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ABSTRACT

A continuous record of both marine and continental paleoenvironments in the Western Mediterranean has been investigated
on the same samples from the composite core of Ocean Drilling Project (ODP) Leg 161, Site 976. Palynological analyses (pol-
len, dinoflagellate cysts, and organic matter) document the continental and marine paleoenvironmental changes in the Alboran
Sea Basin from the beginning of the Pleistocene to the Holocene. The marine and continental records have been correlated to
climate and/or hydrological changes.

The pollen record depicts the vegetation changes in southern Spain and in North Africa along the Pleistocene and Holocene.
Variability in abundant and diversified dinoflagellate cyst assemblages permits us to identify climatic and hydrological varia-
tions of surface waters along the whole sequence. During the upper Pleistocene, eight climatic cycles are evidenced both in
marine and continental paleoenvironments and correlated to the δ18O curve. Focus on the last 28 calendar ka (cal ka) exhibits
the major climatic events of the last climatic cycle: Last Glacial Maximum, Oldest Dryas, Bölling/Alleröd, Younger Dryas, a
Holocene. Periods of enhanced productivity are evidenced between 19 and 17 cal ka and during the Younger Dryas.
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INTRODUCTION

The Alboran Sea is a key location for understanding the influence
of the Atlantic-Mediterranean gateways on Mediterranean pale-
oceanography. During Leg 161 of the Ocean Drilling Program
(ODP), the JOIDES Resolution reoccupied the area of the Deep Sea
Drilling Project (DSDP) Site 121 (Ryan, Hsü et al., 1973), located
the western Alboran Sea Basin (Fig. 1). As a palynological study 
made on the long sequence recovered at DSDP Site 121, ODP
161 Site 976 (36°12N, 4°18W) also allowed a good opportunity t
obtain a continuous palynological record of the whole Pleistoc
and improve our understanding of Atlantic/Mediterranean exchan
during this period.

The palynological study has been performed to allow direct la
sea correlations and simultaneously to show the modification
western Mediterranean vegetation and the variations of Alboran
surface waters (in relation to entering Atlantic water) throughout
whole Pleistocene. Results are compared with the bulk gradient
of organic matter. The major continental and marine events h
been linked to global climate and hydrological changes.

ENVIRONMENTAL SETTING

The Mediterranean area is divided in two main basins separ
by the Siculo-Tunisian sill. Site 976 (Fig. 1) is located in the Albo
Sea, which represents the westernmost part of the Mediterran
bordered in the north by Spain and in the south by Morocco. In
west, the Gibraltar Strait connects the Alboran Sea to the Atla
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Ocean and allows watermass exchanges between Atlantic and M
terranean waters, which partly balances the negative water budg
the Mediterranean Sea (e.g., Béthoux, 1979). The modern Alb
Sea hydrology is marked by an antiestuarine circulation (e.g., 
combe and Tchernia, 1972). Surface waters from the Atlantic wa
flow from the west to the east in the Alboran Sea in a wide ant
clonic gyre before moving toward the western and eastern Medite
nean basins. As a result, the Mediterranean intermediate and dee
line waters leave the Mediterranean Sea from the east to the 
through the Gibraltar strait (e.g., Béthoux and Prieur, 1984; Fig. 

The present-day climate in the Alboran Sea region is Medite
nean with long, dry summers and mild winters. Aridity is highe
along the southern Spanish coast, but peaks of precipitation occ
the Spanish hinterlands during spring and autumn. In northern Afr
rainfall is concentrated near the coast from autumn to spring, an
decreases strongly southward (Walter et al., 1975). In both areas
Atlantic influence is marked by increasing humidity in the west. T
presence of mountains (Moroccan Rif and Betic Cordillera) cau
both humidity to increase and temperature to decrease with altit
These landscapes display an altitudinal range of vegetation, acc
ing to the ecologic and climatic requirements of the plants, in the M
roccan Rif and in the Betic Cordillera (Ozenda, 1975; Rivas Mar
ez, 1982; Barbero et al., 1981; Benabib, 1982). From the coast t
highest elevations, a steppe vegetation with Lygeum, Artemisia and/
or a Mediterranean association (Olea, Pistacia, Quercus ilex) is first
replaced by a deciduous Quercus forest and then by a coniferous for-
est with Pinus, Abies, and/or Cedrus. The latter lives only in Morocco
today.

MATERIAL AND METHODS

Two hundred twenty-six samples were chosen for this study fr
Holes 976B, 976C, and 976D. According to the initial biostra
graphic framework (Comas, Zahn, Klaus, et al., 1996), our sam
(up to 366 mcd [meters composite depth]) are representative o
most the whole Pleistocene and the Holocene. The uppermost 
span the last climatic cycle and have been sampled with a higher
olution (40 samples, ~0.25 m spaced). Underlying sediments h
been studied with irregular spacing.
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Figure 1. Present-day surface and intermediate water circulation in the Alboran Sea and location of Site 976. 
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After being dried and weighed, the samples were processed with
10% HCl, 70% HF, then 20% HCl, and sifted on a 10-µm sieve. E
acid treatment was followed by neutralization with distilled wat
Aliquot volumes of a calibrated Eucalyptus pollen suspension were
added to each sample before chemical treatment in order to calc
palynomorph concentrations.

Pollen and dinoflagellate cysts were counted on the same sl
Pollen and dinocyst sums reached respectively at least 100 p
grains, Pinus grains excluded, and at least 100 cysts, Lingulodinium
machaerophorum excluded, in each sample.

Dinoflagellate cyst concentrations have been calculated on
total sum of dinocysts, including species that are sometimes 
erotrophic, such as Brigantedinium spp. For now, palynomorph con
centrations are presented only for the uppermost ten meters.

The productivity, the ease of transport, and good preservation of
Pinus pollen grains often result in their over-representation in mar
sediments (Brooks, 1971; Shaw, 1971; Duplessy et al., 1981; R
signol and Planchais, 1989), which introduces discrepancies in
pollen diagram and tends to mask the variations of the other taxa
consequently, the climate of the source area. For this reason, p
percentages, except for Pinus, have been calculated on a sum that e
cludes this taxon. Pinus percentages are calculated on the total pol
sum.

