26. ¹⁰Be AND ⁹Be CONCENTRATIONS IN THE DEEP SEA SEDIMENTS AT SITE 925, CEARA RISE, IN THE WESTERN EQUATORIAL ATLANTIC: IMPLICATION OF ¹⁰Be FLUX CHANGE¹

M. Murayama,² H. Nagai,³ M. Imamura,⁴ S. Hatori,⁵ K. Kobayashi,⁵ and A. Taira⁶

ABSTRACT

The variations of ¹⁰Be and ⁹Be flux over 7 Ma were studied at Site 925 on the Ceara Rise in the equatorial Atlantic. Agecorrected ¹⁰Be fluxes range from 50 to 270×10^7 atoms/cm² k.y. with an average value of over 100×10^7 atoms/cm² k.y. The relation of the age-corrected ¹⁰Be flux to the ⁹Be flux shows a positive correlation, suggesting the ¹⁰Be is associated with the terrigenous fractions. However, despite the fact that the concentration of ¹⁰Be derived from the Amazon drainage area should be expected to be much lower than that in the marine sediments, the fluxes of ¹⁰Be show high values. This result indicates that the ¹⁰Be in the ocean was scavenged by suspended materials like fine-grained clays in the process of transportation from the Amazon drainage area. The variations of both Be fluxes over the last 7 Ma in this area may result from local or regional change in the inputs of Amazon-derived terrigenous sediments.

INTRODUCTION

The detailed ¹⁰Be and ⁹Be content record in marine sediments has been investigated as a potential geochronological tool (Tanaka and Inoue 1979; Bourles et al., 1989, Beets et al., 1991) and as a proxy monitor of variations in solar activity and geomagnetic field intensity (Raisebeck et al., 1979, 1985; Ku et al., 1985; Raisebeck and Yiou 1988; Henken-Mellies et al., 1990; Kent and Schneider, 1995). Furthermore, the radionuclide ¹⁰Be (half life = 1.5×10^6 yr) has also been used in flux studies as a geochemical and a sedimentological tracer (Brown 1987; Sharma et al., 1987). Studies of ¹⁰Be flux have provided opportunities to understand its behavior, its residence time in the ocean (Kusakabe et al., 1982, 1987), and some processes of removal of ¹⁰Be to the sediments (i.e., boundary scavenging [Anderson et al., 1990; Lao et al., 1992a, 1992b, 1993; Frank et al., 1994]). The variation of ¹⁰Be concentration in ocean sediment is controlled by several factors. The major potential factors are changes in the accumulation rates of sediment, the boundary scavenging effect, and the atmospheric ¹⁰Be production.

On the other hand, the stable isotope ⁹Be has been used as a normalization of ¹⁰Be concentration in the sea water and the ocean sediments. The ⁹Be in the ocean sediments is originally derived from terrigenous input from the continents (e.g., Sharma et al., 1987, Brown et al., 1992) and hydrothermal activities (Bourles et al., 1991).

Our primary goal in this study was to assess the long-term variation of ¹⁰Be flux and to estimate the changes in the ¹⁰Be sources on the Ceara Rise in the equatorial Atlantic. The sediments deposited in this region consist mainly of calcareous ooze with a varying amount of clay (Curry, Shackleton, Richter, et al., 1995). In particular, the sediments after 4.5 Ma are characterized by a steady increase in clay content. Therefore, the ¹⁰Be flux and the ¹⁰Be/⁹Be ratio would appear

²Graduate School of Environmental Earth Science, Hokkaido University, Sapporo 060, Japan. murayama@eoas.hokudai.ac.jp

to be influenced by lateral terrigenous input from the Amazon drainage area.

MATERIALS AND METHODS

Site 925 is located at 4°12.248′N, 43°29.349′W, at a water depth of 3041 m on the uppermost part of the Ceara Rise off the coast of South America and the Amazon fan (Fig. 1). Analyzed samples were taken at approximately 10-m intervals from the upper 19 cores of Hole 925B. Sediment samples for ¹⁰Be and ⁹Be contents were prepared using the following procedures.

About 3 g of wet sediment was washed with pure water and then dried at 80°C for one night. The dried sediments were weighed before and after removal of carbonates using 2-N HCl. After leaching carbonate fractions, however, these supernatant liquids have a possibility of containing Be, as pointed out by some reports (Bourles et al., 1989, Henken-Mellies et al., 1990, Robinson et al., 1995). Therefore, the supernatant liquids were also used for ¹⁰Be analysis by Accelerator Mass Spectrometry (AMS) and ⁹Be analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The amounts of ¹⁰Be and ⁹Be content in the sediment were obtained from the non-carbonate fraction and the supernatant liquid, respectively.

