Hole 918D, Sites 112, 406, 408, and 643 recovered a red clayey middle Eocene interval. An important hiatus spans the interval from the upper middle Eocene to the entire lower Oligocene in Hole 918D. A similar hiatus

e	E	ast Gree	enland		Labrado	or Sea	Voerin	g Pl.	Rocka	11 Pl.	Rockall Trough
Ag	918D	915A	407	408	647A	112 112A	642B	643A	406	116	611C
		1R	1-CC	1-CC	1R		1H-1	1H	1		1-CC
ene											
stoc						1					
Plei							7H_2	5H	2_3		
	40.1	3R	6-2	4-CC 5-1	6R 7P		711-2	511	2-5	1	10-CC 11-1
6	4R-1		0-CC	5-1	/K		9H-2	7H	3-1	1	
cene						2					
Plic							13H-6				
	24R-2		17-3	13-CC	13R			9H	4-1 4-2	2	30-CC
	24R-3			14-CC		?	15H-1	9H	6-1	3	31-1
-	37R-3	8	17-CC	24-CC	a	3	19H-2	12H	15-2	4	47-CC
sene .	?	o dat	18-3	25-5	o dat		19H-4		16-1	5	
Mioc	38R-1	ŭ	10.00	21.00	u		2211.2	192			fes
⁻ -			19 <u>-CC</u> 20-CC	32-2		- 4 -	23 <u>H-2</u> 23H-3	10A	19 <u>-</u> 1 20-3	10. 11	end o ampl
e.	58R-3			34-6		?	25H				° s
	(2D. 1		30-CC	37-2		2	2511		20.5	20-1	
l.	62R-1		30-CC		15-1	2 5			29-5	20-5	
gocei	86R-2		<u>43-CC</u>		_16-3_			41X	36-1		
Oliş					17-1	10					
e.					30-7	?				25	
		13R			30-7	13		55X		26	
-		_15R_ ?	salts	salts	46-3	?			36-2	28	
. ne		18R	pa	ba:	46-4	14					
Eoce	88R-1 rc	?			rc 63-1	? rc		rc	rc?		
	96R-1 ?	_22 K _ ?			65-3	- 16_			_ <u>_</u>		
د	? SDP	? SDR_			71-2 SDR				io pua		
	SDK				SDR	SDR		SDR	e Sa		
		hiatus	:	n	o data		Seawa (SDR)	rd Dip and/o	ping R r basal	eflec ts	tor

Figure 7. Summary of the planktonic foraminifer biostratigraphy for the sediments from Leg 152 Holes 918D and 915A and from DSDP Legs 12, 48, 49, 94, and ODP Legs 104 and 105 (partially modified according to the present paper). For holes the following values are represented: core number, core type (when available), and section number (when available).

is observed at Site 406. The only other event that has a less local significance is a hiatus probably eliminating the uppermost part of the middle Miocene in Holes 918D and Site 406.

Previous studies on deep sea circulation provide a compilation of the main hiatuses in the North Atlantic (Miller and Tucholke, 1983; Pearson and Jenkins, 1986). Pearson and Jenkins (1986) suggested the presence of interregional hiatuses during the late Pliocene, early Miocene, early Oligocene, and late middle Eocene in the North Atlantic. These data indicate that the short early Miocene hiatus and part of the hiatus spanning the late middle Eocene and the early Oligocene identified in East Greenland may have interregional extension.

Seven of the holes considered in Figure 7 encounter basement and/or the seaward dipping reflector. However, the boundary between the basement and the sedimentary sequence cannot be identified based on planktonic foraminifers in Holes 918D and 915A. This boundary reasonably occurs within the lower Eocene in the Labrador Sea. Sites 407 and 408 encountered basalt at the beginning of the upper Oligocene and in the lower Miocene, respectively. Intercalation of lower Miocene, calcareous nannofossil-rich sediments within the basalt (Steinmetz, 1979) indicates that local volcanic activity persisted on the Reykjanes Ridge during this period.

Paleoenvironmental Remarks

Decreases in temperature are often accompanied by declines in species diversity (Bé, 1977; Hemleben et al., 1989; Jenkins, 1993). Therefore, it is reasonable to assume that fossil species diversity would also follow changes in paleotemperature (Jenkins, 1993). Kennett and Shackleton (1976) also demonstrated that there is some correlation between the fall in diversity and the isotope record from planktonic foraminifers. In the absence of quantitative data, a preliminary and tentative paleoenvironmental interpretation based on planktonic foraminiferal assemblages from Leg 152 sediments may be based on species diversity and changes (Spezzaferri, 1994a).

Aksu et al. (1989) observed that, in the Labrador Sea, Pleistocene glacial intervals were characterized by low species diversity wherein the fauna was dominated by *N. pachyderma* sinistral, with varying percentages of *G. bulloides, G, quinqueloba,* and *N. pachyderma* dextral. Interglacial stages were characterized by higher species diversity wherein the faunas included *N. pachyderma* dextral, *N. quinqueloba, G. inflata,* with rarer *N. dutertrei, G. tumida, G. scitula, G. hirsuta, G. crassaformis, G. menardii,* and *T. truncatulinoides.*

Comparing the curves of species diversity obtained for Pleistocene assemblages from Hole 919A and 919B (Fig. 6) with the oxygen isotope record (Flower, this volume), it is evident that some intervals with relatively higher species diversity correlate with interglacial isotopic Stages 1, 5, 7, 9, 11, 13, 15, and 17.

No isotope record is available for Hole 918A; however, several intervals characterized by higher planktonic foraminiferal species diversity, here interpreted as interglacial stages, are identified throughout the sequence (Fig. 4). Species diversity is markedly lower in the Pliocene than in the Pleistocene. However, the FO of *N. atlantica* sinistral at the base of the Pliocene in Hole 918D is associated with relatively abundant and large-sized *O. universa*. This latter species is generally abundant at low latitudes and in warm water. Therefore, the early Pliocene in the North Atlantic may have been characterized by warmer climate. This interpretation is also supported by Funder et al. (1985), who identified the presence of an early Pliocene boreal forest in northeastern Greenland.

Planktonic foraminifers are generally scarce, sometimes absent, and low in diversity in the upper Miocene. This may reflect the general cooling trend in the North Atlantic within the early late Miocene at about 10–11 Ma and the initiation of glaciations in East Greenland at about 7–8 Ma (Larsen et al., 1994).

A relatively milder middle Miocene interval is indicated by the presence of a few specimens of *Globigerinoides* spp. However, the high dissolution affecting planktonic foraminiferal assemblages, the low species diversity, and the higher abundance of radiolarians (see Appendix) may reflect cooler and/or stronger upwelling conditions during this period than in the early Miocene (Berggren and Schnitker, 1983).

During the early Miocene–late Oligocene, a broad tropical-subtropical bioprovince with gradational boundaries reflected the extension of warm-water masses to unusually high latitudes (Thunell and Belyea, 1982; Berggren and Schnitker, 1983; Kennett et al., 1985). This warming is documented in East Greenland by highly diversified planktonic foraminiferal assemblages, which also include a high abundance of warm-water taxa such as the "*Globigerina*" ciperoensis group, *Globigerinoides* spp., dentoglobigerinids and globoquadrinids (Spezzaferri, 1994a).

No data are available for paleoclimatic interpretation based on planktonic foraminifers from early late Oligocene to middle Eocene times, when turbiditic sandy sedimentation, probably originated on the continental shelf (Thiede et al., 1986), and a hiatus prevented the preservation and/or deposition of calcareous sediments.

Very high diversity assemblages, together with abundant acarininids and turborotaliids in the middle Eocene sediments, indicate that warmer conditions prevailed during this interval (Boersma et al., 1987; Premoli Silva and Boersma, 1989; Boersma and Premoli Silva, 1991).

SUMMARY AND CONCLUSIONS

Leg 152 on the East Greenland Margin provided an extended sedimentary sequence at Site 918. However, a major hiatus spans the upper Eocene and the lower Oligocene. Two minor hiatuses occurred in the lowest Miocene and probably in the upper part of the middle Miocene. According to previous studies, the hiatus spanning the upper middle Eocene and the lower Oligocene, and the hiatus spanning the lowest Miocene may have regional extension; moreover, the middle Eocene red clay-rich interval seems to be a common feature in the North Atlantic.

Paleoclimatic interpretation based on planktonic foraminifers suggests that several glacial-interglacial episodes occurred during the Pleistocene and Pliocene. The early Pliocene was characterized by a warm climate. Cool conditions prevailed during the late Miocene when glaciation was initiated in southern Greenland. A relatively milder middle Miocene was preceded by the warm Oligocene and Eocene.

Recognition of climatically controlled first occurrences of *N. pachyderma* and changes in the coiling direction of *N. atlantica* is supported in this study and by data in the literature.

SPECIES LIST AND TAXONOMIC NOTES

This list of species is particularly rich for high latitudes. This signifies that unusually abundant and highly diverse planktonic foraminifer faunas (mainly belonging to the Paleogene and Miocene) were encountered in the sediments recovered in the North Atlantic during Leg 152. Species are listed in alphabetical order by genus.

The generic and specific concepts and the species groups used by Boersma and Premoli Silva (1983), Boersma et al. (1987), Premoli Silva and Boersma (1988, 1989), and by Spezzaferri (1994b) are retained herein, whenever possible.

The species illustrated in the plates in this paper are those rarely given elsewhere or those of stratigraphic interest.

Acarinina bullbrooki (Bolli, 1957) (= Globorotalia bullbrooki Bolli)

- Acarinina densa (Cushman, 1925) (= Pulvinulina crassata var. densa Cushman)
- Acarinina cuneicamerata (Blow, 1979) (= Globorotalia (Acarinina) cuneicamerata Blow)

Acarinina intermedia Subbotina, 1953

Acarinina interposita Subbotina, 1953

- Acarinina libyaensis (El Khoudary, 1977) (= Truncorotaloides libyaensis El Khoudary)
- Acarinina lozanoi (Colom, 1954) (= Globigerina lozanoi Colom)
- Acarinina matthewsae (Blow, 1979) (= Globorotalia (Acarinina) matthewsae Blow)
- Acarinina medizzai (Toumarkine and Bolli, 1975) (= Globigerina medizzai Toumarkine and Bolli). This form seems closely related to Acarinina rugosoaculeata.
- Acarinina acceleratoria Khalilov, 1956
- Acarinina pentacamerata Subbotina, 1953
- Acarinina primitiva (Finlay, 1939) (= Globoquadrina primitiva Finlay)
- Acarinina pseudotopilensis Subbotina 1953
- Acarinina rohri (Brönnimann and Bermudez, 1953) (= Truncorotaloides rohri Brönnimann and Bermudez)
- Acarinina rotundimarginata Subbotina, 1953
- Acarinina rugosoaculeata Subbotina, 1953
- Acarinina soldadoensis angulosa (Bolli, 1957) (= Globigerina soldadoensis Brönnimann subsp. angulosa Bolli)

- Cassigerinella chipolensis (Cushman and Ponton, 1932) (= Cassidulina chipolensis Cushman and Ponton)
- Catapsydrax dissimilis (Cushman and Bermudez, 1937) (= Globigerina dissimilis Cushman and Bermudez)
- Catapsydrax taroubaensis (Brönnimann, 1952) (= Globigerina taroubaensis Brönnimann)
- Catapsydrax unicavus Bolli, Loeblich, and Tappan, 1957
- Chiloguembelina cubensis (Palmer, 1934) (= Guembelina cubensis Palmer). Dentoglobigerina altispira globosa (Bolli, 1957) (= Globoquadrina altispira globosa Bolli)
- Dentoglobigerina baroemoenensis (Le Roy, 1939) (= Globigerina baroemoenensis Le Roy)
- Dentoglobigerina galavisi (Bermudez, 1961) (= Globigerina galavisi Bermudez)
- Dentoglobigerina langhiana (Cita and Gelati, 1960) (= Globoquadrina langhiana Cita and Gelati)
- Dentoglobigerina larmeui (Akers 1955) (= Globoquadrina larmeui Akers)

Gallitellia vivans (Cushman, 1934) (= *Guembelitria vivans* Cushman)

- *Globigerina* sp. A Very rare specimens of this informal species described by Poore (1979) were found in Pliocene sediments from the East Greenland Margin (Sample 152-918A-18H-2, 95–97 cm, only). They possess four to six chambers in the last whorl, an open and wide umbilicus, and an umbilical-extraumbilical aperture sometimes bordered by a thin but distinct lip. Wall texture is smooth and microperforate.
- "Globigerina" anguliofficinalis Blow, 1969
- Globigerina bulbosa Le Roy, 1944
- Globigerina bulloides d'Orbigny, 1926
- "Globigerina" ciperoensis Bolli, 1957

