INTRODUCTION

In this chapter, we have assembled information that will help the reader understand the observations on which our preliminary conclusions have been based and also to help the interested investigator select samples for further analysis. This information concerns only shipboard operations and analyses described in the site reports in the Initial Reports volume of the Leg 156 Proceedings of the Ocean Drilling Program. Methods used by various investigators for shore-based analyses of Leg 156 data will be described in the individual scientific contributions to be published in the Leg 156 Scientific Results volume.

Authorship of Site Chapters

The separate sections of the site chapters were written by the following shipboard scientists (authors are listed in alphabetical order; no seniority is implied):

- Site Summary: Ogawa, Shipley
- Background and Objectives: Ogawa, Shipley
- Operations: Blum, Fisher, Foss, Meyer, Ogawa, Shipley
- Lithostratigraphy and Sedimentology: Jurado, Meyer, Underwood
- Structural Geology: Housen, Labaune, Leitch, Maltman, Tobin
- Biostratigraphy: Steiger, Xu
- Paleomagnetism: Housen
- Organic Geochemistry: Lai
- Inorganic Geochemistry: Kastner, Zheng
- Core Physical Properties: Ashi, Blum, Brückmann, Henry, Peacock
- Downhole Logging: Filice, Fisher, Goldberg, Jurado, I.C. Moore, G. Moore, Yin, Zwart
- In Situ Temperature Measurements: Fisher
- Vertical Seismic Profiling: G. Moore, Peacock
- Packer Flow Tests: Fisher
- Summary and Conclusions: Ogawa, Shipley

Following the site chapters are summary core descriptions ("barrel sheets") and photographs of each core.

ODP is in the process of replacing the bulk of the "Explanatory Notes" chapter of the Initial Reports volumes. These complete, detailed, and annually updated notes will reduce redundancy, maintain completeness and quality, and help to reduce printing costs of Initial Reports volumes. In anticipation of this change, we have omitted some of the general information that has been reprinted repeatedly in past Initial Reports volumes and kept the notes as short as possible. Reference is made to other Initial Reports volumes and to the ODP Technical Notes series for detailed description of methods, if appropriate.

Drilling, Coring, and Casing Operations

During Leg 156, use was made for the first time in scientific ocean drilling history of logging-while-drilling (LWD) tools. LWD drilling (and simultaneous measurement of resistivity, bulk density, neutron porosity, and spectral gamma ray with two instrumented drill collars leased from Anadrill) for the first five days of the cruise preceded coring and other downhole experiments. It provided an excellent database for operational and scientific decisions during the remainder of the cruise (see "Downhole Logging" sections, this chapter, and "Operations" and "Downhole Logging" sections in site chapters).

Coring was performed with three systems during Leg 156: the advanced hydraulic piston corer (APC), the extended core barrel (XCB), and the rotary core barrel (RCB). These systems were applied to maximize core recovery in the lithology being drilled and for hole stability requirements. Coring systems and their characteristics, such as drilling-related deformation, are eloquently summarized in the "Explanatory Notes" chapter of the Leg 139 Initial Reports volume, and various versions can be found in various Initial Reports volumes.

The Leg 156 coring program was limited in the interest of downhole experiments and deployment of instrumented borehole seals through the décollement. The APC was used only for mud-line core to determine depths of the seafloor at each site. Coring then proceeded from about 100 m above the décollement to about 50 m below the décollement with the XCB. Core recovery over these intervals varied from excellent to very poor, while the quality of the cores suffered moderately to severely from "biscuiting," a typical drilling disturbance with the XCB.

Leg 156 championed an ambitious borehole casing program that allowed for deployment of instrumented borehole seals and vertical seismic profiling (VSP) experiments and packer flow tests. For the first time, ODP used triple (16-, 13½-, and 10¾-in.) casing strings, mud motor, and underreamers to enlarge the hole while setting the third casing, and a wire-screened interval to allow for packer flow tests in the lowermost, unstable formation. A record length of 476 m of 13½-in. casing was set in Hole 948D.

Special Downhole Experiments and CORK Deployment

The primary goal of Leg 156 was the deployment of borehole seals with instrumented cables extending down to the bottom of the hole for long-term monitoring of temperature and pressure (see "Borehole Seals and Long-Term Measurements" section, this chapter). To calibrate and compare long-term temperature variations with conditions before drilling the hole, numerous in situ temperature measurements were performed with the water sampler temperature probe (WSTP). Packer tests in the lowermost parts of two holes, cased with a screened interval, provided estimates of in situ permeability (see "Packer Flow Tests" sections, this chapter and other site chapters).

Shipboard Procedures for Core Analyses

General core-handling procedures have been described in previous Initial Reports volumes and in the Shipboard Scientist's Handbook and are summarized here. As soon as cores arrived on deck, core-catcher samples were taken for the biostratigraphic laboratory,
and gas samples were taken immediately for analysis as part of the shipboard safety and pollution prevention program. When the core was cut in sections, whole-round samples were taken for shipboard interstitial water analyses, and headspace gas samples were immediately scraped from the ends of cut sections and sealed in glass vials for light-hydrocarbon analysis.

Core sections then arrived in the core laboratory, where their depths and lengths were recorded and the "Corelog" was produced. The numbering of sites, holes, cores, and samples followed the standard ODP procedures. A complete identification number for a sample consists of the following information: leg, site, hole, core number, core type, section number, piece number (for hard rock), and interval in centimeters, measured from the top of the section. For example, a sample identification of "156-948C-10X-1, 10–12 cm" would be interpreted as representing a sample removed from the interval between 10 and 12 cm below the top of Section 1, Core 10 (X designates that this core was taken with the XCB system) of Hole 948C during Leg 156.

Cored intervals are referred to in meters below seafloor (mbsf); these are determined by subtracting the height of the rig floor above sea level (as determined at each site) from the drill-pipe measurements from the drill floor. Note that this measurement usually differs from precision depth recorder (PDR) measurements by a few to several meters. Because Core 156-949B-14X had 197% recovery, an alternative method for determining "corrected" subseafloor depths (in mbsf) was devised; this method is described in the "Operations" section of the "Site 949" chapter (this volume).

After whole-round sections were run through the multisensor track (MST; see "Physical Properties" section, this chapter) and thermal conductivity measurements were performed, additional whole-round samples were taken for shore-based fabric, permeability, and acoustic tests under varying effective stresses. The cores were subsequently split into working and archive halves. Cores were split from the bottom to top, so investigators should be aware that older material could have been transported upward on the split face of each section. The working half of each core was sampled for both shipboard and shore-based laboratory studies, while the archive half was described visually and by means of smear slides. Thin sections were taken from the working half. Most archive sections were run through the cryogenic magnetometer. The archive half was then photographed with both black-and-white and color film, a whole core at a time, and close-up photographs (black and white) were taken of particular features for illustrations in the summary of each site, as requested by individual scientists.

Both halves of the core then were placed into labeled plastic tubes, sealed, and transferred to cold-storage space aboard the drilling vessel. At the end of the cruise, the cores were transferred from the ship into refrigerated trucks and to cold storage at the Bremen Core Repository of the Ocean Drilling Program, in Bremen, Federal Republic of Germany.

LITHOSTRATIGRAPHY AND SEDIMENTOLOGY

Sediment "Barrel Sheets"

Core description forms, or “barrel sheets,” summarize the data obtained during shipboard analysis of each sediment core. Shipboard sedimentologists were responsible for visual core logging, smear slide analyses, and thin section descriptions. Detailed observations at the section scale were recorded initially by hand on standard ODP Visual Core Description (VCD) forms. Structural geologists recorded deformation features on VCD forms of their own design (see “Structural Geology” section, this chapter). Copies of the Visual Core Descriptions are available from ODP on request.

Core Designation

Core designations include the leg, site, hole, core number, and core type, as discussed in a preceding section (see “Numbering of Sites, Holes, Cores, and Samples” in “Introduction” section, this chapter). Each cored interval is specified in terms of meters below seafloor (mbsf).

Graphic Lithology Column

As many as three graphic patterns appear on the core description forms for each lithology within the column titled “Graphic Lithology” (Fig. 1). For intervals containing homogeneous mixtures of sediment or sedimentary rock, the constituent categories are separated by solid vertical lines; each category is represented by its own pattern and average abundance. Where intervals constitute two or more sediment lithologies having different compositions (e.g., thinly bedded or highly variegated sediments), average abundances of the lithologic constituents are represented by dashed vertical lines. The “Graphic Lithology” column shows only intervals that exceed 20 cm in thickness. Some constituents account for <10% of a given lithology; others remain after the three most abundant lithologies have been represented in the “Graphic Lithology” column. These types of materials are listed in the “Description” section of the core description form.

Age Column

Chronostratigraphic position, as defined by palaeontological and paleomagnetic criteria, is shown in the "Age" column on the core description forms. Sharp boundaries are indicated with solid lines; uncertain boundaries are denoted by question marks; unconformities are indicated by plus (++) symbols. Intervals without ages indicated are barren of diagnostic microfossils. Detailed information on biostratigraphy and paleomagnetic stratigraphy appears in the "Biostratigraphy" and "Paleomagnetism" sections, respectively, of each site chapter report.

Sedimentary Structures

Primary biogenic and physical sedimentary structures are indicated by symbols entered in the "Structure" column of the core description forms. Figure 2 shows all of the symbols used during Leg 156. The structures observed include trace fossils (burrows and feeding trails), horizontal laminae, graded beds, ripple cross-lamination, and sediment rip-up clasts. In instances where the sedimentary structures were too detailed to be depicted on the barrel sheets (e.g., Cores 156-948C-17X through 19X), they were omitted and the reader is directed to view the core photos or VCDs for accurate information.

Sediment Disturbance

Sediment disturbance resulting from the coring process is illustrated in the "Disturbance" column on the core description forms (using symbols in Fig. 2). Blank regions indicate an absence of drilling disturbance. The intensity of drilling disturbance for soft sediments conforms to the following categories: (1) slightly deformed: bedding contacts are slightly bent; (2) moderately deformed: bedding contacts have undergone extreme bowing; (3) highly deformed: bedding is completely disturbed, in some cases, showing diapir-like or flow structures; (4) soupy: intervals are water saturated and have lost all aspects of original bedding.

The degree of fracturing in more indurated sediments falls into one of the following four categories: (1) slightly fractured: core pieces are in place and contain little drilling slurry or breccia; (2) moderately fragmented: core pieces are in place or partly displaced, but original orientation is preserved or recognizable (drilling slurry surrounds drilling "biscuits"); (3) highly fragmented: pieces are from the interval cored and probably in correct stratigraphic sequence (although they may not represent the entire section), but original orientation is completely lost; (4) drilling breccia: core pieces have
Lost their original orientation and stratigraphic position and may be mixed with drilling slurry.

Samples

The positions of discrete samples for shipboard analysis and whole-round samples are indicated in the "Samples" column on the VCDs. The symbols used in this column are as follows:

- I = interstitial water whole-round sample,
- W = all other whole-round samples,
- P = physical properties sample,
- S = smear slide sample,
- T = thin-section sample,
- M = paleontology sample, and
- X = paleomagnetic sample.

In most instances, physical properties samples also were analyzed for carbonate content and bulk X-ray mineralogy. Actual centimeter-intervals from which whole-round samples were taken are included at the bottom of the "Description" column; these centimeter-intervals may vary slightly from those shown in the core photographs, as a result of movement of core in the liner during splitting.

Color

Redox-associated color changes typically occur when deep-sea sediments are exposed to the atmosphere. Because of changes in color, hue, and chroma, attributes were determined as soon as possible after the cores were split, using a Minolta CM-2002 hand-held spectrophotometer. The color scanner measures reflected visible light in 31 10-nm-wide bands that range from 400 to 700 nm. Reflectance measurements were taken at 5-cm intervals on all cores. Average core colors, rounded off to the closest standard Munsell notations, appear in the "Color" column on the color description form. In some cores (e.g., Cores 156-94C-13X through -19X), color changes are on too fine a scale to be depicted in the "Color" column; in these instances, color information appears in the "Description" column.

Written Description

The written description for each core consists of five parts: (1) a heading that lists the major sediment lithologies; (2) a brief description of the major lithologies (if any); (3) a brief description of the minor lithologies (if any); (4) a brief description of the structural features (if any); and (5) specific locations of whole-round samples taken for shore-based analyses.

Structural Geology

Three types of structural geology deformational features are included on the "barrel sheets": (1) bedding dip; (2) intervals of scaly fabric; and (3) occurrences of various other deformation features. These features are shown in three separate columns, on the left side of the "barrel sheets." Symbols used in these columns are illustrated in Figure 2.

Smear Slide Summary

A table summarizing data from smear slides and thin sections appears at the end of each site chapter. The table includes information on the sample location, whether the sample represents a dominant ("D") or a minor ("M") lithology in the core, and the estimated percentages of sand, silt, and clay, together with all identified components. We emphasize here that smear slide analyses provide crude estimates of the relative abundances of detrital constituents; the mineralogy of finer-grained particles is difficult to identify petrographically, and sand-sized grains tend to be underestimated because they cannot be incorporated into the smear evenly. In addition, estimated percentages of grain size suffer from systematic errors because of differences between the surface areas of grains and their respective weight percentages; this is particularly problematic with clay-sized particles and nannofossils.

Sediment Classification

Leg 156 used the sediment classification scheme of the Ocean Drilling Program (Mazzullo et al., 1988) for granular sediment types. Four grain types occur in granular sediments: pelagic, neritic, siliciclastic, and volcaniclastic. Pelagic grains are fine-grained skeletal debris produced by open-marine siliceous and calcareous microfauna and microflora (e.g., radiolarians, coccoliths, discoasters, foraminifers). Neritic grains are coarse-grained calcareous skeletal fragments (e.g., bioclasts, peloids) and fine-grained calcareous grains of non-pelagic origin. These types of grains were not encountered during Leg 156. Siliciclastic grains comprise minerals and rock fragments that were eroded from plutonic, sedimentary, and metamorphic rocks. Volcaniclastic grains include glass shards, rock fragments, and mineral crystals that were produced by volcanic processes.

Variations in the relative proportions of these four grain types define five major classes of granular sediments: (1) pelagic; (2) neritic; (3) siliciclastic; (4) volcaniclastic; and (5) mixed sediments. Pelagic sediments contain >60% pelagic plus neritic grains, <40% siliciclastic plus volcaniclastic grains, and a higher proportion of pelagic than neritic grains. Neritic sediments include >60% pelagic plus neritic grains, <40% siliciclastic plus volcaniclastic grains, and a higher proportion of neritic than pelagic grains. Siliciclastic sediments are composed of >60% siliciclastic plus volcaniclastic grains, <40% pelagic plus neritic grains, and a higher proportion of siliciclastic than volcaniclastic grains. Volcaniclastic sediments contain >60% volcaniclastic plus siliciclastic grains, <40% pelagic and neritic grains, and a higher proportion of volcaniclastic than siliciclastic grains. The volcaniclastic category includes epiclastic sediments (eroded from volcanic rocks by wind, water, or ice), pyroclastic sediments (products of explosive mag-
Drilling disturbance symbols

<table>
<thead>
<tr>
<th>Soft sediments</th>
<th>Sedimentary structures</th>
<th>Structural geology deformation structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slightly disturbed</td>
<td>Fining-upward sequence</td>
<td>PV Phillipsite vein</td>
</tr>
<tr>
<td>Moderately disturbed</td>
<td>Horizontal laminae</td>
<td>RV Rhodochrosite vein</td>
</tr>
<tr>
<td>Highly disturbed</td>
<td>Cross laminae</td>
<td>SV Sediment-filled vein</td>
</tr>
<tr>
<td>Soupy</td>
<td>Sharp contact</td>
<td>Microfault (normal)</td>
</tr>
<tr>
<td>Hard sediments</td>
<td>Gradational contact</td>
<td>Microfault (thrust)</td>
</tr>
<tr>
<td>Slightly fractured</td>
<td>Graded bedding (normal)</td>
<td>Macrofault (sense not determinable)</td>
</tr>
<tr>
<td>Moderately fractured</td>
<td>Isolated mud clasts</td>
<td>Stratal disruption</td>
</tr>
<tr>
<td>Highly fragmented</td>
<td>Pyrite nodule/concretion</td>
<td>Core-scale fold</td>
</tr>
<tr>
<td>Drilling breccia</td>
<td>Scoured contact</td>
<td>Fracture network</td>
</tr>
<tr>
<td></td>
<td>with graded bed</td>
<td>Brecciated zone</td>
</tr>
</tbody>
</table>

Figure 2. Symbols used for drilling disturbance, sedimentary structures, and deformation structures on core description forms ("barrel sheets").

Figure 3. Classes of granular sediment (from Mazzullo et al., 1988).

Principal Names

Each granular-sediment class has a unique set of principal names. For pelagic sediment, the principal name describes the composition and degree of consolidation using the following terms: ooze = unconsolidated calcareous and/or siliceous pelagic sediment; chalk = firm pelagic sediment composed predominantly of calcareous pelagic grains. Texture provides the main criterion for selecting a principal name for siliciclastic sediment. The Udden-Wentworth grain-size scale (Fig. 4) defines the grain-size ranges and the names of the textural groups (sand, silt, clay) and subgroups (fine sand, coarse silt, etc.). Where two or more textural groups or subgroups are present, the principal names appear in order of increasing abundance (e.g., silty clay). Ten major textural categories can be defined on the basis of relative proportions of sand, silt, and clay (Fig. 5). In practice, distinctions between some of the grain-size categories are dubious without accurate measurements of weight percentages. It is especially difficult to recognize relative proportions of fine silt and clay; thus, a rigorous boundary was not placed between silty clay and clayey silt. For lithified sediments, the suffix "-stone" is affixed to the principal names sand, silt, and clay. Only fine-grained volcaniclastic material (less than 2 mm in diameter) was encountered during Leg 156. The name "volcanic ash" applies to un lithified pyroclasts; for lithified material, the term "tuff" is used. With mixed sediment, the principal name describes the degree of consolidation. The term "mixed sediment" is used for un lithified sediment, and the term "mixed sedimentary rock" is used for lithified sediment.