Lingulodinium machaerophorum specimens are very abundan
and frequently reach percentages above 40%. In order to emph
significant but not abundant species, dinocyst percentages have
calculated on a sum that excludes L. machaerophorum. L. machaero-
phorum percentages are calculated on the total dinocyst sum. 
noteworthy that L. machaerophorum cysts in deep marine sedimen
can be doubtfully considered as autochthonous because of its f
neritic modern distribution (Andreieff et al., 1971; Reid, 197
Morzadec-Kerfourn, 1977; Wall et al., 1977; Bradford and Wa
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1984; Kobayashi et al., 1986; Matsuoka, 1985; Edwards and An
1992; Mudie and Harland, 1996).

Following the Versteegh (1994) attempt, the ratio of most therm
phile dinoflagellate cyst taxa vs. less thermophile ones (W/C) is u
as a proxy for changes in sea-surface temperatures. In the pr
study, Spiniferites mirabilis s.l. (= S. mirabilis + S. hyperacanthus),
Selenopemphix nephroides, Impagidinium patulum, Impagidinium
strialatum, Operculodinium israelianum, Spiniferites delicatus, and
Spiniferites membranaceus are used as warm-water indicator speci
On the opposite, Nematosphaeropsis labyrinthea, Bitectatodinium
tepikiense, Spiniferites elongatus, Impagidinium pallidum, Pen-
tapharsodinium cf. dalei and Algidasphaeridium? cf. minutum are
used as cold-water indicators (Wall et al., 1977; Turon, 1984; Tu
and Londeix, 1988; Edwards and Andrle, 1992; de Vernal et 
1994). Operculodinium centrocarpum is here considered to be a sp
cies too ubiquitous (e.g., Edwards and Andrle, 1992; Mudie, 1992
Vernal et al., 1994) to be used in such a ratio. The W/C value re
sents the number of cysts of warm-water indicator taxa (nW) vs.
number of cysts of cool-water indicator taxa (nC) plus nW.

All the samples taken at Site 976 have been analyzed for
nocysts. Because of the paucity of pollen grains, only 80 sam
have presently been analyzed for pollen.

The amorphous organic matter (AOM) has been quantified in
palynological slides after a count of 200 organic particles and re
sented in terms of concentration calculated in the same way a
pollen and dinocyst concentrations. The AOM concentration curv
presented only for the uppermost 10 m.

Determination of total organic carbon in sediments is norma
performed by subtraction of inorganic carbon from total carbon
sedimentary rocks, virtually all inorganic carbon is confined to c
bonate minerals. Therefore, we decide to include the carbonate
bon analysis as part of this study. Inorganic carbon content was
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termined by use of the carbonate bomb. Dried and weighed samples
of exactly 100 mg were reacted in 2N HCl solution in a sealed bomb.
Evolved carbon dioxide was measured by the mean of a manometer.
The percentage of carbonate was calculated from the inorganic car-
bon (IC) content, assuming that all the carbonate was in form of cal-
cite:

CaCO3= IC · 8.332.

Total carbon (TC) content was determined using a LECO WR-
analyzer. With this technique, organic and inorganic carbon we
converted to carbon dioxide, which is measured with a thermal c
ductivity detector. Total organic carbon (TOC in wt%) content wa
calculated by difference between total carbon and carbonate carb
according to the formula:

TOC% = TC% – IC%.

The relative precision of TOC determination is defined by th
combined precision of the TC and IC methods and is generally 
better than 2%. These measurements have been performed up to
mcd.

The source of the organic matter were estimated using an 
Show Analyser instrument (Espitalié et al., 1985a, 1985b, 1986)
the uppermost 10 mcd. Standard notations are used: S2 is in mg
drocarbons (HC) per g of dry sediment and the hydrogen index (H
S2/TOC·100) is expressed in mg HC/g TOC. The data are reporte
Table 1.

The oxygen isotopic curve is from von Grafenstein et al. (Cha
37, this volume). An initial time scale for Site 976 was developed 
using biostratigraphic marker events of de Kaenel et al. (Chap. 
this volume) and standard oxygen isotope stratigraphy (Imbrie et 
1984; Ruddiman et al., 1989; Hodell and Venz, 1992; Sarnthein et
1995). The time scale was then refined by fitting the planktonic is
tope record of Site 976 to the benthic oxygen isotope record from S
659 in the subtropical Northeast Atlantic (Tiedemann et al., 199
The Site 659 isotope record has been tuned to the obliquity com
nent of the Earth’s orbital elements and, thus, the time scale for S
976 that is used here is considered an orbital time scale (for detai
age-model development for Site 976 see von Grafenstein et al., C
37, this volume). The ages given in this paper are presented in ca
dar ka (cal ka) according to the model developed by von Grafens
et al. (Chap. 37, this volume).

RESULTS AND DISCUSSION

Marine Environment

All the samples studied are rich in dinocysts. On the whole, 
dinoflagellate cyst taxa have been identified. Relative frequencies
these taxa show the succession of several types of associations, w
are indicative of paleoclimatic and superficial paleohydrologic va
ations. However, dinocyst assemblages are nearly always domin
by Brigantedinium spp. (Fig. 2). Nematosphearopsis labyrinthea, Bi-
tectatodinium tepikiense, and Spiniferites mirabilis s.l. appear to be
the other more significant species.

