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16. ISOTOPIC STRATIGRAPHY OF AMAZON FAN SEDIMENTS1
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ABSTRACT

δ18O stratigraphies of planktonic foraminifers were completed for 17 sites drilled on the Amazon Fan during Leg 155
(March−May 1994). These sites penetrated sediments of the last glacial and, for the first time, sediments of the previous inter-
glacial on the Amazon Fan. Downslope, sediment depositional processes and hiatuses dominate the record in sites from the
lower portion of the fan making the construction of age models from isotopic data alone problematic. Sites from the central axis
of the fan have extremely high sedimentation rates. Age models could only be constructed with isotopic data at these sites into
isotopic Stages 2–3, because sediment reworking processes dominate the record in sediments older than Stage 3 (>25 k.y.).
High resolution isotopic records were obtained in the hemipelagic portions of the mud-rich upper fan (Sites 937 through 939)
and from a site located to the west of the central axis of the fan (Site 942). Age models constructed from these isotopic stratig-
raphies show that sediments accumulated at rates up to 30 m/k.y. on the central fan during the last glacial lowstand. On the far
western portion of the fan at Site 942, sedimentation rates are higher in the interglacials than during the last glacial period. Con-
tinental margin drilling can yield high resolution isotopic records if sites are carefully chosen to avoid areas where depositional
processes are dominated by sediment gravity flows and reworking.
INTRODUCTION

Understanding and characterizing the paleoceanographic and pa-
leoclimatic changes that occurred during the last deglaciation and
previous interglacial has become increasingly important because of
links between atmospheric greenhouse gas concentrations and chang-
es in oceanic circulation, chemistry, and climate (Broecker and Taka-
hashi, 1984; Broecker et al., 1985). The role that oceans play in glo-
bal warming due to the increase of greenhouse gases in the atmo-
sphere is an unanswered question. It has been forecasted that the
oceans will absorb vast quantities of heat and CO2 and reduce the glo-
bal warming resulting from anthropogenic CO2 emissions. The ab-
sorption or ventilation of atmospheric CO2 in the oceans is linked to
the global oceanic conveyor circulation (Gordon 1986; Broecker et
al., 1992). Ice cores record abrupt climate change events known as
Dansgaard-Oeschger events (Dansgaard et al., 1983). These ice core
climatic events correlate well to lithic peaks in the North Atlantic ma-
rine record, demonstrating that they represent changes in oceanic
conveyor circulation and rapid reorganizations of the ocean/atmo-
spheric circulation (Bond et al., 1992, 1993; Bond and Lotti, 1995;
Fronval et al., 1995; Haflidason et al., 1995). However, discrepancies
between different records from Greenland ice cores raise new ques-
tions concerning the mechanisms of late Quaternary climate change
(Dansgaard et al., 1993; Alley et al., 1993). To resolve these ques-
tions, high resolution marine records are needed (McManus et al.,
1994). High resolution marine records have been obtained from sed-
iment drifts in the deep North Atlantic (Keigwin and Jones, 1994,
1989; Haskell et al., 1991) and from continental margins (Keigwin
and Jones, 1995; Fronval et al., 1995; Andrews et al., 1994). Oceanic
margins are widely recognized as important areas of global primary
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production (Koblentz-Mishke et al., 1970; Berger et al., 1989) and
have high sedimentation rates. But margins are also areas where sed-
iment gravity flows (slumping sliding, turbidity currents, debris
flows) are prevalent, especially on submarine fans (Bouma et al.,
1989). These dynamic sedimentation processes disturb the chronos-
tratigraphic continuity of margin records, and thus these areas are un-
derrepresented in paleoceanographic and paleoclimatic reconstruc-
tions (Keigwin and Jones, 1995). Sedimentation processes on the
Amazon Fan adjacent to the Brazilian continental margin are con-
trolled by glacio-eustatic sea-level fluctuations (Damuth and Kumar,
1975; Damuth, 1977; Damuth et al., 1988; Flood, Piper, Klaus, et al.,
1995). Terrigenous sediments discharged by the Amazon River are
trapped on the wide continental shelf during interglacials (Nittrouer
and DeMaster, 1986), and are discharged directly to the Amazon Fan
during low sea-level stands via the head of Amazon submarine can-
yon. A complex pattern of submarine channels and debris flows is
found on the surface of the Amazon Fan (Flood, Piper, Klaus, et al.,
1995; Fig. 1). Previous piston coring of the fan resulted in short cores
(10 m or less) with sedimentation rates up to 175 cm/k.y. (Showers
and Bevis, 1988). The purpose of this study was to sample deeper
Amazon Fan sediments to obtain isotopic records back into the last
glacial and previous interglacial period.

