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ABSTRACT

Microbiological and molecular examination of cores from the Trans-Atlantic Geotraverse (TAG) hydrothermal field (Leg
158) indicated that, in the samples analyzed and within the detection limits of the methods used, there was no significant micro-
bial biomass that could be indicative of deep subsurface biological communities at this site. Two samples from the upper 100
cm of core produced enrichment cultures of hyperthermophilic sulfur-reducing microorganisms. However, the possibility that
these organisms were entrained from the surface of the hydrothermal field during coring cannot be ruled out. It was concluded
that, although an extensive subsurface biosphere might exist elsewhere at TAG, no conclusive evidence for such an environment
was obtained from the samples analyzed during Leg 158 and the challenge to explore this tantalizing hypothesis remains open.
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INTRODUCTION

Hydrothermal circulation at ridge crests plays a dynamic role in
determining the physical, chemical, and biological interactions at
these sites. It is well established that the diverse biological communi-
ties associated with hydrothermal venting are based on chem-
olithotrophic utilization of reduced constituents from hydrothermal
fluids. Surficial sampling of deep-sea hydrothermal vent communi-
ties has greatly increased our understanding of these ecosystems, yet
our knowledge of a significant part of these systems, the subsurface,
is severely limited. Nevertheless, there is growing consensus that a
substantial subsurface biosphere may exist (Gold, 1992; Deming and
Baross, 1993; Pedersen 1993; Thorseth et al., 1995) and there is
growing indirect evidence that deep-sea hydrothermal vents are
“windows” into a vast subsurface biosphere (Deming and Bar
1993). For example, hydrothermal fluid compositions from the 
deavour Segment of the Juan de Fuca Ridge suggested underlyi
ganic compounds (Lilley et al., 1993) and contained DNA (Stra
et al., 1990). Many of the hyperthermophilic microorganisms t
have been isolated were isolated directly from venting fluid sam
(e.g., Reysenbach and Deming, 1991) and these isolates are a
grow at pressures considerably greater than those encountered
seafloor, suggesting an ability to grow in subsurface habitats m
deeper than accessible hydrothermal formations. Several of thes
lates have enzymes that are stable at much higher temperature
those at which they were grown (e.g., Bryant and Adams, 19
Baross and Deming, 1995). It remains unclear whether these m
organisms are indigenous or transient to these environments, ye
unlikely that they are able to grow in the fast-flowing fluids. Th
suggests that the organisms may have originated from areas un
ing the active seafloor vents or from recharge areas in the hydro
mal system. Furthermore, in situ sampling devices (“vent ca
placed on top of hydrothermal vents have sampled a rich diversi
microorganisms (A.-L. Reysenbach, unpubl. data) that may h
been flushed into the sampler from underlying subsurface comm
ties.

1Herzig, P.M., Humphris, S.E., Miller, D.J., and Zierenberg, R.A. (Eds.), 1998.
Proc. ODP, Sci. Results, 158: College Station, TX (Ocean Drilling Program).

2Department of Biochemistry and Microbiology, Cook Campus, Rutgers University,
New Brunswick, NJ 08903, U.S.A. alr@imcs.rutgers.edu

3Department of Geology and Geochemistry, Stockholm University, S-106 91 Stock-
holm, Sweden.

4Biology Department, Indiana University, Bloomington, IN 47405, U.S.A.
5Station Biologique, B. P. 74, F-29682 Roscoff cedex, France.
s,
-
 or-
e
t

es
e to
t the
ch
iso-
than
9;
ro-
t is

rly-
er-
”)
 of
ve
ni-

The presence of microbial life in terrestrial subsurface enviro
ments has been reported in deep formations associated with p
leum and sulfur deposits and with deep aquifers (Ghiorse and Wil
1988; Stetter et al., 1993; Szewzyk et al., 1994; L’Haridon et 
1995, Stevens and McKinley, 1991). Evidence is accumulating fr
some deep-sea drilling operations (e.g., Ocean Drilling Progr
[ODP] Legs 112 and 128; Cragg et al., 1990; Cragg et al., 1992),
similar subsurface life exists in sediments beneath the deep oc
The presence of bacterial DNA in glass from pillow lavas from OD
Hole 896A, Leg 148, was used to estimate that the microorgani
were at a depth of at least 237 m in the volcanic basement at a 
perature of 70°C (Giovannoni et al., 1996; Furnes et al., 1996). 
cently, bacterial distributions associated with deep sediments in
enced directly by hydrothermal systems (Middle Valley, Juan 
Fuca Ridge) were studied for the very first time (Cragg and Par
1994). The bacterial numbers correlated in a complex way with ch
rinity and temperature within the sediments, and the vent fluid flo
This relationship confirmed the response of bacteria to hydrother
fluid flux in the subsurface within sediments; however, no study 
attempted to examine the distribution of bacteria within an unse
mented hydrothermal vent field, which would be more directly ind
ative of inter-crustal microbial communities because the hydroth
mal system is not overlaid by organic-rich sediments.

