INTRODUCTION AND BACKGROUND

Depth Ecology of Planktonic Foraminifers

A striking and useful aspect of planktonic foraminifer ecology is the vertical stratification of population maxima in the water column. The character of planktonic foraminifer assemblages is determined by the thermal structure and nutrient distribution in the upper water column. Depth stratification of species in the water column has been verified by numerous workers with respect to both modern thermal structure and nutrient distribution (e.g., Emiliani, 1954, 1971; Bé, 1960; Lidd et al., 1968; Bé et al., 1971; Shackleton and Vincent, 1978; Williams et al., 1979; Durazzi, 1981; Deuser et al., 1981; Fairbanks and Wiebe, 1980; Fairbanks et al., 1980, 1982; Deuser, 1987; Kroon and Ganssen, 1988; Deuser and Ross, 1989) and paleo-conditions (Shackleton, 1967; Douglas and Savin, 1978; Keller, 1985; Gasperi and Kennett, 1992, 1993; Norris et al., 1993, 1994; Hodell and Vayavananda, 1993). When the thermocline shoals in the photic zone, thermocline-dwelling foraminifers become a relatively larger percentage of the assemblage (Leckie, 1989). Different thermocline-dwelling species favor various levels of productivity (Fairbanks and Wiebe, 1980). The details of depth ecology are far from completely understood. The depth habitat of some species definitely changes during their ontogeny (e.g., Lohmann and Schweitzer, 1990), while the depth ecologies of some extinct species are still undetermined.

Vertical stratification is probably an adaptive strategy for partitioning resources. The partitioning of resources for maximum utilization by the largest possible number of organisms has often been observed in ecological communities (MacArthur et al., 1966; Ricklefs, 1979). The physiological mechanism in planktonic foraminifers that maintains this stratification is not known. However, collections made in several locations around the world have consistently documented similar relative positions in the water column for several species, and δ¹⁸O measurements generally corroborate tow-net and sediment-trap observations. A short coming of many of the older studies is that the depth rankings were not made with respect to thermal structure, but rather were made with respect to absolute depth. The absolute depth of a particular species habitat may vary greatly from one location to another depending on position of the seasonal thermocline (mean state or seasonal variation). For example, a species that lives at thermocline depths, such as Menardella (=Globorotalia) menardii, may be listed as a shallow or surface dweller in locations where the thermocline is near the surface and as an "intermediate" dweller in locations where the thermocline is deep. In this study the depth habitats of all species are described with respect to thermal structure.

Many extinct Pliocene species are the immediate ancestors of modern species. Where their ranges overlap in the fossil record, they often show covarying abundances, suggesting similar ecological niche boundaries. Isotopic measurements in some cases confirm that extinct species occupied depth habitats similar to those of closely related modern species (e.g., Neogloboquadrina acostaensis and N. dutertrei in Keller, 1985). Given these similarities, extant and extinct species have been combined in faunal groups to produce continuous faunal records (Dowsett and Poore, 1990).

Climatic and Oceanographic History

The West Antarctic ice sheet was established in the late Miocene (Shackleton and Kennett, 1975; Ciesielski et al., 1982; Haq, 1984). During the latest Miocene, the Mediterranean was isolated ("the Messinian salinity crisis") by falling sea levels, a consequence of the Antarctic ice volume increase (Shackleton and Kennett, 1975; McKenzie and Oberhansli, 1985; Hodell et al., 1986). Except for an episode of strong glaciation between 4.6 and 4.3 Ma (Jansen et al., 1993), the period from 5.0 to 3.2 Ma was one of climatic warmth and general stability in the size of Antarctic ice sheets (Shackleton and Opydky, 1977; Keigwin, 1979, 1982; Jansen et al., 1993). High-latati-
tude surface water seems to have warmed, while low-latitude water seems to have become relatively cool through this interval (Kennett and von der Borch, 1986). It was while the globe was in this climatic state that the tectonic uplift made the Isthmus of Panama subaerial, cutting off the low-latitude interoceanic connection between the Pacific and Atlantic basins (Berggren and Hollister, 1977; Thunell and Belyea, 1982). The final closing of the Central American seaway may have taken place in the mid-Pliocene (Kaneps, 1979; Keigwin, 1978, 1982; Duque-Caro, 1990), but Coates et al. (1992), using near-shore marine records, have placed the final closing at 3.8–3.7 Ma, which is older than the 3.4–3.2 Ma estimate given by Keigwin (1978, 1982) based on pelagic records. Farrell et al. (1995) estimated, on the basis of carbonate records from several (Leg 138) sites in the eastern equatorial Pacific, that the seaway may have been effectively closed as early as 4.5 Ma.

The intensification of Northern Hemisphere cooling seems to have followed the closing of the seaway. Shackleton and Opdyke (1977) ascribed a large positive shift in the oxygen isotopic record on the Ontong Java Plateau at 3.2 Ma to the beginning of ice-sheet growth in the Northern Hemisphere, which agreed with an initial 3.0-Ma age estimate for the first appearance of ice-rafter debris in North Atlantic sediments (Berggren, 1972; Poore, 1981). Re-evaluation of biostratigraphy at Deep Sea Drilling Project (DSDP) Sites 111 and 116 caused Backman (1979; Shackleton et al., 1984) to date the first appearance of ice-rafter debris in North Atlantic sediments at about 2.5 Ma. However, δ¹⁸O data from Site 806 in the western equatorial Pacific (Jansen et al., 1993) suggest that ice sheet growth was not a steady expansion from the 3.2 Ma enrichment, but rather a more complex enrichment pattern beginning after 3.7 Ma.

Other studies of North Atlantic records suggest that the interval from 3.1 to 2.45 Ma showed a trend toward progressively cooler sea-surface temperatures with increasing amplitude changes (Dowsett and Poore, 1990), and that cold episodes after 2.95 Ma began to be colder than the modern climate, but the warm intervals were also still significantly warmer (Raymo et al., 1992). After 2.5 Ma, a permanent enrichment of oxygen isotope values in North Atlantic DSDP cores marked what is probably the beginning of Northern Hemisphere glaciation (Thunell and Williams, 1983; Raymo et al., 1989). In this paper we will interpret changes in tropical plankton foraminifer assemblages at Ocean Drilling Program (ODP) Site 925 as responses to changes in the position of the thermocline in the photic zone and consequent changes in the productivity of the upper water column from the late Miocene to the Pleistocene.

METHODOLOGY

This paper examines faunal and isotopic data at Site 925 in the western tropical Atlantic (Fig. 1) with a sampling interval of about 250 k.y. (Table 1). Absolute ages are assigned to samples using the astrochronologically tuned age models of Tiedemann and Franz (this volume), Bickert et al. (Chapter 16, this volume), and Shackleton and Crowhurst (this volume). Planktonic foraminifers are counted in 25 samples. Stable isotopes for *Globigerinoides sacculifer*, *Neogloboquadrina dutertrei* and *Truncorotalia crassaformis* are measured in the same samples. The difference between the δ¹⁸O values of *G. sacculifer* and *N. dutertrei* (mixed-layer [ML] Δδ¹⁸O) are taken to represent the temperature difference between the surface and the ther-
mocline, and the difference between \textit{N. dutertrei} and \textit{T. crassaformis} (thermocline [TH] $\Delta \delta$^{18}O) represent the temperature difference between the (seasonal) thermocline and sub-thermocline waters. These values are compared with changes in the faunal data in an attempt to locate the position of the thermocline relative to the photic zone. The timing of changes in the conjectured position of the thermocline through the last 6 m.y. is considered as a possible response to climatic and oceanographic events set in motion by the closing of the Central American seaway and the onset of large-scale Northern Hemisphere glaciation.

Sample Preparation

Samples of 10 cm3 were collected shipboard at set intervals (one per core). Sample material was soaked in a neutral solution of water, Calgon, and hydrogen peroxide until it disaggregated. Sediment that did not disaggregate readily was agitated on a shaking table and/or placed on a hot plate equipped with a rotating magnet. Disaggregated sediment was wet sieved through a 63-µm screen. The >63-µm fraction was dried either in an oven or on a hot plate (<100°C).

