7. LATE PLIOCENE AND QUATERNARY PALEOCEANOGRAPHY OF THE CANARY ISLAND REGION INFERRED FROM PLANKTONIC FORAMINIFER ASSEMBLAGES OF SITE 953

Charlotte A. Brunner and R. Maniscalco

ABSTRACT

Oceanic climatic conditions in the Canary Islands were strongly related to conditions in the high-latitude North Atlantic Ocean throughout the last 3.6 m.y. We examined relative frequencies of planktonic foraminifers sampled from pelagic and hemipelagic units of the late Pliocene and Quaternary intervals of Site 953. Assemblages were defined using cluster analysis. Assemblages alternated between cool and warmer subtropical types during the Gauss Chron, with one cool event centered at ~3.3 Ma. Assemblages shifted abruptly to transitional types in the Matuyama and Brunhes Chrons. The shift, which began at 2.73 Ma, was marked by several apparent fluctuations between warmer and cooler assemblages culminating in a very rapid shift to a cool transitional assemblage at 2.5 Ma. Assemblages throughout the upper sequence alternated between cooler and warmer transitional types with a distinct change at 1.1 Ma to assemblages that were either slightly less well preserved or slightly cooler than those of the early Quaternary. The changes in assemblages coincided not only with assemblage changes at a higher latitude in the North Atlantic Ocean, but also with increasing aridity in the North Sahara region. Both events were connected to increased intensity of the northeast trade winds. The excellent stratigraphic record recovered at Leg 157 sites in the volcanic apron of Gran Canaria clearly ties various phases of island evolution to regional paleoclimatic history.

INTRODUCTION

The volcanic apron of Gran Canaria is built of volcaniclastic turbidites, ash falls, debris flows, slumps, and lapilli slides, and holds a geologic history of island growth in a mid-plume setting near the African continental margin. The distal edge of the apron is also interlayered with pelagic units, which are relatively complete throughout the late Pliocene and Quaternary at Site 953. The apron thus holds not only information about the island’s growth, but also information about its oceanic climatic history, which is relevant to the subaerial weathering history of Gran Canaria.

The Canary Islands at present lie within the northeast trade winds. The Gran Canaria lowlands are arid in climate with only 211 mm of precipitation annually recorded at Las Palmas on the windward side of the island (Lebeved, 1970). The uplands are covered by grasses, shrubs, and patches of pine forest at high elevations. The windward side of the island is moister than the barren, leeward side and is the center of island agriculture. During most of the previous glacial cycle, the climate was more arid than at present and, briefly during parts of oxygen isotope Stages 3 and 1, somewhat moister than at present as indicated by marine pollen records, marine eolian and carbonate records, and coelantine and paleosol sequences (Rognon et al., 1989; Hooghiemstra et al., 1992; Magarita and Jahn, 1992; Matthewson et al., 1995; Dammati et al., 1996). Arid periods correspond to strong northeast trade winds, as at the last glacial maximum, ~18 ka, whereas moist conditions occur when the trade winds weaken, permitting greater rainfall from zonal winds, as at the Holocene climatic optimum ~6 ka (Gardner and Hays, 1976; Sarnthein et al., 1981; Rognon et al., 1989). Gran Canaria has endured a minimal amount of subaerial river erosion as long as arid climate has dominated the region.

Our data address issues related to climate on Gran Canaria. We will show that surface waters of the region are linked to climatic forces from the high-latitude North Atlantic Ocean. The region at ~2.8 to 2.5 Ma and ~1 Ma responded to intensification of the northeast trade winds, which are associated with north Saharan aridity. The data also suggest that conditions were distinctly different before 2.5 Ma, which might mark the end of more humid conditions and the onset of aridity known from the North Sahara (Sarnthein et al., 1982; Stein, 1985; Tiedemann et al., 1989; Le Houerou, 1992; Morel, 1992).

