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16. ISOTOPIC STRATIGRAPHY OF AMAZON FAN SEDIMENTS!

William J. Showers,? Ralph Schneider,® Naja Mikkelson,*and Mark Maslin®

ABSTRACT

880 stratigraphies of planktonic foraminifers were completed for 17 sites drilled on the Amazon Fan during Leg 155
(March—-May 1994). These sites penetrated sediments of the last glacial and, for the first time, sediments of the previous inter-
glacial on the Amazon Fan. Downslope, sediment depositional processes and hiatuses dominate the record in sites from the
lower portion of the fan making the construction of age models from isotopic data alone problematic. Sites from the central axis
of the fan have extremely high sedimentation rates. Age models could only be constructed with isotopic data at these sitesinto
isotopic Stages 2-3, because sediment reworking processes dominate the record in sediments older than Stage 3 (>25 k.y.).
High resolution isotopic records were obtained in the hemipelagic portions of the mud-rich upper fan (Sites 937 through 939)
and from a site located to the west of the central axis of the fan (Site 942). Age models constructed from these idgtopic strat
raphies show that sediments accumulated at rates up to 30 m/k.y. on the central fan during the last glacial lowstand. On the fa
western portion of the fan at Site 942, sedimentation rates are higher in the interglacials than during the last glaciarperiod
tinental margin drilling can yield high resolution isotopic records if sites are carefully chosen to avoid areas wherendépositi
processes are dominated by sediment gravity flows and reworking.

INTRODUCTION

Understanding and characterizing the paleoceanographic and pa-
leoclimatic changes that occurred during the last deglaciation and
previous interglacia has become increasingly important because of
links between atmospheric greenhouse gas concentrations and chang-
esin oceanic circulation, chemistry, and climate (Broecker and Taka
hashi, 1984; Broecker et al., 1985). The role that oceans play in glo-
bal warming due to the increase of greenhouse gases in the atmo-
sphere is an unanswered question. It has been forecasted that the
oceanswill absorb vast quantities of heat and CO, and reduce the glo-
bal warming resulting from anthropogenic CO, emissions. The ab-
sorption or ventilation of atmospheric CO, in the oceansis linked to
the global oceanic conveyor circulation (Gordon 1986; Broecker et
a., 1992). Ice cores record abrupt climate change events known as
Dansgaard-Oeschger events (Dansgaard et d., 1983). These ice core
climatic events correlate well to lithic peaksin the North Atlantic ma-
rine record, demonstrating that they represent changes in oceanic
conveyor circulation and rapid reorganizations of the ocean/atmo-
spheric circulation (Bond et al., 1992, 1993; Bond and Lotti, 1995;
Fronval et a., 1995; Haflidason et al., 1995). However, discrepancies
between different records from Greenland ice cores raise new ques-
tions concerning the mechanisms of late Quaternary climate change
(Dansgaard et al., 1993; Alley et al., 1993). To resolve these ques-
tions, high resolution marine records are needed (McManus et a.,
1994). High resolution marine records have been obtained from sed-
iment drifts in the deep North Atlantic (Keigwin and Jones, 1994,
1989; Haskell et al., 1991) and from continental margins (Keigwin
and Jones, 1995; Fronval et a., 1995; Andrewset al., 1994). Oceanic
margins are widely recognized as important areas of global primary
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production (Koblentz-Mishke et a., 1970; Berger et a., 1989) and
have high sedimentation rates. But margins are also areas where sed-
iment gravity flows (slumping dliding, turbidity currents, debris
flows) are prevalent, especially on submarine fans (Bouma et al.,
1989). These dynamic sedimentation processes disturb the chronos-
tratigraphic continuity of margin records, and thusthese areas are un-
derrepresented in paleoceanographic and paleoclimatic reconstruc-
tions (Keigwin and Jones, 1995). Sedimentation processes on the
Amazon Fan adjacent to the Brazilian continental margin are con-
trolled by glacio-eustatic sea-level fluctuations (Damuth and Kumar,
1975; Damuth, 1977; Damuth et a., 1988; Flood, Piper, Klaus, et al.,
1995). Terrigenous sediments discharged by the Amazon River are
trapped on the wide continental shelf during interglacials (Nittrouer
and DeMaster, 1986), and are discharged directly to the Amazon Fan
during low sea-level stands via the head of Amazon submarine can-
yon. A complex pattern of submarine channels and debris flows is
found on the surface of the Amazon Fan (Flood, Piper, Klaus, et al.,
1995; Fig. 1). Previous piston coring of the fan resulted in short cores
(10 m or less) with sedimentation rates up to 175 cm/k.y. (Showers
and Bevis, 1988). The purpose of this study was to sample deeper
Amazon Fan sediments to obtain isotopic records back into the last
glacial and previous interglacial period.