Former studies show that in Mediterranean Sea Brigantedinium
spp. is not indicative of enhanced productivity (Turon and Londe
1988; Combourieu Nebout et al., 1998), by contrast with upwelli
environments (Lewis et al., 1990; Biebow, 1996). Today, N. laby-
rinthea is an oceanic species encountered in cold to tropical envir
ments (Harland, 1983; Rochon, 1997) and its optimal developm
coincides with high salinity environments and/or high nutrient ava
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ability (Wall and Warren, 1969; Turon and Londeix, 1988; Rocho
1997; Abidi, Lezine, and Turon, unpubl. data). B. tepikiense is never
abundant in modern sediments. Nevertheless, its presence see
be related to cool winter environments (surficial water temperat
often lesser than 10°C) and temperate summer environments (E
wards and Andrle, 1992; de Vernal et al., 1994). Its present-day o
mal developments are recorded east of New Zealand (≈1%; Sun and
McMinn, 1994) and south of Newfoundland (≈1%–12%; de Vernal
and Turon, unpubl. data). In both cases, B. tepikiense is present in ar-
eas with oceanic convergences that induce meeting cold superf
waters (e.g., Labrador Stream, subantarctic water) and warmer 
ters (e.g., Gulf Stream, subtropical water). On the other hand, S. mira-
bilis s.l. and Impagidinium patulum can be considered as temperat
to tropical taxa (Turon, 1984; Edwards and Andrle, 1992; Mudie a
Harland, 1996).

During the Pleistocene, assemblages with abundant N. laby-
rinthea and B. tepikiense alternate with assemblages showing optim
relative abundances of S. mirabilis s.l. (Fig. 2). In the latter assem-
blages, I. patulum and Selenopemphix nephroides often show their
optimal abundance. The W/C curve (see “Material and Method
section) permits such dinocyst assemblage variations to be interp
ed in terms of sea-surface temperature evolution. Thus, low-value

Table 1. Results of carbonate and carbon analysis and Rock-Eval pyrol-
ysis data of the uppermost 10 mcd of Site 976.

Note: Determination of the Total Organic Carbon (TOC) and the units of the various
Rock-Eval parameters are given in the “Material and Methods” section.

Core, section, 
interval (cm)

Depth
(mcd)

CaCO3
(%)

TOC
(%)

HI
(mg HC/g 

TOC)

161-976C-
1H-1, 5-7 0.06 19.3 0.46 111
1H-1, 29-31 0.30 22.0 0.46 122
1H-1, 54-56 0.55 22.9 0.12 111
1H-1, 78-80 0.79 27.2 0.45 106
1H-1, 104-106 1.05 24.2 0.37 100
1H-1, 129-131 1.30 23.7 0.63 145
1H-2, 4-6 1.55 23.9 0.52 128
1H-2, 27-29 1.78 24.7 0.44 116
1H-2, 54-56 2.05 27.9 0.54 97
1H-2, 78-80 2.29 26.7 0.89 180
1H-2, 104-106 2.55 28.7 0.55 150
1H-2, 129-131 2.80 27.2 0.92 142
1H-2, 146-148 2.97 27.7 0.69 156
1H-3, 4-6 3.05 24.7 0.42 106
1H-3, 27-29 3.28 23.7 0.58 133
1H-3, 51-53 3.52 24.8 0.77 150
1H-3, 78-80 3.79 27.0 0.81 175
1H-3, 99-101 4.00 24.2 1.47 172
1H-3, 129-131 4.30 27.3 0.96 209
1H-4, 2-4 4.53 26.3 0.93 127
1H-4, 29-31 4.80 25.2 0.75 116
1H-4, 51-53 5.02 22.3 1.02 131
1H-4, 78-80 5.29 18.6 1.05 68
1H-4, 104-106 5.55 18.1 1.40 85
1H-4, 126-128 5.77 19.7 1.50 89

161-976D-
2H-4, 4-6 6.05 21.7 0.60 140
2H-4, 29-31 6.30 20.2 0.61 130
2H-4, 54-56 6.55 22.7 0.60 132
2H-4, 79-81 6.80 24.3 0.80 105
2H-4, 104-106 7.05 24.9 0.65 116
2H-5, 4-6 7.55 23.2 0.62 105
2H-5, 29-31 7.80 22.7 0.49 135
2H-5, 54-56 8.05 23.7 0.64 119
2H-5, 79-81 8.30 20.2 0.56 117
2H-5, 104-106 8.55 21.2 0.67 73
2H-5, 129-131 8.80 20.8 0.72 117
2H-6, 4-6 9.05 19.7 0.66 121
2H-6, 29-31 9.30 20.8 0.69 138
2H-6, 54-56 9.55 21.6 0.54 119
2H-6, 79-81 9.80 20.2 0.59 109
2H-6, 104-106 10.05 20.7 0.94 95
2H-6, 140-142 10.41 17.1 1.23 106
459
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Figure 2. The Pleistocene and the Holocene record from Site 976. A. Depth plot of the sedimentary carbonate (%), total organic carbon (%), relative abundance
(%) of selected dinocysts, warm vs. cool water indicating dinoflagellate cyst curves (W/C) taxa, and δ18O record (G. bulloides) from Pleistocene sediments of
Site 976. (Continued next page.)
tervals of the W/C value correspond to cooler periods (Fig. 2). Their
frequency and stratigraphic location present the possibility that they
might be the repercussion of Northern Hemisphere glaciations in the
Mediterranean Sea. Cyclicity in the W/C value is well expressed in
the upper 180 mcd of the Site 976 composite core: eight significant
cool periods can be drawn (Fig. 2). On the basis of the W/C curve,
such cycles appear to be badly expressed downward below 180 mcd;
nevertheless, at least 12 cool periods can be considered significant in-
dicators of cooler environments according to a concomitant increase
in N. labyrinthea and B. tepikiense and decrease in S. mirabilis s.l.
percentages. It is of note that a sharp change in dinocyst assemblages
occurs around 180 mcd. In the lower part of the Pleistocene sequence,
Stelladinium spp. are regularly present (even low percentages),
460
whereas above they are nearly absent. It is the opposite for Pen-
tapharsodinium cf. dalei and Algidasphaeridium? cf. minutum,
which are regularly recorded above 180 mcd and are nearly absent in
underlying sediments. As recorded in modern sediments, P. cf. dalei
and A.? minutum are species adapted to low surface-water tempera-
ture (de Vernal et al., 1994; Mudie and Harland, 1996), whereas Stel-
ladinium spp. shows its maximum abundance in the Persian Gulf and
northeast and northwest borders of the Arabian Sea (Bradford and
Wall, 1984; Zonneveld, 1996). Zonneveld (1996) counts Stelladini-
um spp. among northeast-monsoon eutrophic species. The relay ob-
served around 180 mcd between these taxa may correspond to a cli-
matic cycle with a longer term than those recorded with the W/C
curve.
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Figure 2 (continued). B. Relative abundance (%) of some pollen taxa from Pleistocene sediments of Site 976. Dinocyst percentages are calculated on a sum
excluding Lingulodinium machaerophorum; L. machaerophorum percentages are calculated on the total dinocyst sum. Pollen percentages of Pinus are calculated
on the total pollen sum and others on a sum excluding Pinus. Shadowed areas correspond to periods of significant cooling as indicated by dinoflagellate cyst
assemblages.
Relative abundance of L. machaerophorum cysts (number of L.
machaerophorum specimens vs. total dinocyst sum) fluctuates all
over the Site 976 Pleistocene sequence, from few percent to 76% (at
58.41 mcd; Fig. 2). Peaks of L. machaerophorum relative abundance
seem to occur with an almost regular periodicity. The frequency of
such peaks averages 27 m, which, according to the average sedimen-
tation rate of the Pleistocene sequence (206 to 208 m/Ma; Comas,
Zahn, Klaus, et al., 1996), corresponds to a ~130 ka mean periodicity.
That is particularly well expressed between 220 and 60 mcd, and
seems independent of climatic cyclicity as expressed by the W/C
curve. The probably shallow-water origin of L. machaerophorum
might allows one to interpret the peaks of this species as more or less
regular inputs of neritic water in the center of the Western Alboran
Basin.