Globigerina falconensis Blow, 1959

- Globigerina officinalis Subbotina, 1953
- Globigerina praebulloides Blow, 1959
- "Globigerina" prasaepis Blow, 1969
- "Globigerina" pseudociperoensis Blow, 1969 (= Globigerina praebulloides pseudociperoensis Blow)
- "Globigerina" venezuelana Hedberg, 1937
- *Globigerinatheka index* (Finlay, 1939) (= *Globigerinoides index* Finlay)
- "Globigerinatheka" senni (Beckmann, 1953) (= Sphaeroidinella senni Beckmann)
- Globigerinatheka micra (Shutskaya, 1958) (= Globigerinoides subconglobatus var. micra Shutskaya)
- Globigerinella obesa Bolli, 1957
- Globigerinella siphonifera (d'Orbigny, 1839) (= Globigerina siphonifera d'Orbigny)
- *Globigerinita glutinata* (Egger, 1893) (= *Globigerina glutinata* Egger)
- Globigerinita juvenilis (Bolli, 1957) (= Globigerina juvenilis Bolli)
- *Globigerinita uvula* (Ehrenberg, 1861) (= *Pylodexia uvula* Ehrenberg)
- Globigerinoides bisphericus Todd, 1954
- Globigerinoides diminutus Bolli, 1957
- Globigerinoides immaturus Le Roy, 1939
- Globigerinoides parawoodi Keller, 1961
- Globigerinoides quadrilobatus (d'Orbigny, 1839) (= Globigerina quadrilobata d'Orbigny)
- Globigerinoides ruber (d'Orbigny, 1839) (= Globigerina rubra d'Orbigny) Globigerinoides subquadratus Brönniman, 1954
- Globigerinoides subsacculifer Cita, Premoli Silva and Rossi, 1965
- Globigerinoides trilobus (Reuss, 1850) (= Globigerina triloba Reuss)
- Globoquadrina dehiscens (Chapman, Parr, and Collins, 1934) (= Globorotalia dehiscens Chapman, Parr and Collins)
- Globoquadrina praedehiscens Blow and Banner, 1962
- Globoquadrina rohri (Bolli, 1957) (= Globigerina rohri Bolli)
- Globoquadrina sellii Borsetti, 1959
- "Globoquadrina" tapuriensis (Blow and Banner, 1962) (= Globigerina tripartita tapuriensis Blow and Banner)
- Globoquadrina tripartita (Koch, 1926) (= Globigerina bulloides var. tripartita Koch)
- Globorotalia birnageae Blow, 1959
- *Globorotalia* cf. *suterae* Catalano and Sprovieri, 1971. In the studied samples were found only specimens resembling those illustrated by Poore (1979) as *Globorotalia* cf. *suterae*. Typical specimens belonging to this species are probably absent in the North Atlantic.
- *Globorotalia inflata* (d'Orbigny, 1839) (= *Globigerina inflata* d'Orbigny)
- Globorotalia lenguaensis Bolli, 1957
- Globorotalia miozea Finlay, 1939

- Globorotalia peripheroronda Blow and Banner, 1966 (= Globorotalia (Turborotalia) peripheroronda Blow and Banner)
- Globorotalia praescitula Blow, 1959
- Globorotalia scitula (Brady, 1882) (= Pulvinulina scitula Brady)
- Globorotalia theyeri Fleisher, 1974
- Globorotalia zealandica Hornibrook 1958
- Globorotaloides carcosellensis Toumarkine and Bolli, 1975
- Globorotaloides permicrus (Blow and Banner, 1962) (= Globorotalia (Turborotalia) permicra Blow and Banner)
- *Globorotaloides* sp. 1. This informal species was first identified in the subantarctic region and is recurrent in all the Atlantic Ocean (Premoli Silva and Spezzaferri, 1990; Nocchi et al., 1991). However, in the Irminger Basin it is usually rare.
- Globorotaloides stainforthi (Bolli, Loeblich, and Tappan, 1957) (= Catapsydrax stainforthi Bolli, Loeblich, and Tappan)
- Globorotaloides suteri Bolli, 1957

Globorotaloides variabilis Bolli, 1957

- Globoturborotalita rubescens (Hofker, 1956) (= Globigerina rubescens Hofker)
- Hastigerinopsis riedeli (Rögl and Bolli, 1973) (Hastigerinella riedeli Rögl and Bolli)
- Morozovella broedermanni (Cushman and Bermudez, 1949) (= Globorotalia (Truncorotalia) broedermanni Cushman and Bermudez)
- Neogloboquadrina acostaensis (Blow, 1959) (= Globorotalia acostaensis Blow)
- Neogloboquadrina atlantica (Berggren, 1979) (= Globigerina atlantica Berggren)
- Neogloboquadrina conglomerata (Schwager, 1866) (= Globigerina conglomerata Schwager)
- Neogloboquadrina dutertrei (d'Orbigny, 1830) (= Globigerina dutertrei d'Orbigny)
- Neogloboquadrina humerosa (Takayanagi and Saito, 1962) (= Globorotalia humerosa Takayanagi and Saito)
- Neogloboquadrina pachyderma (Ehrenberg, 1861) (= Aristospira pachyderma Ehrenberg)
- Neogloboquadrina praehumerosa (Natori, 1976) (= Globorotalia (Turborotalia) humerosa praehumerosa Natori)

Orbulina universa d'Orbigny, 1839

- Paragloborotalia acrostoma (Wezel, 1966) (= Globorotalia acrostoma Wezel)
- Paragloborotalia continuosa (Blow, 1959) (= Globorotalia opima subsp. continuosa Blow)
- Paragloborotalia incognita (Walters, 1965) (= Globorotalia zealandica incognita Walters)
- Paragloborotalia kugleri (Bolli, 1957) (= Globorotalia kugleri Bolli)
- Paragloborotalia mayeri (Cushman and Ellisor, 1939) (= Globorotalia mayeri Cushman and Ellisor)

Paragloborotalia nana (Bolli, 1957) (= Globorotalia opima nana, Bolli)

Paragloborotalia opima (Bolli, 1957) (= Globorotalia opima opima Bolli)

- Paragloborotalia pseudocontinuosa (Jenkins, 1967) (= Globorotalia pseudocontinuosa Jenkins)
- Paragloborotalia pseudokugleri (Blow, 1969) (= Globorotalia pseudokugleri Blow)
- Paragloborotalia semivera (Hornibrook, 1961) (= Globigerina semivera Hornibrook)

Paragloborotalia siakensis (Le Roy, 1938) (= Globigerina siakensis Le Roy) Planorotalites planoconicus (Subbotina, 1953) (= Globorotalia planoconica

- Subbotina) Planorotalites pseudoscitulus (Glaessner, 1937) (= Globorotalia pseudoscit-
- ula Glaessner) Praeorbulina glomerosa (Blow, 1956) (= Globigerinoides glomerosa glome-
- rosa Blow)

Praeorbulina sicana (de Stefani, 1952) (= Globigerinoides sicana de Stefani)

- Praeorbulina transitoria (Blow, 1956) (= Globigerinoides transitoria Blow) Pseudohastigerina danvillensis (Howe and Wallace, 1932) (= Nonion danvillensis Howe and Wallace)
- Pseudohastigerina micra (Cole, 1927) (= Nonion micrus Cole)
- Pseudohastigerina wilcoxensis (Cushman and Ponton, 1932) (= Nonion wilcoxensis Cushman and Ponton)
- Sphaeroidinellopsis disjuncta Finlay, 1940
- Sphaeroidinellopsis seminulina (Schwager, 1966) (= Globigerina seminulina Schwager)
- Streptochilus globigerum (Schwager, 1866) (= Textilaria globigera Schwager)

- Subbotina angiporoides angiporoides (Hornibrook, 1965) (= Globigerina angiporoides Hornibrook)
- Subbotina angiporoides minima (Jenkins, 1966) (= Globigerina angiporoides Hornibrook subsp. minima Jenkins)
- Subbotina crociapertura Blow, 1979
- Subbotina eocaena (Guembel, 1868) (= Globigerina eocaena Guembel). This species is very rare in Greenland.

Subbotina eocaenica (Terquem, 1882) (= Globigerina eocaenica Terquem) Subbotina hornibrooki (Brönniman, 1952) (= Globigerina hornibrooki, Brönniman)

- Subbotina inaequispira (Subbotina, 1953) (= Globigerina inaequispira Subbotina)
- Subbotina linaperta (Finlay, 1939) (= Globigerina linaperta Finlay)
- Subbotina utilisindex (Jenkins and Orr, 1973) (= Globigerina utilisindex Jenkins and Orr)
- Tenuitella anfracta (Parker, 1967) (= Globorotalia anfracta Parker)
- *Tenuitella clemenciae* (Bermudez, 1961) (= *Turborotalia clemenciae* Bermudez)
- Tenuitella gemma (Jenkins, 1971) (= Globorotalia (Turborotalia) gemma Jenkins)
- *Tenuitella iota* (Parker, 1962) (= *Globigerinita iota* Parker)
- Tenuitella minutissima (Bolli, 1957) (= Globorotalia minutissima)
- Tenuitella munda (Jenkins, 1966) (= Globorotalia munda Jenkins)

Tenuitella neoclemenciae Li, 1987

- Tenuitella reissi (Loeblich and Tappan, 1957) (= Globorotalia reissi Loeblich and Tappan)
- Tenuitellinata angustiumbilicata (Bolli, 1957) (= Globigerina ciperoensis angustiumbilicata Bolli)
- Tenuitellinata praestainforthi (Blow, 1979) (= Globigerinita praestainforthi praestainforthi Blow)
- *Tenuitellinata* sp. This informal species is generally abundant in Pleistocene sediments recovered on the East Greenland Margin. However, it rarely occurs in Pliocene assemblages. It possesses low trochospiral test consisting of two and a half to three whorls, five chambers in the last whorl gradually increasing in size. An umbilicus is generally present but varies considerably in size. Profile circular and petaloid. Peripheral margin rounded. Umbilical-extraumbilical aperture sometimes strongly tending to the peripheral margin, and bordered by a lip. Wall texture smooth and microperforate.
- Turborotalia boweri (Bolli, 1957) (= Globorotalia boweri Bolli)
- Turborotalia griffinae Blow, 1979
- Turborotalia possagnoensis (Toumarkine and Bolli, 1970) (= Globorotalia cerroazulensis possagnoensis Toumarkine and Bolli)
- Turborotalia praecentralis Blow, 1979
- Turborotalia pseudomayeri (Bolli, 1959) (= Globigerina pseudomayeri Bolli) Turborotalita quinqueloba (Natland, 1938) (= Globigerina quinqueloba Nat-
- land) Zaglabiagring amplignanturg (Polli 1957) (= Clabiagring amplignanturg
- Zeaglobigerina ampliapertura (Bolli, 1957) (= Globigerina ampliapertura Bolli)
- Zeaglobigerina brazieri (Jenkins, 1966) (= Globigerina brazieri Jenkins)
- Zeaglobigerina connecta (Jenkins, 1964) (= Globigerina woodi connecta Jenkins)
- Zeaglobigerina decoraperta (Takayanagi and Saito, 1962) (= Globigerina decoraperta Takayanagi and Saito)
- Zeaglobigerina druryi (Akers, 1955) (= Globigerina druryi Akers)
- Zeaglobigerina labiacrassata (Jenkins, 1966) (= Globigerina labiacrassata Jenkins)
- Zeaglobigerina woodi Jenkins, 1960

ACKNOWLEDGMENTS

The author is indebted to ODP and the co-chiefs of Leg 152 (H.C. Larsen and A. Saunders) for the invitation to participate on Leg 152.

Thanks to Mary Anne Holmes and Tracy Vallier for fruitful scientific discussion during and after the cruise, and for their friendship.

Thanks to the reviewers Brian Huber, Richard Olsson, and Woody Wise. SEM operations were performed at Centro di Studio per la Geodinamica Alpina e Quaternaria (CNR), University of Milano. Photographs were printed at the University of Milano and at the ETH-Zentrum Geologisches Institut of Zurich. Financial support is from the Universitá di Milano, the Italian Consiglio Nazionale delle Ricerche (CNR-ODP), and from the European Science Foundation (ESF) during these last months.

REFERENCES

- Aksu, A.E., de Vernal, A., and Mudie, P.J., 1989. High-resolution foraminifer, palynologic, and stable isotopic records of upper Pleistocene sediments from the Labrador Sea: paleoclimatic and paleoceanographic trends. *In Srivastava*, S.P., Arthur, M.A., Clement, B., et al., *Proc. ODP*, *Sci. Results*, 105: College Station, TX (Ocean Drilling Program), 617– 652.
- Aksu, A.E., and Hillaire-Marcel, C., 1989. Upper Miocene to Holocene oxygen and carbon isotopic stratigraphy of Sites 646 and 647, Labrador Sea. *In Srivastava*, S.P., Arthur, M.A., Clement, B., et al., *Proc. ODP, Sci. Results*, 105: College Station, TX (Ocean Drilling Program), 689–704.
- Aksu, A.E., and Kaminski, M.A., 1989. Neogene and Quaternary planktonic foraminifer biostratigraphy and biochronology in Baffin Bay and the Labrador Sea. *In Srivastava*, S.P., Arthur, M.A., Clement, B., et al., *Proc. ODP, Sci. Results*, 105: College Station, TX (Ocean Drilling Program), 287–304.
- Bé, A.W.H., 1977. An ecological, zoogeographic and taxonomic review of Recent planktonic foraminifera. *In Ramsay*, A.T.S. (Ed.), *Oceanic Micropaleontology* (Vol. 1): London (Acad. Press), 1–100.
- Berggren, W.A., 1972. Cenozoic biostratigraphy and paleobiogeography of the North Atlantic. *In* Laughton, A.S., Berggren, W.A., et al., *Init. Repts. DSDP*, 12: Washington (U.S. Govt. Printing Office), 965–1002.
- Berggren, W.A., and Schnitker, D., 1983. Cenozoic marine environments in the North Atlantic and Norwegian-Greenland Sea. In Bott, M.H.P., Saxov, S., Talwani, M., and Thiede, J. (Eds.), Structure and Development of the Greenland-Scotland Ridge. NATO Conf. Ser. IV, New York (Plenum), 495–548.
- Blow, W.H., 1969. Late middle Eocene to Recent planktonic foraminiferal biostratigraphy. In Brönnimann, P., and Renz, H.H. (Eds.), Proc. First Int. Conf. Planktonic Microfossils, Geneva, 1967: Leiden (E.J. Brill), 1:199–422.