METHODS

Sites 930 through 946 were drilled on the Brazilian continental
margin during Leg 155, and over 4000 m of sediment was recovered
from March through May 1994 (Fig. 1). Samples with a 20-cm?® vol-
ume were taken for isotopic analysis of foraminifers every 50 cm in
the upper and middle fan cores. Samples with a 60-cm?® volume were
taken for isotopic analysis of foraminifers every 150 cm in the lower
fan cores because of reduced microfossil abundances in the coarser
grained sediments. Samples with a volume of 200 to 1500 cm? were
taken from every core catcher for biostratigraphy and isotopic analy-
sis. Foraminifer abundance and preservation were estimated visually
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Flood, Piper, Klaus, et a. (1995). Amazon Fan sediments contain sig-

apifi cant amounts of methane that resulted in core expansion and core
gaps. Core depths for shipboard samples were therefore adjusted for

core gaps and core expansion with a correction program developed
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mud-rich fan and at Site 942 on the western edge of the 49° W 48° 47°
Amazon Fan. Modified from Flood et al., 1995; modified ]
from Damuth et al., 1988, and Manley and Flood, 1988. A complete age model B partial age model . no age model

by D. Piper (see “Preface,” this volumé&gotopic analyses for Sites low, as few as-35 specimens were analyzed. In all three labs, a Kiel
938 and 940 were completed at Universitdt Bremen, analyses féwtocarbonate device attached to a Finnigan MAT 251 ratio mass
Sites 932 and 933 were completed at Universitat Kiel, and analysepectrometer was used to prepare and isotopically analyze the sam-
for the rest of the sites drilled during Leg 155 were completed gbles. Isotopic reproducibility on replicates of NBS standards for the
North Carolina State University. Samples were freeze dried, disadciel Autocarbonate device is +0.05 per milliliter &@#C and +0.07
gregated in tap water, washed with hot water over a 63-um sieve, apdr milliliter for '20. Isotopic reproducibility on replicates of fora-
then air dried at 65°C. Specimens of monospecific planktonic foraminifer samples is generally higher than standards, ranging from +0.1
minifers (Globigerinoides sacculifer, Globigerinoides trilobus, or to 0.15 per milliliter ford**C andd*®0.

Globigerinoides ruber) were hand picked out of the >125-um size

fraction. Because of the low abundance of foraminifers in Amazon

Fan sediments, the size fraction separated for isotopic analysis could RESULTS

not be further restricted. When foraminifer abundance was high, 20

specimens were mixed together and crushed, and small duplicate al- On the Amazon Fan, foraminifer abundance and preservation var-
iquots from the same sample were analyzed. When abundances wezé with lithostratigraphic unit (Fig 2). Foraminifers were abundant
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Figure 2. Planktonic foraminifer abundance and preservation varies with lithologic unit. Only the Red Channel-levee System could not be characterized isotopi-

caly.

in Holocene and hemipelagic sediments, but decreased dramatically
intheglacia lowstand sediments. Preservation was moderate to good
in all lithostratigraphic units except for the Red Channel-levee Sys-
tem, where only a few dissolved foraminifers were present. Overall,
abundances were low and the most common abundance of foramini-
fers in Amazon Fan sediments were few to rare (Fig. 3). Isotopic
analyses were completed on 3055 samplesfor this study, and theiso-
topic results are listed in the Appendix (on CD-ROM in the back
pocket of this volume). Biostratigraphic and paleomagnetic datums
are limited at these sites (Flood, Piper, Klaus, et a., 1995) and in
many cases 0180 stratigraphies have played an important role in de-
veloping chronostratigraphic models. Isotopic events recognized in
this paper were identified by comparison to the 6**0 stacked chronol-
ogies of Imbrie et al. (1984), Prell et al. (1986), Pisias et al. (1984),
and Martinson et al. (1987). These eventsidentified for Leg 155 sites
are listed in Table 1. In addition, the Y ounger Dryas Event is well
represented in the upper portion of some of these sites. The age used
for the end of this 5'®0O event was 11.0 ka (Flower and Kennett,
1990). The reappearance of Globorotalia tumida was recognized in
the hemipelagic portion at the top of most of the sites and has been
accelerator mass spectrometry (AMS-“C) dated at 9-7.3 ka (G.
Jones, pers. comm., 1994). Below is a brief discussion of the 3%0
stratigraphy at each site.