LOCALITY

Site 953, the focus of this study, is located on the distal north northeast edge of the Gran Canaria volcanic apron (Figs. 1, 2) where it might also receive volcaniclastic material from neighboring Fuerteventura and Tenerife as well as from Gran Canaria (T. Funck, pers. comm., 1995). The apron extends into a small basin, which is bordered by Gran Canaria and Tenerife to the south, the East Canary Ridge to the east, and the Salvage Islands to the north. The basin empties into the Madeira Abyssal Plain to the west. The small basin, including Site 953, is bathymetrically isolated from turbiditic input from the nearby Moroccan shelf, except for a distant passage between Lanzarote and Conception Bank.

The islands lie within the path of the cool Canary Current, part of the eastern boundary current of the North Atlantic gyre (Sverdrup et al., 1947; Mittelstaedt, 1991). The current is relatively shallow, only several hundred meters deep, but deep enough to host most planktonic foraminifers. Surface water temperatures average between 18° and 24°C (U.S. Naval Weather Service Detachment, 1976), and surface water salinities average between 36.5 and 37.0 in the Canary Island region (Van Camp et al., 1991). Conditions are similar to those found upstream from the Canary Islands in the Azores region and, to some degree, downstream toward the Cape Verde Islands (U.S. Naval Weather Service Detachment, 1976), although temperatures warm several degrees from north to south. The current is wind driven, and in the Canary region responds to intensity of the trade winds.

Local conditions affect mesoscale features in surface waters of the Canaries region. Upwelled North Atlantic central water, which is cool, has lower salinity, and is relatively nutrient poor compared to upwelled waters to the south, advepts to the islands from Capes Yubi and Bojador in the summer, and reduces surface water temperature...
Passages between the island platforms disrupt the Canary Current, causing local upwelling of cool water and island wakes of warmer surface waters (Hernandes-Guerra et al., 1993). These local effects are wind driven and are controlled by the intensity of the trade winds as is the Canary Current in the Canary Island region.

Foraminifer assemblages in surface sediments reflect the location of the major surface water masses. In general, a transitional assemblage (in the sense of Tolderlund and Bé, 1971) follows the eastern boundary current from the Azores to the Canary Islands and southward. A cooler assemblage is found within the African coastal upwelling region, and a warmer subtropical fauna is found offshore from the Canary Islands in the stable interior of the southern Sargasso Sea (Crowley, 1981; Gardner and Hays, 1976; Corliss, 1975; Kipp, 1976). During the late Quaternary, fossil assemblages in the Canary Current alternated between cool and warm transitional assemblages, and estimated sea surface temperature (SST) declined steadily by 4°–6°C in the Canary Island region from climatic optima to glacial maxima, then warmed rapidly, paralleling the sawtooth pattern of oxygen-isotope anomalies (Crowley, 1981).

METHODS

Samples from pelagic intervals were chosen from the late Pliocene and Quaternary turbiditic sequence of Site 953. We attempted to recover at least one sample from every section, but the distribution of turbidites, debris flows, and lapilli slides made sampling intervals larger than desired, especially in the upper Quaternary and lower Pliocene. The median interval was 1.71 m, which was equivalent to ~0.024 Ma. The 10-cm3 samples were dried, soaked in a 1% Calgon solution, washed on a screen of 63-µm openings, and dried. The sand-sized residue was further sieved at 150 µm and split with a microsplitter until 300 or more specimens of planktonic foraminifers were separated for identification.

Eighteen counting groups of closely related taxa were defined as variables for calculating the cluster analysis. This was done to (1) reduce the number of variables (= species) because species diversity is high (68 taxa), (2) group together environmentally related taxa so the clusters respond more to climate change than to evolutionary changes, and (3) increase the abundances in each variable because the abundances for many individual species is quite low (Table 2).
Q-mode cluster analysis grouped together samples with similar assemblages. We used a simple Euclidean distance coefficient and agglomerated samples using within-group average linkage (Norusis, 1988). The species counts were normalized to percentages within samples before computation of the clusters. The faunal compositions of clusters were determined by calculating the average and standard deviation of each taxon in each cluster of samples.