The detailed analyses of the uppermost 10 m of the Site 976 com-
posite core allows one to distinguish several units on the basis of
changes in palynological assemblages (Fig. 3). As in the underlying
sediments, dinocyst assemblages of the upper 10 mcd are over-
whelmingly dominated by Brigantedinium spp. Only relative abun-
dance of other more significative species are only presented.

1. From 10 to 7.5 mcd, dinocyst assemblages are dominated (ex-
cept Brigantedinium spp.) by N. labyrinthea and B. tepikiense.
No significant variation occurs, except a peak of B. tepikiense
461
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Figure 3. The last deglaciation. A. Changes in relative abundance (%) of selected dinocysts, warm vs. cool water indicating dinoflagellate cysts curve (W/C),
autochthonous dinocyst then total pollen grains concentrations and relative abundance (%) of selected pollen types. (Continued next page.)
at 9.05 mcd. The dinocyst concentrations are low, ranging
from 3070 to 9130 cysts/cm3.

2. From 7.41 to 6.55 mcd, N. labyrinthea percentages increase
sharply (up to 38%). No sharp variation is shown by other di-
nocyst percentages during this interval.

3. From 6.30 to 5.55 mcd, N. labyrinthea percentages decrease,
whereas B. tepikiense become more abundant. Concurrently,
dinocyst concentrations reach highest values, up to 26,250
cysts/cm3. Dinocyst concentrations are considered as indica-
tors of variability in sea-surface water nutrient abundance and
then in primary productivity. Such height values in this inter-
val probably indicate enhanced primary productivity.

4. From 5.29 to 4.3 mcd, percentages of the warm species S.
mirabilis s.l. increase significantly (up to 25%), which indi-
cates a slight warming of the sea-surface waters. The concen-
trations of dinocysts are again low.

5. From 4.3 to 3.79 mcd, a concomitant increase of N. laby-
rinthea and B. tepikiense percentages and of dinocyst concen-
trations (averaging 18,480 cyst/cm3) marks cooler sea-surface
water with enhanced primary productivity.
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6. Above 3.79 mcd, dinocyst concentrations and N. labyrinthea
percentages decrease progressively, whereas that of S. mirabi-
lis s.l. increase. The present-day hydrological and climatic
conditions progressively settle in the western Alboran Sea.

Paleovegetation

Because of the central location of Site 976 within the Alboran Sea,
the pollen-source area is believed to be mainly northern Moroccan
and southern Spanish borderlands. Ninety-seven pollen taxa have
been determined, and the pollen spectra range from a semidesert as-
semblage to those of deciduous and coniferous forests (Figs. 2, 3).
The pollen diagram reflects the competition of four main vegetation
groups, which were distributed in an altitudinal organization similar
to that of today. Among the herbaceous group, which does not con-
stitute a homogeneous unit, high percentages of Artemisia, Ephedra,
and Chenopodiaceae may reflect the expression of a steppe or a semi-
desert extension (e.g., Walter, 1974; Bottema, 1974). The Mediterra-
nean forest is documented by pollen of Olea, Phillyrea, Cistus, Quer-
cus ilex, and Pistacia. In an altitudinal scheme, they are located at
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lower altitudes back to the coastal formation. The Quercus (oak) for-
est, which was extended at the mid-altitudes, is mainly represented by
deciduous Quercus species associated with Ericaceae. Pollen of other
trees are more often rare. The coniferous forest is represented mainly
by Cedrus, sometimes accompanied by Abies in the lowermost sam-
ples and rarely by Picea; this forest occupied the highest elevations
of the Rif and Betic Cordillera, as it does today. Pinus was probably
mixed as well in the Quercus forest as it was in the coniferous forest.

During the Pleistocene (Fig. 2), high percentages of pollen of
semidesert taxa alternate with those of forest species, especially those
of the mid-altitude Quercus forest. These replacements express the
repeated extension and retreat of mid-altitude forest in opposition to
the semidesert assemblages on the Alboran Sea borderlands. At least
eight clear oscillations are depicted in the pollen diagram of the upper
180 mcd sediments. Below this depth, the vegetation signal is diffi-
cult to interpret because of the wide interval between samples. Below
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Figure 3 (continued). B. Relative abundance (%) of Pinus pollen grains,
amorphous organic matter concentration, total organic carbon (%), sedimen-
tary carbonate (%), δ18O record (G. bulloides), and deduced stratigraphy in
the upper 10 mcd from Site 976. Dinocyst percentages are calculated on a
sum excluding Lingulodinium machaerophorum. Pollen percentages of Pinus
are calculated on the total pollen sum and others on a sum excluding Pinus.
180 mcd, the composition of the coniferous forest appears modified
with more abundant Abies concurrent with high Pinus percentages
(averaging 80%). In the upper samples, Pinus percentages regularly
oscillate between 40% and 90%.