Site 930

Site 930 was drilled on the upper part of the Amazon Fan in be-
tween levees of the Amazon Channel and the buried Purple Channel
(Fig. 1). Isotopic events 1.1 to 3.0 were identified in the upper 125m
of the hole (Fig. 4). Sedimentation rates vary from ~90 cm/k.y. at the
top of the hole to >2500 cm/k.y. below 100 meters below seafloor

(mbsf). Sedimentation ratesincrease in alinear fashion downhole ex-
cept for arapid increase in rates during the last deglaciation. The Y,
obiig 40 K.y. biostratigraphic datum (Prell and Damuth, 1978) is found
immediately below the 3.0 isotopic event. This biostratigraphic da-
tum should normally be located between isotopic events 3.1 and 3.13,
but is suspect here since it is based on the occurrence of only one
specimen. A mass transport unit found at the base of the hole in the
Orange Channd-levee System has high benthic foraminifer abun-
dance, but yielded no isotopic chronostratigraphic information.

Site 931

Site 931 was drilled on a buried levee of Channel-levee System 5
(Fig. 1) and passed down into high-amplitude reflection packets
(HARPs) and a debris flow deposit that separates the Channel-levee
System 5 from the Bottom Levee Complex. Isotopic events 2.2 and
2.21 were tentatively identified in the Channel-levee System 5 (Fig
5). Isotopic evidence for the Holocene and deglaciation is lacking in
the upper portion of the hole, whereas low foraminifer abundance
precluded development of adetailed stratigraphy in the lower portion
of the Channd 5 levee. The HARPs, high-amplitude reflections
(HARs), and debris flow deposits yielded no isotopic chronostrati-
graphic information. Though isotopic datums are few, sedimentation
ratesin the upper part of the hole are clearly low (~6 cm/k.y.) and in-
crease greatly (>3000 cm/k.y.) during theinterval that correspondsto
isotopic Stage 2.

Site 932

Site 932 was drilled into hemipelagic sediments east of the crest
of the Channel-levee System 6B (Fig. 1). Low foraminifer abundanc-
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Figure 3. Overall planktonic foraminifer abundances from Amazon Fan sediments. The most common abundance categories were few and rare.

Table 1. Depths and ages of 5180 events used to construct age modelsin Leg 155 holes.

Hole
Age
Control point  (ky) 930B 931B 932A 933A 934A O35A 936A 937B 938A 939B O40A O41A 942A O43A O44A O945A  946A
11 232 0 0.07
Tumida AD 900 842 09 053 27 32 399 212 225 164 05 123 024
YD 11.00 1535 8,61 28,02 92 5855 36 4 22
22 17.85 2842 1 372 37 897 282 6116 101 2211 3857 16748 758 65 226 5883 226
221 1922 375 46.89 5.88 35.2 153 3249 6149 10.47 65.35
2.23 23.17 100.6 12.27 93.47 106.16
3 2411 124.92 16.66 104.03 1258 13505
31 25.42 11
3.13 43.88 15.47
33 50.21 200.4 17.88
331 55.45 18.84
422 64.09 19.35
4.23 68.83 20.81
4.24 70.82 21.27
5.1 79.25 28,67
5.2 90.95 37.19
53 99.38 4114
5.4 110.79 55.29
55 123.82 65.74
6.2 135.10 705
6.3 142.28 77.25
6.4 152,58
es precluded the development of an isotopic stratigraphy in the bot- Site 933

tom of the hole. Isotopic event 2.2 was tentatively assigned in the up-
per 3-7 m of the hole (Fig. 6), though comparison of data from two
species of planktonic foraminifers (G. ruber and G. trilobus) suggest
different depths for the same event. Because of the noisy isotopic
trendsin these data, an age model based on isotopic data alone could
not be developed. Madlin et a. (this volume) construct a chronology
based on identification of paleomagnetic excursions and recognition
of distinctive patternsin the secular variation of magnetic intensity.
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Site 933 was drilled on the eastern flank of the Y ellow Channel-
levee System (Fig. 1) and drilled through Channel-levee Systems 5,
6A, and 6B, adebris flow deposit, and finally into the Bottom Levee
Complex at the bottom of the hole. Isotopic events 2.2 through 3.0
were identified in the upper 20 m of the hole, which contain a good
record of isotopic Stage 2 (Fig. 7). Below 20 mbsf, the hole yielded
no useful isotopic chronostratigraphic information because foramin-
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Figure 4. Summary of the 880 stratigraphy with the lithostratigraphy, seismic stratigraphy, and biostratigraphy for Hole 930B.