THE FAUNA

The faunal succession at Site 953 is controlled by an interaction among three controls: evolutionary events, climate change, and carbonate dissolution. The fauna consists of more than 60 species and is best characterized as transitional (Tolderlund and Bé, 1971) through most of the Matuyama and Brunhes sequences and subtropical in the Gauss interval below 177.6 meters below seafloor (mbsf; Table 3 on CD-ROM in the back pocket of this volume). Cool species of Neogloboquadrina dominate the Brunhes and Matuyama faunas, followed by Globigerina, Globigerinita, Globigerinoides, Globococcolithus, and Hirsutella (Fig. 4). By contrast, all of these groups are less important in the Gauss assemblage except for Globigerinita, which increases in abundance. Menardella is more abundant than in the overlying sequences, and Zegloglobigerina equals Globigerinita in abundance.

Several faunal fluctuations are worthy of particular notice (Fig. 4). Percentages of Globococcolithus, specifically Globorotalia punctatula and Globorotalia inflata, plunge to near zero in two latest Pliocene intervals centered at ~226 and 154 mbsf (~3.3 and 2.3 Ma, respectively), whereas cool species of Neogloboquadrina reach relative maxima. Globorotalia punctatula, in fact, is extinguished at the upper event, and the Globococcolithus population nearly doubles above the upper event. Several faunal changes occur near the Pleistocene/Pliocene boundary, which lies between 104 and 127.13 mbsf (Mansisco1 and Brunner, this volume). Globigerinoides obliquus becomes extinct (Berggren et al., 1995), Neogloboquadrina dutertrei peaks in abundance (Weaver, 1987), Globigerinella aequilateralis increases in abundance and remains near 5% of the assemblage throughout the Quaternary, whereas Globorotalia crassaformis and warm-water taxa of Neogloboquadrina become minor components of the Quaternary assemblage. One other faunal change is important in the Quaternary interval. Globorotalia truncatulinoides, dominated by the right coiling form, increases from ~1% of the assemblage in the lower Pleistocene to 5% on average above 82 mbsf (~1.29 Ma).

CLUSTER ANALYSIS

The cluster analysis separated samples into three major groups that were further divided into seven subgroups (Fig. 5). Five taxa are abundant in the assemblages of cluster 1, Neogloboquadrina pachyderma, Globigerinoides glutinata, Globigerinoides ruber, Globococcolithus, and Globigerina (Fig. 6). Neogloboquadrina pachyderma dominates the assemblages comprising ~30% of the fauna in cluster 1b and almost 40% of the fauna in cluster 1a. These relationships suggest that cluster 1 is a cool transitional association of species (Tolderlund and Bé, 1971; Kipp, 1976). The enrichment of Nq. pachyderma and depletion of solution-susceptible Globigerinoides glutinata in cluster 1a may be either a dissolution effect or surface-water cooling.

The same taxa that are important in cluster 1 are also important in cluster 2, but abundance is more equitably distributed and agglomerated samples using within-group average linkage (Norusis, 1988). The species counts were normalized to percentages within samples before computation of the clusters. The faunal compositions of clusters were determined by calculating the average and standard deviation of each taxon in each cluster of samples.
Samples in cluster 2c differ by an increase in the frequencies of Zea
globigerina and Globigerina, the former being associated with the
warmth and high salinity of subtropical water masses (Tolderlund
and Bé, 1971; see Dowsett and Poore, 1990). It is the most subtropi-
cal of the transitional subcluster assemblages. The three assemblages
are typical of a warm transitional association of species (Tolderlund