Six to 10 specimens of each species were picked from the 355–425-µm fraction of each sample. Stable isotope measurements were made using a phosphoric acid bath at 90°C on a VG OPTIMA gas ratio mass spectrometer with an automated Isocarb carbonate reaction device attached. Precision of measurements is 0.05‰ for carbon and 0.08‰ for oxygen based on replicate standards. The values are reported relative to the Peedee belemnite (PDB) standard, and calibrations to PDB have been done using National Institute of Standard and Technology (NSB) 19 and the University of California, Santa Cruz in-house standards.

Reconstruction of Water-column Structure

Oxygen and carbon isotope ratios were measured for three planktonic species at ~250-k.y. intervals through the last 6 m.y. At least three species were needed to characterize the structure of the upper water column: a mixed layer-, a thermocline-, and a deep-dwelling species to record the stable isotope values above, within and below the thermocline. Ravelo and Fairbanks (1992) introduced this strategy, using \textit{Globigerinoides sacculifer}, \textit{Neogloboquadrina dutertrei}, and \textit{Globorotalia tumida} from core-top sediments to describe surface-water hydrography across the tropical Atlantic. They found that the range of δ^{18}O values recorded in foraminiferal calcite was proportional to the observed temperature differences between the surface and the bottom of the photic zone at three sites with different hydrographic regimes (Ravelo and Fairbanks, 1992).

It is generally accepted that the oxygen isotopes of \textit{Globigerinoides sacculifer} record conditions in the surface mixed layer (e.g., Shackleton and Vincent, 1978). Ecologic studies of modern \textit{G. sacculifer} suggest that it does not spend its entire life cycle in the mixed layer, but may enter the upper thermocline to reproduce (Berger, 1971; Hemleben et al., 1989). Lohmann (1995) has shown that interpretation of the isotopic signal of some specimens of \textit{G. sacculifer} may be complex due to the accretion of gametogenic calcite and partial dissolution of primary calcite. Isotopic analyses in this study were performed only on non-saccate specimens of \textit{G. sacculifer}. \textit{G. sacculifer} was present in all 25 samples examined.

The oxygen isotope record of \textit{Neogloboquadrina dutertrei} represents conditions in the thermocline (Curry and Matthews, 1981). Towe and Hays (Jones, 1967; Fairbanks and Wiebe, 1980; Fairbanks et al., 1982) and sediment-trap work (Thunell et al., 1983; Curry et al., 1983; Thunell and Reynolds, 1984) have revealed that this species is closely associated with the nutricline, which is found in the upper part of the thermocline where the rapid change in water density slows the sinking rate of phytoplankton creating a maximum concentration (Fairbanks and Wiebe, 1980). Ravelo and Fairbanks (1992) suggested that \textit{N. dutertrei} calcifies at the same temperature on opposite sides of the tropical Atlantic, apparently remaining near the thermocline regardless of its depth. Curry and Matthews (1981) examined core-top material in the Indian Ocean and found that \textit{N. dutertrei} calcifies at approximately 20°C through a wide range of depths. There are also data to support the assumption of the isothermy of \textit{N. dutertrei} depth habitat in the Pleistocene (Ravelo and Fairbanks, 1992), but in the Pliocene there is no data at present. The above studies were done in the low latitudes, and in higher latitudes \textit{N. dutertrei} is found in water cooler than 20°C (Bé, 1977). The 20°C value is here regarded as a tropical asymptote; \textit{N. dutertrei} was assumed not to calcify in warmer water. \textit{N. dutertrei} was present in 21 out of 25 samples examined. Specimens of sufficient size were not found at 4.71, 5.57, 5.92, and 6.14 Ma.

The deep-dwelling foraminifer most frequently present at Site 925 was \textit{Truncorotalia crassaformis}. It appeared in 15 out of 25 samples in two stratigraphically disjunct and isotopically different ranges. Modern thermocline depth in the Ceara Rise region is 100–150 m below sea surface (Molinari and Johns, 1994). This hydrographic condition prevents a large supply of nutrients from reaching the photic zone, where they can be absorbed into the pelagic food web by phytoplankton. Consequently the ‘rain’ of organic matter to the zone below the thermocline at Site 925 has probably been very light through some of the last 6 m.y. and has sustained only low numbers of planktonic foraminifers adapted to a habitat at the bottom of the thermocline.

The oxygen isotope signal includes both global ice volume and local temperature components. All species experience the ice-volume effect equally because the ratio of 18O to 16O changes universally at time scales greater than the mixing time of the world ocean (500–600 yr). However, each species records the temperature of its immediate environment uniquely. Therefore, if one species’ isotope value is subtracted from another, then the difference will be equivalent to the temperature difference of their respective records (Berger et al., 1978), assuming that the ice-volume components of the isotope signal are equal.

Table 1. Sample depths and ages at Site 925.

<table>
<thead>
<tr>
<th>Core, section interval (cm)</th>
<th>Depth (mbsf)</th>
<th>Tuned age (Ma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>154-925</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1H-1, 65–67</td>
<td>0.65</td>
<td>0.01</td>
</tr>
<tr>
<td>2H-3, 65–67</td>
<td>8.15</td>
<td>0.22</td>
</tr>
<tr>
<td>3H-2, 65–67</td>
<td>16.15</td>
<td>0.47</td>
</tr>
<tr>
<td>4H-1, 65–67</td>
<td>24.15</td>
<td>0.75</td>
</tr>
<tr>
<td>4H-6, 65–67</td>
<td>31.65</td>
<td>1.01</td>
</tr>
<tr>
<td>5H-5, 65–67</td>
<td>39.65</td>
<td>1.30</td>
</tr>
<tr>
<td>6H-3, 55–57</td>
<td>46.05</td>
<td>1.52</td>
</tr>
<tr>
<td>7H-2, 65–67</td>
<td>54.15</td>
<td>1.80</td>
</tr>
<tr>
<td>7H-6, 65–67</td>
<td>60.18</td>
<td>2.00</td>
</tr>
<tr>
<td>8H-5, 65–67</td>
<td>68.15</td>
<td>2.24</td>
</tr>
<tr>
<td>9H-3, 65–67</td>
<td>74.65</td>
<td>2.49</td>
</tr>
<tr>
<td>10H-2, 65–67</td>
<td>82.65</td>
<td>2.77</td>
</tr>
<tr>
<td>10H-6, 65–67</td>
<td>88.65</td>
<td>3.07</td>
</tr>
<tr>
<td>11H-5, 65–67</td>
<td>96.65</td>
<td>3.25</td>
</tr>
<tr>
<td>12H-3, 65–67</td>
<td>103.15</td>
<td>3.49</td>
</tr>
<tr>
<td>13H-1, 66–68</td>
<td>109.86</td>
<td>3.78</td>
</tr>
<tr>
<td>13H-5, 73–75</td>
<td>115.73</td>
<td>3.97</td>
</tr>
<tr>
<td>14H-3, 65–67</td>
<td>122.15</td>
<td>4.19</td>
</tr>
<tr>
<td>14H-7, 10–12</td>
<td>127.60</td>
<td>4.36</td>
</tr>
<tr>
<td>15H-5, 65–67</td>
<td>134.65</td>
<td>4.71</td>
</tr>
<tr>
<td>16H-3, 65–67</td>
<td>141.15</td>
<td>4.99</td>
</tr>
<tr>
<td>17H-1, 65–67</td>
<td>147.65</td>
<td>5.31</td>
</tr>
<tr>
<td>17H-5, 65–67</td>
<td>153.65</td>
<td>5.57</td>
</tr>
<tr>
<td>18H-3, 66–68</td>
<td>160.16</td>
<td>5.92</td>
</tr>
<tr>
<td>19H-1, 65–67</td>
<td>166.65</td>
<td>6.14</td>
</tr>
</tbody>
</table>

Note: Tuned ages are derived from astronomologic age models produced by Bickert et al. (Chapter 16, this volume), Tiedemann and Franz (this volume), and Shackleton and Crowhurst (this volume).