ifer abundances were low and the downcore isotopic signal was
noisy. Sedimentation rates in the upper portion of the hole average
about 20 cm/k.y., increasing to >400 cm/k.y. at ~16 mbsf.

Site 934

Site 934 was drilled into a cutoff meander of the Amazon Channel
in the middle portion of the fan (Fig. 1). Hemipelagic sediments
grade down into overbank turbidites, muddy mass flow deposits,
channel floor deposits, and finally prechannel deposits. Low fora-
minifer abundances preclude the development of a detailed isotopic
chronostratigraphy. The Y ounger Dryas Event was recognized at the
top of the hole and the 2.2 event appears to be found near the bottom
of the hole at about 90 mbsf (Fig. 8). Sedimentation rates at Site 934
vary from 10 cm/k.y. at the top of the hole to >1100 cm/k.y. in Stage
2.

Site 935

Site 935 was drilled into the flank of the Aqua Channel-levee Sys-
tem and sampled the Amazon and Brown Channel-levee Systems,
underlying HARPs, Unit R Debris Flow, and the Green Channel-
levee System of the Lower Levee Complex (Fig. 1). Isotopic events
2.2 to 3.3 wereidentified in sediments above the Unit R Debris Flow,
and this site contains recognizable records of Stages 2 and 3 (Fig. 9).

Below the Unit R Debris Flow, the hole yielded no interpretable iso-
topic record. Sedimentation rates at this site appear to average about
6 cm/k.y. in the upper part of the hole, and increase below the degla
ciation where sedimentation rates vary greatly (~300-1500 cm/k.y.)
in Stage 2.

Site 936

Site 936 waslocated on the western levee of the Amazon Channel
(Fig. 1) and drilled through the Unit R Debris Flow, the Red Channel-
levee System of the Middle Levee Complex, and the Gold Channel-
levee System of the Lower Levee Complex. The Y ounger Dryas and
isotopic events 2.2 were identified in the upper 60 m of the hole (Fig
10). Poor core recovery in the Brown and Aqua Channels precluded
the construction of an isotopic stratigraphy. The hole yielded no iso-
topic chronostratigraphic information in or below the Unit R Debris
Flow. Sedimentation rates average about 30 crm/k.y. in the upper por-
tion of the hole, and vary from ~300 to 375 cm/k.y. between the de-
glaciation and in isotopic Stage 2.

Site 937
Site 937 was drilled on the upper portion of the eastern Amazon

Fan on the western levee of the Yellow Channel-levee System (Fig
1). Isotopic events 2.2 to 3.01 were identified at this site (Fig. 11).
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Figure 5. Summary of the &'80 stratigraphy with the lithostratigraphy, seismic stratigraphy, and biostratigraphy for Hole 931B.

The Holocene and deglacial portion of thisrecord is condensed, with
apossible Younger Dryas Event at 3 m. This site contains a greatly
expanded record of isotopic Stage 2. Deglacia sedimentation rates
are ~30 cm/k.y. and appear to vary in isotopic Stage 2 from ~80 to
>2200 cm/k.y., based on the recognized &0 datums. |sotopic event
3.01 at the bottom of the hole does not have an orbitally tuned age as-
signed to it, so sedimentation rates cannot be calculated for the bot-
tom of the holein the Yellow Channel-levee System. However, it is
likely the apparent increase in sedimentation rates between events
2.23 and 3.0 is associated with the top of the Yellow Channel-levee
complex.