The assemblages of cluster 3 (Fig. 6) are distinct from those of
clusters 1 and 2. Cluster 3 contains abundant Zeaglobigerina and
Globigerinita with minor amounts of Globoconella, which distin-
guishes it from the cluster 2c assemblage. The cluster 3a and 3b as-
semblages differ from one another in the importance of Neoglobo-
quadrina species. Cluster 3a has more cool-water species of Neoglo-
boquadrina, such as sinistral and dextral Neogloboquadrina
pachyderma, whereas the assemblage of cluster 3b has more warm-
water species of Neogloboquadrina, like Nq. acostaensis, Nq. hune-
rosa, and Nq. dutertrei. The cluster 3 assemblage is warmer than
those of clusters 1 and 2, based on its greater species diversity, greater
species equitability, and larger numbers of subtropical taxa (Table 3
on CD-ROM; Fig. 4). The assemblages are cool (cluster 3a) and
warm (cluster 3b) subtropical.

TIMING OF FAUNAL CHANGES

The subtropical assemblage of cluster 3 dominates the samples of the
Gauss Chron (Fig. 7). There is a cool interval from ~3.43 to 3.21
Ma (235.06–218.81 mbsf), when the cool subtropical assemblage of
cluster 3a and the warm transitional assemblage of cluster 2c occur,
followed by a return to warm subtropical conditions from 3.19 to 3.03
Ma (217.94–206.47 mbsf). Conditions fluctuate from 2.95 to 2.73
Ma (200.24–184.80 mbsf) between the cool and warm transitional faunas
of clusters 3a and 3b, then begin to shift to distinctly cooler faunas heralded by cool events at 2.69 and 2.61 Ma (181.79 and
176.26 mbsf), when warm transitional faunas of clusters 2a and 2c appear. Assemblages become steadily cooler from 2.58 to 2.49 Ma
(174.18–167.82 mbsf), return briefly to the warm transitional fauna of
cluster 2c at 2.40 and 2.38 Ma (161.15 and 159.60 mbsf), and then return to the transitional faunas that characterize the remainder of the
Pliocene and Quaternary.

The latest Pliocene and Quaternary faunas alternate between
warm and cool transitional assemblages that may also be better and
less well preserved. From 2.35 to 1.91 Ma (157.79–74.51 mbsf), as-
semblages fluctuate between the cool and warm transitional faunas of
clusters 1b and 2b, with sporadic occurrences of the cool and warm
transitional faunas of clusters 1a and 2a. Beginning at 1.11 Ma (68.73
mbsf), only one set of warm and cool transitional assemblages, 1a
and 2a, dominate the site. The upper Quaternary interval may be either cooler or more poorly preserved than that of the lower Quater-

COMPARISON TO OTHER SITES

IN THE NORTH ATLANTIC OCEAN

A similar sequence of Pliocene and Quaternary climatic events
has been reported from the North Atlantic Ocean and African contin-
ental locales (deMenocal, 1995, and references therein). Faunal evi-
dence from the North Atlantic Ocean, including estimates of SST,
increased abundance of cool Neogloboquadrina, and the disappear-
ance of warmer species like Globoconella, indicate a cool interval
centered at 3.3 Ma (= “puncticulata gap” of Dowsett and Loubere,
1992; Dowsett and Poore, 1990, 1991; Raymo et al., 1987; Dowsett
et al., 1988). The cool event falls within a warm interval from 4.0 to
~3 Ma, when surface waters were warmer than those of the present-
day at Sites 548, 552, 606, and 609 in the North Atlantic Ocean. The
Pliocene warmth was terminated by a cooling (Dowsett and Loubere,
1992; Dowsett and Poore, 1990, 1991; Raymo et al., 1987; Dowsett
et al., 1988; Tiedemann et al., 1994) that began at ~2.9 Ma and cul-
mulated in a rapid decrease between 2.5 and 2.4 Ma, when ice rafted
debris appeared in northerly cores (Backman, 1979; Zimmerman et
al., 1984; Shackleton et al., 1990). Quaternary climate in the North
Atlantic Ocean changed again in timing and intensity of glacial cy-
cles at some point in the middle Pleistocene between 1.1 and 0.4 Ma,
depending on the variables assessed (Ruddiman et al., 1989; Raymo
et al., 1989). For example, Ruddiman et al. (1987), noted a change
from warm to cooler SST at ~1.05 Ma at Site 607 near the Azores Is-
lands. Ultimately, these events were caused by changes in climatic re-
sponse at high and low latitudes to orbital periodicities (Hays et al.,
1976; deMenocal, 1995; deMenocal et al., 1993; Tiedemann et al.,
1994; Ruddiman et al., 1989; Raymo et al., 1989).