_____, 1979. The Cainozoic Globigerinida: Leiden (E.J. Brill).

- Boersma, A., and Premoli-Silva, I., 1983. Paleocene planktonic foraminiferal biogeography and the paleoceanography of the Atlantic Ocean. *Micropaleontology*, 29:355–381.
-, 1991. Distribution of Paleogene planktonic foraminifera: analogies with the Recent? *Palaeogeogr., Palaeoclimatol., Palaeoecol.,* 83:29–48.
- Boersma, A., Premoli Silva, I., and Shackleton, N.J., 1987. Atlantic Eocene planktonic foraminiferal paleohydrographic indicators and stable isotope paleoceanography. *Paleoceanography*, 2:287–331.
- Cande, S.C., and Kent, D.V., 1992. A new geomagnetic polarity time scale for the Late Cretaceous and Cenozoic. J. Geophys. Res., 97:13917– 13951.
- —, 1995. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. J. Geophys. Res., 100:6093–6095.
- Eldholm, O., Thiede, J., and Taylor, E., 1989. The Norwegian continental margin: tectonic, volcanic, and paleoenvironmental framework. *In* Eldholm, O., Thiede, J., Taylor, E., et al., *Proc. ODP, Sci. Results*, 104: College Station, TX (Ocean Drilling Program), 5–26.
- Eldholm, O., Thiede, J., Taylor, E., et al., 1989. Proc. ODP, Sci. Results, 104: College Station, TX (Ocean Drilling Program).
- Firth, J.V., 1989. Eocene and Oligocene calcareous nannofossils from the Labrador Sea, ODP Leg 105. *In* Srivastava, S. P., Arthur, M.A., Clement, B., et al., *Proc. ODP, Sci. Results*, 105: College Station, TX (Ocean Drilling Program), 263–286.
- Funder, S., Abrahamsen, N., Bennike, O., and Feyling-Hanssen, R.W., 1985. Forested Arctic: evidence from North Greenland. *Geology*, 13:542–546.
- Haq, B.U., Premoli Silva, I., and Lohmann, G.P., 1977. Calcareous plankton paleobiogeographic evidence for major climatic fluctuations in the early Cenozoic Atlantic Ocean. J. Geophys. Res., 82:3861–3876.
- Hemleben, C., Spindler, M., and Anderson, O.R., 1989. Modern Planktonic Foraminifera: Berlin (Springer-Verlag).
- Hooper, P.W.P., and Weaver, P.P.E., 1987. Late Neogene species of the genus *Neogloboquadrina* Bandy, Frerichs and Vincent in the North Atlantic: a biostratigraphic, palaeoceanographic and phylogenetic review. *In* Hart, M.B. (Ed.), *Micropalaeontology of Carbonate Environments:* Chichester (Ellis Horwood), 21–43.

- Jenkins, D.G., 1993. The evolution of the Cenozoic Southern High-and Midlatitude planktonic foraminiferal faunas. *The Antarctic Paleoenvironment: a Perspective of Global Change*. Antarc. Res. Ser., 60:175–194.
- Kennett, J.P., Keller, G., and Srinivasan, M.S., 1985. Miocene planktonic foraminiferal biogeography and paleoceanographic development of the Indo-Pacific region. *In Kennett, J.P. (Ed.), The Miocene Ocean: Paleoceanography and Biogeography.* Mem.—Geol. Soc. Am., 163:197– 236.
- Kennett, J.P., and Shackleton, N.J., 1976. Oxygen isotopic evidence for the development of the psychrosphere 38 Myr ago. *Nature*, 260:513–515.
- Krasheninnikov, V.A., 1979. Stratigraphy and planktonic foraminifers of Cenozoic deposits of the Bay of Biscay and Rockall Plateau, DSDP Leg 48. In Montadert, L., Roberts, D.G., et al., Init. Repts. DSDP, 48: Washington (U.S. Govt. Printing Office), 431–450.
- Larsen, H.C., Saunders, A.D., Clift, P.D., et al., 1994. Proc. ODP, Init. Repts., 152: College Station, TX (Ocean Drilling Program).
- Larsen, H.C., Saunders, A.D., Clift, P.D., Beget, J., Wei, W., Spezzaferri, S., and the ODP Leg 152 Scientific Party, 1994. Seven million years of glaciation in Greenland. *Science*, 264:952–955.
- Laughton, A.S., Berggren, W.A., et al., 1972. *Init. Repts. DSDP*, 12: Washington (U.S. Govt. Printing Office).
- Martini, E., 1971. Standard Tertiary and Quaternary calcareous nannoplankton zonation. In Farinacci, A. (Ed.), Proc. 2nd Int. Conf. Planktonic Microfossils Roma: Rome (Ed. Tecnosci.), 2:739–785.
- Miller, K.G., and Tucholke, B.E., 1983. Development of Cenozoic abyssal circulation south of the Greenland-Scotland Ridge. In Bott, M.H.P., Saxov, S., Talwani, M., and Thiede, J. (Eds.), Structure and Development of the Greenland-Scotland Ridge. NATO Conf. Ser. IV, New York (Plenum), 549–590.
- Montadert, L., Roberts, D.G., et al., 1979. *Init. Repts. DSDP*, 48: Washington (U.S. Govt. Printing Office).
- Müller, C., and Spiegler, D., 1993. Revision of late/middle Miocene boundary on the Voering Plateau (ODP Leg 104). Newsl. Stratigr., 28:171–178.
- Murray, J.W., 1979. Cenozoic biostratigraphy and paleoecology of Sites 403 to 406 based on the foraminifers. *In* Montadert, L., Roberts, D.G., et al., *Init. Repts. DSDP*, 48: Washington (U.S. Govt. Printing Office), 415– 430.
- Nocchi, M., Amici, E., and Premoli Silva, I., 1991. Planktonic foraminiferal biostratigraphy and paleoenvironmental interpretation of Paleogene faunas from the subantarctic transect, Leg 114. *In* Ciesielski, P.F., Kristoffersen, Y., et al., *Proc. ODP, Sci. Results*, 114: College Station, TX (Ocean Drilling Program), 233–279.
- Okada, H., and Bukry, D., 1980. Supplementary modification and introduction of code numbers to the low-latitude coccolith biostratigraphic zonation (Bukry, 1973; 1975). *Mar. Micropaleontol.*, 5:321–325.
- Pearson, I., and Jenkins, D.G., 1986. Unconformities in the Cenozoic of the North Atlantic. In Summerhayes, C.P., and Shackleton, N.J. (Eds.), North Atlantic Paleoceanography. Geol. Soc. Spec. Publ. London, 21:79–86.
- Poore, R.Z., 1979. Oligocene through Quaternary planktonic foraminiferal biostratigraphy of the North Atlantic: DSDP Leg 49. *In* Luyendyk, B.P., Cann, J.R., et al., *Init. Repts. DSDP*, 49: Washington (U.S. Govt. Printing Office), 447–517.
- Premoli Silva, I., and Boersma, A., 1988. Atlantic Eocene planktonic foraminiferal historical biogeography and paleohydrographic indices. *Palaeogeogr, Palaeoclimatol., Palaeoecol.*, 67:315–356.
- —, 1989. Atlantic Paleogene planktonic foraminiferal bioprovincial indices. *Mar. Micropaleontol.*, 14:357–371.
- Premoli Silva, I., Castradori, D., and Spezzaferri, S., 1993. Calcareous nannofossil and planktonic foraminifer biostratigraphy of Hole 810C (Shatsky Rise, northwestern Pacific). *In* Natland, J.H., Storms, M.A., et al., *Proc. ODP, Sci. Results*, 132: College Station, TX (Ocean Drilling Program), 15–36.
- Premoli Silva, I., and Spezzaferri, S., 1990. Paleogene planktonic foraminifer biostratigraphy and paleoenvironmental remarks on Paleogene sediments from Indian Ocean sites, Leg 115. *In Duncan*, R.A., Backman, J., Peterson, L.C., et al., *Proc. ODP, Sci. Results*, 115: College Station, TX (Ocean Drilling Program), 277–314.
- Raymo, M.E., Ruddiman, W.F., and Clement, B.M., 1987. Pliocene-Pleistocene paleoceanography of the North Atlantic at DSDP Site 609. *In* Ruddiman, W.F., Kidd, R.B., Thomas, E., et al., *Init. Repts. DSDP*, 94 (Pt. 2): Washington (U.S. Govt. Printing Office), 895–901.
- Ruddiman, W.F., and McIntyre, A., 1976. Northeast Atlantic paleoclimatic changes over the past 600,000 years. In Cline, R.M., and Hays, J.D.

(Eds.), Investigation of Late Quaternary Paleoceanography and Paleoclimatology. Mem.—Geol. Soc. Am., 145:11–145.

Spezzaferri, S., 1994a. Planktonic foraminiferal paleoclimatic implications across the Oligocene-Miocene transition in the oceanic record (Atlantic, Indian and South Pacific). *Palaeogeogr., Palaeoclimatol., Palaeoecol.*, 114:43–74.

——, 1994b. Planktonic foraminiferal biostratigraphy and taxonomy of the Oligocene and lower Miocene in the oceanic record: an overview. *Palaeontographica Ital.*, 81:1–187.

- Spezzaferri, S., and Premoli Silva, I., 1991. Oligocene planktonic foraminiferal biostratigraphy and paleoclimatic interpretation from Hole 538A, DSDP Leg 77, Gulf of Mexico. *Palaeogeogr., Palaeoclimatol., Palaeo*ecol., 83:217–263.
- Spiegler, D., and Jansen, E., 1989. Planktonic foraminifer biostratigraphy of Norwegian Sea sediments: ODP Leg 104. *In* Eldholm, O., Thiede, J., Taylor, E., et al., *Proc. ODP, Sci. Results*, 104: College Station, TX (Ocean Drilling Program), 681–696.
- Spiegler, D., and Müller, C., 1992. Correlation of *Bolboforma* zonation and nannoplankton stratigraphy in the Neogene of the North Atlantic: DSDP Sites 12-116, 49-408, 81-555 and 94-608. *Mar. Micropaleontol.*, 20:45– 58.
- Srivastava, S.P., Arthur, M.A., Clement, B., et al., 1989. Proc. ODP, Sci. Results, 105: College Station, TX (Ocean Drilling Program).
- Steinmetz, J.C., 1979. Calcareous nannofossils from the North Atlantic Ocean, Leg 49, Deep Sea Drilling Project. In Luyendyk, B.P., Cann, J.R.,

et al., Init. Repts. DSDP, 49: Washington (U.S. Govt. Printing Office), 519-531.

- Thiede, J., Diesen, D.L., Knudsen, B.E., and Snåre, T.W., 1986. Patterns of Cenozoic sedimentation in the Norwegian-Greenland Sea. *Mar. Geol.*, 69:323–352.
- Thunell, R., and Belyea, P., 1982. Neogene planktonic Foraminiferal biogeography of the Atlantic Ocean. *Micropaleontology*, 28:381–398.
- Weaver, P.P.E., 1987. Late Miocene to Recent Planktonic foraminifers from the North Atlantic: Deep Sea Drilling Project Leg 94. *In* Ruddiman, W.F., Kidd, R.B., Thomas E., et al., *Init. Repts. DSDP*, 94: Washington (U.S. Govt. Printing Office), 703–727.

Date of initial receipt: 23 October 1995 Date of acceptance: 24 May 1996 Ms 152SR-220

APPENDIX

This appendix comprises a complete list of the studied samples, including those devoid of planktonic foraminifers, plotted vs. residue abundance and preservation, presence of contaminants and reworked specimens, benthic foraminifers, radiolarians, sponge spicules, diatoms, echinoids and mollusk fragments, ostracodes, fish remains, quartz, glauconite, oxides, tephra, dropstones, and red clay.

Appendix Table 1. Holes 914A and 914B.