Detailed analyses of the uppermost 10 m show several paleoveg-
etational phases (Fig. 3).

1. From 10 to 9.10 mcd, pollen of grasses (especially Asteraceae)
and deciduous trees are equally represented. Coniferous forest
is represented by Cedrus, which reaches 10%. Isoetes is
present. The Alboran Sea coasts are occupied by a grass open
vegetation replaced in mid-altitudes by the forest on the Rif
and the Betic Cordillera slopes.

2. From 9.05 to 8.8 mcd, Artemisia reaches its highest percentage
(about 27% at 9.05 mcd) and Chenopodiaceae representation
increases. Tree pollen, except Pinus grains, are in very low
percentages. In Morocco and southern Spain lands are occu-
pied by a semidesert widely extended at all altitudes, and the
forest is restricted to sheltered areas.

3. From 8.8 to 6.55 mcd, steppe elements are in low percentages
while Cichorioideae reach high percentages (more than 30%)
and dominate the open vegetation association. Ericaceae per-
centages reach their highest values (20%). High percentages of
Cedrus are recorded at 5.77 mcd. Isoetes is present. The mid-
altitude forest is slightly extended, while an open vegetation is
widely developed around the Alboran Sea.

4. From 6.55 to 5.55 mcd, Artemisia percentages increase again
and are accompanied by Ephedra and Chenopodiaceae in high
abundances. Cichorioideae and Poaceae, decrease strongly.
Ericaceae and Quercus are in low abundance, whereas Pinus
is still highly represented. The semidesert is largely extended
in the Moroccan and southern Spain edges. The deciduous for-
est is restricted to sheltered areas.

5. From 5.55 to 4.3 mcd, Pinus and coniferous trees decrease.
Deciduous Quercus representation increase in the first step
and is accompanied by the Mediterranean trees, especially
Quercus ilex. Herbs are low represented and Artemisia de-
crease strongly. Pinus percentages decrease. Isoetes reaches
its highest values (7%). The mid-altitude Quercus forest be-
gins to extend in the Rif mountains and Betic Cordillera. The
semidesert is then restricted to the coast. During this period,
pollen concentrations reach their highest values.

6. From 4.35 to 3.5 mcd., Artemisia, Ephedra, and Chenopodi-
aceae increase again. Quercus, which remains the dominant
taxa of the deciduous forest, slightly decrease in percentages.
Cedrus is better represented. The semidesert extends again.
The Quercus forest, although less developed, still occupies the
mid-altitudes while the coniferous forest is more extended.

7. After 3.5 mcd the mid-altitude forest, and especially Quercus,
increases again in percentages. Pinus is abundant up to 2.8
mcd an d then decreases. In the same period, Artemisia and
Chenopodiaceae persist in low percentages while the other
herbaceous elements remain in almost the same percentages.
At 2.8 mcd, the first peak of Pistacia percentages is recorded.
This event is correlated to a peak in total pollen concentra-
tions. Mediterranean plants such as Olea, Phillyrea, and Cistus
accompany Quercus ilex, which here reaches its highest repre-
sentation. Between 2.55 and 2.05 mcd, deciduous Quercus has
its highest percentages. Above 2.05 mcd, Quercus slightly de-
creases and is replaced by Ericaceae.

This vegetation succession expresses the progressive setting of
the Holocene vegetation in the borderlands of the Alboran Sea. The
semidesert is progressively reduced to a coastal belt while the conif-
463
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erous forest, probably dominated at this time by Pinus, is rapidly re-
placed by the deciduous Quercus and the Mediterranean forests. This
pollen succession is fairly comparable to those recorded in southern
Spain and northern Morocco (Pons and Reille, 1988; Lamb et al.,
1989; Reille, 1990).

Organic Matter
Carbonate Carbon

Concentrations of carbonate carbon vary between 1.6% and 5.0%,
with a mean value around 3.0%. Such concentrations are equivalent
to 13% to 42% sedimentary CaCO3, assuming that all of the carbon-
ate is present as pure calcite or aragonite.

The curve of the calcium carbonate content (Fig. 2) shows high
amplitude variations, ranging from 18% to 27%, between 270 and
160 mcd. The mean content of calcium carbonate increases between
160 and 75 mcd, with higher amplitude variations, ranging from 21%
to 36%. From 75 to 15 mcd, the variations in carbonate content are
lower and show a general decreasing trend that reaches a minimum
value of 13% at 15.13 mcd. In the uppermost 10 m (Fig. 3), the car-
bonate content slightly increases up to 25% at 7 mcd, then decreases
down to 18% at 5.55 mcd. Between 5.55 and 4.80 mcd, the carbonate
content increases and then shows slight variations up to 2.55 mcd.
From this depth to the top, the calcium carbonate content is decreas-
ing from 28.7% to 19.3%.

Organic Carbon

Concentrations of organic carbon vary between 0.1% and 1.9%,
with a mean value around 1.0% TOC. Similar range in organic car-
bon content was recorded on board the JOIDES Resolution (Comas,
Zahn, Klaus, et al., 1996), although our mean value is slightly higher.
The TOC record reflects the quantity of organic matter, although it
should be kept in mind that organically bound oxygen, hydrogen, sul-
fur, and nitrogen can contribute up to 50% of the total sedimentary
organic matter.