During ODP Leg 158, a series of cores was obtained from ho
drilled into the large hydrothermally active mound of the Tran
Atlantic Geotraverse (TAG) hydrothermal field providing an exce
lent opportunity to test the hypothesis whether, within the detec
limits of the methods used, an active microbial subsurface biosp
could be detected at this site. Here we report the search for evid
for microbial life in the unsedimented hydrothermal vent system
the TAG hydrothermal mound.

MATERIALS AND METHODS

Site Description

The TAG hydrothermal field is located on the Mid-Atlantic Ridg
at 26°08′N and at a depth of 3650 m. The hydrothermal mound is 
proximately 50 m high and 200 m in diameter. Two mineralogica
distinct areas reflect different, yet related, venting on the mou
(Humphris et al., 1995). High-temperature venting (>360°C) occ
from the upper terrace chalcopyrite–anhydrite-rich chimneys. On
lower platform, the venting is lower in temperature (260−300°C), the
fluids are zinc rich and the chimneys are dominated by sphalerite.
355
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tailed mineralogical descriptions of the cores obtained from these ar-
eas are provided elsewhere in this volume. Samples analyzed varied
depending on location but were largely pyrite breccias, varying in
their silica or anhydrite content. As no hydrological data were avail-
able for the site, it was assumed that if microorganisms were present
they would be near fluid flow or within porous rock and therefore,
wherever possible, sampling was restricted to samples containing
veins indicative of fluid flow.

Shipboard Handling

Once the core was brought on board, samples for microbiological
analyses were taken as aseptically as possible. Subsamples were fro-
zen immediately for DNA analyses. For inocula into growth media,
samples were maintained under nitrogen and were ground and inoc-
ulated anaerobically into growth media for methanogens (Widdel,
1992) and for sulfur-reducing hyperthermophiles (Erauso et al.,
1993). Additional samples were stored under nitrogen at 4°C in s
ile glass vials for shore-based inoculation of enrichment media
thermophiles. Samples were fixed in 3% paraformaldehyde (v/v
sterile artificial seawater (ASW) for scanning electron microsco
and fluorescence microscopy. Samples for in situ hybridization s
ies were either frozen immediately or washed in ASW, then place
4% paraformaldehyde in ASW for 6 hr, rinsed in phosphate buffe
saline (PBS), and stored in 50% ethanol in PBS at 4°C until the s
ples reached the laboratory, where they were stored at −20°C.

Microscopy

Paraformaldehyde-fixed samples were stained with 4′,6′-diamidi-
no-2-phenylindole (DAPI) for 5 min (Porter and Feig, 1980), a
viewed using a Nikon Microphot-FXA photomicroscope. Contro
without DAPI were used to distinguish between background fluor
cence and possible stained cells. For scanning electron microsc
paraformaldehyde-fixed samples were passed through an ethan
hydration series (10%−100%), critical point dried, mounted on scan
ning electron microscope stubs and sputter-coated with gold-pal
um. The samples were viewed in a Cambridge 5250 MK2 scan
electron microscope.

In Situ Hybridization

Ethanol-fixed samples were mixed by using a vortex, resuspen
in PBS, and a subsample (30 µL) was smeared onto gelatin-co
glass slides (Giovannoni et al., 1988) and air dried. In situ hybrid
tions were done as described by DeLong et al. (1989) using both
terial-specific and universal fluorescein-labeled probes (Giovann
et al., 1988) and viewed directly on a Nikon Microphot-FXA phot
microscope. 

DNA Extraction

Samples from cores were rinsed in sterile seawater, and whe
possible, a subsample from the inner portion of a sample was ta
The samples were first ground with a sterile pestle and mortar. D
was extracted and purified according to the methods describe
Zhou et al. (1996) and the method of Barns et al. (1994), which 
developed specifically for hydrothermal sediments.

Shore-Based Enrichments of Hyperthermophiles

All samples were kept anaerobic during processing. Hung
tubes containing 4.5 mL of YPS-medium for sulfur-reducers (Era
et al., 1993) were inoculated with approximately 1 cm3 of sample,
pressurized with N2 (100 kPa), and incubated without shaking 
80°C until growth was observed. The samples were used as ino
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for enrichment of methanogens (50-mL vials containing 4.5 mL 
medium (Jones et al., 1989) with a H2/CO2 as the gas phase), thiosul-
fate-reducers (Hungate tubes containing 4.5 mL of YP-medium co
taining 10 mM thiosulfate with N2 (100 kPa) [Jeanthon et al., 1995])
and sulfate-reducers (stoppered 25-mL bottles containing 4.5 mL
YP basal solution supplemented with 0.05% yeast extract, 10 m
lactate, and 15 mM acetate with a N2/CO2 [80/20] gas phase [Widdel,
1992]). All media were incubated at 75°C without agitation.

