REFERENCES

Berner, R.A., 1980. Early Diagenesis: A Theoretical Approach: Princeton, NJ (Princeton Univ. Press).

Borowski, W.S., Paull, C.K., and Ussler, W., III, 1996. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate. Geology, 24:655-658.

Böttcher, M.E., Brumsack, H.-J., and De Lange, G.J., 1998. Sulfate reduction and related stable isotope (34S, 18O) variations in interstitial waters from the eastern Mediterranean. In Robertson, A.H.F., Emeis, K.-C., Richter, C., and Camerlenghi, A. (Eds.), Proc. ODP, Sci. Results, 160: College Station, TX (Ocean Drilling Program), 365-373.

Böttcher, M.E., Rusch, A., Höpner, T., and Brumsack, H.-J., 1997. Stable sulfur isotope effects related to local intense sulfate reduction in a tidal sandflat (Southern North Sea): results from loading experiments. Isot. Environ. Health Stud., 33:453-473.

Böttcher, M.E., and Usdowski, E., 1993. 34S/32S ratios of the dissolved sulphate of river, well and spring waters in a gypsum-carbonate karst area at the southwest edge of the Harz mountains. Z. Dtsch. Geol. Ges., 144:471-477.

Botz, R., Pokojski, H.-D., Schmitt, M., and Thomm, M., 1997. Carbon isotope fractionation during the bacterial methanogenesis by CO2 reduction. Org. Geochem., 25:255-262.

Burdett, J.W., Arthur, M.A., and Richardson, M., 1989. A Neogene seawater sulfur isotope age curve from calcareous pelagic microfossils. Earth Planet. Sci. Lett., 94:189-198.

Canfield, D.E., 1991. Sulfate reduction in deep-sea sediments. Am. J. Sci., 291:177-188.

Canfield, D.E., and Teske, A., 1996. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulfur-isotope studies. Nature, 328:127-132.

Carothers, W.W., and Kharaka, Y.K., 1980. Stable carbon isotopes of HCO3- in oil-field waters: implications for the origin of CO2. Geochim. Cosmochim. Acta, 44:323-332.

Chambers, L.A., and Trudinger, P.A., 1979. Microbiological fractionation of stable sulfur isotopes: a review and critique. Geomicrobiol. J., 1:249-293.

Chiba, H., and Sakai, H., 1985. Oxygen isotope exchange rate between dissolved sulfate and water at hydrothermal temperatures. Geochim. Cosmochim. Acta, 49:993-1000.

Comas, M.C., Zahn, R., Klaus, A., et al., 1996. Proc. ODP, Init. Repts., 161: College Station, TX (Ocean Drilling Program).

Cortecci, G., Molcard, R., and Noto, P., 1974. Isotopic analysis of the deep structure in the Tyrrhenian Sea. Nature, 250:134-136.

Cortecci, G., Noto, P., and Molcard, R., 1974. Tritium and sulfate-oxygen isotopes in Mediterranean Sea: some profiles in the low Tyrrhenian Basin. Bull. Geofis. Teor. Appl., 16:292-298.

De Lange, G.J., Boelrijk, N.A.I.M., Catalano, G., Corselli, C., Klinkhammer, G.P., Middelburg, J.J., Mueller, D.W., Ullman, W.J., Van Gaans, P., and Woittiez, J.R.W., 1990. Sulphate-related equilibria in the hypersaline brines of the Tyro and Bannock Basins, eastern Mediterranean. Mar. Chem. 31:89-112.

Fritz, P., Basharmal, G.M., Drimmie, R.J., Ibsen, J., and Qureshi, R.M., 1989. Oxygen isotope exchange between sulphate and water during bacterial reduction of sulphate. Chem. Geol. (Isot. Geosc. Sec.), 79:99-105.

Games, L.M., Hayes, J.M., and Gunsales R.P., 1978. Methane-producing bacteria: natural fractionations of the stable carbon isotopes. Geochim. Cosmochim. Acta, 42:1295-1297.

Gieskes, J.M., Gamo, T., and Brumsack, H., 1991. Chemical methods for interstitial water analysis aboard JOIDES Resolution. ODP Tech. Note, 15. [HTML version]

Gonfiantini, R., Stichler, W., and Rozanski, K., 1995. Standards and intercomparison materials distributed by the International Atomic Energy Agency for stable isotope measurements. IAEA-TECDOC-825, 13-29.

Hartmann, M., and Nielsen, H., 1969. 34S-Werte in rezenten Meeressedimenten und ihre Deutung am Beispiel einiger Sedimentprofile aus der westlichen Ostsee. Geol. Rundsch., 58:621-655.

Jørgensen, B.B., 1979. A theoretical model of the stable sulfur isotope distribution in marine sediments. Geochim. Cosmochim. Acta, 43:36-74.

Manheim, F.T., and Sayles, F.L., 1974. Composition and origin of interstitial waters of marine sediments, based on deep sea drill cores. In Goldberg, E.D. (Ed.), The Sea (Vol. 5): Marine Chemistry: The Sedimentary Cycle: New York (Wiley), 527-568.

Mizutani, Y., 1971. An improvement of the carbon-reduction method for the oxygen isotopic analysis of sulphates. Geochem. J., 5:69-77.

Mizutani, Y., and Rafter, T.A., 1969. Oxygen isotopic composition of sulphates—part 3: Oxygen isotopic fractionation in the bisulphate ion-water system. N.Z. J. Sci., 12:54-59.

————, 1973. Isotopic behaviour of sulphate oxygen in the bacterial reduction of sulphate. Geochem. J., 6:183-191.

Rees, C.E., 1973. A steady state model for sulfur isotope fractionation in bacterial reduction processes. Geochim. Cosmochim. Acta, 37:1141-1162.

Stenni, B., and Longinelli, A., 1990. Stable isotope study of water, gypsum and carbonate samples from the Bannock and Tyro Basins, Eastern Mediterranean. Mar. Chem., 31:123-135.

Sweeney, R.E., and Kaplan, I.R., 1980. Diagenetic sulfate reduction in marine sediments. Mar. Chem., 21:165-174.

Thode, H.G., and Monster, J., 1965. Sulfur isotope geochemistry of petroleum, evaporites and ancient seas. In Fluids in Subsurface Environments, AAPG Mem., 4:367-377.

Zak, I., Sakai, H., and Kaplan, I.R., 1980. Factors controlling the 18O/16O and 34S/32S isotope ratios of ocean sulfates, evaporites and interstitial sulfates from modern deep sea sediments. In Goldberg, E.D., Horibe, Y., and Saruhashi, K. (Eds.), Isotope Marine Chemistry: Tokyo (Rokakuho), 339-373.