	_						_			_											
152-914A Core, section, interval (cm)	>250 Abundance	150 of	40 pl. forams	>250	150 Preservation	40	Contamination	Reworking	Benthic foram.	Radiolarians	Sponge spicules	Diatoms	Echinoids fragments	Mollusks	Ostracodes	Quartz	Glauconite	Tephra	Dropstones	Age	
1H-1, 0-2	A	A	A	G	G	G	-	-	C	CR	VA VP	-	VR	R	R	A	- P	- C	AC		
1H-1, 95-95		VR	-	м	M	0		-	CR	R	CR	CR		-	ĸ	Δ	ĸ	C	C		
1H-2 83-85	R	VR	_	M	M	_	_	_	R	-	VR	-	_	_	_	VA	_	R	VA		
1H-2, 05-05 1H-2, 96-98	R	VR	_	M	MP	_	_	_	R	_	VR	_	_	_	_	D	_	VR	A	e	
1H-2, 135-137	VR	VR	_	M	M	_	_	_	-	-	VR	-	-	-	-	A	R	-	A	en	
1H-3, 95-97	R	-	-	M	-	-	_	-	R	-	VR	-	-	_	-	A	-	-	A	00	
2H-1, 26-28	VR	-	-	MP	-	-	-	-	R	VR	-	-	-	1	-	Α	-	-	Α	ist	
1H-1, 32-35	VR	VR	-	Р	Р	-	-	-	R	-	VR	-	-	-	-	А	-	-	А	Ple	
2H-3, 134-136	VR	-	-	MP	-	-	-	-	R	-	VR	-	-	-	-	Α	-	-	Α		
2H-4, 34-36	R	R	VR	Μ	Μ	-	-	-	R	-	VR	-	-	-	-	VA	-	-	Α		
2H-5, 62-64	VR	VR	-	Р	MP	-	-	-	R	-	-	-	-	-	-	VA	-	-	Α		
211 6 12 15	VD	VD		MD	MD				D							D			Δ		

152-914B Core, section, interval (cm)	Barren Samples	N. pachyderma sinistr.	>250 Abundance	150 of	40 pl. forams	>250	150 Preservation	40	Contamination	Reworking	Benthic foram.	Radiolarians	Sponge spicules	Diatoms	Echinoids fragments	Mollusks	Ostracodes	Quartz	Glauconite	Oxides	Tephra	Red Clay	Dropstones	Age
7R CC. 23-25		Х	VR	-	1	М	-	1	1	1	1	VR	-	-	-	-	1	А	-	-	-	-	Α	Pleist.
15R-1, 50-52	В	-	-	-	I	-	-	I	-	-	-	-	-	-	-	-	-	AC	R	R	R	VR	-	
15R-1, 90-92	В	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	С	CR	-	CR	-	-	
15R-2, 27-29	В	-	-	-	-	-	-	-	-	-	VR	-	-	-	-	-	-	Α	R	-	R	-	-	
16R-1, 46-47	В	-	-	-	-	-	-	-	-	-	R	-	-	-	-	-	-	Α	R	VR	R	-	-	
16R-2, 90-93	В	-	-	-	-	-	-	-	-	-	R	-	-	-	-	-	-	AC	CR	-	R	R	-	
16R-3, 92-93	В	-	-	-	-	-	-	-	-	-	VR	R	-	-	-	-	-	Α	С	-	-	-	-	?
16R-4, 76-78	В	-	-	-	-	-	-	-	-	-	VR	-	-	-	-	-	-	AC	VR	R	R	VR	-	
17R-1, 82-84	В	-	-	-	-	-	-	-	-	-	R	-	-	-	-	-	-	Α	R	VR	VR	-	-	
17R-2, 82-85	В	-	-	-	-	-	-	-	-	-	VR	-	-	-	-	-	-	Α	R	-	R	VR	-	
17R-3, 73-75	В	-	-	-	-	-	-	-	-	-	VR	-	-	-	-	-	-	AC	CR	-	R	VR	-	
17R-4, 76-79	В	-	-	-	-	-	-	-	-	-	VR	-	-	-	-	-	-	AC	VR	-	R	-	-	
17R-5, 89-91	В	-	-	-	-	-	-	-	-	-	R	-	-	-	-	-	-	Α	R	-	-	VR	-	

Notes: B = barren, VR = very rare (1–3 specimens), R = rare (< 10 specimens), C = common (10–30 specimens), A = abundant (30–50 specimens), VA = very abundant (about 50–70 specimens), D = dominant (more than 70 specimens), VP = very poor preservation, P = poor preservation, M = moderate preservation, G = good preservation, dash = not present.

Appendix Table 2. Holes 915A and 916A.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	152-915A Core, section, interval (cm)	Barren Samples	>250 Abundance	150 of	40 pl. forams	>250	150 Preservation	40	Contamination	Reworking	Benthic foram.	Radiolarians	Sponge spicules	Diatoms	Echinoids fragments	Mollusks	Ostracods	Quartz	Glauconite	Oxides	Tephra	Red Clay	Dropstones	Age
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1R-1, 0-2		CR	R	R	M	М	M	-	-	AC	-	R	-	R	С	-	D	VR	-	-	-	-	Pleist.
19R-3, 97-99 B - <t< td=""><td>1R-1, 61-63 15R-CC 16R-1, 9-11 16R-1, 123-125 18R-1, 96-98 18R-2, 96-98 18R-3, 84-86 19R-1, 83-85 19R-2, 83-85 19R-2, 83-85</td><td>B B B B B B B</td><td>AC VR - VR - - -</td><td>AC - - - - - - -</td><td>C - - - - - - -</td><td>M - P - - -</td><td>M - - - - - - -</td><td>M - - - - -</td><td>- - - - R</td><td></td><td>AC - - - - -</td><td><u>CR</u> - - - - - -</td><td><u>C</u> - - - - -</td><td></td><td>R - - - - -</td><td></td><td></td><td>AC AC AC C C R</td><td>R R VR R R R R R R</td><td>- R C R -</td><td></td><td>- - VR VR - C</td><td>A - - - - - - - - -</td><td>late Eoc.</td></t<>	1R-1, 61-63 15R-CC 16R-1, 9-11 16R-1, 123-125 18R-1, 96-98 18R-2, 96-98 18R-3, 84-86 19R-1, 83-85 19R-2, 83-85 19R-2, 83-85	B B B B B B B	AC VR - VR - - -	AC - - - - - - -	C - - - - - - -	M - P - - -	M - - - - - - -	M - - - - -	- - - - R		AC - - - - -	<u>CR</u> - - - - - -	<u>C</u> - - - - -		R - - - - -			AC AC AC C C R	R R VR R R R R R R	- R C R -		- - VR VR - C	A - - - - - - - - -	late Eoc.
21R-2, 30-32 B - <t< td=""><td>19R-3, 97-99 20R-1, 95-97 21R-1, 46-48 21R-2, 1-4 21R-5, 15-17 22R-2, 30-32 22R-3, 22-24</td><td>B B B B B B B</td><td>-</td><td></td><td></td><td>-</td><td></td><td></td><td>- - R -</td><td></td><td>- - VR</td><td>- - VR</td><td>-</td><td>-</td><td>-</td><td></td><td></td><td>C AC AC C A C</td><td>R C C CR CR R</td><td>- R R R R</td><td>-</td><td>R - - -</td><td></td><td></td></t<>	19R-3, 97-99 20R-1, 95-97 21R-1, 46-48 21R-2, 1-4 21R-5, 15-17 22R-2, 30-32 22R-3, 22-24	B B B B B B B	-			-			- - R -		- - VR	- - VR	-	-	-			C AC AC C A C	R C C CR CR R	- R R R R	-	R - - -		

152-916A Core, section, interval (cm)	Barren Samples	>250 Abundance	150 of	40 pl. forams	>250	150 Preservation	40	Contamination	Reworking	Benthic foram.	Radiolarians	Sponge spicules	Diatoms	Echinoids fragments	Mollusks	Ostracods	Quartz	Glauconite	Oxides	Tephra	Wood fragments	Red Clay	Dropstones	Age	
5R-1, 61-63		R	R	-	М	М	-	-	-	С	R	-	1	VR	R	-	Α	-	-	-		-	AC	Pleist.	I
13R-1, 68-69	В	_	-	-	-	-	-	-	-	-	-	-	_	-	-	-	Α	R	-	-	CR	_			l
13R-2, 54-55		VR	-	VR	Р	-	Р	CR	-	-	-	-	-	-	-	-	А	R	-	-	-	-		late	
13R-3, 49-50		VR	VR	-	P	Р	-	VR	-	-	-	R	-	-	-	-	C	R	-	-		-		Eoc.	l

Note: Abbreviations defined in Appendix Table 1.

	s	nce		ms		ation						ss											
	umple	ounda	of	. fora		eserva		lation	8	oram.	ans	picule		s frag		~		e			es		
152-918A Core section	en Sa	AF C	_	lq	0	Pn		tamir	orkir	thic f	iolari	nge sj	oms	inoid	lusks	acod	rtz	iconi	les	hra	pston		
interval (cm)	Barr	>25(150	64	>25(150	40	Con	Rew	Ben	Rad	Spoi	Diat	Echi	Mol	Ostr	Qua	Glaı	Oxio	Tepl	Droj	Age	
1H-1, 45-47 1H-2, 19-21		C A/M	VR C	R R	G G	G G	M G	-		R C/R	1	VR -	-	-	-	-	D D	C R	-	R C/R	C A/C		
2H-1, 11-13 2H-1, 46-48		C A	R R	VR VR	G G	G G	G G	-	2	C C/R	VR VR	VR R	-	-	-	2	D A	R R	-	R R	C A		
2H-1, 95-97 2H-2, 10-12		C VR	VR VR	VR VR	G/M G	M G	M G	-	-	C R	VR -	R VR	-	-	-	2	D D	VR C/R	-	-	A/C C		
2H-2, 44-46 2H-2, 95-97		A	R R	VR VR	G G	G/M G/M	M M	-	-	R C/R	VR VR	vR	-	-	-	2	D D	VR C/R	-	Ā	A C/R		
2H-3, 10-12 2H-3, 45-47		A C	R VR	-	G G	M M	-	-	-	R C/R	VR VR	C/R VR	-	-	-	-	D D	C/R C/R	-	C R	R R		
2H-3, 95-97 2H-4, 16-18		A M	VR	-	G G/M	M	-	-	-	C/R R	-	R -	-	-	-	-	D D	R R	-	R R	A/C A		
2H-4, 45-47 2H-4, 95-97		VR A	VR VR	VR VR	G	M M	M	-	-	R C/R	VR VR	R VR	-	-	-	-	D	R	Ř	R AC	R A/C		
2H-5, 17-19 2H-5, 45-47		A/C R	R	VR VR	G G/M	G	M M	-	-	R	-	R VR	-	-	-	-	D	R	-	R C/R	C		
2H-5, 96-98 2H-6, 19-21		A	R	-	G	G/M M	-	-	-	R	-	R	5	-	-	-	D	К -	-	R	C/R R		
2H-6, 41-43 2H-6, 97-99		C C	VR	VR	M	G/M	M	-	R	C	R	R	к -	-	R	-	D	R	-	-	к -		
2H-7, 19-21 2H-7, 42-44		A	M	- -	G	G/M G/M	- -			R	VR VR	VR		-	-	-	D	R		Ā	R		
3H-3, 28-30		A	M	VR	G	G	G	-	-	R	- - D	R	-	-	-	-	D	VR	-	R	R		
3H-4, 30-32 3H-5, 30-32		A	C/R	VR VP	G	G	G	-	-	A/C	-	VR	R	-	-	-	A/C	R	-	R	A		
3H-0, 29-31 3H-7, 29-31 4H 1, 42, 44		C	R	-	G/M	M/P	-	-		R	R	R	-	-	-	-	D	VR	-	A/C	A/C		
4H-1, 42-44 4H-1, 95-97 4H-1, 141-143		A/C A	R C/R	VR R	G/M G/M	G	M/P M	R	-	R	-	R	-	-	-	-	DA	R	-	- C	C C/R		
4H-2, 42-44 4H-2, 95-97		AC	C/R R	VR VR	G G	G G/M	G/M M/P	-	-	C C	-	R VR	-	-	-	-	AD	R R	-	-	A C		
4H-2, 141-143 4H-3, 42-44		R C	VR R	VR R	M/P G	M G/M	M P	-	-	R R	1	R -	-	-	-	2	D D	VR -	-	-	R C		
4H-3, 95-97 4H-3, 140-142		C C/R	R VR	VR -	G G	M M	M -	1	1	R VR	1	- VR	-	-	-	1	A D	- VR	-	-	C R		
4H-4, 42-44 4H-4, 95-97		C A	VR VR	VR -	G/M G/M	M M	M/P -	-	-	R C/R	1	R R	-	-	-	2	D D	VR VR	1	-	C/R -	ne	
4H-4, 140-142 4H-5, 42-44		VR C	C/R	- VR	M G	Ā	P	-	1	VR R	1	-	-	-	-	2	D D	-	-	R	A A/C	toce	
4H-5, 96-98 4H-5, 140-142		R A	R C/R	- VR	G M	M M	M	-	-	VR C/R	1	R	-	-	-	R	D A	R VR	-	R A	A C	Pleis	
4H-6, 42-44 4H-6, 96-98		A VA	C C	R VR	G	G/M G/M	G/M M	-	-	C	- VR	C R	-	-	-	R -	D A/C	R R	-	A C	C		
4H-6, 141-143 4H-7, 41-43		A/C A	C	VR	G	G/M	M			C/D	R	VR C/R	-	R	-	-	D	R		R A/C	C/R		
5H-1, 14-10 5H-1, 69-61		A/C	R	- v R	G/M	G/M G/M	- -	-	-	C	- -	C/R	-	- -	-	-	D	- -	- - D	VR	R		
5H-2, 14-16 5H-2, 69-71		CR	R	-	G	M G/M	÷	-	-	R	VR VR	R	-	VR	-	÷	D	-	- R	C/R VR	C/R A/C		
5H-2, 120-122 5H-3, 14-16		A/C C/R	C/R R	VR	G G/M	G	M	-	-	R VR	-	VR	-	-	-	-	D	- VR	-	-	R A/C		
5H-3, 69-71 5H-3, 120-122		C R	VR VR	VR -	G M	M P	P -	-	-	R R	R VR	- R	-	-	-	2	A D	- VR	-	VR R	-		
5H-4, 14-16 5H-4, 69-71		C C	- VR	2	G G	- M	÷	-	-	R VR	1	R VR	-	-	-	2	D D	- VR	1	R	- R		
5H-4, 120-122 5H-5, 14-16		C A	VR C/R	- VR	G/M G	VP G	- M	1	1	R R	R VR	R R	-	-	-	2	D D	- VR	R	R C/R	- R		
5H-5, 69-71 5H-5, 120-122		A/C VA	C/R C	- VR	G/M G	M G/M	M	-	-	C/R C/R	R -	VR VR	1	VR	-	2	A A/C	VR VR	1	C R	A C		
5H-6, 14-16 5H-6, 69-71	_	A R	C VR	VR VR	G G	M G/M	M P	-	R	R R	CR	R C	-	vR	-	-	D D	R -	R -	-	R A/C		
5H-6, 120-122 5H-7, 14-16	В	VR	VR	-	M	M				R	R -	VR VR	-	-	-	-	D A	R VR	-	-	A/C A		
6H-1, 54-56 6H-2, 118-120		A/C VR	-	- -	G/M G	G/M	- -	-	-	R VR	- -	R	-	-	-	-	D	• vR	R	-	A/C C		
6H-4, 2-5		VR	- -	• K	M	- -	-	-	-	A/C	C/R	R	-	- -	-	-	A	R	- P	- -	A VA		
6H-6, 21-23 6H-7, 34-36		VR	- C/R	- VR	G/M G	- G/M	- M	-	-	C/R C	R	C/R C/R	-	-	-	-	D	VR	- R	-	A		
7H-1, 48-50 7H-2, 113-115		A A/M	C C	VR VR	G G/M	G G/M	M			C/R R	R R	R C/R	-	- VR	-	VR R	DD	VR	-	С -	C A		
7H-3, 79-81 7H-4, 106-108		VR R	- R	VR VR	M G/M	M	G/M P	-	-	C R	R C	R	-	-	-	2	A D	R VR	1	- C/R	A R		
7H-5, 59-61 7H-6, 126-128		C A	C/R C	VR VR	G G	M G	M G/M	-	-	R C	R R	R R	-	-	-	2	A A	VR R	2	R C	C/R -		
7H-7, 12-14 8H-1, 144-146		A	C	VR	G/M G	M G/M	M/P	-	-	C C/R	R R	R	-	-	-	-	A	- VR	-	C R	C R		
8H-2, 82-84 8H-3, 4-6		A M	A/C C/R	VR R	G M	G M	M M/P	-	-	R	-	VR R	-	-	-	-	A	R	R C/R	VR R	C C		
8H-4, 40-42 8H-5, 111-113		C C	A R	С -	G/M	M	G/M -	-	-	VR	R	VR	-	-	-	-	A A	- -		Ā	C/R C		
or1-0, 47-49 8H-7, 45-47 9H-2, 133, 125		C/R	R VP	-	G	G/M M	-	-	-	R	R	к C/R VP	-	-	-	VR	D	VR	- -	C/R	C/R		
9H-3, 141-143 9H-4, 59-61		C	VR	- - VR	G	G/M M	- - M	-	-	R VR	R	VR	-	-	-	-	DC	-	-	-	A -		
9H-5, 121-123 9H-6, 72-74	В	- c	- C/R	- VR	- G	G/M	 	-		-	R	VR VR	-	-	-	-	VA	- VR	-	-	C/R		
9H-7, 48-50 10H-1, 122-124		C/R AC	R	VR	G	G/M	M	-	-	R CR	C/R R	R A/C	-	-	-	-	VA A	VR	-	R C	R VR		
10H-2, 133-135 10H-3, 88-90		- VR	VR R	-	Ġ	M G/M	-	-	-	VR R	R C/R	C C/R	-	-	-	-	A A	R VR	C R	Ā	C/R C	ene	
10H-4, 87-89 10H-5, 54-56		A M	C A/C	VR R	G G/M	G G	G G	-	1	R C	R R	A/C VA	-	vR	-	-	A A	VR -	-	C C	R C/R	lioct	
10H-6, 64-65 10H-7, 14-16		M C	C/R A/C	R VR	G/M G	G G	G M	1	1	C R	R R	C C/R	1	VR -	-	1	A C	VR -	-	A A	C C	Ρ	

