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ERATOSTHENES PLATFORM (SITES 966 AND 967)1

Brian M. Whiting2

ABSTRACT

A major thematic objective of Ocean Drilling Program Leg 160 drilling was an improved understanding of the processes
involved in the initial stages of continental collision. The Eratosthenes platform is hypothesized to be a fragment of thinned
North African crust that is about to be subducted beneath Cyprus. Incipient subduction appears to be accompanied by extensive
normal faulting, indicating that the Eratosthenes platform is undergoing breakup. Drilling at Sites 965−968 was aimed prima-
rily at documenting the timing and nature of the subsidence and breakup. Using shipboard paleontologic and physical proper-
ties data, supplemented with postcruise age refinements, paleobathymetric estimates, and porosity vs. depth determinations, I
present quantitative decompacted subsidence histories for Sites 966 and 967, which are located on or immediately adjacent to
the Eratosthenes platform. Taken together, the subsidence results are consistent with a model in which the Eratosthenes plat-
form is a part of North African passive margin that underwent exponentially decreasing thermal subsidence since at least early
Cretaceous time, was uplifted during the late Oligocene or early Miocene, and then began a phase of rapid tectonic subsidence
by late Miocene time, which has continued to the present day. The overall interpretation of the subsidence history presented
here is that the Eratosthenes platform represents a thinned promontory of North African lithosphere that is now in the early
stages of tectonic contact with the Eurasian plate. Breakup and subsidence since Miocene time may be related to bending
stresses on the North African lithosphere associated with collision.
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INTRODUCTION

A major goal of Leg 160 was to decipher the processes involved
in the early stages of continent-continent collision. The site of this in-
vestigation has commonly been referred to as the Eratosthenes sea-
mount (Fig. 1), which is likely a continental fragment (based on re-
sults presented here and elsewhere in this volume) and will be re-
ferred to herein as the Eratosthenes platform. The present-day
tectonic setting of the Eratosthenes platform (Fig. 1) is dominated by
collisional tectonics, with impingement of the Eratosthenes platform
upon the Cyprus active margin, breakup of the platform, and incipient
subduction of the Eratosthenes platform down the Cyprus trench,
with a significant strike-slip component (Robertson and Xenopho-
ntos, 1993; Piper et al., 1996; Robertson et al., 1995b; Robertson et
al., 1996). The early stages of hard collision are not well represented
by modern analogues and are not well preserved in the ancient record,
so the breakup and underthrusting of the Eratosthenes platform be-
neath Cyprus represents an opportunity to document these processes.
The goal of this paper is to address fundamental objectives of Leg
160 by providing a quantitative subsidence and uplift history of Sites
966 and 967, which are located on the Eratosthenes platform (Fig. 1).

Regional Setting

The easternmost Mediterranean was formed by rifting of the north
margin of Gondwana in the Triassic (Garfunkel and Derin, 1984).
The eastern Mediterranean represents the last remnant of Neotethys
that is in the final stages of closure associated with the diachronous
collision of the African and Eurasian plates (Fig. 1). The Eratosthenes
platform is generally interpreted to be a carbonate platform built on a
rifted continental fragment (Robertson et al., 1997). Oceanic crust
was formed in much of the easternmost Mediterranean by the late
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Triassic, as represented by “accreted” fragments in southwestern
prus (Mamonia Complex), southwestern Turkey (Mamonia Co
plex), and northern Syria (Baer-Bassit) (Robertson et al., l991). D
ing the Cretaceous, relative motion of the African and Eurasian p
became convergent; in response to this regional plate converg
subduction began within the southerly eastern Mediterranean o
basin, leading to formation of the Troodos ophiolite complex 
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Figure 1. Site location map, bathymetry (in meters below sea level), and tec-
tonic overview of Eratosthenes platform. Barbed line indicates present loca-
tion of convergent margin.
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back-arc spreading (Robertson and Xenophontos, 1993). The associ-
ated subduction zone probably dipped northward and was located to
the south of Cyprus (Robertson et al., 1997). On the basis of paleo-
magnetic studies of the Troodos ophiolite, much of Cyprus under-
went counterclockwise rotation as a discrete microplate during the
Late Cretaceous through early Eocene (Clube et al., 1985; Morris et
al., 1990; Morris, 1996). Beginning in at least the early Miocene, re-
maining easternmost Mediterranean oceanic crust to the south of Cy-
prus began northward subduction, and the North African plate, in-
cluding the Eratosthenes platform, began its final northward drift to-
wards Cyprus (Dewey and ¼engör, 1979; Dercourt et al., 1993). Thu
by early Miocene time, southern Cyprus was located on the lea
edge of what had by then become the Eurasian plate. Bathymet
ly, the Eratosthenes platform is a large, subrectangular, elevated
ture in the Mediterranean Sea south of Cyprus (Fig. 1). A regio
magnetic anomaly (Truffert et al., 1993) only partly coincides w
the bathymetric expression of the Eratosthenes platform, and gr
data indicate lack of compensation of the Eratosthenes plat
(Truffert et al., 1993). Pre-Leg 160 work suggests that the E
tosthenes platform is in the process of collision with the Cyprus
tive margin to the north (Robertson, 1990; Woodside, 1991; Rob
son, 1994; Robertson et al., 1995b). In terms of subsidence his
an implication of the above tectonic summary is that subsidenc
the Eratosthenes platform sites should follow an exponentially
caying trend that is characteristic of cooling of passive marg
(McKenzie, 1978), possibly overprinted by more rapid subside
that is characteristic of convergent-margin tectonics (Whiting 
Thomas, 1994).