The non-carbonate fractions were added to 0.2 mg of Be carrier and were dissolved using a mixture of concentrated HNO₃ and 46% HF in 25-mL Teflon bombs at 140°C for 14 hr For 9Be analysis in non-carbonate fractions by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES), almost the same amount of sediment was treated and dissolved using the same procedure as for AMS, but without adding a Be carrier. Further purification for AMS was made using a cation exchange column (Dowex 50W-X8) and an anion exchange column (MCI-GEL CA08P). Eluted Be fractions were evaporated to near dryness and were diluted with pure water. They were added to distilled ammonia water to precipitate Be as Be(OH)₂. After washing the precipitates twice with pure water, the precipitates were moved into small quartz beakers, and were dried on a hot plate. The samples were then placed in an electric furnace and temperatures were ramped to 900°C to convert the material to BeO. They were mixed with a fourfold amount of Ag powder and were pressed into 1 mm diameter holes of the AMS sample holders.

AMS measurements were performed on the 5UD Pelletron at the University of Tokyo. The standard samples for AMS were prepared from 4.98×10^{-10} stock solution originally supplied by ICN Co.,

¹Shackleton, N.J., Curry, W.B., Richter, C., and Bralower, T.J. (Eds.), 1997. *Proc. ODP, Sci. Results*, 154: College Station, TX (Ocean Drilling Program).

³Department of Chemistry, College of Humanities and Science, Nihon University, Tokyo 156, Japan.

⁴Institute for Nuclear Study, University of Tokyo, Tokyo 188, Japan.

⁵Micro Analysis Laboratory, Tandem Accelerator Research Center for Nuclear Science and Technology, University of Tokyo, Tokyo 113, Japan.

⁶ Ocean Research Institute, University of Tokyo, Tokyo 164, Japan.

Figure 1. Location map showing Site 925 on the Ceara Rise in the equatorial Atlantic.

which had already been proven to produce a very good agreement in the ¹⁰Be/⁹Be ratio with the NIST standard. The reproducibility in ¹⁰Be/⁹Be of repeated measurements of several standard samples was 2%-4% (1 σ).

Carbonate contents of each sample were determined using the carbonate bomb method (Müller and Gastner 1971).

RESULTS AND DISCUSSION

All data analyzed are presented in Table 1. For this site, detailed sample ages were based on biostratigraphic age datums (Curry, Shackleton, Richter, et al., 1995) and correlating part of astronomical tuning oxygen isotope record (0–2.5 Ma, Bickert et al., Chapter 16, this volume and 2.5–5 Ma, Tiedemann and Franz, this volume) with the SPECMAP oxygen isotope master curve (Imbrie et al., 1984), compared with the magnetic susceptibility and color reflectance record (Curry, Shackleton, Richter, et al., 1995).

In Figure 2, the ¹⁰Be concentrations are plotted against the meters composite depth (mcd) in Hole 925B. The ¹⁰Be concentration appears to decrease with an approximately linear trend on a logarithmic scale.

Age-corrected ¹⁰Be flux and ⁹Be flux were calculated according to the following relationships:

Age-corrected ¹⁰Be flux (10⁷ atoms/cm² k.y.) = dry bulk density (g/cm³) × age-corrected ¹⁰Be concentration (10⁷ atoms/g total) × linear sedimentation rate (cm/k.y.),

and

⁹Be flux (10¹⁶ atoms/cm² k.y.) = dry bulk density (g/cm³) × ⁹Be concentration (10¹⁶ atoms/g total) × linear sedimentation rate (cm/k.y.). The fluxes of ¹⁰Be range from about 50 to 270×10^7 atoms/cm² k.y., as shown in Figure 3. The average flux of ¹⁰Be amounts to over 100×10^7 atoms/cm² k.y. The high values of fluxes (250 to 270×10^7 atoms/cm² k.y.) occurred abruptly after 1 Ma. The variation of ¹⁰Be fluxes seems to have an almost same trend compared with that of ⁹Be fluxes (Fig. 3).