Appendix Table 3. Hole 918A.

Note: Abbreviations defined in Appendix Table 1.

152-918A Core, section, interval (cm)	Barren Samples	>250 Abundance	150 of	40 pl. forams	>250	150 Preservation	40	Contamination	Reworking	Benthic foram.	Radiolarians	Sponge spicules	Diatoms	Echinoids frag.	Mollusks	Ostracods	Quartz	Glauconite	Oxides	Tephra	Dropstones	Age
11H-1, 41-43 11H-2, 81-83 11H-3, 39-41 11H-4, 40-42 11H-5, 40-42	в	C VR R - R	C/R - VR - VR	VR - VR - VR	G M G G	G G/M G/M	G G/M G/M			C - C/R - R	R R C/R R	A/C R R VA A					C C C C C C	VR R VR -	R A - R	A C/R A/C A C	A C/R C	
12H-1, 140-142 12H-2, 89-91 12H-3, 68-70 12H-4, 85-87 12H-5, 86-88		A/C C R VR R	R C VR VR VR	VR VR VR	G G G/M G/M	G R G/M M	G/M M G/M			C/R C/R R R R	R VR - -	C/R R R R						- VR -	- C	C/R VR - R VR	C R C C	
12H-6, 80-82 12H-7, 46-48 13H-1, 96-98 13H-3, 95-97 13H-4, 94-96 13H-5, 95-97		VR VR VR VR C	VR VR VR VR VR	VR VR VR VR VR	M M G M/P G	M - M G	M P - M G/M		-	VR VR R A C	- - - R	- VR R VA			-	-	D VA A A	VR - - -		- VR VR C	- - R R	
13H-6, 95-97 14H-1, 95-97 14H-2, 95-97 14H-3, 78-80 14H-4, 95-97	В	C VR VR VR	VR VR VR R	VR VR VR	G G M M	M G/M M G/M	- M - M			VR VR R VR	R R VR -	R C VR VR					A D D D	VR - - VR VR	R R VR -	C/R C VR -	C/R C C R -	
14H-5, 95-97 15H-1, 95-97 15H-2, 95-97 15H-3, 95-97 15H-4, 95-97		R VR VR A C	VR VR C C	VR - VR VR	G G/M G M G/M	G M G/M M M C	G - M/P P			VR R A/C R	VR C R R	R C C C R					D A A A D	VR - - -	R A/C C/R R	R C/R A/C C	C C/R - C/R	
16H-1, 95-97 16H-2, 95-97 16H-3, 95-97 16H-4, 95-97 16H-4, 95-97 16H-5, 95-97	B B	- - - A/C	VR - VR - C	- - - VR	- - - G/M	M G M/P	- - - G/M			VR - - C	VR - R R R	VR R - C/R VA		- - - R		-	VA A VA VA A	- - - R	- - R C/R	- C/R C A	R - -	
16H-6, 95-97 17H-1, 95-97 17H-2, 95-97 17H-3, 95-97 17H-4, 96-98	B B	C VR C -	R VR C/R	VR R - -	G/M G - -	G/M G - -	G/M		R R R	C C VR	C/R C C/R VR	A/C R A C					A A VA A	VR - R	C A C	R C R C	C/R C A/C C	
17H-5, 95-97 <u>17H-6, 95-97</u> 18H-1, 95-97 18H-2, 95-97 18H-3, 95-97 18H 4 05 07		C C/R C VR VR	C/R VR C/R C/R VR	VR R VR	M/P G/M P G/M	M/P M G/M P M	P G P		- - R	C C C C C C V	VR VR R R P	C C/A C/R R C		VR VR -	-	-	A A/C A A A D	R R - R	R A/C - -	A/C C A R P	R R VR -	
1811-4, 95-97 1811-5, 95-97 1811-6, 95-97 1911-1, 95-97 1911-3, 95-97 1911-4, 95-97	B B B	- - R A/C	- - C	CR	- - - M P	- - - P	- - - P			VR VR VR C	R R C C R	R C A/C VA C					D D A A/C A	VR VR R -	R C R C	R C/R A A/C C	-	Pliocene
19H-5, 95-97 19H-6, 95-97 20H-1, 95-97 20H-2, 105-107 20H-3, 94-96	B B B	VR - - -	- VR	VR - -	P - - -	- M	VP - - -		-	R - R -	R R R -	R C R -			-	-	D D A D D	VR - - -	R R -	VR A/C A/C C VR	A/C A/C VR - -	
20H-4, 93-95 21H-1, 97-99 21H-2, 114-116 21H-3, 46-48 23H-1, 94-96	B B B	- - - - - - - - - - - - -	- - - - - - - - - - - -	-	- - - - - - -	М - - Р	-		-	C VR VR R -	- R C/R R	R C/R C/R A			-	-	D D D C	VR - - VR VR	R - R R	C/R C C A	R R C/R VR	
23H-2, 95-97 23H-3, 95-97 23H-4, 95-97 23H-5, 94-96 23H-6, 95-97 24H-1, 96-98	B B	- R VR VR	VR VR VR VR	- - - - VR VR	G M M	M/P M	- - - M			- - - - - - - - - - - - - - - - - - -	C C R R R	A D A A C					C C A/C A	VR	A C/R - R <u>C/R</u> A	VA VA A C	C - - R	
24H-2, 95-97 24H-3, 93-95 24H-4, 94-96 24H-5, 92-94 24H-6, 95-97	B B	R - -	VR VR VR	VR	G	G/M P M	- P -			R R R	R R - VR VR	C C R C/R R					D D A A A	- - VR VR	C A/C R C VR	C/R C C/R C A/C	R C R R VR	
25H-1, 96-98 25H-2, 94-96 25H-3, 94-96 25H-4, 94-96 25H-5, 94-96	B B	- VR R	VR VR C/R	- - - R	- VP - VP	M VP - VP	- - VP			R R C	- VR - R R	C/R R C/R C/R C					C A A A A	R - - VR	R R C/R	C C A C A	R - -	
26H-1, 95-97 26H-2, 95-97 26H-3, 95-97 26H-4, 95-97 26H-4, 95-97 26H-5, 95-97	B B B	-	VR - VR	-	-	- - P			-	VR - R R VR	R R VR R R	A C C/R A C	R - -		-	-	C C C A C	VR - - -	C - R -	A A A A A	R C/R - -	
27H-1, 105-107 27H-2, 95-97 27H-3, 95-97 27H-4, 95-97 27H-5, 95-97	в	VR R C -	R R C VR	R R VR	M G/M M/P -	P M P VP	M P VP			C VR	VR R C/R VR	C C A C R					A A A A	- - VR VR	R R AC C	R C A/C R R	R C R C	
27H-6, 94-96 28H-1, 95-97 28H-2, 96-98 28H-3, 95-97 28H-4, 97-99 20H 1, 97-99	В	- C/R C/R VR	VR VR R VR	VR	- M M/P P	P - M M P	- - M		-	C R - C/R P	C C/R VR VR	R VR VA C R			-	-	VA A D D	- VR R R	- VR -	R C R VR	R - - A A/C	
31H-1, 95-97 31H-2, 95-97 31H-4, 95-97 31H-5, 95-97 31H-6, 95-97	В	VR - - VR	VR R VR	VR	м - - М	M M P	M - -			C/R C/R - R	R R R - A	C/R C R VR D		- - R			A A D A	VR VR -	VR R R R R	VA C C VR C/R	R R VR C	
32H-1, 96-98 33H-1, 94-96 33H-2, 3-5 35H-1, 31-33 37H-1, 95-97	B B B	- - - VR	VR - - -	-	- - M	M - -	-	-	- - R	R - - -	R VR R C/R	C A C R A/C	- - VR		-	-	A A A/C A	R - - -	VR R R A/C	C D VA C/R	R - R - C	
37H-2, 89-91 37H-3, 95-97 37H-4, 95-97 37H-6, 10-12	B B	- C R	- VR VR	- VR	- M M	- M M	- M	-	-	- VR R C/R	R VR VR R	C/R C/R R R	-	-	-	-	A/C D D D	- R R	C A/C C C	R - C R	R - R	

Appendix Table 3 (continued).

Appendix Table 4. Hole 918D.