DATA AND METHODS

Subsidence or geohistory curves (van Hinte, 1978; Steckler
Watts, 1978) are used to portray depression (or uplift) of a refer
surface through time. An essential step in subsidence calculatio
quantitative decompaction of the sedimentary column between 
dated horizon. Ideally, the reference horizon portrayed should
crystalline basement, but this is not always possible. Lacking l
seismic estimates or drilled determinations of depth to basemen
the Eratosthenes platform sites, I assumed a reference surface 
below the base of the deepest holes at Site 967, which pene
rocks of the greatest age. For Site 966, I used a reference surfac
is based on a total thickness of sediments comparable to that o
967. For both sites, I assumed that the reference surface repres
the Hauterivian/Barremian age of the onset of regional thermal 
sidence. The effect of errors in the depth or age of the assumed 
ence surface would be to alter the starting point (origin) of the c
puted subsidence curves rather than the overall shape of the cu
an incorrect selection of reference horizon would also systematic
affect decompaction calculations (see below).

Data required for subsidence calculations include numerical 
of selected horizons, estimated paleobathymetry of the horiz
(from facies and paleontologic data), lithology, and an estimate o
compaction history of the sediment column. Originally, tectonic s
sidence calculations (“backstripping”) involved removal of sedim
and water load using an assumption of Airy isostasy (Steckler
Watts, 1978; Sclater and Christie, 1980). Although Airy isostasy
mathematical convenience, it is not rheologically realistic for th
mally old lithosphere or for known flexural problems. An alternat
is to portray decompacted, water-filled depth to basement thro
time (“total subsidence”); this approach follows Whiting et 
(1994), Whiting and Thomas (1994), and Thomas and Whi
(1996) and has the advantage of being sensitive to sedimento
and isostatic inputs. Total subsidence curves, which were used 
intermediate step in Airy backstripping calculations by Sclater 
Christie (1980), are thus used here because of the inappropriat
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of assuming Airy isostasy at a convergent margin. Flexural backst
ping could provide an alternative approach, but requires major 
sumptions about the long-term mechanical and thermal behavio
the lithosphere that cannot be justified with available data from 
Eratosthenes platform region.

Porosity vs. Depth

To correctly define subsidence rates, it is necessary to estim
how the sediment has changed thickness as a function of time 
thus correct the present-day sediment thicknesses for effects of c
paction. Typically, downhole change in porosity is modeled as an 
ponential of the form:

φ = φ0 e–cz,

where φ is porosity at depth z in meters, φ0 is the initial porosity of
the sediment, and c describes the rate of porosity decrease with
depth (Athy, 1930; Perrier and Quiblier, 1974; Schmoker and Halley,
1982; Doglioni and Goldhammer, 1988) Although geophysical log-
ging was performed at Sites 966 and 967, large variations in caliper
(and thus borehole) diameter (Emeis, Robertson, Richter, et al.,
1996) made neutron porosity measurements unreliable. Therefore,
composite shipboard index-properties data for Sites 966 and 967
provided the most comprehensive and reliable basis to estimate φ0
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Figure 2. Site 967 index properties data and least-squares exponential fit.
Exponential fit was obtained by using built-in routines of the Kaleidagraph
plotting and statistics program.
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Figure 3. Data summary for Site 967, showing age, paleobathymetry, and lithology.
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and c. Because of the greater depth of penetration, Site 967 was se-
lected for downhole porosity modeling, and standard least-squares
curve-fitting methods were used to determine an overall best-fitting
porosity-depth curve (Fig. 2). Existing compaction literature indi-
cates that important lithology-dependent differences in compaction
behavior exist; however, index properties data were not sufficient to
permit determination of individual porosity-depth relationships for
each lithology. Based on broad similarities in depositional history, I
assumed that the porosity-depth relationship obtained for Site 967 is
also valid for Site 966.