In Figure 4, a plot of ¹⁰Be flux against ⁹Be flux shows a positive correlation, indicating that the ¹⁰Be in the sediments was associated with the ⁹Be. This result suggests that the ¹⁰Be was mainly derived from the terrigenous fractions from the Amazon drainage area. Furthermore, as shown in Figure 5, this suggestion is supported by the relationship between the ¹⁰Be and ⁹Be flux ratio and the ⁹Be concentration, which has a nearly constant trend.

The ¹⁰Be in the sediments is either coming with or scavenged by the terrigenous fractions like fine-grained clays in the process of transportation from the Amazon drainage area. However, the concentration of ¹⁰Be in the Amazon-derived terrigenous sediments should be expected to be much lower than that in the marine sediments (Kusakabe et al., 1991). Against this expectation, the fluxes of ¹⁰Be show relatively high values (see Fig. 3). In particular, as the clay content was increased abruptly after 2 Ma, the increase in the fluxes of ¹⁰Be occurred synchronously. Hence, there is almost no change in the ratio of ¹⁰Be and ⁹Be fluxes. All the variability in the ¹⁰Be flux over the last 7 Ma at this site can be explained in terms of scavenging by the fluctuating input of terrigenous materials.

It is well known that the variation of ¹⁰Be concentration in ocean sediment is also controlled by the ¹⁰Be production rate in the atmosphere. Measurements of ¹⁰Be profiles in the deep-sea sediments across geomagnetic reversals have shown that the ¹⁰Be production rate was influenced by variations in the geomagnetic intensity (Raisbeck et al., 1979, 1985; Ku et al., 1985; Eisenhauer et al., 1987; Henken-Mellies et al., 1990; Kent and Schneider, 1995). Thus, the data of ¹⁰Be flux variation in the sediments also includes the effect of changes in ¹⁰Be production rate in the atmosphere. Unfortunately, we

Table 1. Result of analyses and	flux estimates from	Hole 925B cores.
---------------------------------	---------------------	------------------

Section	Depth (mcd)	Age (Ma)	¹⁰ Be content (10 ⁷ atoms/g bulk)	Age-corrected ¹⁰ Be content (10 ⁷ atoms/g bulk)	⁹ Be content (10 ¹⁶ atoms/g bulk)	¹⁰ Be _(Age-corrected) / ⁹ Be (×10 ⁻⁹)	Age-corrected ¹⁰ Be flux (10 ⁷ atoms/cm ² k.y.)	CaCO ₃ (%)	DBD (g/cm ³)	LSR (cm/k.y.)
1H-1	1.10	0.02	68.89 ± 2.48	69.66 ± 2.51	18.52 ± 0.58	3.76 ± 0.18	226.84 ± 8.17	29.64	0.70	4.63
2H-5	11.54	0.29	85.29 ± 3.54	97.58 ± 4.05	19.24 ± 0.11	5.07 ± 0.21	273.09 ± 11.34	28.50	0.77	3.64
3H-5	23.26	0.60	65.65 ± 2.84	86.54 ± 3.74	16.50 ± 0.15	5.25 ± 0.23	261.26 ± 11.28	27.58	0.97	3.10
4H-5	34.10	0.97	36.22 ± 1.58	56.78 ± 2.48	22.60 ± 0.10	2.51 ± 0.11	144.46 ± 6.30	43.87	0.93	2.73
5H-6	44.74	1.33	—±—	— ± —	23.23 ± 0.11	— ± —	— ± —	36.61	1.04	2.88
6H-6	54.01	1.66	17.25 ± 1.07	37.08 ± 2.30	8.13 ± 0.05	4.56 ± 0.28	108.87 ± 6.76	55.53	1.01	2.90
7H-6	64.94	2.02	16.72 ± 0.91	42.51 ± 2.31	8.22 ± 0.03	5.17 ± 0.28	129.20 ± 7.03	67.59	1.08	2.82
8H-6	74.21	2.30	13.77 ± 0.85	39.77 ± 2.45	9.64 ± 0.07	4.13 ± 0.26	148.86 ± 9.17	62.49	1.09	3.44
9H-7	85.68	2.68	11.98 ± 0.74	41.23 ± 2.56	8.13 ± 0.04	5.07 ± 0.32	117.52 ± 7.29	66.87	1.06	2.70
10H-6	94.88	2.97	11.00 ± 0.95	43.41 ± 3.76	7.76 ± 0.11	5.60 ± 0.49	141.35 ± 12.23	63.50	1.10	2.95
11H-7	108.59	3.33	8.96 ± 0.75	41.78 ± 3.51	7.98 ± 0.26	5.24 ± 0.47	124.74 ± 10.47	66.33	1.05	2.84
12H-7	119.00	3.69	6.17 ± 0.56	33.97 ± 3.10	10.01 ± 0.08	3.39 ± 0.31	96.25 ± 8.78	56.02	1.07	2.65
13H-7	130.42	4.06	5.74 ± 0.52	37.46 ± 3.38	10.19 ± 0.02	3.68 ± 0.33	103.42 ± 9.32	61.38	1.07	2.58
14H-7	140.17	4.37	4.22 ± 0.60	31.75 ± 4.52	9.89 ± 0.05	3.21 ± 0.46	108.67 ± 15.46	64.98	1.11	3.09
15H-4	146.15	4.64	3.85 ± 0.61	32.83 ± 5.19	N.D.	±	65.28 ± 10.31	62.91	1.08	1.84
15H-6	149.90	4.78	4.24 ± 0.26	38.73 ± 2.49	8.96 ± 0.09	4.33 ± 0.27	106.53 ± 6.61	64.39	1.08	2.55
16H-6	160.92	5.30	2.90 ± 0.42	33.69 ± 4.92	4.16 ± 0.05	8.09 ± 1.18	71.31 ± 10.41	75.42	1.16	1.83
17H-7	171.77	5.75	2.17 ± 0.86	30.86 ± 12.26	6.86 ± 0.27	4.50 ± 1.80	81.69 ± 32.45	70.33	1.14	2.32
18H-7	182.69	6.14	3.21 ± 0.19	54.85 ± 3.26	12.99 ± 0.11	4.22 ± 0.25	147.14 ± 8.75	51.69	1.13	2.37
19H-7	192.62	6.55	2.54 ± 0.31	52.20 ± 6.39	9.35 ± 0.08	5.58 ± 0.68	147.72 ± 18.08	68.04	1.19	2.37