During the Pleistocene, the organic carbon content (Fig. 2) shows
that TOC values are high (1.25% average) between 270 and 170 mcd
and exhibits a general increase from the bottom to the top of this in-
terval. At this depth, the TOC content decreases sharply (down to
0.6%). From 170 to 10 mcd, the TOC content shows high-amplitude
fluctuations. Five peaks of organic carbon enrichment are recorded
near 140, 100, 80, 40, and 15 mcd. These peaks are not necessarily
correlated with those of the calcium carbonate.

In the uppermost 10 m, the organic carbon content shows two
peaks centered on 5.29 and 4.00 mcd. From this depth to the top, the
TOC content is decreasing from 1.5% to 0.45%. A slight peak reach-
ing 0.92% is recorded at 2.8 mcd. 

These ranges in carbonate and organic carbon contents reflect a
combination of fluctuating biological productivity, dilution by non-
carbonate sedimentary supply, and post-depositional effects, such as
carbonate dissolution and organic matter oxidation.

Hydrogen index (HI) and source of the organic matter

Hydrogen index is considered to be the most reliable Rock-Eval
pyrolysis parameter for typing the sedimentary organic matter (Espi-
talié et al., 1986). However, it should be noted that for siliciclas
whole-rock samples, HI is often too low where TOC contents are 
low 0.5% as a result of the so-called “matrix effect,” which is a rete
tion of hydrocarbons by clay minerals (Peters, 1986). In order to c
rect for “matrix effect,” Langford and Blanc-Valleron (1990) sugge
that the mean HI should be determined from the regression of S2
TOC data. This line is presented for the last 10 mcd on Fig. 4, wh
clearly indicates that the sediments contain type III (land-derived)
type IV (deeply altered) organic matter (Tissot and Welte, 198
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Both low TOC and HI values suggest that the studied samples con
a mixture of terrestrial and deeply oxidized marine organic matt
This interpretation is fully supported by the palynological observ
tions that reveal more than 50% of the organic particles are terrest
in origin.

Amorphous Organic Matter

In the upper 10 mcd, the amorphous organic matter (AOM) co
centrations oscillate from values lower than 1,000 particles per gr
to 30,000 particles per gram of sediments. Higher values are reac
between 9.7 and 8 mcd, at 5.29 mcd, between 5 mcd to 3.8 mcd,
at 2.8 mcd and 0.79 mcd. Two of these peaks are correlated to h
TOC and HI at 4, and 2.8 mcd. Nevertheless, the first organic carb
enrichment, recorded at 5.29 mcd, coincides with the lowest HI v
ues and low calcium carbonate content, whereas the second (aro
4.00 mcd) corresponds to the highest HI values of the uppermost
m. At the state of our study it is not clear if this relationship is co
trolled by dilution effect or if different types of AOM exist in the pa
lynofacies.

CLIMATIC AND HYDROLOGICAL 
INTERPRETATION

The Last Deglaciation (0–10 mcd)

According to the chronology proposed in the initial biostrati-
graphic framework (Comas, Zahn, Klaus, et al., 1996) and to the age
model developed by von Grafenstein and Zahn and others (herein and
Chap. 37, this volume), our detailed record of the uppermost 10 mcd
can be related to the last 28 cal ka. Thus, the modifications in di-
nocyst assemblages and in vegetation express the successive climatic
changes that have occurred from the Last Glacial Maximum to the
present day.

1. The 10 to 6.55 mcd interval is related to the Last Glacial Maxi-
mum. The climate was cool as evidenced by the wide extension of
the open herbaceous vegetation with Cichorioideae and the pres-
ence of Ericaceae. Moisture was available, especially in high ele-
vations, as demonstrated by the presence of altitudinal trees such
as Cedrus in the uppermost samples of this interval. Concurrently,
the few percent of Isoetes indicate inputs of fresh water. At 9.05
mcd, a peak of Artemisia expressed a short-term aridity event. At
the same time, B. tepikiense abundance reveals a strong thermic

1.51.0
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4

Figure 4. Kerogen type of samples from the uppermost 10 mcd at Site 976 as
defined by the cross-plot of TOC and pyrolysis S2 parameter (after Langford
and Blanc-Valleron, 1990).
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gradient in the sea-surface waters. From 7.55 to 6.55 mcd, sea-sur-
face temperature is cooler than previously as shown by the W/C
curve. That interval might correspond to the Last Glacial Maxi-
mum.

2. From 6.35 mcd to 5.55 mcd, climate changes toward cool condi-
tions on the continents as well as in the sea-surface waters. Aridity
is maximum with the highest extension of the semidesert on land.
The cooling of the sea-surface is marked by the reoccurrence of B.
tepikiense. This event unequivocally corresponds to the Oldest
Dryas, already recognized in the peat bog records of Padul (Pons
and Reille,1988) and in other Mediterranean records (e.g., de
Beaulieu and Reille, 1983; Reille, 1990; Wijmstra, 1969; Willis,
1994; Watts et al., 1996). In our record, it can be dated between
∼18.5 cal ka and ∼6.4 cal ka. At similar depth, a correlative modi-
fication in the foraminiferal assemblages indicates a cooling of the
sea-surface temperatures (Capotondi and Vigliotti, Chap. 40, this
volume). The beginning of this period coincides with the large dis-
charge of icebergs in the North Atlantic, Heinrich event H1 (Bond
et al., 1993; Grousset et al., 1993).

3. From 5.55 to 4.35 mcd (∼16.4 cal ka to ∼12.7 cal ka), a clear cli-
matic improvement is marked by the extension of the deciduous
forest and the Mediterranean forest on the Alboran Sea border-
lands. In marine environments, it is expressed by the abundance of
S. mirabilis. As in the Padul peat bog (Pons and Reille, 1988), this
improvement is more pronounced in the western Mediterranean
Sea than in other Mediterranean sites. The increase in humidity is
shown by high percentages of Isoetes, which expresses freshwater
supply from the continent. This interval is related to the Böllin
Alleröd late glacial interstadial.