Major and Minor Modifiers

To describe the lithology of the granular sediment in greater detail, the principal name of each granular-sediment class can be preceded by major modifiers and followed by minor modifiers (Table 1). Minor modifiers are preceded by the term "with." The most common uses of major and minor modifiers are to describe the composition and tex-
Careous are used to describe sediments that are composed of siliceous, lithic, or calcareous. The composition of pelagic grains can be described in greater detail with major and minor modifiers, such as diatomaceous, radiolarian, nannofossil, and foraminiferal. The terms siliceous and calcareous pelagic grains of uncertain origin.

3. Major and minor modifiers help define compositional details of volcanoclastic grains. Common terms include "lithic" (rock fragments), "vitric" (glass shards and pumice), and "crystal" (fresh euhedral mineral crystals). Modifiers also describe the compositions of the lithic grains (e.g., basaltic) and crystals (e.g., feldspathic).

X-Ray Diffraction

The mineralogy and relative abundances of common minerals were analyzed on bulk samples using standard X-ray diffraction techniques. Bulk samples were oven-dried or freeze-dried, ground to a fine powder with a ball mill, then packed into rectangular aluminum holders. The randomly oriented powders were not pre-treated with any chemicals.

The X-ray laboratory aboard the JOIDES Resolution is equipped with a Phillips PW-1720 X-ray generator, a Phillips PW-1710/00 diffractometer control unit with a PW-1775 35-port automatic sample changer, and a Phillips PM-8151 digital plotter. Machine settings used were as follows: generator = 40 kV and 35 mA; tube anode = Cu; wavelength = 1.54056 Å (CuKα) and 1.54439 Å (CuKα2); intensity ratio = 0.5; focus = fine; irradiated length = 12 mm; divergence slit = automatic; receiving slit = 0.2 mm; step size = 0.005°2θ; count time = 0.5 s; step per range = 2°2θ; scanning rate = 2°2θ/min; monochromator = on; scan = continuous; scanning range = 2°2θ-35°2θ.

Digital data were processed using a Phillips peak-fitting program that subtracts background intensities and fits ideal curve shapes to individual peaks or ranges of peaks, as specified by the operator. Typically, this program was used over the following scanning angles: 3.5°-10.5°2θ (smectite and illite), 10.5°-13.5°2θ (kaolinite + chlorite), and 25.5°-30.5°2θ (quartz, plagioclase, and calcite). Curve-fitting is most effective if the steps per scanning interval are less than 750, and iterations continue automatically until a prescribed % standard deviation test is satisfied. Output of the processed digital data includes the angular position of each peak (°2θ), d-spacing (Å), peak width (Δ2θ), intensity or height (counts per second above background), and peak area (total counts above background). Graphics output produces continuous tracings of the diffraction peaks with intensity units of counts per second.

In addition to the routine identification of important detrital and diagenetic minerals, we estimated relative abundances of the dominant minerals. Correction factors for integrated peak areas were calculated by matrix inversion using data from mineral calibration standards (Fisher and Underwood, this volume). Mineral abundances...
Table 1. Outline of the ODP classification scheme for granular sediment (modified from Mazzullo et al., 1988).

<table>
<thead>
<tr>
<th>Sediment class</th>
<th>Major modifiers</th>
<th>Principal name</th>
<th>Minor modifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pelagic sediment</td>
<td>Composition of pelagic and neritic grains present in major amounts</td>
<td>chalk</td>
<td>Composition of pelagic and neritic grains present in minor amounts</td>
</tr>
<tr>
<td></td>
<td>Texture of elastic grains present in major amounts</td>
<td>limestone</td>
<td>Texture of elastic grains present in minor amounts</td>
</tr>
<tr>
<td>Neritic sediment</td>
<td>Composition of neritic and pelagic grains present in major amounts</td>
<td>radiolarite</td>
<td>Composition of neritic and pelagic grains present in minor amounts</td>
</tr>
<tr>
<td></td>
<td>Texture of elastic grains present in major amounts</td>
<td>diatomite</td>
<td>Texture of elastic grains present in minor amounts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>spicule</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>chert</td>
<td></td>
</tr>
<tr>
<td>Siliciclastic sediment</td>
<td>Composition of all grains present in major amounts</td>
<td>boundstone</td>
<td>Composition of all grains present in minor amounts</td>
</tr>
<tr>
<td></td>
<td>Grain fabric (grains only)</td>
<td>Grainsite</td>
<td>Texture and composition of siliciclastic grains present as matrix (for coarse-grained clastic sediments)</td>
</tr>
<tr>
<td></td>
<td>Sediment color (optional)</td>
<td>packstone</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grain shape (optional)</td>
<td>wackestone</td>
<td></td>
</tr>
<tr>
<td>Volcaniclastic sediments</td>
<td>Composition of all volcaniclasts present in major amounts</td>
<td>mudstone</td>
<td>Composition of all volcaniclasts present in minor amounts</td>
</tr>
<tr>
<td></td>
<td>Composition of all pelagic and neritic grains present in major amounts</td>
<td>mudstone</td>
<td>Composition of all pelagic and neritic grains present in minor amounts</td>
</tr>
<tr>
<td></td>
<td>Texture of siliciclastic grains present in major amounts</td>
<td>mudstone</td>
<td>Texture of siliciclastic grains present in minor amounts</td>
</tr>
<tr>
<td>Mixed sediments</td>
<td>Composition of neritic and pelagic grains present in major amounts</td>
<td>mixed sediments</td>
<td>Composition of neritic and pelagic grains present in minor amounts</td>
</tr>
<tr>
<td></td>
<td>Texture of elastic grains present in major amounts</td>
<td></td>
<td>Texture of elastic grains present in minor amounts</td>
</tr>
</tbody>
</table>

Table 2. Common minerals analyzed by X-ray diffraction, with associated peak positions.

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Window (°2θ, CuKα)</th>
<th>d-spacing (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcite</td>
<td>29.25-30.60</td>
<td>3.05-3.01</td>
</tr>
<tr>
<td>Kaolinite + chlorite</td>
<td>12.39-12.60</td>
<td>7.14-7.02</td>
</tr>
<tr>
<td>Illite</td>
<td>8.75-9.10</td>
<td>10.10-9.72</td>
</tr>
<tr>
<td>Plagioclase</td>
<td>27.80-28.15</td>
<td>3.31-3.17</td>
</tr>
<tr>
<td>Quartz</td>
<td>7.14-7.02</td>
<td>3.34</td>
</tr>
<tr>
<td>Smectite</td>
<td>5.73-6.31</td>
<td>15.42-14.01</td>
</tr>
</tbody>
</table>

have been normalized to 100%. Diagnostic peak positions are shown in Table 2. Relative percentages of total clay minerals are based on the sum of the weighted areas of three individual clay-mineral peaks: smectite (001), illite (001), and kaolinite (001) + chlorite (002). These methods differ from the one used during Leg 110 on the Barbados Ridge (Masale, Moore, et al., 1988), whereby the total clay-mineral content was calculated from a single composite peak at approximately 19.75°2θ. Data from Leg 110, moreover, are based on peak intensities, rather than integrated areas; a set of calibration factors derived from mixtures of different mineral standards; and a Phillips software package for quantitative analysis. Comparisons among these techniques and their associated errors are discussed in Fisher and Underwood (this volume).

Because of the presence of small quantities of crystalline minerals not included in our calculations, plus amorphous solids (volcanic glass, biogenic silica, organic matter, poorly formed clay crystallites, and so forth), the relative abundances reported here may be significantly greater than the true weight percentages. No attempt was made to quantify the weight percent of amorphous material; past studies in the west-central Atlantic region, however, have indicated amorphous contents as high as 40% to 70% (e.g., Fan and Rex, 1972), based on the amount of diffuse scatter in the total X-ray intensity (Cook et al., 1975).

Calculations of relative percentages of each mineral within the clay-mineral group suffer from potentially large errors when analyzed as untreated, air-dried, random powders. The diagnostic kaolinite (001) peak, for example, interferes with the chlorite (002) peak at approximately 12.5°2θ; thus, the weighted intensity of this peak should be regarded as an undifferentiated composite. Similarly, unless samples have been saturated with ethylene glycol to expand the smectite lattice to 17 Å, the (001) chlorite, (001) illite, and mixed-layer illite/smectite peaks overlap with discrete smectite at approximately 6° to 9°2θ. Smectite content, therefore, may be slightly overestimated in samples that contain abundant discrete chlorite, illite, or illitic mixed-layer clay.

STRUCTURAL GEOLOGY

Introduction

Leg 156 was designed to improve understanding of the interaction between deformation and fluid processes in an accretionary prism, especially in the region of the décollement. Hence, the coring program focused on the décollement, and the prime task of the structural geologists was to extract all the relevant structural data from the material recovered from this zone. This information, besides documenting the mechanical and hydrogeological behavior of the décollement, helps to elucidate the configuration of the prism toe and provides a link between the stratigraphic, physical, geochemical, and other aspects of the prism that were studied during the cruise.

As the Ocean Drilling Program has progressed, the attention given to structural investigation of cores recovered from accretionary prisms has been gradually increasing, together with growing efforts to treat the information as quantitatively as possible. Parallel advances have been taking place during cruises that investigate other tectonic settings.
However, the ways in which the structural data have been handled and recorded have tended to differ somewhat from cruise to cruise, usually as a result of impromptu discussions on board the ship. In contrast to the long-established procedures for reporting most shipboard data, until now, there has been no ODP guidance about how the structural geological data should be treated. Inventing a custom-designed procedure for each cruise does offer flexibility and scientific advantages, but tends to lead to the data remaining unpublished and unconsulted by other workers.

Against this background, ODP policy at the time of writing, driven by recommendations from the Tectonics Panel (TECP), was to establish a standardized format for the recording and publishing of structural geological data. The structural geologists on Leg 156 were charged with testing and refining such a formalized system. Therefore, the explanation below, in addition to reporting how the structures were dealt with in the core, summarizes our attempts to establish a practicable, yet realistic, scheme for standardized recording of structural information from sedimentary materials.

Occurrence of Structures in the Cores

An unusually large number of whole-round core samples were taken during this leg, in line with the goals of measuring deformational and fluid-flow properties of the prism, but this still amounted to less than 10% of the total recovered material. We examined all the remaining core for structures down to the hand-lens scale. The work was based on the face of the archive half of the split core, although we made frequent recourse to the working half of the core for additional information and, especially, for orientation data. Much use was made of scalpels and glass slides to skim away gently the film of mud smeared during the splitting of the core.

Reports from previous cruises have noted the difficulty of distinguishing natural structures from the results of disturbance because of core-splitting, stress release, desiccation, and fluid expansion. Especially frustrating during this cruise was the propensity of the cores to develop drilling biscuits and a range of related structures, which can both mimic and pass into natural equivalents. For example, some foliations, apparently well preserved within otherwise intact biscuits, and hence thought to be natural, have equivalents developed in the drilling debris that surrounds the biscuits; some fractures were judged to have involved drilling disturbance, but might well have evolved from pre-existing natural structures. Although noting the recommendations of Lundberg and Moore (1986, p. 42-43), in the cores described here, we found that distinguishing natural structures was a formidable problem. We decided to adopt a conservative approach and to report only those features that we judged to be largely of natural origin. We, therefore, have confidence in the structures discussed here, but it may be that the magnitude of natural deformation in the cores has been under-reported, particularly for weak effects.

The occurrence of each feature in the core was recorded on a "Structural Description Sheet" (Fig. 6). Its design is based on that first used during Leg 131 and progressively refined during subsequent cruises, in particular, Legs 134, 141, 146, 147, and 149. The location of an item of interest was recorded as the distance in centimeters of the top and bottom of the structure from the top of the section. Features such as a horizontal bedding plane, therefore, would have two identical depth values, whereas a thicker structure, such as a zone of scaly fabric, would have differing values and could occupy a considerable interval of the core and section. The depth of occurrence below the seafloor (mbsf) was added later for selected structures as that information became available for each core. Observers during earlier cruises found it useful to assign a number to each separate piece of core, for example, in case the piece should be removed for analysis elsewhere, and to each individual structure, for purposes of cross-referencing. Columns on the sheet are available for these procedures, although we found them unnecessary.

Description of Structures Seen in the Cores

An important aspect of the structural database was the construction of a list of those terms most useful for describing deformational structures seen in ODP cores (Table 3). Following advice from ODP headquarters, we avoided a separate scheme for sedimentary rocks, as opposed to igneous and sedimentary rocks, which was seen as counter to the goals of the standardization, because many of the structures are common to both groups of materials. However, our deliberations during this cruise were confined to features of sedimentary rocks, and hence the accompanying short definitions of terms (Table 4) have been confined to those structures. We have not attempted to modify the terms that were suggested to us for igneous and metamorphic rocks; the optimum ways of dealing with these will emerge from cruises concerned with those materials.

Before constructing the list, we reviewed the structural information in relevant Initial Reports volumes and in the compilation of Lundberg and Moore (1986). We deliberately attempted to keep the list short, and, indeed, our review indicated that only a relatively small number of structures have been commonly recorded during shipboard investigations. Most of the terms defined by Lundberg and Moore (1986) continue to be widely used, although spaced foliation and kink band have been subsumed by deformation band, and crenulation foliation has not been widely identified. Vein structure is now more often referred to as sediment-filled veins. Scaly fabric is given two entries because of the need to record separately aspects of the fabric itself and of the overall zone, and other structures that occur in narrow zones may have to be treated in the same way. Note that for thick zones the top and bottom intervals may well specify the thickness adequately, but inclined narrow zones have a thickness that differs from the core intervals. The term fracture network emerged during the course of Leg 156 to be useful; its meaning and use are explained in detail in the "Structural Geology" section of the "Site 949" chapter (this volume).

The listed terms should allow names to be given to structures during routine shipboard core description (i.e., fairly quickly, reproducibly, and based on observations no more detailed than those possible with a hand lens). Some terms, of which a good example is deformation band, group a number of structures that are not all of related origin, but which can be clearly distinguished only by detailed study (Maltman et al., 1993). In other cases, for example, scaly fabric, the origin and kinematic significance of the structure, which also may be polygenetic, is a matter of uncertainty. However, we consider that introducing a new or different term, or deferring the naming of the structure until detailed laboratory study is completed, is neither desirable nor practical. We are conscious of the pitfalls and shortcomings of such schemes as that proposed here. However, its use should mitigate some of the problems of consistency of usage—between individuals, teams on different shifts, and shipboard parties—as well as the division of gradational and overlapping structures into discrete types (e.g., Taira, Hill, Firth, et al., 1991; Behrmann, Lewis, Musgrave, et al., 1992).

A column on the description sheet allows the observer to note the intensity of development of a structure. Although the original suggestion of ODP involved a numerical scale from 1 to 5, during this cruise we found a scale of 1 to 3 to be more practical (equivalent to incipient, moderate, and intense development), and even then only found it useful for scaly fabrics.

The comments column of the description sheet allowed descriptive details to be recorded, and while most of these are not meant for publication, many were utilized later in the site descriptions and in structural interpretations. The comments column of the description sheets was used to record information beyond that specified in the other columns, for example, the magnitudes of fault separation, style of folding, and comments on the quality of measurements.

In an attempt to balance the terminological crudities of our database scheme, care was taken to sketch many of the features and to ensure that the sketches were properly archived. A "Sketch Summary
Figure 6. Example of a structural description sheet used during core description.

<table>
<thead>
<tr>
<th>Section</th>
<th>Depth (cm)</th>
<th>Feature</th>
<th>Feature Identifier</th>
<th>Core Face Orientation</th>
<th>App. Dip</th>
<th>Angular Dip</th>
<th>Core Reference Frame</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7-10</td>
<td>B</td>
<td>CV</td>
<td>22/270 30 180</td>
<td>061</td>
<td>56</td>
<td>Based on Zoophycos</td>
<td></td>
</tr>
<tr>
<td></td>
<td>49-50</td>
<td></td>
<td></td>
<td>36/090 35 235</td>
<td>092</td>
<td>67</td>
<td>Gray-green to brown transition in mud, probably bedding</td>
<td></td>
</tr>
<tr>
<td></td>
<td>54-66</td>
<td></td>
<td></td>
<td>42/270 60</td>
<td>180</td>
<td>42</td>
<td>Series of parallel Zoophycos tubes</td>
<td>PMAG</td>
</tr>
<tr>
<td>2</td>
<td>74-74</td>
<td>B</td>
<td></td>
<td>13/270 20 0</td>
<td>000</td>
<td>23</td>
<td>Structureless drilling bismarks, bioturbated, bedding not apparent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>82-84</td>
<td></td>
<td></td>
<td></td>
<td>55/290</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>84-85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>62-65</td>
<td>B</td>
<td></td>
<td>4/290 32 180</td>
<td>096</td>
<td>32</td>
<td>Zoophycos: well developed</td>
<td>PMAG</td>
</tr>
<tr>
<td></td>
<td>69-68</td>
<td></td>
<td></td>
<td>2/090 03 000</td>
<td>352</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>72-72</td>
<td></td>
<td></td>
<td>09/270 17 090</td>
<td>243</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>142-148</td>
<td>B</td>
<td></td>
<td>4/270 16 180</td>
<td>164</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>148-149</td>
<td></td>
<td></td>
<td>6/290 05 000</td>
<td>220</td>
<td>08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>17-18</td>
<td>B</td>
<td></td>
<td>26/270 0 0</td>
<td>090</td>
<td>26</td>
<td>Heavily bioturbated: bedding indicated only by Trophycos tubes</td>
<td>PMAG</td>
</tr>
<tr>
<td></td>
<td>112-112</td>
<td></td>
<td></td>
<td>20/290 09 000</td>
<td>200</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Much broken by drilling: 2cm bismarks only 35 wide of core, bioturbated and structureless</td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Less bioturbated than section 7, but structureless</td>
<td></td>
</tr>
</tbody>
</table>
Table 3. List of terms used for identifying structural features in cores.