Notes: Age control is based on biostratigraphic datums (shipboard Scientific Party, 1995) and oxygen isotope stratigraphy (0–2.5 Ma, Bickert et al., Chapter 16, this volume, and 2.5– 5.0 Ma, Tiedemann and Franz, this volume). The error for each measurement shows 1σ standard deviation of the mean. ¹⁰Be flux was calculated from dry bulk density (DBD), age-corrected ¹⁰Be concentration, and linear sedimentation rate (LSR) as mentioned in text.

cannot remove this effect in our data. However, the long-term fluctuations of ¹⁰Be concentrations from atmospheric production have been estimated to be no more than $\pm 25\%$ –30% in many reports (Tanaka and Inoue 1979; Southon et al., 1987; Lao et al., 1992a, 1992b). Therefore, the fluctuation does not have a source effect over the longtime span in this study.

Considering the lithological data (Curry, Shackleton, Richter, et al., 1995), the variation of ⁹Be fluxes, and the carbonate content of the samples, the non-carbonate phase in the samples is increased towards the top of the hole. Thus, the variations of ¹⁰Be flux and ⁹Be flux in the sediments over 7 Ma on the shallowest top of Ceara Rise can be explained by local or regional change in the terrigenous supply from the Amazon drainage area.

CONCLUSION

Based on age-corrected ¹⁰Be and ⁹Be flux profiles and the variation of ¹⁰Be and ⁹Be flux ratio, we observed a trend for the upper 200 m of Hole 925B, 3041 m, at the Ceara Rise in the equatorial Atlantic. We can mention at least the following conclusions from the present study.

- 1. The ¹⁰Be flux range from 50 to 270×10^7 atoms/cm² k.y. with an average over 100×10^7 atoms/cm² k.y.
- The high values of ¹⁰Be flux and ⁹Be flux after 2 Ma reflect remarkably an increased terrigenous input from the Amazon drainage area. Hence, its ratios of ¹⁰Be and ⁹Be flux have no changes.
- 3. The sediments over 7 Ma on the shallowest top of Ceara Rise are influenced by the effect of scavenging by the terrigenous fractions rather than that of the global changes in ¹⁰Be production rate in the atmosphere.