4. From 4.35 to 3.6 mcd (∼12.7 cal ka to ∼10.6 cal ka), the re-exten
sion of the Artemisia-rich semidesert, in Spain and Morocco lan
scapes, express the return of aridity. In the same interval,
Alboran Sea surface temperature decreases as shown by the
comitant development of N. labyrinthea and B. tepikiense. This in-
terval corresponds to the Younger Dryas event. A correla
modification in the foraminiferal assemblages indicates a coo
of the sea-surface temperatures (Capotondi and Vigliotti, Ch
40, this volume). In other Mediterranean sites (Turon and Lond
1988; Pujol and Vergnaud Grazzini, 1989; Vergnaud Grazzini 
Pierre, 1991; Combourieu Nebout et al., 1998), the Younger D
is better expressed by the palynological record than by the δ18O
record, probably because of the higher resolution sampling of the
combined pollen and dinocyst record. In Site 976, the lower re
lution sampling for δ18O values does not allow the Younger Dry
to be detected.

5. Above 3.6 mcd, the onset of Holocene is marked by the prog
sive extension of the deciduous forest elements and the retre
both coniferous forest and semidesert. The highest represent
of Quercus between 2.55 and 2.05 mcd marks the climatic o
mum.

6. At 2.8 mcd, a peak of Pistacia, a Mediterranean tree linked to mil
winter climatic conditions (UNESCO, 1968) indicates the incre
of winter temperatures. This first occurrence, widely observed
the Mediterranean area, is dated here at about 8.9 cal ka whic
pears younger than in other Mediterranean sites (Bottema, 1
Willis, 1994; Reille and Lowe, 1993; Rossignol-Strick et al., 199
Rossignol-Strick, 1995). At 2.8 and 4.0 mcd correlative high c
centrations in amorphous organic matter, high values in both T
and HI, high total pollen concentrations may represent the vir
expression of two organic-rich layers, although color change 
magnetic susceptibility anomalies are observed only between 
and 4.5 mcd (Murat, Chap. 41, this volume).

During the last deglaciation, aridity increased on the Moroc
and Spain lands, and sea-surface temperature decreased in the
ran Sea at 9.05 mcd, between 6.55 and 5.55 mcd, and between 4
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3.6 mcd. The two last events are correlated to peaks in dinocyst c
centrations, which indicate enhanced primary productivity in the se
surface waters. They are also correlated to peaks in TOC, which m
express an increase of organic matter flux. As demonstrated by Tu
and Londeix (1988), such arid and cool events involved increas
evaporation of sea-surface waters, then to an increase of sea-su
salinity, and a decrease of surficial temperature (which presently 
curs during coolest winter with evaporation enhanced by mistral a
tramontane winds). These environmental conditions led to an int
sification of vertical convection, particularly in the areas of bottom
water formation (i.e., Ligurian Sea), and then induced an increas
renewal of bottom waters and an enhanced inflow of surficial Atla
tic waters in the Alboran Sea. This intensification of Atlantic/Med
terranean exchanges led to an enrichment in the sea-surface w
nutrients of the Alboran Sea, triggering enhanced primary product
ity. Although arid, the oldest event (at 9.05 mcd) is not correlated
peaks in dinocyst concentrations, nor to an increasing TOC val
and cannot be interpreted as reflecting high productivities in the A
oran Sea.

The Pleistocene

The cyclic alternations observed in the dinocyst and pollen asse
blages is, without any doubt, related to the Pleistocene glacial/int
glacial cyclicity, as expressed by the fair correlation between W
value and δ18O curve. That cyclicity is well marked from top to 240
mcd with highest amplitudes between 0 and 180 mcd. Below 2
mcd the climatic signal is less readable. The change in the dinoc
flora at 180 mcd of the near-disappearance of Stelladinium spp.,
along with the appearance of P. cf. dalei, reflects a major event that
is dated at about 700 cal ka according to the age model of von Gra
stein et al. (Chap. 37, this volume). It is noteworthy that Stelladinium
spp. cysts from modern sediments of Arabian Sea are associated 
eutrophic conditions during northeast monsoons (Zonneveld, 199
In addition, constant high values of TOC occur at almost the sa
depth. That may be interpreted as an organic matter enrichm
caused by the compaction of sediments, as better preservation, o
an increase in productivity. The magnetic susceptibility and dens
(measured with the gamma-ray attenuation porosity evalua
[GRAPE]; Comas, Zahn, Klaus, et al., 1996) do not show a stro
change during that period, which implies that the changes recorde
the TOC does not relate to a diagenetic problem. It is of note that 
cysts of Brigantedinium spp. are among the less resistant ones (Tu
on, 1984; Marret, 1993). They are highly represented from top to 1
mcd (up to 71%), but then their percentages decrease below that 
it. Such decrease in Brigantedinium cysts percentages do not suppor
the hypothesis of better preservation of the organic material dur
the 180–366 mcd interval. So, according to dinocyst and organic m
ter records, it seems the sea-surface floral change occurring at 
mcd may correspond to a sharp hydrological and/or climatic chan
which may have led to a modification of the marine productivity.

CONCLUSIONS

The palynological record of Site 976 documents the continen
and marine paleoenvironmental changes that occurred in the Albo
Sea Basin during the Pleistocene and the Holocene. Vegeta
changes on the Alboran Sea borderlands and modifications in the
nocyst flora record several glacial/interglacial cycles during the u
per Pleistocene. An abrupt change in the marine flora occurs at ab
700 cal ka, which may be related to a sharp hydrological change
the sea-surface waters. The high-resolution record of the last 28
ka exhibits the classic climatic steps from the Last Glacial Maximu
to the Holocene. Three aridity phases shown by the extension of
semidesert vegetation on the Alboran Sea borderlands are correl
465



N. COMBOURIEU NEBOUT ET AL.

e

G
r

d

io

e

,

s

, 
th

h

n

 
a

h

u
o

8
th

el-
.

t ses

, J.,
gla-

tom

pic
o 0.8

y,
 the-
the
d

of
rs. I.

ation

 of
as,

al
anic

llate
eg

es de

edi-

édi-

flo-
.

 bassin

sing

ollen

 Last
tope
to cooling of the sea-surface waters marked by the development of
the dinocysts Nematosphaeropsis labyrinthea and/or Bitectatodini-
um tepikiense. The two upper phases correspond to the Oldest Dryas
and Younger Dryas and are marked by increased primary productiv-
ity, which are depicted by the higher concentrations in dinocysts and
high values of TOC.
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Appendix

List and Systematics of Identified Dinocysts
from Quaternary Sediments of Site 976

The dinoflagellate cysts nomenclature followed herein is that of Lentin 
Williams 1993.