<table>
<thead>
<tr>
<th>Structural feature</th>
<th>Identifier abbreviation</th>
<th>Data recorded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedding</td>
<td>B</td>
<td>Strike/dip of bedding surface</td>
</tr>
<tr>
<td>Color/texture variation</td>
<td>CTV</td>
<td>Strike/dip of separating surface</td>
</tr>
<tr>
<td>Fissility</td>
<td>Fiss</td>
<td>Strike/dip of parting surface</td>
</tr>
<tr>
<td>Joint</td>
<td>J</td>
<td>Strike/dip of joint surface</td>
</tr>
<tr>
<td>Mineral vein</td>
<td>V</td>
<td>Strike/dip of margin; plunge/trend of fibers</td>
</tr>
<tr>
<td>Magmatic vein</td>
<td>MV</td>
<td>Strike/dip of vein margin</td>
</tr>
<tr>
<td>Sediment-filled vein</td>
<td>SV</td>
<td>Strike/dip of vein/array boundary</td>
</tr>
<tr>
<td>Fault, normal</td>
<td>Fn</td>
<td>Strike/dip of fault surface</td>
</tr>
<tr>
<td>Fault, reverse</td>
<td>Fr</td>
<td>Strike/dip of fault surface</td>
</tr>
<tr>
<td>Fault, strike-slip</td>
<td>Ps</td>
<td>Strike/dip of fault surface</td>
</tr>
<tr>
<td>Fault, oblique-slip</td>
<td>Fоб</td>
<td>Strike/dip of fault surface</td>
</tr>
<tr>
<td>Breccia zone</td>
<td>BZ</td>
<td>Strike/dip of zone boundary; zone thickness</td>
</tr>
<tr>
<td>Deformation band</td>
<td>DB</td>
<td>Strike/dip of band boundary; band thickness</td>
</tr>
<tr>
<td>Scaly fabric zone</td>
<td>SpFol</td>
<td>Strike/dip of foliation</td>
</tr>
<tr>
<td>Color/texture variation</td>
<td>SI</td>
<td>Plunge and trend of slickenline surface</td>
</tr>
<tr>
<td>Other linear structure</td>
<td>L</td>
<td>Plunge and trend</td>
</tr>
<tr>
<td>Fissility</td>
<td>M</td>
<td>Strike/dip or plunge/trend</td>
</tr>
<tr>
<td>Mineral shape fabric</td>
<td>MSF</td>
<td>Strike/dip or plunge/trend</td>
</tr>
<tr>
<td>Ductile shear zone</td>
<td>DSZ</td>
<td>Strike/dip of zone margin</td>
</tr>
<tr>
<td>Other planar structure</td>
<td>P</td>
<td>Strike/dip</td>
</tr>
</tbody>
</table>

Table 4. Short, working definitions of terms used to describe structures in sedimentary rock cores.

<table>
<thead>
<tr>
<th>Structure feature</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedding</td>
<td>Primary depositional layering, generally taken to mark horizontal at the time of initial sedimentation.</td>
</tr>
<tr>
<td>Broccia zone</td>
<td>Zone of angular rock fragments, commonly set in a matrix that may be composed of similar material, finely comminuted rock (“fault gouge”), or secondary minerals.</td>
</tr>
<tr>
<td>Color/texture variation</td>
<td>A change in the color and/or the texture of sedimentary material not clearly related to an identifiable structural feature. Some changes may reflect bedding.</td>
</tr>
<tr>
<td>Deformation band</td>
<td>Narrow (less than a centimeter wide), essentially planar zone of displacement, but excluding clear faults. Includes kinklike, shear zone-like and fault-like varieties. Commonly appears dark in fresh core, and may merely reflect bedding or fissility.</td>
</tr>
<tr>
<td>Fault</td>
<td>Fracture along which slip has occurred as indicated by displacement of an earlier feature across the fracture or the presence of slickenlines. In cores, faults range from discrete sharp fractures to broad fracture zones.</td>
</tr>
<tr>
<td>Fissility</td>
<td>Closely spaced parting surfaces developed in fine-grained rocks, parallel to bedding. Commonly increases in intensity downward and is normally absent from strongly bioturbated rocks. Commonly interpreted as a product of compaction.</td>
</tr>
<tr>
<td>Fold</td>
<td>A curve or bend imposed on a rock structure. Includes both discrete folds and disharmonically contorted layers that may be of nontectonic origin.</td>
</tr>
<tr>
<td>Joint</td>
<td>Discrete fracture on which there has been no displacement parallel to the surface of the fracture.</td>
</tr>
<tr>
<td>Mineral vein</td>
<td>A vein occupied by a mineral or mineral aggregate that differs from nearby material in terms of composition and/or texture and that has crystallized or recrystallized in situ.</td>
</tr>
<tr>
<td>Scaly fabric</td>
<td>Closely spaced, variably anastomosing commonly slickensided surfaces. Shows a range in intensity, with more weakly developed varieties delineating fragments that are several millimeters wide and of low aspect ratio. With increasing intensity, fragments decrease in size and their aspect ratio increases, so that where most intense, the structure is almost planar (scaly foliation of Lundberg and Moore [1986]).</td>
</tr>
<tr>
<td>Sediment-filled vein</td>
<td>Planar or sigmoidal vein filled by normally fine-grained sediment. Usually part of an array oriented nearly perpendicular to the orientation of the individual vein. Found mostly in mudstone or claystone.</td>
</tr>
<tr>
<td>Slickenline</td>
<td>Lineation occurring on a slickenline. May be a product of mineral fiber growth, abrasion, the streaking out of comminuted rock particles, and so forth.</td>
</tr>
<tr>
<td>Slickenside</td>
<td>Smoothed or polished surface, presumably indicating movement. Particularly associated with faults, scaly fabric, and some deformation bands.</td>
</tr>
<tr>
<td>Stratal disruption</td>
<td>Discontinuous bedding attributed to, or enhanced by, deformation. Inferred processes include boudinage, closely spaced faulting, and offset along crosscutting foliations. May be difficult to demonstrate lithological layering is unequivocally bedding, not, for example, deformed bioturbation.</td>
</tr>
<tr>
<td>Stylolite</td>
<td>Wavy or jagged seams most commonly encountered in chalk and limestone in which the seams are occupied by clay. Seams range from narrow films to banded structures up to a centimeter wide. Widely accepted as a product of pressure solution.</td>
</tr>
<tr>
<td>Other planar structures</td>
<td>Planar structure of uncertain character or not defined above.</td>
</tr>
<tr>
<td>Other linear structure</td>
<td>Elongate feature, including oxidation/reduction spots, bioturbation structures, intersection lineations, and linear structures of uncertain character or not defined above.</td>
</tr>
</tbody>
</table>
SHIPBOARD SCIENTIFIC PARTY

Orientation of Structures Within the Cores

A primary task of shipboard structural geologists is to record the orientations of structures seen in the cores, and for this we made much use of the protractor device described in Taira, Hill, Firth, et al. (1991, p. 42). However, relating these measured orientations to their real subsurface disposition has long been a problem, and we approached it in the same way as was employed during recent cruises. Briefly, two steps are required. First, the orientation of a structure within the core reference frame has to be calculated, normally from the apparent dip in the core face and in another known direction. Second, the orientation of the core has to be related to geographic north, and the orientation of the structures adjusted accordingly. Details are described in Westbrook, Carson, Musgrave, et al. (1994) for sediments and sedimentary rocks and in Gillis, Mével, Allan, et al. (1993) for igneous and metamorphic rocks.

In general, the first stage can be done routinely, although if structures are abundant, it does require collecting and converting a large number of apparent measurements. The dips of structures measured in the split core were written on the description sheet, following the convention shown in Figure 7. That is, apparent dips were expressed as two-digit angles between 00° and 90°, together with the dip direction as three-digit azimuths that originated orthogonally within the archive half at 000°. Core-face dip directions thus would be either 090° or 270°. Dip directions were preferred over strike to be consistent with the correction software.

Where a structure was seen as a three-dimensional plane in a fragmented piece of core, or its trace could be observed at the top or bottom of a core section, it was possible to measure the true orientation directly in the core reference frame. In the studied cores, the second apparent dip angle and direction were most commonly obtained from the corresponding part of the working half of the core, as explained in Figure 7. Note that dips recorded assume that the long axis of the core is vertical; that is, deviations of the drill hole from vertical have been ignored.

Linear features were measured using the technique outlined in Westbrook, Carson, Musgrave, et al. (1994; see especially figs. 6A and 6B), but few such structures were encountered during this cruise. Surfaces associated with the scaly fabric are commonly lineated, and we began measuring these in the hope of conducting stress-tensor analysis. However, we abandoned this endeavor after realizing that almost every surface within the cores, including those that appeared to have been induced by drilling, had been lineated to some extent. It seems that surfaces within the clayey lithologies encountered here have a particular propensity for taking on a lineated aspect, and we viewed it as impossible to isolate slickenlines that were of unequivocally natural origin.

After completing a session of core description, we entered the orientation data into a “Structural Data Sheet,” of the kind illustrated in Figure 8. Being a spreadsheet (here operating in Microsoft Excel), this form provides for easy storage, retrieval, and manipulation of this data. However, we found it convenient to calculate the true orientations using the Stereonet plotting program of R.W. Allmendinger, version 4.25a, as detailed in Westbrook, Carson, Musgrave, et al. (1994), for entry into the spreadsheet. Many of the headings for the various columns are tersely abbreviated, so that they occupy the single row required by Microsoft Excel version 4. The columns showing site, hole, and core type may seem superfluous, but are required to employ the ODP macro for converting interval depths in the section to depths below the seafloor.

The most important aspects of all these data have been abstracted and summarized on the “barrel sheet” for each core (see “Lithostratigraphy and Sedimentology” section, this chapter). These “barrel sheets” have been reproduced at the end of each site chapter.

Geographic Orientation of the Structures

Following the derivation of orientation data within the cores as outlined above, one must convert these local orientations to geographical coordinates. This stage depends on the availability of multishot, Formation MicroScanner (FMS), or paleomagnetic data. During Leg 156, only the last technique was possible. Because the cores almost ubiquitously had been broken into drilling biscuits, the procedure involved carefully extracting individual pieces from the cores and passing them through the cryogenic magnetometer (see “Paleomagnetism” section, this chapter). With the aid of the shipboard paleomagnetic specialist, we were able to interpret the orientation of the natural remanent magnetism in many of the drilling biscuits for which we had structural information. The steps for using the declination in the geographic correction are summarized in Table 5.

BIOSTRATIGRAPHY

Calcareous Nannofossils

Zonation

The nannofossil zonation used here is a modification of those proposed by Bukry (1973, 1975), Okada and Bukry (1980), and Gartner (1977). For the pre-Pleistocene assemblages, the low-latitude zonation of Bukry (1973, 1975) and code number of Okada and Bukry (1980) are referred to for the reader’s convenience. For the Pleistocene, the zonation proposed by Gartner (1977) has been used as it provides better resolution. Zonal modifications adopted here are those proposed by Bergen (1984) and Clark (1990). Primary and secondary biostratigraphic-event zonal markers for the Cenozoic are shown in Figure 9.

Methods

Calcareous nannofossil assemblages were described primarily from the results of smear-slide observations of each core-catcher sample. Additional samples were studied as time permitted on board the ship. Slides were examined exclusively with a light microscope. In all cases, a magnification of 1250× was used in estimating abundances.

The following scale was used to specify the abundances of individual species:

* V (very abundant) = 100 specimens/field of view,
* A (abundant) = 10–100 specimens/field of view,
* C (common) = 1–10 specimens/field of view,
* F (few) = 1 specimen/1–10 fields of view,
* R (rare) = 1 specimen/10–100 fields of view,
* P (present) = a few specimens per slide.

Occurrences of reworked species are indicated by lowercase letters. Specification of percentages of calcareous nannofossils present in each sample were as follows:

* A (abundant) = >50%,
* C (common) = between 10% and 50%,
* F (few) = between 1% and 10%,
* R (rare) = <1%, and
* B (barren) = none.

The assessment of preservation of calcareous nannofossils was based on the following criteria:
Abundance and Preservation

Sampling Procedure and Preparation

Foraminiferal samples were taken from the core catcher. Additional samples from each section of core that contained planktonic foraminifers were processed to refine the zonation.

The sediments were disaggregated in a 10% solution of hydrogen peroxide and washed with a coarse (420 µm) and a fine (44 µm) sieve. After decantation, the residues were dried, sieved, and kept in small glass vials. Three grain-size fractions were sieved:

1. Very coarse fraction, >420 µm.
2. Coarse fraction, 250 to 420 µm.
3. Middle fraction, 63 to 250 µm.
4. Fine fraction, <63 µm.

The foraminifers were collected in "Franke" microfossil trays: first, a general tray that contained all the different foraminifers found in the residue was examined, then, individual morphotypes were selected and mounted on black (exposed) photographic (resin) paper in specially prepared trays.

Abundance and Preservation

Foraminiferal abundances were classified as follows:

A (abundant) = more than 40% of the association of foraminifers,
F (frequent) = between 20% and 40% of the association,
C (common) = between 5% and 20% of the association,
R (rare) = present with less than 5% of the association, and
B (barren) = absent.

Three grades of preservation of the foraminifers were recognized:

G (good) = well-preserved tests,
M (moderate) = moderately preserved foraminifers, partly broken or partly affected by dissolution, and
P (poor) = preservation is bad, mostly broken or almost dissolved skeletons.

Planktonic Foraminifers

Zonation

For the zonation of planktonic foraminifers, the scheme of Bolli and Saunders (1985) was used.

Sampling Procedure and Preparation

Most biostratigraphic data were obtained from the core-catcher samples. Based on continuous core observation and analysis of numerous smear slides, intervals of radiolarian occurrences were located and sampled further.

The samples were dried and treated with 10% hydrogen peroxide, washed, and sieved. After subsequent drying, the material was sieved again. Grain-size intervals used were as follows:

1. Very coarse fraction, >250 µm.
2. Coarse fraction, 250 to 150 µm.
3. Medium fraction, 150 to 63 µm.
4. Fine fraction, <63 µm.

Three grades of preservation of foraminifers were recognized:

G (good) = There is little or no evidence of dissolution and/or overgrowth, diagnostic characteristics are preserved, and almost all specimens (about 95%) can be identified.
M (moderate) = Dissolution and/or overgrowth are evident, the number of delicate forms is reduced, and these are frequently broken.
P (poor) = Severe dissolution, fragmentation, and/or overgrowth has occurred, primary features may have been destroyed, and many specimens cannot be identified at the species level.

Radiolarians

Zonation

The low-latitude zonation of Nigrini (1971) was used for identifying the ages of Quaternary radiolarians. Neogene and Paleogene radiolarian biostratigraphy is based on the zonations of Riedel and Sanfilippo (1978) and Sanfilippo et al. (1985), using the shipboard compilation of Cenozoic radiolarian biostratigraphy for low and middle latitudes of C. Nigrini and A. Sanfilippo (unpubl. data).