Biostratigraphy and Paleobathymetry

Numerical ages for Pliocene and Quaternary sediments (Figs. 3,
4) are based on shipboard biostratigraphy, which were based on cal-
careous nannofossils and planktonic foraminifers (Emeis, Robertson,
Richter, et al., 1996). Pliocene–Holocene paleobathymetry estim
(Figs. 3, 4) are based on benthic foraminiferal studies by S. Spe
ferri and I. Premoli-Silva (pers. comm., 1996; Premoli Silva et a
Chap. 30, this volume). Facies evidence and benthic foraminifer 
are consistent with regard to water depth information; for exam
the shallow-water origin interpreted for limestones recovered fr
Hole 966F between ~68 and 298 mbsf (Emeis, Robertson, Richte
al., 1996) is confirmed by the presence of shallow-water benthic
the interval 269.4−279 mbsf (S. Spezzaferri, pers. comm., 1996
Postcruise biostratigraphic work and paleobathymetric estimates
low a fairly comprehensive understanding of ages and paleodept
be assembled by assuming a broadly similar depositional history
Sites 966 and 967 and taking a composite view of data from the
sites. In particular, the preserved early Miocene shallow-water lim
stones from Hole 966F (68−298 mbsf) complement the finding o
early Oligocene pelagic limestones recovered at Hole 967A (1−
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m
, et
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.
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167 mbsf). For further details of age and paleobathymetric estima
see Spezzaferri et al. (Chap. 2), Premoli Silva et al. (Chap. 30), 
Spezzaferri and Spiegler (Chap. 10), all this volume.

METHODS

Subsidence Calculations

To decompact the measured sediment thicknesses, I used th
gorithms of Sclater and Christie (1980). In brief, the calculations in-
volve numerical use of the empirical porosity vs. depth relationsh
discussed above to restore sediment thickness at the time of each
ed horizon. As discussed above, incipient collision of the Er
tosthenes platform with the Cyprus margin involves dynamic flexur
deformation, and the assumptions of backstripping (Steckler a
Watts, 1978) render it an inappropriate analysis technique. Inste
curves presented in Figures 5 and 6 show total subsidence of the
erence surface (defined above) through time, corrected for sedim
compaction. The vertical bars shown in Figure 5 and 6 reflect t
range of the minimum and maximum values of the estimated pal
bathymetry (c.f., Figs. 3 and 4), and the horizontal bars represent
range of numerical ages based on biostratigraphic data. In gene
the age range for each dated horizon was taken to be the nume
age range of the biozone(s) (or portions thereof) assigned to the h
zon. For example, if faunal evidence indicated that a horizon rep
sented the upper N5 planktonic biozone, the numerical age range
signed would have been 19–20 Ma, whereas a horizon represen
the P18 zone would have a range of 34–36 Ma. The time scales u
in the conversion to numerical ages are discussed in Emeis, Rob
son, Richter, et al. (1996; Neogene); Spezzaferri et al. (Chap. 2, 
volume; Paleogene); and Premoli-Silva et al. (Chap. 30, this volum
Cretaceous).
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Figure 4. Data summary for Site 966, showing age, paleobathymetry, and lithology.
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RESULTS AND DISCUSSION

Subsidence results for Sites 967 and 966 are shown in Figures 5
and 6, respectively. The Cretaceous through early Oligocene subsid-
ence record for Site 967 indicates gradually decreasing subsidence
rates through the period. This was accompanied by a progressive in-
crease in water depth at the site from neritic to lower epibath
upper mesobathyal ranges (c.f., Figs. 3, 5) accompanied by a
crease in sedimentation rate as the site became sediment starve
paleobathymetric increase is consistent with a platform drown
event (Kendall and Schlager, 1981; Schlager, 1981; Neumann
Macintyre, 1985). The timing of this inferred drowning is consist
with rising sea level in the eustatic curve of Haq et al. (1988) and 
other platform drownings in the region (summarized in Guiraud 
Bellion, 1995). Although no pre-Eocene rocks were recovered at
966 (Fig. 4), the single Eocene-age data point on the Site 966 su
ence curve (Fig. 6) is consistent with subsidence results for Site
The overall pattern of Cretaceous through Paleogene subsiden
Sites 966 and 967 is consistent with thermal-decay driven pas
margin subsidence (Steckler and Watts, 1978; Sclater and Chr
1980).