										-		_	_		_		_						
								ion															
152 018D								ninati	king	ى د	arians	0	SU	spid		ks		nite			ſ	ones	
Core, section,	arren	250	50	0	250	50	0	ontaı	ewor	enthi	adiol	pong	iaton	chine	ish	Iollus	uartz	lauco	xides	ed	ephra	ropst	ŝŝ
11D 1 91 92	B	~		4	\sim	1	4	С	R	В	R	S	р	Е	F	2	0	0	0	R	Т	<u> </u>	<
13R-1, 52-54	в	VR	-	-	P	-	-	-	-	-	-	-	-	-	-	-	VA	VR	R	-	-	A	
14R-1, 6-8	n	VR	-	1	VP	-	1	-		VR	VR	- 6	1	-	-		С	R	R	1	1 1	Α	
14R-1, 95-97 14R-2, 95-97	в	- VR	2	-	P	-	-	-	- R	VR	R -	C/R VR	-	R	-	-	VA C	VR R/C	R	- VR	R -	A C	
18R-1, 28-30	В	-	-	-	-	-	-	-	-	VR	-	-	-	-	-	-	D	R/C	R	-	-	A/C	ne
22R-1, 134-136		C	CR	VR	G/M	M/P	M/P	-	-	C	-	-	-	R	-	-	D	R/C	R	-	- D	C/R	S
22R-2, 8-10 22R-3, 8-10		C	VR	VR	G/M	M	M	-	-	C/R	-	-	-	R	-	-	VA	R	R	-	VR	c	ili
24R-1, 97-99		-	VR	-	-	VP	- M	-	-	VR	-	-	-	-	-	-	A	VR	R/C	-	-	R	
24R-2, 08-70 24R-2, 120-122		VR	- v K	- v K	VP	-	-	-	-	VR	-	-	-	-	-	-	A	VR	Ċ	-	-	Ċ	?
24R-3, 26-28		-	VR	-	- D	VP	-	-	-	C	VR	-	-	R	-	-	D	R	A	-	-	-	
25R-1, 45-48 25R-2, 14-16		- v K	VR	-	P -	VP VP	-	-	-	VR	-	-	-	-	-	-	A	R	R	-	-	-	
25R-3, 44-46		-	VR	-	-	Р	-	-	-	VR	-	-	-	-	-	-	D	R	C	-	-	С	
25R-4, 72-74 25R-5, 3-4		VR VR	VR	VR	M	P M	M M/P	-	к -	C/R	-	-	-	-	-	-	VA A	R	C/R C/R	• K	-	-	
27R-1, 44-46	В	-	-	-	-	-	-	-	-	VR	-	-	-	-	-	-	A	VR	R	-	-	R	
27R-2, 14-16 27R-3, 95-97	В В	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	D D	VR R	R R	-	-	C -	
28R-1, 94-96	В	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	D	-	-	-	-	-) Sne
28R-2, 94-96 28R-3, 115-117	В В	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	R A	K VR	R	-	-	-	20
28R-4, 7-9	В	-	-	-	-	-	-	-	-	VR	-	-	-	-	-	-	A	-	R	-	-	-	Ţ
29R-1, 95-97 29R-2, 95-97		VR R	vR -	-	M M	- -	-	-	-	R C	-	-	-	1	-	-	VA VA	R R	R R	-	-	-	[e]
31R-1, 73-75	В	-	-	-	- P	-	-	-	-	- P	-	-	-	-	-	-	A	R	R	-	-	-	lat
33R-1, 93-97		VR	R	-	P M/P	P	-			R		-	-		-	-	A	R	- -	-	-	-	
34R-1, 121-122	D	C/R	VR	VR	Р	Р	-	-	-	C/R	R	-	-	R	-	-	VA	R	R	-	-	-	
35R-1, 68-69 35R-2, 66-68	в	-	- VR	-	-	- M/P	-	-	-	R	-	-	-	к -	к -	-	VA VA	C/R R	R R	-	-	-	
36R-1, 130-132		C	C	R	G/M	G/M	Р	-	- D	R	-	-	-	-	-	-	A	- С/Л	C/R	-	-	-	
36R-2, 123-126		C	c	R	M	M/P	P	-	к -	R	-	-	-	-	-	-	A	-	R	-	-	-	
37R-2, 14-16	в	- C/P	- D	- VD	- M	- M	- D	-	-	R	-	-	-	-	-	-	A	C	R	-	-	-	
37R-3, 58-60	в	-	-	• K	-	-	r -	-	-	VR	-	-	-	-	R	-	A	A	R	-	-	-	
37R-4, 8-10 37R-5, 20-22	B	-	-	-	-	-	-	-	-	C/R P	-	-	-	R	-	-	A	C	C	-	-	-	
38R-1, 98-100	Б	C/R	C/R	VR	Р	Р	VP	-	-	C	-	-	-	R	-	-	VA	R	-	-	-	-	
38R-2, 114-116		VR	VR	VR	Р	VP VP	VP D	-	-	R	R	-	-	-	-	-	R	R	R	-	-	-	
38R-4, 14-16		VR	-	-	P	-	-	-	-	R	VR	-	-	R	-	-	ĉ	R	C	-	-	-	
38R-4, 52-54		R	R	R VP	VP	VP VP	P VP	-	-	C C/P	R	- P	-	R	R	-	A	R	C C/P	-	- P	-	
38R-5, 113-115	В	-	-	-	-	-	*1	-	-	R	-	R	-	-	-	-	C	R	R	-	-	-	
38R-6, 23-25 39R-1, 76-78	B	-	-	-	-	-	_	-	-	R VR	R/C	C/R	-	-	-	-		R	R	-	- R	-	
39R-1, 135-137	В	-	-	-	-	-	-	-	-	R	R/C	C	-	-	-	-	A/C	R	-	-	-	-	
39R-2, 16-18 39R-2 93-95	в	VR	2	-	VP -	-	-	-	R	VR R	C R	A/C C/R	-	-	-	-	A/C C	C R	- R	-	C R	-	ne
39R-3, 53-55	В	-	-	-	-	-	-	-	-	VR	VR	R	-	-	-	-	A/C	R	R	-	VR	-	e
39R-3, 94-96	B	-	2	-	-	2	-	-	-	R	C/R	C/R C/R	- VR	-	-	-	C	C/R R	R C/R	-	- C/R	-	lio
39R-4, 95-97	Б	VR	VR	VR	Р	Р	VP	-	R	R	R	C/R	-	-	-	-	č	R	R	-	-	-	e
39R-5, 16-18		VR VR	- VR	VR VR	VP VP	- VP	VP VP	-	-	R	R	C/R	VR	-	- R	-	A/C	R	R C/R	-	Δ	-	Ī
39R-6, 73-75		VR	VR	VR	P	P	P	-	-	A/C	R	R	-	-	-	-	č	-	C/R	-	-	-	bid
40R-1, 41-43	B	-	-	-	-	-	-	-	-	VR C/P	R	R	-	-	-	-	C	R	- P	-	R C/P	-	=
40R-2, 39-41	В	-	-	-	-	-	-	-	-	-	R	C	-	-	-	-	A	C/R	R	-	-	-	
40R-2, 125-127		VR	VR	VR	P VP	VP VP	VP M/P	-	-	R	- P	C/R P	VR	-	R	-	R	- P	R	-	- P	-	
40R-3, 116-118		R	VR	VR	P	M/P	VP	-	-	R	R	C	R	-	-	-	A/C	R	R	-	R	-	
40R-4, 64-66	B	-	-	-	-	-	-	-	-	R	R C/P	C	R	-	-	-	R	C/R	R	-	-	-	
40R-4, 120-122 40R-5, 11-13	Б	VR	VR	VR	P	P	M/P	-	-	C	R	C/R	R	-	-	-	CR	VR	- -	-	-	-	
40R-5, 64-66	в	VR	VR	VR	VP	Р	VP	-	-	R	R	R	VR	-	-	-	C A	R	- P	-	- P	-	
40R-6, 48-50	Б	-	VR	-	-	VP	-	-	-	R	R	č	VR	-	-	-	A/C	R	R	-	R	-	
41R-1, 34-36 41R-1, 76-78		VR VR	-	VR	VP VP	-	P	-	-	R R	R R	C	- VR	-	-	-	A/C C	R	R	-	R	-	
41R-2, 63-65		-	-	-	-	-	-	-	-	C/R	R	C	VR	-	-	-	Č	VR	C/R	-	C/R	-	
41R-2, 117-119 41R-3 32-34	в	VR -	VR -	-	- VP	VP -	-	-	-	C/R R	R R	C A	VR R	- R	-	-	A/C A/C	VR R	-	-	VR R	-	
41R-3, 121-123		R	VR	-	М	VP	-	-	-	C	C/R	A	-	-	-	-	A/C	C	C/R	-	-	-	
41R-4, 34-36 41R-4, 118-120		VR VR	- VR	- VR	VP VP	•P	P	-	-	R VR	R R	C/R	R	-	-	-	C/R	R	R	-	-	-	
41R-5, 102-104		VR	-	-	P	- D	- D	-	-	-	R	C	-	-	-	-	A/C	R	-	-	-	-	
41R-6, 16-18 41R-6, 78-80	в	- VK	- VR	• K	- -	Р -	Р -	-	-	R	С	к A/C	-	-	-	-	A/C	R	A/C	-	-	-	
42R-1, 79-81		VR VP	VR	VR VP	M/P P	Р	VP P	-	-	R C/P	R C/P	C	R	-	-	-]	C	R VP	-	-	-	-]	
42R-3, 132-134		VR	VR	VR	M	 M/P	r P	-	-	R	R	R	VR	-	-	-	C/R	R	-	-	-	-	
42R-4, 127-129		VR	VR	VR VP	VP	VP	VP P	-	-	C/R R	R	R A/C	-		-	-	C A/C	R	-	-	-	-	
42R-6, 95-97		VR	VR	-	М	G/M	-	-	-	Ĉ	R	Č	-	-	-	-	A/C	R	-	-	-	-	
43R-1, 24-27 43R-1, 103-107	в	VR -	VR -	VR -	VP -	M -	M	-	-	C/R R	R R	R A/C	VR	1	-	-	A/C A/C	VR -	-	-	-	-	
43R-2, 48-52		-	VR	VR	VP	М	М	-	-	R	R	A/C	-	-	-	-	R	-	-	-	-	-	
4JR-2, 143-148		VR	-	VR	-	-	- P			I UR	К	- C			-	-	A/C		- 1	- 1	- 1	-	I

Note: Abbreviations defined in Appendix Table 1.

Appendix Table 4 (continued).