Sampling Procedure and Preparation

The abundances of radiolarians were estimated from both glass slides and from the picking tray, because of sorting effects that can occur during shaking and spreading. Abundance ranges were described as follows:

A (abundant) = more than 100 specimens per slide,
C (common) = 10 to 100 specimens per slide,
F (few) = 1 to 10 specimens per slide,
R (rare) = present but rare or a trace, and
B (barren) = absent.
<table>
<thead>
<tr>
<th>Site</th>
<th>Hole</th>
<th>Core</th>
<th>Type</th>
<th>Sect.</th>
<th>Top</th>
<th>Bot.</th>
<th>Depth</th>
<th>#</th>
<th>ID</th>
<th>Thick.</th>
<th>Intens.</th>
<th>App. dip</th>
<th>App. trend</th>
<th>Strike</th>
<th>Dip</th>
<th>Reorient.</th>
<th>Geo. strike</th>
<th>Geo. dip</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>948</td>
<td>C</td>
<td>1</td>
<td>H</td>
<td>1</td>
<td>23</td>
<td>23</td>
<td>0.23</td>
<td>B</td>
<td></td>
<td>ash layer</td>
</tr>
<tr>
<td>948</td>
<td>C</td>
<td>1</td>
<td>H</td>
<td>1</td>
<td>31</td>
<td>32</td>
<td>0.31</td>
<td>B</td>
<td></td>
<td>ash layer</td>
</tr>
<tr>
<td>948</td>
<td>C</td>
<td>1</td>
<td>H</td>
<td>2</td>
<td>47</td>
<td>73</td>
<td>2.23</td>
<td>B</td>
<td></td>
<td>ash layer</td>
</tr>
<tr>
<td>948</td>
<td>C</td>
<td>1</td>
<td>H</td>
<td>2</td>
<td>92</td>
<td>92</td>
<td>2.42</td>
<td>B</td>
<td></td>
<td>ash layer</td>
</tr>
<tr>
<td>948</td>
<td>C</td>
<td>1</td>
<td>H</td>
<td>3</td>
<td>26</td>
<td>26</td>
<td>3.26</td>
<td>B</td>
<td></td>
<td>ash layer</td>
</tr>
<tr>
<td>948</td>
<td>C</td>
<td>1</td>
<td>H</td>
<td>5</td>
<td>123</td>
<td>124</td>
<td>7.23</td>
<td>B</td>
<td></td>
<td>ash layer</td>
</tr>
<tr>
<td>948</td>
<td>C</td>
<td>1</td>
<td>H</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>7.53</td>
<td>B</td>
<td></td>
<td>ash layer</td>
</tr>
<tr>
<td>948</td>
<td>C</td>
<td>1</td>
<td>X</td>
<td>1</td>
<td>93</td>
<td>99</td>
<td>421.73</td>
<td>B</td>
<td></td>
<td>ash layer</td>
</tr>
<tr>
<td>948</td>
<td>C</td>
<td>1</td>
<td>X</td>
<td>2</td>
<td>85</td>
<td>102</td>
<td>423.15</td>
<td>SF</td>
<td>V</td>
<td>0.05</td>
<td></td>
<td>243.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash layer</td>
</tr>
<tr>
<td>948</td>
<td>C</td>
<td>1</td>
<td>X</td>
<td>2</td>
<td>86</td>
<td>88</td>
<td>423.16</td>
<td>V</td>
<td></td>
<td>ash layer</td>
</tr>
<tr>
<td>948</td>
<td>C</td>
<td>1</td>
<td>X</td>
<td>2</td>
<td>89</td>
<td>89</td>
<td>423.19</td>
<td>SF</td>
<td></td>
<td>ash layer</td>
</tr>
<tr>
<td>948</td>
<td>C</td>
<td>1</td>
<td>X</td>
<td>2</td>
<td>90</td>
<td>90</td>
<td>423.2</td>
<td>FO</td>
<td></td>
<td>ash layer</td>
</tr>
<tr>
<td>948</td>
<td>C</td>
<td>1</td>
<td>X</td>
<td>2</td>
<td>91</td>
<td>91</td>
<td>423.21</td>
<td>SF</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash layer</td>
</tr>
<tr>
<td>948</td>
<td>C</td>
<td>1</td>
<td>X</td>
<td>2</td>
<td>91</td>
<td>91</td>
<td>423.21</td>
<td>FO</td>
<td></td>
<td>ash layer</td>
</tr>
<tr>
<td>948</td>
<td>C</td>
<td>1</td>
<td>X</td>
<td>2</td>
<td>92</td>
<td>99</td>
<td>423.26</td>
<td>SF</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash layer</td>
</tr>
<tr>
<td>948</td>
<td>C</td>
<td>1</td>
<td>X</td>
<td>2</td>
<td>93</td>
<td>102</td>
<td>423.29</td>
<td>SF</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash layer</td>
</tr>
<tr>
<td>948</td>
<td>C</td>
<td>1</td>
<td>X</td>
<td>3</td>
<td>23</td>
<td>39</td>
<td>424.03</td>
<td>SV</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash layer</td>
</tr>
<tr>
<td>948</td>
<td>C</td>
<td>1</td>
<td>X</td>
<td>4</td>
<td>26</td>
<td>33</td>
<td>425.56</td>
<td>SF</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash layer</td>
</tr>
<tr>
<td>948</td>
<td>C</td>
<td>1</td>
<td>X</td>
<td>4</td>
<td>30</td>
<td>30</td>
<td>425.6</td>
<td>SF</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash layer</td>
</tr>
<tr>
<td>948</td>
<td>C</td>
<td>1</td>
<td>X</td>
<td>4</td>
<td>78</td>
<td>78</td>
<td>426.6</td>
<td>SF</td>
<td></td>
<td>ash layer</td>
</tr>
<tr>
<td>948</td>
<td>C</td>
<td>1</td>
<td>X</td>
<td>5</td>
<td>78</td>
<td>118</td>
<td>427.58</td>
<td>SF</td>
<td>37</td>
<td>270</td>
<td>40</td>
<td>270</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash layer</td>
</tr>
<tr>
<td>948</td>
<td>C</td>
<td>1</td>
<td>X</td>
<td>5</td>
<td>77</td>
<td>80</td>
<td>427.57</td>
<td>V</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash layer</td>
</tr>
<tr>
<td>948</td>
<td>C</td>
<td>1</td>
<td>X</td>
<td>5</td>
<td>94</td>
<td>96</td>
<td>427.74</td>
<td>SF</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash layer</td>
</tr>
<tr>
<td>948</td>
<td>C</td>
<td>1</td>
<td>X</td>
<td>5</td>
<td>99</td>
<td>104</td>
<td>427.79</td>
<td>V</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash layer</td>
</tr>
<tr>
<td>948</td>
<td>C</td>
<td>1</td>
<td>X</td>
<td>6</td>
<td>111</td>
<td>111</td>
<td>427.91</td>
<td>B</td>
<td></td>
<td>ash layer</td>
</tr>
<tr>
<td>948</td>
<td>C</td>
<td>1</td>
<td>X</td>
<td>6</td>
<td>30</td>
<td>33</td>
<td>428.6</td>
<td>SV</td>
<td></td>
<td>ash layer</td>
</tr>
<tr>
<td>948</td>
<td>C</td>
<td>2</td>
<td>X</td>
<td>CC</td>
<td>27</td>
<td>27</td>
<td>429.13</td>
<td>SV</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash layer</td>
</tr>
</tbody>
</table>

Figure 8. Example of a structural data sheet, a spreadsheet used for the storage and manipulation of data derived from the core descriptions.
regions correspond to about 200 to 300 cm of cored material, all of core material within the sensing region permits one to determine which contributes to the signal at the sensors. The large volume of magnetic signal over about a 20-cm interval, and the coils for each demagnetization of continuous sections. All demagnetization devices is included on the pass-through cryogenic magnetometer track for tion, an in-line AF demagnetizer, capable of 25 mT (2-G Model 2G600), during the declining-field stage of the demagnetization cycle. In addi-

teric remanent magnetization (pARM) can be imparted to discrete samples by a DTECH, Inc., PARM-2 system, which consists of two discrete specimens to 100 mT and 700°C, respectively. Partial anhys-
tization of samples, the laboratory contains an alternating-field (AF) magnetizer and a thermal demagnetizer (Models GSD-1 and TSD-1 by the Schonstedt Instrument Co.) that are capable of demagnetizing samples, the laboratory contains an alternating-field (AF) demagnetizer and a thermal demagnetizer (Models GSD-1 and TSD-1 by the Schonstedt Instrument Co.) that are capable of demagnetizing discrete specimens to 100 mT and 700°C, respectively. Partial anhys-
teric remanent magnetization (pARM) can be imparted to discrete samples by a DTECH, Inc., PARM-2 system, which consists of two parallel coils mounted outside and on-axis with the AF-coil of the GSD-1 demagnetizer, and a control box. This device allows one to apply a bias field to a sample during AF demagnetization; the bias field can be switched on optionally only over a window of AF field intensity during the declining-field stage of the demagnetization cycle. In addition, an in-line AF demagnetizer, capable of 25 mT (2-G Model 2G600), is included on the pass-through cryogenic magnetometer track for demagnetization of continuous sections. All demagnetization devices and magnetometers are shielded within µ-metal cylinders.

The sensing coils in the cryogenic magnetometer measure the magnetic signal over about a 20-cm interval, and the coils for each axis have slightly different response curves. The widths of the sensing regions correspond to about 200 to 300 cm³ of cored material, all of which contributes to the signal at the sensors. The large volume of core material within the sensing region permits one to determine accurately the remanence for weakly magnetized samples, despite the relatively high background noise related to the motion of the ship. The practical limit on the resolution of natural remanence of the core samples is often imposed by the magnetization of the core liner itself (about 0.1 mA/m = 10⁻⁷ emu/cm³).

The pass-through cryogenic magnetometer and its AF demagnetizer can be interfaced with an IBM PC-AT-compatible computer and are controlled by a BASIC program that has been modified from the original SUPERMAG program that was provided by 2-G Enterprises. The current versions (CUBE155 for discrete samples and MAG155 for split-core sections) of the SUPERMAG program were previously modified to compensate for end effects. To do so, the program multiplies the sensor output by the fraction of the total measured area that actually contains sediment. The spinner magnetometer used for measuring discrete samples was interfaced with a Macintosh SE-30 computer with a program brought on board the ship by D. Schneider (WHOI) for Leg 138.

Anisotropy of magnetic susceptibility (AMS) is measured on board the ship using a KLY-2 Kapprath bridge magnetic susceptibility bridge. The listed sensitivity of this device is about 1 × 10⁻⁶ (SI volume units). The magnetically noisy environment of the core laboratory reduces the sensitivity of the KLY-2 to about 1 × 10⁻⁶ (SI volume units). The magnetic susceptibility of unsplit sections of core is measured with a Bartington Instruments Model MS1 susceptibility meter adapted with an MS1/CS 80-mm whole-core sensor loop set at 0.465 kHz. The area of core measured is determined by the full width of the impulse response peak at half maximum, which is less than 5 cm. The susceptibility sensor is mounted with the gamma-ray attenuation porosity evaluator (GRAPE) and P-wave logger on a multisensor track (MST). The susceptibility of discrete specimens can be measured on board the ship with the KLY-2 or with a sensor unit (type MS1B) attached to the Bartington susceptibility meter.

An Analytical Services Company (ASC) Model IM-10 impulse magnetizer also is available in the magnetics laboratory for studies of the acquisition of both stepwise and saturation isothermal remanence magnetization (IRM) by discrete samples. This unit can apply pulsed fields from 20 to 1200 mT.

Paleomagnetic Measurements

Pass-through Magnetometer

The bulk of the paleomagnetic measurements for Leg 156 were performed with the pass-through cryogenic magnetometer. Pass-through paleomagnetic values were routinely measured on the archive.
halves of core sections. The ODP core-orientation scheme arbitrarily designates the X-axis as the horizontal (in situ) axis radiating from the center of the core through the space between a double line inscribed lengthwise on the working half of each core liner (Fig. 10). The natural remanent magnetization (NRM) and remanence measurements after 10 cm, depending on the available time for shipboard measurements. The susceptibility data were archived in raw instrument form every 5 cm, usually were performed every 5 cm, depending on the available time for shipboard measurements. The susceptibility data were archived in raw instrument meter readings. To convert these values to susceptibility units, one must multiply by 0.63, calculated from the manufacturer's manual, to compensate for the 0.77 ratio of core diameter (68 mm) to coil diameter (88 mm). An additional multiplicator of 10^{-5} is necessary for completing the conversion to volume-normalized SI units. These factors were checked vs. the values expected for distilled water. The meter was placed at zero with each section, but no correction was made on board the ship for the instrument's baseline drift that occurred when measuring each section's susceptibility profile. However, the necessary parameters were recorded and will be processed on shore.

Magnetic Anisotropy

AMS measurements were performed on discrete samples to determine the geometry of the mineral fabrics found in the Leg 156 cores. The KLY-2 device determines the magnetic anisotropy tensor from measurements of magnetic susceptibility in 15 orientations, with the eigenvalues and eigenvectors of the tensor representing the magnitude and orientation of the principal susceptibility axes (k_{max} > k_{med} > k_{min}). Based on previous work from Leg 110 (Houssin, 1990), most samples from Leg 156 should have AMS, which is controlled by paramagnetic clay minerals. Within the ash layers, AMS will likely measure magnetic fabrics.

Core Orientation

Reorientation of the rotated portions of XCB cores was also accomplished by using paleomagnetic results. Discrete samples, or portions of core, were AF demagnetized, and the characteristic remanence direction was calculated using principal component analysis. The declinations of the characteristic directions then were rotated to

Figure 9. Cenozoic primary and secondary biostratigraphic-event zonal markers.
<table>
<thead>
<tr>
<th>Polarity</th>
<th>Chroma</th>
<th>Epochs</th>
<th>Zones of Okada and Bukry (1990)</th>
<th>Nannofossil datums (Ma)</th>
<th>Radiolarian datums (Ma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN7</td>
<td>5</td>
<td></td>
<td></td>
<td>D. bellus (10.2)</td>
<td>D. antepenultima</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C. calyculatus (10.5)</td>
<td>D. hughesi</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D. hamatus (10.5)</td>
<td>D. latilicura</td>
</tr>
<tr>
<td>CN8</td>
<td>5</td>
<td></td>
<td></td>
<td>C. miopelagicus (10.9)</td>
<td>D. petterssoni</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D. confluens (11.5)</td>
<td>C. cornuta</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>b</td>
<td>D. kugleri (11.4)</td>
<td>C. tetrapera</td>
</tr>
<tr>
<td>CN5</td>
<td>5</td>
<td></td>
<td></td>
<td>D. braarudi (11.4)</td>
<td>D. petterssoni</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a</td>
<td>D. c. gracilis (12.2)</td>
<td>D. alata</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T. rugosus (12.5)</td>
<td>D. forcipata</td>
</tr>
<tr>
<td>CN4</td>
<td>5</td>
<td></td>
<td></td>
<td>S. heteromorphus (13.37)</td>
<td>L. stauropora</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H. ampliaperta (16.0)</td>
<td>C. costata</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D. deflandrei acme (16.05)</td>
<td>L. elongata</td>
</tr>
<tr>
<td>CN3</td>
<td>5</td>
<td></td>
<td></td>
<td>U. exilis (17.1)</td>
<td>D. mammillera</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T. millowii (17.2)</td>
<td>C. virginiis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S. heteromorphus (18.42)</td>
<td>L. stauropora</td>
</tr>
<tr>
<td>CN2</td>
<td>5</td>
<td></td>
<td></td>
<td>S. belemnos (19.4)</td>
<td>D. dentata</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T. carinatus (18.7)</td>
<td></td>
</tr>
<tr>
<td>CN1</td>
<td>5</td>
<td></td>
<td></td>
<td>S. conicus (21.6)</td>
<td>C. serrata</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D. dophi (22.6)</td>
<td>D. tubaria</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a/b</td>
<td>l. stauropora fusa (22.9)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R. bisecta (23.3)</td>
<td>C. tetrapera</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H. recta (?)</td>
<td>C. serrata</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S. ciperoensis (24.0)</td>
<td></td>
</tr>
<tr>
<td>CP19</td>
<td>5</td>
<td></td>
<td></td>
<td>S. distentus (27.0)</td>
<td>C. robusta</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>l. stauropora fusa (22.9)</td>
<td>D. forcipata</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R. bisecta (23.3)</td>
<td>L. angusta</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>b</td>
<td>H. recta (?)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S. ciperoensis (28.6)</td>
<td>D. ateuchus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D. prismatica</td>
</tr>
</tbody>
</table>

Figure 9 (continued).
SHIPBOARD SCIENTIFIC PARTY

SHIPBOARD SCIENTIFIC PARTY

Working half

X = North

Y = East

Double line at bottom

Top

Upcore

Bottom

Single line at bottom

Archive half

Figure 10. Core-orientation conventions for split-core sections and discrete samples.

360° (for normal polarity) or 180° (for reversed polarity). In general, reorientation of structural and magnetic fabric data using paleomagnetic results was highly successful during Leg 156.

MAGNETOSTRATIGRAPHY

Whenever possible in the site chapters, we offer an interpretation of the magnetic polarity stratigraphy using the magnetic polarity time scale of Cande and Kent (1992). Two additional short geomagnetic features, observed with sufficient regularity that these may make useful stratigraphic markers for regional/global correlations, are the Blake feature at about 0.11 Ma in the Brunhes and the Cobb Mountain event at about 1.1 Ma. For the upper part of the time scale (roughly Pliocene–Pleistocene), we have used the traditional names to refer to various chronozones and subchronozones (e.g., Gauss, Jaramillo).

ORGANIC GEOCHEMISTRY

Shipboard chemistry during Leg 156 was conducted to provide real-time monitoring of hydrocarbon gases for safety reasons and for the initial characterization of the content and type of gases and organic matter in sediments. These analyses provide a basis for the preliminary site summaries and background for more detailed shore-based studies.

Hydrocarbon Gases

During Leg 156, the compositions and concentrations of hydrocarbons and other gases in the sediments were monitored generally at intervals of one to five samplings per core using the headspace (HS) method.

In the HS method, gases released by the sediments after core recovery were analyzed by gas chromatography (GC) with the following technique: immediately after retrieval on deck, a calibrated cork borer was used to obtain a measured volume of sediment from the end of a core section. The sediment, usually about 5 cm², was placed in a 21.5-cm³ glass serum vial that was sealed with a septum and metal crimp cap. When consolidated or lithified samples were encountered, chips of material were placed in the vial and sealed. The vial was then heated to 60°C in an oven and kept at this temperature for 30 min prior to gas analysis. A 5-cm³ volume of the headspace in the vial was extracted with a standard glass syringe for each GC analysis.

The gas chromatograph (Hach-Carle AGC series 100, Model 211) has the following characteristics: sample introduction via a 1.0-cm³ sample loop with manual column backflush; the chromatographic column used was a 0.32-cm × 1.8-m stainless steel tubing packed with 80% Porapak N and Porapak Q (80/100 mesh). A flame ionization detector (FID) was used, and separation of methane, ethane, ethene, and propane was performed at an isothermal condition (90°C), with helium used as the carrier gas. A Hewlett-Packard (HP) ChemStation was used to collect data and to calculate concentrations from peak areas and response factors from calibrations using external standards.

Bitumen Analyses (C₁₅₄, Hydrocarbons)

Hydrocarbons extracted from dry homogenized sediments using organic solvents were concentrated in normal hexane and analyzed by capillary gas chromatography.

Different methods were applied at Site 948 and Site 949 with respect to drying and solvent extraction of samples. From the results obtained at Site 948 a slight contamination of samples during freeze-drying was suspected. Exchanging the oil of the freeze-drier vacuum pump resulted in a distinct contamination of a few samples. Therefore, samples from Site 949 were dried in an oven at 40°C. Solvent extraction was carried out using a 1:1 mixture of normal hexane and methanol at Site 948 and a 7:3 mixture of dichloromethane and methanol at Site 949. The reason for changing the organic solvents was that the GC-grade methanol was available only at Site 948. A few experiments with both extraction methods produced similar results for identical samples.