257

UPPER WATER-COLUMN STRUCTURE AT SITE 925
“Difference curves” were calculated and presented as proxies for the temperature differences between the depths of calcification for three species. The equation

\[\text{ML } \Delta \delta^{18}O = N. \text{ dutertrei } \delta^{18}O - G. \text{ sacculifer } \delta^{18}O \]

represents the temperature range between the sea surface and the thermocline (ML $\Delta \delta^{18}O$). The equation

\[\text{TH } \Delta \delta^{18}O = T. \text{ crassaformis } \delta^{18}O - N. \text{ dutertrei } \delta^{18}O \]

represents the temperature range from the thermocline into the water below it (TH $\Delta \delta^{18}O$).

It is the rate of temperature change in the upper water column (i.e., the character of the thermocline) that serves as the organizing parameter for populations of planktonic foraminifer species (Fairbanks and Wiebe, 1980; Ravelo et al., 1990; Ravelo and Fairbanks, 1992). If we inspect depth rankings of planktonic foraminifers from different locations in the modern ocean, they are generally similar in order, but the $\delta^{18}O$ values that bracket the limits of each species’ depth range vary widely (e.g., compare Shackleton and Vincent, 1978 and Deuser, 1987). The $\delta^{18}O$ values in a given sample correspond to relative water temperature, but the depth ranking order of the assemblage is determined by the structure of the upper water column with only secondary regard for temperature (Ravelo and Fairbanks, 1992).

Basic to the interpretation of carbon isotope records is the assumption that lower $\delta^{13}C_{\text{carbonate}}$ values represent more nutrient-rich conditions. Organisms (and organic matter) are enriched in ^{13}C due to fractionation by metabolic processes. Oxidation of organic matter by actively feeding organisms and by heterotrophic bacteria releases ^{13}C back into the environment (Berger et al., 1978). ML $\Delta \delta^{13}C$ describes the gradient of $\delta^{13}C$ value in the mixed layer. Steep $\delta^{13}C$ gradients indicate strong stratification between G. sacculifer and N. dutertrei habitats. TH $\Delta \delta^{13}C$ describes the $\delta^{13}C$ gradient between N. dutertrei and T. crassaformis habitats.

In this study the influence of salinity on isotopic values is assumed to be minor, although it is conceivable that the southward migration of the intertropical convergence zone (ITCZ) and its attendant rain could lower the oxygen isotopic values of G. sacculifer at Site 925.

For the faunal counts the >150-µm fraction was separated from the dried sample with a dry sieve. This fraction was divided with an Otto microsplitter until there was an amount small enough to evenly cover a picking tray. The picking tray was scored to divide its surface into quadrates. All specimens in a given quadrate were identified to species and removed to a gummed archive slide. To assure an unbiased collection of specimens, quadrates were cleared in a random pattern across the tray until >300 specimens had been counted (Imbrie and Kipp, 1971).

Low-resolution data do not preserve the high-frequency variation that is inherent in both the faunal and isotopic records. An estimate of variance is made for all the Site 925 data presented by using high-resolution data sets from other tropical sites. Although the variance around the observed value is probably not normally distributed, a standard deviation was calculated, and an error of two standard deviations is included in Figures 2−7. This technique smoothes the data and preserves only the larger trends. Obviously it is optimal to have an estimate of variability based on data from the same site, but failing that it is better to use the variability observed at other sites, rather than have no estimate of error at all.

The taxonomy of Kennett and Srinivasan (1983) is largely followed in this study with modifications noted in Chaisson and Leckie (1993) and Chaisson and Pearson (this volume).

RESULTS

Isotopic Records

Globigerinoides sacculifer $\delta^{18}O$ values at Site 925 do not change significantly between 6.14 and 2.49 Ma (Fig. 2; Table 2). The average value is -1.59% through this interval. After 2.49 Ma the average value of G. sacculifer $\delta^{18}O$ (-0.82%) is higher. Neogloboquadrina dutertrei $\delta^{18}O$ record follows a pattern similar to that of G. sacculifer (Fig. 2; Table 2), but the values are slightly higher, averaging -1.00% between 5.31 and 2.49 Ma, and increasing to -0.02% after 2.49 Ma. Unlike G. sacculifer and N. dutertrei, Truncorotalia crassaformis $\delta^{18}O$ decreases through the Pliocene portion of its range (Fig. 2; Table 2). The average value of T. crassaformis $\delta^{18}O$ in the early to late Pliocene (3.97−2.24 Ma) is 0.46‰, but in the late Pliocene to Pleistocene (2.35−1.91 Ma) the average value increases to 2.29‰. A similar large increase in the value of all truncorotaliids is observed in the late Pliocene of the southwest Pacific (Spencer-Cervato, pers. comm., 1995).

![Figure 2. Oxygen isotope curves for Globigerinoides sacculifer (upper, light gray), Neogloboquadrina dutertrei (middle, medium gray), and Truncorotalia crassaformis (lower, dark gray). Gray areas around points are an estimate of variability derived from high resolution data provided by Jansen et al. (1993) and Billups et al. (this volume).](image-url)
Table 2. Oxygen isotope values.

<table>
<thead>
<tr>
<th>Age (Ma)</th>
<th>sac</th>
<th>dut</th>
<th>cra</th>
<th>ML</th>
<th>TH</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.11</td>
<td>0.51</td>
<td>1.91</td>
<td>0.40</td>
<td>1.80</td>
</tr>
<tr>
<td>0.22</td>
<td>-0.67</td>
<td>-0.66</td>
<td>2.12</td>
<td>0.01</td>
<td>2.79</td>
</tr>
<tr>
<td>0.47</td>
<td>-0.64</td>
<td>0.31</td>
<td>2.92</td>
<td>0.97</td>
<td>3.57</td>
</tr>
<tr>
<td>0.75</td>
<td>-0.64</td>
<td>0.37</td>
<td>2.04</td>
<td>1.01</td>
<td>2.69</td>
</tr>
<tr>
<td>1.01</td>
<td>-1.36</td>
<td>-0.20</td>
<td>2.17</td>
<td>1.16</td>
<td>3.52</td>
</tr>
<tr>
<td>1.30</td>
<td>-0.65</td>
<td>0.06</td>
<td>2.54</td>
<td>0.71</td>
<td>3.20</td>
</tr>
<tr>
<td>1.52</td>
<td>-1.31</td>
<td>-0.27</td>
<td>2.35</td>
<td>1.04</td>
<td>3.66</td>
</tr>
<tr>
<td>1.80</td>
<td>-1.05</td>
<td>-0.20</td>
<td>1.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>-0.94</td>
<td>-0.14</td>
<td>0.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.24</td>
<td>-1.07</td>
<td>-0.22</td>
<td>-0.03</td>
<td>0.84</td>
<td>1.04</td>
</tr>
<tr>
<td>2.49</td>
<td>-1.59</td>
<td>-0.84</td>
<td>0.32</td>
<td>0.75</td>
<td>1.91</td>
</tr>
<tr>
<td>2.77</td>
<td>-1.47</td>
<td>-0.59</td>
<td>0.57</td>
<td>0.88</td>
<td>2.05</td>
</tr>
<tr>
<td>3.07</td>
<td>-1.72</td>
<td>-1.14</td>
<td>-0.23</td>
<td>0.58</td>
<td>1.49</td>
</tr>
<tr>
<td>3.25</td>
<td>-1.78</td>
<td>-1.15</td>
<td>1.07</td>
<td>0.63</td>
<td>2.86</td>
</tr>
<tr>
<td>3.49</td>
<td>-1.62</td>
<td>-0.73</td>
<td>0.63</td>
<td>0.89</td>
<td>2.23</td>
</tr>
<tr>
<td>3.78</td>
<td>-1.87</td>
<td>-1.25</td>
<td>0.83</td>
<td>0.62</td>
<td>2.70</td>
</tr>
<tr>
<td>3.97</td>
<td>-1.81</td>
<td>-1.23</td>
<td>0.52</td>
<td>0.58</td>
<td>2.32</td>
</tr>
<tr>
<td>4.19</td>
<td>-1.62</td>
<td>-1.31</td>
<td>0.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.36</td>
<td>-1.37</td>
<td>-1.01</td>
<td>0.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.71</td>
<td>-1.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.99</td>
<td>-1.48</td>
<td>-1.15</td>
<td>0.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.31</td>
<td>-1.51</td>
<td>-0.67</td>
<td>0.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.57</td>
<td>-1.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.92</td>
<td>-1.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.14</td>
<td>-1.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: sac = Globigerinoides sacculifer; dut = Neogloboquadrina dutertrei; cra = Truncorotalia crassaformis; ML = [N. dutertrei – G. sacculifer]; TH = [G. crassaformis – N. dutertrei].