RESULTS

A summary of the results obtained is presented in Table 1.

Microscopy
Direct Counts

Cell numbers were too low to determine a reliable cell count. Fu
thermore, autofluorescence interference of minerals made it very d
ficult to distinguish between autofluorescence and DAPI-staine
cells (Fig. 1, see arrows). Thin rod-like structures appeared to dom
nate, although some diffuse staining of Thermococcus-like cocci
structures were observed (Fig. 1B). However, the background au
fluorescence in these samples is problematic for interpretation.
some cases, dividing rods were observed (Fig. 1J). These narrow r
are reminiscent of Thermophilum-like cells.

Scanning Electron Microscopy

An example of a scanning electron micrograph of a sample is p
sented in Figure 2. Electron microscopy did not reveal the presen
any microbial structures. Figure 2 indicates similar needle-like stru
tures or potential Thermophilum-like cells as those observed with
DAPI-stained preparations. The thread-like coating on one sam
(data not shown) did not appear to be biological.

In Situ Hybridization

In order to confirm the observations from DAPI-stained prepar
tions, in situ hybridization using the small subunit-specific rRNA
probes were performed on a selection of samples. Although un
phase contrast microscopy, similar microbial-like structures to tho
seen with DAPI-staining were seen (Fig. 1), the fluorescein-label
probes did not hybridize to these “organisms.” Either these orga
isms were too inactive (low ribosome numbers), and therefore t
probe was not sensitive enough, or the probe was not taken up by
cells, or the cell-like structure is not an organism, but an artifac
Some slides that were viewed had cell-like structures that autoflu
resced, and therefore no conclusions could be drawn from these p
arations. Fluorescence, as a result of the presence of methanog
could not be ruled out.

DNA Extraction

No DNA was obtained from the samples extracted. To ascerta
that the DNA was not being lost during the extraction procedure
control using Escherichia coli cells added to a subsample was used
and the DNA extracted from this sample (Table 1).

Enrichments

Shipboard enrichments for methanogen and sulfur-reducers w
done at 60°, 80°, and 90°C. Growth was monitored microscopical
Growth at 80°C in a medium for sulfur-reducers was obtained fro
one sample (Sample 158-957B-1R-1, 100−103 cm). The initial en-
richment was a mixed culture of cocci and short rods. However, su
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Table 1. List of ODP 158 samples analyzed for microorganisms and DNA.

Notes: * = detailed descriptions in Humphris, Herzig, Miller, et al., 1996. Cell symbols: + = apparent detection of cells stained with the DNA-specific stain, DAPI; ± = uncertain; — =
no cells. DNA symbols: — = no detected DNA with the methods used; + = DNA detected. Growth symbols: + = growth in enrichment culture media; — = no detectable growth.
† = Escherichia coli cells added to subsample of Sample 158-957F-1N-1, 19-21 cm.

Core, section, 
interval (cm)

Approximate depth 
(mbsf) Dominant lithology* Cells DNA Growth

158-957B-
1R-1, 15-20 0.15 Surface material — — —
1R-1, 100-103 1.0 Surface material + — —
4R-1, 8-10 19.9 Clay horizon — — —

158-957C-
7N-1, 24-25 19.5 Pyrite-anhydrite breccia 

with anhydrite veins
— — —

7N-1, 67-68 19.9 Pyrite-anhydrite breccia 
with anhydrite veins

— — —

7N-2, 36-37 20.8 Pyrite-anhydrite breccia 
with anhydrite veins

— — —

7N-3, 27-28 22.1 Pyrite-anhydrite breccia 
with anhydrite veins

— — —

11N-1, 39-42 30.7 Pyrite-silica breccia — — —
13N-2, 10-13 38.6 Pyrite-silica breccia — — —
14N-1, 74-75 40.2 Pyrite-silica breccia — — —
14N-2, 49-50 40.9 Pyrite-silica breccia — — —

158-957F-
1N-1, 19-21 0.19 Massive pyrite breccia, 

chalcopyrite
± — —

2N-1, 2-3 5.5 Massive pyrite breccia ± — —

158-957H-
1N-1, 60-73 8.93 Porous pyrite breccia — — —
3N-1, 22-26 18.13 Porous nodular pyrite breccia ± — —
5N-2, 48-58 27.89 Silicified wallrock breccia — — —