Apart from the differences mentioned, the sample preparation and extraction procedures were the same at both sites. The sediment samples were gently ground in an agate mortar, and about 500 mg of each was weighed out and transferred into 2-dram screw-capped vials. Organic solvents (normal hexane/methanol or dichloromethane/methanol, 4 mL) were added, and the vial was kept in an ultrasonic bath for about 4 hr, during which the suspension was shaken occasionally. The clear supernatant solution was pipetted into a second vial, and the extraction was repeated with another 2-mL aliquot of n-C₄H₁₀. The combined extract was evaporated to dryness under nitrogen blow-down at about 40°C, then taken up in n-hexane to a volume of 30 μL. A 5-μL sample was then injected using normal GC protocol. Hydrocarbons were identified by comparison of retention times with those of authentic standards. The final quantification of the results was based on the weight of dry sediment and the aliquot used in the injection. Solvent blanks were also analyzed.

Hexane-soluble organic material was analyzed by GC-FID using a capillary column and split injection. Helium was used as the carrier gas. Operating conditions for this instrument were as follows:

1. Column: HP Ultra 1 (cross-linked methyl silicon gum), 50 m × 0.2 mm × 0.11 μm film thickness.
2. Conditions: He, 400 kPa; air, 200 kPa; and H₂, 150 kPa.
3. Temperatures: injector, 275°C; detector, 300°C; temperature program, initial at 30°C for 3 min, 10°C/min to 220°C, 4°C/min to 300°C, and then isothermal for 15 min.

Organic Matter

Organic Carbon

The total organic carbon content (TOC) of the sediments was determined by Rock-Eval TOC (explained below) or by the difference between carbonate carbon, determined with the Coulometrics Model 5030 carbonate carbon apparatus, and the total carbon value, determined by the Carlo Erba Model NA 1500 NCS analyzer. A description of the Coulometrics instrument and procedure can be found in the "Inorganic Geochemistry" section (this chapter).
Organic Matter Type (Pyrolysis Methods)

Dry homogenized sediments (100 mg) were analyzed using the Delhi-Nergal Rock-Eval II plus TOC. This system uses a whole-rock pyrolysis technique to identify the type and maturity of organic matter and to detect petroleum potential and oil shows in sediments, as described by Espitalié et al. (1985a, 1985b, 1986).

The Rock-Eval system involves a graduated temperature program that first releases volatile hydrocarbons at 300°C for 3 min, and then releases hydrocarbons from thermal cracking of kerogen as the temperature increases at 25°C/min from 300° to 600°C. Four parameters characterizing the organic matter are determined:

1. \(S_1 \): The amount of free hydrocarbons (bitumen) in the sample (milligrams of hydrocarbons per gram of rock) recorded at pyrolysis temperatures below 300°C.
2. \(S_2 \): The amount of hydrocarbons generated through thermal cracking of the kerogen as the sediment is heated at 25°C/min from 300° to 550°C during pyrolysis (cycle 1). \(S_2 \) is an indication of the quantity of hydrocarbons that could be produced in this rock, should burial and maturation continue.
3. \(S_2' \): The quantity of CO\(_2\) (milligrams of CO\(_2\) per gram of rock) produced from pyrolysis of the organic matter at temperatures between 300° and 390°C is detected by the thermal conductivity detector (TCD) and recorded during cooling.
4. \(T_{max} \): Maturity of the organic material assessed by the temperature at which a maximum release of hydrocarbons from cracking of kerogen occurs during pyrolysis (top of the \(S_2' \) peak).

The Rock-Eval data can also be interpreted for type of organic matter by the hydrogen index \((100 \cdot S_2)/\text{TOC}\), oxygen index \((100 \cdot S_3)/\text{TOC}\), and the \(S_2/S_3 \) ratio. The first two parameters are normally referred to as HI and OI, respectively. Rock-Eval pyrolysis is considered to be unreliable for samples having less than 0.5% TOC (Katz, 1983; Peters, 1986), although a correction procedure has been described for estimating matrix effects and obtaining reliable values on samples having lower amounts of TOC (Espitalié, 1980).

INORGANIC GEOCHEMISTRY

Sampling and Chemical Analyses of Interstitial Water

Shipboard interstitial-water analyses were performed on 7- to 40-cm-long whole-round sections that were cut and capped immediately after the core arrived on deck. The whole-round samples were usually taken from the bottom of Section 3, 4, or 5 of every core with sufficient recovery. Interstitial waters were retrieved by applying pressure to the sediment using a titanium squeezer (Manheim and Skrlies, 1974). Before squeezing, the sediment was immediately extruded from the whole-round core liner, the surface was carefully scraped to remove potentially contaminated exteriors, and the cleaned sediment was placed into a titanium squeezer atop a Whatman No. 1 filter paper and a titanium piston were placed on top of the sample. Interstitial water was collected into a plastic syringe attached to the bottom of the squeezer assembly and filtered through a 0.45-µm polycarbonate filter. Samples were stored in plastic vials pending shipboard analyses. Aliquots for future shore-based analyses were placed in acid-washed plastic tubes and glass ampoules and heat-sealed.

Interstitial-water samples were analyzed routinely for salinity as total dissolved solids with a Goldbergh optical hand-held refractometer (Reichart); for pH and alkalinity, by Gran titration with a Brinkmann pH electrode and a Metrohm autotitrator; for dissolved chloride, calcium, and magnesium concentrations, by titration; and for silica, phosphate, and ammonium, by spectrophotometric methods with a Milton Roy Spectronic 301 spectrophotometer, following the analytical techniques described by Gieskes et al. (1991). International Association of Physical Sciences Organizations (IAPSO) standard seawater was used for calibrating most techniques. The reproducibility of these analyses, expressed as 1 σ standard deviations of means of multiple determinations of IAPSO standard seawater or of a standard, are alkalinity, <1.5%; chloride, <0.3%; calcium, <0.5%; magnesium, <0.5%; silica, <3%; and phosphate and ammonia, 4%. At all sites, sodium was determined using charge balance calculations where \(I = \Sigma(\text{cation charge}) - \Sigma(\text{anion charge}) \).

Potassium and sulfate were analyzed by ion chromatography (IC) using the Dionex DX-100. The reproducibility of these analyses, expressed as 1 σ standard deviations of means of multiple determinations of IAPSO standard seawater, are potassium, <2%; and sulfate, ~1%. Potassium was also analyzed by atomic emission spectrometry, which provides similar precision to IC, of <2% relative error but higher accuracy. Only these data are therefore reported. Calcium and magnesium were also routinely determined using the IC, but those results are not reported because titrations (calcium and magnesium) provided more accurate and precise results. For calcium, a precision of ~2% (1 σ standard deviation of repeat IAPSO determinations/published IAPSO concentration) of IAPSO standards was obtained with the IC, as opposed to <0.5% by titration. For magnesium, the precision was low, ~9% with the IC, and also compared unfavorably with <0.5% relative error by titration. The IC results, however, were a useful check on the general trends of potassium, calcium, and magnesium.

Although the IC method is not optimized for the high concentrations of sodium and chloride of marine interstitial waters relative to the concentrations of the other constituents, they were routinely analyzed with the other cations and anions, respectively. Even for sodium and chloride, the precision with the IC is ~1% for Cl and <2% for Na, but the accuracy is low. However, these IC results did provide a useful check on the general trends of the depth profiles.

In addition to potassium, lithium and manganese concentrations were determined using flame spectrophotometric techniques with a Varian SpectraAA-20 atomic absorption unit. Lithium standards and some samples were determined on 1/5 diluted aliquots in nanopure water; more concentrated samples were diluted 1/10. As with potassium, lithium concentrations were determined by ion chromatography (IC) using the Dionex DX-100. The reproducibility of these analyses, expressed as 1 σ standard deviations of means of multiple determinations of IAPSO standard seawater or of a standard treated as samples, are lithium (<1) and manganese (<2).

Chemical data for interstitial waters are reported in molar units.

Inorganic Carbon

Inorganic carbon was determined using a Coulometrics 5011 carbon dioxide coulometer equipped with a System 140 carbonate carbon analyzer. A known mass, ranging from 40 to 50 mg, of freeze-dried (dedicated carbonate samples) or oven-dried (physical property samples), ground sediment was reacted in 2N HCl solution. The liberated CO\(_2\) was titrated in a monooctanoin solution with a colorimetric indicator, while the change in light transmittance was monitored with a photo-detection cell. The percentage of carbonate was calculated from the inorganic carbon content, assuming that all carbonate occurs as calcium carbonate,

\[\% \text{CaCO}_3 = \% \text{C}_{\text{inorg}} \times 100/12. \]

The precision of these analyses, expressed as 1 σ standard deviations of means of multiple determinations of a pure carbonate standard, is <1%.
Elemental Analysis

Total nitrogen, carbon, and sulfur contents of sediment samples were determined using an NCS analyzer, Model NA 1500 from Carlo Erba Instruments. Mixtures of vanadium pentoxide and crushed freeze-dried samples (~5 mg) were combusted in an oxygen atmosphere at 1000°C, converting total (organic and inorganic) carbon to CO₂, sulfur to SO₂, and nitrogen to NO₂. The NO₂ was reduced to N₂ using copper. The gases then were separated by gas chromatography and measured with a thermal conductivity detector. The precision of these analyses, expressed as 1 σ standard deviations, is 2% to 3%. Total organic carbon (TOC) was calculated by difference between total carbon (TC) from the NCS analyzer and inorganic carbon (IC) from the coulometer as

\[\text{TOC} = \text{TC} - \text{IC}. \]

CORE PHYSICAL PROPERTIES

Introduction

The principal objectives for the physical properties group are closely connected to the main scientific and operational goals of this cruise (Shipley et al., 1994). These can be grouped together as follows:

1. Physical properties, including porosity and mechanical and acoustic variations of sediments across the décollement zone, and other large-scale structural discontinuities;
2. Evolution of physical and deformational properties of sediments during accretion;
3. Integration of core physical property data with physical parameters derived from standard and special logging operations and experiments (LWD, conventional, and shear-wave VSP and WSTP).

A large number of whole-round core samples was taken during the cruise for shore-based testing of consolidation, permeability, and acoustic parameters. Standard shipboard measurements of physical properties included nondestructive, whole-core, MST measurements. Thermal conductivity was measured using the needle probe method when the sediment was soft enough to allow us to insert the needles smoothly into whole-round sections at discrete intervals (one every second section). Index properties (bulk density, grain density, dry bulk density, water content, and porosity), undrained shear strength, electrical resistivity, and compressional- and shear-wave velocities were measured on samples from split core sections.

Sampling Strategy

To accommodate these general objectives, the sampling program for physical properties was planned so as to fulfill several requirements:

1. To provide a comprehensive record of recovered core properties. Whole-core sections were scanned with the MST before being split. Physical property samples were then selected from the split cores. An average of two samples per section was chosen to represent the dominant lithology. Additional samples were selected to represent intervals of unusual lithology or structure.
2. To cross-correlate shipboard analyses. Samples were selected in conjunction with sedimentologists and structural geologists to identify features of interest. Most physical properties were analyzed on common or adjacent sample intervals. Dried samples from index properties were forwarded to the chemistry laboratory for carbonate analyses, and splits from the dried portion of these were used for bulk X-ray-diffraction (XRD) mineralogical determinations and total carbon measurements. Samples for XRD and grain-size studies were selected adjacent to physical properties samples.

3. To calibrate standard wireline and LWD logs. Bulk density, porosity, acoustic velocity, and thermal conductivity from core samples provide identifying characteristics for interpreting logs.
4. To facilitate cross-correlation with sections drilled during DSDP Leg 78A and ODP Leg 110 in this area. Magnetic susceptibility was measured on whole-round sections at intervals of 5 cm to enable us to correlate stratigraphic horizons with adjacent holes.

Laboratory Measurements

Index Properties

Index properties (bulk density, grain density, water content, porosity, dry density, void ratio) were calculated from measurements of wet and dry masses and wet and dry volumes on samples of approximately 10 cm³. Sample mass was determined to a precision of ±0.01 g using a Scitich electronic balance. The sample mass was counterbalanced by a known mass, and multiple measurements were averaged to reduce effects of ship heave. Volumes were determined using a Quantachrome penta-pycnometer, a helium-displacement pycnometer. The pycnometer measures volumes to a precision of about ±0.02 cm³. Volume measurements were repeated until two close measurements yielded volumes within 0.02 cm³ of each other. An initial purge time of 3 and 1 min for repeated runs was used. A reference volume was run with each group of four samples during all the tests. The standard was rotated among cells to check for systematic error.

The sample tare (beaker) masses were checked during the first week of the cruise. The ODP physical properties database was updated with these corrected values.

Water content, bulk density, porosity, grain density, dry density, and void ratio were determined following the procedures outlined in Blum (1994). These procedures comply with the American Society for Testing and Materials (ASTM) designation (D) 2216 (ASTM, 1989). Bulk density, grain density, and porosity are computed from the wet and dry masses of the sample and from one of two volume measurements, including corrections for pore-water salt precipitation. In Method B, the volume of the wet sample is used, while in Method C, the volume of the dry sample is used (Blum, 1994). Grain densities obtained using Method C typically range from 2.60 to 2.75 g/cm³, with some exceptions in the most clay-rich lithologies. This is compatible with the average density of the constituent minerals (quartz, calcite, kaolinite, illite, montmorillonite). In contrast, the grain densities calculated by Method B are unrealistically high, varying from 2.83 to 3.30 g/cm³. Furthermore, bulk-density values from this method are higher on average than those from LWD gamma-ray densitometry at the same depth. This is contrary to what one would expect as a consequence of elastic rebound during unloading. The systematic error in the weight measurements was found to be less than 0.1% of the measured mass (based on calibration standards). The error that could result from assuming constant salinity and density for the pore fluid (1.024 g/cm³ for seawater) is small, unless the sample is dehydrated when the water measurements are performed. Thus, a systematic error of a few percentage points for the measured wet volume is implied. This hypothesis still needs to be verified and, in fact, is inconsistent with values measured for pure distilled water, which are accurate within the instrument's resolution. This problem is not new and may account for the generally higher porosities obtained by Method B, compared with Method C, from previous cruises. We preferred, and presented, Method C for measuring grain density, porosity, and void ratio. We made an exception with the bulk density, however, as Method B is more direct. Results from both methods are presented in the tables, and results from the use of Method B are plotted in figures.

Multisensor Track

The MST incorporates the magnetic susceptibility meter (MSM), gamma-ray attenuation porosity evaluator (GRAPE), P-wave logger
(PWL), and natural gamma-ray (NGR) radiation sensor on a trade system for whole-round core measurements.

The GRAPE device measures bulk density at user-defined time intervals by comparing attenuation of gamma rays through the cores with attenuation through an aluminum standard (Boyce, 1976). Generally, the GRAPE data are most reliable in APC cores where core liners are completely filled with sediment. The raw values of bulk density were corrected for interstitial waters not having the same gamma-ray absorption coefficient as quartz (Boyce, 1976).

The PWL transmits 500-kHz compressional-wave pulses through the core at a rate of 60 kHz. The transmitting and receiving transducers are aligned perpendicular to the core axis. A pair of displacement transducers monitors the separation between the compressional-wave transducers. Variations in the outside diameter of the liner do not degrade the accuracy of the velocities; however, the PWL does not provide accurate measurements on cores thinner than the inner diameter of the core liner. Measurements are taken at intervals of 2 cm. Weak returns having signal strengths below a threshold value of 200 digital increments (out of a maximum of 255) were removed.

Magnetic susceptibility was measured on all sections at 5-cm intervals using the 0.1 range on the Bartington meter with an 8-cm-diameter loop. This close sampling was conducted to provide another measure for between-hole correlation.

Generally, the accuracy of GRAPE, PWL, and MSM measurements degrades in XCB sections, where the core is undersized and/or disturbed. However, the general downhole trends can be used for stratigraphic correlation.

Compressional-wave (P-wave) Velocimetry

During Leg 156, P-wave velocity measurements were obtained using two different systems, depending on the degree of lithification of the sediment. P-wave velocities were measured in softer sediment using a digital sonic velocimeter (DSV) (Mayer et al., 1987). Velocity calculation is based on the accurate measurement of the delay time of an impulsive acoustic signal traveling between two pairs of piezoelectric transducers that have been inserted into the split sediment cores parallel and orthogonal to the core axis. These transducers are firmly fixed to a steel plate, so that their separation remains constant when determining velocities. The longitudinal and transverse transducer separation is 8.5 and 4.5 cm, respectively.

The signal used is a 2-µs square wave; the transducers have resonances at about 250 and 750 kHz. A dedicated microcomputer controls all functions of the velocimeter. The transmitted and received signals are digitized by a Nicolet 320 digital oscilloscope and transferred to the microcomputer for processing. The DSV software selects the first arrival and calculates sediment velocity. No correction for in situ temperature and pressure was applied to the reported velocity data.

The sampling interval was usually two per section. Periodically, the separation was precisely evaluated by running a calibration procedure in distilled water. A value of sound velocity in distilled water is determined (based on standard equations) for the measured temperature, while the computer calculates the transducer separation using the signal’s traveltme.

The Hamilton Frame velocimeter was used to measure compressional-wave velocities at 500 kHz in discrete sediment samples (1) when induration made it difficult to insert the DSV transducers without making any perturbations around them, and (2) in indurated sediments when insertion became impossible. Samples were carefully cut with a double-bladed diamond saw from intact “biscuits.” Each individual sample was measured three times: \(V_p \) in longitudinal direction (i.e., propagation parallel to the core axis) and \(V_p \) and \(V_p \) in transverse direction (i.e., propagation in a horizontal plane normal to the core axis) with a 90° angle between both transverse measurements. To facilitate later reorientation of the transverse velocities using paleomagnetic techniques, a consistent nomenclature was used for \(V_p \) and \(V_p \) with respect to the surface of the split core (Fig. 11).