Neogene subsidence (Figs. 5, 6) departs from that typical of a
sive margin. In particular, assuming that Sites 966 and 967 recor
proximately the same events (and thus data from the two sites c
combined), significant uplift of the Eratosthenes platform to in
neritic water depths occurred between the end of early Oligocene
Aquitanian time (~30 to 20−25 Ma; Fig. 4). On the basis of subsid
ence results (Fig. 6), a minimum estimate of late Oligocene–early
ocene uplift is ~1,000 m. Available data do not permit resolution
details of middle to late Miocene subsidence. By early Pliocene t
Eratosthenes and its flanks were at water depths ranging from 7
2900 m. As seen in Figures 5 and 6, Pliocene–Holocene subsid
took place rapidly, as the lowest part of the early Pliocene succe
already contains bathyal pelagic microfossils. Further subside
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took place after the late Pliocene, at least at Site 967, as benth
aminifers there indicate upward deepening. Therefore, since the
Messinian re-establishment of open-marine conditions, subsid
rates have increased rapidly, which is characteristic of foredeep
sidence and uncharacteristic of passive-margin subsidence (Wh
and Thomas, 1994).

From the regional tectonic setting (see discussion above and
where in this volume), eustatic sea-level variations are expected
only a weak control on subsidence history. For example, the Me
ian sea-level fall is accompanied in the subsidence curves by app
uplift and subsequent deepening, but it is important to note tha
nificant uplift at Site 966 had already occurred by early Miocene t
(Fig. 6). Further, the magnitude of uplift at both Site 966 and Site
is much greater than that of the Messinian sea-level excursion. T
fore, with the exception of the Albian platform drowning discus
above, and the effects of the Messinian crisis, there appears to b
correlation between the subsidence history presented here and
lished eustatic sea-level curves.

CONCLUSIONS AND IMPLICATIONS

Based on the subsidence analysis presented here, the majo
clusions of this study can be summarized as follows:

1. Cretaceous–Paleogene subsidence history supports pre
assertions that the Eratosthenes platform represents a thi
foundered sliver of continental crust, perhaps comparabl
the Grand Banks of Newfoundland.

2. Between ~30 and 20−25 Ma, the Eratosthenes platform exp
rienced a dramatic change in subsidence mode, marked
minimum uplift of ~1,000 m. The overall timing of this upli
is consistent with that of acceleration in the rate of empla
ment of the Troodos ophiolite on Cyprus (Robertson and 
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nophontos, 1993; Robertson et al., 1995a), and thus the two
processes are likely related. Further, rapid subsidence since
early Pliocene time coincides with normal faulting, which con-
firms earlier suggestions that the Eratosthenes platform is un-
dergoing breakup as it starts to descend down the Cyprus
trench.

3. Eustatic sea-level variations are at best a second-order control
on subsidence, with the exception of the Albian drowning dis-
cussed above.

Flexure-Induced Subsidence and Uplift
of Eratosthenes Platform

The documented collision of the Eratosthenes platform with the
Cyprus margin, and incipient subduction into the Cyprus trench, ap-
pears to represent the earliest stage of formation of a foredeep, which
develops by large-scale thrust-fault emplacement (Jordan, 1981;
Beaumont, 1981). The transition from shallow-water carbonates to
deep-water hemipelagic and terrigenous sediments can be compared
with that observed on land in many accreted carbonate-platform slic-
es (Robertson et al., 1997). Similar transitions from shallow- to deep-
water sediments is seen in a number of Tethyan (e.g., in Oman) and
other continental margins (e.g., S. Appalachians; Whiting and Tho-
mas, l994), and can be directly related to thrust and nappe emplace-
ment. Rapid subsidence of Eratosthenes sites was accompanied by
large-scale normal faulting, which is observed in Leg 160 site-survey
seismic profiles and in cores (Emeis, Robertson, Richter, et al, 1996).
This indicates that Eratosthenes lithosphere did not deform by simple
flexure, but also underwent significant brittle deformation. This flex-
ural extension is widely observed (Bradley and Kidd, 1991) and may
be part of the explanation for late Oligocene–early Miocene uplift
While the cause of the observed uplift is unclear, the results present
here provide an important observational constraint for models o
early-stage continental collision.
513
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