158-957K-
1X-1, 39-45 0.39 Porous massive pyrite with 

red and gray chert
— — —

157-957M-
1R-1, 1-5 0 Porous massive pyrite with 

red and gray chert
— — —

1R-1, 49-54 0.5 Porous massive pyrite with 
red and gray chert

— — —

158-957P-
12R-1, 0-4 52.0 Pyrite silica breccia with 

angular basalt
+ — —

12R-1, 138-140 52.13 Pyrite silica breccia with 
angular basalt

+ — —

158-957Q-
1R-1, 0-5 5.49 Iron oxides partially silicified — — —
1R-4, 112-116 6.39 Iron oxides partially silicified ± — —
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sequent transfers of this enrichment were unsuccessful, and the cul-
ture was lost. We were able to reenrich for this mixed culture in the
laboratory. This culture was a mixture of nonsporulating rods and
paired cocci. These initial enrichments were successfully transferred
into the same medium at 65°, 75°, and 85°C. No growth occurre
95°C. Paired cocci were observed in the subcultures; however
nonsporulating rods did not regrow. We are currently characteri
this hyperthermophilic culture more fully. Growth at 65°, 75° a
85°C also occurred in a sulfur-reducing medium inoculated w
Sample 158-957F-1N-1, 19−21 cm. Under phase-contrast microsc
py, this enrichment consisted of regular cocci occurring predo
nantly in pairs, typical of the Thermococcales group.

DISCUSSION

The existence of a subsurface biosphere at deep-sea hydroth
vents is a tantalizing yet problematic issue to resolve. Sampling a
tically is nearly impossible, although all precautions were taken d
ing this study to minimize contamination once cores reached the
face. Furthermore, we hypothesized that microbial communities
subsurface sites, occur along thermal gradients, and where the
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fluid flow. Therefore, wherever possible, sampling efforts were co
centrated along veins or in porous sulfides. Additionally, a combi
tion of classical and molecular tools was used to address the pro
as thoroughly as possible. It is well established that only a small 
tion of naturally occurring organisms usually grow in laboratory e
richments (e.g., Amann et al., 1995); however, positive growth d
provide definitive proof of viable organisms. The molecular too
used should have identified viable and dead organisms, or only D
The absence of detectable DNA, growth from samples obtained f
the upper few centimeters of the mound, and the inconclusive mic
copy results, suggest that the samples do not harbor very active
crobial communities. However, it is also possible that because
samples were so rich in goethite (data not shown), the DNA w
bound efficiently to this mineral and could not be detected by 
methods used (Holm et al., 1993). Holm and coworkers (1993) h
shown that FeOOH minerals like goethite are efficient scavenger
nucleotides and polynucleotides in aqueous systems. The exte
binding of the polymerized nucleotides (poly[A], poly[C], an
poly[U]) is approximately double that observed for the mononuc
otides, indicating that the increase in size of nucleotide molecules
creases the binding efficiency (Holm et al., 1993). We did, howev
attempt to overcome this problem during DNA extractions by e
357
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Figure 1. Photomicrographs of samples obtained with the DNA-specific stain, DAPI. A. Sample 158-957B-1R-1, 100–103 cm. B. Sample 158-957B-4R-1, 8–
10 cm. C. Sample 158-957C-7N-1, 24–25 cm. D. Sample 158-957F-2N-1, 2–3 cm. E. Sample 158-957B-4R-1, 8–10. F. Sample 158-957Q-1R-4, 112–116
cm. G. Sample 158-957Q-1R-4, 112–114 cm. H. Sample 158-957P-12R-1, 138–140 cm. I. Sample 158-957P-12R-1, 138–140 cm. J. Sample 158-957Q-1R-
4, 112–116 cm. Arrows indicate putative DAPI-stained bacterial cells. Bar = 5 µm.
358
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Figure 2. Scanning electron micrograph of Sample 158-957Q-1R-4, 112−116
cm. Bar = 10 µm.
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ganisms from the upper sections of the mound confirms results fr
enrichment cultures of sulfide chimney samples taken during su
mersible dives (e.g., Reysenbach and Deming, 1991) at Juan de F
Ridge and TAG hydrothermal field (e.g., Wirsen et al., 1993; Gilmo
and Cowan, 1995). Alternatively, organisms could have been e
trained from the hydrothermal vent field during core retrieval. Th
presence of chemical signatures suggestive of an underlying orga
input into the hydrothermal fluids as reported for the Endeavor Se
ment of the Juan de Fuca Ridge (Lilley et al., 1993), has not been
ported at TAG. Each hydrothermal site is unique, and therefore, i
entirely possible that a significant microbial biomass exists in th
subsurface below other unsedimented ridges. Sedimented ridges s
as at Middle Valley support microbial populations that exist and r
spond to thermal gradients and fluid flux (Cragg and Parkes, 199
However, from this study, it appears that at TAG hydrothermal fiel
the hydrothermal venting does not represent a “window” into th
deep subsurface, but more likely a glimpse into the porous few c
timeters within the mound, at a scale similar to that seen within s
fide chimney walls.
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