The difference between N. dutertrei and G. sacculifer δ¹³C (ML Δδ¹³C) is 0.45‰ at 4.99 Ma and increases gradually until 1.80 Ma (Fig. 4A; Table 2). From 1.80 Ma to the latest Pleistocene the difference generally decreases with one reversal of the trend between 1.30 Ma and 1.01 Ma.

ML Δδ¹³C changes little between 3.97 and 3.49 Ma (Fig. 4B; Table 3) and has an average value of 1.42‰. Values generally decline after 3.49 Ma, but seem to stabilize again after 2.00 Ma. The average value from the latest Pliocene through the Pleistocene is 0.45‰. The ML Δδ¹³C record is nearly a mirror image of the ML Δδ¹⁸O record.

The most prominent attribute of the TH Δδ¹³C curve is the very large positive shift recorded across the Pliocene/Pleistocene boundary, where it is unfortunately broken by the absence of T. crassaformis at 2.00 and 1.80 Ma (Fig. 4C). While N. dutertrei Δδ¹⁸O values increase through this interval, the greater part of TH Δδ¹³C change is due to the large Pleistocene increase in T. crassaformis Δδ¹³C values.

TH Δδ¹³C has a trend toward increasing values after 3.07 Ma (Fig. 4D). The coarseness and discontinuity of the record make further interpretation difficult.

Faunal Abundance Records

To compare the faunal record with the isotopic record at Site 925 and to make an estimate of the faunal response to hydrography in the Ceara Rise region through the last 6 m.y., counts of individual species are combined into faunal groups (sensu “counting categories” of Dowsett and Poore, 1990). Percentage data for individual species is in Appendix A. Many of the extant planktonic foraminifer species have been present in the tropical oceans throughout the last 6 m.y., but there were several extinctions and first appearances in the mid-Pliocene (Wei and Kennett, 1986). The groups assembled in this paper (Table 4) are after Dowsett and Poore (1990), who established covariance between the quantitative biostratigraphies of some Pliocene species and their modern descendants, and based on the phylogenetic relationships presented by Kennett and Srinivasan (1983).

Stratigraphic Groups

In addition to using ecological criteria to subdivide the planktonic foraminifers, the sediment assemblage is partitioned according to the stratigraphic range of each species. Taxa are classified as “Miocene–Pliocene” if their first appearance is before 7 Ma and they become extinct before the Holocene. That is, most of their stratigraphic range is in the Miocene or earlier. Taxa are considered “Pliocene–Pleis-
tocene" if they appear after 7 Ma, but do not survive into the modern ocean. Taxa are called "extant" if they exist in the modern ocean, regardless of the time of their first appearance. See Table 5 for a species list.

Miocene–Pliocene taxa account for fully half of the assemblage from the bottom of the section to the middle Pliocene, declining slightly from nearly 60% at 4.71 Ma to 50% at 3.78 Ma (Fig. 4A; Table 6). At 2.61 and 2.49 Ma the Pliocene fraction expands to maintain the Neogene component of the fauna (= Miocene–Pliocene + Pliocene–Pleistocene components) at ~45%, but both groups decline drastically between 2.49 and 2.24 Ma to only 10% of the assemblage. The expansion of the Pliocene–Pleistocene portion of the assemblage at 2.77 and 2.49 Ma is due to large numbers (11% and 13%, respectively) of *Globorotalia miocenica* in those two samples. The slight recovery of the Miocene–Pliocene fraction at 2.49 Ma is due largely to the Neogene globoturborotalitids (27%) and *Globigerinoides obliquus* at 2.49 Ma (23%).

Mixed-layer Dwellers

The dominant faunal elements of the mixed-layer dwellers include the *Globigerinoides sacculifer* group, *Globigerinoides ruber* group and *Globigerinita glutinata*. *Dentoglobigerina altispira* is significant during the early to middle Pliocene and *Globoturborotalita rubescens* is significant in the Pleistocene (Figs. 5, 6). From 5.31 to 3.07 Ma, mixed-layer dwellers make up about 60% of the planktonic foraminifer fauna. After 2.77 Ma, the abundance of this group increases through the late Pliocene to constitute nearly 80% of the assemblage through much of the Pleistocene.

The *Globigerinoides ruber* group constitutes >30% of the assemblage at 5.92 Ma and declines to a low of 15% at 4.71 Ma (Fig. 6C; Table 6). It increases steadily from 4.71 Ma to a high at 1.80 Ma, when it constitutes 50% of the planktonic foraminifer fauna. A steep decline to 10% at 0.75 Ma is followed by a recovery to >40% at the top of the section.

The abundance of the *Globigerinoides sacculifer* group increases sharply between 6.14 and 5.57 Ma and then declines throughout the early and middle Pliocene, reaching a low at 2.49 Ma (Fig. 5D; Table 6). Two samples in the late Pliocene (2.00 Ma) and early Pleistocene (1.80 Ma) have large numbers of the *Globigerinoides sacculifer*.

Table 3. Carbon isotope values.

<table>
<thead>
<tr>
<th>Age (Ma)</th>
<th>sac</th>
<th>dut</th>
<th>cra</th>
<th>ML</th>
<th>TH</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>2.10</td>
<td>1.82</td>
<td>0.67</td>
<td>-0.28</td>
<td>-1.15</td>
</tr>
<tr>
<td>0.22</td>
<td>2.11</td>
<td>1.71</td>
<td>0.80</td>
<td>-0.40</td>
<td>-0.91</td>
</tr>
<tr>
<td>0.47</td>
<td>2.11</td>
<td>1.51</td>
<td>1.03</td>
<td>-0.61</td>
<td>-0.48</td>
</tr>
<tr>
<td>0.75</td>
<td>1.45</td>
<td>1.17</td>
<td>0.41</td>
<td>-0.28</td>
<td>-0.76</td>
</tr>
<tr>
<td>1.01</td>
<td>2.09</td>
<td>1.77</td>
<td>1.30</td>
<td>-0.32</td>
<td>-0.47</td>
</tr>
<tr>
<td>1.30</td>
<td>1.79</td>
<td>1.50</td>
<td>0.70</td>
<td>-0.29</td>
<td>-0.80</td>
</tr>
<tr>
<td>1.52</td>
<td>2.58</td>
<td>1.82</td>
<td>1.52</td>
<td>-0.77</td>
<td>-0.30</td>
</tr>
<tr>
<td>1.80</td>
<td>1.93</td>
<td>1.30</td>
<td>-0.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>2.16</td>
<td>1.71</td>
<td>-0.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.24</td>
<td>1.76</td>
<td>1.16</td>
<td>0.71</td>
<td>-0.60</td>
<td>-0.45</td>
</tr>
<tr>
<td>2.49</td>
<td>2.09</td>
<td>0.61</td>
<td>0.83</td>
<td>-1.48</td>
<td>0.22</td>
</tr>
<tr>
<td>2.77</td>
<td>2.26</td>
<td>1.10</td>
<td>0.85</td>
<td>-1.16</td>
<td>-0.25</td>
</tr>
<tr>
<td>3.07</td>
<td>2.12</td>
<td>1.26</td>
<td>1.13</td>
<td>-0.86</td>
<td>-0.13</td>
</tr>
<tr>
<td>3.25</td>
<td>2.30</td>
<td>1.24</td>
<td>1.06</td>
<td>-1.06</td>
<td>-0.19</td>
</tr>
<tr>
<td>3.49</td>
<td>2.62</td>
<td>1.17</td>
<td>1.00</td>
<td>-1.45</td>
<td>-0.17</td>
</tr>
<tr>
<td>3.78</td>
<td>2.66</td>
<td>1.22</td>
<td>0.90</td>
<td>-1.44</td>
<td>-0.32</td>
</tr>
<tr>
<td>3.97</td>
<td>2.50</td>
<td>1.12</td>
<td>1.11</td>
<td>-1.38</td>
<td>-0.02</td>
</tr>
<tr>
<td>4.19</td>
<td>2.44</td>
<td>0.98</td>
<td>-1.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.36</td>
<td>2.53</td>
<td>1.15</td>
<td>-1.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.71</td>
<td>2.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.99</td>
<td>2.62</td>
<td>1.20</td>
<td>-1.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.31</td>
<td>2.65</td>
<td>1.26</td>
<td>-1.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.57</td>
<td>2.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.92</td>
<td>2.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.14</td>
<td>2.97</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: sac = *Globigerinoides sacculifer*; dut = *Neogloboquadrina dutertrei*; cra = *Truncorotalia crassaformis*; ML = [N. dutertrei – Gs. sacculifer]; TH = [Gc. crassaformis – N. dutertrei].
Globigerinoides ruber group
Globigerinoides obliquus
Globigerinoides extremus
Globigerinoides sacculifer group
Globigerinoides virguloides
Globigerinoides triobola
Globigerinoides quadrilobatus
Globigerinoides fistulosus
Orbulina universa
Surface phytoplanktivore group
Globotruncanita rubescens
Globigerinita glutinata
Dentoglobigerina altispira