Division: Dinoflagellata (Bütschli, 1885) Fensome et al., 1993
Class: Dinophyceae Pascher, 1914
Order: Peridiniales Haeckel, 1894

Ataxiodinium choanum Reid, 1974
Achomosphaera andalousiensis Jan du Chêne, 1977 emend. Jan du Chêne 

Londeix, 1988
Achomosphaera ramosasimilis (Yun, 1981) Londeix et al. (in press) 
cysts of Alexandrium excavatum (Braarud, 1945) Balech, 1985
Algidasphaeridium? cf. minutum (Harland & Reid in Harland et al., 1980)

Matsuoka & Bujak, 1988. Specimens with morphology close to type m
terial. The modern distribution of height percentages of A.? minutum is re-
stricted to high latitude surface water (e.g., Mudie, 1992; Rochon, 199
Because of their unexpected occurrence in Mediterranean Sea, our sp
mens are designated as A.? cf. minutum pending further taxonomic inves-
tigations.

Amiculosphaera umbracula Harland, 1979
Bitectatodinium tepikiense Wilson, 1973
Brigantedinium cariacoense (Wall, 1967) Reid, 1977
Brigantedinium simplex (Wall, 1965) Reid, 1977
Dalella chathamense McMinn & Sun, 1994
Hystrichokolpoma rigaudiae Deflandre & Cookson, 1955
Impagidinium aculeatum (Wall, 1967) Lentin & Williams, 1981
Impagidinium japonicum Matsuoka, 1983b
Impagidinium pallidum Bujak, 1984
Impagidinium paradoxum (Wall, 1967) Stover & Evitt, 1978
Impagidinium patulum (Wall, 1967) Stover & Evitt, 1978
Impagidinium plicatum Versteegh & Zevenboom, 1995
Impagidinium sphaericum (Wall, 1967) Lentin & Williams, 1981
Impagidinium strialatum (Wall, 1967) Stover & Evitt, 1978
Impagidinium velorum Bujak, 1984
Lejeunecysta diversiforma (Bradford, 1977) Artzner & Dörhöfer, 1978
Lejeunecysta oliva (Reid, 1977) Turon & Londeix, 1988
Lejeunecysta sabrina (Reid, 1977) Bujak, 1984
Lingulodinium machaerophorum (Deflandre & Cookson, 1955) Wall, 1967
Melitasphaeridium aequabile Matsuoka, 1983b
Nematosphaeropsis labyrinthea (Ostenfeld, 1903) Reid, 1974
Operculodinium centrocarpum (Deflandre &Cookson, 1955) Wall, 1967. A

few specimens have very short processes.
Operculodinium israelianum (Rossignol, 1962) Wall, 1967
Operculodinium janduchenei Head et al., 1989
cysts of Polykrikos schwartzii Bütschli, 1873
Polysphaeridium zoharyi (Rossignol, 1962) Bujak et al., 1980
cysts of Pentapharsodinium cf. dalei Indelicato & Loeblich, 1986. Specimens

with morphology close to type material. The modern distribution of heigh
percentages of P. dalei is restricted to high-latitude surface water (e.g
Mudie, 1992; Rochon, 1997 as Protoperidinium faeroense). Because of
their unexpected occurrence in Mediterranean Sea, our specimens are
ignated as P. cf. dalei pending further taxonomic investigations. Two
morphotypes were found.
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Pyxidinopsis? sp.: Some specimens tentatively attributed to the genus Pyxid-
inopsis Habib, 1975

Pyxidinopsis reticulata McMinn & Sun, 1994
Quinquecuspis concreta (Reid, 1977) Harland, 1977
Selenopemphix nephroides Benedek, 1972
Selenopemphix quanta (Bradford, 1975) Matsuoka, 1985. Several morpho-

types have been found.
Spiniferites belerius Reid, 1974
Spiniferites bentorii (Rossignol; 1964) Wall & Dale, 1970. Several morpho-

types were found.
Spiniferites bulloideus (Deflandre & Cookson, 1955) Sarjeant, 1970
Spiniferites delicatus Reid, 1974
Spiniferites elongatus Reid, 1974
Spiniferites granulatus Davey, 1969. Because of their close granular wall or-

namentation, S. pachydermus and S. granulatus have been grouped under
Spiniferites “granular” gr.

Spiniferites hyperacanthus (Deflandre & Cookson, 1955) Cookson & Eisen
ack, 1974. Because of their close morphology and ecology, S. hyperacan-
468
thus and S. mirabilis have been grouped in the text under S. mirabilis s.l.
Spiniferites lazus Reid, 1974
Spiniferites membranaceus (Rossignol, 1964) Sarjeant, 1970. Several mor

photypes have been found.
Spiniferites mirabilis (Rossignol, 1964) Sarjeant, 1970. Because of their clo

morphology and ecology, S. hyperacanthus and S. mirabilis have been
grouped in the text under S. mirabilis s.l.

Spiniferites pachydermus (Rossignol, 1964) Reid, 1974. Because of the
close granular wall ornamentation, S. pachydermus and S. granulatus
have been grouped under Spiniferites “granular” grp.

Spiniferites ramosus (Ehrenberg, 1838) & Loeblich, 1966
Spiniferites rubinus (Rossignol; 1964) Sarjeant, 1970
Stelladinium stellatum (Wall & Dale, 1968) Reid, 1977
Tectatodinium pellitum Wall, 1967
Trinovantedinium capitatum Reid, 1977
Tuberculodinium vancampoae (Rossignol, 1962) Wall, 1967
Xandarodinium xanthum Reid, 1977
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