Sample thickness was measured directly from the velocimeter-frame lead screw through a linear resistor output to a digital multimeter. Zero traveltimes for the velocity transducers were estimated by linear regression of traveltime vs. distance for a series of aluminum and lucite standards. Filtered seawater was used to improve the acoustic contact between the sample and the transducers. The DSV oscilloscope and processing software were used to digitize waveforms and to calculate velocities.

Shear-wave (S-wave) Velocimetry

S-wave measurements on split-core samples were attempted for the first time on an ODP cruise. The equipment and procedure described here were introduced specifically for this leg by a participating scientist, and are not part of the standard shipboard laboratory.

S-wave velocities were measured on unlithified sediment cores with “bender” transducers (Fig. 12A). These measurements were performed within 1 cm of the DSV P-wave measurements. Two measurements were performed, parallel and perpendicular to the core axis. The two transducers were inserted with bender elements collinear and about 10 mm apart (Fig. 12B). The transmitting transducer produces a shear wave that has been polarized perpendicular to its faces, which excites the receiving transducer. (The orthogonal bender elements in each transducer were redundant when the transducers were used in side-by-side mode.) The signal has a frequency of 1 to 2 kHz and was heavily contaminated by acoustic and electrical noise in the laboratory, so that 100 waveforms were summed before measuring travel-times. The input signal (10−V square wave, 16-ms half-period) is also summed and the traveltime measured with the oscilloscope cursors. Velocities in typical sediments are 20 to 200 m/s, so that travel-times of 0.1 to 1.5 ms were expected for transducer separations of 10 to 30 mm.

The transducers were fitted into a jig to ensure that separation was constant. Accurate first-break picking depends on correct grounding of the apparatus to remove signal-generated electrical transients. The metal core track was connected to the oscilloscope ground and a copper pin, also connected to the oscilloscope ground, was inserted into the core near the point of measurement.

For stiffer sediments, measurements were performed on the specimens used for the Hamilton Frame P-wave measurements. The specimens, wrapped in thin plastic film to prevent desiccation, was placed between the two transducers in a modified vise (Fig. 12C). For these stiff specimens, the transducer blades indented but did not penetrate the sediment. Shear-wave traveltimes for waves polarized in two orthogonal directions were measured between each of the three pairs of faces (six measurements in all). Transducer separations were determined by measuring the separation of the end plates of the vise with calipers, then subtracting the length of the transducers. Again, the vise and the specimen were connected to the oscilloscope ground.

The 3-wave measurements attempted on this cruise were plagued by a number of experimental problems: The wavelength of up to 80 cm in specimens less than 3 cm long causes traveltime errors; it may not be clear whether traveltime or finite strain effects are measured. Measuring the vise end-plate separation with calipers caused systematic underestimation and an error of up to 0.2 mm. Calibrating the transducers was difficult for lack of reference specimens with unvarying dimensions and velocity. Therefore, the results should be viewed with caution.

Natural Gamma Rays

Emission of natural gamma rays was measured routinely at 15, 75, and 135 cm in each section, while the core boat stopped for 30 s. The area of influence for the four NGR sensors is about ±10 cm from the points of measurements along the core axis. Data were recorded in five spectral windows similar to those of the Schlumberger downhole logging (NGT) tools (Table 6). Total counts were also recorded and are the sum of all window counts (Hoppie et al., in press).
SHIPBOARD SCIENTIFIC PARTY

Figure 11. Schematic representation of orientation and naming conventions used for Hamilton Frame velocimeter samples. See text for explanation of abbreviations.

Figure 12. A. Shear-wave measurement apparatus: instrument configuration. B. Side-by-side transducer configuration. C. End-by-end transducer configuration.

Before starting measurements, we adjusted the four sensor gains so that the combined potassium peak was as sharp as the individual peaks when the other three were disabled. The multichannel analyzer then was calibrated by assigning certain channels to the characteristic energies of 40K and the main peak of 232Th. We found that the calibration was not linear over the entire spectrum from 0 to 3 MeV (the first channel was assigned a negative energy). However, because we used the readily available KCl (chemistry laboratory) and Th (Schlumberger engineer) standards for calibration, the most informative interval of the spectrum was as nearly linear as possible. The previous calibration performed before Leg 149 used two peaks at 0.12 and 1.48 MeV from the europium spectrum, which assigned an energy 0.2 MeV too high to the Th peak (Table 6). Although the effect of our recalibration on the routinely used total counts is negligible, the mismatch of the Th peak is significant when using the spectral information. Thus, we strongly recommend using K and Th for future recalibrations.

Background radiation was first measured for air and for a core liner filled with distilled water to determine which one should be used. Ten tests of 10 min counting time were run for each, and these showed that the water background was more realistic, as subtracting the higher air background from low-count data resulted in incidents of negative counts. A set of 460 measurements, 10/hr for two days, was conducted. Counting time was 30 s, to compare those statistics with the core measurements. The results (Table 7) indicate that standard deviations for high-energy, low-count windows W3 to W5 are high, relative to the mean values, whereas for total counts, the error introduced by background variations is small. One should be cautious therefore when interpreting variations in the contents of K, U, and Th from 30-s measurements. Finally, the mean background values from Table 7 were then subtracted from the data, after normalizing the counts to counts per seconds (cps).

Undrained Shear Strength

The undrained shear strength, S_u, of the sediment was determined using the ODP motorized miniature vane shear device, following the procedures of Boyce (1976). The vane rotation rate was set to 90°/min. Measurements were performed only in the fine-grained, soft units. The vane used for all measurements has a 1:1 blade ratio with a dimension of 1.27 cm. A range of springs of various strengths were available. These springs were calibrated prior to Leg 156.

The instrument measures the torque and strain at the vane shaft using a torque transducer and potentiometer, respectively. The shear strength reported is the peak strength determined from the torque vs. strain plot. In addition to the peak shear strength, the residual strength was determined from the same plot where the failure was not dominated by cracking of the sample (Pyle, 1984).

When analyzing vane tests, one assumes that a cylinder of sediment is uniformly sheared about the axis of the vane in an undrained condition, with cohesion as the principal contributor to shear strength. Departures from this assumption include (1) progressive cracking within and outside of the failing specimen, (2) uplift of the failing core cylinder, (3) drainage of local pore pressures (i.e., the test can no longer be considered to be undrained), and (4) stick-slip behavior. Evidence of cracking was noted in the "Comments" section of the results file.

Electrical Resistivity

The Wayne-Kerr precision component analyzer was used to measure resistivity with a four-electrode method: two outer electrodes inject an alternating current while two inner electrodes measure the resulting potential difference. The apparent resistance, U/I, is proportional to the resistivity of the medium.

The probes consisted of four tiny needles (Wenner array) spaced 3 mm apart and were fabricated from standard gold-plated electronic connector strips. Electrical resistivity was usually measured twice per
section near the index property samples. Several measurements were performed in both longitudinal and transverse directions to evaluate anisotropy.

Because the quality of the contact between the needles and the core or calibrating fluid tends to degrade with time (as gold-plating is removed from the pins by abrasion?) and because the area of contact depends on how the probe is inserted, calibrations were performed before and after each series of measurements. Assuming that the pore fluid has the same conductivity as seawater, the formation factor was computed as the ratio of the resistance measured in the core and the resistance measured in seawater and corrected for the temperature difference.

The temperature of the cores was generally 22° ± 0.5°C, but the temperature of the calibrating fluid was usually closer to the ambient laboratory temperature (23° to 26°C). The formula giving the conductivity of seawater:

\[c = 2.803 + 0.0996 T \text{°C} \Omega^{-1} \text{m}^{-1} \]

is taken from the shipboard resistivity manual. The resulting correction of the calibrations is about 10%. When the temperature measurements were not made, average temperatures were used.

Calibration was done with standard seawater. To improve reproducibility and the quality of the calibration, a modified probe was used for all measurements in Holes 949A and 949B. A plexiglass guard was glued to the needles with epoxy to ensure that the areas of contact with the sediment and with the calibrating fluid were the same. Calibration was done with seawater before and after each core measurement (Table 8). The geometrical factor, \(d \), is determined such that \(r = R - d \), where \(R \) is measured resistance and \(r \) is resistivity. The theoretical value of this factor for the apparatus is 16.7 mm for 2.67-mm spacing between adjacent needles. The probe drift at Site 949 was fit by a polynomial regression (Fig. 13):

\[1/d = 82.759 - 0.13361 \cdot n + 1.11758 \cdot 10^{-6} \cdot n^2 + 1.0737 \cdot 10^{-8} \cdot n^3, \]

where \(n \) is the measurement number.

The initial increase in \(d \) probably resulted from abrasion of an epoxy film on the needles, left over from construction. The later decrease may result from removal of the gold-plating and subsequent degradation of the contact. The remaining dispersion is indicative of the precision of the measurement. Three consecutive measurements with anomalously high resistance resulting from insufficient probe cleaning were discarded, yielding a standard error of the interpolated fit to the calibrated data (65% confidence interval) of ±3.8%.

An modified probe was used on Core 156-949C-7R with good results. The needles were waxed before gluing to prevent formation of the epoxy film, and the wax was removed before measurements were taken.

Thermal Conductivity

The thermal conductivity of cored material was measured in locations in every section using the needle probe method, in full-space configuration for soft sediments (Von Herzen and Maxwell, 1959). All measurements were performed after the cores had equilibrated to the laboratory temperature. Data are reported in units of W/(m·K) and have an estimated error of 5% to 10%.

Needle probes containing a heater wire and a calibrated thermometer were inserted into the sediment through small holes drilled in the core liners before the sections were split. Data were acquired using a Thermcon-85 unit interfaced to an IBM-PC-compatible microcomputer. This system allowed up to five probes to be connected and operated simultaneously.

At the beginning of each test, temperatures in the samples were monitored without applying a heater current until the background thermal drift was determined to be less than 0.04°C/min. Once the samples were equilibrated, the heater circuit was closed and the temperature rise in the probes was recorded. Thermal conductivities were calculated from the rate of temperature rise while the heater current was flowing.

After the heater has been on for about 60 s, the needle probe response is very close to that of a line source with constant heat generation per unit length. Temperatures recorded during a time interval of 60 to 240 s were fitted with the least-squares technique to the appropriate equation:

\[T(t) = (q/4\pi k) \cdot \ln(t) + L(t), \]

where \(k \) is the apparent thermal conductivity, \(T \) is temperature, \(t \) is time, and \(q \) is the heat input per unit length of wire per unit time. The term \(L(t) \) describes a linear change in temperature with time and includes the background temperature drift and any linearity that results from instrumental errors and the geometrical inadequacies of the experiment. These inadequacies include the finite length of the probe and sample. All measurements were corrected for a linear offset between measured and true thermal conductivities, determined from a series of tests with standards of known conductivities (Table 9).

DOWNHOLE LOGGING

Introduction

The Lamont-Doherty Earth Observatory–Borehole Research Group (LDEO-BRG), in conjunction with Schlumberger Well Logging Services and Schlumberger-Anadrill Drilling Services, provides the geophysical well logging aboard the JOIDES Resolution. Downhole logs allow direct determination of physical and chemical properties of formations adjacent to the borehole. Interpretation of these continuous, in situ measurements yields mineralogic, lithologic, stratigraphic, and geophysical characteristics of the site. Where incomplete downhole core recovery has occurred, logging data may serve as a proxy for physical properties and sedimentological data. These data also complement the discrete measurements obtained from cores and offer several advantages over core-based analyses in that they are collected rapidly and represent continuous, in situ measurements of the formation.

During the first week of Leg 156, logging-while-drilling operations were conducted for the first time aboard the JOIDES Resolution. LWD allows for in situ measurements immediately after the drill bit penetrates a formation with instruments that are located at the base of the drill string. These measurements are performed before the borehole conditions deteriorate in response to drilling and coring operations. In addition, LWD measurements are performed while the drill string is moving, which reduces the chances of sticking and losing the bottom-hole assembly (BHA) in a swelling clay or sloughing hole situation. LWD operations were complemented by wireline logging following coring operations during Leg 156.

Well-logging Operations/Logging While Drilling

The drill string was configured with the LWD tools located directly above the drill bit (Fig. 14). Before the bottom of the drill string was lowered below the drill floor, the LWD tools were initialized. After total depth was drilled, the drill string was retrieved to the rig floor, and data were retrieved from each tool via a laptop computer.
Table 8. Resistivity probe calibration data.

<table>
<thead>
<tr>
<th>Measurement number</th>
<th>Measured resistance (Ω)</th>
<th>Temperature (°C)</th>
<th>Standard resistivity (Ωm)</th>
<th>Geometrical factor, d (m)</th>
<th>Measured error (%)</th>
<th>Interpolated error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15.6</td>
<td>24.3</td>
<td>0.1915</td>
<td>0.0123</td>
<td>0.0121</td>
<td>-1</td>
</tr>
<tr>
<td>10</td>
<td>16.1</td>
<td>23.2</td>
<td>0.1968</td>
<td>0.0121</td>
<td>0.0123</td>
<td>-1</td>
</tr>
<tr>
<td>11</td>
<td>16.1</td>
<td>24.5</td>
<td>0.1907</td>
<td>0.0118</td>
<td>0.0123</td>
<td>-4</td>
</tr>
<tr>
<td>20</td>
<td>15.2</td>
<td>22.2</td>
<td>0.1994</td>
<td>0.0131</td>
<td>0.0125</td>
<td>5</td>
</tr>
<tr>
<td>44</td>
<td>15.5</td>
<td>23.0</td>
<td>0.1963</td>
<td>0.0127</td>
<td>0.0130</td>
<td>2</td>
</tr>
<tr>
<td>45</td>
<td>15.1</td>
<td>22.8</td>
<td>0.1971</td>
<td>0.0131</td>
<td>0.0130</td>
<td>1</td>
</tr>
<tr>
<td>63</td>
<td>15.0</td>
<td>23.7</td>
<td>0.1937</td>
<td>0.0129</td>
<td>0.0133</td>
<td>3</td>
</tr>
<tr>
<td>64</td>
<td>13.9</td>
<td>23.7</td>
<td>0.1937</td>
<td>0.0130</td>
<td>0.0134</td>
<td>4</td>
</tr>
<tr>
<td>65</td>
<td>13.9</td>
<td>23.7</td>
<td>0.1937</td>
<td>0.0130</td>
<td>0.0134</td>
<td>4</td>
</tr>
<tr>
<td>70</td>
<td>14.5</td>
<td>25.5</td>
<td>0.1872</td>
<td>0.0129</td>
<td>0.0134</td>
<td>4</td>
</tr>
<tr>
<td>91</td>
<td>14.2</td>
<td>23.6</td>
<td>0.1940</td>
<td>0.0137</td>
<td>0.0138</td>
<td>-1</td>
</tr>
<tr>
<td>99</td>
<td>15.0</td>
<td>23.1</td>
<td>0.1959</td>
<td>0.0131</td>
<td>0.0139</td>
<td>-7</td>
</tr>
<tr>
<td>100</td>
<td>14.2</td>
<td>22.8</td>
<td>0.1971</td>
<td>0.0139</td>
<td>0.0140</td>
<td>-1</td>
</tr>
<tr>
<td>125</td>
<td>14.0</td>
<td>23.1</td>
<td>0.1959</td>
<td>0.0140</td>
<td>0.0143</td>
<td>-2</td>
</tr>
<tr>
<td>126</td>
<td>13.0</td>
<td>22.6</td>
<td>0.1979</td>
<td>0.0152</td>
<td>0.0143</td>
<td>6</td>
</tr>
<tr>
<td>127</td>
<td>12.6</td>
<td>22.5</td>
<td>0.1983</td>
<td>0.0157</td>
<td>0.0143</td>
<td>9</td>
</tr>
<tr>
<td>144</td>
<td>13.9</td>
<td>32.2</td>
<td>0.1956</td>
<td>0.0141</td>
<td>0.0145</td>
<td>-3</td>
</tr>
<tr>
<td>145</td>
<td>13.6</td>
<td>32.8</td>
<td>0.1933</td>
<td>0.0142</td>
<td>0.0145</td>
<td>-2</td>
</tr>
<tr>
<td>174 a</td>
<td>15.6</td>
<td>33.5</td>
<td>0.1944</td>
<td>0.0125</td>
<td>0.0146</td>
<td>-17</td>
</tr>
<tr>
<td>175 a</td>
<td>15.5</td>
<td>24.2</td>
<td>0.1918</td>
<td>0.0124</td>
<td>0.0145</td>
<td>-18</td>
</tr>
<tr>
<td>176 a</td>
<td>16.6</td>
<td>21.3</td>
<td>0.2031</td>
<td>0.0122</td>
<td>0.0145</td>
<td>-19</td>
</tr>
<tr>
<td>204</td>
<td>14.1</td>
<td>22.2</td>
<td>0.1994</td>
<td>0.0141</td>
<td>0.0144</td>
<td>-2</td>
</tr>
<tr>
<td>223</td>
<td>14.5</td>
<td>22.7</td>
<td>0.1975</td>
<td>0.0136</td>
<td>0.0141</td>
<td>-4</td>
</tr>
<tr>
<td>254</td>
<td>13.3</td>
<td>23.7</td>
<td>0.1937</td>
<td>0.0146</td>
<td>0.0141</td>
<td>3</td>
</tr>
<tr>
<td>256</td>
<td>13.8</td>
<td>24.3</td>
<td>0.1915</td>
<td>0.0139</td>
<td>0.0135</td>
<td>6</td>
</tr>
<tr>
<td>257</td>
<td>14.0</td>
<td>24.4</td>
<td>0.1911</td>
<td>0.0136</td>
<td>0.0134</td>
<td>2</td>
</tr>
<tr>
<td>269</td>
<td>14.7</td>
<td>24.2</td>
<td>0.1918</td>
<td>0.0130</td>
<td>0.0131</td>
<td>-1</td>
</tr>
<tr>
<td>270</td>
<td>14.6</td>
<td>24.3</td>
<td>0.1915</td>
<td>0.0131</td>
<td>0.0131</td>
<td>0</td>
</tr>
</tbody>
</table>

*Not used for interpolation.