METHODS

Sites 930 through 946 were drilled on the Brazilian continental
margin during Leg 155, and over 4000 m of sediment was recovered
from March through May 1994 (Fig. 1). Samples with a 20-cm3 vol-
ume were taken for isotopic analysis of foraminifers every 50 cm in
the upper and middle fan cores. Samples with a 60-cm3 volume were
taken for isotopic analysis of foraminifers every 150 cm in the lower
fan cores because of reduced microfossil abundances in the coarser
grained sediments. Samples with a volume of 200 to 1500 cm3 were
taken from every core catcher for biostratigraphy and isotopic analy-
sis. Foraminifer abundance and preservation were estimated visually
by examination under a stereo-microscope according to the criteria of
Flood, Piper, Klaus, et al. (1995). Amazon Fan sediments contain sig-
nificant amounts of methane that resulted in core expansion and core
gaps. Core depths for shipboard samples were therefore adjusted for
core gaps and core expansion with a correction program developed
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by D. Piper (see “Preface,” this volume). Isotopic analyses for Sites
938 and 940 were completed at Universität Bremen, analyses
Sites 932 and 933 were completed at Universität Kiel, and analy
for the rest of the sites drilled during Leg 155 were completed
North Carolina State University. Samples were freeze dried, dis
gregated in tap water, washed with hot water over a 63-µm sieve,
then air dried at 65°C. Specimens of monospecific planktonic fo
minifers (Globigerinoides sacculifer, Globigerinoides trilobus, or
Globigerinoides ruber) were hand picked out of the >125-µm siz
fraction. Because of the low abundance of foraminifers in Amaz
Fan sediments, the size fraction separated for isotopic analysis c
not be further restricted. When foraminifer abundance was high,
specimens were mixed together and crushed, and small duplicat
iquots from the same sample were analyzed. When abundances 
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Figure 1. Leg 155 sites characterized by the type of age 
model developed in this isotopic study. Complete age 
models were developed only for cores from the upper 
mud-rich fan and at Site 942 on the western edge of the 
Amazon Fan. Modified from Flood et al., 1995; modified 
from Damuth et al., 1988, and Manley and Flood, 1988.
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low, as few as 3−5 specimens were analyzed. In all three labs, a K
Autocarbonate device attached to a Finnigan MAT 251 ratio m
spectrometer was used to prepare and isotopically analyze the 
ples. Isotopic reproducibility on replicates of NBS standards for 
Kiel Autocarbonate device is +0.05 per milliliter for δ13C and +0.07
per milliliter for δ18O. Isotopic reproducibility on replicates of fora
minifer samples is generally higher than standards, ranging from +
to 0.15 per milliliter for δ13C and δ18O.