ACKNOWLEDGMENTS

We thank Drs. T. Oba, M. Minagawa, H. Narita, and N. Ahagon for their various experimental suggestions and scientific discussion. We also thank Dr. N.J. Shackleton and two anonymous reviewers for their critical reading and constructive comments. The authors sincerely thank Shigemichi Sakata, Jun Dohi, and Kazuhiro Hayashi for sample preparation. This study was partly supported by funds provided by JSPS Research Fellowships for Young Scientists (No.4172) and the Japanese Ministry of Education, Culture and Science (Grantin-Aid for Scientific Research (B) No.06453011).

REFERENCES

- Anderson, R.F., Lao, Y., Broecker, W.S., Trumbore, S.E., Hofmann, H.J., and Wolfli, W., 1990. Boundary scavenging in the Pacific Ocean: a comparison of ¹⁰Be and ²³¹Pa. *Earth Planet. Sci. Lett.*, 96:287–304.
- Beets, C.J., Klaver, G.T., Kroon, D., van der Borg, K., and de Jong, A.F.M., 1991. ¹⁰Be contents of late Cenozoic sediments from Sites 720, 722, and 728 in the western Arabian Sea. *In* Prell, W.L., Niitsuma, N., et al., *Proc. ODP, Sci. Results*, 117: College Station, TX (Ocean Drilling Program), 455–458.
- Bourles, D.L., Raisbeck, G.M., Brown, E.T., Yiou, F., and Edmond, J.M., 1991. Beryllium isotope systematics of submarine hydrothermal sediments. *Earth Planet. Sci. Lett.*, 105:141–153.
- Bourles, D.L., Raisbeck, G.M., and Yiou, F., 1989. ¹⁰Be and ⁹Be in marine sediments and their potential for dating. *Geochim. Cosmochim. Acta*, 53:443–452.
- Brown, E.T., Measures, C.I., Edmond, J.M., Bourles, D.L., Raisbeck, G.M., and Yiou, F., 1992. Continental inputs of beryllium to the oceans. *Earth Planet. Sci. Lett.*, 114:101–111.
- Brown, L., 1987. ¹⁰Be as a tracer of erosion and sediment transport. *Chem. Geol.* 65:189–196.
- Curry, W.B., Shackleton, N.J., Richter, C., et al., 1995. Proc. ODP, Init. Repts., 154: College Station, TX (Ocean Drilling Program).
- Eisenhauer, A., Mangini, A., Segl, M., Beer, J., Bonani, G., Suter, M., and Wolfli, W., 1987. High resolution ¹⁰Be and ²³⁰Th profiles in DSDP Site 580. Nucl. Instrum. Methods Phys. Res. (Sect. B), 29:326–331.
- Frank, M., Eckhardt, J.-D., Eisenhauer, A., Kubik, P.W., Dittrich-Hannen, B., Segl, M., and Mangini, A., 1994. Beryllium 10, thorium 230, and protactinium 231 in Galapagos microplate sediments: implications of hydrothermal activity and paleoproductivity changes during the last 100,000 years. *Paleoceanography*, 9:559–578.
- Henken-Mellies, W.U., Beer, J., Heller, F., Hsu, K.J., Shen, C., Bonani, G., Hofmann, H.J., Suter, M., and Wolfli, W., 1990. ¹⁰Be and ⁹Be in South Atlantic DSDP Site 519: relation to geomagnetic reversals and to sediment composition. *Earth Planet. Sci. Lett.*, 98:267–276.
- Imbrie, J., Hays, J.D., Martinson, D.G., McIntyre, A., Mix, A.C., Morley, J.J., Pisias, N.G., Prell, W.L., and Shackleton, N.J., 1984. The orbital theory of Pleistocene climate: support from a revised chronology of the marine ¹⁸O record. *In* Berger, A., Imbrie, J., Hays, J., Kukla, G., and Saltzman, B. (Eds.), *Milankovitch and Climate* (Pt. 1), NATO ASI Ser. C, Math Phys. Sci., 126: Dordrecht (D. Reidel), 269–305.