Mixed-layer dwellers
Thermocline dwellers

<table>
<thead>
<tr>
<th>Table 4. Species in faunal groups.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed layer</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>Globigerinoides ruber group</td>
</tr>
<tr>
<td>Globigerinoides obliquus</td>
</tr>
<tr>
<td>Globigerinoides extremus</td>
</tr>
<tr>
<td>Globigerinoides sacculifer group</td>
</tr>
<tr>
<td>Globigerinoides virguloides</td>
</tr>
<tr>
<td>Globigerinoides triobola</td>
</tr>
<tr>
<td>Globigerinoides quadrilobatus</td>
</tr>
<tr>
<td>Globigerinoides fistulosus</td>
</tr>
<tr>
<td>Orbulina universa</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 5. Species in stratigraphic groups.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miocene–Pliocene taxa</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>Mixed-layer dwellers</td>
</tr>
<tr>
<td>Globigerinoides obliquus</td>
</tr>
<tr>
<td>Globigerinoides extremus</td>
</tr>
<tr>
<td>Globorotaliinae bazoemomensis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thermocline dwellers</th>
<th>Thermocline dwellers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Globotruncanita rubescens</td>
<td>Menardella miosenica</td>
</tr>
<tr>
<td>Globotruncanita decoraperta</td>
<td>Menardella multicomarata</td>
</tr>
<tr>
<td>Globotruncanita apertura</td>
<td>Hirsutella cibaea</td>
</tr>
<tr>
<td>Globotruncanita woodi</td>
<td>Globococculina triangula</td>
</tr>
<tr>
<td>Menardella limbata</td>
<td>Neogloboquadrina hirsea</td>
</tr>
<tr>
<td>Hirsutella cibaea</td>
<td>Pulleniatina primitis</td>
</tr>
<tr>
<td>Hirsutella juanai</td>
<td>Globotruncanita decora</td>
</tr>
<tr>
<td>Globotruncanita pleiotomica</td>
<td>Globorotalia merotumida</td>
</tr>
<tr>
<td>Globotruncanita merotumida</td>
<td>Neogloboquadrina acostaensis</td>
</tr>
<tr>
<td>Neogloboquadrina acostaensis</td>
<td>Sphaeroidinellopsis paandanensis</td>
</tr>
<tr>
<td>Sphaeroidinellopsis paandanensis</td>
<td>Dentoglobigerina obesa</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Deep dwellers</th>
<th>Deep dwellers</th>
<th>Extant taxa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Globorotalia venezuelana</td>
<td>Dentoglobigerina obesa</td>
<td></td>
</tr>
</tbody>
</table>

Thermocline Dwellers

Thermocline-dwelling foraminifers are most numerous in the early Pliocene (Fig. 7A; Table 6). They gradually decline in abundance from 4.71 Ma to latest Pleistocene, interrupted by brief recoveries to early Pliocene levels at 2.77 and 0.47 Ma. The decline from 2.77 to 1.52 Ma is the most precipitous (~50% to ~10%). The coarse tempo of abundance peaks (~25%) at 0.75 Ma, and the recovery of the Globigerinoides group is apparent: the Globigerinoides and a group that includes Globigerinoides vulpinus and Globorotalia rubescens in the Pleistocene and G. glutinata and Dentoglobigerina altispira in the Pliocene. Dentoglobigerina altispira is a genus with no modern descendants. The Thermocline Dwellers are most common in the Pliocene, while the remaining of the Pleistocene numbers return to early-middle Pliocene levels.

Globigerinoides ruber is a small, non-spinose foraminifer with a micro-perforate test. Although it lives in the mixed layer, it is largely a phytoplanktivore (Hemleben et al., 1989), while the Globigerinoides are omnivores, including varying amounts of zooplankton in their diet (Be et al., 1977; Hemleben and Spindler, 1983; Spindler et al., 1984; Hemleben et al., 1989). The peaks in its record do not correspond to those of the Globigerinoides (Figs. 6A, 5C, 5D).

From a low of <5% at the bottom of the section, G. glutinata increases to reach peaks (>15%) at 2.49 Ma and at 3.97 Ma (Fig. 6A; Table 6). This trend is opposite that of the Globigerinidae sacculari group and similar to that of the Globigerinidae ruber group, but Ga. glutinata reaches a maximum earlier and declines abruptly to <10% of the assemblage between 2.49 and 1.52 Ma, a period during which both Globigerinoides groups are declining.

Globotruncanita rubescens abundance peaks (~25%) at 0.75 Ma, concordant with Globigerinoides glutinata (Figs. 6A, 6B) and opposite the Globigerinidae groups (Figs. 6B, 5C, 5D). It decreases to 5% of the assemblage in the top two samples of the section during the recovery of the Globigerinidae groups.

Dentoglobigerina altispira disappeared globally at ~3 Ma and it declines abruptly to virtual extinction at Site 925 after reaching a maximum of 20% of the assemblage at 3.78 Ma (Fig. 6C), with an interval of low abundance for the Globigerinoides groups and a peak for Globigerinidae glutinata. Thus two similar faunal groups are apparent: the Globigerinidae and a group that includes Globigerinoides and Globorotalia rubescens in the Pleistocene and G. glutinata and Dentoglobigerina altispira in the Pliocene. Dentoglobigerina is a genus with no modern descendants. Single specimens found in samples younger than 3.07 Ma at Site 925 are contaminants.

Notes: *Gasperi and Kennett (1992, 1993) suggest that this species may have become a mixed-layer dweller in the late Miocene. This depth ecology may have been maintained into the Pliocene.
and *Globoconella triangle* make minor, sporadic appearances. Thermocline globorotaliids compose ~15% of the assemblage in peaks centered at 4.99 and 2.49 Ma, and 20% at 0.47 Ma, the latter corresponding to a peak in tropical neogloboquadrinid abundance (Fig. 4C; Table 6). Manardellid taxa make up the largest portion of the above-mentioned peaks. Between 2.24 and 1.52 Ma, when manardellid globorotaliids are very rare or absent, *Globoquadrina tumida* appears in its greatest numbers (up to 5% of the assemblage).