RESULTS

On the Amazon Fan, foraminifer abundance and preservation 
ied with lithostratigraphic unit (Fig 2). Foraminifers were abunda
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in Holocene and hemipelagic sediments, but decreased dramatically
in the glacial lowstand sediments. Preservation was moderate to good
in all lithostratigraphic units except for the Red Channel-levee Sys-
tem, where only a few dissolved foraminifers were present. Overall,
abundances were low and the most common abundance of foramini-
fers in Amazon Fan sediments were few to rare (Fig. 3). Isotopic
analyses were completed on 3055 samples for this study, and the iso-
topic results are listed in the Appendix (on CD-ROM in the back
pocket of this volume). Biostratigraphic and paleomagnetic datums
are limited at these sites (Flood, Piper, Klaus, et al., 1995) and in
many cases δ18O stratigraphies have played an important role in de-
veloping chronostratigraphic models. Isotopic events recognized in
this paper were identified by comparison to the δ18O stacked chronol-
ogies of Imbrie et al. (1984), Prell et al. (1986), Pisias et al. (1984),
and Martinson et al. (1987). These events identified for Leg 155 sites
are listed in Table 1. In addition, the Younger Dryas Event is well
represented in the upper portion of some of these sites. The age used
for the end of this δ18O event was 11.0 ka (Flower and Kennett,
1990). The reappearance of Globorotalia tumida was recognized in
the hemipelagic portion at the top of most of the sites and has been
accelerator mass spectrometry (AMS-14C) dated at 9−7.3 ka (G.
Jones, pers. comm., 1994). Below is a brief discussion of the δ18O
stratigraphy at each site.

Site 930

Site 930 was drilled on the upper part of the Amazon Fan in be-
tween levees of the Amazon Channel and the buried Purple Channel
(Fig. 1). Isotopic events 1.1 to 3.0 were identified in the upper 125 m
of the hole (Fig. 4). Sedimentation rates vary from ~90 cm/k.y. at the
top of the hole to >2500 cm/k.y. below 100 meters below seafloor
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Figure 2. Planktonic foraminifer abundance and preservation varies with lithologic unit. Only the Red Channel-levee System could not be characterized isotopi-
cally.
(mbsf). Sedimentation rates increase in a linear fashion downhole ex-
cept for a rapid increase in rates during the last deglaciation. The YP.

obliq 40 k.y. biostratigraphic datum (Prell and Damuth, 1978) is found
immediately below the 3.0 isotopic event. This biostratigraphic da-
tum should normally be located between isotopic events 3.1 and 3.13,
but is suspect here since it is based on the occurrence of only one
specimen. A mass transport unit found at the base of the hole in the
Orange Channel-levee System has high benthic foraminifer abun-
dance, but yielded no isotopic chronostratigraphic information.

Site 931

Site 931 was drilled on a buried levee of Channel-levee System 5
(Fig. 1) and passed down into high-amplitude reflection packets
(HARPs) and a debris flow deposit that separates the Channel-levee
System 5 from the Bottom Levee Complex. Isotopic events 2.2 and
2.21 were tentatively identified in the Channel-levee System 5 (Fig
5). Isotopic evidence for the Holocene and deglaciation is lacking in
the upper portion of the hole, whereas low foraminifer abundance
precluded development of a detailed stratigraphy in the lower portion
of the Channel 5 levee. The HARPs, high-amplitude reflections
(HARs), and debris flow deposits yielded no isotopic chronostrati-
graphic information. Though isotopic datums are few, sedimentation
rates in the upper part of the hole are clearly low (~6 cm/k.y.) and in-
crease greatly (>3000 cm/k.y.) during the interval that corresponds to
isotopic Stage 2. 

Site 932

Site 932 was drilled into hemipelagic sediments east of the crest
of the Channel-levee System 6B (Fig. 1). Low foraminifer abundanc-
283
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es precluded the development of an isotopic stratigraphy in the bot-
tom of the hole. Isotopic event 2.2 was tentatively assigned in the up-
per 3−7 m of the hole (Fig. 6), though comparison of data from two
species of planktonic foraminifers (G. ruber and G. trilobus) suggest
different depths for the same event. Because of the noisy isotopic
trends in these data, an age model based on isotopic data alone could
not be developed. Maslin et al. (this volume) construct a chronology
based on identification of paleomagnetic excursions and recognition
of distinctive patterns in the secular variation of magnetic intensity.
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Figure 3. Overall planktonic foraminifer abundances from Amazon Fan sediments. The most common abundance categories were few and rare.
Table 1. Depths and ages of δ18O events used to construct age models in Leg 155 holes.