1	-									-						r	r						
	\$	Jce				ttion						s											
	ples	ndar				erva		tion		am.	SL	cule			su							~	
152 0180	San	Abu				Pres		nina	king	c foi	aria	e spi	IS	ids	mai	ks		nite		ay	_	one	
Core, section.	ren	507	_	р	00	_		ntan	worl	athic	loit	onge	ton	nino	h re	llus	artz	iuco	ides	d cla	bhra	opst	e
interval (cm)	Bar	~	15(40	>25	150	40	Col	Re	Beı	Rad	Spo	Diâ	Ecl	Fis	Мс	Qu	Gl	Ох	Re	Tel	Dre	Ag
44R-1, 96-98		- R	- VR	- R	- P/M	м	- M	-	-	CR	R	C/R	-	R	R	-	R	R	R	-	-	-	mid.
44R-3, 98-101		-	VR	VR	-	VP	VP	-	-	R	VR	C	VR	-	-	-	A	C	-	-	-	-	Mioc
44R-4, 97-100 44R-5, 124-127	в	-	VR -	VR -	-	VP -	VP -	-	R -	R -	VR VR	C C	-	R -	-	-	C A	R R	-	-	-	-	•
47R-2, 95-97		VR	VR	VR	VP	VP	VP	-	-	R	R	C	-	-	R	-	A	C	-	-	-	-	
51R-1, 93-95 51R-2, 111-113		VR	к VR	VR	VP	P VP	P	-	-	R	c	R	-	-	-	-	C	к -	C/R	-	-	-	
51R-3, 81-83		C VR	R VR	VR VR	VP VP	VP VP	VP VP	-	-	C/R R	C C	VR R	-	VR R	-	-	R	C/R R	C R	-	-	-	
51R-5, 28-30	_	R	VR	R	VP	VP	P	-	-	R	C	R	-	-	-	-	C	R	R	-	-	-	
51R-5, 80-82 51R-6, 42-44	В	R	- VR	-	P	- VP	-	-	-	VR	A A	R R	R -	R	-	-	C A	VR C/R	A A	-	-	-	
52R-1, 41-44		VR	R	VR	VP	VP	VP	-	1	R	C/R	R	1	1	-	-	C	R	R	1	-	-	
52R-1, 106-109 52R-2, 34-36		VR	к VR	к VR	VP VP	P VP	P P	-	-	K VR	R	R	-	-	R	-	R	VR	R	-	-	-	
52R-2, 92-94		R R	R R	VR R	VP VP	P P	VP P	-	-	R	R C	VR	-	R	-	-	C/R	VR R	C/R R	-	-	-	
52R-3, 121-124		C	C/R	R	M/P	P	VP	-	-	R	A/C	R	R	-	-	-	Č	R	C/A	-	-	-	ine
52R-4, 37-40 52R-4, 124-126		A/C A	A/C R	A/C C/R	M/P P	P VP	M/P P	1 1	1 1	C/R C	C A		-	R		-	C/R C	R -	C C	-	-	-	oce
52R-5, 52-55		VR	VR	VR	VP M/D	VP P	VP VP	-	-	R	C	-	-	-	-	-	C	R	С	-	-	-	Ϋ́Ϊ
53R-1, 30-31		C	R	R	P	P	P	-	-	C	A	-	R	R	R	-	-	R	C/R	-	-	-	IJ
53R-1, 121-123		R C	VR VR	VR VR	VP VP	VP P	VP VP	-	-	C/R R	A C	R R	-	R R	R	-	C R	R C/R	C/R A/C	-	-	-	ear
53R-2, 93-95		VR	VR	VR	VP	VP	VP	-	-	VR	Č	-	-	R	-	-	R	-	С	-	-	-	Ű
53R-3, 47-49 53R-3, 124-126		R	R	VR VR	P	VP VP	P	-	-	R	A A	-	-	-	-	-	A C	R	R	-	-	-	
53R-4, 38-40		VR VP	VR VP	VR VP	VP VP	VP VP	VP VP	-	-	R	A	- VP	-	-	- P	-	A	C	C	-	-	-	
53R-5, 26-27		VR	VR	VR	VP	VP	VP	-	-	C/R	A	• K	-	-	- -	-	A	A	A/C	-	-	-	
53R-5, 119-121		R VR	R VR	R VR	P VP	P VP	P VP	-	-	R C	C/R A	-	-	-	-	-	A/C C	R R	A A	-	-	-	
53R-6, 119-121		R	R	VR	P	VP	VP	-	-	Č	A	-	-	-	-	-	Ā	R	R	-	-	-	
55R-1, 64-66		C	C	C/R	M	M	M	-	-	A/C	C	-	-	-	-	-	A/C	R	R R	-	-	-	
55R-1, 134-136		A	R C/R	R R	M/P M	P P	P P	-	-	R	C	-	VR	R	-	-	A/C	C A	-	-	-	-	
55R-2, 88-90		A	C	R	M	VP	P	-	-	C	C	-	-	-	-	-	A	C/R	-	-	-	-	
55R-3, 40-42 55R-3, 66-68		A C	C/R C	R C	M/P M	P M/P	P M	-	-	C/R C	C C	-	R -	-	R -	-	R C	R C/R	R	-	-	-	
55R-4, 72-74		Ċ	Ċ	C	M	M	M	-	-	- D	C/R	-	-	- D	-	-	A	C/R	- D	-	-	-	
55R-5, 107-109		A	Ă	A/C	M	M/P	M	-	-	C	C	-	-	- -	R	-	A	C	C	-	-	-	
55R-6, 31-33 57R-1 43-45		A VR	A/C VR	C VR	M VP	MP VP	M VP	-	-	C/R	C	-	-	-	-	-	C	R C	R C/R	-	-	-	
57R-1, 118-120		VR	VR	VR	VP	VP	VP	-	-	R	C	-	-	-	-	-	A	-	R	-	-	-	
57R-2, 116-118		C/R	C/R	K VR	VP	P	P	-	-	A/C	A/C A	-	-	-	-	-	C	R	-	-	-	-	
57R-3, 2-4 57R-3, 147-149		R R	VR R	VR R	VP VP	P P	P VP	-	-	A C	A C	-	-	R	-	-	A A/C	C/R C/R	R	-	-	-	
58R-1, 42-44		R	VR	C	VP M/D	P M/D	Р	-	-	R	R	VR	-	R	-	-	C	C	-	-	-	-	
62R-1, 87-90 62R-2, 77-81		A/C	A/C	A	M/P P	M/P P	M/P P			C K	к -		-	-	R	-	C	C/R	-	-	-	-	
63R-1, 93-96 63R-2, 34-37		R VR	C/R R	R VR	P P	P P	P P	-	-	R	-	-	-	-	R	-	C A/C	C/R C/R	-	-	-	-	
68R-1, 45-47	В	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•
75R-1, 53-55		VR	VR	-	P	P	-	-	-	R	-	-	-	-	- -	-	A	C A/C	-	-	-	-	ene
75R-1, 133-135		R	R VR	R VR	Р	P P	P P	-	-	C/R R	-	- VR	-	-	-	-	D	C C/R	-	-	-	-	00
75R-2, 108-110		R	R	R	Р	P	P	-	-	R	-	-	-	-	R	-	D	A	-	-	-	-	jil
75R-3, 5-8 76R-1, 28-30		R	R	R	P	P	P	-	-	R	-	-	-	-	-	-	D	C/R C/R	-	-	-	-	e C
76R-1, 97-100 78R-1, 25-27	В	-	- VR	-	-	- P	-	-	-	-	-	-	-	-	R	-	D	C/R	-	R	-	-	lat
84R-1, 59-61	В	-	-	-	-	-		-	-	R	- 6	-	-	-	-	-	D	C/R	-		-	-	
86R-1, 28-30 86R-2, 69-71		R -	R R	R R	Р -	P P	P P	-	-	R R	R R	- VR	-	R -	-	-	VA VA	R R	R	R R	-	-	
88R-1, 70-72		A A	A A	A/C	M/P P	M/P P	P P	-	-	R	-	-	-	- R	- R	-	D	VA A	-	C	-	-	
89R-1, 37-38		A	A/C	A	P	P	P	-	-	C	-	-	-	-	-	-	C/R	C	- 6	R	-	-	
89R-1, 106-108 89R-2, 13-15		A	A A	A A	M/P M/P	P M/P	P M/P	-	-	R C/R	-	-	-	R	R	-	R	A AC	к -	R R	-	-	
89R-2, 97-99		A	A	R C/P	M VP	P P	P VP	-	-	C/R	-	-	-	- P	R	-	C/R	A	-	A	- P	-	
89R-3, 63-65		C	č	C	VP	VP	VP	-	-	R	-	VR	-	-	R	-	C	VA	-	-	-	-	
89R-3, 98-99 89R-4, 34-36		A/C A	C A	C/R A	VP G/M	VP G/M	VP G/M	-	-	R R	-	-	-	-	R R	-	C/R C/R	A/C A/C	R R	-	-	-	
90R-2, 16-18		R	R	R	P	Р	Р	-	-	C	-	-	1	R	R	-	VR	A	1	1	-	-	ne
90R-3, 31-33	в	-	-	-	-	-	-	-	-	ĉ	-	-	-	-	-	-	-	A	-	-	-	-	oce
90R-3, 89-91 91R-1 14-16		R R	R VR	R VR	P P	P P	P P	R	-	C	R -	-	-	-	-	-	R R	Ā	-	-	-	-	Ē
91R-1, 105-107	D	-	R	R	-	-	Р	-	-	C/R	VR	-	-	-	-	-	Α	VR	-	-	-	-	dle
00D 1 17 10	- n	-	-	-	1	-	-	-	-	A/C	VR	-	-	R	R	R	- -	VA VA	-	-	-	-	hid
92R-1, 17-19 92R-1, 136-138	В	-	-	-						- D													
92R-1, 17-19 92R-1, 136-138 92R-2, 41-43 93R-1, 24-26	B B	- R	- R	-	- P	- P	-	-	-	R	R	-	-	R -	R	-	C/R R	C R	-	-	-	-	я
92R-1, 17-19 92R-1, 136-138 92R-2, 41-43 93R-1, 24-26 93R-1, 38-40 92R-2, 7, 0	B B B	- R -	- R -	-	- P -	- P -	-	-	-	R R R	R C/R	-	-	- -	R R R	-	C/R R -	R VR	-	-	-	-	ä
92R-1, 17-19 92R-1, 136-138 92R-2, 41-43 93R-1, 24-26 93R-1, 38-40 93R-2, 7-9 95R-1, 21-23	B B B B B	- R -	R - -	-	- P - -	P - -				R R C C	R C/R C A/C			R - -	R R R		C/R R - -	C R VR A R				-	я
92R-1, 17-19 92R-1, 136-138 92R-2, 41-43 93R-1, 24-26 93R-1, 24-26 93R-2, 7-9 95R-1, 21-23 96R-2, 43-45 96R-2, 97-99	B B B B B B B	- R - - R -	- R - - R -	-	- P - - P -	P - - - P	-			R R C C R R	R C/R C A/C R R			R - - -	R R R - R		C/R R - - C C	C R VR A R A/C A			-		u

Appendix Table 5. Hole 919A.

152 010 4	Abundance	of	pl. forams		reservation		nination	cing	: foram.	urians	spicules	S	ids fragm.	ks	spo		nite			ones	
Core, section,	250	50	0	250	50 F	0	ontan	eworl	enthic	adiola	ponge	iatom	chino	Iollus	strace	uartz	ilauco	xides	ephra	ropsto	ge
1H-1, 130-132	A/C	C/R	R	G	G	6 G	-	VR VP	R C/P	R	VR VR	R	VR C	-	-	A/C	R	R	A/C	<u>-</u> С	A
1H-2, 20-22 1H-2, 96-98 1H-2, 130-132	A A/C	C C/R	R R	G G	G G	G G	-	- R	R R	- R	VR R	-	-	-	R R	A A A	R R	-	R A	R	
1H-3, 20-22 1H-3, 96-98	A A	C C	R R	G G	G/M G/M	M G	-	- VR	C C	VR -	R VR	R R	-		R R	A A	R VR	-	A R	C	
1H-3, 130-132 1H-4, 20-22	A A	C C	R R	G G	G G	G G	-	VR -	C/R R	VR R	VR R	R VR	-		-	A A	R VR	-	A/C C	- R	
1H-4, 96-98 1H-4, 130-132	VR C/R	- VR	VR -	M G/M	- G/M	M -	-	-	- VR	R -	C VR	A/C C/R	-	-	-	A A	R VR	-	C C	-	
1H-5, 20-22 1H-5, 97-99	R A	R C	VR VR	G G	M G	M M	-	-	R R	VR VR	VR R	R VR	VR		-	C A	VR R	-	R A	R C/R	
2H-1, 15-17	A VR P	- - -	-	G/M	- - M	-	-	-	R C/R	R R	R	R	- -	-	-	A	R VR VR	-	A	R	
2H-1, 96-98 2H-2, 14-16 2H-2, 95, 97	C	R	VR P	G/M G G	M G P	M	-	- - P	R	R	A C C	R	-	-	-	A/C C	- -	-	AA	- - D	
2H-3, 13-15 2H-3, 95-97	A	CR	C/R VR	G	M G/M	G/M M	-		C/R	C/R	C C/R	VR	-	-	-	C	- - VR	- - R	D	R	
2H-4, 14-16 2H-4, 101-103	A C	A	VR	G G/M	G/M	G/M	-	- VR	R	R	R R	-	R		R	A C	VR VR	-	A/C A	C R	
2H-5, 13-15 2H-5, 94-96	A A	A/C R	VR VR	G G	G/M G/M	G/M M	-	-	R C/R	R C/R	R R	-	R R		-	A A	- VR	-	A C	C/R R	
2H-6. 13-15 3H-1, 8-10	A C/R	A/C C	A/C R	G G	G G	M	-	- VR	C C	C R	C A	-	VR -	-	VR -	A A	VR -	-	C C/R	R VR	
3H-1, 95-97 3H-2, 8-10	VA A/C	C C	R -	G G/M	M P	M -	-	-	C C/R	R R	C C/R	-	-	-	-	A A	VR VR	-	C C/R	C R	
3H-2, 95-97 3H-3, 8-10	A A	C C	VR R	G G	M M/P	M M	-	-	C/R C/R	-	R -	-	-		R -	VA A	R R	-	R R	R C	
3H-3, 96-98 3H-4, 8-10	C A	C/R C	R	G G	M G/M	М	-	VR -	R R	-	R	-	-		-	A A	R R	-	R C	R C	
3H-4, 96-98 3H-5, 8-10	A/C A	C	R	GG	G G/M	M	-	-	R C	-	R	-	R R	1	R -	VA A/C	R	-	C/R A/C	C/R R	
3H-5, 97-99 3H-6, 7-9	A	C VD	R VR	GG	G	M	-	-	C	K C P	R	- - D	- - VD	-	R	A	R	-	AA	к С	
3H-0, 93-97 3H-7, 8-10	R	R	-	G	M	-	-	-	R R	C/R	R	к -	- VK		-	C	R R	- - D	A	C	
4H-2, 95-97 4H-3, 95-97	A/C	C VR	R	G/MI G	G	М	-	-	C/R	C/R C/R	R D	-	-	-	-	CD	R VR	-	VA C	C	
4H-4, 95-97 4H-5, 95-97	VR A	- C	- R	M G	G/M	- M	-	-	- C	- R	- R	R VR	-		-	C A	R VR	-	VA C	VA C	
4H-6, 95-97 5H-1, 95-97	A A	C/R C	- VR	G G	G G	- M	-	-	C/R C/R	VR C/R	- C/R	-	- R	-	-	VA A	VR -	-	A C	C R	
5H-2, 95-97 5H-3, 93-95	A A	C C	R VR	G G	G M	M M	-	-	C R	C/R R	C/R -	-	-		-	A C	R	-	C A/C	R C	ne
5H-4, 97-99 5H-5, 95-97	VA VR	C/R -	VR -	G G	M -	M -	-	-	C VR	R R	R R	-	R	1	-	A/C A	R -	R	A C	R -	toce
5H-6, 95-97 5H-7, 45-47	VR VA	R C	- C/R	G G	M G	G	-	-	R A/C	C/R C	D R	-	- VR		R	A A	VR R	R -	R A	- A/C	Pleis
6H-1, 97-99 6H-2, 97-99	A	C/R C/R	R VR	G	M M	M	-	к -	R	C/R	R VR	к -	-	- - D	-	A D	R	-	- -	к С	-
6H-3, 97-99 6H-4, 96-98	VR	VR	к - С	GG	M	м - С	-	-	A/C - C	C/R	A R	-	- - VD	к -	- - D	C	R	- - D	A	A	
6H-6, 78-80 7H-1, 95-97	A	A	C/R VR	G	G	G	-	-	C	C	A/C A VR	-	- -	-	- -	A	R	- -	C/R	• K -	
7H-2, 95-97 7H-3, 90-92	A VR	C VR	R	G M	M M	G/M	-	-	C/R R	R	R	-	R		-	D	VR VR	-	C/R R	C	
7H-4, 95-97 7H-5, 95-97	A A	A/C C	C -	G G	G G	G	-	-	C R	R -	C R	-	-		-	A A	R R	C -	C -	- A/C	
7H-6, 94-96 8H-1, 79-81	A A/C	A C	C R	G G	G M	G M	-	-	C R	C R	A C/R	- C/R	-	-	-	C/R A	- VR	R C	- C	-	
8H-2, 96-98 8H-3, 96-98	VR C	VR C/R	VR VR	M G/M	M M	M M	-	-	R R	R R	VR R	-	-	-	R	A A	-	Ā	R C	-	
8H-4, 96-98 8H-5, 96-98	C/R C	R C	R	M G	M G	М	-	R	R A/C	R C/R	C C	-	R -	-	-	A A	-	C A	C C	-	
8H-6, 96-98 9H-1, 30-32	A/C A	A/C G	R C	G	G	G	-	-	C A/C	C/R R	A	-	R	-	- -	A/C C	R	- -	A/C A/C	- A/C	
9H-1, 130-132 9H-2, 29-31	A	A C	A/C R P	G G	G	G/M	-	-	C	C/R C P	A/C A C/P	К - р	-	1	R R	A C	- - D	R C/R	A R C	С - в	
9H-2, 130-132 9H-3, 29-31 9H 3, 130, 132	A/C	C/R C/R	K C/R	G	G/M	G	-	- - D	к C/R р	R	C	к - р	VR C/P	-	-	VA	R	-	A/C	к -	
9H-4, 29-31 9H-4, 130-132	A/C A	C A/C	C/R R	G	G	G	-	R	A A/C	R	C/R A/C	R	- -	-	R	A/C	R	-	C C/R	С	
9H-5, 30-32 9H-5, 129-131	AA	A/C A	C/R R	G G	G G	G G	-	-	A/C A	R R	A	-	-		-	C C	VR	R	A C	-	
9H-6, 29-31 9H-7, 29-31	A A	C C	R VR	G G	G G	G G	-	-	C <u>A/C</u>	R R	C C	-	- R	-	-	A A	R VR	-	A C	C/R R	
10H-1, 46-48 10H-1, 118-120	A C	A C/R	R -	G G	G G	G/M	-	R -	C R	R C	A/C A/C	-	-	-	R -	A C	VR VR	-	C A	C C/R	
10H-2, 36-38 10H-3, 35-37	A C/R	A R	A/C -	G G	G G	G -	-	-	C R	R A/C	A D	-	R -	-	-	A/C A	R VR	-	A/C C	R	
10H-3, 141-143 10H-4, 37-39	A	A A	R R	G G	G G	G/M G	-	-	C C	C -	A/C A	-	VR -	-	R VR	A D	R C/R	-	R C/R	R C	
10H-5, 70-72 10H-6, 41-43	A A	A A	VR R	G G	G G	M G	-	-	C C/R	C -	A VR	-	- VR	-	-	A C	R R	-	C C	R C/R	