The climatic trends evident in the late Pliocene at Site 953 are
similar in timing to those described above from higher latitudes in the
North Atlantic Ocean, although there are some apparent discrepan-
cies in detail that may be caused by differences in data analyses and
slight differences in timescales and age models. At Site 953, between
3 and 2.58 Ma, we see a cycling between cool and warm subtropical
assemblages with two intrusions of cool assemblages followed by a
Table 2. Taxonomic composition of counting groups used in the cluster analysis.

<table>
<thead>
<tr>
<th>Counting group</th>
<th>Taxon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Globoquadrina spp.</td>
<td>Gq. alitssipra</td>
</tr>
<tr>
<td></td>
<td>Gq. venezuelana</td>
</tr>
<tr>
<td>Globigerinella aequilaterals</td>
<td>Ge. aequilaterals</td>
</tr>
<tr>
<td>Globigerinella spp.</td>
<td>Ge. calida calida</td>
</tr>
<tr>
<td></td>
<td>Ge. calida praecalida</td>
</tr>
<tr>
<td></td>
<td>Ge. cf. calida praecalida</td>
</tr>
<tr>
<td></td>
<td>Ge. obesa</td>
</tr>
<tr>
<td></td>
<td>Ge. cf. obesa</td>
</tr>
<tr>
<td>Globigerina spp.</td>
<td>Gg. apertura</td>
</tr>
<tr>
<td></td>
<td>Gg. bulboides</td>
</tr>
<tr>
<td></td>
<td>Gg. cf. bulboides</td>
</tr>
<tr>
<td></td>
<td>Gg. eames</td>
</tr>
<tr>
<td>Globigerina falconensis</td>
<td>Gg. falconensis</td>
</tr>
<tr>
<td>Zeaglobigerina spp.</td>
<td>Gg. rubescens</td>
</tr>
<tr>
<td></td>
<td>Gg. decoraperta</td>
</tr>
<tr>
<td></td>
<td>Gg. cf. draysi</td>
</tr>
<tr>
<td></td>
<td>Gg. woodi</td>
</tr>
<tr>
<td></td>
<td>Gg. cf. woodi</td>
</tr>
<tr>
<td>Globococarella spp.</td>
<td>Gr. inflata</td>
</tr>
<tr>
<td></td>
<td>Gr. puncticalata</td>
</tr>
<tr>
<td></td>
<td>Gr. cf. puncticalata</td>
</tr>
<tr>
<td>Hirsutella spp.</td>
<td>Gr. hirsutae</td>
</tr>
<tr>
<td></td>
<td>Gr. scitula</td>
</tr>
<tr>
<td></td>
<td>Gr. margaritae evoluta</td>
</tr>
<tr>
<td>Menardella spp.</td>
<td>Gr. exilis</td>
</tr>
<tr>
<td></td>
<td>Gr. cultrata</td>
</tr>
<tr>
<td></td>
<td>Gr. mioenca</td>
</tr>
<tr>
<td></td>
<td>Gr. cf. mioenca</td>
</tr>
<tr>
<td></td>
<td>Gr. pertenais</td>
</tr>
<tr>
<td></td>
<td>Gr. cf. pseudomioenca</td>
</tr>
<tr>
<td>Globorotalia crassaformis Group</td>
<td>Gr. crassaformis</td>
</tr>
<tr>
<td></td>
<td>Gr. crassula</td>
</tr>
<tr>
<td></td>
<td>Gr. ronda</td>
</tr>
<tr>
<td>Truncorotalia spp.</td>
<td>Gr. tosaensis</td>
</tr>
<tr>
<td></td>
<td>Gr. truncatulinoiades (dex)</td>
</tr>
<tr>
<td></td>
<td>Gr. truncatulinoiades (sin)</td>
</tr>
<tr>
<td>Globigerinoides spp. A</td>
<td>Gs. bolli</td>
</tr>
<tr>
<td></td>
<td>Gs. conglobatus</td>
</tr>
<tr>
<td></td>
<td>Gs. obliquus</td>
</tr>
<tr>
<td></td>
<td>Gs. obliquus extremus</td>
</tr>
<tr>
<td></td>
<td>Gs. obliquus obliquus</td>
</tr>
<tr>
<td></td>
<td>Gs. ruber</td>
</tr>
<tr>
<td></td>
<td>Gs. tenellus</td>
</tr>
<tr>
<td>Globigerinoides spp. B</td>
<td>Gs. trilobus</td>
</tr>
<tr>
<td></td>
<td>Gs. sacculfer</td>
</tr>
<tr>
<td>Globigerinita spp.</td>
<td>Gt. glutinata</td>
</tr>
<tr>
<td></td>
<td>Gt. icta</td>
</tr>
<tr>
<td></td>
<td>Gt. uvula</td>
</tr>
<tr>
<td>Warm Neogloboquadrina spp.</td>
<td>Nq. acostaensis (dex)</td>
</tr>
<tr>
<td></td>
<td>Nq. cf. acostaensis (dex)</td>
</tr>
<tr>
<td></td>
<td>Nq. acostaensis (sin)</td>
</tr>
<tr>
<td></td>
<td>Nq. dutertrei</td>
</tr>
<tr>
<td></td>
<td>Nq. cf. dutertrei</td>
</tr>
<tr>
<td></td>
<td>Nq. humerosa</td>
</tr>
<tr>
<td>Cool Neogloboquadrina spp.</td>
<td>Nq. pachyderma (dex)</td>
</tr>
<tr>
<td></td>
<td>Nq. cf. pachyderma (dex)</td>
</tr>
<tr>
<td></td>
<td>Nq. pachyderma (sin)</td>
</tr>
<tr>
<td>Sphaeroidinella and Sphaeroidinellopsis</td>
<td>Sa. dehiscens</td>
</tr>
<tr>
<td></td>
<td>Ss. seminalina</td>
</tr>
<tr>
<td>Orbula universeura</td>
<td>Or. universa</td>
</tr>
</tbody>
</table>