Control point
Age
(k.y.)

Hole

930B 931B 932A 933A 934A 935A 936A 937B 938A 939B 940A 941A 942A 943A 944A 945A 946A

1.1 2.32 0 0.07
Tumida AD 9.00 8.42 0.9 0.53 2.7 3.2 3.99 2.12 2.25 1.64 0.5 1.23 0.24
YD 11.00 15.35 8.61 28.02 9.2 58.55 3.6 4 2.2
2.2 17.85  28.42 1 3.72 3.7 89.7 28.2 61.16 10.1 22.11 38.57 167.48 7.58 6.5 2.26 58.83 22.6
2.21 19.22 37.5 46.89 5.88 35.2 15.3 32.49 61.49 10.47 65.35
2.23 23.17 100.6 12.27 93.47 106.16
3 24.11 124.92 16.66 104.03 125.8 135.05
3.1 25.42 11
3.13 43.88 15.47
3.3 50.21 200.4 17.88
3.31 55.45 18.84
4.22 64.09 19.35
4.23 68.83 20.81
4.24 70.82 21.27
5.1 79.25 28.67
5.2 90.95 37.19
5.3 99.38 41.14
5.4 110.79 55.29
5.5 123.82 65.74
6.2 135.10 70.5
6.3 142.28 77.25
6.4 152.58
Site 933

Site 933 was drilled on the eastern flank of the Yellow Channel-
levee System (Fig. 1) and drilled through Channel-levee Systems 5,
6A, and 6B, a debris flow deposit, and finally into the Bottom Levee
Complex at the bottom of the hole. Isotopic events 2.2 through 3.0
were identified in the upper 20 m of the hole, which contain a good
record of isotopic Stage 2 (Fig. 7). Below 20 mbsf, the hole yielded
no useful isotopic chronostratigraphic information because foramin-
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ifer abundances were low and the downcore isotopic signal was
noisy. Sedimentation rates in the upper portion of the hole average
about 20 cm/k.y., increasing to >400 cm/k.y. at ~16 mbsf.

Site 934

Site 934 was drilled into a cutoff meander of the Amazon Channel
in the middle portion of the fan (Fig. 1). Hemipelagic sediments
grade down into overbank turbidites, muddy mass flow deposits,
channel floor deposits, and finally prechannel deposits. Low fora-
minifer abundances preclude the development of a detailed isotopic
chronostratigraphy. The Younger Dryas Event was recognized at the
top of the hole and the 2.2 event appears to be found near the bottom
of the hole at about 90 mbsf (Fig. 8). Sedimentation rates at Site 934
vary from 10 cm/k.y. at the top of the hole to >1100 cm/k.y. in Stage
2.

Site 935

Site 935 was drilled into the flank of the Aqua Channel-levee Sys-
tem and sampled the Amazon and Brown Channel-levee Systems,
underlying HARPs, Unit R Debris Flow, and the Green Channel-
levee System of the Lower Levee Complex (Fig. 1). Isotopic events
2.2 to 3.3 were identified in sediments above the Unit R Debris Flow,
and this site contains recognizable records of Stages 2 and 3 (Fig. 9).
Figure 4. Summary of the δ18O stratigraphy with the lithostratigraphy, seismic stratigraphy, and biostratigraphy for Hole 930B.
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Below the Unit R Debris Flow, the hole yielded no interpretable iso-
topic record. Sedimentation rates at this site appear to average about
6 cm/k.y. in the upper part of the hole, and increase below the degla-
ciation where sedimentation rates vary greatly (~300−1500 cm/k.y.)
in Stage 2.