Site 938

Site 938 was drilled into the western levee of the Blue Channel-
levee System (Fig. 1) and sampled the Channel 5/Y ellow System and
Channéd 6 at the bottom of the hole. The Y ounger Dryas and isotopic
events 2.2 to 3.0 were identified at this site (Fig. 12). Isotopic event
3.0 wasfound very closetothe Y 4,4 40 K.y. biostratigraphic datum
(Prell and Damuth, 1978). In this core, the 3.0 event was found asso-
ciated with the top of the Yellow Channel-levee System. No useful
isotopic stratigraphic data were obtained in the lower 150 m of the
hole in Channel-levee Systems 5/6. Sedimentation rates vary during
the deglaciation from ~75 to 200 cm/k.y. and vary in isotopic Stage
2 from 750 to 3000 cnvk.y.
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Site 939

Site 939 was drilled east of the Amazon Channel on the upper por-
tion of the Amazon Fan (Fig. 1), whereas Sites 940 and 943 through
946 compose a series of sites drilled along the last active channel on
the fan. Bioturbated overbank mud turbidites were sampled at Site
939. The Younger Dryas and isotopic events 2.2 and 2.21 are identi-
fied at this site (Fig. 13). Based on the recognition of these events,
sedimentation rates increased downhole from 4 cm/k.y. in the upper
portion of the site to ~60 cm/k.y. in isotopic Stage 2.

Site 940

Site 940 was drilled in the middle fan on the flank of the eastern
levee of the Amazon Channel (Fig. 1). The Y ounger Dryas and iso-
topic event 2.2 istentatively identified at this site (Fig. 14). Sedimen-
tation rates varied from 4 cm/k.y. in the upper portion of the site to
~60 cm/k.y. inisotopic Stage 2.

Site 941
Site 941 was drilled into the Western Debris Flow, a large surfi-

cia debrisflow that fills the depression between two levees (Fig. 1).
The Y ounger Dryas and isotopic events 2.2 and 2.21 are identified at
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Figure 6. Summary of the &'80 stratigraphy with the lithostratigraphy, seismic stratigraphy, and biostratigraphy for Hole 932A.

thissite (Fig. 15). The Stage 2 isotopic events arelocated in the debris drilled in the channel, whereas Site 944 was drilled on the eastern
flow, which is a mass transported sediment gravity flow unit. It ap- levee downfan from the Amazon-Brown channel avulsion point.
pears that this unit was emplaced sometime during the deglaciation Sites 945 and 946 were located near the transition from the middle to
between 11 and 17.8 k.y. Sedimentation rates are low at this site, lower fan. Site 945 was drilled into the channel, and Site 946 drilled
varying from 4-10 cm/k.y. if the isotopic events in the debris flow aranto the levee. These sites contained little isotopic information due to
near their original position. the combination of low foraminifer abundance, discontinuous
records, and the prevalence of mass transported sediments. Isotopic
Site 942 event 2.2 was identified in the upper portion of Sites 943, 944, and
946 (Figs. 1720). Site 944 also contained the Younger Dryas Event
Site 942 was drilled into the crest of an abandoned levee to thend isotopic event 2.21. Sedimentation rate estimates vary in the de-
west of the Western Debris Flow (Fig. 1). The levee is of unknowmglacial portion of these records from 3 to ~20 cm/k.y., whereas isoto-
origin because it is seismically obscured by the Western Debris Flopic Stage 2 sedimentation rate estimates varied form 475 to >800 cm/
and cannot be tied to channel-levee systems on the central Amazkuy.
Fan (Flood, Piper, Klaus, et al., 1995). Isotopic events 1.1 to 6.3 were
identified at this site (Fig. 16). Three subsurface carbonate layers cor-
respond to isotopic events 5.1, 5.3, and 5.5. This site contains a com- DISCUSSION
plete record of the last interglacial (isotopic Stage 5) and sits on a
Stage 6 abandoned levee. The small positive excursions noted at theThe rapid deposition rates found in continental margin records di-
other Amazon Fan sites in isotopic Stage 2 are not well defined at thiste foraminifers, and low abundances are problematic for the con-
site. Sedimentation rates at this site are very well constrained frostruction of detailed chronologies. 30O study could not be com-
the isotopic record and vary from 30-85 cm/k.y. during the deglacipleted on the Bengal Fan (Leg 116) because of low foraminifer abun-
ation, 35-60 cm/k.y. in isotopic Stage 2, 20—25 cm/k.y. in isotopicdances and discontinuous records (Scott and Leger, 1990). Wefer et
Stage 3, 25-30 cm/k.y. in isotopic Stage 4, 80 to 125 cm/k.y. in is@l. (1990) completed an oxygen isotopic study on the Peru Margin