Table 9. Calibration standards for thermal conductivity probes.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Known conductivity (conductivity s.d.)</th>
<th>Probe 332 (conductivity s.d.)</th>
<th>Probe 344 (conductivity s.d.)</th>
<th>Probe 346 (conductivity s.d.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black rubber</td>
<td>0.54 (0.012)</td>
<td>0.620 (0.008)</td>
<td>0.531 (0.028)</td>
<td></td>
</tr>
<tr>
<td>Red rubber</td>
<td>0.96 (0.036)</td>
<td>0.961 (0.046)</td>
<td>0.974 (0.040)</td>
<td></td>
</tr>
<tr>
<td>Macor</td>
<td>1.61 (0.251)</td>
<td>1.755 (0.128)</td>
<td>1.923 (0.062)</td>
<td></td>
</tr>
</tbody>
</table>

s.d. = standard deviation.

Description of LWD Tools

The Anadrill-Schlumberger tools used during LWD operations on Leg 156 were the compensated dual resistivity, including a spectral gamma-ray tool, and compensated density neutron tools (Anadrill-Schlumberger, 1993; Desbrardes, 1994). The LWD equipment is battery-powered and uses electronically erasable/programmable, read-

Figure 13. Variation of resistivity probe calibration with measurement number at Site 949. Solid squares represent successive calibrations. Open squares were not used in the polynomial regression. See text for discussion.

Figure 14. Positioning of CDR and CDN tools in the drill string during Leg 156 operations.
only memory chips (EEPROM) downhole for nonvolatile storage of data. The downhole data-acquisition systems are synchronized in time with an uphole system that monitors time and drillers' depth, as described below.

Compensated Dual Resistivity (CDR) Tool

The CDR tool is similar in principle to the conventional wireline induction tool that measures formation conductivity. Using a 2-MHz electromagnetic wave, two receivers detect the phase shift (shallow measurement) and amplitude attenuation (deeper measurement) of the transmitted signal. Two pairs of receivers and transmitters are used for borehole compensation in washouts and irregular boreholes.

The resistivity phase shift (R_p) measurement is equivalent to the spherically focused log (SFL) on the induction tool. The average depth of investigation of the (R_p) is 75 cm. The resistivity attenuation deep (R_d) measurement is equivalent to the dual-induction medium measurement, with an average depth of investigation of 125 cm. The highest vertical resolution of these measurements is 15 cm.

A natural gamma-ray tool is integrated into the CDR tool. Under controlled penetration rates of approximately 15 m/hr, reliable spectral data may be obtained. Penetration rates during Leg 156 of greater than 45 m/hr degraded the resolution of the spectral data, but provided total gamma-ray counts similar to those recorded by the wireline tool.

Compensated Density Neutron Tool (CDN)

The CDN tool is similar in principle to the wireline compensated density/compensated neutron tools. The density section of the tool uses a 1.7-curie 137Ce source for gamma rays in conjunction with two gain-stabilized scintillation detectors to provide a borehole compensated density measurement. Two types of interaction of gamma rays with the formation atoms are the basis for measurement of formation density and photoelectric effect, related to formation electron density and atomic number (lithology), respectively. At higher energy levels the number of Compton scattering collisions (change in gamma-ray energy by interaction with the formation electrons) is related to the formation density. Returns of low-energy gamma rays provide information about the photoelectric effect, which is primarily related to lithology. The density source and detectors are positioned behind holes in the fin of a full-gauge clamp-on stabilizer (Fig. 14). This geometry excludes mud from the path of the gamma rays, reducing the effects of an irregular borehole. The vertical resolution of the density and photoelectric-effect measurements is about 15 and 5 cm, respectively.

For the neutron-porosity measurement, fast neutrons are emitted from a 7.5-curie americium oxide–beryllium source. The quantities of hydrogen in the formation primarily control the rate at which the neutrons slow down to epithermal and thermal energies. The energy of the detected neutrons has an epithermal component because much of the incoming thermal neutron flux is absorbed as it passes through the 1-in. drill collar. Neutrons are detected in near- and far-spacing detector banks, located laterally above the source. The resolution of the tool under optimum conditions is about 34 cm.

Data from the CDN tool include apparent neutron porosity, formation bulk density, and photoelectric effect.

Depth Control

Unlike a wireline tool, the LWD tool records data in time and does not have an exact depth reference. The depth of the LWD tool is ultimately determined by matching its times with a system that independently records time and depth of the drill-string depth on the rig floor. Although LWD depth control for industry operations is well established, LWD operations aboard the heaving platform of the JOIDES Resolution required special attention to depth measurements. The LWD precision depth assembly (PDA) was carefully calibrated to the movements of drawworks. Procedures were established for setting the drill-string heave compensator to the same point (mid-stroke) after every pipe connection during drilling. Fortunately, the ship’s heave was small (less than ±1 m) and, therefore, had a relatively small effect on depth control.

The PDA sensors consist of a depth encoder system, driven directly by the drawworks, and a hookload clamp line tensiometer that measures the weight of the drill string. The PDA data are recorded on a surface acquisition system and accurately track drill-string penetration and movement, determining the rate of penetration, hole depth, and bit position while drilling and tripping. The penetration of the drill string depends on sensing both weight on the drill bit and downward movement of the drill string. The combination of these two sensors, with precision synchronization of uphole and downhole clocks, allows one to correlate the surface time/depth data with the downhole time/measurement data files. A combination of these data files after downloading from the LWD tools yields depth/measurement data.

In addition to the depths determined by the LWD operation, depths were monitored independently by observers in the drilling shack. Depths recorded by the independent observers compared to those measured by the LWD system indicate that absolute depth errors are generally less than 3 m (see “Operations” section, this chapter, for further information on depths).

Well-logging Operations/Wireline Logging

Because the LWD tools did not provide information about sonic velocity or accurate spectral gamma-ray data, wireline logging was also conducted during Leg 156. Wireline operations followed immediately after coring and conditioning of the borehole for logging operations. A tool string (a combination of sonic and gamma ray plus either density or resistivity sensors) was lowered downhole on a seven-conductor cable to continuously monitor properties of the adjacent formation. Although the depths of investigation and vertical resolution are sensor-dependent, all properties are typically recorded at 15-cm intervals. The specific tool strings run in each hole are described in the “Downhole Logging” section of each site chapter. With the exception of the cement-bond tool, the open-hole logging tools used during Leg 156 have been described well in the “Explanatory Notes” chapter of the Leg 146 Initial Reports volume (Westbrook, Carson, Musgrave, et al., 1994). A detailed description of logging-tool principles and applications is provided in Dewan (1983), Schlumberger (1989), Serra (1984), and Timur and Toksöz (1985).

Cement-bond Log

Shot receivers for the vertical seismic profile are best located in areas where casing has been well cemented to the surrounding sediments. To evaluate the extent of cementation of casing, we ran Schlumberger’s cement-bond tool (CBT). The CBT measures the amplitude and, hence, attenuation of a compressional wave generated and received in the tool. Amplitude decreases and attenuation increases with decreasing magnitude of cementation (Serra, 1984).

Log Analysis

The Schlumberger multitask acquisition and imaging system (MAXIS) allows for simultaneous recording and display of wireline-logging data. The MAXIS will output files as DLIS (digital log information standard) and ASCII data files, which are linked through the shipboard Ethernet, allowing shipboard scientists to access these data. Basic log interpretation is conducted aboard the ship; further analysis and interpretation are undertaken after the cruise at the LDEO Borehole Research Laboratory, at other research centers, and by shipboard logging scientists.

Shore-based Processing

Processing, quality control, and plotting of the logging data were performed by the LDEO-BRG, using Schlumberger “Logos” soft-
ware and additional programs developed by members of the BRG. Displays of most of these processed data appear with accompanying text at the end of the appropriate site chapters in this volume. Files of all processed logs (including high-resolution density data), sonic waveforms, and explanatory text are included on CD-ROM. A directory of the contents of the disk is found at the front of this volume.

Shore-based processing of data from each hole consisted of (1) depth adjustments of all logs to refer to seafloor datum at each hole, (2) corrections specific to certain tools, and (3) quality control and rejection of unrealistic values.

Specific tool corrections were performed on the gamma-ray data to account for changes in borehole size and for the composition of the drilling fluid.

In addition to the standard 15.24-cm sampling rate, bulk-density data were recorded at a sampling rate of 2.54 cm. The enhanced bulk-density curve is the result of the Schlumberger enhanced processing technique performed on the MAXIS system on board. While in normal processing short-spacing data is smoothed to match the long-spacing data, in enhanced processing this is reversed. In a situation where there is good contact between the high-temperature lithodensity tool (HLDT) pad and the borehole wall (low-density correction) the results are improved, because the short-spacing data have better vertical resolution.

Quality control was performed by cross correlation of all logging data. If the data processor concluded that individual log measurements represented unrealistic values, the choices were either to discard the data outright and substitute the null value of -999.25, or identify a specific depth interval containing suspect values that must be used with caution. Suspect values are noted in the text that accompanies all processed log displays. Quality control of the acoustic data was based on discarding any of the four independent transit-time measurements that were negative or that fell outside a range of reasonable values selected by the processor.

Locally, some intervals of log data appeared unreliable (usually due to poor hole conditions) and were not processed beyond what had been done on board ship. In general, a large (>12 in.) hole is scanned by the tool that require eccentricization (HLDT) and good contact with the borehole wall.

Synthetic Seismograms

Synthetic seismograms are generated from an impedance log, calculated from the velocity functions and bulk-density logs. The velocity and density logs were input to a program that generates an acoustic-impedance log (velocity × density). The impedance log was calculated from the velocity functions and bulk-density logs. The impedance log was based on discarding any of the four independent transit-time measurements that were negative or that fell outside a range of reasonable values selected by the processor.

Locally, some intervals of log data appeared unreliable (usually due to poor hole conditions) and were not processed beyond what had been done on board ship. In general, a large (>12 in.) and/or irregular borehole affects most recordings, particularly those made with tools that require eccentricization (HLDT) and good contact with the borehole wall.

CD-ROM Materials

The CD-ROM in the back of this volume contains both depth-shifted and processed logging data that has been provided by LDEO-BRG. The CD-ROM also contains shipboard measurements on cores collected on board JOIDES Resolution during Leg 156 (GRAPE, index properties, magnetic susceptibility, and natural gamma-ray data). CD-ROM production was done by LDEO-BRG, wireline logging operator for ODP.

The README file contains information about whom to contact with any questions about the production of or data on the CD-ROM.

All of the ASCII files (basic logging and dipmeter files) are tab-delimited for compatibility with most spreadsheet and database programs. Holes that have long logging runs are often divided into TOP, MIDDLE, and BOTTOM directories. If the data were collected continuously, or if two or more sections were spliced together, the files would be in the SPLICED directory.

In the FMS-PBM subdirectory there are two subdirectories: 1:1, with maximum 10-m-long raster images at a 1:1 scale, and 1:10, with maximum 100-m-long raster images at a 1:10 scale. The raster image files are named according to their depth interval. The raster documentation files contain image file parameter information necessary for use with most graphics software packages.

HEAT FLOW

Scientific Objectives

Measuring heat flow was of primary importance to the main objectives of Leg 156 to characterize the hydrogeology of the toe of the Barbados accretionary complex. The thermal state of the sediments is strongly influenced by, and is thus a good indicator of, fluid flow in this setting. Pore-fluid chemistry is also strongly influenced by advection, and many geochronological tracers are at least an order of magnitude more sensitive to the effects of fluid flow than is formation temperature. In combination, analyses of thermal and chemical gradients provide indications of fluid flow over a wide range of velocities. Measuring heat flow requires assessments of in situ temperatures and thermal conductivities. This section describes the methods used during Leg 156 for collecting and analyzing in situ temperature data. Techniques used for in situ pore-fluid sampling during Leg 156 are covered in the "Inorganic Geochemistry" section (this chapter). Borehole-temperature logging tools used during Leg 156 are described in the "Downhole Logging" section (this chapter). Techniques for collecting and processing thermal conductivity data are described in the "Physical Properties" section (this chapter).

Water Sampler Temperature Probe (WSTP)

Temperature Measurements

The WSTP is a hybrid of two other tools, the Uyeda temperature tool (Yokota et al., 1980) and the Barnes fluid sampler (Barnes, 1979, 1988). The original Uyeda temperature tool had a thin, stainless-steel probe that was pushed ahead of the bit into the undisturbed sediments at the bottom of a hole. The Leg 156 WSTP tip has a greater diameter than that of the Uyeda tool and can be configured with or without a fluid-sampling capability. When the probe tip is configured for temperature measurement only, the tip has a shorter time constant such that (1) the frictional heat pulse associated with insertion of the probe can be assumed to approximate more closely a line source of heat and (2) insertion of the instrument is less likely to fracture sedimentary rocks. The development and use of different probe designs are described more fully in Shipboard Scientific Party (1992).

Recording of data was accomplished during Leg 156 using a modified Double Current Data Logger (DCDL), an instrument having a long history of modifications to improve stability, reliability, and calibratability. The DCDL contains one recorder and a clock, with a sampling interval of 4.369 s. The DCDL records thermostat resistances in RAM. These data are downloaded to an IBM-PC compatible following deployment for conversion to temperatures and additional processing.

In operation, the WSTP is mounted inside a core barrel and lowered down the drill pipe by wireline while the bit is held above the ground. The tool is held briefly above the mud line to measure the temperature of bottom water. The tool is then lowered and latched into place, with the probe tip extending 1.1 m ahead of the bit. The drill string is lowered, and the probe is forced into the bottom of the hole. A collected delivery system allows the probe to retract back
The drill pipe. The shoe is typically held just above the mud line to mea-
to conserve power. Between individual measurements, and
defines a table of events, which includes the measurement frequency
0.10°C under ideal conditions.

equilibration. Extrapolation of the data is described below, and results
not left in the sediments for a long enough time to achieve complete
penetration of the tool is never known with a certainty better than 1 to
±0.1° to 0.2°C under ideal conditions. In addition, the exact depth of
measurement cannot be left in position to allow this disturbance to decay
totally, extrapolation to thermal equilibrium is required. Data-
reduction methods are described later in this section.

Thermistors used during Leg 156 were calibrated with an accuracy
of better than 0.005°C over a range of 0° to 35°C using the Physical
Oceanography calibration facility at WHOI during the spring of 1993.
The large water bath used for these calibrations was instrumented with
a sensor that was itself calibrated at the U.S. National Institute of Stan-
dards and Technology. Digital resolution of the DCDL is nominally
0.05°C. The relatively short length of the narrow probe appears to
allow only a few minutes of undisturbed measurements before a ther-
mal disturbance is conducted down from the larger diameter section
above, limiting the accuracy of temperature extrapolations to about
±0.1° to 0.2°C under ideal conditions. In addition, the exact depth of
penetration of the tool is never known with a certainty better than 1 to
2 m. From the shape of the temperature-time records and from com-
parison with nearby measurements, it is often possible to determine if
the tool was pressed into fill at the bottom of a hole or if the formation
was cracked upon its insertion.

APC Tool Temperature Measurements

The APC heat-flow coring shoe is used for measuring in situ sedi-
ment temperatures during regular piston-coring operations. The in-
strument contains an electronics section that comprises three circuit
boards and two battery packs, built into a cylindrical frame (Ship-
board Scientific Party, 1992). The frame fits inside an annular cavity
in a special coring shoe. Two steel prongs extend from the base of the
frame to anchor the electronics in place inside the shoe. Inside one of
the two prongs is a platinum resistance-temperature device (RTD)
that has been calibrated over a range of −20° to 100°C. Along with the
WSTP thermistors, five APC tools were calibrated at the WHOI
facility in spring 1993 to provide absolute accuracy of about 0.005°C
over a range of 0° to 35°C. Unlike the WSTP thermistor calibrations,
those for the APC tool included the complete tool, sensor, battery,
A/D, and data logger. The digital resolution is 0.05°C. The RTD prong
is coated with thermally conductive grease to assure a good contact
with the wall of the cutting shoe. As with the WSTP, the APC tool is
not left in the sediments for a long enough time to achieve complete
equilibration. Extrapolation of the data is described below, and results
in an estimated in situ temperature with an accuracy of ±0.05° to
0.10°C under ideal conditions.

The tool is programmed after it has been inserted into the coring
shoe, and repeated deployments can be run without removing the tool
or batteries. The tool contains a microprocessor and 32 kilobytes of
nonvolatile memory, and is run off a PC through an interface box. The
tool operating system is downloaded from the computer, and the user
defines a table of events, which includes the measurement frequency
and total time of operation. During Leg 156, data generally were col-
lected at a 5-s time interval. Between individual measurements, and
optionally for extended periods, the tool can be programmed to "sleep"
to conserve power.

After programming and starting the test sequence, a crossover sub-
assembly with O-rings seals the cavity containing the electronics. The
shoe is then placed at the front end of a core barrel and lowered down
the drill pipe. The shoe is typically held just above the mud line to mea-
sure the temperature of bottom water, then lowered into the BHA. The

core barrel is deployed in the standard way, fired out through the bit
using hydraulic pressure from the rig pumps, but it is left in place for
10 min, instead of being retrieved immediately, so that the tool can
begin thermal equilibration with the formation. After the core barrel is
returned to the ship, the coring shoe is removed and the temperature
data are uploaded to the PC for reduction.