Site 936

Site 936 was located on the western levee of the Amazon Channel
(Fig. 1) and drilled through the Unit R Debris Flow, the Red Channel-
levee System of the Middle Levee Complex, and the Gold Channel-
levee System of the Lower Levee Complex. The Younger Dryas and
isotopic events 2.2 were identified in the upper 60 m of the hole (Fig
10). Poor core recovery in the Brown and Aqua Channels precluded
the construction of an isotopic stratigraphy. The hole yielded no iso-
topic chronostratigraphic information in or below the Unit R Debris
Flow. Sedimentation rates average about 30 cm/k.y. in the upper por-
tion of the hole, and vary from ~300 to 375 cm/k.y. between the de-
glaciation and in isotopic Stage 2.

Site 937

Site 937 was drilled on the upper portion of the eastern Amazon
Fan on the western levee of the Yellow Channel-levee System (Fig
1). Isotopic events 2.2 to 3.01 were identified at this site (Fig. 11).
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The Holocene and deglacial portion of this record is condensed, with
a possible Younger Dryas Event at 3 m. This site contains a greatly
expanded record of isotopic Stage 2. Deglacial sedimentation rates
are ~30 cm/k.y. and appear to vary in isotopic Stage 2 from ~80 to
>2200 cm/k.y., based on the recognized δ18O datums. Isotopic event
3.01 at the bottom of the hole does not have an orbitally tuned age as-
signed to it, so sedimentation rates cannot be calculated for the bot-
tom of the hole in the Yellow Channel-levee System. However, it is
likely the apparent increase in sedimentation rates between events
2.23 and 3.0 is associated with the top of the Yellow Channel-levee
complex.

Site 938

Site 938 was drilled into the western levee of the Blue Channel-
levee System (Fig. 1) and sampled the Channel 5/Yellow System and
Channel 6 at the bottom of the hole. The Younger Dryas and isotopic
events 2.2 to 3.0 were identified at this site (Fig. 12). Isotopic event
3.0 was found very close to the YP. obliq 40 k.y. biostratigraphic datum
(Prell and Damuth, 1978). In this core, the 3.0 event was found asso-
ciated with the top of the Yellow Channel-levee System. No useful
isotopic stratigraphic data were obtained in the lower 150 m of the
hole in Channel-levee Systems 5/6. Sedimentation rates vary during
the deglaciation from ~75 to 200 cm/k.y. and vary in isotopic Stage
2 from 750 to 3000 cm/k.y.
420

0

0 1 2

3 4 5

LITHIC
UNITS

LITHOLOGIC
SECTION

I I

III

B

C

I

V

I V

A

?

?
?

?

f or ams

G
a

p
s
 i
n

 R
e

c
o

v
e

ry

S i l t

c lay s i l t sand

f o r a m s

A

B

SEISMIC
FACIES
UNITS

LEVEE
SYSTEM

AMAZON/ BLUE/ YELLOW

CHANNEL  5

RECOVERY

9 3 1 A 9 3 1 B 9 3 1 C

HARP

DEBRIS-FLOW
DEPOSITS

OLD
LEVEE

1

2

3

4

5

6

 3H

 1H

 2H

 4H

 5H

 6H

 10X

 2H

 3H

 4H

 5H

 6H

 7H

 8H

 9H

 15X

 16X

 17X

 18X

 19X

 20X

 21X

 22X

 23X

 24X

 25X

 26X

 27X

 28X

 29X

 30X

 31X

 32X

 33X

 34X

 35X

 36X

 37X

 38X

 39X

 40X

 41X

 42X

 43X

 44X

 45X

 13X

 11X

 14X

 12X

 1H

 3H

 1H

 2H

 4H

 5H

 6H

?