topic Stage 5, and 40-95 cm/k.y. in isotopic Stage 6. (Leg 112) by combinin@*®0 analyses of benthic foraminifers with
thed*C signal of organic carbon in the organic-rich sediments under-
Sites 943 Through 946 lying the upwelling zone. On the Peru margin, prominent hiatuses

were also discovered, but Sites 680B and 686B were drilled in less
Sites 943 to 946 were drilled in the Amazon Channel on the midthan 500 m water depth.
dle and lower portion of the Amazon Fan (Fig. 1) to sample the coars- On the central portion of the Amazon Fan, the Holocene sedi-
est sediment transported by recent turbidity flows. Site 943 waments have abundant and diverse assemblages of planktonic and
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Figure 7. Summary of the &80 stratigraphy with the lithostratigraphy, seismic stratigraphy, and biostratigraphy for Hole 933A.

benthic foraminifers. Below the Holocene/Pleistocene boundary, the
sediments become mottled and dark, the abundance of carbonate and
planktonic foraminifers decreases, the preservation of foraminifers
becomes poorer, and the abundance of authigenic mineralsincreases,
particularly iron sulfides. Theincreased abundance of authigeniciron
sulfides at 5 to 10 mbsf may be the reason that conventional piston
and gravity coreshave not previoudly penetrated very deeply into gla
cia age Amazon Fan sediments. These older sediments are accessi-
ble through modern drilling techniques, and the recovery of fan sed-
iments was successful on Leg 155 because drilling targets were well
characterized seismically.

Because foraminifer abundances are too low for AMS-*C dating
intheglacial age sediment, the only way to construct age-depth mod-
esisthrough 60 stratigraphies, along with biostratigraphic and pa-
leomagnetic datums. Modern ratio mass spectrometers can analyze
extremely small samples, as small as a single foraminifer specimen.
However, extremely low microfossil abundances are a cause for con-
cern in the construction of geochemical profiles such as 320 stratig-
raphies. The low number of foraminifer specimens per interval may
affect the isotopic chronology in Slow sedimentation rate cores as a
result of bioturbational mixing (Boyle, 1984). Zahn et al. (1986) sug-
gest that benthic isotopic stratigraphies with reduced numbers of
specimens do not have increased variability in cores with high sedi-

ic foraminifers from different depths on the Blake Outer Ridge sedi-
ment drift with sedimentation rates in excess of 20 cm/k.y., show that
there is an excellent agreement between multi- and few specimen iso-
topic stratigraphies in rapidly accumulating sediments (Johnson et
al., 1988; Haskell et al., 1991). Problems associated with isotopic
stratigraphies produced from a small number of specimens per inter-
val should therefore be reduced to a minimum in Amazon Fan depos-
its, since these cores have sedimentation rates that range from 20 to
3350 cm/k.y. A more serious problem to the construction of isotopic
stratigraphies in Amazon Fan sediments is the downslope transport of
sediments in the form of debris flows, turbidites, and in channelized
and unchannelized flows (HARs and HARPS). Debris flows more
than 100 m thick occur near the present seafloor over most of the cen-
tral fan and are easily recognizable. Lower parts of the debris flows
are large slide-blocks, whereas the upper parts resemble muddy de-
bris flows (Piper et al., Chapter 6, this volume). Foraminifer abun-
dances are high in these debris flows (Fig. 2) and preservation is
good, but the discontinuous nature of these sedimentary units pre-
cludes the construction of iterative chronostratigraphies such as
stacked®'®O chronologies. Cores in the central portion of the middle
fan have interpretable stratigraphies back to isotopic Stage8,2 to
but generally have disturbed stratigraphies in isotopic stages older
than Stage 2 or 3. Glacial sedimentation rates in these cores can reach

mentation rates (5-13 cm/k.y.). Comparison of isotopic analysesp to 3300 cm/k.y. (Fig. 21), which may be too rapid for these sedi-

based on multiple (2-50) and reducedl(Q) specimens of plankton-
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Figure 8. Summary of the &80 stratigraphy with the lithostratigraphy, seismic stratigraphy, and biostratigraphy for Hole 934A.