Isotope work by Keller (1985) has identified *Globoturborotalita woodi* and *Globoturborotalita nepenthes* as “intermediate” dwellers. In the nomenclature of Savin and Douglas (1973), “intermediate” refers to species associated with the seasonal thermocline. The numbers of *G. woodi* and *G. apertura* fluctuate in concert at Site 925 and at sites in the tropical Pacific (Chaisson, 1995), and they intergrade morphologically (Chaisson and Leckie, 1993). *G. apertura* is treated here as a thermocline dweller. Lorenz et al. (1992) regard it as a mixed-layer dweller based on its putative phylogenetic relationship to *G. rubescens*. That its chambers are generally more inflated than those of *G. woodi* lends credence to this argument (Hecht and Savin, 1972), but it will remain in its present category awaiting supporting isotopic evidence. *G. woodi* is always more common that any other *G. woodi* and *Globigerinoides ruber* values. This peak abundance of the pulleniatinid group (2.11–1.12 Ma) corresponds to minima in the numbers of other thermocline-dwelling taxa (Fig. 7D; Table 6). Peaks in other thermocline dwellers are coincident with the absence of pulleniatinids at 0.70 and 0.52 Ma and the interval of greatest pulleniatinid abundance coincides with an interval of high *Globigerinoides* abundance. The pulleniatinid pattern of abundance is precisely the opposite of that of *Globoquadrina glutinata*.

DISCUSSION

Late Miocene and Pliocene

Samples at Site 925 in which no tropical neogloboquadrinids of sufficient size for isotopic analysis were found (6.14 Ma), or no specimens at all were present (5.92 and 5.57 Ma; Figs. 3, 7B) correspond to periods of latest Miocene intensification of Antarctic glaciation between 6.1 and 5.9 Ma and centered at 5.6 Ma (Hodell and Kennett, 1986). The *Globigerinoides ruber* group constitutes about 30% of the assemblage in these three samples (Fig. 5C) and the *Globigerinoides saccular* group abundance increases steeply to 39% at 5.57 Ma (Fig. 5D). In the modern ocean, increased numbers of *Globigerinoides ruber* are associated with oligotrophic conditions and increased numbers of Neogloboquadrina *dutertrei* are associated with eutrophic conditions (Bé, 1977; Hemleben et al., 1989; Ravelo et al., 1990). Faunal evidence, therefore, suggests that during the latest Miocene glacial periods, the thermocline at Site 925 in the western equatorial Pacific (Bolli and Saunders, 1985; Chaisson and Leckie, 1993). In the early and middle Pliocene, the pulleniatinid group is represented only by three left-coiling specimens *Pulleniatina primalis* at 4.14 Ma in this study. Biotstratigraphic work (Curry, Shackleton, Richter, et al., 1995) has shown that it occurs sporadically in low numbers up to the “Atlantic disappearance” at 3.5 Ma and reappears in the late Pliocene at 2.3 Ma. (Saito, 1976; Keigwin, 1982; Bolli and Saunders, 1985; Curry, Shackleton, Richter, et al., 1995) largely composed of *P. obliquiloculata* with rare specimens of *P. primalis*. The period of peak abundance of the pulleniatinid group (2.11–1.12 Ma) corresponds to minima in the numbers of other thermocline-dwelling taxa (Fig. 7D; Table 6). Peaks in other thermocline dwellers are coincident with the absence of pulleniatinids at 0.70 and 0.52 Ma and the interval of greatest pulleniatinid abundance coincides with an interval of high *Globigerinoides* abundance. The pulleniatinid pattern of abundance is precisely the opposite of that of *Globoquadrina glutinata*.
ened wind fields, caused southeast tradewinds to "pile" warm surface water on the western side of the basin, and depressed the thermocline. Warmer, interglacial conditions prevailed in Antarctica between 5.5 and 3.2 Ma (Hodell and Kennett, 1986; Jansen et al., 1993). The character of faunal and isotopic records at Site 925 changes to reflect the accompanying decrease in tradewind strength in the low latitudes from the late Miocene to early Pliocene. Three thermocline-dwelling groups increase to the abundance maxima between 5.57 and 3.78 Ma (Figs. 7B, C, D). The MLΔδ18O record shows a steep decrease between 5.57 and 5.31 Ma. Smaller MLΔδ18O values show that the temperature difference between Globigerinoides sacculifer and Neogloboquadrina dutertrei habitats decreased. Decreased advection of warm surface water to the western tropical Atlantic allowed the thermocline to shoal higher in the photic zone and decreased sea-surface temperatures (SST).

Eolian dust records indicate that the late Miocene to early Pliocene was a period of declining tradewind strength. In the western (Krissek and Janecek, 1993) and eastern (Hovan, 1995) equatorial Pacific, grain size of eolian material decreased between 5.5 and 4.0 Ma. In the eastern tropical Atlantic (Tiedemann et al., 1989, 1994), dust flux reached a minimum value for the Pliocene at approximately 4.0 Ma.

Jansen et al. (1993) attributed a positive drift in Globigerinoides sacculifer δ18O after 3.7 Ma at Site 806 in the western equatorial Pacific to the growth of Northern Hemisphere ice sheets. The δ18O records of both G. sacculifer and N. dutertrei (Fig. 2) also show a strong positive drift at Site 925 after 3.78 Ma, recording the global

Figure 5. Relative abundance of stratigraphic groups, Miocene–Pliocene (circles) and Pliocene–Pleistocene (squares) (A), and mixed-layer dwelling groups (B, C, D). Gray areas represent two standard deviations, and are based on high-resolution data from Pliocene intervals in the Pacific (Chaisson, 1996).

Figure 6. Relative abundance of the surface phytoplanktivores. The last group represents the sum of the previous three species. Gray areas as in Fig. 5.
A trend noted by Jansen et al. (1993). A trend in upper water-column conditions at Site 925 is revealed by the increase of ML $\Delta^{18}O$ values between 4.19 and 1.80 Ma, which represents a growing temperature difference between $G.~sacculifer$ and $N.~dutertrei$ habitats.

Between 3.49 Ma and 2.00 Ma, ML $\Delta^{13}C$ values declined (Fig. 4C), indicating that the $\delta^{13}C$ gradient in the upper water column was declining through this interval. The larger part of the change in the ML $\Delta^{13}C$ record is due to the decline in $G.~sacculifer$ $\delta^{13}C$ values (Fig. 3). There is no significant trend in the global carbon budget through this interval (Mix et al., 1995), and the decline in surface $\delta^{13}C$ values is likely due to a decrease in productivity at Site 925, which is also suggested by the overall decline in both tropical neogloboquadrinid and surface phytoplanktivore abundance (Fig. 7B), and the large increase in the Globigerinoides ruber group abundance (Fig. 5C) after the early Pliocene. Through this interval, the abundance of Miocene species at Site 925 declines from approximately 50% of the assemblage to near absence. The decline of this group in the equatorial Pacific (Sites 806 and 847) began after 4.5 Ma (Chaisson, 1996). Conditions favorable to species that evolved in the Miocene were evidently favorable into the middle Pliocene in the western tropical Atlantic. The nature of those conditions is unknown, although the general correlation with the ML $\Delta^{13}C$ record at Site 925 suggests that nutrient distribution in the upper water column may have been a factor.

TH $\Delta^{18}O$ and TH $\Delta^{13}C$ records provide further evidence of surface warming and increasing oligotrophy at Site 925 through the mid- and late Pliocene. Truncorotalia crassaformis $\Delta^{18}O$ values generally decreased between 3.78 and 2.24 Ma, in spite of a global trend toward increased $\delta^{18}O$ values. TH $\Delta^{18}O$ values declined sharply as $N.~dutertrei$ and $T.~crassaformis$ habitats converged. In the equatorial Atlantic, $T.~crassaformis$ is found between 150 and 200 m depth in association with the oxygen minimum zone (OMZ; Jones, 1967). Declining surface productivity and thickening of the mixed layer would have the effect of weakening the OMZ and depressing a warmer portion of the thermocline into $T.~crassaformis$ habitat. The absence of this species in samples at 2.00 and 1.80 Ma probably records the culmination of this trend. This interpretation is supported by the high numbers of both Globigerinoides groups in these samples (Figs. 5C, D). The maximum in pulleniatinid numbers at 2.24 Ma is another indication of oligotrophic conditions at Site 925. This group is most abundant in the deep, nutrient-poor thermocline waters of the western equatorial Pacific (Parker and Berger, 1971; Kennett et al., 1985; Whitman and Berger, 1993).