AGE

50

100

200

250

300

350

400

150

0 AD- G    tumida

BIOSTRAT
   EVENT

Hol0

50

100

150

200

250

300

350

400

931 B

1.0 0.5 0 −0.5 −1.0 −1.5 −2.0

δ18Ο G .  sacculifer

50

100

200

250

300

350

400

150

0

D
ep

th
 (m

bs
f)

de
pt

h 
(m

bs
f)

LA
TE

 P
LE

IS
TO

C
E

N
E

2.21

2.2

E
A

R
L

Y
   

P
L

E
IS

T
O

C
E

N
E

Figure 5. Summary of the δ18O stratigraphy with the lithostratigraphy, seismic stratigraphy, and biostratigraphy for Hole 931B.
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Site 939

Site 939 was drilled east of the Amazon Channel on the upper por-
tion of the Amazon Fan (Fig. 1), whereas Sites 940 and 943 through
946 compose a series of sites drilled along the last active channel on
the fan. Bioturbated overbank mud turbidites were sampled at Site
939. The Younger Dryas and isotopic events 2.2 and 2.21 are identi-
fied at this site (Fig. 13). Based on the recognition of these events,
sedimentation rates increased downhole from 4 cm/k.y. in the upper
portion of the site to ~60 cm/k.y. in isotopic Stage 2.

Site 940

Site 940 was drilled in the middle fan on the flank of the eastern
levee of the Amazon Channel (Fig. 1). The Younger Dryas and iso-
topic event 2.2 is tentatively identified at this site (Fig. 14). Sedimen-
tation rates varied from 4 cm/k.y. in the upper portion of the site to
~60 cm/k.y. in isotopic Stage 2.

Site 941

Site 941 was drilled into the Western Debris Flow, a large surfi-
cial debris flow that fills the depression between two levees (Fig. 1).
The Younger Dryas and isotopic events 2.2 and 2.21 are identified at
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this site (Fig. 15). The Stage 2 isotopic events are located in the debris
flow, which is a mass transported sediment gravity flow unit. It ap-
pears that this unit was emplaced sometime during the deglaciation
between 11 and 17.8 k.y. Sedimentation rates are low at this site,
varying from 4–10 cm/k.y. if the isotopic events in the debris flow a
near their original position.

Site 942

Site 942 was drilled into the crest of an abandoned levee to
west of the Western Debris Flow (Fig. 1). The levee is of unkno
origin because it is seismically obscured by the Western Debris F
and cannot be tied to channel-levee systems on the central Am
Fan (Flood, Piper, Klaus, et al., 1995). Isotopic events 1.1 to 6.3 w
identified at this site (Fig. 16). Three subsurface carbonate layers 
respond to isotopic events 5.1, 5.3, and 5.5. This site contains a c
plete record of the last interglacial (isotopic Stage 5) and sits o
Stage 6 abandoned levee. The small positive excursions noted a
other Amazon Fan sites in isotopic Stage 2 are not well defined at
site. Sedimentation rates at this site are very well constrained f
the isotopic record and vary from 30–85 cm/k.y. during the degla
ation, 35–60 cm/k.y. in isotopic Stage 2, 20–25 cm/k.y. in isoto
Stage 3, 25–30 cm/k.y. in isotopic Stage 4, 80 to 125 cm/k.y. in i
topic Stage 5, and 40–95 cm/k.y. in isotopic Stage 6.

Sites 943 Through 946

Sites 943 to 946 were drilled in the Amazon Channel on the m
dle and lower portion of the Amazon Fan (Fig. 1) to sample the co
est sediment transported by recent turbidity flows. Site 943 w
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drilled in the channel, whereas Site 944 was drilled on the eas
levee downfan from the Amazon-Brown channel avulsion poi
Sites 945 and 946 were located near the transition from the midd
lower fan. Site 945 was drilled into the channel, and Site 946 dril
into the levee. These sites contained little isotopic information due
the combination of low foraminifer abundance, discontinuo
records, and the prevalence of mass transported sediments. Iso
event 2.2 was identified in the upper portion of Sites 943, 944, a
946 (Figs. 17−20). Site 944 also contained the Younger Dryas Eve
and isotopic event 2.21. Sedimentation rate estimates vary in the
glacial portion of these records from 3 to ~20 cm/k.y., whereas iso
pic Stage 2 sedimentation rate estimates varied form 475 to >800
k.y.