cycle. The Unit R Debris Flow has disturbed the record of the previ-
ous interglacial (isotopic Stage 5) in all the eastern and central fan
sites. High resolution stratigraphies are found on the upper fan (Sites
937 through 939), and off the central axis of the fan to the west of the
Western Debris Flow (Site 942). Sites 937 through 939 penetrate into
isotopic Stage 3 sediments. At these sites, bioturbated hemipelagic
muds are separated by fine-scale mud and silt turbidites. Glacial sed-
imentation rates are on the order of 102-103 cm/k.y. at these sites. In-
terpretable isotopic stratigraphies can be produced if the fine-scale
turbidites are avoided. At Site 942, sedimentation rates arelower than
on the central axis of the fan. Site 942 contains an excellent record of
the last glacia lowstand (Stages 2—4) and the previous interglacial
(Stage 5). Sedimentation rates at Site 942 (Fig. 22) are higher in the
interglacial periodsthan the glacia periods. Sediment deposition pat-
terns at Site 942 are different from the central Amazon Fan where
sedimentation rates increase during the glacials and decrease during
the interglacial. This antithetical deposition pattern suggests that the
sediment source for Site 942 comes from a canyon to the north of the
Amazon Canyon, and that sediment is focused at the site during sea-

hemipel agic muds, suggesting aremobilization of transgressive high-
stand sand deposits during a period of falling sealevel. Eventuadly,
the shelf sands were removed, and only hemipelagic muds accumu-
lated in the later portion of isotopic Stage 2. This site contains a
unique record of the previousinterglacial isotopic Stage 5.

CONCLUSIONS

Amazon Fan continental margin sediments have extremely high
sedimentation rates during the last glacia period on the central axis
of the fan. Downslope sediment depositional processes and hiatuses
dominate the record on the central fan prior to isotopic Stage 3. The
records of the mud-rich upper fan are not dominated by downslope
sediment depositional processes and hiatuses. These records are ex-
panded by fine-scale mud and silt turbidites that separate the hemipe-
lagic bioturbated muds. Holocene sedimentation rates on the central
fan vary from 3 to 10 cm/k.y., whereas glacial sedimentation rates
can range up to 3300 cm/k.y. On the western portion of the fan, sed-

level highstands when aong-shelf transport moves the Amazon dis-
charge to the north away from the Amazon Canyon mouth. The three
subsurface carbonate-rich layers observed at Site 942 correspond to
isotopic events 5.1, 5.3, and 5.5, and were deposited during high-
stands. These carbonate layers are overlain by silt and fine sand tur-
bidites. Asthesealevel fell, silt and fine sand turbidites separated the

imentation rates are lower (20-120 cm/k.y.). At Site 942, the sedi-
ment record is not dominated by mass wasting process and hiatuses.
Site 942 contains a complete record of the last interglacial (isotopic
Stage 5), and sedimentation rates are higher during interglacial peri-
ods than during the last glacial period. Isotopic stratigraphies, along
with biostratigraphic and paleomagnetic datums (Cisowski et al., this
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Figure 9. Summary of th&80 stratigraphy with the lithostratigraphy, seismic stratigraphy, and biostratigraphy for Hole 935A.

volume) demonstrate that the upper levee complex on the Amazon
Fan wasdeposited during the last glacial cycle and that theindividual
levee systems are not separated by interglacial deposits.
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Figure 10. Summary of the 580 stratigraphy with the lithostratigraphy, seismic stratigraphy, and biostratigraphy for Hole 936B.
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Figure 13. Summary of the 380 stratigraphy with the lithostratigraphy, seismic stratigraphy, and biostratigraphy for Hole 939B.
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Figure 14. Summary of the 5'80 stratigraphy with the lithostratigraphy, seismic stratigraphy, and biostratigraphy for Hole 940A.
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Figure 15. Summary of the &'80 stratigraphy with the lithostratigraphy, seismic stratigraphy, and biostratigraphy for Hole 941A.
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Figure 16. Summary of the 580 stratigraphy with the lithostratigraphy, seismic stratigraphy, and biostratigraphy for Hole 942A.
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Figure 17. Summary of the 580 stratigraphy with the lithostratigraphy, seismic stratigraphy, and biostratigraphy for Hole 943A.
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Figure 18. Summary of the 580 stratigraphy with the lithostratigraphy, seismic stratigraphy, and biostratigraphy for Hole 944A.
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Figure 19. Summary of the 580 stratigraphy with the lithostratigraphy, seismic stratigraphy, and biostratigraphy for Hole 945A.
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Figure 20. Summary of the 580 stratigraphy with the lithostratigraphy, seismic stratigraphy, and biostratigraphy for Hole 946A.
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