Late Pliocene and Pleistocene

The low resolution of sampling in this study prevents detailed interpretation of a relationship between faunal and isotopic evidence and upper water-column hydrography. However, some general observations are possible. The large late Pliocene increase in Truncorotalia crassaformis $\Delta^{18}O$ values (also noted by Spencer-Cervato, pers. comm., 1995) in the southwest Pacific suggests either a genetic change in this species or substantial cooling of upper intermediate water at this time. Further investigation is necessary before conclusions can be drawn. ML $\Delta^{13}C$ values remained elevated until the latest Pleistocene (0.22 and 0.01 Ma). Unlike the early Pliocene decrease in ML $\Delta^{13}C$ values, this event is coupled with a decrease in thermocline-dweller abundance (Figs. 4C, 7A, 7B, 7C). Faunal and isotopic evidence suggest an increase in downwelling and a warming of sub-subsurface water rather than shoaling of the thermocline and cooling of surface water.

Downwelling is also suggested by the sharp increase in TH $\Delta^{13}C$ in the latest Pleistocene at Site 925. The $\delta^{13}C$ gradient was steepest between Globigerinoides sacculifer and Neogloboquadrina dutertrei habitat in the Pliocene of Site 925 (Fig. 4C), averaging nearly 1.5‰ in the early Pliocene. The decline of ML $\Delta^{13}C$ and the rise of TH $\Delta^{13}C$ suggests a downward movement of the $\delta^{13}C$ gradient through the Pliocene into the Pleistocene at Site 925. Downwelling of surface water relatively rich in ^{13}C has the effect of making $G.~sacculifer$ and $N.~dutertrei$ $\delta^{13}C$ values more similar, and $N.~dutertrei$ and Truncorotalia crassaformis $\delta^{13}C$ values more dissimilar (Fig. 3).

The large sampling interval used for this study attaches too much uncertainty to the faunal and isotopic values to make regression analysis informative. Therefore, the isotopic values are divided into three classes, and threshold abundances are recognized for each faunal group. The interrelationships between the abundance fluctuations...
of the faunal groups and the values of the isotopic difference curves are summarized in Table 7. Table 7 suggests that variations in the thermal gradient implied by the δ^{18}O gradients in the mixed layer (ML $\Delta\delta^{18}$O) and thermocline (TH $\Delta\delta^{18}$O) can be reliably associated with high numbers (i.e., favorable environmental conditions and consequent reproductive success) of these faunal groups. The descriptions of tradewind and convergence strength, SST and strength, depth, and variability of the seasonal thermocline in Table 8 are based on inferences drawn from the associations of faunal and isotopic values presented in Table 7. In Table 8, increasing ML $\Delta\delta^{18}$O values (top to bottom) are associated with warmer SSTs and stronger tradewinds. Increasing TH $\Delta\delta^{18}$O values (left to right) are associated with a stronger and more seasonally variable thermocline. These paleoenvironmental deductions are applied only to Site 925, where increased tradewinds advect surface water, warm SSTs, and depress the thermocline. At sites on the eastern side of the equatorial Atlantic, increased tradewinds would be expected to cool SSTs and shoal the thermocline.

In the modern ocean, Site 925 is on the edge of a weak upwelling zone during the boreal summer and is beneath downwelling for the rest of the year (Hastenrath and Lamb, 1977; Molinari and Johns, 1994). Faunal data suggest that upwelling was never strong at Site 925 during the last 6 m.y.; tropical neogloboquadrinids never account for more than 20% of the assemblage. Rather, downwelling was at a minimum in the early Pliocene and gradually increased in strength and duration into the Pleistocene. Hastenrath (1985) noted that the SST maximum in the tropical Atlantic coincides with the convergence maximum. Increasingly large values of ML $\Delta\delta^{18}$O between the early Pliocene and early Pleistocene are coupled with decreases in the abundance of thermocline-dwelling fauna. These coinciding trends argue for increasing SST due to southward migration of the average position of the ITCZ (Fig. 8).

Table 7. Relating faunal abundance and isotopic gradients.

<table>
<thead>
<tr>
<th>Thermocline</th>
<th>Small</th>
<th>Moderate</th>
<th>Large</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermocline</td>
<td>Dominant faunal groups</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small</td>
<td>Globigerinoids sacculifer group</td>
<td>Globigerinoids sacculifer group</td>
<td>Globigerinoids ruber group</td>
</tr>
<tr>
<td></td>
<td>Neogene globoturborotalitids</td>
<td>Thermocline globorotaliids</td>
<td>Thermocline globorotaliids</td>
</tr>
<tr>
<td>Moderate</td>
<td>Globoturbo rotalita rubescens</td>
<td>Dentoglobigerina altispira</td>
<td>Globigerinoids ruber group</td>
</tr>
<tr>
<td></td>
<td>Globigerinita glutinata</td>
<td>Globigerinita glutinata</td>
<td>Globigerinita glutinata</td>
</tr>
<tr>
<td></td>
<td>Neogene globoturborotalitids</td>
<td>Tropical neogloboquadrinids</td>
<td>Tropical neogloboquadrinids</td>
</tr>
<tr>
<td></td>
<td>Pulleniatids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large</td>
<td>?</td>
<td>Globigerinopsis glutinata</td>
<td>Globigerinoids ruber group</td>
</tr>
<tr>
<td></td>
<td>Tropical neogloboquadrinids</td>
<td>Globigerinoids ruber group</td>
<td>Globigerinita glutinata</td>
</tr>
<tr>
<td></td>
<td>Menardella menardii</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Faunal groups are considered to be dominant at varying levels: >30% for the *Globigerinoids ruber* group, >20% for the *Globigerinoids sacculifer* group, and >15% for all other groups, except for the thermocline globorotaliids (>10%) and the pulleniatids (>5%). Mixed-layer groups are above the asterisk and thermocline-dwelling groups below.

Table 8. Interpreting climatic and oceanographic conditions.

<table>
<thead>
<tr>
<th>Thermocline</th>
<th>Small</th>
<th>Moderate</th>
<th>Large</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed layer</td>
<td>Tradewinds weak (NE < SE)</td>
<td>Tradewinds weak (NE < SE)</td>
<td>Tradewinds weak (NE < SE)</td>
</tr>
<tr>
<td></td>
<td>Cooler SST</td>
<td>Cooler SST</td>
<td>Cooler SST</td>
</tr>
<tr>
<td></td>
<td>Convergence weak</td>
<td>Convergence weak</td>
<td>Convergence weak</td>
</tr>
<tr>
<td></td>
<td>Weak, deep seasonal thermocline</td>
<td>Stronger, deep seasonal thermocline</td>
<td>Seasonally variable strong thermocline</td>
</tr>
<tr>
<td>Small</td>
<td>Tradewinds weak (NE < SE)</td>
<td>Tradewinds moderate (NE = SE)</td>
<td>Tradewinds moderate (NE = SE)</td>
</tr>
<tr>
<td></td>
<td>Warmer SST</td>
<td>Moderately variable seasonal thermocline; base of photic zone</td>
<td>Highly variable seasonal thermocline; base of photic zone</td>
</tr>
<tr>
<td></td>
<td>Weaker seasonal thermocline; base of photic zone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td>Tradewinds strong Warmest SST</td>
<td>Tradewinds strong Warmest SST</td>
<td>Tradewinds strong Warmest SST</td>
</tr>
<tr>
<td></td>
<td>Moderately variable seasonal thermocline; base of photic zone</td>
<td>Highly variable seasonal thermocline; base of photic zone</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large</td>
<td>Tradewinds strong Warmest SST</td>
<td>Tradewinds strong Warmest SST</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weaker seasonal thermocline; base of photic zone</td>
<td>Moderately variable seasonal thermocline; base of photic zone</td>
<td></td>
</tr>
</tbody>
</table>

265
CONCLUSIONS

Planktonic foraminifer counts from undissolved sediments preserve a record of the relative reproductive success of each species. Isotopic measurements of multiple species document the isotopic gradients that are associated with the abundances in those samples. If these isotopic gradients are interpreted as thermal (Δδ18O) and nutrient (Δδ13C) gradients within the euphotic zone, then an association can be made between the reproductive success of certain species, or groups of species, and a particular physical environment. Many studies in the modern ocean that link the distribution of assemblages with the extent of particular water masses (e.g., Bé and Tolderlund, 1971; CLIMAP, 1981) have laid the groundwork for interpreting this relationship in the geologic past.