DISCUSSION

The rapid deposition rates found in continental margin records
lute foraminifers, and low abundances are problematic for the c
struction of detailed chronologies. A δ18O study could not be com-
pleted on the Bengal Fan (Leg 116) because of low foraminifer ab
dances and discontinuous records (Scott and Leger, 1990). Wef
al. (1990) completed an oxygen isotopic study on the Peru Mar
(Leg 112) by combining δ18O analyses of benthic foraminifers with
the δ13C signal of organic carbon in the organic-rich sediments und
lying the upwelling zone. On the Peru margin, prominent hiatus
were also discovered, but Sites 680B and 686B were drilled in 
than 500 m water depth.

On the central portion of the Amazon Fan, the Holocene se
ments have abundant and diverse assemblages of planktonic
287
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benthic foraminifers. Below the Holocene/Pleistocene boundary, the
sediments become mottled and dark, the abundance of carbonate and
planktonic foraminifers decreases, the preservation of foraminifers
becomes poorer, and the abundance of authigenic minerals increases,
particularly iron sulfides. The increased abundance of authigenic iron
sulfides at 5 to 10 mbsf may be the reason that conventional piston
and gravity cores have not previously penetrated very deeply into gla-
cial age Amazon Fan sediments. These older sediments are accessi-
ble through modern drilling techniques, and the recovery of fan sed-
iments was successful on Leg 155 because drilling targets were well
characterized seismically.

Because foraminifer abundances are too low for AMS-14C dating
in the glacial age sediment, the only way to construct age-depth mod-
els is through δ18O stratigraphies, along with biostratigraphic and pa-
leomagnetic datums. Modern ratio mass spectrometers can analyze
extremely small samples, as small as a single foraminifer specimen.
However, extremely low microfossil abundances are a cause for con-
cern in the construction of geochemical profiles such as δ18O stratig-
raphies. The low number of foraminifer specimens per interval may
affect the isotopic chronology in slow sedimentation rate cores as a
result of bioturbational mixing (Boyle, 1984). Zahn et al. (1986) sug-
gest that benthic isotopic stratigraphies with reduced numbers of
specimens do not have increased variability in cores with high sedi-
mentation rates (5–13 cm/k.y.). Comparison of isotopic analy
based on multiple (2–50) and reduced (1−10) specimens of plankton-
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ses