Data Reduction

Although the WSTP and APC tools have different geometries, the
methods used for analyzing recovered temperature data are similar. For
the WSTP, the thermal response of a cylindrical probe to a pulse of
heating (or cooling) is given by Bullard (1954). The equivalent theory
for the concentric cylinders and cylindrical shells of the APC tool is
discussed by Horai and Von Herzen (1985). For both instruments,
synthetic type-curves are constructed based on tool geometry, sam-
ping interval, and the thermal properties of the tools and surrounding
sediments. Both tools have thermal time constants of several minutes
under normal conditions, which requires that the probes be kept in bot-
tom for at least 10–15 min to allow extrapolation of the temperature
curves with confidence.

The theoretical decay curves simulate the instantaneous heating (or
cooling) of the sediment following probe penetration; however, in
practice, a finite time is required for the sensors to reach a maximum
temperature. As a result, the effective origin time of the thermal pulse
is delayed as a function of tool and sediment properties. In addition,
the recorders sample temperatures at fixed intervals, leaving the exact
penetration time uncertain. An effective penetration time and an ex-
trapolated temperature are estimated by shifting the time axis of the
theoretical thermal decay curves to fit the actual data. Temperatures
from the first 5 to 10 measurements (20–50 s) following penetration
commonly do not follow the theoretical curves, but later parts of the
records usually provide a close fit (Shipboard Scientific Party, 1992).
The choice of which data should be included in the fitting, and which
time shift should be used, is partly subjective. It is probably best to use
as much of the actual decay curve as possible, particularly the early part
of the record, as the theoretical functions have 1/16 terms and thus favor
later data during curve fitting. The variations in extrapolated tempera-
tures that result from choosing different time intervals and time shifts
can be used to estimate uncertainties associated with the temperatures
finally assigned to represent in situ conditions.

VERTICAL SEISMIC PROFILING

Scientific Objectives

Vertical seismic profiling (VSP) experiments were planned so as to (1)
determine the detailed P-wave velocity-depth structure of the
drilled section, (2) determine the shear-wave structure near the
decollement at Site 949, and (3) provide an accurate correlation
between the drilled section and the regional three-dimensional seis-
mic reflection data. An important component of the Leg 156 VSP
program was to calibrate the "seismic" decollement by determining
its thickness and velocity using a surface seismic source and down-
hole receivers. VSP measurements provide such seismic information
only for the interfaces penetrated by the borehole; reflecting inter-
faces below the bottom of the borehole are imaged by the VSP
technique, but neither interval velocities nor time-depth information
can be obtained (Gal’perin, 1974).

Acquisition Hardware

Leg 156 was the first deployment by ODP of Schlumberger’s array
seismic imager (ASI) for VSP acquisition. The ASI consists of an array
of five seismic shuttles, each containing three orthogonal geophone
accelerometers. The shuttles are spaced at 15.24-m intervals and are
linked by a bridle to a signal-conditioning cartridge. The shuttles clamp
magnetically to the casing. Each shuttle is equipped with a shaker
element that allows real-time evaluation of the coupling condition between the sensor package and the casing. The quality of the coupling between the casing and the surrounding sediment affects the quality of the signals recorded by the ASI. To check the degree of coupling, a cement-bond logging tool was run in the casing prior to deployment of the ASI (see “Downhole Logging” section, this chapter).

The signals received by the ASI were recorded in digital log interchange standard (DLIS) format on 4-mm (DAT) tape with the Schlumberger MAXIS system. DLIS tapes were then converted to SEGY, the standard seismic data format, using Schlumberger’s LOGOS software. Initial onboard processing followed a standard sequence (e.g., Hardage, 1983), and was accomplished with Landmark’s INSIGHT seismic-processing software on a computer workstation.

Zero-offset VSP

The clamping depth interval between geophones used for zero-offset VSP was 7.62 m. This depth interval allowed us to record unalised frequencies as high as 100 Hz (the maximum frequency expected for an air-gun source) for velocities as low as 1524 m/s (the minimum velocity expected for the prism sediments). The seismic source for the zero-offset VSP experiments was an array of two Bolt 1500-C air guns suspended from a buoy at a water depth of about 7 m (Fig. 15). One air gun had a 4.9-L (300-in.) chamber and one had a 2.0-L (120-in.) chamber. A hydrophone suspended below the ship was used to record the air-gun waveform for each shot. Seven to 15 shots were fired at each clamping level and summed at this sample interval. One hydrophone was also connected to a canister that contained an electronic timer. The shot and timer were pre-set to detonate after 24 hr.

Data were recorded on the Schlumberger MAXIS system. We used a digital sample interval of 2 ms to capture the P-wave and water wave; the MAXIS software allowed a recording window of only 32 s at this sample interval. One hydrophone was also connected to a continuous chart recorder, to confirm shot detonation.

Ocean-bottom-shot VSP

Our main goal was to record shear waves and to detect shear-wave splitting, the most sensitive indicator of seismic anisotropy. The alignment of pore space and mineral grains (“scaly fabric”) associated with the décollement zone are seismically anisotropic, as seen in core measurements. Above the décollement, the sediment is subject to lateral and vertical stresses and loses water throughout its thickness, along aligned pores that may cause seismic anisotropy. Shear-wave splitting is particularly sensitive to the volume, fluid pressure, and aspect ratio of aligned pores. We hoped to associate dilatant aligned pores with the high negative reflectance of the seismic décollement reflector at the borehole (Shipley et al., 1994).

Experiment Design Principles

Recording shear-wave shots downhole has two advantages over surface recording: (1) the formation of interest is the last part of the raypath from shot to receiver, so that the effects of formation anisotropy will be the most clearly seen, and (2) downhole recording avoids the undesirable effects of the sediment/water interface on shear waves (Liu et al., 1990; Liu and Crampin, 1990; Booth and Crampin, 1985).

We wanted to detect “shear-wave singularities,” that is, directions of propagation in which the split shear waves have equal velocities and so are not effectively split. The exact directions in which these singularities occur is very sensitive to crack aspect ratio (Bush and Crampin, 1991). Raypaths close to shear-wave singularities are recognized in polarization diagrams (hodograms), as the motion is linear, rather than elliptical or cruciform (Crampin, 1991). The polarization of the faster split shear wave is usually different on either side of the singularity.

The optimal shot locations for detecting shear-wave singularities would be along radial lines at a range of azimuths to cover a range of incidence angles to the receivers. The most useful shear-wave singularities occur in directions neither parallel nor perpendicular to the directions of anisotropic symmetry. In the accretionary complex, the symmetry axis is probably east-west, the direction of horizontal plate motion.

Ocean-bottom Shots

Ocean-bottom explosive shots (Kirk et al., 1991) generated shear waves of a frequency of about 20 Hz when used in the January 1993 seismic survey of the drill sites. These have wavelengths of less than 50 m if the shear-wave velocity is less than 1 km/s.

Each shot used during Leg 156 consisted of four 2.7-kg (5-lb) cylinders of cast pentolite, wound with detonator cord and fitted into a weighted plastic cylinder. Just before deployment, an electrical detonator was inserted into the cylinder and connected to 150 m of cable. The shot was then deployed overboard from the starboard side of the fantail and the cable paid out. Only then was the cable connected to a canister that contained an electronic timer. The shot and timer were then allowed to fall to the seafloor. The falling time is about 25 min at an estimated terminal velocity of 3.3 m/s. The shots were pre-set to detonate after 24 hr.

Data were recorded on the Schlumberger MAXIS system. We used a digital sample interval of 2 ms to capture the P-wave and water wave; the MAXIS software allowed a recording window of only 32 s at this sample interval. One hydrophone was also connected to a continuous chart recorder, to confirm shot detonation.

PACKER EXPERIMENTS

Formation bulk permeability was measured at Sites 947 and 948 using a resealable drill-string packer manufactured by TAM International and described by Becker (1986, 1988). The packer incorporates inflatable rubber elements to isolate a section of the hole and can be configured as a single or straddle packer. For the measurements during Leg 156, it was configured with one element and used as a single-seal packer to isolate the zone between the bottom of the hole and the seal or between the bottom of the hole and the deepest cementing point above (Fig. 17).
The pulse tests were conducted following the methods for the "modified" slug test of Bredehoefit and Papadopulos (1980), which is an adaptation of the slug test method of Cooper et al. (1967) and Papadopulos et al. (1973) for formations having relatively low permeabilities. In the modified slug test, a short pressure pulse is applied to the fluid in the zone isolated by the packer, and the decay of this pulse is monitored as fluid flows from the borehole into the isolated formation. The decay of such a pressure pulse is described by the equation:

$$P(t)/P_0 = F(\alpha, \beta),$$

where $P(t)$ is pressure at time t, in excess of the initial undisturbed value; P_0 is the initial pressure increase, α is a dimensionless parameter that depends on the storage coefficient (S) and porosity (ϕ) of the isolated formation, β is a dimensionless parameter that depends on the transmissivity (T) and permeability (k) of the formation, and F is an infinite integral. More specifically,

$$\alpha = \pi a^2 S/V_w C_p \rho_w g,$$
$$\beta = \pi T / \rho_w V_w C_p \rho_w g,$$
$$S = b h C_p \rho_w g,$$
$$T = b k p g / \mu,$$

where g is gravitational acceleration, a is the radius of the hole in the isolated zone, b is the vertical thickness of the isolated zone, C_p, ρ_w, and μ are, respectively, the compressibility, density, and dynamic viscosity of the fluid in the isolated zone, and C_p and ρ_w are the compressibility and density of the fluid in the total pressurized volume V_w.

The standard approach to processing pressure data measured during slug tests involves a curve-fitting method (Cooper et al., 1967; Papadopulos et al., 1973) as follows. A plot of the decay of measured pressures vs. log time is superimposed on a family of type curves of $F(\alpha, \beta)$ vs. log β calculated for various values of α spanning several orders of magnitude. The data plot is then shifted along the abscissa of the type-curve plot to determine visually the value of α for which the data best fit the type curve. Then the transmissivity and average permeability of the tested interval are calculated from the correspondence between the values of time and β for the best-fit curve, using the definitions for β and transmissivity given above.
As noted by Cooper et al. (1967), Papadopoulos et al. (1973), Bredhøeft and Papadopoulos (1980), and Hickman et al. (1984), the calculated type curves are relatively insensitive to changes in α and much more sensitive to changes in β. Thus, this procedure yields relatively poor estimates of the storage coefficient and porosity, but reasonable determinations of transmissivity and bulk permeability.

Constant-rate Flow Tests

In a relatively permeable formation, a pulse test will decay rapidly, and a better determination of permeability can be obtained by conducting a constant-rate flow test. In this experiment, borehole pressure within the isolated zone is monitored as fluids are pumped into the formation at a constant rate. The rise of pressure as injection proceeds quickly becomes linear with the log of time, according to the following equation (Horner, 1951; Matthews and Russell, 1967):

\[P(t) = \left(\frac{q}{4\pi t k} \right) \ln \left(\frac{C p^2 t}{\mu} \right), \]

where \(q \) is the flux of injected fluids, \(t \) is Euler’s constant, and the remaining parameters are defined above. The average permeability of the isolated zone can be determined directly from the slope of pressure vs. \(\log t \) time, given the measured constant injection rate.

Properties of Fluids in a Pressurized System

The transient pressures measured during both slug and injection tests depend on the properties of the pressurized fluids, particularly viscosity and compressibility, which vary with both temperature and pressure. For the temperature-dependent viscosity of seawater, we used Gartling’s (1977) equation, \(\mu(10^{-3} \text{ Pa s}) = 16.687 - 0.007T \), with \(T \) in °C, supplemented by steam-table data at temperatures below 10°C. As noted by Neuzil (1982), the effective compressibility of the fluid in a pressurized holes, particularly seawater in this case, because of (1) compliance of the drill string and test equipment and (2) air trapped in the system. While every effort was made during Leg 156 to purge all air from the drill string, pump, and connecting plumbing, small amounts of air may have remained in the system. Such trapped air would increase the effective system compressibility and cause the transmissivity and bulk permeability calculated in a slug test to be erroneously high. Therefore, we carefully recorded the volumes pumped downhole during slug tests, so that the effective compressibility of the pressurized system could be determined using the definition of compressibility, \(C = \frac{dP}{dV/dP} \), and could be accounted for when calculating the formation permeability.

Casing and Screen Configuration

Perforated and screened sections of casing were deployed at Sites 948 and 949 to keep the holes open for testing. Within the tested zones, the casing had a diameter of 27.3 cm and was perforated with 1.11 cm diameter holes at 1280 holes per meter of casing length. This configuration lead to 14.5% open area for the perforated casing. A wire-wrap screen was attached to the outside of the perforated casing. The wire had a diameter of 2.25 mm and was attached with a gap between wraps of 0.20 mm, providing about 8% open area. Between the perforated casing and wire screen were vertically welded, 3.18 mm steel rods. The use of these rods reduced the effective open area of the screen to about 6%, but the stand-off allowed the effective open area of the screen and perforated casing to be 6%, rather than the product of the casing and screen open areas, which would have been <2%. An open area of 6% is sufficient to maintain laminar flow conditions with the pumping rates used during packer testing.

LONG-TERM BOREHOLE OBSERVATORIES

Long-term borehole observatories (CORKs) were deployed at Sites 948 and 949 to monitor formation temperatures and pressures over several years following Leg 156. CORKs have been deployed during two previous ODP cruises, Legs 139 and 146 (Davis, Mottl, Fisher, et al., 1992; Westbrook, Carson, Musgrave, et al., 1994). The conceptual and physical designs of the CORK system are described in detail in Davis et al. (1992); a short overview is provided here.

The CORK system comprises a modified reentry cone, a hydrologic seal that fits inside the throat of the cone, a data logger having sufficient power and memory to record data for about 2–3 yr, one or more pressure sensors situated below the seal plus an additional sea-floor sensor positioned above the seal, a sensor string including 10 or more thermistors hanging below the seal, and a valve mechanism by which the sealed hole can be vented to the overlying ocean. The hardware for forming the hydraulic seal and deploying the equipment was designed and constructed by the Engineering and Operations Group of the ODP science operator at Texas A&M University. Data loggers, sensor strings, and assorted fluid-sampling equipment are provided by third-party scientists. Two kinds of sensor strings and data loggers were deployed during Leg 156, one a modified version of the U.S./Canadian assembly deployed during Legs 139 and 146, and a new French assembly developed by scientists from the Institut Français de Recherche pour l’Exploitation de la Mer (IFREMER). The configuration of the casing and screened boreholes, the locations of thermistor and pressure sensors, and deployment operations for these instruments are described in the “Operations” sections of the appropriate site chapters. No scientific data collected as part of the CORK experiments were available during Leg 156.

The U.S./Canadian string deployed at Site 949 is similar to those deployed during previous legs, with slight modifications. The thermistor string hung below the Site 949 CORK comprises double braids of Kevlar around 10 pairs of conducting wires and a Kevlar strength member (see fig. 6 in the “Operations” section of “Site 949” chapter, this volume, for specific locations). Thermistor breakouts were woven into the string during its construction, along with slightly larger diameter outer Kevlar wraps at the breakouts. Polyethylene tubing of 0.5-in. diameter was pushed under the outer Kevlar weave in these locations, and thermistors were attached to the broken-out leads and pushed inside the tubing, then taped tightly to form a smooth transition with the surrounding cable. The Leg 156 U.S./Canadian cable also included two pressure transducers, one just below and one just above the hydraulic seal between the data logger pressure case and the CORK; earlier U.S./Canadian strings included only a single pressure transducer below the data logger. Finally, no fluid-sampling tubing was attached to the valve that connected the sealed borehole to the overlying ocean. Instead, taped to the Site 949 sensor string was a continuously operating osmotic sampler, described in the “Fluid Geochemistry” section (this chapter). In the U.S./Canadian sensor string, each sensor communicates with the data logger through one or more pairs of dedicated leads.

In contrast, the French sensor string deployed at Site 948 used two serial lines to communicate digitally between sensors and the data logger. This string comprises 20 sensor modules, 17 with two temperature sensors and three with one pressure and one temperature sensor. As with the U.S./Canadian string, the sensors in the French string are irregularly distributed along its length. The pressure sensors in the French string are located at the top, bottom, and in the middle of the string (see fig. 5 in the “Operations” section of “Site 948” chapter, this volume, for specific locations). Unlike the U.S./Canadian string, the French string can be shortened or lengthened at sea by removing or installing modules or sections of cable. The French string is configured such that every other sensor module is connected serially. Thus, if one of the lines stops operating, data still would be collected along the length of the string, albeit with half the spatial resolution. In contrast, the U.S./Canadian string contains 10 separate thermistor circuits. If one is disrupted, the other nine should continue to operate normally. The French string uses platinum resistance-temperature devices (nominal 1000 Ω at 0°C) as temperature sensors, while the U.S./Canadian string uses thermistors having a nominal resistance of 1 MΩ at 0°C.
The data loggers above both strings are programmed to record measurements once per hour. The U.S./Canadian logger has a memory capacity of 1 megabyte, while the French logger can store 4 megabytes. Both instruments are accessed electronically through an RS232 “wet connect” at the top of the pressure case. Once communication is established by a submersible or remotely operated vehicle (ROV), data can be downloaded and/or the loggers can be reprogrammed. Lithium batteries in both tools should allow data to be collected for at least 2 yr, and integrity of data to be maintained for at least 3 yr. Acoustic modems with separate power supplies may be attached to the data loggers during the first post-Leg 156 visit to the CORK sites so that the instruments can be accessed during subsequent expeditions without a submersible or ROV.

REFERENCES*

Boyce, R.E., 1976. Definitions and laboratory techniques of compressional sound velocity parameters and wet-water content, bulk-density, and porosity parameters by gravimetric and gamma ray attenuation techniques.