Small δ18O gradients in the mixed layer (ML Δδ18O) are associated with high numbers of Globigerinoides species, while larger gradients are associated with high numbers of surface phytoplanktivores (Tables 4, 5). This concurs with what is observed in the modern ocean (e.g., Bé and Tolderlund, 1971); Globigerinoides spp. favor a less thermally stratified mixed layer. Larger gradients between the top of the seasonal thermocline and sub-thermocline water (TH Δδ18O) are associated with larger numbers of the G. ruber group. In the modern ocean, G. ruber is more common at subtropical latitudes than is G. sacculifer (Bé, 1977), suggesting that it tolerates more seasonal change in the water column. Larger values of TH Δδ18O may, therefore, be indicative of greater seasonal change in the structure of the water column at Site 925. This conclusion is complemented by the association of larger numbers of pulleniatinids with small values of TH Δδ18O. In the modern ocean, this thermocline-dwelling group is most common in the western equatorial Pacific, an area of minimal seasonality (Parker and Berger, 1971). By contrast, the greatest number of tropical neogloboquadrinids are associated with moderate to large values of ML and TH Δδ18O at Site 925, that is, with the most thermal stratification of the euphotic zone. This pattern agrees with the biogeography of Neogloboquadrina dutertrei in the modern ocean, where it is more common in the eastern tropical regions and along eastern boundary currents (Bé, 1977; Parker and Berger, 1971), where there is seasonal or persistent upwelling.

When viewed in time series (Figs. 4–8), the above connections between planktonic foraminifer ecology and the structure of the upper water column suggest that during the last 6 m.y. at Site 925, the thermocline shoaled to its shallowest levels near the early to mid-Pliocene boundary (3.8 Ma). Numbers of tropical neogloboquadrinids are highest through this interval, but do not exceed 20% of the assemblage, which is similar to their representation in a core top from V29-144 in the eastern tropical Atlantic, where they calcify between 25 and 75 m (Ravelo and Fairbanks, 1992). Mix et al. (1995) show a ~1.5‰ increase in benthic δ18O values between the mid-Pliocene and the Pleistocene at Site 849. This range is approximated by the δ18O values of Neogloboquadrina dutertrei through the comparable interval at Site 925, while the change in Globigerinoides sacculifer values is smaller. This suggests that at Site 925 the increase in G. sacculifer δ18O due to the increase in ice volume between the Pliocene and Pleistocene was off-set by a regional increase in SST. The increase in ML Δδ18O at Site 925 is therefore interpreted as largely due to an increase in SST. This evidence is coupled with an overall increase in the abundance of mixed-layer dwellers, driven by a very large increase in the number of G. ruber in the sediments after 2 Ma.

The faunal and isotopic data in this study suggest that the thermocline in this region (4°N, 43°W) has been gradually depressed since ~4 Ma, and that SST has gradually increased. We conclude that the cause for these oceanographic changes was the southward movement of the winter position of the ITCZ, and the downwelling and SST maximum that characterize the surface ocean below this atmospheric feature. This southward movement was a result of the progressive cooling of the northern hemisphere between the Pliocene and Pleistocene.

ACKNOWLEDGMENTS

Thanks to the rest of the scientific party of Leg 154 and to the crew of the SEDCO Forex 491 for (what was in hindsight) a perfect cruise. The first author thanks the second author for the use of the UCSC mass spectrometer. The research for this paper was made possible by a post-cruise grant from JOI/ USSRSP.

REFERENCES

ology (Vol. 1) London (Academic), 1–100.

Oceans. *In Funnell, B., and Riedel, W. (Eds.), Micropaleontology of the
Oceans*: Cambridge (Cambridge University Press).

Berghen, W.A., 1972. Late Pliocene-Pleistocene glaciation. *In Laughton,

Berghen, W.A., and Hollister, C.D., 1977. Plate tectonics and paleocircula-

Press), 155–262.

Chaissen, W.P., 1996. Equatorial Atlantic and Pacific Paleoclimatology, Late Miocene to Pleistocene [Ph.d. diss.], Univ. of Massachusetts, Amherst.

Chaissen, W.P., and Leckie, R.M., 1993. High-resolution Neogene planktonic foraminifer biostratigraphy of Site 806, Ontong Java Plateau (west-

Ciesielski, P.F., Ledbetter, M.T., and Ellwood, B.B., 1982. The development of Antarctic glaciation and the Neogene paleoenvironment of the Ma-

CLIMAP, 1981. Seasonal reconstruction of the earth’s surface at the last gla-

Coates, A.G., Jackson, J.B., Collins, L.S., Cronin, T.M., Doewsett, H.J.,
Panama: the near-shore marine record of Costa Rica and Western Pan-

Curry, W.B., and Matthews, R.K., 1981. Paleoceanographic utility of oxygen
isotopic measurements on planktonic foraminifera: Indian Ocean core

Curry, W.B., and Honjo, S., 1983. Seasonal changes in the isotopic
composition of planktonic foraminifera collected in Panama Basin

Results*, 154: College Station, TX (Ocean Drilling Program).

Deuser, W.G., 1987. Seasonal variations in isotopic composition and deep-
water fluxes of the tests of perennially abundant planktonic foraminifera of the Sargasso Sea: results from sediment-trap collections and their paleo-

Deuser, W.G. andRoss, E.H., 1989. Seasonally abundant planktonic Foram-

changes in species composition numbers, mass, size and isotopic compo-

function for estimating Pliocene-Holocene paleoceanographic conditions

Dugue-Caro, H., 1990. Neogene stratigraphy, paleoceanography and paleo-
biogeography in the northwest South America and the evolution of the
234.

Durazzi, J.J., 1981. Stable isotope studies of planktonic foraminifera in North
172.

Emiliani, C., 1954. Depth habitats of some species of pelagic foraminifera as

Vertical distribution and isotopic fractionation of living planktonic foran-

Fairbanks, R.G. and Wiebe, P.H., 1980. Foraminiferal and chlorophyll maxi-
mum: vertical distribution, seasonal succession, and paleoceanographic

Farrell, J., Raffi, J., Janecek, T., Murray, D., Levitan, M., Dadey, K., Emme,
C.-K., Lyle, M., Flores, J.A., and Hovan, S., 1985. Late Neogene sedi-
mation patterns in the North Pacific Ocean (Leg 138). In Pisias, N.G.,

Gasperi, J.T., and Kennett, J.P., 1992. Isotopic evidence for depth stratifica-
tion and paleoecology of Miocene planktonic Foraminifera: western
equatorial Pacific DSDP Site 289. *In Tsuji, T., and Ingle, I.C., Jr. (Eds.), Pacific Neogene-Environment, Evolution, and Events: Tokyo (Univ. of Tokyo Press), 117–147.

Hodell, D.A., and Kennett, J.P., 1986. Late Miocene-early Pliocene stratigra-
phy and paleoceanography of the South Atlantic and southwest Pacific

Hodell, D.A., and Vayavananda, A., 1993. Middle Miocene paleoceanogra-

Hovan, S.A., 1995. Late Cenozoic atmospheric circulation intensity and cli-
matic history recorded by eolian deposition in the eastern equatorial

Evolution of Placeme climate cycle at Hole 806B (5–2 Ma): oxygen