ic foraminifers from different depths on the Blake Outer Ridge se
ment drift with sedimentation rates in excess of 20 cm/k.y., show t
there is an excellent agreement between multi- and few specimen
topic stratigraphies in rapidly accumulating sediments (Johnson
al., 1988; Haskell et al., 1991). Problems associated with isoto
stratigraphies produced from a small number of specimens per in
val should therefore be reduced to a minimum in Amazon Fan dep
its, since these cores have sedimentation rates that range from 
3350 cm/k.y. A more serious problem to the construction of isoto
stratigraphies in Amazon Fan sediments is the downslope transpo
sediments in the form of debris flows, turbidites, and in channeliz
and unchannelized flows (HARs and HARPs). Debris flows mo
than 100 m thick occur near the present seafloor over most of the 
tral fan and are easily recognizable. Lower parts of the debris flo
are large slide-blocks, whereas the upper parts resemble muddy
bris flows (Piper et al., Chapter 6, this volume). Foraminifer abu
dances are high in these debris flows (Fig. 2) and preservatio
good, but the discontinuous nature of these sedimentary units 
cludes the construction of iterative chronostratigraphies such
stacked δ18O chronologies. Cores in the central portion of the midd
fan have interpretable stratigraphies back to isotopic Stages 2 t 3,
but generally have disturbed stratigraphies in isotopic stages o
than Stage 2 or 3. Glacial sedimentation rates in these cores can 
up to 3300 cm/k.y. (Fig. 21), which may be too rapid for these se
mentary structures to remain intact over another glacial/intergla
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ong
this
cycle. The Unit R Debris Flow has disturbed the record of the previ-
ous interglacial (isotopic Stage 5) in all the eastern and central fan
sites. High resolution stratigraphies are found on the upper fan (Sites
937 through 939), and off the central axis of the fan to the west of the
Western Debris Flow (Site 942). Sites 937 through 939 penetrate into
isotopic Stage 3 sediments. At these sites, bioturbated hemipelagic
muds are separated by fine-scale mud and silt turbidites. Glacial sed-
imentation rates are on the order of 102−103 cm/k.y. at these sites. In-
terpretable isotopic stratigraphies can be produced if the fine-scale
turbidites are avoided. At Site 942, sedimentation rates are lower than
on the central axis of the fan. Site 942 contains an excellent record of
the last glacial lowstand (Stages 2−4) and the previous interglacial
(Stage 5). Sedimentation rates at Site 942 (Fig. 22) are higher in the
interglacial periods than the glacial periods. Sediment deposition pat-
terns at Site 942 are different from the central Amazon Fan where
sedimentation rates increase during the glacials and decrease during
the interglacial. This antithetical deposition pattern suggests that the
sediment source for Site 942 comes from a canyon to the north of the
Amazon Canyon, and that sediment is focused at the site during sea-
level highstands when along-shelf transport moves the Amazon dis-
charge to the north away from the Amazon Canyon mouth. The three
subsurface carbonate-rich layers observed at Site 942 correspond to
isotopic events 5.1, 5.3, and 5.5, and were deposited during high-
stands. These carbonate layers are overlain by silt and fine sand tur-
bidites. As the sea level fell, silt and fine sand turbidites separated the
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Figure 8. Summary of the δ18O stratigraphy with the lithostratigraphy, seismic stratigraphy, and biostratigraphy for Hole 934A.
hemipelagic muds, suggesting a remobilization of transgressive high-
stand sand deposits during a period of falling sea level. Eventually,
the shelf sands were removed, and only hemipelagic muds accumu-
lated in the later portion of isotopic Stage 2. This site contains a
unique record of the previous interglacial isotopic Stage 5.

CONCLUSIONS

Amazon Fan continental margin sediments have extremely high
sedimentation rates during the last glacial period on the central axis
of the fan. Downslope sediment depositional processes and hiatuses
dominate the record on the central fan prior to isotopic Stage 3. The
records of the mud-rich upper fan are not dominated by downslope
sediment depositional processes and hiatuses. These records are ex-
panded by fine-scale mud and silt turbidites that separate the hemipe-
lagic bioturbated muds. Holocene sedimentation rates on the central
fan vary from 3 to 10 cm/k.y., whereas glacial sedimentation rates
can range up to 3300 cm/k.y. On the western portion of the fan, sed-
imentation rates are lower (20–120 cm/k.y.). At Site 942, the se
ment record is not dominated by mass wasting process and hiatu
Site 942 contains a complete record of the last interglacial (isoto
Stage 5), and sedimentation rates are higher during interglacial p
ods than during the last glacial period. Isotopic stratigraphies, al
with biostratigraphic and paleomagnetic datums (Cisowski et al., 
289
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heric
.
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orial

ini,
 as
volume) demonstrate that the upper levee complex on the Amazon
Fan was deposited during the last glacial cycle and that the individual
levee systems are not separated by interglacial deposits.
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Figure 10. Summary of the δ18O stratigraphy with the lithostratigraphy, seismic stratigraphy, and biostratigraphy for Hole 936B.
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Figure 18. Summary of the δ18O stratigraphy with the lithostratigraphy, seismic stratigraphy, and biostratigraphy for Hole 944A.
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Figure 21. Sedimentation rate estimates for Leg 155 
sites over the past 30 k.y. Sedimentation rates for the 
central portion of the fan increased greatly during the 
last glacial period.

Figure 22. Sedimentation rates for Site 942 on the 
western portion of the Amazon Fan. Note that sedimen-
tation rates at this location are higher in the intergla-
cials than during glacial periods.
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