Note: Dex = dextrally coiled specimens, and sin = sinistrally coiled specimens.

emphasized step-like changes and obscured continuous trends, so we suspect that differences in detail between our site and others in the North Atlantic Ocean might vanish with application of the same method (i.e., transfer function) and identical age models. We can say with confidence that assemblages at our latitude (29°N) cool dramatically a short time before and during initial buildup of glacial ice at 2.4 Ma, inferred from oxygen-isotope data (Sikes et al., 1991; Shackleton et al., 1990; apply age model of Dowsett and Loubere, 1992).

We observed a distinct faunal change to more dissolved and/or cooler assemblages in the Quaternary at ~1.11 Ma. Cooling of SST and a decrease in calcium carbonate also occur after 1.0 Ma at Site 607, which lies upstream from the Canary Islands (Ruddiman et al., 1987). A mid-Pleistocene transition in both the magnitude and rhythm of many variables, such as oxygen isotopes, percentage of calcium carbonate, SST (Ruddiman et al., 1989), and flux, composition and size of eolian dust (Sarnthein et al., 1982; Stein, 1985; Tiedemann et al., 1989), occurred between 1.1 and 0.4 Ma, depending on the variable considered and the location studied (Ruddiman et al., 1989). Our mid-Pleistocene event may precede these slightly, but is probably related to the same underlying change in dominance of orbital eccentricity over obliquity in modulation of North Atlantic climate (Ruddiman et al., 1989). Clearly, climate changes at the site are connected with climate changes at high latitude.