Note: Abbreviations defined in Appendix Table 1.

		e		ns		uc																
	s	anc		rar		atic		-				es		E								
	Idu	pu	f	fo		LV N		.Ö		an	s	CL]		rag								
	an	pn	0	pl.		ese		nat	ы В	ō	ian	.jd		s f		s		fe			es	
152-919B	S	A				μ		ц.	ķ	C I	ar	es	ns	bid	sks	po		inc	s	æ	ton	
Core, section,	rer	0			0			tai	0.	th	10	ng	D	ine	lu	cac	LT2	nc	de	hr	bsi	
interval (cm)	ar	52	15(Q	52	50	Q	ğ	ev.	Sen	tad	od	Dia	Sch	Ao.)sti	ζnε	Jla)Xİ	ep.	Jr.o	³⁰
211 1 04 06	щ		Δ	4	G	<u>-</u>	4	0	Ľ.	Щ	C C	~	Ц	щ	4	0	0	VP	0	E A		<.
3H-1, 94-90 3H-2 100-102		A/C	A	R	G	G	G	-	-	c	R	D	-	_	-	-	c	R	-	C	VR	
3H-3, 95-97		A	A	ĉ	G/M	G	Ğ	-	R	R	R	č	-	-	-	-	Ă	-	-	-	-	
3H-4, 96-98		R	R	VR	G	М	М	-	-	R	R	R	-	-	-	-	А	С	-	-	С	
3H-5, 95-97		Α	С	R	G	G	G	-	-	R	R	R	-	-	-	-	Α	R	-	Α	R	
3H-6, 96-98		С	C/R	-	G/M	G/M	-	-	-	R	R	R	-	-	-	-	Α	-	-	VA	R	
4H-1, 95-97		Α	C/R	С	G	G	G	-	-	VR	-	-	-	-	-	R	A	R	-	C/R	R	
4H-2, 95-97		A	A	C/R	G	G	M	-	-	C	R	R	-	-	-	-	C	R	-	A	C	
4H-3, 95-97		C	C/R	VR	M	M/P	M	-	-	к	R	A/C	vĸ	- D	-	- D	A	к	С	A	K	
4H-4, 95-97 4H-5, 95-97		A	A	R	G	G	M	-	-	c	K C/R	νA	-	к	_	ĸ	A	-	-	A C	VK R	
5H-1 95-97		C	R	VR	G	M	P	-	-	R	R	R	-	-	-	-	C	VR	-	VA	-	
5H-2, 95-97		C	С	R	G	G	Р	-	-	С	C/R	Α	-	R	-	-	A	R	R	R	R	
5H-3, 95-97		С	R	-	G	Μ	-	-	-	R	С	VA	-	R	-	-	Α	-	VR	R	R	
5H-4, 94-96		А	С	R	G	Μ	Μ	-	-	R	-	С	-	-	-	-	С	-	C/R	R	R	
5H-5, 97-99		R	VR	-	М	Μ	-	-	R	VR	R	VR	-	-	-	-	С	-	-	D	R	e
5H-6, 97-99		A	<u> </u>	VR	G	M	M	-	R	R	-	R	-	-	-	-	A	R	VR	A	C/R	er
6H-1, 95-97		VA	A	R	G	G	M	-	R	C	к	C	-	-	-	к	A	- D	-	A/C	-	8 S
6H-2, 94-96		VA	C	K D	M	M	D	-	R D	R D	-	C	-	-	-	-	A	K D	-	C	VK	ist
6H-4 95-97		R	VR	ĸ	M	M	r	-	VR	R	R	R	-	-	-	-	Δ	ĸ	R	C	R	e e
6H-5 135-137		VA	C	R	G	M	M/P	-	R	R	R	A/C	-	-	_	-	VA	R	-	c	-	щ
6H-6, 58-60		VA	Ă	ĉ	G	G	G	-	R	c	C/R	A	-	-	-	R	A	-	-	č	-	
7H-1, 21-23		С	C/R	VR	М	M/P	Р	-	R	С	C/R	VA	-	-	-	-	Α	VR	-	R	R	
7H-2, 35-37		C/R	R	-	Μ	Р	-	-	-	R	-	-	-	-	-	-	Α	VR	-	-	R	
7H-2, 112-114		R	R	-	G/M	Μ	-	-	R	-	-	VR	-	-	-	-	Α	VR	-	-	С	
7H-3, 59-61		R	VR	-	M	Р	-	-	-	R	-	-	-	-	-	-	A	VR	-	-	-	
7H-3, 112-114		VR	R	VR	M	M	M	-	R	R	VR	-	-	-	-	-	A	VR	-	-	R	
/H-4, 30-32		D	U/R	٧K	G D	D	Р	-	- D	к	- VD	- VD	-	к	-	к	VA	-	-	-	C	
7H-4, 123-127 7H-5, 35-37		VR	VR	-	M	P	-	-	ĸ	R	R	VK	-	-	-	-	Δ		A	-	Ċ	
7H-5 125-127		R	VR	_	M	M	_	_	_	R	R	C/R	_	_	_	_	A	_	_	R	R	
7H-6, 19-21		R	R	-	С	Р	-	-	-	R	-	С	-	-	-	-	VA	-	R	R	-	
7H-6, 143-145		R	R	VR	М	М	М	-	R	R	-	R	-	-	-	-	Α	-	-	R	С	
8H-1, 56-58		Α	С	-	G	М	-	-	R	R	R	-	-	-	I	1	С	-	-	Α	R	
8H-1, 120-122		R	R	-	М	Μ	-	-	-	R	R	Α	-	-	-	-	А	R	-	С	-	
8H-2, 29-31		C/R	VR	-	G	M	-	-	-	R	R	A	-	-	-	-	A	-	R	R	R	
8H-2, 138-140		A/C	C P	K	G	G	M	-	R	R	к	VR	-	- D	-	-	A	K	к	к	K	1
8H-3 110-121	1	UK	ĸ	v K	6	IVI	IVI	1	к	K VP				к			A/C	C/P		VR	A A/C	1
8H_4 9_11	1	Ċ	C/P	VP	G	M	M	1	R	R	1	Ċ					Ĉ		1	A/C	A/C	1
8H-4, 128-130		Ă	A	A	G	G	G	1	R	Ĉ	R	č		VR			R		-	c		1
8H-5, 12-14		C	A/C	VR	Ğ	Ğ	M	-	R	R	R	R	-	VR	-	-	A	R	-	č	А	1
8H-5, 108-110		С	R	VR	G	М	М	-	R	R	С	VA	-	-	-	-	С	-	-	С	R	1
8H-6, 12-14		С	С	VR	G	Μ	Μ	-	R	R	-	R	-	-	-	-	Α	VR	-	С	С	1
8H_6 109_11	1	C/R	R	VR	M	м	м	- 1	R	-	R	R	-	-	- 1	-	Α	-	-	C	A/C	1

Appendix Table 6. Hole 919B.

Note: Abbreviations defined in Appendix Table 1.

Г

Plate 1. Paleogene planktonic foraminifers from the East Greenland Margin (a, spiral view; b, side view; c, umbilical view; d, detail of the wall texture except when differently specified). **1a–c.** *Acarinina bullbrooki* (Bolli), Sample 152-918D-89R-4, 34–36 cm. **2a–c.** *Turborotalia praecentralis* Blow, Sample 152-918D-93R-1, 24–26 cm. **3.** *Chiloguembelina* cf. *cubensis* (Palmer), Sample 152-918D-89R-2, 13–15 cm. **6a–c.** *Acarinina rugosoaculeata*, Sample 152-918D-89R-2, 13–15 cm. **7a–c.** *Acarinina lozanoi* (Colom), Sample 152-918D-89R-4, 34–36 cm. **8a–c.** *Acarinina primitiva* (Finlay), Sample 152-918D-89R-3, 98–99 cm. **9a–c.** *Turborotalia pseudomayeri* (Bolli), Sample 152-918D-93R-1, 24–26 cm. **10a–c.** *Acarinina pentacamerata* Subbotina, Sample 152-918D-89R-4, 34–36 cm. 11a–c. *Turborotalia griffinae* Blow, Sample 152-918D-93R-1, 24–26 cm. **12a–b.** *Acarinina medizzai* (Toumarkine and Bolli), Sample 152-918D-89R-4, 34–36 cm.

Plate 2. Paleogene planktonic foraminifers from the East Greenland Margin (a, spiral view; b, side view; c, umbilical view, d, detail of the wall texture, except when differently specified). **1.** *Chiloguembelina cubensis* (Palmer), Sample 152-918D-76R-1, 48–30 cm, side view. **2.** *Cassigerinella chipolensis* (Cushman and Ponton), Sample 152-918D-53R-6, 29–31 cm, umbilical view. **3.** *Subbotina crociapertura* Blow, Sample 152-918D-96R-2, 43–45 cm, umbilical view. **4a–c.** *Globorotaloides* sp. 1, Sample 152-918D-90R-2, 16–18 cm. **5a–b.** *Pseudohastigerina danvillensis* (Howe and Wallace), Sample 152-918D-89R-2, 13–15 cm; a, apertural view; b, side view. **6a–c.** *Catapsydrax unicavus* Bolli, Sample 152-918D-88R-1, 70–72 cm. **7a–b.** *Pseudohastigerina wilcoxensis* (Cushman and Ponton), Sample 152-918D-90R-2, 113–115 cm; a, side view; b, apertural view. **8a–c.** *Dentoglobigerina galavisi* (Bermudez), Sample 152-918D-88R-1, 70–72 cm. **9a–d.** *Subbotina hornibrooki* (Brönniman), Sample 152-918D-90R-2, 113–115 cm. **10a–b.** *Globigerinatheka* cf. *index* (Finlay), Sample 152-918D-89R-3, 98–99 cm; a, b, side view. **11.** *Globigerinatheka* sp., Sample 152-918D-89R-4, 34–36 cm. **12a–c.** *Acarinina acceleratoria* Khalilov, Sample 152-918D-88R-1, 70–72 cm.