- Kent, D.V., and Schneider, D.A., 1995. Correlation of paleointensity variation records in the Brunhes/Matuyama polarity transition interval. *Earth Planet. Sci. Lett.*, 129:135–144.
- Ku, T.L., Southon, J.R., Vogel, J.S., Liang, Z.C., Kusakabe, M., and Nelson, D.E., 1985. ¹⁰Be distributions in Deep Sea Drilling Project Site 576 and Site 578 sediments studied by accelerator mass spectrometer. *In* Heath, G.R. and Burckle, L.H., et al., *Init. Repts. DSDP*, 86:Washington (U.S. Govt. Printing Office), 539–546.
- Kusakabe, M., Ku, T.L., Southon, J.R., Liu, S., Vogel, J.S., Nelson, D.E., Nakaya, S.I., and Cusimano, G.L., 1991. Be isotope in rivers/estuaries and their oceanic budgets. *Earth Planet. Sci. Lett.*, 102:265–276.
- Kusakabe, M., Ku, T.L., Southon, J.R., Vogel, J.S., Nelson, D.E., Measures, C.I., and Nozaki, Y., 1987. The distribution of ¹⁰Be and ⁹Be in ocean water. *Nucl. Instrum. Methods Phys. Res.* (Sect. B), 29:306–310.
- Kusakabe, M., Ku, T.L., Southon, J.R., Vogel, J.S., Nelson, D.E., and Richard, G. 1982. Beryllium-10 profiles in sea water. *Nature*, 299:712–714.
- Lao, Y., Anderson, R.F., Broecker, W.S., Trumbore, S.E., Hofmann, H.J., and Wolfli, W., 1992a. Increased production of cosmogenic ¹⁰Be during the last glacial maximum. *Nature*, 357:576–578.
- ______, 1992b. Transport and burial rates of ¹⁰Be and ²³¹Pa in the Pacific ocean during the Holocene period. *Earth Planet. Sci. Lett.*, 113:173–189.
 ______, 1993. Particulate fluxes of ²³⁰Th, ²³¹Pa and ¹⁰Be in the northeastern Pacific ocean. *Earth Planet. Sci. Lett.*, 57:205–217.
- Müller, G., and Gastner, M., 1971. The "Karbonat-Bombe", a simple device for the determination of the carbonate content in sediments, soils and other materials. *Neues Jahrb. Mineral. Monatsh.*, 10:466–469.
- Raisbeck, G.M., Yiou, F., Fruneau, M., Loiseaux, J.M., Lieuvin, M., Ravel, J.C., and Hays, J.D., 1979. A search in a marine sediment core for ¹⁰Be concentration variations during a geomagnetic field reversal. *Geophys. Res. Lett.*, 6:717–719.

- Raisbeck, G.M., Yiou, F., and Bourles, D., 1985. Evidence for an increase in cosmogenic ¹⁰Be during a geomagnetic reversal. *Nature*, 315:315–317.
 Raisbeck, G.M., and Yiou, F., 1988. ¹⁰Be as a proxy indicator of variations in
- Raisbeck, G.M., and Yiou, F., 1988. ¹⁰Be as a proxy indicator of variations in solar activity and geomagnetic field intensity during the last 10,000 years. *In* Stephenson, F.R. and Wolfendale, A.W. (Eds.), *Secular Solar* and Geomagnetic Variations in theLast 10,000 Years: Dordrecht (Kluwer), 287–296.
- Robinson, C., Raisbeck, G.M., Yiou, F. and Lehman, B., 1995. The relationship between ¹⁰Be and geomagnetic field strength records in the central North Atlantic sediments during the last 80 ka. *Earth Planet. Sci. Lett.*, 136:551–557.
- Sharma, P., Mahannah, P., Moore, W.S., Ku, T.L., and Southon, J.R., 1987. Transport of ¹⁰Be and ⁹Be in the ocean. *Earth Planet. Sci. Lett.*, 86:69– 76.
- Southon, J.R., Ku, T.L., Nelson, D.E., Reyss, J.L., Duplessy, J.C., and Vogel, J.S., 1987. ¹⁰Be in a deep-sea core: implications regarding ¹⁰Be production changes over the past 420Ka. *Earth Planet. Sci. Lett.*, 85:356–364.
- Tanaka, S., and Inoue, T., 1979. ¹⁰Be dating of north Pacific sediment cores up to 2.5 million years B. P. *Earth Planet. Sci. Lett.*, 45:181–187.

Date of initial receipt: 5 December 1995 Date of acceptance: 16 August 1996 Ms 154SR-126

Figure 2. ¹⁰Be concentrations in bulk sediments are plotted against meters composite depth (mcd) in Hole 925B.

Figure 3. Age-corrected ¹⁰Be flux and ⁹Be flux as a function of age (Ma).

Figure 4. ¹⁰Be flux vs. ⁹Be flux.

Figure 5. ¹⁰Be flux/⁹Be flux as a function of ⁹Be concentration.