Our data show that the surficial waters surrounding Gran Canaria changed in synchrony with indicators of aridity known from the marine record, so it is reasonable to infer that climate on Gran Canaria followed the regional pattern. The water mass changes we infer from assemblage changes at ~2.8 Ma coincide with increased upwelling, inferred from increased rates of biogenic opal sedimentation, and increased eolian deposition, inferred from flux, composition, and the size of eolian dust (Sarnthein et al., 1982; Stein, 1985; Tiedemann et al., 1989), offshore from the northern Sahara. The water mass change we infer at 1.1 Ma coincides with an increase in eolian deposition between 1.1 and 0.7 Ma at Site 659 (deMenocal, 1995; deMenocal et al., 1993; Tiedemann et al., 1989). All are connected to intensification of the northeast trade winds, which are driven by increased temperature gradients at high latitudes.

CONCLUSIONS

1. The Gauss subtropical assemblages of planktonic foraminifers differ markedly from the Matuyama and Brunhes transitional assemblages. They contain more Zeaglobigerina, Globigerin-ita, and Menardella and less Neogloboquadrina, Globigerina, Globigerinoides, Globoconella, and Hirsutella than the younger assemblages.

2. Q-mode cluster analysis agglomerated three groups of samples that are distinguished by three assemblages: a subtropical assemblage in cluster 3, a warm transitional assemblage in cluster 2, and a cool transitional assemblage in cluster 1. Each group is composed of two or three subgroups whose assemblages differ slightly probably because of differences in either temperature or post-depositional preservation. Cluster 3 characterizes the Gauss samples and is most different from the other two clusters based on the simple Euclidean distance coefficient.

3. The succession of assemblages at Site 953 shows a subtropical fauna in the Gauss, with a cooler transitional fauna in a short interval at ~3.3 Ma. Faunas become progressively cooler between 3.0 and 2.38 Ma, with several apparent warming and cooling events imbedded in the general trend. Assemblages are transitional throughout the remainder of the Matuyama and the Quaternary, and alternate frequently between warmer and cooler transitional faunas. There is a change to slightly different transitional faunas after ~1.1 Ma.
4. The timing of faunal events near Gran Canaria matches that found in the higher latitude North Atlantic Ocean.
5. The timing of faunal events also coincides with upwelling and aridity indicators from the North African region, suggesting that Gran Canaria endured a climate that corresponds to that of the Northern Sahara and was likely more humid than at present during the Gauss and more arid during the Matuyama and Brunhes Chrons.

ACKNOWLEDGMENTS

The research was supported in part by a grant from the JOI U.S. Science Support Program to C. Brunner and a Consiglio Nazionale delle Ricerche grant to R. Maniscalco during her 1995–1996 stay at the Istituto di Geologic Marina, Consiglio Nazionale delle Ricerche, Bologna (Institute of Marine Sciences Contribution Number 0185).

REFERENCES

Date of initial receipt: 1 July 1996
Date of acceptance: 10 January 1997
Ms 157SR-106
Figure 5. Dendrogram of Q-mode cluster analysis of 103 samples from Site 953. Three major clusters of samples are identified at the rescaled distance coefficient of 20, and seven subclusters are distinguished at the rescaled distance coefficient of 15.
Figure 6. The average percentage of each counting group is shown within each subcluster. The environmental meaning of each subcluster is made based on the abundance of species and knowledge of their environmental preferences.
Figure 7. The cluster assignment of each sample is plotted vs. depth and age in Site 953. The clusters are arranged from coolest on the left to warmest on the right so that the plot clearly shows the cooling of surface waters from the late Pliocene to the latest Quaternary.